]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/swap_state.c
x86/speculation/mmio: Add sysfs reporting for Processor MMIO Stale Data
[mirror_ubuntu-jammy-kernel.git] / mm / swap_state.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/swap_state.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 *
8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
9 */
1da177e4 10#include <linux/mm.h>
5a0e3ad6 11#include <linux/gfp.h>
1da177e4
LT
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
46017e95 14#include <linux/swapops.h>
1da177e4
LT
15#include <linux/init.h>
16#include <linux/pagemap.h>
1da177e4 17#include <linux/backing-dev.h>
3fb5c298 18#include <linux/blkdev.h>
c484d410 19#include <linux/pagevec.h>
b20a3503 20#include <linux/migrate.h>
4b3ef9da 21#include <linux/vmalloc.h>
67afa38e 22#include <linux/swap_slots.h>
38d8b4e6 23#include <linux/huge_mm.h>
61ef1865 24#include <linux/shmem_fs.h>
243bce09 25#include "internal.h"
1da177e4
LT
26
27/*
28 * swapper_space is a fiction, retained to simplify the path through
7eaceacc 29 * vmscan's shrink_page_list.
1da177e4 30 */
f5e54d6e 31static const struct address_space_operations swap_aops = {
1da177e4 32 .writepage = swap_writepage,
62c230bc 33 .set_page_dirty = swap_set_page_dirty,
1c93923c 34#ifdef CONFIG_MIGRATION
e965f963 35 .migratepage = migrate_page,
1c93923c 36#endif
1da177e4
LT
37};
38
783cb68e
CD
39struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
40static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
e3f32ffb 41static bool enable_vma_readahead __read_mostly = false;
ec560175 42
ec560175
HY
43#define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
44#define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
45#define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
46#define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
47
48#define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
49#define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
50#define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
51
52#define SWAP_RA_VAL(addr, win, hits) \
53 (((addr) & PAGE_MASK) | \
54 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
55 ((hits) & SWAP_RA_HITS_MASK))
56
57/* Initial readahead hits is 4 to start up with a small window */
58#define GET_SWAP_RA_VAL(vma) \
59 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
1da177e4 60
b96a3db2
QC
61#define INC_CACHE_INFO(x) data_race(swap_cache_info.x++)
62#define ADD_CACHE_INFO(x, nr) data_race(swap_cache_info.x += (nr))
1da177e4
LT
63
64static struct {
65 unsigned long add_total;
66 unsigned long del_total;
67 unsigned long find_success;
68 unsigned long find_total;
1da177e4
LT
69} swap_cache_info;
70
579f8290
SL
71static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
72
1da177e4
LT
73void show_swap_cache_info(void)
74{
33806f06 75 printk("%lu pages in swap cache\n", total_swapcache_pages());
2c97b7fc 76 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
1da177e4 77 swap_cache_info.add_total, swap_cache_info.del_total,
bb63be0a 78 swap_cache_info.find_success, swap_cache_info.find_total);
ec8acf20
SL
79 printk("Free swap = %ldkB\n",
80 get_nr_swap_pages() << (PAGE_SHIFT - 10));
1da177e4
LT
81 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
82}
83
aae466b0
JK
84void *get_shadow_from_swap_cache(swp_entry_t entry)
85{
86 struct address_space *address_space = swap_address_space(entry);
87 pgoff_t idx = swp_offset(entry);
88 struct page *page;
89
8c647dd1 90 page = xa_load(&address_space->i_pages, idx);
aae466b0
JK
91 if (xa_is_value(page))
92 return page;
aae466b0
JK
93 return NULL;
94}
95
1da177e4 96/*
8d93b41c 97 * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
1da177e4
LT
98 * but sets SwapCache flag and private instead of mapping and index.
99 */
3852f676
JK
100int add_to_swap_cache(struct page *page, swp_entry_t entry,
101 gfp_t gfp, void **shadowp)
1da177e4 102{
8d93b41c 103 struct address_space *address_space = swap_address_space(entry);
38d8b4e6 104 pgoff_t idx = swp_offset(entry);
8d93b41c 105 XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page));
6c357848 106 unsigned long i, nr = thp_nr_pages(page);
3852f676 107 void *old;
1da177e4 108
309381fe
SL
109 VM_BUG_ON_PAGE(!PageLocked(page), page);
110 VM_BUG_ON_PAGE(PageSwapCache(page), page);
111 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
51726b12 112
38d8b4e6 113 page_ref_add(page, nr);
31a56396 114 SetPageSwapCache(page);
31a56396 115
8d93b41c
MW
116 do {
117 xas_lock_irq(&xas);
118 xas_create_range(&xas);
119 if (xas_error(&xas))
120 goto unlock;
121 for (i = 0; i < nr; i++) {
122 VM_BUG_ON_PAGE(xas.xa_index != idx + i, page);
3852f676
JK
123 old = xas_load(&xas);
124 if (xa_is_value(old)) {
3852f676
JK
125 if (shadowp)
126 *shadowp = old;
127 }
8d93b41c 128 set_page_private(page + i, entry.val + i);
4101196b 129 xas_store(&xas, page);
8d93b41c
MW
130 xas_next(&xas);
131 }
38d8b4e6
HY
132 address_space->nrpages += nr;
133 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
b6038942 134 __mod_lruvec_page_state(page, NR_SWAPCACHE, nr);
38d8b4e6 135 ADD_CACHE_INFO(add_total, nr);
8d93b41c
MW
136unlock:
137 xas_unlock_irq(&xas);
138 } while (xas_nomem(&xas, gfp));
31a56396 139
8d93b41c
MW
140 if (!xas_error(&xas))
141 return 0;
31a56396 142
8d93b41c
MW
143 ClearPageSwapCache(page);
144 page_ref_sub(page, nr);
145 return xas_error(&xas);
1da177e4
LT
146}
147
1da177e4
LT
148/*
149 * This must be called only on pages that have
150 * been verified to be in the swap cache.
151 */
3852f676
JK
152void __delete_from_swap_cache(struct page *page,
153 swp_entry_t entry, void *shadow)
1da177e4 154{
4e17ec25 155 struct address_space *address_space = swap_address_space(entry);
6c357848 156 int i, nr = thp_nr_pages(page);
4e17ec25
MW
157 pgoff_t idx = swp_offset(entry);
158 XA_STATE(xas, &address_space->i_pages, idx);
33806f06 159
309381fe
SL
160 VM_BUG_ON_PAGE(!PageLocked(page), page);
161 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
162 VM_BUG_ON_PAGE(PageWriteback(page), page);
1da177e4 163
38d8b4e6 164 for (i = 0; i < nr; i++) {
3852f676 165 void *entry = xas_store(&xas, shadow);
4101196b 166 VM_BUG_ON_PAGE(entry != page, entry);
38d8b4e6 167 set_page_private(page + i, 0);
4e17ec25 168 xas_next(&xas);
38d8b4e6 169 }
1da177e4 170 ClearPageSwapCache(page);
38d8b4e6
HY
171 address_space->nrpages -= nr;
172 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
b6038942 173 __mod_lruvec_page_state(page, NR_SWAPCACHE, -nr);
38d8b4e6 174 ADD_CACHE_INFO(del_total, nr);
1da177e4
LT
175}
176
177/**
178 * add_to_swap - allocate swap space for a page
179 * @page: page we want to move to swap
180 *
181 * Allocate swap space for the page and add the page to the
182 * swap cache. Caller needs to hold the page lock.
183 */
0f074658 184int add_to_swap(struct page *page)
1da177e4
LT
185{
186 swp_entry_t entry;
1da177e4
LT
187 int err;
188
309381fe
SL
189 VM_BUG_ON_PAGE(!PageLocked(page), page);
190 VM_BUG_ON_PAGE(!PageUptodate(page), page);
1da177e4 191
38d8b4e6 192 entry = get_swap_page(page);
2ca4532a 193 if (!entry.val)
0f074658
MK
194 return 0;
195
2ca4532a 196 /*
8d93b41c 197 * XArray node allocations from PF_MEMALLOC contexts could
2ca4532a
DN
198 * completely exhaust the page allocator. __GFP_NOMEMALLOC
199 * stops emergency reserves from being allocated.
200 *
201 * TODO: this could cause a theoretical memory reclaim
202 * deadlock in the swap out path.
203 */
204 /*
854e9ed0 205 * Add it to the swap cache.
2ca4532a
DN
206 */
207 err = add_to_swap_cache(page, entry,
3852f676 208 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
38d8b4e6 209 if (err)
bd53b714 210 /*
2ca4532a
DN
211 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
212 * clear SWAP_HAS_CACHE flag.
1da177e4 213 */
0f074658 214 goto fail;
9625456c
SL
215 /*
216 * Normally the page will be dirtied in unmap because its pte should be
0e9aa675 217 * dirty. A special case is MADV_FREE page. The page's pte could have
9625456c
SL
218 * dirty bit cleared but the page's SwapBacked bit is still set because
219 * clearing the dirty bit and SwapBacked bit has no lock protected. For
220 * such page, unmap will not set dirty bit for it, so page reclaim will
221 * not write the page out. This can cause data corruption when the page
222 * is swap in later. Always setting the dirty bit for the page solves
223 * the problem.
224 */
225 set_page_dirty(page);
38d8b4e6
HY
226
227 return 1;
228
38d8b4e6 229fail:
0f074658 230 put_swap_page(page, entry);
38d8b4e6 231 return 0;
1da177e4
LT
232}
233
234/*
235 * This must be called only on pages that have
236 * been verified to be in the swap cache and locked.
237 * It will never put the page into the free list,
238 * the caller has a reference on the page.
239 */
240void delete_from_swap_cache(struct page *page)
241{
4e17ec25
MW
242 swp_entry_t entry = { .val = page_private(page) };
243 struct address_space *address_space = swap_address_space(entry);
1da177e4 244
b93b0163 245 xa_lock_irq(&address_space->i_pages);
3852f676 246 __delete_from_swap_cache(page, entry, NULL);
b93b0163 247 xa_unlock_irq(&address_space->i_pages);
1da177e4 248
75f6d6d2 249 put_swap_page(page, entry);
6c357848 250 page_ref_sub(page, thp_nr_pages(page));
1da177e4
LT
251}
252
3852f676
JK
253void clear_shadow_from_swap_cache(int type, unsigned long begin,
254 unsigned long end)
255{
256 unsigned long curr = begin;
257 void *old;
258
259 for (;;) {
3852f676
JK
260 swp_entry_t entry = swp_entry(type, curr);
261 struct address_space *address_space = swap_address_space(entry);
262 XA_STATE(xas, &address_space->i_pages, curr);
263
264 xa_lock_irq(&address_space->i_pages);
265 xas_for_each(&xas, old, end) {
266 if (!xa_is_value(old))
267 continue;
268 xas_store(&xas, NULL);
3852f676 269 }
3852f676
JK
270 xa_unlock_irq(&address_space->i_pages);
271
272 /* search the next swapcache until we meet end */
273 curr >>= SWAP_ADDRESS_SPACE_SHIFT;
274 curr++;
275 curr <<= SWAP_ADDRESS_SPACE_SHIFT;
276 if (curr > end)
277 break;
278 }
279}
280
1da177e4
LT
281/*
282 * If we are the only user, then try to free up the swap cache.
283 *
284 * Its ok to check for PageSwapCache without the page lock
a2c43eed
HD
285 * here because we are going to recheck again inside
286 * try_to_free_swap() _with_ the lock.
1da177e4
LT
287 * - Marcelo
288 */
f4c4a3f4 289void free_swap_cache(struct page *page)
1da177e4 290{
a2c43eed
HD
291 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
292 try_to_free_swap(page);
1da177e4
LT
293 unlock_page(page);
294 }
295}
296
297/*
298 * Perform a free_page(), also freeing any swap cache associated with
b8072f09 299 * this page if it is the last user of the page.
1da177e4
LT
300 */
301void free_page_and_swap_cache(struct page *page)
302{
303 free_swap_cache(page);
6fcb52a5 304 if (!is_huge_zero_page(page))
770a5370 305 put_page(page);
1da177e4
LT
306}
307
308/*
309 * Passed an array of pages, drop them all from swapcache and then release
310 * them. They are removed from the LRU and freed if this is their last use.
311 */
312void free_pages_and_swap_cache(struct page **pages, int nr)
313{
1da177e4 314 struct page **pagep = pages;
aabfb572 315 int i;
1da177e4
LT
316
317 lru_add_drain();
aabfb572
MH
318 for (i = 0; i < nr; i++)
319 free_swap_cache(pagep[i]);
c6f92f9f 320 release_pages(pagep, nr);
1da177e4
LT
321}
322
e9e9b7ec
MK
323static inline bool swap_use_vma_readahead(void)
324{
325 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
326}
327
1da177e4
LT
328/*
329 * Lookup a swap entry in the swap cache. A found page will be returned
330 * unlocked and with its refcount incremented - we rely on the kernel
331 * lock getting page table operations atomic even if we drop the page
332 * lock before returning.
333 */
ec560175
HY
334struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
335 unsigned long addr)
1da177e4
LT
336{
337 struct page *page;
eb085574 338 struct swap_info_struct *si;
1da177e4 339
eb085574
HY
340 si = get_swap_device(entry);
341 if (!si)
342 return NULL;
f6ab1f7f 343 page = find_get_page(swap_address_space(entry), swp_offset(entry));
eb085574 344 put_swap_device(si);
1da177e4 345
ec560175
HY
346 INC_CACHE_INFO(find_total);
347 if (page) {
eaf649eb
MK
348 bool vma_ra = swap_use_vma_readahead();
349 bool readahead;
350
1da177e4 351 INC_CACHE_INFO(find_success);
eaf649eb
MK
352 /*
353 * At the moment, we don't support PG_readahead for anon THP
354 * so let's bail out rather than confusing the readahead stat.
355 */
ec560175
HY
356 if (unlikely(PageTransCompound(page)))
357 return page;
eaf649eb 358
ec560175 359 readahead = TestClearPageReadahead(page);
eaf649eb
MK
360 if (vma && vma_ra) {
361 unsigned long ra_val;
362 int win, hits;
363
364 ra_val = GET_SWAP_RA_VAL(vma);
365 win = SWAP_RA_WIN(ra_val);
366 hits = SWAP_RA_HITS(ra_val);
ec560175
HY
367 if (readahead)
368 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
369 atomic_long_set(&vma->swap_readahead_info,
370 SWAP_RA_VAL(addr, win, hits));
371 }
eaf649eb 372
ec560175 373 if (readahead) {
cbc65df2 374 count_vm_event(SWAP_RA_HIT);
eaf649eb 375 if (!vma || !vma_ra)
ec560175 376 atomic_inc(&swapin_readahead_hits);
cbc65df2 377 }
579f8290 378 }
eaf649eb 379
1da177e4
LT
380 return page;
381}
382
61ef1865
MWO
383/**
384 * find_get_incore_page - Find and get a page from the page or swap caches.
385 * @mapping: The address_space to search.
386 * @index: The page cache index.
387 *
388 * This differs from find_get_page() in that it will also look for the
389 * page in the swap cache.
390 *
391 * Return: The found page or %NULL.
392 */
393struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index)
394{
395 swp_entry_t swp;
396 struct swap_info_struct *si;
44835d20
MWO
397 struct page *page = pagecache_get_page(mapping, index,
398 FGP_ENTRY | FGP_HEAD, 0);
61ef1865 399
a6de4b48 400 if (!page)
61ef1865 401 return page;
a6de4b48
MWO
402 if (!xa_is_value(page))
403 return find_subpage(page, index);
61ef1865
MWO
404 if (!shmem_mapping(mapping))
405 return NULL;
406
407 swp = radix_to_swp_entry(page);
408 /* Prevent swapoff from happening to us */
409 si = get_swap_device(swp);
410 if (!si)
411 return NULL;
412 page = find_get_page(swap_address_space(swp), swp_offset(swp));
413 put_swap_device(si);
414 return page;
415}
416
5b999aad
DS
417struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
418 struct vm_area_struct *vma, unsigned long addr,
419 bool *new_page_allocated)
1da177e4 420{
eb085574 421 struct swap_info_struct *si;
4c6355b2 422 struct page *page;
aae466b0 423 void *shadow = NULL;
4c6355b2 424
5b999aad 425 *new_page_allocated = false;
1da177e4 426
4c6355b2
JW
427 for (;;) {
428 int err;
1da177e4
LT
429 /*
430 * First check the swap cache. Since this is normally
431 * called after lookup_swap_cache() failed, re-calling
432 * that would confuse statistics.
433 */
eb085574
HY
434 si = get_swap_device(entry);
435 if (!si)
4c6355b2
JW
436 return NULL;
437 page = find_get_page(swap_address_space(entry),
438 swp_offset(entry));
eb085574 439 put_swap_device(si);
4c6355b2
JW
440 if (page)
441 return page;
1da177e4 442
ba81f838
HY
443 /*
444 * Just skip read ahead for unused swap slot.
445 * During swap_off when swap_slot_cache is disabled,
446 * we have to handle the race between putting
447 * swap entry in swap cache and marking swap slot
448 * as SWAP_HAS_CACHE. That's done in later part of code or
449 * else swap_off will be aborted if we return NULL.
450 */
451 if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
4c6355b2 452 return NULL;
e8c26ab6 453
1da177e4 454 /*
4c6355b2
JW
455 * Get a new page to read into from swap. Allocate it now,
456 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
457 * cause any racers to loop around until we add it to cache.
1da177e4 458 */
4c6355b2
JW
459 page = alloc_page_vma(gfp_mask, vma, addr);
460 if (!page)
461 return NULL;
1da177e4 462
f000944d
HD
463 /*
464 * Swap entry may have been freed since our caller observed it.
465 */
355cfa73 466 err = swapcache_prepare(entry);
4c6355b2 467 if (!err)
f000944d
HD
468 break;
469
4c6355b2
JW
470 put_page(page);
471 if (err != -EEXIST)
472 return NULL;
473
2ca4532a 474 /*
4c6355b2
JW
475 * We might race against __delete_from_swap_cache(), and
476 * stumble across a swap_map entry whose SWAP_HAS_CACHE
477 * has not yet been cleared. Or race against another
478 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
479 * in swap_map, but not yet added its page to swap cache.
2ca4532a 480 */
c2e4e0a5 481 schedule_timeout_uninterruptible(1);
4c6355b2
JW
482 }
483
484 /*
485 * The swap entry is ours to swap in. Prepare the new page.
486 */
487
488 __SetPageLocked(page);
489 __SetPageSwapBacked(page);
490
0add0c77 491 if (mem_cgroup_swapin_charge_page(page, NULL, gfp_mask, entry))
4c6355b2 492 goto fail_unlock;
4c6355b2 493
0add0c77
SB
494 /* May fail (-ENOMEM) if XArray node allocation failed. */
495 if (add_to_swap_cache(page, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
4c6355b2 496 goto fail_unlock;
0add0c77
SB
497
498 mem_cgroup_swapin_uncharge_swap(entry);
4c6355b2 499
aae466b0
JK
500 if (shadow)
501 workingset_refault(page, shadow);
314b57fb 502
4c6355b2 503 /* Caller will initiate read into locked page */
6058eaec 504 lru_cache_add(page);
4c6355b2
JW
505 *new_page_allocated = true;
506 return page;
1da177e4 507
4c6355b2 508fail_unlock:
0add0c77 509 put_swap_page(page, entry);
4c6355b2
JW
510 unlock_page(page);
511 put_page(page);
512 return NULL;
1da177e4 513}
46017e95 514
5b999aad
DS
515/*
516 * Locate a page of swap in physical memory, reserving swap cache space
517 * and reading the disk if it is not already cached.
518 * A failure return means that either the page allocation failed or that
519 * the swap entry is no longer in use.
520 */
521struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
23955622 522 struct vm_area_struct *vma, unsigned long addr, bool do_poll)
5b999aad
DS
523{
524 bool page_was_allocated;
525 struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
526 vma, addr, &page_was_allocated);
527
528 if (page_was_allocated)
23955622 529 swap_readpage(retpage, do_poll);
5b999aad
DS
530
531 return retpage;
532}
533
ec560175
HY
534static unsigned int __swapin_nr_pages(unsigned long prev_offset,
535 unsigned long offset,
536 int hits,
537 int max_pages,
538 int prev_win)
579f8290 539{
ec560175 540 unsigned int pages, last_ra;
579f8290
SL
541
542 /*
543 * This heuristic has been found to work well on both sequential and
544 * random loads, swapping to hard disk or to SSD: please don't ask
545 * what the "+ 2" means, it just happens to work well, that's all.
546 */
ec560175 547 pages = hits + 2;
579f8290
SL
548 if (pages == 2) {
549 /*
550 * We can have no readahead hits to judge by: but must not get
551 * stuck here forever, so check for an adjacent offset instead
552 * (and don't even bother to check whether swap type is same).
553 */
554 if (offset != prev_offset + 1 && offset != prev_offset - 1)
555 pages = 1;
579f8290
SL
556 } else {
557 unsigned int roundup = 4;
558 while (roundup < pages)
559 roundup <<= 1;
560 pages = roundup;
561 }
562
563 if (pages > max_pages)
564 pages = max_pages;
565
566 /* Don't shrink readahead too fast */
ec560175 567 last_ra = prev_win / 2;
579f8290
SL
568 if (pages < last_ra)
569 pages = last_ra;
ec560175
HY
570
571 return pages;
572}
573
574static unsigned long swapin_nr_pages(unsigned long offset)
575{
576 static unsigned long prev_offset;
577 unsigned int hits, pages, max_pages;
578 static atomic_t last_readahead_pages;
579
580 max_pages = 1 << READ_ONCE(page_cluster);
581 if (max_pages <= 1)
582 return 1;
583
584 hits = atomic_xchg(&swapin_readahead_hits, 0);
d6c1f098
QC
585 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
586 max_pages,
ec560175
HY
587 atomic_read(&last_readahead_pages));
588 if (!hits)
d6c1f098 589 WRITE_ONCE(prev_offset, offset);
579f8290
SL
590 atomic_set(&last_readahead_pages, pages);
591
592 return pages;
593}
594
46017e95 595/**
e9e9b7ec 596 * swap_cluster_readahead - swap in pages in hope we need them soon
46017e95 597 * @entry: swap entry of this memory
7682486b 598 * @gfp_mask: memory allocation flags
e9e9b7ec 599 * @vmf: fault information
46017e95
HD
600 *
601 * Returns the struct page for entry and addr, after queueing swapin.
602 *
603 * Primitive swap readahead code. We simply read an aligned block of
604 * (1 << page_cluster) entries in the swap area. This method is chosen
605 * because it doesn't cost us any seek time. We also make sure to queue
606 * the 'original' request together with the readahead ones...
607 *
608 * This has been extended to use the NUMA policies from the mm triggering
609 * the readahead.
610 *
c1e8d7c6 611 * Caller must hold read mmap_lock if vmf->vma is not NULL.
46017e95 612 */
e9e9b7ec
MK
613struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
614 struct vm_fault *vmf)
46017e95 615{
46017e95 616 struct page *page;
579f8290
SL
617 unsigned long entry_offset = swp_offset(entry);
618 unsigned long offset = entry_offset;
67f96aa2 619 unsigned long start_offset, end_offset;
579f8290 620 unsigned long mask;
e9a6effa 621 struct swap_info_struct *si = swp_swap_info(entry);
3fb5c298 622 struct blk_plug plug;
c4fa6309 623 bool do_poll = true, page_allocated;
e9e9b7ec
MK
624 struct vm_area_struct *vma = vmf->vma;
625 unsigned long addr = vmf->address;
46017e95 626
579f8290
SL
627 mask = swapin_nr_pages(offset) - 1;
628 if (!mask)
629 goto skip;
630
23955622 631 do_poll = false;
67f96aa2
RR
632 /* Read a page_cluster sized and aligned cluster around offset. */
633 start_offset = offset & ~mask;
634 end_offset = offset | mask;
635 if (!start_offset) /* First page is swap header. */
636 start_offset++;
e9a6effa
HY
637 if (end_offset >= si->max)
638 end_offset = si->max - 1;
67f96aa2 639
3fb5c298 640 blk_start_plug(&plug);
67f96aa2 641 for (offset = start_offset; offset <= end_offset ; offset++) {
46017e95 642 /* Ok, do the async read-ahead now */
c4fa6309
HY
643 page = __read_swap_cache_async(
644 swp_entry(swp_type(entry), offset),
645 gfp_mask, vma, addr, &page_allocated);
46017e95 646 if (!page)
67f96aa2 647 continue;
c4fa6309
HY
648 if (page_allocated) {
649 swap_readpage(page, false);
eaf649eb 650 if (offset != entry_offset) {
c4fa6309
HY
651 SetPageReadahead(page);
652 count_vm_event(SWAP_RA);
653 }
cbc65df2 654 }
09cbfeaf 655 put_page(page);
46017e95 656 }
3fb5c298
CE
657 blk_finish_plug(&plug);
658
46017e95 659 lru_add_drain(); /* Push any new pages onto the LRU now */
579f8290 660skip:
23955622 661 return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
46017e95 662}
4b3ef9da
HY
663
664int init_swap_address_space(unsigned int type, unsigned long nr_pages)
665{
666 struct address_space *spaces, *space;
667 unsigned int i, nr;
668
669 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
778e1cdd 670 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
4b3ef9da
HY
671 if (!spaces)
672 return -ENOMEM;
673 for (i = 0; i < nr; i++) {
674 space = spaces + i;
a2833486 675 xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
4b3ef9da
HY
676 atomic_set(&space->i_mmap_writable, 0);
677 space->a_ops = &swap_aops;
678 /* swap cache doesn't use writeback related tags */
679 mapping_set_no_writeback_tags(space);
4b3ef9da
HY
680 }
681 nr_swapper_spaces[type] = nr;
054f1d1f 682 swapper_spaces[type] = spaces;
4b3ef9da
HY
683
684 return 0;
685}
686
687void exit_swap_address_space(unsigned int type)
688{
eea4a501
HY
689 int i;
690 struct address_space *spaces = swapper_spaces[type];
691
692 for (i = 0; i < nr_swapper_spaces[type]; i++)
693 VM_WARN_ON_ONCE(!mapping_empty(&spaces[i]));
694 kvfree(spaces);
4b3ef9da 695 nr_swapper_spaces[type] = 0;
054f1d1f 696 swapper_spaces[type] = NULL;
4b3ef9da 697}
ec560175
HY
698
699static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
700 unsigned long faddr,
701 unsigned long lpfn,
702 unsigned long rpfn,
703 unsigned long *start,
704 unsigned long *end)
705{
706 *start = max3(lpfn, PFN_DOWN(vma->vm_start),
707 PFN_DOWN(faddr & PMD_MASK));
708 *end = min3(rpfn, PFN_DOWN(vma->vm_end),
709 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
710}
711
eaf649eb
MK
712static void swap_ra_info(struct vm_fault *vmf,
713 struct vma_swap_readahead *ra_info)
ec560175
HY
714{
715 struct vm_area_struct *vma = vmf->vma;
eaf649eb 716 unsigned long ra_val;
ec560175
HY
717 unsigned long faddr, pfn, fpfn;
718 unsigned long start, end;
eaf649eb 719 pte_t *pte, *orig_pte;
ec560175
HY
720 unsigned int max_win, hits, prev_win, win, left;
721#ifndef CONFIG_64BIT
722 pte_t *tpte;
723#endif
724
61b63972
HY
725 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
726 SWAP_RA_ORDER_CEILING);
727 if (max_win == 1) {
eaf649eb
MK
728 ra_info->win = 1;
729 return;
61b63972
HY
730 }
731
ec560175 732 faddr = vmf->address;
eaf649eb 733 orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
ec560175 734
ec560175 735 fpfn = PFN_DOWN(faddr);
eaf649eb
MK
736 ra_val = GET_SWAP_RA_VAL(vma);
737 pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
738 prev_win = SWAP_RA_WIN(ra_val);
739 hits = SWAP_RA_HITS(ra_val);
740 ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
ec560175
HY
741 max_win, prev_win);
742 atomic_long_set(&vma->swap_readahead_info,
743 SWAP_RA_VAL(faddr, win, 0));
744
eaf649eb
MK
745 if (win == 1) {
746 pte_unmap(orig_pte);
747 return;
748 }
ec560175
HY
749
750 /* Copy the PTEs because the page table may be unmapped */
751 if (fpfn == pfn + 1)
752 swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
753 else if (pfn == fpfn + 1)
754 swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
755 &start, &end);
756 else {
757 left = (win - 1) / 2;
758 swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
759 &start, &end);
760 }
eaf649eb
MK
761 ra_info->nr_pte = end - start;
762 ra_info->offset = fpfn - start;
763 pte -= ra_info->offset;
ec560175 764#ifdef CONFIG_64BIT
eaf649eb 765 ra_info->ptes = pte;
ec560175 766#else
eaf649eb 767 tpte = ra_info->ptes;
ec560175
HY
768 for (pfn = start; pfn != end; pfn++)
769 *tpte++ = *pte++;
770#endif
eaf649eb 771 pte_unmap(orig_pte);
ec560175
HY
772}
773
e9f59873
YS
774/**
775 * swap_vma_readahead - swap in pages in hope we need them soon
27ec4878 776 * @fentry: swap entry of this memory
e9f59873
YS
777 * @gfp_mask: memory allocation flags
778 * @vmf: fault information
779 *
780 * Returns the struct page for entry and addr, after queueing swapin.
781 *
cb152a1a 782 * Primitive swap readahead code. We simply read in a few pages whose
e9f59873
YS
783 * virtual addresses are around the fault address in the same vma.
784 *
c1e8d7c6 785 * Caller must hold read mmap_lock if vmf->vma is not NULL.
e9f59873
YS
786 *
787 */
f5c754d6
CIK
788static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
789 struct vm_fault *vmf)
ec560175
HY
790{
791 struct blk_plug plug;
792 struct vm_area_struct *vma = vmf->vma;
793 struct page *page;
794 pte_t *pte, pentry;
795 swp_entry_t entry;
796 unsigned int i;
797 bool page_allocated;
e97af699
ML
798 struct vma_swap_readahead ra_info = {
799 .win = 1,
800 };
ec560175 801
eaf649eb
MK
802 swap_ra_info(vmf, &ra_info);
803 if (ra_info.win == 1)
ec560175
HY
804 goto skip;
805
806 blk_start_plug(&plug);
eaf649eb 807 for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
ec560175
HY
808 i++, pte++) {
809 pentry = *pte;
810 if (pte_none(pentry))
811 continue;
812 if (pte_present(pentry))
813 continue;
814 entry = pte_to_swp_entry(pentry);
815 if (unlikely(non_swap_entry(entry)))
816 continue;
817 page = __read_swap_cache_async(entry, gfp_mask, vma,
818 vmf->address, &page_allocated);
819 if (!page)
820 continue;
821 if (page_allocated) {
822 swap_readpage(page, false);
eaf649eb 823 if (i != ra_info.offset) {
ec560175
HY
824 SetPageReadahead(page);
825 count_vm_event(SWAP_RA);
826 }
827 }
828 put_page(page);
829 }
830 blk_finish_plug(&plug);
831 lru_add_drain();
832skip:
833 return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
eaf649eb 834 ra_info.win == 1);
ec560175 835}
d9bfcfdc 836
e9e9b7ec
MK
837/**
838 * swapin_readahead - swap in pages in hope we need them soon
839 * @entry: swap entry of this memory
840 * @gfp_mask: memory allocation flags
841 * @vmf: fault information
842 *
843 * Returns the struct page for entry and addr, after queueing swapin.
844 *
845 * It's a main entry function for swap readahead. By the configuration,
846 * it will read ahead blocks by cluster-based(ie, physical disk based)
847 * or vma-based(ie, virtual address based on faulty address) readahead.
848 */
849struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
850 struct vm_fault *vmf)
851{
852 return swap_use_vma_readahead() ?
853 swap_vma_readahead(entry, gfp_mask, vmf) :
854 swap_cluster_readahead(entry, gfp_mask, vmf);
855}
856
d9bfcfdc
HY
857#ifdef CONFIG_SYSFS
858static ssize_t vma_ra_enabled_show(struct kobject *kobj,
859 struct kobj_attribute *attr, char *buf)
860{
ae7a927d
JP
861 return sysfs_emit(buf, "%s\n",
862 enable_vma_readahead ? "true" : "false");
d9bfcfdc
HY
863}
864static ssize_t vma_ra_enabled_store(struct kobject *kobj,
865 struct kobj_attribute *attr,
866 const char *buf, size_t count)
867{
868 if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
e9e9b7ec 869 enable_vma_readahead = true;
d9bfcfdc 870 else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
e9e9b7ec 871 enable_vma_readahead = false;
d9bfcfdc
HY
872 else
873 return -EINVAL;
874
875 return count;
876}
877static struct kobj_attribute vma_ra_enabled_attr =
878 __ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
879 vma_ra_enabled_store);
880
d9bfcfdc
HY
881static struct attribute *swap_attrs[] = {
882 &vma_ra_enabled_attr.attr,
d9bfcfdc
HY
883 NULL,
884};
885
e48333b6 886static const struct attribute_group swap_attr_group = {
d9bfcfdc
HY
887 .attrs = swap_attrs,
888};
889
890static int __init swap_init_sysfs(void)
891{
892 int err;
893 struct kobject *swap_kobj;
894
895 swap_kobj = kobject_create_and_add("swap", mm_kobj);
896 if (!swap_kobj) {
897 pr_err("failed to create swap kobject\n");
898 return -ENOMEM;
899 }
900 err = sysfs_create_group(swap_kobj, &swap_attr_group);
901 if (err) {
902 pr_err("failed to register swap group\n");
903 goto delete_obj;
904 }
905 return 0;
906
907delete_obj:
908 kobject_put(swap_kobj);
909 return err;
910}
911subsys_initcall(swap_init_sysfs);
912#endif