]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/swap_state.c
mm/migrate.c: make putback_movable_page() static
[mirror_ubuntu-jammy-kernel.git] / mm / swap_state.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/swap_state.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 *
8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
9 */
1da177e4 10#include <linux/mm.h>
5a0e3ad6 11#include <linux/gfp.h>
1da177e4
LT
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
46017e95 14#include <linux/swapops.h>
1da177e4
LT
15#include <linux/init.h>
16#include <linux/pagemap.h>
1da177e4 17#include <linux/backing-dev.h>
3fb5c298 18#include <linux/blkdev.h>
c484d410 19#include <linux/pagevec.h>
b20a3503 20#include <linux/migrate.h>
4b3ef9da 21#include <linux/vmalloc.h>
67afa38e 22#include <linux/swap_slots.h>
38d8b4e6 23#include <linux/huge_mm.h>
61ef1865 24#include <linux/shmem_fs.h>
243bce09 25#include "internal.h"
1da177e4
LT
26
27/*
28 * swapper_space is a fiction, retained to simplify the path through
7eaceacc 29 * vmscan's shrink_page_list.
1da177e4 30 */
f5e54d6e 31static const struct address_space_operations swap_aops = {
1da177e4 32 .writepage = swap_writepage,
62c230bc 33 .set_page_dirty = swap_set_page_dirty,
1c93923c 34#ifdef CONFIG_MIGRATION
e965f963 35 .migratepage = migrate_page,
1c93923c 36#endif
1da177e4
LT
37};
38
783cb68e
CD
39struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
40static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
f5c754d6 41static bool enable_vma_readahead __read_mostly = true;
ec560175 42
ec560175
HY
43#define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
44#define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
45#define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
46#define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
47
48#define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
49#define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
50#define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
51
52#define SWAP_RA_VAL(addr, win, hits) \
53 (((addr) & PAGE_MASK) | \
54 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
55 ((hits) & SWAP_RA_HITS_MASK))
56
57/* Initial readahead hits is 4 to start up with a small window */
58#define GET_SWAP_RA_VAL(vma) \
59 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
1da177e4 60
b96a3db2
QC
61#define INC_CACHE_INFO(x) data_race(swap_cache_info.x++)
62#define ADD_CACHE_INFO(x, nr) data_race(swap_cache_info.x += (nr))
1da177e4
LT
63
64static struct {
65 unsigned long add_total;
66 unsigned long del_total;
67 unsigned long find_success;
68 unsigned long find_total;
1da177e4
LT
69} swap_cache_info;
70
579f8290
SL
71static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
72
1da177e4
LT
73void show_swap_cache_info(void)
74{
33806f06 75 printk("%lu pages in swap cache\n", total_swapcache_pages());
2c97b7fc 76 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
1da177e4 77 swap_cache_info.add_total, swap_cache_info.del_total,
bb63be0a 78 swap_cache_info.find_success, swap_cache_info.find_total);
ec8acf20
SL
79 printk("Free swap = %ldkB\n",
80 get_nr_swap_pages() << (PAGE_SHIFT - 10));
1da177e4
LT
81 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
82}
83
aae466b0
JK
84void *get_shadow_from_swap_cache(swp_entry_t entry)
85{
86 struct address_space *address_space = swap_address_space(entry);
87 pgoff_t idx = swp_offset(entry);
88 struct page *page;
89
8c647dd1 90 page = xa_load(&address_space->i_pages, idx);
aae466b0
JK
91 if (xa_is_value(page))
92 return page;
aae466b0
JK
93 return NULL;
94}
95
1da177e4 96/*
8d93b41c 97 * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
1da177e4
LT
98 * but sets SwapCache flag and private instead of mapping and index.
99 */
3852f676
JK
100int add_to_swap_cache(struct page *page, swp_entry_t entry,
101 gfp_t gfp, void **shadowp)
1da177e4 102{
8d93b41c 103 struct address_space *address_space = swap_address_space(entry);
38d8b4e6 104 pgoff_t idx = swp_offset(entry);
8d93b41c 105 XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page));
6c357848 106 unsigned long i, nr = thp_nr_pages(page);
3852f676 107 void *old;
1da177e4 108
309381fe
SL
109 VM_BUG_ON_PAGE(!PageLocked(page), page);
110 VM_BUG_ON_PAGE(PageSwapCache(page), page);
111 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
51726b12 112
38d8b4e6 113 page_ref_add(page, nr);
31a56396 114 SetPageSwapCache(page);
31a56396 115
8d93b41c 116 do {
3852f676
JK
117 unsigned long nr_shadows = 0;
118
8d93b41c
MW
119 xas_lock_irq(&xas);
120 xas_create_range(&xas);
121 if (xas_error(&xas))
122 goto unlock;
123 for (i = 0; i < nr; i++) {
124 VM_BUG_ON_PAGE(xas.xa_index != idx + i, page);
3852f676
JK
125 old = xas_load(&xas);
126 if (xa_is_value(old)) {
127 nr_shadows++;
128 if (shadowp)
129 *shadowp = old;
130 }
8d93b41c 131 set_page_private(page + i, entry.val + i);
4101196b 132 xas_store(&xas, page);
8d93b41c
MW
133 xas_next(&xas);
134 }
38d8b4e6
HY
135 address_space->nrpages += nr;
136 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
b6038942 137 __mod_lruvec_page_state(page, NR_SWAPCACHE, nr);
38d8b4e6 138 ADD_CACHE_INFO(add_total, nr);
8d93b41c
MW
139unlock:
140 xas_unlock_irq(&xas);
141 } while (xas_nomem(&xas, gfp));
31a56396 142
8d93b41c
MW
143 if (!xas_error(&xas))
144 return 0;
31a56396 145
8d93b41c
MW
146 ClearPageSwapCache(page);
147 page_ref_sub(page, nr);
148 return xas_error(&xas);
1da177e4
LT
149}
150
1da177e4
LT
151/*
152 * This must be called only on pages that have
153 * been verified to be in the swap cache.
154 */
3852f676
JK
155void __delete_from_swap_cache(struct page *page,
156 swp_entry_t entry, void *shadow)
1da177e4 157{
4e17ec25 158 struct address_space *address_space = swap_address_space(entry);
6c357848 159 int i, nr = thp_nr_pages(page);
4e17ec25
MW
160 pgoff_t idx = swp_offset(entry);
161 XA_STATE(xas, &address_space->i_pages, idx);
33806f06 162
309381fe
SL
163 VM_BUG_ON_PAGE(!PageLocked(page), page);
164 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
165 VM_BUG_ON_PAGE(PageWriteback(page), page);
1da177e4 166
38d8b4e6 167 for (i = 0; i < nr; i++) {
3852f676 168 void *entry = xas_store(&xas, shadow);
4101196b 169 VM_BUG_ON_PAGE(entry != page, entry);
38d8b4e6 170 set_page_private(page + i, 0);
4e17ec25 171 xas_next(&xas);
38d8b4e6 172 }
1da177e4 173 ClearPageSwapCache(page);
38d8b4e6
HY
174 address_space->nrpages -= nr;
175 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
b6038942 176 __mod_lruvec_page_state(page, NR_SWAPCACHE, -nr);
38d8b4e6 177 ADD_CACHE_INFO(del_total, nr);
1da177e4
LT
178}
179
180/**
181 * add_to_swap - allocate swap space for a page
182 * @page: page we want to move to swap
183 *
184 * Allocate swap space for the page and add the page to the
185 * swap cache. Caller needs to hold the page lock.
186 */
0f074658 187int add_to_swap(struct page *page)
1da177e4
LT
188{
189 swp_entry_t entry;
1da177e4
LT
190 int err;
191
309381fe
SL
192 VM_BUG_ON_PAGE(!PageLocked(page), page);
193 VM_BUG_ON_PAGE(!PageUptodate(page), page);
1da177e4 194
38d8b4e6 195 entry = get_swap_page(page);
2ca4532a 196 if (!entry.val)
0f074658
MK
197 return 0;
198
2ca4532a 199 /*
8d93b41c 200 * XArray node allocations from PF_MEMALLOC contexts could
2ca4532a
DN
201 * completely exhaust the page allocator. __GFP_NOMEMALLOC
202 * stops emergency reserves from being allocated.
203 *
204 * TODO: this could cause a theoretical memory reclaim
205 * deadlock in the swap out path.
206 */
207 /*
854e9ed0 208 * Add it to the swap cache.
2ca4532a
DN
209 */
210 err = add_to_swap_cache(page, entry,
3852f676 211 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
38d8b4e6 212 if (err)
bd53b714 213 /*
2ca4532a
DN
214 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
215 * clear SWAP_HAS_CACHE flag.
1da177e4 216 */
0f074658 217 goto fail;
9625456c
SL
218 /*
219 * Normally the page will be dirtied in unmap because its pte should be
0e9aa675 220 * dirty. A special case is MADV_FREE page. The page's pte could have
9625456c
SL
221 * dirty bit cleared but the page's SwapBacked bit is still set because
222 * clearing the dirty bit and SwapBacked bit has no lock protected. For
223 * such page, unmap will not set dirty bit for it, so page reclaim will
224 * not write the page out. This can cause data corruption when the page
225 * is swap in later. Always setting the dirty bit for the page solves
226 * the problem.
227 */
228 set_page_dirty(page);
38d8b4e6
HY
229
230 return 1;
231
38d8b4e6 232fail:
0f074658 233 put_swap_page(page, entry);
38d8b4e6 234 return 0;
1da177e4
LT
235}
236
237/*
238 * This must be called only on pages that have
239 * been verified to be in the swap cache and locked.
240 * It will never put the page into the free list,
241 * the caller has a reference on the page.
242 */
243void delete_from_swap_cache(struct page *page)
244{
4e17ec25
MW
245 swp_entry_t entry = { .val = page_private(page) };
246 struct address_space *address_space = swap_address_space(entry);
1da177e4 247
b93b0163 248 xa_lock_irq(&address_space->i_pages);
3852f676 249 __delete_from_swap_cache(page, entry, NULL);
b93b0163 250 xa_unlock_irq(&address_space->i_pages);
1da177e4 251
75f6d6d2 252 put_swap_page(page, entry);
6c357848 253 page_ref_sub(page, thp_nr_pages(page));
1da177e4
LT
254}
255
3852f676
JK
256void clear_shadow_from_swap_cache(int type, unsigned long begin,
257 unsigned long end)
258{
259 unsigned long curr = begin;
260 void *old;
261
262 for (;;) {
263 unsigned long nr_shadows = 0;
264 swp_entry_t entry = swp_entry(type, curr);
265 struct address_space *address_space = swap_address_space(entry);
266 XA_STATE(xas, &address_space->i_pages, curr);
267
268 xa_lock_irq(&address_space->i_pages);
269 xas_for_each(&xas, old, end) {
270 if (!xa_is_value(old))
271 continue;
272 xas_store(&xas, NULL);
273 nr_shadows++;
274 }
3852f676
JK
275 xa_unlock_irq(&address_space->i_pages);
276
277 /* search the next swapcache until we meet end */
278 curr >>= SWAP_ADDRESS_SPACE_SHIFT;
279 curr++;
280 curr <<= SWAP_ADDRESS_SPACE_SHIFT;
281 if (curr > end)
282 break;
283 }
284}
285
1da177e4
LT
286/*
287 * If we are the only user, then try to free up the swap cache.
288 *
289 * Its ok to check for PageSwapCache without the page lock
a2c43eed
HD
290 * here because we are going to recheck again inside
291 * try_to_free_swap() _with_ the lock.
1da177e4
LT
292 * - Marcelo
293 */
294static inline void free_swap_cache(struct page *page)
295{
a2c43eed
HD
296 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
297 try_to_free_swap(page);
1da177e4
LT
298 unlock_page(page);
299 }
300}
301
302/*
303 * Perform a free_page(), also freeing any swap cache associated with
b8072f09 304 * this page if it is the last user of the page.
1da177e4
LT
305 */
306void free_page_and_swap_cache(struct page *page)
307{
308 free_swap_cache(page);
6fcb52a5 309 if (!is_huge_zero_page(page))
770a5370 310 put_page(page);
1da177e4
LT
311}
312
313/*
314 * Passed an array of pages, drop them all from swapcache and then release
315 * them. They are removed from the LRU and freed if this is their last use.
316 */
317void free_pages_and_swap_cache(struct page **pages, int nr)
318{
1da177e4 319 struct page **pagep = pages;
aabfb572 320 int i;
1da177e4
LT
321
322 lru_add_drain();
aabfb572
MH
323 for (i = 0; i < nr; i++)
324 free_swap_cache(pagep[i]);
c6f92f9f 325 release_pages(pagep, nr);
1da177e4
LT
326}
327
e9e9b7ec
MK
328static inline bool swap_use_vma_readahead(void)
329{
330 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
331}
332
1da177e4
LT
333/*
334 * Lookup a swap entry in the swap cache. A found page will be returned
335 * unlocked and with its refcount incremented - we rely on the kernel
336 * lock getting page table operations atomic even if we drop the page
337 * lock before returning.
338 */
ec560175
HY
339struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
340 unsigned long addr)
1da177e4
LT
341{
342 struct page *page;
eb085574 343 struct swap_info_struct *si;
1da177e4 344
eb085574
HY
345 si = get_swap_device(entry);
346 if (!si)
347 return NULL;
f6ab1f7f 348 page = find_get_page(swap_address_space(entry), swp_offset(entry));
eb085574 349 put_swap_device(si);
1da177e4 350
ec560175
HY
351 INC_CACHE_INFO(find_total);
352 if (page) {
eaf649eb
MK
353 bool vma_ra = swap_use_vma_readahead();
354 bool readahead;
355
1da177e4 356 INC_CACHE_INFO(find_success);
eaf649eb
MK
357 /*
358 * At the moment, we don't support PG_readahead for anon THP
359 * so let's bail out rather than confusing the readahead stat.
360 */
ec560175
HY
361 if (unlikely(PageTransCompound(page)))
362 return page;
eaf649eb 363
ec560175 364 readahead = TestClearPageReadahead(page);
eaf649eb
MK
365 if (vma && vma_ra) {
366 unsigned long ra_val;
367 int win, hits;
368
369 ra_val = GET_SWAP_RA_VAL(vma);
370 win = SWAP_RA_WIN(ra_val);
371 hits = SWAP_RA_HITS(ra_val);
ec560175
HY
372 if (readahead)
373 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
374 atomic_long_set(&vma->swap_readahead_info,
375 SWAP_RA_VAL(addr, win, hits));
376 }
eaf649eb 377
ec560175 378 if (readahead) {
cbc65df2 379 count_vm_event(SWAP_RA_HIT);
eaf649eb 380 if (!vma || !vma_ra)
ec560175 381 atomic_inc(&swapin_readahead_hits);
cbc65df2 382 }
579f8290 383 }
eaf649eb 384
1da177e4
LT
385 return page;
386}
387
61ef1865
MWO
388/**
389 * find_get_incore_page - Find and get a page from the page or swap caches.
390 * @mapping: The address_space to search.
391 * @index: The page cache index.
392 *
393 * This differs from find_get_page() in that it will also look for the
394 * page in the swap cache.
395 *
396 * Return: The found page or %NULL.
397 */
398struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index)
399{
400 swp_entry_t swp;
401 struct swap_info_struct *si;
44835d20
MWO
402 struct page *page = pagecache_get_page(mapping, index,
403 FGP_ENTRY | FGP_HEAD, 0);
61ef1865 404
a6de4b48 405 if (!page)
61ef1865 406 return page;
a6de4b48
MWO
407 if (!xa_is_value(page))
408 return find_subpage(page, index);
61ef1865
MWO
409 if (!shmem_mapping(mapping))
410 return NULL;
411
412 swp = radix_to_swp_entry(page);
413 /* Prevent swapoff from happening to us */
414 si = get_swap_device(swp);
415 if (!si)
416 return NULL;
417 page = find_get_page(swap_address_space(swp), swp_offset(swp));
418 put_swap_device(si);
419 return page;
420}
421
5b999aad
DS
422struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
423 struct vm_area_struct *vma, unsigned long addr,
424 bool *new_page_allocated)
1da177e4 425{
eb085574 426 struct swap_info_struct *si;
4c6355b2 427 struct page *page;
aae466b0 428 void *shadow = NULL;
4c6355b2 429
5b999aad 430 *new_page_allocated = false;
1da177e4 431
4c6355b2
JW
432 for (;;) {
433 int err;
1da177e4
LT
434 /*
435 * First check the swap cache. Since this is normally
436 * called after lookup_swap_cache() failed, re-calling
437 * that would confuse statistics.
438 */
eb085574
HY
439 si = get_swap_device(entry);
440 if (!si)
4c6355b2
JW
441 return NULL;
442 page = find_get_page(swap_address_space(entry),
443 swp_offset(entry));
eb085574 444 put_swap_device(si);
4c6355b2
JW
445 if (page)
446 return page;
1da177e4 447
ba81f838
HY
448 /*
449 * Just skip read ahead for unused swap slot.
450 * During swap_off when swap_slot_cache is disabled,
451 * we have to handle the race between putting
452 * swap entry in swap cache and marking swap slot
453 * as SWAP_HAS_CACHE. That's done in later part of code or
454 * else swap_off will be aborted if we return NULL.
455 */
456 if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
4c6355b2 457 return NULL;
e8c26ab6 458
1da177e4 459 /*
4c6355b2
JW
460 * Get a new page to read into from swap. Allocate it now,
461 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
462 * cause any racers to loop around until we add it to cache.
1da177e4 463 */
4c6355b2
JW
464 page = alloc_page_vma(gfp_mask, vma, addr);
465 if (!page)
466 return NULL;
1da177e4 467
f000944d
HD
468 /*
469 * Swap entry may have been freed since our caller observed it.
470 */
355cfa73 471 err = swapcache_prepare(entry);
4c6355b2 472 if (!err)
f000944d
HD
473 break;
474
4c6355b2
JW
475 put_page(page);
476 if (err != -EEXIST)
477 return NULL;
478
2ca4532a 479 /*
4c6355b2
JW
480 * We might race against __delete_from_swap_cache(), and
481 * stumble across a swap_map entry whose SWAP_HAS_CACHE
482 * has not yet been cleared. Or race against another
483 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
484 * in swap_map, but not yet added its page to swap cache.
2ca4532a 485 */
4c6355b2
JW
486 cond_resched();
487 }
488
489 /*
490 * The swap entry is ours to swap in. Prepare the new page.
491 */
492
493 __SetPageLocked(page);
494 __SetPageSwapBacked(page);
495
0add0c77 496 if (mem_cgroup_swapin_charge_page(page, NULL, gfp_mask, entry))
4c6355b2 497 goto fail_unlock;
4c6355b2 498
0add0c77
SB
499 /* May fail (-ENOMEM) if XArray node allocation failed. */
500 if (add_to_swap_cache(page, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
4c6355b2 501 goto fail_unlock;
0add0c77
SB
502
503 mem_cgroup_swapin_uncharge_swap(entry);
4c6355b2 504
aae466b0
JK
505 if (shadow)
506 workingset_refault(page, shadow);
314b57fb 507
4c6355b2 508 /* Caller will initiate read into locked page */
6058eaec 509 lru_cache_add(page);
4c6355b2
JW
510 *new_page_allocated = true;
511 return page;
1da177e4 512
4c6355b2 513fail_unlock:
0add0c77 514 put_swap_page(page, entry);
4c6355b2
JW
515 unlock_page(page);
516 put_page(page);
517 return NULL;
1da177e4 518}
46017e95 519
5b999aad
DS
520/*
521 * Locate a page of swap in physical memory, reserving swap cache space
522 * and reading the disk if it is not already cached.
523 * A failure return means that either the page allocation failed or that
524 * the swap entry is no longer in use.
525 */
526struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
23955622 527 struct vm_area_struct *vma, unsigned long addr, bool do_poll)
5b999aad
DS
528{
529 bool page_was_allocated;
530 struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
531 vma, addr, &page_was_allocated);
532
533 if (page_was_allocated)
23955622 534 swap_readpage(retpage, do_poll);
5b999aad
DS
535
536 return retpage;
537}
538
ec560175
HY
539static unsigned int __swapin_nr_pages(unsigned long prev_offset,
540 unsigned long offset,
541 int hits,
542 int max_pages,
543 int prev_win)
579f8290 544{
ec560175 545 unsigned int pages, last_ra;
579f8290
SL
546
547 /*
548 * This heuristic has been found to work well on both sequential and
549 * random loads, swapping to hard disk or to SSD: please don't ask
550 * what the "+ 2" means, it just happens to work well, that's all.
551 */
ec560175 552 pages = hits + 2;
579f8290
SL
553 if (pages == 2) {
554 /*
555 * We can have no readahead hits to judge by: but must not get
556 * stuck here forever, so check for an adjacent offset instead
557 * (and don't even bother to check whether swap type is same).
558 */
559 if (offset != prev_offset + 1 && offset != prev_offset - 1)
560 pages = 1;
579f8290
SL
561 } else {
562 unsigned int roundup = 4;
563 while (roundup < pages)
564 roundup <<= 1;
565 pages = roundup;
566 }
567
568 if (pages > max_pages)
569 pages = max_pages;
570
571 /* Don't shrink readahead too fast */
ec560175 572 last_ra = prev_win / 2;
579f8290
SL
573 if (pages < last_ra)
574 pages = last_ra;
ec560175
HY
575
576 return pages;
577}
578
579static unsigned long swapin_nr_pages(unsigned long offset)
580{
581 static unsigned long prev_offset;
582 unsigned int hits, pages, max_pages;
583 static atomic_t last_readahead_pages;
584
585 max_pages = 1 << READ_ONCE(page_cluster);
586 if (max_pages <= 1)
587 return 1;
588
589 hits = atomic_xchg(&swapin_readahead_hits, 0);
d6c1f098
QC
590 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
591 max_pages,
ec560175
HY
592 atomic_read(&last_readahead_pages));
593 if (!hits)
d6c1f098 594 WRITE_ONCE(prev_offset, offset);
579f8290
SL
595 atomic_set(&last_readahead_pages, pages);
596
597 return pages;
598}
599
46017e95 600/**
e9e9b7ec 601 * swap_cluster_readahead - swap in pages in hope we need them soon
46017e95 602 * @entry: swap entry of this memory
7682486b 603 * @gfp_mask: memory allocation flags
e9e9b7ec 604 * @vmf: fault information
46017e95
HD
605 *
606 * Returns the struct page for entry and addr, after queueing swapin.
607 *
608 * Primitive swap readahead code. We simply read an aligned block of
609 * (1 << page_cluster) entries in the swap area. This method is chosen
610 * because it doesn't cost us any seek time. We also make sure to queue
611 * the 'original' request together with the readahead ones...
612 *
613 * This has been extended to use the NUMA policies from the mm triggering
614 * the readahead.
615 *
c1e8d7c6 616 * Caller must hold read mmap_lock if vmf->vma is not NULL.
46017e95 617 */
e9e9b7ec
MK
618struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
619 struct vm_fault *vmf)
46017e95 620{
46017e95 621 struct page *page;
579f8290
SL
622 unsigned long entry_offset = swp_offset(entry);
623 unsigned long offset = entry_offset;
67f96aa2 624 unsigned long start_offset, end_offset;
579f8290 625 unsigned long mask;
e9a6effa 626 struct swap_info_struct *si = swp_swap_info(entry);
3fb5c298 627 struct blk_plug plug;
c4fa6309 628 bool do_poll = true, page_allocated;
e9e9b7ec
MK
629 struct vm_area_struct *vma = vmf->vma;
630 unsigned long addr = vmf->address;
46017e95 631
579f8290
SL
632 mask = swapin_nr_pages(offset) - 1;
633 if (!mask)
634 goto skip;
635
8fd2e0b5 636 /* Test swap type to make sure the dereference is safe */
32646315 637 if (likely(si->flags & (SWP_BLKDEV | SWP_FS_OPS))) {
8fd2e0b5
YS
638 struct inode *inode = si->swap_file->f_mapping->host;
639 if (inode_read_congested(inode))
640 goto skip;
641 }
642
23955622 643 do_poll = false;
67f96aa2
RR
644 /* Read a page_cluster sized and aligned cluster around offset. */
645 start_offset = offset & ~mask;
646 end_offset = offset | mask;
647 if (!start_offset) /* First page is swap header. */
648 start_offset++;
e9a6effa
HY
649 if (end_offset >= si->max)
650 end_offset = si->max - 1;
67f96aa2 651
3fb5c298 652 blk_start_plug(&plug);
67f96aa2 653 for (offset = start_offset; offset <= end_offset ; offset++) {
46017e95 654 /* Ok, do the async read-ahead now */
c4fa6309
HY
655 page = __read_swap_cache_async(
656 swp_entry(swp_type(entry), offset),
657 gfp_mask, vma, addr, &page_allocated);
46017e95 658 if (!page)
67f96aa2 659 continue;
c4fa6309
HY
660 if (page_allocated) {
661 swap_readpage(page, false);
eaf649eb 662 if (offset != entry_offset) {
c4fa6309
HY
663 SetPageReadahead(page);
664 count_vm_event(SWAP_RA);
665 }
cbc65df2 666 }
09cbfeaf 667 put_page(page);
46017e95 668 }
3fb5c298
CE
669 blk_finish_plug(&plug);
670
46017e95 671 lru_add_drain(); /* Push any new pages onto the LRU now */
579f8290 672skip:
23955622 673 return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
46017e95 674}
4b3ef9da
HY
675
676int init_swap_address_space(unsigned int type, unsigned long nr_pages)
677{
678 struct address_space *spaces, *space;
679 unsigned int i, nr;
680
681 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
778e1cdd 682 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
4b3ef9da
HY
683 if (!spaces)
684 return -ENOMEM;
685 for (i = 0; i < nr; i++) {
686 space = spaces + i;
a2833486 687 xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
4b3ef9da
HY
688 atomic_set(&space->i_mmap_writable, 0);
689 space->a_ops = &swap_aops;
690 /* swap cache doesn't use writeback related tags */
691 mapping_set_no_writeback_tags(space);
4b3ef9da
HY
692 }
693 nr_swapper_spaces[type] = nr;
054f1d1f 694 swapper_spaces[type] = spaces;
4b3ef9da
HY
695
696 return 0;
697}
698
699void exit_swap_address_space(unsigned int type)
700{
054f1d1f 701 kvfree(swapper_spaces[type]);
4b3ef9da 702 nr_swapper_spaces[type] = 0;
054f1d1f 703 swapper_spaces[type] = NULL;
4b3ef9da 704}
ec560175
HY
705
706static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
707 unsigned long faddr,
708 unsigned long lpfn,
709 unsigned long rpfn,
710 unsigned long *start,
711 unsigned long *end)
712{
713 *start = max3(lpfn, PFN_DOWN(vma->vm_start),
714 PFN_DOWN(faddr & PMD_MASK));
715 *end = min3(rpfn, PFN_DOWN(vma->vm_end),
716 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
717}
718
eaf649eb
MK
719static void swap_ra_info(struct vm_fault *vmf,
720 struct vma_swap_readahead *ra_info)
ec560175
HY
721{
722 struct vm_area_struct *vma = vmf->vma;
eaf649eb 723 unsigned long ra_val;
ec560175
HY
724 swp_entry_t entry;
725 unsigned long faddr, pfn, fpfn;
726 unsigned long start, end;
eaf649eb 727 pte_t *pte, *orig_pte;
ec560175
HY
728 unsigned int max_win, hits, prev_win, win, left;
729#ifndef CONFIG_64BIT
730 pte_t *tpte;
731#endif
732
61b63972
HY
733 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
734 SWAP_RA_ORDER_CEILING);
735 if (max_win == 1) {
eaf649eb
MK
736 ra_info->win = 1;
737 return;
61b63972
HY
738 }
739
ec560175 740 faddr = vmf->address;
eaf649eb
MK
741 orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
742 entry = pte_to_swp_entry(*pte);
743 if ((unlikely(non_swap_entry(entry)))) {
744 pte_unmap(orig_pte);
745 return;
746 }
ec560175 747
ec560175 748 fpfn = PFN_DOWN(faddr);
eaf649eb
MK
749 ra_val = GET_SWAP_RA_VAL(vma);
750 pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
751 prev_win = SWAP_RA_WIN(ra_val);
752 hits = SWAP_RA_HITS(ra_val);
753 ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
ec560175
HY
754 max_win, prev_win);
755 atomic_long_set(&vma->swap_readahead_info,
756 SWAP_RA_VAL(faddr, win, 0));
757
eaf649eb
MK
758 if (win == 1) {
759 pte_unmap(orig_pte);
760 return;
761 }
ec560175
HY
762
763 /* Copy the PTEs because the page table may be unmapped */
764 if (fpfn == pfn + 1)
765 swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
766 else if (pfn == fpfn + 1)
767 swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
768 &start, &end);
769 else {
770 left = (win - 1) / 2;
771 swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
772 &start, &end);
773 }
eaf649eb
MK
774 ra_info->nr_pte = end - start;
775 ra_info->offset = fpfn - start;
776 pte -= ra_info->offset;
ec560175 777#ifdef CONFIG_64BIT
eaf649eb 778 ra_info->ptes = pte;
ec560175 779#else
eaf649eb 780 tpte = ra_info->ptes;
ec560175
HY
781 for (pfn = start; pfn != end; pfn++)
782 *tpte++ = *pte++;
783#endif
eaf649eb 784 pte_unmap(orig_pte);
ec560175
HY
785}
786
e9f59873
YS
787/**
788 * swap_vma_readahead - swap in pages in hope we need them soon
27ec4878 789 * @fentry: swap entry of this memory
e9f59873
YS
790 * @gfp_mask: memory allocation flags
791 * @vmf: fault information
792 *
793 * Returns the struct page for entry and addr, after queueing swapin.
794 *
795 * Primitive swap readahead code. We simply read in a few pages whoes
796 * virtual addresses are around the fault address in the same vma.
797 *
c1e8d7c6 798 * Caller must hold read mmap_lock if vmf->vma is not NULL.
e9f59873
YS
799 *
800 */
f5c754d6
CIK
801static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
802 struct vm_fault *vmf)
ec560175
HY
803{
804 struct blk_plug plug;
805 struct vm_area_struct *vma = vmf->vma;
806 struct page *page;
807 pte_t *pte, pentry;
808 swp_entry_t entry;
809 unsigned int i;
810 bool page_allocated;
e97af699
ML
811 struct vma_swap_readahead ra_info = {
812 .win = 1,
813 };
ec560175 814
eaf649eb
MK
815 swap_ra_info(vmf, &ra_info);
816 if (ra_info.win == 1)
ec560175
HY
817 goto skip;
818
819 blk_start_plug(&plug);
eaf649eb 820 for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
ec560175
HY
821 i++, pte++) {
822 pentry = *pte;
823 if (pte_none(pentry))
824 continue;
825 if (pte_present(pentry))
826 continue;
827 entry = pte_to_swp_entry(pentry);
828 if (unlikely(non_swap_entry(entry)))
829 continue;
830 page = __read_swap_cache_async(entry, gfp_mask, vma,
831 vmf->address, &page_allocated);
832 if (!page)
833 continue;
834 if (page_allocated) {
835 swap_readpage(page, false);
eaf649eb 836 if (i != ra_info.offset) {
ec560175
HY
837 SetPageReadahead(page);
838 count_vm_event(SWAP_RA);
839 }
840 }
841 put_page(page);
842 }
843 blk_finish_plug(&plug);
844 lru_add_drain();
845skip:
846 return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
eaf649eb 847 ra_info.win == 1);
ec560175 848}
d9bfcfdc 849
e9e9b7ec
MK
850/**
851 * swapin_readahead - swap in pages in hope we need them soon
852 * @entry: swap entry of this memory
853 * @gfp_mask: memory allocation flags
854 * @vmf: fault information
855 *
856 * Returns the struct page for entry and addr, after queueing swapin.
857 *
858 * It's a main entry function for swap readahead. By the configuration,
859 * it will read ahead blocks by cluster-based(ie, physical disk based)
860 * or vma-based(ie, virtual address based on faulty address) readahead.
861 */
862struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
863 struct vm_fault *vmf)
864{
865 return swap_use_vma_readahead() ?
866 swap_vma_readahead(entry, gfp_mask, vmf) :
867 swap_cluster_readahead(entry, gfp_mask, vmf);
868}
869
d9bfcfdc
HY
870#ifdef CONFIG_SYSFS
871static ssize_t vma_ra_enabled_show(struct kobject *kobj,
872 struct kobj_attribute *attr, char *buf)
873{
ae7a927d
JP
874 return sysfs_emit(buf, "%s\n",
875 enable_vma_readahead ? "true" : "false");
d9bfcfdc
HY
876}
877static ssize_t vma_ra_enabled_store(struct kobject *kobj,
878 struct kobj_attribute *attr,
879 const char *buf, size_t count)
880{
881 if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
e9e9b7ec 882 enable_vma_readahead = true;
d9bfcfdc 883 else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
e9e9b7ec 884 enable_vma_readahead = false;
d9bfcfdc
HY
885 else
886 return -EINVAL;
887
888 return count;
889}
890static struct kobj_attribute vma_ra_enabled_attr =
891 __ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
892 vma_ra_enabled_store);
893
d9bfcfdc
HY
894static struct attribute *swap_attrs[] = {
895 &vma_ra_enabled_attr.attr,
d9bfcfdc
HY
896 NULL,
897};
898
e48333b6 899static const struct attribute_group swap_attr_group = {
d9bfcfdc
HY
900 .attrs = swap_attrs,
901};
902
903static int __init swap_init_sysfs(void)
904{
905 int err;
906 struct kobject *swap_kobj;
907
908 swap_kobj = kobject_create_and_add("swap", mm_kobj);
909 if (!swap_kobj) {
910 pr_err("failed to create swap kobject\n");
911 return -ENOMEM;
912 }
913 err = sysfs_create_group(swap_kobj, &swap_attr_group);
914 if (err) {
915 pr_err("failed to register swap group\n");
916 goto delete_obj;
917 }
918 return 0;
919
920delete_obj:
921 kobject_put(swap_kobj);
922 return err;
923}
924subsys_initcall(swap_init_sysfs);
925#endif