]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/swap.c
virtio-net: fix leaking of ctx array
[mirror_ubuntu-bionic-kernel.git] / mm / swap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
183ff22b 8 * This file contains the default values for the operation of the
1da177e4
LT
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16#include <linux/mm.h>
17#include <linux/sched.h>
18#include <linux/kernel_stat.h>
19#include <linux/swap.h>
20#include <linux/mman.h>
21#include <linux/pagemap.h>
22#include <linux/pagevec.h>
23#include <linux/init.h>
b95f1b31 24#include <linux/export.h>
1da177e4 25#include <linux/mm_inline.h>
1da177e4 26#include <linux/percpu_counter.h>
3565fce3 27#include <linux/memremap.h>
1da177e4
LT
28#include <linux/percpu.h>
29#include <linux/cpu.h>
30#include <linux/notifier.h>
e0bf68dd 31#include <linux/backing-dev.h>
66e1707b 32#include <linux/memcontrol.h>
5a0e3ad6 33#include <linux/gfp.h>
a27bb332 34#include <linux/uio.h>
822fc613 35#include <linux/hugetlb.h>
33c3fc71 36#include <linux/page_idle.h>
1da177e4 37
64d6519d
LS
38#include "internal.h"
39
c6286c98
MG
40#define CREATE_TRACE_POINTS
41#include <trace/events/pagemap.h>
42
1da177e4
LT
43/* How many pages do we try to swap or page in/out together? */
44int page_cluster;
45
13f7f789 46static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
f84f9504 47static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
cc5993bd 48static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
f7ad2a6c 49static DEFINE_PER_CPU(struct pagevec, lru_lazyfree_pvecs);
a4a921aa
ML
50#ifdef CONFIG_SMP
51static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
52#endif
902aaed0 53
b221385b
AB
54/*
55 * This path almost never happens for VM activity - pages are normally
56 * freed via pagevecs. But it gets used by networking.
57 */
920c7a5d 58static void __page_cache_release(struct page *page)
b221385b
AB
59{
60 if (PageLRU(page)) {
b221385b 61 struct zone *zone = page_zone(page);
fa9add64
HD
62 struct lruvec *lruvec;
63 unsigned long flags;
b221385b 64
a52633d8 65 spin_lock_irqsave(zone_lru_lock(zone), flags);
599d0c95 66 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
309381fe 67 VM_BUG_ON_PAGE(!PageLRU(page), page);
b221385b 68 __ClearPageLRU(page);
fa9add64 69 del_page_from_lru_list(page, lruvec, page_off_lru(page));
a52633d8 70 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
b221385b 71 }
62906027 72 __ClearPageWaiters(page);
0a31bc97 73 mem_cgroup_uncharge(page);
91807063
AA
74}
75
76static void __put_single_page(struct page *page)
77{
78 __page_cache_release(page);
b745bc85 79 free_hot_cold_page(page, false);
b221385b
AB
80}
81
91807063 82static void __put_compound_page(struct page *page)
1da177e4 83{
91807063 84 compound_page_dtor *dtor;
1da177e4 85
822fc613
NH
86 /*
87 * __page_cache_release() is supposed to be called for thp, not for
88 * hugetlb. This is because hugetlb page does never have PageLRU set
89 * (it's never listed to any LRU lists) and no memcg routines should
90 * be called for hugetlb (it has a separate hugetlb_cgroup.)
91 */
92 if (!PageHuge(page))
93 __page_cache_release(page);
91807063
AA
94 dtor = get_compound_page_dtor(page);
95 (*dtor)(page);
96}
97
ddc58f27 98void __put_page(struct page *page)
8519fb30 99{
71389703
DW
100 if (is_zone_device_page(page)) {
101 put_dev_pagemap(page->pgmap);
102
103 /*
104 * The page belongs to the device that created pgmap. Do
105 * not return it to page allocator.
106 */
107 return;
108 }
109
8519fb30 110 if (unlikely(PageCompound(page)))
ddc58f27
KS
111 __put_compound_page(page);
112 else
91807063 113 __put_single_page(page);
1da177e4 114}
ddc58f27 115EXPORT_SYMBOL(__put_page);
70b50f94 116
1d7ea732 117/**
7682486b
RD
118 * put_pages_list() - release a list of pages
119 * @pages: list of pages threaded on page->lru
1d7ea732
AZ
120 *
121 * Release a list of pages which are strung together on page.lru. Currently
122 * used by read_cache_pages() and related error recovery code.
1d7ea732
AZ
123 */
124void put_pages_list(struct list_head *pages)
125{
126 while (!list_empty(pages)) {
127 struct page *victim;
128
129 victim = list_entry(pages->prev, struct page, lru);
130 list_del(&victim->lru);
09cbfeaf 131 put_page(victim);
1d7ea732
AZ
132 }
133}
134EXPORT_SYMBOL(put_pages_list);
135
18022c5d
MG
136/*
137 * get_kernel_pages() - pin kernel pages in memory
138 * @kiov: An array of struct kvec structures
139 * @nr_segs: number of segments to pin
140 * @write: pinning for read/write, currently ignored
141 * @pages: array that receives pointers to the pages pinned.
142 * Should be at least nr_segs long.
143 *
144 * Returns number of pages pinned. This may be fewer than the number
145 * requested. If nr_pages is 0 or negative, returns 0. If no pages
146 * were pinned, returns -errno. Each page returned must be released
147 * with a put_page() call when it is finished with.
148 */
149int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
150 struct page **pages)
151{
152 int seg;
153
154 for (seg = 0; seg < nr_segs; seg++) {
155 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
156 return seg;
157
5a178119 158 pages[seg] = kmap_to_page(kiov[seg].iov_base);
09cbfeaf 159 get_page(pages[seg]);
18022c5d
MG
160 }
161
162 return seg;
163}
164EXPORT_SYMBOL_GPL(get_kernel_pages);
165
166/*
167 * get_kernel_page() - pin a kernel page in memory
168 * @start: starting kernel address
169 * @write: pinning for read/write, currently ignored
170 * @pages: array that receives pointer to the page pinned.
171 * Must be at least nr_segs long.
172 *
173 * Returns 1 if page is pinned. If the page was not pinned, returns
174 * -errno. The page returned must be released with a put_page() call
175 * when it is finished with.
176 */
177int get_kernel_page(unsigned long start, int write, struct page **pages)
178{
179 const struct kvec kiov = {
180 .iov_base = (void *)start,
181 .iov_len = PAGE_SIZE
182 };
183
184 return get_kernel_pages(&kiov, 1, write, pages);
185}
186EXPORT_SYMBOL_GPL(get_kernel_page);
187
3dd7ae8e 188static void pagevec_lru_move_fn(struct pagevec *pvec,
fa9add64
HD
189 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
190 void *arg)
902aaed0
HH
191{
192 int i;
68eb0731 193 struct pglist_data *pgdat = NULL;
fa9add64 194 struct lruvec *lruvec;
3dd7ae8e 195 unsigned long flags = 0;
902aaed0
HH
196
197 for (i = 0; i < pagevec_count(pvec); i++) {
198 struct page *page = pvec->pages[i];
68eb0731 199 struct pglist_data *pagepgdat = page_pgdat(page);
902aaed0 200
68eb0731
MG
201 if (pagepgdat != pgdat) {
202 if (pgdat)
203 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
204 pgdat = pagepgdat;
205 spin_lock_irqsave(&pgdat->lru_lock, flags);
902aaed0 206 }
3dd7ae8e 207
68eb0731 208 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 209 (*move_fn)(page, lruvec, arg);
902aaed0 210 }
68eb0731
MG
211 if (pgdat)
212 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
83896fb5
LT
213 release_pages(pvec->pages, pvec->nr, pvec->cold);
214 pagevec_reinit(pvec);
d8505dee
SL
215}
216
fa9add64
HD
217static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
218 void *arg)
3dd7ae8e
SL
219{
220 int *pgmoved = arg;
3dd7ae8e 221
c55e8d03
JW
222 if (PageLRU(page) && !PageUnevictable(page)) {
223 del_page_from_lru_list(page, lruvec, page_lru(page));
224 ClearPageActive(page);
225 add_page_to_lru_list_tail(page, lruvec, page_lru(page));
3dd7ae8e
SL
226 (*pgmoved)++;
227 }
228}
229
230/*
231 * pagevec_move_tail() must be called with IRQ disabled.
232 * Otherwise this may cause nasty races.
233 */
234static void pagevec_move_tail(struct pagevec *pvec)
235{
236 int pgmoved = 0;
237
238 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
239 __count_vm_events(PGROTATED, pgmoved);
240}
241
1da177e4
LT
242/*
243 * Writeback is about to end against a page which has been marked for immediate
244 * reclaim. If it still appears to be reclaimable, move it to the tail of the
902aaed0 245 * inactive list.
1da177e4 246 */
3dd7ae8e 247void rotate_reclaimable_page(struct page *page)
1da177e4 248{
c55e8d03 249 if (!PageLocked(page) && !PageDirty(page) &&
894bc310 250 !PageUnevictable(page) && PageLRU(page)) {
ac6aadb2
MS
251 struct pagevec *pvec;
252 unsigned long flags;
253
09cbfeaf 254 get_page(page);
ac6aadb2 255 local_irq_save(flags);
7c8e0181 256 pvec = this_cpu_ptr(&lru_rotate_pvecs);
8f182270 257 if (!pagevec_add(pvec, page) || PageCompound(page))
ac6aadb2
MS
258 pagevec_move_tail(pvec);
259 local_irq_restore(flags);
260 }
1da177e4
LT
261}
262
fa9add64 263static void update_page_reclaim_stat(struct lruvec *lruvec,
3e2f41f1
KM
264 int file, int rotated)
265{
fa9add64 266 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
3e2f41f1
KM
267
268 reclaim_stat->recent_scanned[file]++;
269 if (rotated)
270 reclaim_stat->recent_rotated[file]++;
3e2f41f1
KM
271}
272
fa9add64
HD
273static void __activate_page(struct page *page, struct lruvec *lruvec,
274 void *arg)
1da177e4 275{
744ed144 276 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
7a608572
LT
277 int file = page_is_file_cache(page);
278 int lru = page_lru_base_type(page);
744ed144 279
fa9add64 280 del_page_from_lru_list(page, lruvec, lru);
7a608572
LT
281 SetPageActive(page);
282 lru += LRU_ACTIVE;
fa9add64 283 add_page_to_lru_list(page, lruvec, lru);
24b7e581 284 trace_mm_lru_activate(page);
4f98a2fe 285
fa9add64
HD
286 __count_vm_event(PGACTIVATE);
287 update_page_reclaim_stat(lruvec, file, 1);
1da177e4 288 }
eb709b0d
SL
289}
290
291#ifdef CONFIG_SMP
eb709b0d
SL
292static void activate_page_drain(int cpu)
293{
294 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
295
296 if (pagevec_count(pvec))
297 pagevec_lru_move_fn(pvec, __activate_page, NULL);
298}
299
5fbc4616
CM
300static bool need_activate_page_drain(int cpu)
301{
302 return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
303}
304
eb709b0d
SL
305void activate_page(struct page *page)
306{
800d8c63 307 page = compound_head(page);
eb709b0d
SL
308 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
309 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
310
09cbfeaf 311 get_page(page);
8f182270 312 if (!pagevec_add(pvec, page) || PageCompound(page))
eb709b0d
SL
313 pagevec_lru_move_fn(pvec, __activate_page, NULL);
314 put_cpu_var(activate_page_pvecs);
315 }
316}
317
318#else
319static inline void activate_page_drain(int cpu)
320{
321}
322
5fbc4616
CM
323static bool need_activate_page_drain(int cpu)
324{
325 return false;
326}
327
eb709b0d
SL
328void activate_page(struct page *page)
329{
330 struct zone *zone = page_zone(page);
331
800d8c63 332 page = compound_head(page);
a52633d8 333 spin_lock_irq(zone_lru_lock(zone));
599d0c95 334 __activate_page(page, mem_cgroup_page_lruvec(page, zone->zone_pgdat), NULL);
a52633d8 335 spin_unlock_irq(zone_lru_lock(zone));
1da177e4 336}
eb709b0d 337#endif
1da177e4 338
059285a2
MG
339static void __lru_cache_activate_page(struct page *page)
340{
341 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
342 int i;
343
344 /*
345 * Search backwards on the optimistic assumption that the page being
346 * activated has just been added to this pagevec. Note that only
347 * the local pagevec is examined as a !PageLRU page could be in the
348 * process of being released, reclaimed, migrated or on a remote
349 * pagevec that is currently being drained. Furthermore, marking
350 * a remote pagevec's page PageActive potentially hits a race where
351 * a page is marked PageActive just after it is added to the inactive
352 * list causing accounting errors and BUG_ON checks to trigger.
353 */
354 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
355 struct page *pagevec_page = pvec->pages[i];
356
357 if (pagevec_page == page) {
358 SetPageActive(page);
359 break;
360 }
361 }
362
363 put_cpu_var(lru_add_pvec);
364}
365
1da177e4
LT
366/*
367 * Mark a page as having seen activity.
368 *
369 * inactive,unreferenced -> inactive,referenced
370 * inactive,referenced -> active,unreferenced
371 * active,unreferenced -> active,referenced
eb39d618
HD
372 *
373 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
374 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
1da177e4 375 */
920c7a5d 376void mark_page_accessed(struct page *page)
1da177e4 377{
e90309c9 378 page = compound_head(page);
894bc310 379 if (!PageActive(page) && !PageUnevictable(page) &&
059285a2
MG
380 PageReferenced(page)) {
381
382 /*
383 * If the page is on the LRU, queue it for activation via
384 * activate_page_pvecs. Otherwise, assume the page is on a
385 * pagevec, mark it active and it'll be moved to the active
386 * LRU on the next drain.
387 */
388 if (PageLRU(page))
389 activate_page(page);
390 else
391 __lru_cache_activate_page(page);
1da177e4 392 ClearPageReferenced(page);
a528910e
JW
393 if (page_is_file_cache(page))
394 workingset_activation(page);
1da177e4
LT
395 } else if (!PageReferenced(page)) {
396 SetPageReferenced(page);
397 }
33c3fc71
VD
398 if (page_is_idle(page))
399 clear_page_idle(page);
1da177e4 400}
1da177e4
LT
401EXPORT_SYMBOL(mark_page_accessed);
402
2329d375 403static void __lru_cache_add(struct page *page)
1da177e4 404{
13f7f789
MG
405 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
406
09cbfeaf 407 get_page(page);
8f182270 408 if (!pagevec_add(pvec, page) || PageCompound(page))
a0b8cab3 409 __pagevec_lru_add(pvec);
13f7f789 410 put_cpu_var(lru_add_pvec);
1da177e4 411}
2329d375
JZ
412
413/**
414 * lru_cache_add: add a page to the page lists
415 * @page: the page to add
416 */
417void lru_cache_add_anon(struct page *page)
418{
6fb81a17
MG
419 if (PageActive(page))
420 ClearPageActive(page);
2329d375
JZ
421 __lru_cache_add(page);
422}
423
424void lru_cache_add_file(struct page *page)
425{
6fb81a17
MG
426 if (PageActive(page))
427 ClearPageActive(page);
2329d375
JZ
428 __lru_cache_add(page);
429}
430EXPORT_SYMBOL(lru_cache_add_file);
1da177e4 431
f04e9ebb 432/**
c53954a0 433 * lru_cache_add - add a page to a page list
f04e9ebb 434 * @page: the page to be added to the LRU.
2329d375
JZ
435 *
436 * Queue the page for addition to the LRU via pagevec. The decision on whether
437 * to add the page to the [in]active [file|anon] list is deferred until the
438 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
439 * have the page added to the active list using mark_page_accessed().
f04e9ebb 440 */
c53954a0 441void lru_cache_add(struct page *page)
1da177e4 442{
309381fe
SL
443 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
444 VM_BUG_ON_PAGE(PageLRU(page), page);
c53954a0 445 __lru_cache_add(page);
1da177e4
LT
446}
447
894bc310
LS
448/**
449 * add_page_to_unevictable_list - add a page to the unevictable list
450 * @page: the page to be added to the unevictable list
451 *
452 * Add page directly to its zone's unevictable list. To avoid races with
453 * tasks that might be making the page evictable, through eg. munlock,
454 * munmap or exit, while it's not on the lru, we want to add the page
455 * while it's locked or otherwise "invisible" to other tasks. This is
456 * difficult to do when using the pagevec cache, so bypass that.
457 */
458void add_page_to_unevictable_list(struct page *page)
459{
599d0c95 460 struct pglist_data *pgdat = page_pgdat(page);
fa9add64 461 struct lruvec *lruvec;
894bc310 462
599d0c95
MG
463 spin_lock_irq(&pgdat->lru_lock);
464 lruvec = mem_cgroup_page_lruvec(page, pgdat);
ef2a2cbd 465 ClearPageActive(page);
894bc310
LS
466 SetPageUnevictable(page);
467 SetPageLRU(page);
fa9add64 468 add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
599d0c95 469 spin_unlock_irq(&pgdat->lru_lock);
894bc310
LS
470}
471
00501b53
JW
472/**
473 * lru_cache_add_active_or_unevictable
474 * @page: the page to be added to LRU
475 * @vma: vma in which page is mapped for determining reclaimability
476 *
477 * Place @page on the active or unevictable LRU list, depending on its
478 * evictability. Note that if the page is not evictable, it goes
479 * directly back onto it's zone's unevictable list, it does NOT use a
480 * per cpu pagevec.
481 */
482void lru_cache_add_active_or_unevictable(struct page *page,
483 struct vm_area_struct *vma)
484{
485 VM_BUG_ON_PAGE(PageLRU(page), page);
486
487 if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) {
488 SetPageActive(page);
489 lru_cache_add(page);
490 return;
491 }
492
493 if (!TestSetPageMlocked(page)) {
494 /*
495 * We use the irq-unsafe __mod_zone_page_stat because this
496 * counter is not modified from interrupt context, and the pte
497 * lock is held(spinlock), which implies preemption disabled.
498 */
499 __mod_zone_page_state(page_zone(page), NR_MLOCK,
500 hpage_nr_pages(page));
501 count_vm_event(UNEVICTABLE_PGMLOCKED);
502 }
503 add_page_to_unevictable_list(page);
504}
505
31560180
MK
506/*
507 * If the page can not be invalidated, it is moved to the
508 * inactive list to speed up its reclaim. It is moved to the
509 * head of the list, rather than the tail, to give the flusher
510 * threads some time to write it out, as this is much more
511 * effective than the single-page writeout from reclaim.
278df9f4
MK
512 *
513 * If the page isn't page_mapped and dirty/writeback, the page
514 * could reclaim asap using PG_reclaim.
515 *
516 * 1. active, mapped page -> none
517 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
518 * 3. inactive, mapped page -> none
519 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
520 * 5. inactive, clean -> inactive, tail
521 * 6. Others -> none
522 *
523 * In 4, why it moves inactive's head, the VM expects the page would
524 * be write it out by flusher threads as this is much more effective
525 * than the single-page writeout from reclaim.
31560180 526 */
cc5993bd 527static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
fa9add64 528 void *arg)
31560180
MK
529{
530 int lru, file;
278df9f4 531 bool active;
31560180 532
278df9f4 533 if (!PageLRU(page))
31560180
MK
534 return;
535
bad49d9c
MK
536 if (PageUnevictable(page))
537 return;
538
31560180
MK
539 /* Some processes are using the page */
540 if (page_mapped(page))
541 return;
542
278df9f4 543 active = PageActive(page);
31560180
MK
544 file = page_is_file_cache(page);
545 lru = page_lru_base_type(page);
fa9add64
HD
546
547 del_page_from_lru_list(page, lruvec, lru + active);
31560180
MK
548 ClearPageActive(page);
549 ClearPageReferenced(page);
fa9add64 550 add_page_to_lru_list(page, lruvec, lru);
31560180 551
278df9f4
MK
552 if (PageWriteback(page) || PageDirty(page)) {
553 /*
554 * PG_reclaim could be raced with end_page_writeback
555 * It can make readahead confusing. But race window
556 * is _really_ small and it's non-critical problem.
557 */
558 SetPageReclaim(page);
559 } else {
560 /*
561 * The page's writeback ends up during pagevec
562 * We moves tha page into tail of inactive.
563 */
925b7673 564 list_move_tail(&page->lru, &lruvec->lists[lru]);
278df9f4
MK
565 __count_vm_event(PGROTATED);
566 }
567
568 if (active)
569 __count_vm_event(PGDEACTIVATE);
fa9add64 570 update_page_reclaim_stat(lruvec, file, 0);
31560180
MK
571}
572
10853a03 573
f7ad2a6c 574static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
10853a03
MK
575 void *arg)
576{
f7ad2a6c
SL
577 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
578 !PageUnevictable(page)) {
579 bool active = PageActive(page);
10853a03 580
f7ad2a6c
SL
581 del_page_from_lru_list(page, lruvec,
582 LRU_INACTIVE_ANON + active);
10853a03
MK
583 ClearPageActive(page);
584 ClearPageReferenced(page);
f7ad2a6c
SL
585 /*
586 * lazyfree pages are clean anonymous pages. They have
587 * SwapBacked flag cleared to distinguish normal anonymous
588 * pages
589 */
590 ClearPageSwapBacked(page);
591 add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
10853a03 592
f7ad2a6c
SL
593 __count_vm_events(PGLAZYFREE, hpage_nr_pages(page));
594 update_page_reclaim_stat(lruvec, 1, 0);
10853a03
MK
595 }
596}
597
902aaed0
HH
598/*
599 * Drain pages out of the cpu's pagevecs.
600 * Either "cpu" is the current CPU, and preemption has already been
601 * disabled; or "cpu" is being hot-unplugged, and is already dead.
602 */
f0cb3c76 603void lru_add_drain_cpu(int cpu)
1da177e4 604{
13f7f789 605 struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
1da177e4 606
13f7f789 607 if (pagevec_count(pvec))
a0b8cab3 608 __pagevec_lru_add(pvec);
902aaed0
HH
609
610 pvec = &per_cpu(lru_rotate_pvecs, cpu);
611 if (pagevec_count(pvec)) {
612 unsigned long flags;
613
614 /* No harm done if a racing interrupt already did this */
615 local_irq_save(flags);
616 pagevec_move_tail(pvec);
617 local_irq_restore(flags);
618 }
31560180 619
cc5993bd 620 pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
31560180 621 if (pagevec_count(pvec))
cc5993bd 622 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
eb709b0d 623
f7ad2a6c 624 pvec = &per_cpu(lru_lazyfree_pvecs, cpu);
10853a03 625 if (pagevec_count(pvec))
f7ad2a6c 626 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
10853a03 627
eb709b0d 628 activate_page_drain(cpu);
31560180
MK
629}
630
631/**
cc5993bd 632 * deactivate_file_page - forcefully deactivate a file page
31560180
MK
633 * @page: page to deactivate
634 *
635 * This function hints the VM that @page is a good reclaim candidate,
636 * for example if its invalidation fails due to the page being dirty
637 * or under writeback.
638 */
cc5993bd 639void deactivate_file_page(struct page *page)
31560180 640{
821ed6bb 641 /*
cc5993bd
MK
642 * In a workload with many unevictable page such as mprotect,
643 * unevictable page deactivation for accelerating reclaim is pointless.
821ed6bb
MK
644 */
645 if (PageUnevictable(page))
646 return;
647
31560180 648 if (likely(get_page_unless_zero(page))) {
cc5993bd 649 struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
31560180 650
8f182270 651 if (!pagevec_add(pvec, page) || PageCompound(page))
cc5993bd
MK
652 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
653 put_cpu_var(lru_deactivate_file_pvecs);
31560180 654 }
80bfed90
AM
655}
656
10853a03 657/**
f7ad2a6c 658 * mark_page_lazyfree - make an anon page lazyfree
10853a03
MK
659 * @page: page to deactivate
660 *
f7ad2a6c
SL
661 * mark_page_lazyfree() moves @page to the inactive file list.
662 * This is done to accelerate the reclaim of @page.
10853a03 663 */
f7ad2a6c 664void mark_page_lazyfree(struct page *page)
10853a03 665{
f7ad2a6c
SL
666 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
667 !PageUnevictable(page)) {
668 struct pagevec *pvec = &get_cpu_var(lru_lazyfree_pvecs);
10853a03 669
09cbfeaf 670 get_page(page);
8f182270 671 if (!pagevec_add(pvec, page) || PageCompound(page))
f7ad2a6c
SL
672 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
673 put_cpu_var(lru_lazyfree_pvecs);
10853a03
MK
674 }
675}
676
80bfed90
AM
677void lru_add_drain(void)
678{
f0cb3c76 679 lru_add_drain_cpu(get_cpu());
80bfed90 680 put_cpu();
1da177e4
LT
681}
682
c4028958 683static void lru_add_drain_per_cpu(struct work_struct *dummy)
053837fc
NP
684{
685 lru_add_drain();
686}
687
5fbc4616
CM
688static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
689
690void lru_add_drain_all(void)
053837fc 691{
5fbc4616
CM
692 static DEFINE_MUTEX(lock);
693 static struct cpumask has_work;
694 int cpu;
695
ce612879
MH
696 /*
697 * Make sure nobody triggers this path before mm_percpu_wq is fully
698 * initialized.
699 */
700 if (WARN_ON(!mm_percpu_wq))
701 return;
702
5fbc4616
CM
703 mutex_lock(&lock);
704 get_online_cpus();
705 cpumask_clear(&has_work);
706
707 for_each_online_cpu(cpu) {
708 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
709
710 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
711 pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
cc5993bd 712 pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
f7ad2a6c 713 pagevec_count(&per_cpu(lru_lazyfree_pvecs, cpu)) ||
5fbc4616
CM
714 need_activate_page_drain(cpu)) {
715 INIT_WORK(work, lru_add_drain_per_cpu);
ce612879 716 queue_work_on(cpu, mm_percpu_wq, work);
5fbc4616
CM
717 cpumask_set_cpu(cpu, &has_work);
718 }
719 }
720
721 for_each_cpu(cpu, &has_work)
722 flush_work(&per_cpu(lru_add_drain_work, cpu));
723
724 put_online_cpus();
725 mutex_unlock(&lock);
053837fc
NP
726}
727
aabfb572 728/**
ea1754a0 729 * release_pages - batched put_page()
aabfb572
MH
730 * @pages: array of pages to release
731 * @nr: number of pages
732 * @cold: whether the pages are cache cold
1da177e4 733 *
aabfb572
MH
734 * Decrement the reference count on all the pages in @pages. If it
735 * fell to zero, remove the page from the LRU and free it.
1da177e4 736 */
b745bc85 737void release_pages(struct page **pages, int nr, bool cold)
1da177e4
LT
738{
739 int i;
cc59850e 740 LIST_HEAD(pages_to_free);
599d0c95 741 struct pglist_data *locked_pgdat = NULL;
fa9add64 742 struct lruvec *lruvec;
902aaed0 743 unsigned long uninitialized_var(flags);
aabfb572 744 unsigned int uninitialized_var(lock_batch);
1da177e4 745
1da177e4
LT
746 for (i = 0; i < nr; i++) {
747 struct page *page = pages[i];
1da177e4 748
aabfb572
MH
749 /*
750 * Make sure the IRQ-safe lock-holding time does not get
751 * excessive with a continuous string of pages from the
599d0c95 752 * same pgdat. The lock is held only if pgdat != NULL.
aabfb572 753 */
599d0c95
MG
754 if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
755 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
756 locked_pgdat = NULL;
aabfb572
MH
757 }
758
6fcb52a5 759 if (is_huge_zero_page(page))
aa88b68c 760 continue;
aa88b68c 761
ddc58f27 762 page = compound_head(page);
b5810039 763 if (!put_page_testzero(page))
1da177e4
LT
764 continue;
765
ddc58f27 766 if (PageCompound(page)) {
599d0c95
MG
767 if (locked_pgdat) {
768 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
769 locked_pgdat = NULL;
ddc58f27
KS
770 }
771 __put_compound_page(page);
772 continue;
773 }
774
46453a6e 775 if (PageLRU(page)) {
599d0c95 776 struct pglist_data *pgdat = page_pgdat(page);
894bc310 777
599d0c95
MG
778 if (pgdat != locked_pgdat) {
779 if (locked_pgdat)
780 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
902aaed0 781 flags);
aabfb572 782 lock_batch = 0;
599d0c95
MG
783 locked_pgdat = pgdat;
784 spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
46453a6e 785 }
fa9add64 786
599d0c95 787 lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
309381fe 788 VM_BUG_ON_PAGE(!PageLRU(page), page);
67453911 789 __ClearPageLRU(page);
fa9add64 790 del_page_from_lru_list(page, lruvec, page_off_lru(page));
46453a6e
NP
791 }
792
c53954a0 793 /* Clear Active bit in case of parallel mark_page_accessed */
e3741b50 794 __ClearPageActive(page);
62906027 795 __ClearPageWaiters(page);
c53954a0 796
cc59850e 797 list_add(&page->lru, &pages_to_free);
1da177e4 798 }
599d0c95
MG
799 if (locked_pgdat)
800 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
1da177e4 801
747db954 802 mem_cgroup_uncharge_list(&pages_to_free);
cc59850e 803 free_hot_cold_page_list(&pages_to_free, cold);
1da177e4 804}
0be8557b 805EXPORT_SYMBOL(release_pages);
1da177e4
LT
806
807/*
808 * The pages which we're about to release may be in the deferred lru-addition
809 * queues. That would prevent them from really being freed right now. That's
810 * OK from a correctness point of view but is inefficient - those pages may be
811 * cache-warm and we want to give them back to the page allocator ASAP.
812 *
813 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
814 * and __pagevec_lru_add_active() call release_pages() directly to avoid
815 * mutual recursion.
816 */
817void __pagevec_release(struct pagevec *pvec)
818{
819 lru_add_drain();
820 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
821 pagevec_reinit(pvec);
822}
7f285701
SF
823EXPORT_SYMBOL(__pagevec_release);
824
12d27107 825#ifdef CONFIG_TRANSPARENT_HUGEPAGE
71e3aac0 826/* used by __split_huge_page_refcount() */
fa9add64 827void lru_add_page_tail(struct page *page, struct page *page_tail,
5bc7b8ac 828 struct lruvec *lruvec, struct list_head *list)
71e3aac0 829{
71e3aac0 830 const int file = 0;
71e3aac0 831
309381fe
SL
832 VM_BUG_ON_PAGE(!PageHead(page), page);
833 VM_BUG_ON_PAGE(PageCompound(page_tail), page);
834 VM_BUG_ON_PAGE(PageLRU(page_tail), page);
fa9add64 835 VM_BUG_ON(NR_CPUS != 1 &&
599d0c95 836 !spin_is_locked(&lruvec_pgdat(lruvec)->lru_lock));
71e3aac0 837
5bc7b8ac
SL
838 if (!list)
839 SetPageLRU(page_tail);
71e3aac0 840
12d27107
HD
841 if (likely(PageLRU(page)))
842 list_add_tail(&page_tail->lru, &page->lru);
5bc7b8ac
SL
843 else if (list) {
844 /* page reclaim is reclaiming a huge page */
845 get_page(page_tail);
846 list_add_tail(&page_tail->lru, list);
847 } else {
12d27107
HD
848 struct list_head *list_head;
849 /*
850 * Head page has not yet been counted, as an hpage,
851 * so we must account for each subpage individually.
852 *
853 * Use the standard add function to put page_tail on the list,
854 * but then correct its position so they all end up in order.
855 */
e180cf80 856 add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
12d27107
HD
857 list_head = page_tail->lru.prev;
858 list_move_tail(&page_tail->lru, list_head);
71e3aac0 859 }
7512102c
HD
860
861 if (!PageUnevictable(page))
e180cf80 862 update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
71e3aac0 863}
12d27107 864#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
71e3aac0 865
fa9add64
HD
866static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
867 void *arg)
3dd7ae8e 868{
13f7f789
MG
869 int file = page_is_file_cache(page);
870 int active = PageActive(page);
871 enum lru_list lru = page_lru(page);
3dd7ae8e 872
309381fe 873 VM_BUG_ON_PAGE(PageLRU(page), page);
3dd7ae8e
SL
874
875 SetPageLRU(page);
fa9add64
HD
876 add_page_to_lru_list(page, lruvec, lru);
877 update_page_reclaim_stat(lruvec, file, active);
24b7e581 878 trace_mm_lru_insertion(page, lru);
3dd7ae8e
SL
879}
880
1da177e4
LT
881/*
882 * Add the passed pages to the LRU, then drop the caller's refcount
883 * on them. Reinitialises the caller's pagevec.
884 */
a0b8cab3 885void __pagevec_lru_add(struct pagevec *pvec)
1da177e4 886{
a0b8cab3 887 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
1da177e4 888}
5095ae83 889EXPORT_SYMBOL(__pagevec_lru_add);
1da177e4 890
0cd6144a
JW
891/**
892 * pagevec_lookup_entries - gang pagecache lookup
893 * @pvec: Where the resulting entries are placed
894 * @mapping: The address_space to search
895 * @start: The starting entry index
896 * @nr_entries: The maximum number of entries
897 * @indices: The cache indices corresponding to the entries in @pvec
898 *
899 * pagevec_lookup_entries() will search for and return a group of up
900 * to @nr_entries pages and shadow entries in the mapping. All
901 * entries are placed in @pvec. pagevec_lookup_entries() takes a
902 * reference against actual pages in @pvec.
903 *
904 * The search returns a group of mapping-contiguous entries with
905 * ascending indexes. There may be holes in the indices due to
906 * not-present entries.
907 *
908 * pagevec_lookup_entries() returns the number of entries which were
909 * found.
910 */
911unsigned pagevec_lookup_entries(struct pagevec *pvec,
912 struct address_space *mapping,
913 pgoff_t start, unsigned nr_pages,
914 pgoff_t *indices)
915{
916 pvec->nr = find_get_entries(mapping, start, nr_pages,
917 pvec->pages, indices);
918 return pagevec_count(pvec);
919}
920
921/**
922 * pagevec_remove_exceptionals - pagevec exceptionals pruning
923 * @pvec: The pagevec to prune
924 *
925 * pagevec_lookup_entries() fills both pages and exceptional radix
926 * tree entries into the pagevec. This function prunes all
927 * exceptionals from @pvec without leaving holes, so that it can be
928 * passed on to page-only pagevec operations.
929 */
930void pagevec_remove_exceptionals(struct pagevec *pvec)
931{
932 int i, j;
933
934 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
935 struct page *page = pvec->pages[i];
936 if (!radix_tree_exceptional_entry(page))
937 pvec->pages[j++] = page;
938 }
939 pvec->nr = j;
940}
941
1da177e4
LT
942/**
943 * pagevec_lookup - gang pagecache lookup
944 * @pvec: Where the resulting pages are placed
945 * @mapping: The address_space to search
946 * @start: The starting page index
947 * @nr_pages: The maximum number of pages
948 *
949 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
950 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
951 * reference against the pages in @pvec.
952 *
953 * The search returns a group of mapping-contiguous pages with ascending
954 * indexes. There may be holes in the indices due to not-present pages.
955 *
956 * pagevec_lookup() returns the number of pages which were found.
957 */
958unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
959 pgoff_t start, unsigned nr_pages)
960{
961 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
962 return pagevec_count(pvec);
963}
78539fdf
CH
964EXPORT_SYMBOL(pagevec_lookup);
965
1da177e4
LT
966unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
967 pgoff_t *index, int tag, unsigned nr_pages)
968{
969 pvec->nr = find_get_pages_tag(mapping, index, tag,
970 nr_pages, pvec->pages);
971 return pagevec_count(pvec);
972}
7f285701 973EXPORT_SYMBOL(pagevec_lookup_tag);
1da177e4 974
1da177e4
LT
975/*
976 * Perform any setup for the swap system
977 */
978void __init swap_setup(void)
979{
4481374c 980 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
e0bf68dd 981
1da177e4
LT
982 /* Use a smaller cluster for small-memory machines */
983 if (megs < 16)
984 page_cluster = 2;
985 else
986 page_cluster = 3;
987 /*
988 * Right now other parts of the system means that we
989 * _really_ don't want to cluster much more
990 */
1da177e4 991}