]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/swap.c
mm/memcg: Add folio_lruvec_lock() and similar functions
[mirror_ubuntu-kernels.git] / mm / swap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/swap.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
183ff22b 9 * This file contains the default values for the operation of the
1da177e4 10 * Linux VM subsystem. Fine-tuning documentation can be found in
57043247 11 * Documentation/admin-guide/sysctl/vm.rst.
1da177e4
LT
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
15 */
16
17#include <linux/mm.h>
18#include <linux/sched.h>
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/mman.h>
22#include <linux/pagemap.h>
23#include <linux/pagevec.h>
24#include <linux/init.h>
b95f1b31 25#include <linux/export.h>
1da177e4 26#include <linux/mm_inline.h>
1da177e4 27#include <linux/percpu_counter.h>
3565fce3 28#include <linux/memremap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/cpu.h>
31#include <linux/notifier.h>
e0bf68dd 32#include <linux/backing-dev.h>
66e1707b 33#include <linux/memcontrol.h>
5a0e3ad6 34#include <linux/gfp.h>
a27bb332 35#include <linux/uio.h>
822fc613 36#include <linux/hugetlb.h>
33c3fc71 37#include <linux/page_idle.h>
b01b2141 38#include <linux/local_lock.h>
8cc621d2 39#include <linux/buffer_head.h>
1da177e4 40
64d6519d
LS
41#include "internal.h"
42
c6286c98
MG
43#define CREATE_TRACE_POINTS
44#include <trace/events/pagemap.h>
45
1da177e4
LT
46/* How many pages do we try to swap or page in/out together? */
47int page_cluster;
48
b01b2141
IM
49/* Protecting only lru_rotate.pvec which requires disabling interrupts */
50struct lru_rotate {
51 local_lock_t lock;
52 struct pagevec pvec;
53};
54static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
55 .lock = INIT_LOCAL_LOCK(lock),
56};
57
58/*
59 * The following struct pagevec are grouped together because they are protected
60 * by disabling preemption (and interrupts remain enabled).
61 */
62struct lru_pvecs {
63 local_lock_t lock;
64 struct pagevec lru_add;
65 struct pagevec lru_deactivate_file;
66 struct pagevec lru_deactivate;
67 struct pagevec lru_lazyfree;
a4a921aa 68#ifdef CONFIG_SMP
b01b2141 69 struct pagevec activate_page;
a4a921aa 70#endif
b01b2141
IM
71};
72static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
73 .lock = INIT_LOCAL_LOCK(lock),
74};
902aaed0 75
b221385b
AB
76/*
77 * This path almost never happens for VM activity - pages are normally
78 * freed via pagevecs. But it gets used by networking.
79 */
920c7a5d 80static void __page_cache_release(struct page *page)
b221385b
AB
81{
82 if (PageLRU(page)) {
e809c3fe 83 struct folio *folio = page_folio(page);
fa9add64
HD
84 struct lruvec *lruvec;
85 unsigned long flags;
b221385b 86
e809c3fe 87 lruvec = folio_lruvec_lock_irqsave(folio, &flags);
46ae6b2c 88 del_page_from_lru_list(page, lruvec);
87560179 89 __clear_page_lru_flags(page);
6168d0da 90 unlock_page_lruvec_irqrestore(lruvec, flags);
b221385b 91 }
62906027 92 __ClearPageWaiters(page);
91807063
AA
93}
94
95static void __put_single_page(struct page *page)
96{
97 __page_cache_release(page);
bbc6b703 98 mem_cgroup_uncharge(page_folio(page));
44042b44 99 free_unref_page(page, 0);
b221385b
AB
100}
101
91807063 102static void __put_compound_page(struct page *page)
1da177e4 103{
822fc613
NH
104 /*
105 * __page_cache_release() is supposed to be called for thp, not for
106 * hugetlb. This is because hugetlb page does never have PageLRU set
107 * (it's never listed to any LRU lists) and no memcg routines should
108 * be called for hugetlb (it has a separate hugetlb_cgroup.)
109 */
110 if (!PageHuge(page))
111 __page_cache_release(page);
ff45fc3c 112 destroy_compound_page(page);
91807063
AA
113}
114
ddc58f27 115void __put_page(struct page *page)
8519fb30 116{
71389703
DW
117 if (is_zone_device_page(page)) {
118 put_dev_pagemap(page->pgmap);
119
120 /*
121 * The page belongs to the device that created pgmap. Do
122 * not return it to page allocator.
123 */
124 return;
125 }
126
8519fb30 127 if (unlikely(PageCompound(page)))
ddc58f27
KS
128 __put_compound_page(page);
129 else
91807063 130 __put_single_page(page);
1da177e4 131}
ddc58f27 132EXPORT_SYMBOL(__put_page);
70b50f94 133
1d7ea732 134/**
7682486b
RD
135 * put_pages_list() - release a list of pages
136 * @pages: list of pages threaded on page->lru
1d7ea732
AZ
137 *
138 * Release a list of pages which are strung together on page.lru. Currently
139 * used by read_cache_pages() and related error recovery code.
1d7ea732
AZ
140 */
141void put_pages_list(struct list_head *pages)
142{
143 while (!list_empty(pages)) {
144 struct page *victim;
145
f86196ea 146 victim = lru_to_page(pages);
1d7ea732 147 list_del(&victim->lru);
09cbfeaf 148 put_page(victim);
1d7ea732
AZ
149 }
150}
151EXPORT_SYMBOL(put_pages_list);
152
18022c5d
MG
153/*
154 * get_kernel_pages() - pin kernel pages in memory
155 * @kiov: An array of struct kvec structures
156 * @nr_segs: number of segments to pin
157 * @write: pinning for read/write, currently ignored
158 * @pages: array that receives pointers to the pages pinned.
159 * Should be at least nr_segs long.
160 *
161 * Returns number of pages pinned. This may be fewer than the number
162 * requested. If nr_pages is 0 or negative, returns 0. If no pages
163 * were pinned, returns -errno. Each page returned must be released
164 * with a put_page() call when it is finished with.
165 */
166int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
167 struct page **pages)
168{
169 int seg;
170
171 for (seg = 0; seg < nr_segs; seg++) {
172 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
173 return seg;
174
5a178119 175 pages[seg] = kmap_to_page(kiov[seg].iov_base);
09cbfeaf 176 get_page(pages[seg]);
18022c5d
MG
177 }
178
179 return seg;
180}
181EXPORT_SYMBOL_GPL(get_kernel_pages);
182
3dd7ae8e 183static void pagevec_lru_move_fn(struct pagevec *pvec,
c7c7b80c 184 void (*move_fn)(struct page *page, struct lruvec *lruvec))
902aaed0
HH
185{
186 int i;
6168d0da 187 struct lruvec *lruvec = NULL;
3dd7ae8e 188 unsigned long flags = 0;
902aaed0
HH
189
190 for (i = 0; i < pagevec_count(pvec); i++) {
191 struct page *page = pvec->pages[i];
3dd7ae8e 192
fc574c23
AS
193 /* block memcg migration during page moving between lru */
194 if (!TestClearPageLRU(page))
195 continue;
196
2a5e4e34 197 lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
c7c7b80c 198 (*move_fn)(page, lruvec);
fc574c23
AS
199
200 SetPageLRU(page);
902aaed0 201 }
6168d0da
AS
202 if (lruvec)
203 unlock_page_lruvec_irqrestore(lruvec, flags);
c6f92f9f 204 release_pages(pvec->pages, pvec->nr);
83896fb5 205 pagevec_reinit(pvec);
d8505dee
SL
206}
207
c7c7b80c 208static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec)
3dd7ae8e 209{
575ced1c
MWO
210 struct folio *folio = page_folio(page);
211
212 if (!folio_test_unevictable(folio)) {
213 lruvec_del_folio(lruvec, folio);
214 folio_clear_active(folio);
215 lruvec_add_folio_tail(lruvec, folio);
216 __count_vm_events(PGROTATED, folio_nr_pages(folio));
3dd7ae8e
SL
217 }
218}
219
d479960e
MK
220/* return true if pagevec needs to drain */
221static bool pagevec_add_and_need_flush(struct pagevec *pvec, struct page *page)
222{
223 bool ret = false;
224
225 if (!pagevec_add(pvec, page) || PageCompound(page) ||
226 lru_cache_disabled())
227 ret = true;
228
229 return ret;
230}
231
1da177e4 232/*
575ced1c
MWO
233 * Writeback is about to end against a folio which has been marked for
234 * immediate reclaim. If it still appears to be reclaimable, move it
235 * to the tail of the inactive list.
c7c7b80c 236 *
575ced1c 237 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
1da177e4 238 */
575ced1c 239void folio_rotate_reclaimable(struct folio *folio)
1da177e4 240{
575ced1c
MWO
241 if (!folio_test_locked(folio) && !folio_test_dirty(folio) &&
242 !folio_test_unevictable(folio) && folio_test_lru(folio)) {
ac6aadb2
MS
243 struct pagevec *pvec;
244 unsigned long flags;
245
575ced1c 246 folio_get(folio);
b01b2141
IM
247 local_lock_irqsave(&lru_rotate.lock, flags);
248 pvec = this_cpu_ptr(&lru_rotate.pvec);
575ced1c 249 if (pagevec_add_and_need_flush(pvec, &folio->page))
c7c7b80c 250 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
b01b2141 251 local_unlock_irqrestore(&lru_rotate.lock, flags);
ac6aadb2 252 }
1da177e4
LT
253}
254
96f8bf4f 255void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
3e2f41f1 256{
7cf111bc
JW
257 do {
258 unsigned long lrusize;
259
6168d0da
AS
260 /*
261 * Hold lruvec->lru_lock is safe here, since
262 * 1) The pinned lruvec in reclaim, or
263 * 2) From a pre-LRU page during refault (which also holds the
264 * rcu lock, so would be safe even if the page was on the LRU
265 * and could move simultaneously to a new lruvec).
266 */
267 spin_lock_irq(&lruvec->lru_lock);
7cf111bc 268 /* Record cost event */
96f8bf4f
JW
269 if (file)
270 lruvec->file_cost += nr_pages;
7cf111bc 271 else
96f8bf4f 272 lruvec->anon_cost += nr_pages;
7cf111bc
JW
273
274 /*
275 * Decay previous events
276 *
277 * Because workloads change over time (and to avoid
278 * overflow) we keep these statistics as a floating
279 * average, which ends up weighing recent refaults
280 * more than old ones.
281 */
282 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
283 lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
284 lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
285 lruvec_page_state(lruvec, NR_ACTIVE_FILE);
286
287 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
288 lruvec->file_cost /= 2;
289 lruvec->anon_cost /= 2;
290 }
6168d0da 291 spin_unlock_irq(&lruvec->lru_lock);
7cf111bc 292 } while ((lruvec = parent_lruvec(lruvec)));
3e2f41f1
KM
293}
294
96f8bf4f
JW
295void lru_note_cost_page(struct page *page)
296{
b1baabd9
MWO
297 struct folio *folio = page_folio(page);
298 lru_note_cost(folio_lruvec(folio),
6c357848 299 page_is_file_lru(page), thp_nr_pages(page));
96f8bf4f
JW
300}
301
c7c7b80c 302static void __activate_page(struct page *page, struct lruvec *lruvec)
1da177e4 303{
fc574c23 304 if (!PageActive(page) && !PageUnevictable(page)) {
6c357848 305 int nr_pages = thp_nr_pages(page);
744ed144 306
46ae6b2c 307 del_page_from_lru_list(page, lruvec);
7a608572 308 SetPageActive(page);
3a9c9788 309 add_page_to_lru_list(page, lruvec);
24b7e581 310 trace_mm_lru_activate(page);
4f98a2fe 311
21e330fc
SB
312 __count_vm_events(PGACTIVATE, nr_pages);
313 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
314 nr_pages);
1da177e4 315 }
eb709b0d
SL
316}
317
318#ifdef CONFIG_SMP
eb709b0d
SL
319static void activate_page_drain(int cpu)
320{
b01b2141 321 struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
eb709b0d
SL
322
323 if (pagevec_count(pvec))
c7c7b80c 324 pagevec_lru_move_fn(pvec, __activate_page);
eb709b0d
SL
325}
326
5fbc4616
CM
327static bool need_activate_page_drain(int cpu)
328{
b01b2141 329 return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
5fbc4616
CM
330}
331
cc2828b2 332static void activate_page(struct page *page)
eb709b0d 333{
800d8c63 334 page = compound_head(page);
eb709b0d 335 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
b01b2141 336 struct pagevec *pvec;
eb709b0d 337
b01b2141
IM
338 local_lock(&lru_pvecs.lock);
339 pvec = this_cpu_ptr(&lru_pvecs.activate_page);
09cbfeaf 340 get_page(page);
d479960e 341 if (pagevec_add_and_need_flush(pvec, page))
c7c7b80c 342 pagevec_lru_move_fn(pvec, __activate_page);
b01b2141 343 local_unlock(&lru_pvecs.lock);
eb709b0d
SL
344 }
345}
346
347#else
348static inline void activate_page_drain(int cpu)
349{
350}
351
cc2828b2 352static void activate_page(struct page *page)
eb709b0d 353{
e809c3fe 354 struct folio *folio = page_folio(page);
6168d0da 355 struct lruvec *lruvec;
eb709b0d 356
e809c3fe 357 page = &folio->page;
6168d0da 358 if (TestClearPageLRU(page)) {
e809c3fe 359 lruvec = folio_lruvec_lock_irq(folio);
6168d0da
AS
360 __activate_page(page, lruvec);
361 unlock_page_lruvec_irq(lruvec);
362 SetPageLRU(page);
363 }
1da177e4 364}
eb709b0d 365#endif
1da177e4 366
059285a2
MG
367static void __lru_cache_activate_page(struct page *page)
368{
b01b2141 369 struct pagevec *pvec;
059285a2
MG
370 int i;
371
b01b2141
IM
372 local_lock(&lru_pvecs.lock);
373 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
374
059285a2
MG
375 /*
376 * Search backwards on the optimistic assumption that the page being
377 * activated has just been added to this pagevec. Note that only
378 * the local pagevec is examined as a !PageLRU page could be in the
379 * process of being released, reclaimed, migrated or on a remote
380 * pagevec that is currently being drained. Furthermore, marking
381 * a remote pagevec's page PageActive potentially hits a race where
382 * a page is marked PageActive just after it is added to the inactive
383 * list causing accounting errors and BUG_ON checks to trigger.
384 */
385 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
386 struct page *pagevec_page = pvec->pages[i];
387
388 if (pagevec_page == page) {
389 SetPageActive(page);
390 break;
391 }
392 }
393
b01b2141 394 local_unlock(&lru_pvecs.lock);
059285a2
MG
395}
396
1da177e4
LT
397/*
398 * Mark a page as having seen activity.
399 *
400 * inactive,unreferenced -> inactive,referenced
401 * inactive,referenced -> active,unreferenced
402 * active,unreferenced -> active,referenced
eb39d618
HD
403 *
404 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
405 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
1da177e4 406 */
920c7a5d 407void mark_page_accessed(struct page *page)
1da177e4 408{
e90309c9 409 page = compound_head(page);
059285a2 410
a1100a74
FW
411 if (!PageReferenced(page)) {
412 SetPageReferenced(page);
413 } else if (PageUnevictable(page)) {
414 /*
415 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
416 * this list is never rotated or maintained, so marking an
417 * evictable page accessed has no effect.
418 */
419 } else if (!PageActive(page)) {
059285a2
MG
420 /*
421 * If the page is on the LRU, queue it for activation via
b01b2141 422 * lru_pvecs.activate_page. Otherwise, assume the page is on a
059285a2
MG
423 * pagevec, mark it active and it'll be moved to the active
424 * LRU on the next drain.
425 */
426 if (PageLRU(page))
427 activate_page(page);
428 else
429 __lru_cache_activate_page(page);
1da177e4 430 ClearPageReferenced(page);
cb686883 431 workingset_activation(page);
1da177e4 432 }
33c3fc71
VD
433 if (page_is_idle(page))
434 clear_page_idle(page);
1da177e4 435}
1da177e4
LT
436EXPORT_SYMBOL(mark_page_accessed);
437
f04e9ebb 438/**
c53954a0 439 * lru_cache_add - add a page to a page list
f04e9ebb 440 * @page: the page to be added to the LRU.
2329d375
JZ
441 *
442 * Queue the page for addition to the LRU via pagevec. The decision on whether
443 * to add the page to the [in]active [file|anon] list is deferred until the
444 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
445 * have the page added to the active list using mark_page_accessed().
f04e9ebb 446 */
c53954a0 447void lru_cache_add(struct page *page)
1da177e4 448{
6058eaec
JW
449 struct pagevec *pvec;
450
309381fe
SL
451 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
452 VM_BUG_ON_PAGE(PageLRU(page), page);
6058eaec
JW
453
454 get_page(page);
455 local_lock(&lru_pvecs.lock);
456 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
d479960e 457 if (pagevec_add_and_need_flush(pvec, page))
6058eaec
JW
458 __pagevec_lru_add(pvec);
459 local_unlock(&lru_pvecs.lock);
1da177e4 460}
6058eaec 461EXPORT_SYMBOL(lru_cache_add);
1da177e4 462
00501b53 463/**
b518154e 464 * lru_cache_add_inactive_or_unevictable
00501b53
JW
465 * @page: the page to be added to LRU
466 * @vma: vma in which page is mapped for determining reclaimability
467 *
b518154e 468 * Place @page on the inactive or unevictable LRU list, depending on its
12eab428 469 * evictability.
00501b53 470 */
b518154e 471void lru_cache_add_inactive_or_unevictable(struct page *page,
00501b53
JW
472 struct vm_area_struct *vma)
473{
b518154e
JK
474 bool unevictable;
475
00501b53
JW
476 VM_BUG_ON_PAGE(PageLRU(page), page);
477
b518154e
JK
478 unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
479 if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
0964730b 480 int nr_pages = thp_nr_pages(page);
00501b53 481 /*
cb152a1a 482 * We use the irq-unsafe __mod_zone_page_state because this
00501b53
JW
483 * counter is not modified from interrupt context, and the pte
484 * lock is held(spinlock), which implies preemption disabled.
485 */
0964730b
HD
486 __mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
487 count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
00501b53 488 }
9c4e6b1a 489 lru_cache_add(page);
00501b53
JW
490}
491
31560180
MK
492/*
493 * If the page can not be invalidated, it is moved to the
494 * inactive list to speed up its reclaim. It is moved to the
495 * head of the list, rather than the tail, to give the flusher
496 * threads some time to write it out, as this is much more
497 * effective than the single-page writeout from reclaim.
278df9f4
MK
498 *
499 * If the page isn't page_mapped and dirty/writeback, the page
500 * could reclaim asap using PG_reclaim.
501 *
502 * 1. active, mapped page -> none
503 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
504 * 3. inactive, mapped page -> none
505 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
506 * 5. inactive, clean -> inactive, tail
507 * 6. Others -> none
508 *
509 * In 4, why it moves inactive's head, the VM expects the page would
510 * be write it out by flusher threads as this is much more effective
511 * than the single-page writeout from reclaim.
31560180 512 */
c7c7b80c 513static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec)
31560180 514{
46ae6b2c 515 bool active = PageActive(page);
6c357848 516 int nr_pages = thp_nr_pages(page);
31560180 517
bad49d9c
MK
518 if (PageUnevictable(page))
519 return;
520
31560180
MK
521 /* Some processes are using the page */
522 if (page_mapped(page))
523 return;
524
46ae6b2c 525 del_page_from_lru_list(page, lruvec);
31560180
MK
526 ClearPageActive(page);
527 ClearPageReferenced(page);
31560180 528
278df9f4
MK
529 if (PageWriteback(page) || PageDirty(page)) {
530 /*
531 * PG_reclaim could be raced with end_page_writeback
532 * It can make readahead confusing. But race window
533 * is _really_ small and it's non-critical problem.
534 */
3a9c9788 535 add_page_to_lru_list(page, lruvec);
278df9f4
MK
536 SetPageReclaim(page);
537 } else {
538 /*
539 * The page's writeback ends up during pagevec
c4ffefd1 540 * We move that page into tail of inactive.
278df9f4 541 */
3a9c9788 542 add_page_to_lru_list_tail(page, lruvec);
5d91f31f 543 __count_vm_events(PGROTATED, nr_pages);
278df9f4
MK
544 }
545
21e330fc 546 if (active) {
5d91f31f 547 __count_vm_events(PGDEACTIVATE, nr_pages);
21e330fc
SB
548 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
549 nr_pages);
550 }
31560180
MK
551}
552
c7c7b80c 553static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec)
9c276cc6 554{
fc574c23 555 if (PageActive(page) && !PageUnevictable(page)) {
6c357848 556 int nr_pages = thp_nr_pages(page);
9c276cc6 557
46ae6b2c 558 del_page_from_lru_list(page, lruvec);
9c276cc6
MK
559 ClearPageActive(page);
560 ClearPageReferenced(page);
3a9c9788 561 add_page_to_lru_list(page, lruvec);
9c276cc6 562
21e330fc
SB
563 __count_vm_events(PGDEACTIVATE, nr_pages);
564 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
565 nr_pages);
9c276cc6
MK
566 }
567}
10853a03 568
c7c7b80c 569static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec)
10853a03 570{
fc574c23 571 if (PageAnon(page) && PageSwapBacked(page) &&
24c92eb7 572 !PageSwapCache(page) && !PageUnevictable(page)) {
6c357848 573 int nr_pages = thp_nr_pages(page);
10853a03 574
46ae6b2c 575 del_page_from_lru_list(page, lruvec);
10853a03
MK
576 ClearPageActive(page);
577 ClearPageReferenced(page);
f7ad2a6c 578 /*
9de4f22a
HY
579 * Lazyfree pages are clean anonymous pages. They have
580 * PG_swapbacked flag cleared, to distinguish them from normal
581 * anonymous pages
f7ad2a6c
SL
582 */
583 ClearPageSwapBacked(page);
3a9c9788 584 add_page_to_lru_list(page, lruvec);
10853a03 585
21e330fc
SB
586 __count_vm_events(PGLAZYFREE, nr_pages);
587 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
588 nr_pages);
10853a03
MK
589 }
590}
591
902aaed0
HH
592/*
593 * Drain pages out of the cpu's pagevecs.
594 * Either "cpu" is the current CPU, and preemption has already been
595 * disabled; or "cpu" is being hot-unplugged, and is already dead.
596 */
f0cb3c76 597void lru_add_drain_cpu(int cpu)
1da177e4 598{
b01b2141 599 struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
1da177e4 600
13f7f789 601 if (pagevec_count(pvec))
a0b8cab3 602 __pagevec_lru_add(pvec);
902aaed0 603
b01b2141 604 pvec = &per_cpu(lru_rotate.pvec, cpu);
7e0cc01e
QC
605 /* Disabling interrupts below acts as a compiler barrier. */
606 if (data_race(pagevec_count(pvec))) {
902aaed0
HH
607 unsigned long flags;
608
609 /* No harm done if a racing interrupt already did this */
b01b2141 610 local_lock_irqsave(&lru_rotate.lock, flags);
c7c7b80c 611 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
b01b2141 612 local_unlock_irqrestore(&lru_rotate.lock, flags);
902aaed0 613 }
31560180 614
b01b2141 615 pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
31560180 616 if (pagevec_count(pvec))
c7c7b80c 617 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
eb709b0d 618
b01b2141 619 pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
9c276cc6 620 if (pagevec_count(pvec))
c7c7b80c 621 pagevec_lru_move_fn(pvec, lru_deactivate_fn);
9c276cc6 622
b01b2141 623 pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
10853a03 624 if (pagevec_count(pvec))
c7c7b80c 625 pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
10853a03 626
eb709b0d 627 activate_page_drain(cpu);
31560180
MK
628}
629
630/**
cc5993bd 631 * deactivate_file_page - forcefully deactivate a file page
31560180
MK
632 * @page: page to deactivate
633 *
634 * This function hints the VM that @page is a good reclaim candidate,
635 * for example if its invalidation fails due to the page being dirty
636 * or under writeback.
637 */
cc5993bd 638void deactivate_file_page(struct page *page)
31560180 639{
821ed6bb 640 /*
cc5993bd
MK
641 * In a workload with many unevictable page such as mprotect,
642 * unevictable page deactivation for accelerating reclaim is pointless.
821ed6bb
MK
643 */
644 if (PageUnevictable(page))
645 return;
646
31560180 647 if (likely(get_page_unless_zero(page))) {
b01b2141
IM
648 struct pagevec *pvec;
649
650 local_lock(&lru_pvecs.lock);
651 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
31560180 652
d479960e 653 if (pagevec_add_and_need_flush(pvec, page))
c7c7b80c 654 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
b01b2141 655 local_unlock(&lru_pvecs.lock);
31560180 656 }
80bfed90
AM
657}
658
9c276cc6
MK
659/*
660 * deactivate_page - deactivate a page
661 * @page: page to deactivate
662 *
663 * deactivate_page() moves @page to the inactive list if @page was on the active
664 * list and was not an unevictable page. This is done to accelerate the reclaim
665 * of @page.
666 */
667void deactivate_page(struct page *page)
668{
669 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
b01b2141 670 struct pagevec *pvec;
9c276cc6 671
b01b2141
IM
672 local_lock(&lru_pvecs.lock);
673 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
9c276cc6 674 get_page(page);
d479960e 675 if (pagevec_add_and_need_flush(pvec, page))
c7c7b80c 676 pagevec_lru_move_fn(pvec, lru_deactivate_fn);
b01b2141 677 local_unlock(&lru_pvecs.lock);
9c276cc6
MK
678 }
679}
680
10853a03 681/**
f7ad2a6c 682 * mark_page_lazyfree - make an anon page lazyfree
10853a03
MK
683 * @page: page to deactivate
684 *
f7ad2a6c
SL
685 * mark_page_lazyfree() moves @page to the inactive file list.
686 * This is done to accelerate the reclaim of @page.
10853a03 687 */
f7ad2a6c 688void mark_page_lazyfree(struct page *page)
10853a03 689{
f7ad2a6c 690 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
24c92eb7 691 !PageSwapCache(page) && !PageUnevictable(page)) {
b01b2141 692 struct pagevec *pvec;
10853a03 693
b01b2141
IM
694 local_lock(&lru_pvecs.lock);
695 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
09cbfeaf 696 get_page(page);
d479960e 697 if (pagevec_add_and_need_flush(pvec, page))
c7c7b80c 698 pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
b01b2141 699 local_unlock(&lru_pvecs.lock);
10853a03
MK
700 }
701}
702
80bfed90
AM
703void lru_add_drain(void)
704{
b01b2141
IM
705 local_lock(&lru_pvecs.lock);
706 lru_add_drain_cpu(smp_processor_id());
707 local_unlock(&lru_pvecs.lock);
708}
709
243418e3
MK
710/*
711 * It's called from per-cpu workqueue context in SMP case so
712 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
713 * the same cpu. It shouldn't be a problem in !SMP case since
714 * the core is only one and the locks will disable preemption.
715 */
716static void lru_add_and_bh_lrus_drain(void)
717{
718 local_lock(&lru_pvecs.lock);
719 lru_add_drain_cpu(smp_processor_id());
720 local_unlock(&lru_pvecs.lock);
721 invalidate_bh_lrus_cpu();
722}
723
b01b2141
IM
724void lru_add_drain_cpu_zone(struct zone *zone)
725{
726 local_lock(&lru_pvecs.lock);
727 lru_add_drain_cpu(smp_processor_id());
728 drain_local_pages(zone);
729 local_unlock(&lru_pvecs.lock);
1da177e4
LT
730}
731
6ea183d6
MH
732#ifdef CONFIG_SMP
733
734static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
735
c4028958 736static void lru_add_drain_per_cpu(struct work_struct *dummy)
053837fc 737{
243418e3 738 lru_add_and_bh_lrus_drain();
053837fc
NP
739}
740
9852a721
MH
741/*
742 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
743 * kworkers being shut down before our page_alloc_cpu_dead callback is
744 * executed on the offlined cpu.
745 * Calling this function with cpu hotplug locks held can actually lead
746 * to obscure indirect dependencies via WQ context.
747 */
d479960e 748inline void __lru_add_drain_all(bool force_all_cpus)
053837fc 749{
6446a513
AD
750 /*
751 * lru_drain_gen - Global pages generation number
752 *
753 * (A) Definition: global lru_drain_gen = x implies that all generations
754 * 0 < n <= x are already *scheduled* for draining.
755 *
756 * This is an optimization for the highly-contended use case where a
757 * user space workload keeps constantly generating a flow of pages for
758 * each CPU.
759 */
760 static unsigned int lru_drain_gen;
5fbc4616 761 static struct cpumask has_work;
6446a513
AD
762 static DEFINE_MUTEX(lock);
763 unsigned cpu, this_gen;
5fbc4616 764
ce612879
MH
765 /*
766 * Make sure nobody triggers this path before mm_percpu_wq is fully
767 * initialized.
768 */
769 if (WARN_ON(!mm_percpu_wq))
770 return;
771
6446a513
AD
772 /*
773 * Guarantee pagevec counter stores visible by this CPU are visible to
774 * other CPUs before loading the current drain generation.
775 */
776 smp_mb();
777
778 /*
779 * (B) Locally cache global LRU draining generation number
780 *
781 * The read barrier ensures that the counter is loaded before the mutex
782 * is taken. It pairs with smp_mb() inside the mutex critical section
783 * at (D).
784 */
785 this_gen = smp_load_acquire(&lru_drain_gen);
eef1a429 786
5fbc4616 787 mutex_lock(&lock);
eef1a429
KK
788
789 /*
6446a513
AD
790 * (C) Exit the draining operation if a newer generation, from another
791 * lru_add_drain_all(), was already scheduled for draining. Check (A).
eef1a429 792 */
d479960e 793 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
eef1a429
KK
794 goto done;
795
6446a513
AD
796 /*
797 * (D) Increment global generation number
798 *
799 * Pairs with smp_load_acquire() at (B), outside of the critical
800 * section. Use a full memory barrier to guarantee that the new global
801 * drain generation number is stored before loading pagevec counters.
802 *
803 * This pairing must be done here, before the for_each_online_cpu loop
804 * below which drains the page vectors.
805 *
806 * Let x, y, and z represent some system CPU numbers, where x < y < z.
cb152a1a 807 * Assume CPU #z is in the middle of the for_each_online_cpu loop
6446a513
AD
808 * below and has already reached CPU #y's per-cpu data. CPU #x comes
809 * along, adds some pages to its per-cpu vectors, then calls
810 * lru_add_drain_all().
811 *
812 * If the paired barrier is done at any later step, e.g. after the
813 * loop, CPU #x will just exit at (C) and miss flushing out all of its
814 * added pages.
815 */
816 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
817 smp_mb();
eef1a429 818
5fbc4616 819 cpumask_clear(&has_work);
5fbc4616
CM
820 for_each_online_cpu(cpu) {
821 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
822
d479960e
MK
823 if (force_all_cpus ||
824 pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
7e0cc01e 825 data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
b01b2141
IM
826 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
827 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
828 pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
8cc621d2
MK
829 need_activate_page_drain(cpu) ||
830 has_bh_in_lru(cpu, NULL)) {
5fbc4616 831 INIT_WORK(work, lru_add_drain_per_cpu);
ce612879 832 queue_work_on(cpu, mm_percpu_wq, work);
6446a513 833 __cpumask_set_cpu(cpu, &has_work);
5fbc4616
CM
834 }
835 }
836
837 for_each_cpu(cpu, &has_work)
838 flush_work(&per_cpu(lru_add_drain_work, cpu));
839
eef1a429 840done:
5fbc4616 841 mutex_unlock(&lock);
053837fc 842}
d479960e
MK
843
844void lru_add_drain_all(void)
845{
846 __lru_add_drain_all(false);
847}
6ea183d6
MH
848#else
849void lru_add_drain_all(void)
850{
851 lru_add_drain();
852}
6446a513 853#endif /* CONFIG_SMP */
053837fc 854
d479960e
MK
855atomic_t lru_disable_count = ATOMIC_INIT(0);
856
857/*
858 * lru_cache_disable() needs to be called before we start compiling
859 * a list of pages to be migrated using isolate_lru_page().
860 * It drains pages on LRU cache and then disable on all cpus until
861 * lru_cache_enable is called.
862 *
863 * Must be paired with a call to lru_cache_enable().
864 */
865void lru_cache_disable(void)
866{
867 atomic_inc(&lru_disable_count);
868#ifdef CONFIG_SMP
869 /*
870 * lru_add_drain_all in the force mode will schedule draining on
871 * all online CPUs so any calls of lru_cache_disabled wrapped by
872 * local_lock or preemption disabled would be ordered by that.
873 * The atomic operation doesn't need to have stronger ordering
874 * requirements because that is enforeced by the scheduling
875 * guarantees.
876 */
877 __lru_add_drain_all(true);
878#else
243418e3 879 lru_add_and_bh_lrus_drain();
d479960e
MK
880#endif
881}
882
aabfb572 883/**
ea1754a0 884 * release_pages - batched put_page()
aabfb572
MH
885 * @pages: array of pages to release
886 * @nr: number of pages
1da177e4 887 *
aabfb572
MH
888 * Decrement the reference count on all the pages in @pages. If it
889 * fell to zero, remove the page from the LRU and free it.
1da177e4 890 */
c6f92f9f 891void release_pages(struct page **pages, int nr)
1da177e4
LT
892{
893 int i;
cc59850e 894 LIST_HEAD(pages_to_free);
6168d0da 895 struct lruvec *lruvec = NULL;
3f649ab7
KC
896 unsigned long flags;
897 unsigned int lock_batch;
1da177e4 898
1da177e4
LT
899 for (i = 0; i < nr; i++) {
900 struct page *page = pages[i];
1da177e4 901
aabfb572
MH
902 /*
903 * Make sure the IRQ-safe lock-holding time does not get
904 * excessive with a continuous string of pages from the
6168d0da 905 * same lruvec. The lock is held only if lruvec != NULL.
aabfb572 906 */
6168d0da
AS
907 if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
908 unlock_page_lruvec_irqrestore(lruvec, flags);
909 lruvec = NULL;
aabfb572
MH
910 }
911
a9b576f7 912 page = compound_head(page);
6fcb52a5 913 if (is_huge_zero_page(page))
aa88b68c 914 continue;
aa88b68c 915
c5d6c45e 916 if (is_zone_device_page(page)) {
6168d0da
AS
917 if (lruvec) {
918 unlock_page_lruvec_irqrestore(lruvec, flags);
919 lruvec = NULL;
df6ad698 920 }
c5d6c45e
IW
921 /*
922 * ZONE_DEVICE pages that return 'false' from
a3e7bea0 923 * page_is_devmap_managed() do not require special
c5d6c45e
IW
924 * processing, and instead, expect a call to
925 * put_page_testzero().
926 */
07d80269
JH
927 if (page_is_devmap_managed(page)) {
928 put_devmap_managed_page(page);
c5d6c45e 929 continue;
07d80269 930 }
43fbdeb3
RC
931 if (put_page_testzero(page))
932 put_dev_pagemap(page->pgmap);
933 continue;
df6ad698
JG
934 }
935
b5810039 936 if (!put_page_testzero(page))
1da177e4
LT
937 continue;
938
ddc58f27 939 if (PageCompound(page)) {
6168d0da
AS
940 if (lruvec) {
941 unlock_page_lruvec_irqrestore(lruvec, flags);
942 lruvec = NULL;
ddc58f27
KS
943 }
944 __put_compound_page(page);
945 continue;
946 }
947
46453a6e 948 if (PageLRU(page)) {
2a5e4e34
AD
949 struct lruvec *prev_lruvec = lruvec;
950
951 lruvec = relock_page_lruvec_irqsave(page, lruvec,
952 &flags);
953 if (prev_lruvec != lruvec)
aabfb572 954 lock_batch = 0;
fa9add64 955
46ae6b2c 956 del_page_from_lru_list(page, lruvec);
87560179 957 __clear_page_lru_flags(page);
46453a6e
NP
958 }
959
62906027 960 __ClearPageWaiters(page);
c53954a0 961
cc59850e 962 list_add(&page->lru, &pages_to_free);
1da177e4 963 }
6168d0da
AS
964 if (lruvec)
965 unlock_page_lruvec_irqrestore(lruvec, flags);
1da177e4 966
747db954 967 mem_cgroup_uncharge_list(&pages_to_free);
2d4894b5 968 free_unref_page_list(&pages_to_free);
1da177e4 969}
0be8557b 970EXPORT_SYMBOL(release_pages);
1da177e4
LT
971
972/*
973 * The pages which we're about to release may be in the deferred lru-addition
974 * queues. That would prevent them from really being freed right now. That's
975 * OK from a correctness point of view but is inefficient - those pages may be
976 * cache-warm and we want to give them back to the page allocator ASAP.
977 *
978 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
979 * and __pagevec_lru_add_active() call release_pages() directly to avoid
980 * mutual recursion.
981 */
982void __pagevec_release(struct pagevec *pvec)
983{
7f0b5fb9 984 if (!pvec->percpu_pvec_drained) {
d9ed0d08 985 lru_add_drain();
7f0b5fb9 986 pvec->percpu_pvec_drained = true;
d9ed0d08 987 }
c6f92f9f 988 release_pages(pvec->pages, pagevec_count(pvec));
1da177e4
LT
989 pagevec_reinit(pvec);
990}
7f285701
SF
991EXPORT_SYMBOL(__pagevec_release);
992
c7c7b80c 993static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec)
3dd7ae8e 994{
9c4e6b1a 995 int was_unevictable = TestClearPageUnevictable(page);
6c357848 996 int nr_pages = thp_nr_pages(page);
3dd7ae8e 997
309381fe 998 VM_BUG_ON_PAGE(PageLRU(page), page);
3dd7ae8e 999
9c4e6b1a
SB
1000 /*
1001 * Page becomes evictable in two ways:
dae966dc 1002 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
9c4e6b1a
SB
1003 * 2) Before acquiring LRU lock to put the page to correct LRU and then
1004 * a) do PageLRU check with lock [check_move_unevictable_pages]
1005 * b) do PageLRU check before lock [clear_page_mlock]
1006 *
1007 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
1008 * following strict ordering:
1009 *
1010 * #0: __pagevec_lru_add_fn #1: clear_page_mlock
1011 *
1012 * SetPageLRU() TestClearPageMlocked()
1013 * smp_mb() // explicit ordering // above provides strict
1014 * // ordering
1015 * PageMlocked() PageLRU()
1016 *
1017 *
1018 * if '#1' does not observe setting of PG_lru by '#0' and fails
1019 * isolation, the explicit barrier will make sure that page_evictable
1020 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
1021 * can be reordered after PageMlocked check and can make '#1' to fail
1022 * the isolation of the page whose Mlocked bit is cleared (#0 is also
1023 * looking at the same page) and the evictable page will be stranded
1024 * in an unevictable LRU.
1025 */
9a9b6cce
YS
1026 SetPageLRU(page);
1027 smp_mb__after_atomic();
9c4e6b1a
SB
1028
1029 if (page_evictable(page)) {
9c4e6b1a 1030 if (was_unevictable)
5d91f31f 1031 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
9c4e6b1a 1032 } else {
9c4e6b1a
SB
1033 ClearPageActive(page);
1034 SetPageUnevictable(page);
1035 if (!was_unevictable)
5d91f31f 1036 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
9c4e6b1a
SB
1037 }
1038
3a9c9788 1039 add_page_to_lru_list(page, lruvec);
86140453 1040 trace_mm_lru_insertion(page);
3dd7ae8e
SL
1041}
1042
1da177e4
LT
1043/*
1044 * Add the passed pages to the LRU, then drop the caller's refcount
1045 * on them. Reinitialises the caller's pagevec.
1046 */
a0b8cab3 1047void __pagevec_lru_add(struct pagevec *pvec)
1da177e4 1048{
fc574c23 1049 int i;
6168d0da 1050 struct lruvec *lruvec = NULL;
fc574c23
AS
1051 unsigned long flags = 0;
1052
1053 for (i = 0; i < pagevec_count(pvec); i++) {
1054 struct page *page = pvec->pages[i];
fc574c23 1055
2a5e4e34 1056 lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
fc574c23
AS
1057 __pagevec_lru_add_fn(page, lruvec);
1058 }
6168d0da
AS
1059 if (lruvec)
1060 unlock_page_lruvec_irqrestore(lruvec, flags);
fc574c23
AS
1061 release_pages(pvec->pages, pvec->nr);
1062 pagevec_reinit(pvec);
1da177e4 1063}
1da177e4 1064
0cd6144a
JW
1065/**
1066 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1067 * @pvec: The pagevec to prune
1068 *
a656a202
MWO
1069 * find_get_entries() fills both pages and XArray value entries (aka
1070 * exceptional entries) into the pagevec. This function prunes all
0cd6144a
JW
1071 * exceptionals from @pvec without leaving holes, so that it can be
1072 * passed on to page-only pagevec operations.
1073 */
1074void pagevec_remove_exceptionals(struct pagevec *pvec)
1075{
1076 int i, j;
1077
1078 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1079 struct page *page = pvec->pages[i];
3159f943 1080 if (!xa_is_value(page))
0cd6144a
JW
1081 pvec->pages[j++] = page;
1082 }
1083 pvec->nr = j;
1084}
1085
1da177e4 1086/**
b947cee4 1087 * pagevec_lookup_range - gang pagecache lookup
1da177e4
LT
1088 * @pvec: Where the resulting pages are placed
1089 * @mapping: The address_space to search
1090 * @start: The starting page index
b947cee4 1091 * @end: The final page index
1da177e4 1092 *
e02a9f04 1093 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
b947cee4
JK
1094 * pages in the mapping starting from index @start and upto index @end
1095 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
1da177e4
LT
1096 * reference against the pages in @pvec.
1097 *
1098 * The search returns a group of mapping-contiguous pages with ascending
d72dc8a2
JK
1099 * indexes. There may be holes in the indices due to not-present pages. We
1100 * also update @start to index the next page for the traversal.
1da177e4 1101 *
b947cee4 1102 * pagevec_lookup_range() returns the number of pages which were found. If this
e02a9f04 1103 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
b947cee4 1104 * reached.
1da177e4 1105 */
b947cee4 1106unsigned pagevec_lookup_range(struct pagevec *pvec,
397162ff 1107 struct address_space *mapping, pgoff_t *start, pgoff_t end)
1da177e4 1108{
397162ff 1109 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
b947cee4 1110 pvec->pages);
1da177e4
LT
1111 return pagevec_count(pvec);
1112}
b947cee4 1113EXPORT_SYMBOL(pagevec_lookup_range);
78539fdf 1114
72b045ae
JK
1115unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1116 struct address_space *mapping, pgoff_t *index, pgoff_t end,
10bbd235 1117 xa_mark_t tag)
1da177e4 1118{
72b045ae 1119 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
67fd707f 1120 PAGEVEC_SIZE, pvec->pages);
1da177e4
LT
1121 return pagevec_count(pvec);
1122}
72b045ae 1123EXPORT_SYMBOL(pagevec_lookup_range_tag);
1da177e4 1124
1da177e4
LT
1125/*
1126 * Perform any setup for the swap system
1127 */
1128void __init swap_setup(void)
1129{
ca79b0c2 1130 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
e0bf68dd 1131
1da177e4
LT
1132 /* Use a smaller cluster for small-memory machines */
1133 if (megs < 16)
1134 page_cluster = 2;
1135 else
1136 page_cluster = 3;
1137 /*
1138 * Right now other parts of the system means that we
1139 * _really_ don't want to cluster much more
1140 */
1da177e4 1141}
07d80269
JH
1142
1143#ifdef CONFIG_DEV_PAGEMAP_OPS
1144void put_devmap_managed_page(struct page *page)
1145{
1146 int count;
1147
1148 if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1149 return;
1150
1151 count = page_ref_dec_return(page);
1152
1153 /*
1154 * devmap page refcounts are 1-based, rather than 0-based: if
1155 * refcount is 1, then the page is free and the refcount is
1156 * stable because nobody holds a reference on the page.
1157 */
1158 if (count == 1)
1159 free_devmap_managed_page(page);
1160 else if (!count)
1161 __put_page(page);
1162}
1163EXPORT_SYMBOL(put_devmap_managed_page);
1164#endif