]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/swap.c
mm: swap: implement generic handler for swap_activate
[mirror_ubuntu-zesty-kernel.git] / mm / swap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
183ff22b 8 * This file contains the default values for the operation of the
1da177e4
LT
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16#include <linux/mm.h>
17#include <linux/sched.h>
18#include <linux/kernel_stat.h>
19#include <linux/swap.h>
20#include <linux/mman.h>
21#include <linux/pagemap.h>
22#include <linux/pagevec.h>
23#include <linux/init.h>
b95f1b31 24#include <linux/export.h>
1da177e4 25#include <linux/mm_inline.h>
1da177e4
LT
26#include <linux/percpu_counter.h>
27#include <linux/percpu.h>
28#include <linux/cpu.h>
29#include <linux/notifier.h>
e0bf68dd 30#include <linux/backing-dev.h>
66e1707b 31#include <linux/memcontrol.h>
5a0e3ad6 32#include <linux/gfp.h>
1da177e4 33
64d6519d
LS
34#include "internal.h"
35
1da177e4
LT
36/* How many pages do we try to swap or page in/out together? */
37int page_cluster;
38
f04e9ebb 39static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
f84f9504 40static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
31560180 41static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
902aaed0 42
b221385b
AB
43/*
44 * This path almost never happens for VM activity - pages are normally
45 * freed via pagevecs. But it gets used by networking.
46 */
920c7a5d 47static void __page_cache_release(struct page *page)
b221385b
AB
48{
49 if (PageLRU(page)) {
b221385b 50 struct zone *zone = page_zone(page);
fa9add64
HD
51 struct lruvec *lruvec;
52 unsigned long flags;
b221385b
AB
53
54 spin_lock_irqsave(&zone->lru_lock, flags);
fa9add64 55 lruvec = mem_cgroup_page_lruvec(page, zone);
b221385b
AB
56 VM_BUG_ON(!PageLRU(page));
57 __ClearPageLRU(page);
fa9add64 58 del_page_from_lru_list(page, lruvec, page_off_lru(page));
b221385b
AB
59 spin_unlock_irqrestore(&zone->lru_lock, flags);
60 }
91807063
AA
61}
62
63static void __put_single_page(struct page *page)
64{
65 __page_cache_release(page);
fc91668e 66 free_hot_cold_page(page, 0);
b221385b
AB
67}
68
91807063 69static void __put_compound_page(struct page *page)
1da177e4 70{
91807063 71 compound_page_dtor *dtor;
1da177e4 72
91807063
AA
73 __page_cache_release(page);
74 dtor = get_compound_page_dtor(page);
75 (*dtor)(page);
76}
77
78static void put_compound_page(struct page *page)
79{
80 if (unlikely(PageTail(page))) {
81 /* __split_huge_page_refcount can run under us */
70b50f94
AA
82 struct page *page_head = compound_trans_head(page);
83
84 if (likely(page != page_head &&
85 get_page_unless_zero(page_head))) {
91807063 86 unsigned long flags;
5bf5f03c
PS
87
88 /*
89 * THP can not break up slab pages so avoid taking
90 * compound_lock(). Slab performs non-atomic bit ops
91 * on page->flags for better performance. In particular
92 * slab_unlock() in slub used to be a hot path. It is
93 * still hot on arches that do not support
94 * this_cpu_cmpxchg_double().
95 */
96 if (PageSlab(page_head)) {
97 if (PageTail(page)) {
98 if (put_page_testzero(page_head))
99 VM_BUG_ON(1);
100
101 atomic_dec(&page->_mapcount);
102 goto skip_lock_tail;
103 } else
104 goto skip_lock;
105 }
91807063 106 /*
70b50f94
AA
107 * page_head wasn't a dangling pointer but it
108 * may not be a head page anymore by the time
109 * we obtain the lock. That is ok as long as it
110 * can't be freed from under us.
91807063 111 */
91807063
AA
112 flags = compound_lock_irqsave(page_head);
113 if (unlikely(!PageTail(page))) {
114 /* __split_huge_page_refcount run before us */
115 compound_unlock_irqrestore(page_head, flags);
5bf5f03c 116skip_lock:
91807063
AA
117 if (put_page_testzero(page_head))
118 __put_single_page(page_head);
5bf5f03c 119out_put_single:
91807063
AA
120 if (put_page_testzero(page))
121 __put_single_page(page);
122 return;
123 }
124 VM_BUG_ON(page_head != page->first_page);
125 /*
126 * We can release the refcount taken by
70b50f94
AA
127 * get_page_unless_zero() now that
128 * __split_huge_page_refcount() is blocked on
129 * the compound_lock.
91807063
AA
130 */
131 if (put_page_testzero(page_head))
132 VM_BUG_ON(1);
133 /* __split_huge_page_refcount will wait now */
70b50f94
AA
134 VM_BUG_ON(page_mapcount(page) <= 0);
135 atomic_dec(&page->_mapcount);
91807063 136 VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
70b50f94 137 VM_BUG_ON(atomic_read(&page->_count) != 0);
91807063 138 compound_unlock_irqrestore(page_head, flags);
5bf5f03c
PS
139
140skip_lock_tail:
a95a82e9
AA
141 if (put_page_testzero(page_head)) {
142 if (PageHead(page_head))
143 __put_compound_page(page_head);
144 else
145 __put_single_page(page_head);
146 }
91807063
AA
147 } else {
148 /* page_head is a dangling pointer */
149 VM_BUG_ON(PageTail(page));
150 goto out_put_single;
151 }
152 } else if (put_page_testzero(page)) {
153 if (PageHead(page))
154 __put_compound_page(page);
155 else
156 __put_single_page(page);
1da177e4 157 }
8519fb30
NP
158}
159
160void put_page(struct page *page)
161{
162 if (unlikely(PageCompound(page)))
163 put_compound_page(page);
164 else if (put_page_testzero(page))
91807063 165 __put_single_page(page);
1da177e4
LT
166}
167EXPORT_SYMBOL(put_page);
1da177e4 168
70b50f94
AA
169/*
170 * This function is exported but must not be called by anything other
171 * than get_page(). It implements the slow path of get_page().
172 */
173bool __get_page_tail(struct page *page)
174{
175 /*
176 * This takes care of get_page() if run on a tail page
177 * returned by one of the get_user_pages/follow_page variants.
178 * get_user_pages/follow_page itself doesn't need the compound
179 * lock because it runs __get_page_tail_foll() under the
180 * proper PT lock that already serializes against
181 * split_huge_page().
182 */
183 unsigned long flags;
184 bool got = false;
185 struct page *page_head = compound_trans_head(page);
186
187 if (likely(page != page_head && get_page_unless_zero(page_head))) {
5bf5f03c
PS
188
189 /* Ref to put_compound_page() comment. */
190 if (PageSlab(page_head)) {
191 if (likely(PageTail(page))) {
192 __get_page_tail_foll(page, false);
193 return true;
194 } else {
195 put_page(page_head);
196 return false;
197 }
198 }
199
70b50f94
AA
200 /*
201 * page_head wasn't a dangling pointer but it
202 * may not be a head page anymore by the time
203 * we obtain the lock. That is ok as long as it
204 * can't be freed from under us.
205 */
206 flags = compound_lock_irqsave(page_head);
207 /* here __split_huge_page_refcount won't run anymore */
208 if (likely(PageTail(page))) {
209 __get_page_tail_foll(page, false);
210 got = true;
211 }
212 compound_unlock_irqrestore(page_head, flags);
213 if (unlikely(!got))
214 put_page(page_head);
215 }
216 return got;
217}
218EXPORT_SYMBOL(__get_page_tail);
219
1d7ea732 220/**
7682486b
RD
221 * put_pages_list() - release a list of pages
222 * @pages: list of pages threaded on page->lru
1d7ea732
AZ
223 *
224 * Release a list of pages which are strung together on page.lru. Currently
225 * used by read_cache_pages() and related error recovery code.
1d7ea732
AZ
226 */
227void put_pages_list(struct list_head *pages)
228{
229 while (!list_empty(pages)) {
230 struct page *victim;
231
232 victim = list_entry(pages->prev, struct page, lru);
233 list_del(&victim->lru);
234 page_cache_release(victim);
235 }
236}
237EXPORT_SYMBOL(put_pages_list);
238
18022c5d
MG
239/*
240 * get_kernel_pages() - pin kernel pages in memory
241 * @kiov: An array of struct kvec structures
242 * @nr_segs: number of segments to pin
243 * @write: pinning for read/write, currently ignored
244 * @pages: array that receives pointers to the pages pinned.
245 * Should be at least nr_segs long.
246 *
247 * Returns number of pages pinned. This may be fewer than the number
248 * requested. If nr_pages is 0 or negative, returns 0. If no pages
249 * were pinned, returns -errno. Each page returned must be released
250 * with a put_page() call when it is finished with.
251 */
252int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
253 struct page **pages)
254{
255 int seg;
256
257 for (seg = 0; seg < nr_segs; seg++) {
258 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
259 return seg;
260
261 /* virt_to_page sanity checks the PFN */
262 pages[seg] = virt_to_page(kiov[seg].iov_base);
263 page_cache_get(pages[seg]);
264 }
265
266 return seg;
267}
268EXPORT_SYMBOL_GPL(get_kernel_pages);
269
270/*
271 * get_kernel_page() - pin a kernel page in memory
272 * @start: starting kernel address
273 * @write: pinning for read/write, currently ignored
274 * @pages: array that receives pointer to the page pinned.
275 * Must be at least nr_segs long.
276 *
277 * Returns 1 if page is pinned. If the page was not pinned, returns
278 * -errno. The page returned must be released with a put_page() call
279 * when it is finished with.
280 */
281int get_kernel_page(unsigned long start, int write, struct page **pages)
282{
283 const struct kvec kiov = {
284 .iov_base = (void *)start,
285 .iov_len = PAGE_SIZE
286 };
287
288 return get_kernel_pages(&kiov, 1, write, pages);
289}
290EXPORT_SYMBOL_GPL(get_kernel_page);
291
3dd7ae8e 292static void pagevec_lru_move_fn(struct pagevec *pvec,
fa9add64
HD
293 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
294 void *arg)
902aaed0
HH
295{
296 int i;
902aaed0 297 struct zone *zone = NULL;
fa9add64 298 struct lruvec *lruvec;
3dd7ae8e 299 unsigned long flags = 0;
902aaed0
HH
300
301 for (i = 0; i < pagevec_count(pvec); i++) {
302 struct page *page = pvec->pages[i];
303 struct zone *pagezone = page_zone(page);
304
305 if (pagezone != zone) {
306 if (zone)
3dd7ae8e 307 spin_unlock_irqrestore(&zone->lru_lock, flags);
902aaed0 308 zone = pagezone;
3dd7ae8e 309 spin_lock_irqsave(&zone->lru_lock, flags);
902aaed0 310 }
3dd7ae8e 311
fa9add64
HD
312 lruvec = mem_cgroup_page_lruvec(page, zone);
313 (*move_fn)(page, lruvec, arg);
902aaed0
HH
314 }
315 if (zone)
3dd7ae8e 316 spin_unlock_irqrestore(&zone->lru_lock, flags);
83896fb5
LT
317 release_pages(pvec->pages, pvec->nr, pvec->cold);
318 pagevec_reinit(pvec);
d8505dee
SL
319}
320
fa9add64
HD
321static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
322 void *arg)
3dd7ae8e
SL
323{
324 int *pgmoved = arg;
3dd7ae8e
SL
325
326 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
327 enum lru_list lru = page_lru_base_type(page);
925b7673 328 list_move_tail(&page->lru, &lruvec->lists[lru]);
3dd7ae8e
SL
329 (*pgmoved)++;
330 }
331}
332
333/*
334 * pagevec_move_tail() must be called with IRQ disabled.
335 * Otherwise this may cause nasty races.
336 */
337static void pagevec_move_tail(struct pagevec *pvec)
338{
339 int pgmoved = 0;
340
341 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
342 __count_vm_events(PGROTATED, pgmoved);
343}
344
1da177e4
LT
345/*
346 * Writeback is about to end against a page which has been marked for immediate
347 * reclaim. If it still appears to be reclaimable, move it to the tail of the
902aaed0 348 * inactive list.
1da177e4 349 */
3dd7ae8e 350void rotate_reclaimable_page(struct page *page)
1da177e4 351{
ac6aadb2 352 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
894bc310 353 !PageUnevictable(page) && PageLRU(page)) {
ac6aadb2
MS
354 struct pagevec *pvec;
355 unsigned long flags;
356
357 page_cache_get(page);
358 local_irq_save(flags);
359 pvec = &__get_cpu_var(lru_rotate_pvecs);
360 if (!pagevec_add(pvec, page))
361 pagevec_move_tail(pvec);
362 local_irq_restore(flags);
363 }
1da177e4
LT
364}
365
fa9add64 366static void update_page_reclaim_stat(struct lruvec *lruvec,
3e2f41f1
KM
367 int file, int rotated)
368{
fa9add64 369 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
3e2f41f1
KM
370
371 reclaim_stat->recent_scanned[file]++;
372 if (rotated)
373 reclaim_stat->recent_rotated[file]++;
3e2f41f1
KM
374}
375
fa9add64
HD
376static void __activate_page(struct page *page, struct lruvec *lruvec,
377 void *arg)
1da177e4 378{
744ed144 379 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
7a608572
LT
380 int file = page_is_file_cache(page);
381 int lru = page_lru_base_type(page);
744ed144 382
fa9add64 383 del_page_from_lru_list(page, lruvec, lru);
7a608572
LT
384 SetPageActive(page);
385 lru += LRU_ACTIVE;
fa9add64 386 add_page_to_lru_list(page, lruvec, lru);
4f98a2fe 387
fa9add64
HD
388 __count_vm_event(PGACTIVATE);
389 update_page_reclaim_stat(lruvec, file, 1);
1da177e4 390 }
eb709b0d
SL
391}
392
393#ifdef CONFIG_SMP
394static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
395
396static void activate_page_drain(int cpu)
397{
398 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
399
400 if (pagevec_count(pvec))
401 pagevec_lru_move_fn(pvec, __activate_page, NULL);
402}
403
404void activate_page(struct page *page)
405{
406 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
407 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
408
409 page_cache_get(page);
410 if (!pagevec_add(pvec, page))
411 pagevec_lru_move_fn(pvec, __activate_page, NULL);
412 put_cpu_var(activate_page_pvecs);
413 }
414}
415
416#else
417static inline void activate_page_drain(int cpu)
418{
419}
420
421void activate_page(struct page *page)
422{
423 struct zone *zone = page_zone(page);
424
425 spin_lock_irq(&zone->lru_lock);
fa9add64 426 __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
1da177e4
LT
427 spin_unlock_irq(&zone->lru_lock);
428}
eb709b0d 429#endif
1da177e4
LT
430
431/*
432 * Mark a page as having seen activity.
433 *
434 * inactive,unreferenced -> inactive,referenced
435 * inactive,referenced -> active,unreferenced
436 * active,unreferenced -> active,referenced
437 */
920c7a5d 438void mark_page_accessed(struct page *page)
1da177e4 439{
894bc310
LS
440 if (!PageActive(page) && !PageUnevictable(page) &&
441 PageReferenced(page) && PageLRU(page)) {
1da177e4
LT
442 activate_page(page);
443 ClearPageReferenced(page);
444 } else if (!PageReferenced(page)) {
445 SetPageReferenced(page);
446 }
447}
1da177e4
LT
448EXPORT_SYMBOL(mark_page_accessed);
449
f04e9ebb 450void __lru_cache_add(struct page *page, enum lru_list lru)
1da177e4 451{
f04e9ebb 452 struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
1da177e4
LT
453
454 page_cache_get(page);
455 if (!pagevec_add(pvec, page))
5095ae83 456 __pagevec_lru_add(pvec, lru);
1da177e4
LT
457 put_cpu_var(lru_add_pvecs);
458}
47846b06 459EXPORT_SYMBOL(__lru_cache_add);
1da177e4 460
f04e9ebb
KM
461/**
462 * lru_cache_add_lru - add a page to a page list
463 * @page: the page to be added to the LRU.
464 * @lru: the LRU list to which the page is added.
465 */
466void lru_cache_add_lru(struct page *page, enum lru_list lru)
1da177e4 467{
f04e9ebb 468 if (PageActive(page)) {
894bc310 469 VM_BUG_ON(PageUnevictable(page));
f04e9ebb 470 ClearPageActive(page);
894bc310
LS
471 } else if (PageUnevictable(page)) {
472 VM_BUG_ON(PageActive(page));
473 ClearPageUnevictable(page);
f04e9ebb 474 }
1da177e4 475
894bc310 476 VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
f04e9ebb 477 __lru_cache_add(page, lru);
1da177e4
LT
478}
479
894bc310
LS
480/**
481 * add_page_to_unevictable_list - add a page to the unevictable list
482 * @page: the page to be added to the unevictable list
483 *
484 * Add page directly to its zone's unevictable list. To avoid races with
485 * tasks that might be making the page evictable, through eg. munlock,
486 * munmap or exit, while it's not on the lru, we want to add the page
487 * while it's locked or otherwise "invisible" to other tasks. This is
488 * difficult to do when using the pagevec cache, so bypass that.
489 */
490void add_page_to_unevictable_list(struct page *page)
491{
492 struct zone *zone = page_zone(page);
fa9add64 493 struct lruvec *lruvec;
894bc310
LS
494
495 spin_lock_irq(&zone->lru_lock);
fa9add64 496 lruvec = mem_cgroup_page_lruvec(page, zone);
894bc310
LS
497 SetPageUnevictable(page);
498 SetPageLRU(page);
fa9add64 499 add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
894bc310
LS
500 spin_unlock_irq(&zone->lru_lock);
501}
502
31560180
MK
503/*
504 * If the page can not be invalidated, it is moved to the
505 * inactive list to speed up its reclaim. It is moved to the
506 * head of the list, rather than the tail, to give the flusher
507 * threads some time to write it out, as this is much more
508 * effective than the single-page writeout from reclaim.
278df9f4
MK
509 *
510 * If the page isn't page_mapped and dirty/writeback, the page
511 * could reclaim asap using PG_reclaim.
512 *
513 * 1. active, mapped page -> none
514 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
515 * 3. inactive, mapped page -> none
516 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
517 * 5. inactive, clean -> inactive, tail
518 * 6. Others -> none
519 *
520 * In 4, why it moves inactive's head, the VM expects the page would
521 * be write it out by flusher threads as this is much more effective
522 * than the single-page writeout from reclaim.
31560180 523 */
fa9add64
HD
524static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
525 void *arg)
31560180
MK
526{
527 int lru, file;
278df9f4 528 bool active;
31560180 529
278df9f4 530 if (!PageLRU(page))
31560180
MK
531 return;
532
bad49d9c
MK
533 if (PageUnevictable(page))
534 return;
535
31560180
MK
536 /* Some processes are using the page */
537 if (page_mapped(page))
538 return;
539
278df9f4 540 active = PageActive(page);
31560180
MK
541 file = page_is_file_cache(page);
542 lru = page_lru_base_type(page);
fa9add64
HD
543
544 del_page_from_lru_list(page, lruvec, lru + active);
31560180
MK
545 ClearPageActive(page);
546 ClearPageReferenced(page);
fa9add64 547 add_page_to_lru_list(page, lruvec, lru);
31560180 548
278df9f4
MK
549 if (PageWriteback(page) || PageDirty(page)) {
550 /*
551 * PG_reclaim could be raced with end_page_writeback
552 * It can make readahead confusing. But race window
553 * is _really_ small and it's non-critical problem.
554 */
555 SetPageReclaim(page);
556 } else {
557 /*
558 * The page's writeback ends up during pagevec
559 * We moves tha page into tail of inactive.
560 */
925b7673 561 list_move_tail(&page->lru, &lruvec->lists[lru]);
278df9f4
MK
562 __count_vm_event(PGROTATED);
563 }
564
565 if (active)
566 __count_vm_event(PGDEACTIVATE);
fa9add64 567 update_page_reclaim_stat(lruvec, file, 0);
31560180
MK
568}
569
902aaed0
HH
570/*
571 * Drain pages out of the cpu's pagevecs.
572 * Either "cpu" is the current CPU, and preemption has already been
573 * disabled; or "cpu" is being hot-unplugged, and is already dead.
574 */
f0cb3c76 575void lru_add_drain_cpu(int cpu)
1da177e4 576{
f04e9ebb 577 struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
902aaed0 578 struct pagevec *pvec;
f04e9ebb 579 int lru;
1da177e4 580
f04e9ebb
KM
581 for_each_lru(lru) {
582 pvec = &pvecs[lru - LRU_BASE];
583 if (pagevec_count(pvec))
5095ae83 584 __pagevec_lru_add(pvec, lru);
f04e9ebb 585 }
902aaed0
HH
586
587 pvec = &per_cpu(lru_rotate_pvecs, cpu);
588 if (pagevec_count(pvec)) {
589 unsigned long flags;
590
591 /* No harm done if a racing interrupt already did this */
592 local_irq_save(flags);
593 pagevec_move_tail(pvec);
594 local_irq_restore(flags);
595 }
31560180
MK
596
597 pvec = &per_cpu(lru_deactivate_pvecs, cpu);
598 if (pagevec_count(pvec))
3dd7ae8e 599 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
eb709b0d
SL
600
601 activate_page_drain(cpu);
31560180
MK
602}
603
604/**
605 * deactivate_page - forcefully deactivate a page
606 * @page: page to deactivate
607 *
608 * This function hints the VM that @page is a good reclaim candidate,
609 * for example if its invalidation fails due to the page being dirty
610 * or under writeback.
611 */
612void deactivate_page(struct page *page)
613{
821ed6bb
MK
614 /*
615 * In a workload with many unevictable page such as mprotect, unevictable
616 * page deactivation for accelerating reclaim is pointless.
617 */
618 if (PageUnevictable(page))
619 return;
620
31560180
MK
621 if (likely(get_page_unless_zero(page))) {
622 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
623
624 if (!pagevec_add(pvec, page))
3dd7ae8e 625 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
31560180
MK
626 put_cpu_var(lru_deactivate_pvecs);
627 }
80bfed90
AM
628}
629
630void lru_add_drain(void)
631{
f0cb3c76 632 lru_add_drain_cpu(get_cpu());
80bfed90 633 put_cpu();
1da177e4
LT
634}
635
c4028958 636static void lru_add_drain_per_cpu(struct work_struct *dummy)
053837fc
NP
637{
638 lru_add_drain();
639}
640
641/*
642 * Returns 0 for success
643 */
644int lru_add_drain_all(void)
645{
c4028958 646 return schedule_on_each_cpu(lru_add_drain_per_cpu);
053837fc
NP
647}
648
1da177e4
LT
649/*
650 * Batched page_cache_release(). Decrement the reference count on all the
651 * passed pages. If it fell to zero then remove the page from the LRU and
652 * free it.
653 *
654 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
655 * for the remainder of the operation.
656 *
ab33dc09
FLVC
657 * The locking in this function is against shrink_inactive_list(): we recheck
658 * the page count inside the lock to see whether shrink_inactive_list()
659 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
660 * will free it.
1da177e4
LT
661 */
662void release_pages(struct page **pages, int nr, int cold)
663{
664 int i;
cc59850e 665 LIST_HEAD(pages_to_free);
1da177e4 666 struct zone *zone = NULL;
fa9add64 667 struct lruvec *lruvec;
902aaed0 668 unsigned long uninitialized_var(flags);
1da177e4 669
1da177e4
LT
670 for (i = 0; i < nr; i++) {
671 struct page *page = pages[i];
1da177e4 672
8519fb30
NP
673 if (unlikely(PageCompound(page))) {
674 if (zone) {
902aaed0 675 spin_unlock_irqrestore(&zone->lru_lock, flags);
8519fb30
NP
676 zone = NULL;
677 }
678 put_compound_page(page);
679 continue;
680 }
681
b5810039 682 if (!put_page_testzero(page))
1da177e4
LT
683 continue;
684
46453a6e
NP
685 if (PageLRU(page)) {
686 struct zone *pagezone = page_zone(page);
894bc310 687
46453a6e
NP
688 if (pagezone != zone) {
689 if (zone)
902aaed0
HH
690 spin_unlock_irqrestore(&zone->lru_lock,
691 flags);
46453a6e 692 zone = pagezone;
902aaed0 693 spin_lock_irqsave(&zone->lru_lock, flags);
46453a6e 694 }
fa9add64
HD
695
696 lruvec = mem_cgroup_page_lruvec(page, zone);
725d704e 697 VM_BUG_ON(!PageLRU(page));
67453911 698 __ClearPageLRU(page);
fa9add64 699 del_page_from_lru_list(page, lruvec, page_off_lru(page));
46453a6e
NP
700 }
701
cc59850e 702 list_add(&page->lru, &pages_to_free);
1da177e4
LT
703 }
704 if (zone)
902aaed0 705 spin_unlock_irqrestore(&zone->lru_lock, flags);
1da177e4 706
cc59850e 707 free_hot_cold_page_list(&pages_to_free, cold);
1da177e4 708}
0be8557b 709EXPORT_SYMBOL(release_pages);
1da177e4
LT
710
711/*
712 * The pages which we're about to release may be in the deferred lru-addition
713 * queues. That would prevent them from really being freed right now. That's
714 * OK from a correctness point of view but is inefficient - those pages may be
715 * cache-warm and we want to give them back to the page allocator ASAP.
716 *
717 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
718 * and __pagevec_lru_add_active() call release_pages() directly to avoid
719 * mutual recursion.
720 */
721void __pagevec_release(struct pagevec *pvec)
722{
723 lru_add_drain();
724 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
725 pagevec_reinit(pvec);
726}
7f285701
SF
727EXPORT_SYMBOL(__pagevec_release);
728
12d27107 729#ifdef CONFIG_TRANSPARENT_HUGEPAGE
71e3aac0 730/* used by __split_huge_page_refcount() */
fa9add64
HD
731void lru_add_page_tail(struct page *page, struct page *page_tail,
732 struct lruvec *lruvec)
71e3aac0 733{
7512102c 734 int uninitialized_var(active);
71e3aac0
AA
735 enum lru_list lru;
736 const int file = 0;
71e3aac0
AA
737
738 VM_BUG_ON(!PageHead(page));
739 VM_BUG_ON(PageCompound(page_tail));
740 VM_BUG_ON(PageLRU(page_tail));
fa9add64
HD
741 VM_BUG_ON(NR_CPUS != 1 &&
742 !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
71e3aac0
AA
743
744 SetPageLRU(page_tail);
745
746 if (page_evictable(page_tail, NULL)) {
747 if (PageActive(page)) {
748 SetPageActive(page_tail);
749 active = 1;
750 lru = LRU_ACTIVE_ANON;
751 } else {
752 active = 0;
753 lru = LRU_INACTIVE_ANON;
754 }
71e3aac0
AA
755 } else {
756 SetPageUnevictable(page_tail);
12d27107
HD
757 lru = LRU_UNEVICTABLE;
758 }
759
760 if (likely(PageLRU(page)))
761 list_add_tail(&page_tail->lru, &page->lru);
762 else {
763 struct list_head *list_head;
764 /*
765 * Head page has not yet been counted, as an hpage,
766 * so we must account for each subpage individually.
767 *
768 * Use the standard add function to put page_tail on the list,
769 * but then correct its position so they all end up in order.
770 */
fa9add64 771 add_page_to_lru_list(page_tail, lruvec, lru);
12d27107
HD
772 list_head = page_tail->lru.prev;
773 list_move_tail(&page_tail->lru, list_head);
71e3aac0 774 }
7512102c
HD
775
776 if (!PageUnevictable(page))
fa9add64 777 update_page_reclaim_stat(lruvec, file, active);
71e3aac0 778}
12d27107 779#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
71e3aac0 780
fa9add64
HD
781static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
782 void *arg)
3dd7ae8e
SL
783{
784 enum lru_list lru = (enum lru_list)arg;
3dd7ae8e
SL
785 int file = is_file_lru(lru);
786 int active = is_active_lru(lru);
787
788 VM_BUG_ON(PageActive(page));
789 VM_BUG_ON(PageUnevictable(page));
790 VM_BUG_ON(PageLRU(page));
791
792 SetPageLRU(page);
793 if (active)
794 SetPageActive(page);
fa9add64
HD
795 add_page_to_lru_list(page, lruvec, lru);
796 update_page_reclaim_stat(lruvec, file, active);
3dd7ae8e
SL
797}
798
1da177e4
LT
799/*
800 * Add the passed pages to the LRU, then drop the caller's refcount
801 * on them. Reinitialises the caller's pagevec.
802 */
5095ae83 803void __pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
1da177e4 804{
894bc310 805 VM_BUG_ON(is_unevictable_lru(lru));
1da177e4 806
5095ae83 807 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, (void *)lru);
1da177e4 808}
5095ae83 809EXPORT_SYMBOL(__pagevec_lru_add);
1da177e4 810
1da177e4
LT
811/**
812 * pagevec_lookup - gang pagecache lookup
813 * @pvec: Where the resulting pages are placed
814 * @mapping: The address_space to search
815 * @start: The starting page index
816 * @nr_pages: The maximum number of pages
817 *
818 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
819 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
820 * reference against the pages in @pvec.
821 *
822 * The search returns a group of mapping-contiguous pages with ascending
823 * indexes. There may be holes in the indices due to not-present pages.
824 *
825 * pagevec_lookup() returns the number of pages which were found.
826 */
827unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
828 pgoff_t start, unsigned nr_pages)
829{
830 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
831 return pagevec_count(pvec);
832}
78539fdf
CH
833EXPORT_SYMBOL(pagevec_lookup);
834
1da177e4
LT
835unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
836 pgoff_t *index, int tag, unsigned nr_pages)
837{
838 pvec->nr = find_get_pages_tag(mapping, index, tag,
839 nr_pages, pvec->pages);
840 return pagevec_count(pvec);
841}
7f285701 842EXPORT_SYMBOL(pagevec_lookup_tag);
1da177e4 843
1da177e4
LT
844/*
845 * Perform any setup for the swap system
846 */
847void __init swap_setup(void)
848{
4481374c 849 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
1da177e4 850
e0bf68dd
PZ
851#ifdef CONFIG_SWAP
852 bdi_init(swapper_space.backing_dev_info);
853#endif
854
1da177e4
LT
855 /* Use a smaller cluster for small-memory machines */
856 if (megs < 16)
857 page_cluster = 2;
858 else
859 page_cluster = 3;
860 /*
861 * Right now other parts of the system means that we
862 * _really_ don't want to cluster much more
863 */
1da177e4 864}