]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/swap_state.c
swap: try to scan more free slots even when fragmented
[mirror_ubuntu-kernels.git] / mm / swap_state.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/swap_state.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 *
8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
9 */
1da177e4 10#include <linux/mm.h>
5a0e3ad6 11#include <linux/gfp.h>
1da177e4
LT
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
46017e95 14#include <linux/swapops.h>
1da177e4
LT
15#include <linux/init.h>
16#include <linux/pagemap.h>
1da177e4 17#include <linux/backing-dev.h>
3fb5c298 18#include <linux/blkdev.h>
c484d410 19#include <linux/pagevec.h>
b20a3503 20#include <linux/migrate.h>
4b3ef9da 21#include <linux/vmalloc.h>
67afa38e 22#include <linux/swap_slots.h>
38d8b4e6 23#include <linux/huge_mm.h>
1da177e4
LT
24
25#include <asm/pgtable.h>
26
27/*
28 * swapper_space is a fiction, retained to simplify the path through
7eaceacc 29 * vmscan's shrink_page_list.
1da177e4 30 */
f5e54d6e 31static const struct address_space_operations swap_aops = {
1da177e4 32 .writepage = swap_writepage,
62c230bc 33 .set_page_dirty = swap_set_page_dirty,
1c93923c 34#ifdef CONFIG_MIGRATION
e965f963 35 .migratepage = migrate_page,
1c93923c 36#endif
1da177e4
LT
37};
38
783cb68e
CD
39struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
40static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
f5c754d6 41static bool enable_vma_readahead __read_mostly = true;
ec560175 42
ec560175
HY
43#define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
44#define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
45#define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
46#define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
47
48#define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
49#define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
50#define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
51
52#define SWAP_RA_VAL(addr, win, hits) \
53 (((addr) & PAGE_MASK) | \
54 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
55 ((hits) & SWAP_RA_HITS_MASK))
56
57/* Initial readahead hits is 4 to start up with a small window */
58#define GET_SWAP_RA_VAL(vma) \
59 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
1da177e4
LT
60
61#define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
38d8b4e6 62#define ADD_CACHE_INFO(x, nr) do { swap_cache_info.x += (nr); } while (0)
1da177e4
LT
63
64static struct {
65 unsigned long add_total;
66 unsigned long del_total;
67 unsigned long find_success;
68 unsigned long find_total;
1da177e4
LT
69} swap_cache_info;
70
33806f06
SL
71unsigned long total_swapcache_pages(void)
72{
4b3ef9da 73 unsigned int i, j, nr;
33806f06 74 unsigned long ret = 0;
4b3ef9da 75 struct address_space *spaces;
054f1d1f 76 struct swap_info_struct *si;
33806f06 77
4b3ef9da 78 for (i = 0; i < MAX_SWAPFILES; i++) {
054f1d1f
HY
79 swp_entry_t entry = swp_entry(i, 1);
80
81 /* Avoid get_swap_device() to warn for bad swap entry */
82 if (!swp_swap_info(entry))
83 continue;
84 /* Prevent swapoff to free swapper_spaces */
85 si = get_swap_device(entry);
86 if (!si)
4b3ef9da 87 continue;
054f1d1f
HY
88 nr = nr_swapper_spaces[i];
89 spaces = swapper_spaces[i];
4b3ef9da
HY
90 for (j = 0; j < nr; j++)
91 ret += spaces[j].nrpages;
054f1d1f 92 put_swap_device(si);
4b3ef9da 93 }
33806f06
SL
94 return ret;
95}
96
579f8290
SL
97static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
98
1da177e4
LT
99void show_swap_cache_info(void)
100{
33806f06 101 printk("%lu pages in swap cache\n", total_swapcache_pages());
2c97b7fc 102 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
1da177e4 103 swap_cache_info.add_total, swap_cache_info.del_total,
bb63be0a 104 swap_cache_info.find_success, swap_cache_info.find_total);
ec8acf20
SL
105 printk("Free swap = %ldkB\n",
106 get_nr_swap_pages() << (PAGE_SHIFT - 10));
1da177e4
LT
107 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
108}
109
110/*
8d93b41c 111 * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
1da177e4
LT
112 * but sets SwapCache flag and private instead of mapping and index.
113 */
8d93b41c 114int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp)
1da177e4 115{
8d93b41c 116 struct address_space *address_space = swap_address_space(entry);
38d8b4e6 117 pgoff_t idx = swp_offset(entry);
8d93b41c 118 XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page));
cb774451 119 unsigned long i, nr = hpage_nr_pages(page);
1da177e4 120
309381fe
SL
121 VM_BUG_ON_PAGE(!PageLocked(page), page);
122 VM_BUG_ON_PAGE(PageSwapCache(page), page);
123 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
51726b12 124
38d8b4e6 125 page_ref_add(page, nr);
31a56396 126 SetPageSwapCache(page);
31a56396 127
8d93b41c
MW
128 do {
129 xas_lock_irq(&xas);
130 xas_create_range(&xas);
131 if (xas_error(&xas))
132 goto unlock;
133 for (i = 0; i < nr; i++) {
134 VM_BUG_ON_PAGE(xas.xa_index != idx + i, page);
135 set_page_private(page + i, entry.val + i);
4101196b 136 xas_store(&xas, page);
8d93b41c
MW
137 xas_next(&xas);
138 }
38d8b4e6
HY
139 address_space->nrpages += nr;
140 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
141 ADD_CACHE_INFO(add_total, nr);
8d93b41c
MW
142unlock:
143 xas_unlock_irq(&xas);
144 } while (xas_nomem(&xas, gfp));
31a56396 145
8d93b41c
MW
146 if (!xas_error(&xas))
147 return 0;
31a56396 148
8d93b41c
MW
149 ClearPageSwapCache(page);
150 page_ref_sub(page, nr);
151 return xas_error(&xas);
1da177e4
LT
152}
153
1da177e4
LT
154/*
155 * This must be called only on pages that have
156 * been verified to be in the swap cache.
157 */
4e17ec25 158void __delete_from_swap_cache(struct page *page, swp_entry_t entry)
1da177e4 159{
4e17ec25 160 struct address_space *address_space = swap_address_space(entry);
38d8b4e6 161 int i, nr = hpage_nr_pages(page);
4e17ec25
MW
162 pgoff_t idx = swp_offset(entry);
163 XA_STATE(xas, &address_space->i_pages, idx);
33806f06 164
309381fe
SL
165 VM_BUG_ON_PAGE(!PageLocked(page), page);
166 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
167 VM_BUG_ON_PAGE(PageWriteback(page), page);
1da177e4 168
38d8b4e6 169 for (i = 0; i < nr; i++) {
4e17ec25 170 void *entry = xas_store(&xas, NULL);
4101196b 171 VM_BUG_ON_PAGE(entry != page, entry);
38d8b4e6 172 set_page_private(page + i, 0);
4e17ec25 173 xas_next(&xas);
38d8b4e6 174 }
1da177e4 175 ClearPageSwapCache(page);
38d8b4e6
HY
176 address_space->nrpages -= nr;
177 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
178 ADD_CACHE_INFO(del_total, nr);
1da177e4
LT
179}
180
181/**
182 * add_to_swap - allocate swap space for a page
183 * @page: page we want to move to swap
184 *
185 * Allocate swap space for the page and add the page to the
186 * swap cache. Caller needs to hold the page lock.
187 */
0f074658 188int add_to_swap(struct page *page)
1da177e4
LT
189{
190 swp_entry_t entry;
1da177e4
LT
191 int err;
192
309381fe
SL
193 VM_BUG_ON_PAGE(!PageLocked(page), page);
194 VM_BUG_ON_PAGE(!PageUptodate(page), page);
1da177e4 195
38d8b4e6 196 entry = get_swap_page(page);
2ca4532a 197 if (!entry.val)
0f074658
MK
198 return 0;
199
2ca4532a 200 /*
8d93b41c 201 * XArray node allocations from PF_MEMALLOC contexts could
2ca4532a
DN
202 * completely exhaust the page allocator. __GFP_NOMEMALLOC
203 * stops emergency reserves from being allocated.
204 *
205 * TODO: this could cause a theoretical memory reclaim
206 * deadlock in the swap out path.
207 */
208 /*
854e9ed0 209 * Add it to the swap cache.
2ca4532a
DN
210 */
211 err = add_to_swap_cache(page, entry,
212 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
38d8b4e6 213 if (err)
bd53b714 214 /*
2ca4532a
DN
215 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
216 * clear SWAP_HAS_CACHE flag.
1da177e4 217 */
0f074658 218 goto fail;
9625456c
SL
219 /*
220 * Normally the page will be dirtied in unmap because its pte should be
221 * dirty. A special case is MADV_FREE page. The page'e pte could have
222 * dirty bit cleared but the page's SwapBacked bit is still set because
223 * clearing the dirty bit and SwapBacked bit has no lock protected. For
224 * such page, unmap will not set dirty bit for it, so page reclaim will
225 * not write the page out. This can cause data corruption when the page
226 * is swap in later. Always setting the dirty bit for the page solves
227 * the problem.
228 */
229 set_page_dirty(page);
38d8b4e6
HY
230
231 return 1;
232
38d8b4e6 233fail:
0f074658 234 put_swap_page(page, entry);
38d8b4e6 235 return 0;
1da177e4
LT
236}
237
238/*
239 * This must be called only on pages that have
240 * been verified to be in the swap cache and locked.
241 * It will never put the page into the free list,
242 * the caller has a reference on the page.
243 */
244void delete_from_swap_cache(struct page *page)
245{
4e17ec25
MW
246 swp_entry_t entry = { .val = page_private(page) };
247 struct address_space *address_space = swap_address_space(entry);
1da177e4 248
b93b0163 249 xa_lock_irq(&address_space->i_pages);
4e17ec25 250 __delete_from_swap_cache(page, entry);
b93b0163 251 xa_unlock_irq(&address_space->i_pages);
1da177e4 252
75f6d6d2 253 put_swap_page(page, entry);
38d8b4e6 254 page_ref_sub(page, hpage_nr_pages(page));
1da177e4
LT
255}
256
1da177e4
LT
257/*
258 * If we are the only user, then try to free up the swap cache.
259 *
260 * Its ok to check for PageSwapCache without the page lock
a2c43eed
HD
261 * here because we are going to recheck again inside
262 * try_to_free_swap() _with_ the lock.
1da177e4
LT
263 * - Marcelo
264 */
265static inline void free_swap_cache(struct page *page)
266{
a2c43eed
HD
267 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
268 try_to_free_swap(page);
1da177e4
LT
269 unlock_page(page);
270 }
271}
272
273/*
274 * Perform a free_page(), also freeing any swap cache associated with
b8072f09 275 * this page if it is the last user of the page.
1da177e4
LT
276 */
277void free_page_and_swap_cache(struct page *page)
278{
279 free_swap_cache(page);
6fcb52a5 280 if (!is_huge_zero_page(page))
770a5370 281 put_page(page);
1da177e4
LT
282}
283
284/*
285 * Passed an array of pages, drop them all from swapcache and then release
286 * them. They are removed from the LRU and freed if this is their last use.
287 */
288void free_pages_and_swap_cache(struct page **pages, int nr)
289{
1da177e4 290 struct page **pagep = pages;
aabfb572 291 int i;
1da177e4
LT
292
293 lru_add_drain();
aabfb572
MH
294 for (i = 0; i < nr; i++)
295 free_swap_cache(pagep[i]);
c6f92f9f 296 release_pages(pagep, nr);
1da177e4
LT
297}
298
e9e9b7ec
MK
299static inline bool swap_use_vma_readahead(void)
300{
301 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
302}
303
1da177e4
LT
304/*
305 * Lookup a swap entry in the swap cache. A found page will be returned
306 * unlocked and with its refcount incremented - we rely on the kernel
307 * lock getting page table operations atomic even if we drop the page
308 * lock before returning.
309 */
ec560175
HY
310struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
311 unsigned long addr)
1da177e4
LT
312{
313 struct page *page;
eb085574 314 struct swap_info_struct *si;
1da177e4 315
eb085574
HY
316 si = get_swap_device(entry);
317 if (!si)
318 return NULL;
f6ab1f7f 319 page = find_get_page(swap_address_space(entry), swp_offset(entry));
eb085574 320 put_swap_device(si);
1da177e4 321
ec560175
HY
322 INC_CACHE_INFO(find_total);
323 if (page) {
eaf649eb
MK
324 bool vma_ra = swap_use_vma_readahead();
325 bool readahead;
326
1da177e4 327 INC_CACHE_INFO(find_success);
eaf649eb
MK
328 /*
329 * At the moment, we don't support PG_readahead for anon THP
330 * so let's bail out rather than confusing the readahead stat.
331 */
ec560175
HY
332 if (unlikely(PageTransCompound(page)))
333 return page;
eaf649eb 334
ec560175 335 readahead = TestClearPageReadahead(page);
eaf649eb
MK
336 if (vma && vma_ra) {
337 unsigned long ra_val;
338 int win, hits;
339
340 ra_val = GET_SWAP_RA_VAL(vma);
341 win = SWAP_RA_WIN(ra_val);
342 hits = SWAP_RA_HITS(ra_val);
ec560175
HY
343 if (readahead)
344 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
345 atomic_long_set(&vma->swap_readahead_info,
346 SWAP_RA_VAL(addr, win, hits));
347 }
eaf649eb 348
ec560175 349 if (readahead) {
cbc65df2 350 count_vm_event(SWAP_RA_HIT);
eaf649eb 351 if (!vma || !vma_ra)
ec560175 352 atomic_inc(&swapin_readahead_hits);
cbc65df2 353 }
579f8290 354 }
eaf649eb 355
1da177e4
LT
356 return page;
357}
358
5b999aad
DS
359struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
360 struct vm_area_struct *vma, unsigned long addr,
361 bool *new_page_allocated)
1da177e4 362{
eb085574
HY
363 struct page *found_page = NULL, *new_page = NULL;
364 struct swap_info_struct *si;
1da177e4 365 int err;
5b999aad 366 *new_page_allocated = false;
1da177e4
LT
367
368 do {
369 /*
370 * First check the swap cache. Since this is normally
371 * called after lookup_swap_cache() failed, re-calling
372 * that would confuse statistics.
373 */
eb085574
HY
374 si = get_swap_device(entry);
375 if (!si)
376 break;
377 found_page = find_get_page(swap_address_space(entry),
378 swp_offset(entry));
379 put_swap_device(si);
1da177e4
LT
380 if (found_page)
381 break;
382
ba81f838
HY
383 /*
384 * Just skip read ahead for unused swap slot.
385 * During swap_off when swap_slot_cache is disabled,
386 * we have to handle the race between putting
387 * swap entry in swap cache and marking swap slot
388 * as SWAP_HAS_CACHE. That's done in later part of code or
389 * else swap_off will be aborted if we return NULL.
390 */
391 if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
392 break;
e8c26ab6 393
1da177e4
LT
394 /*
395 * Get a new page to read into from swap.
396 */
397 if (!new_page) {
02098fea 398 new_page = alloc_page_vma(gfp_mask, vma, addr);
1da177e4
LT
399 if (!new_page)
400 break; /* Out of memory */
401 }
402
f000944d
HD
403 /*
404 * Swap entry may have been freed since our caller observed it.
405 */
355cfa73 406 err = swapcache_prepare(entry);
cbab0e4e 407 if (err == -EEXIST) {
cbab0e4e
RA
408 /*
409 * We might race against get_swap_page() and stumble
410 * across a SWAP_HAS_CACHE swap_map entry whose page
9c1cc2e4 411 * has not been brought into the swapcache yet.
cbab0e4e
RA
412 */
413 cond_resched();
355cfa73 414 continue;
8d93b41c 415 } else if (err) /* swp entry is obsolete ? */
f000944d
HD
416 break;
417
8d93b41c 418 /* May fail (-ENOMEM) if XArray node allocation failed. */
48c935ad 419 __SetPageLocked(new_page);
fa9949da 420 __SetPageSwapBacked(new_page);
8d93b41c 421 err = add_to_swap_cache(new_page, entry, gfp_mask & GFP_KERNEL);
529ae9aa 422 if (likely(!err)) {
8d93b41c 423 /* Initiate read into locked page */
1899ad18 424 SetPageWorkingset(new_page);
c5fdae46 425 lru_cache_add_anon(new_page);
5b999aad 426 *new_page_allocated = true;
1da177e4
LT
427 return new_page;
428 }
48c935ad 429 __ClearPageLocked(new_page);
2ca4532a
DN
430 /*
431 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
432 * clear SWAP_HAS_CACHE flag.
433 */
75f6d6d2 434 put_swap_page(new_page, entry);
f000944d 435 } while (err != -ENOMEM);
1da177e4
LT
436
437 if (new_page)
09cbfeaf 438 put_page(new_page);
1da177e4
LT
439 return found_page;
440}
46017e95 441
5b999aad
DS
442/*
443 * Locate a page of swap in physical memory, reserving swap cache space
444 * and reading the disk if it is not already cached.
445 * A failure return means that either the page allocation failed or that
446 * the swap entry is no longer in use.
447 */
448struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
23955622 449 struct vm_area_struct *vma, unsigned long addr, bool do_poll)
5b999aad
DS
450{
451 bool page_was_allocated;
452 struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
453 vma, addr, &page_was_allocated);
454
455 if (page_was_allocated)
23955622 456 swap_readpage(retpage, do_poll);
5b999aad
DS
457
458 return retpage;
459}
460
ec560175
HY
461static unsigned int __swapin_nr_pages(unsigned long prev_offset,
462 unsigned long offset,
463 int hits,
464 int max_pages,
465 int prev_win)
579f8290 466{
ec560175 467 unsigned int pages, last_ra;
579f8290
SL
468
469 /*
470 * This heuristic has been found to work well on both sequential and
471 * random loads, swapping to hard disk or to SSD: please don't ask
472 * what the "+ 2" means, it just happens to work well, that's all.
473 */
ec560175 474 pages = hits + 2;
579f8290
SL
475 if (pages == 2) {
476 /*
477 * We can have no readahead hits to judge by: but must not get
478 * stuck here forever, so check for an adjacent offset instead
479 * (and don't even bother to check whether swap type is same).
480 */
481 if (offset != prev_offset + 1 && offset != prev_offset - 1)
482 pages = 1;
579f8290
SL
483 } else {
484 unsigned int roundup = 4;
485 while (roundup < pages)
486 roundup <<= 1;
487 pages = roundup;
488 }
489
490 if (pages > max_pages)
491 pages = max_pages;
492
493 /* Don't shrink readahead too fast */
ec560175 494 last_ra = prev_win / 2;
579f8290
SL
495 if (pages < last_ra)
496 pages = last_ra;
ec560175
HY
497
498 return pages;
499}
500
501static unsigned long swapin_nr_pages(unsigned long offset)
502{
503 static unsigned long prev_offset;
504 unsigned int hits, pages, max_pages;
505 static atomic_t last_readahead_pages;
506
507 max_pages = 1 << READ_ONCE(page_cluster);
508 if (max_pages <= 1)
509 return 1;
510
511 hits = atomic_xchg(&swapin_readahead_hits, 0);
d6c1f098
QC
512 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
513 max_pages,
ec560175
HY
514 atomic_read(&last_readahead_pages));
515 if (!hits)
d6c1f098 516 WRITE_ONCE(prev_offset, offset);
579f8290
SL
517 atomic_set(&last_readahead_pages, pages);
518
519 return pages;
520}
521
46017e95 522/**
e9e9b7ec 523 * swap_cluster_readahead - swap in pages in hope we need them soon
46017e95 524 * @entry: swap entry of this memory
7682486b 525 * @gfp_mask: memory allocation flags
e9e9b7ec 526 * @vmf: fault information
46017e95
HD
527 *
528 * Returns the struct page for entry and addr, after queueing swapin.
529 *
530 * Primitive swap readahead code. We simply read an aligned block of
531 * (1 << page_cluster) entries in the swap area. This method is chosen
532 * because it doesn't cost us any seek time. We also make sure to queue
533 * the 'original' request together with the readahead ones...
534 *
535 * This has been extended to use the NUMA policies from the mm triggering
536 * the readahead.
537 *
e9f59873 538 * Caller must hold read mmap_sem if vmf->vma is not NULL.
46017e95 539 */
e9e9b7ec
MK
540struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
541 struct vm_fault *vmf)
46017e95 542{
46017e95 543 struct page *page;
579f8290
SL
544 unsigned long entry_offset = swp_offset(entry);
545 unsigned long offset = entry_offset;
67f96aa2 546 unsigned long start_offset, end_offset;
579f8290 547 unsigned long mask;
e9a6effa 548 struct swap_info_struct *si = swp_swap_info(entry);
3fb5c298 549 struct blk_plug plug;
c4fa6309 550 bool do_poll = true, page_allocated;
e9e9b7ec
MK
551 struct vm_area_struct *vma = vmf->vma;
552 unsigned long addr = vmf->address;
46017e95 553
579f8290
SL
554 mask = swapin_nr_pages(offset) - 1;
555 if (!mask)
556 goto skip;
557
8fd2e0b5
YS
558 /* Test swap type to make sure the dereference is safe */
559 if (likely(si->flags & (SWP_BLKDEV | SWP_FS))) {
560 struct inode *inode = si->swap_file->f_mapping->host;
561 if (inode_read_congested(inode))
562 goto skip;
563 }
564
23955622 565 do_poll = false;
67f96aa2
RR
566 /* Read a page_cluster sized and aligned cluster around offset. */
567 start_offset = offset & ~mask;
568 end_offset = offset | mask;
569 if (!start_offset) /* First page is swap header. */
570 start_offset++;
e9a6effa
HY
571 if (end_offset >= si->max)
572 end_offset = si->max - 1;
67f96aa2 573
3fb5c298 574 blk_start_plug(&plug);
67f96aa2 575 for (offset = start_offset; offset <= end_offset ; offset++) {
46017e95 576 /* Ok, do the async read-ahead now */
c4fa6309
HY
577 page = __read_swap_cache_async(
578 swp_entry(swp_type(entry), offset),
579 gfp_mask, vma, addr, &page_allocated);
46017e95 580 if (!page)
67f96aa2 581 continue;
c4fa6309
HY
582 if (page_allocated) {
583 swap_readpage(page, false);
eaf649eb 584 if (offset != entry_offset) {
c4fa6309
HY
585 SetPageReadahead(page);
586 count_vm_event(SWAP_RA);
587 }
cbc65df2 588 }
09cbfeaf 589 put_page(page);
46017e95 590 }
3fb5c298
CE
591 blk_finish_plug(&plug);
592
46017e95 593 lru_add_drain(); /* Push any new pages onto the LRU now */
579f8290 594skip:
23955622 595 return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
46017e95 596}
4b3ef9da
HY
597
598int init_swap_address_space(unsigned int type, unsigned long nr_pages)
599{
600 struct address_space *spaces, *space;
601 unsigned int i, nr;
602
603 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
778e1cdd 604 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
4b3ef9da
HY
605 if (!spaces)
606 return -ENOMEM;
607 for (i = 0; i < nr; i++) {
608 space = spaces + i;
a2833486 609 xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
4b3ef9da
HY
610 atomic_set(&space->i_mmap_writable, 0);
611 space->a_ops = &swap_aops;
612 /* swap cache doesn't use writeback related tags */
613 mapping_set_no_writeback_tags(space);
4b3ef9da
HY
614 }
615 nr_swapper_spaces[type] = nr;
054f1d1f 616 swapper_spaces[type] = spaces;
4b3ef9da
HY
617
618 return 0;
619}
620
621void exit_swap_address_space(unsigned int type)
622{
054f1d1f 623 kvfree(swapper_spaces[type]);
4b3ef9da 624 nr_swapper_spaces[type] = 0;
054f1d1f 625 swapper_spaces[type] = NULL;
4b3ef9da 626}
ec560175
HY
627
628static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
629 unsigned long faddr,
630 unsigned long lpfn,
631 unsigned long rpfn,
632 unsigned long *start,
633 unsigned long *end)
634{
635 *start = max3(lpfn, PFN_DOWN(vma->vm_start),
636 PFN_DOWN(faddr & PMD_MASK));
637 *end = min3(rpfn, PFN_DOWN(vma->vm_end),
638 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
639}
640
eaf649eb
MK
641static void swap_ra_info(struct vm_fault *vmf,
642 struct vma_swap_readahead *ra_info)
ec560175
HY
643{
644 struct vm_area_struct *vma = vmf->vma;
eaf649eb 645 unsigned long ra_val;
ec560175
HY
646 swp_entry_t entry;
647 unsigned long faddr, pfn, fpfn;
648 unsigned long start, end;
eaf649eb 649 pte_t *pte, *orig_pte;
ec560175
HY
650 unsigned int max_win, hits, prev_win, win, left;
651#ifndef CONFIG_64BIT
652 pte_t *tpte;
653#endif
654
61b63972
HY
655 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
656 SWAP_RA_ORDER_CEILING);
657 if (max_win == 1) {
eaf649eb
MK
658 ra_info->win = 1;
659 return;
61b63972
HY
660 }
661
ec560175 662 faddr = vmf->address;
eaf649eb
MK
663 orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
664 entry = pte_to_swp_entry(*pte);
665 if ((unlikely(non_swap_entry(entry)))) {
666 pte_unmap(orig_pte);
667 return;
668 }
ec560175 669
ec560175 670 fpfn = PFN_DOWN(faddr);
eaf649eb
MK
671 ra_val = GET_SWAP_RA_VAL(vma);
672 pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
673 prev_win = SWAP_RA_WIN(ra_val);
674 hits = SWAP_RA_HITS(ra_val);
675 ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
ec560175
HY
676 max_win, prev_win);
677 atomic_long_set(&vma->swap_readahead_info,
678 SWAP_RA_VAL(faddr, win, 0));
679
eaf649eb
MK
680 if (win == 1) {
681 pte_unmap(orig_pte);
682 return;
683 }
ec560175
HY
684
685 /* Copy the PTEs because the page table may be unmapped */
686 if (fpfn == pfn + 1)
687 swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
688 else if (pfn == fpfn + 1)
689 swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
690 &start, &end);
691 else {
692 left = (win - 1) / 2;
693 swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
694 &start, &end);
695 }
eaf649eb
MK
696 ra_info->nr_pte = end - start;
697 ra_info->offset = fpfn - start;
698 pte -= ra_info->offset;
ec560175 699#ifdef CONFIG_64BIT
eaf649eb 700 ra_info->ptes = pte;
ec560175 701#else
eaf649eb 702 tpte = ra_info->ptes;
ec560175
HY
703 for (pfn = start; pfn != end; pfn++)
704 *tpte++ = *pte++;
705#endif
eaf649eb 706 pte_unmap(orig_pte);
ec560175
HY
707}
708
e9f59873
YS
709/**
710 * swap_vma_readahead - swap in pages in hope we need them soon
711 * @entry: swap entry of this memory
712 * @gfp_mask: memory allocation flags
713 * @vmf: fault information
714 *
715 * Returns the struct page for entry and addr, after queueing swapin.
716 *
717 * Primitive swap readahead code. We simply read in a few pages whoes
718 * virtual addresses are around the fault address in the same vma.
719 *
720 * Caller must hold read mmap_sem if vmf->vma is not NULL.
721 *
722 */
f5c754d6
CIK
723static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
724 struct vm_fault *vmf)
ec560175
HY
725{
726 struct blk_plug plug;
727 struct vm_area_struct *vma = vmf->vma;
728 struct page *page;
729 pte_t *pte, pentry;
730 swp_entry_t entry;
731 unsigned int i;
732 bool page_allocated;
eaf649eb 733 struct vma_swap_readahead ra_info = {0,};
ec560175 734
eaf649eb
MK
735 swap_ra_info(vmf, &ra_info);
736 if (ra_info.win == 1)
ec560175
HY
737 goto skip;
738
739 blk_start_plug(&plug);
eaf649eb 740 for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
ec560175
HY
741 i++, pte++) {
742 pentry = *pte;
743 if (pte_none(pentry))
744 continue;
745 if (pte_present(pentry))
746 continue;
747 entry = pte_to_swp_entry(pentry);
748 if (unlikely(non_swap_entry(entry)))
749 continue;
750 page = __read_swap_cache_async(entry, gfp_mask, vma,
751 vmf->address, &page_allocated);
752 if (!page)
753 continue;
754 if (page_allocated) {
755 swap_readpage(page, false);
eaf649eb 756 if (i != ra_info.offset) {
ec560175
HY
757 SetPageReadahead(page);
758 count_vm_event(SWAP_RA);
759 }
760 }
761 put_page(page);
762 }
763 blk_finish_plug(&plug);
764 lru_add_drain();
765skip:
766 return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
eaf649eb 767 ra_info.win == 1);
ec560175 768}
d9bfcfdc 769
e9e9b7ec
MK
770/**
771 * swapin_readahead - swap in pages in hope we need them soon
772 * @entry: swap entry of this memory
773 * @gfp_mask: memory allocation flags
774 * @vmf: fault information
775 *
776 * Returns the struct page for entry and addr, after queueing swapin.
777 *
778 * It's a main entry function for swap readahead. By the configuration,
779 * it will read ahead blocks by cluster-based(ie, physical disk based)
780 * or vma-based(ie, virtual address based on faulty address) readahead.
781 */
782struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
783 struct vm_fault *vmf)
784{
785 return swap_use_vma_readahead() ?
786 swap_vma_readahead(entry, gfp_mask, vmf) :
787 swap_cluster_readahead(entry, gfp_mask, vmf);
788}
789
d9bfcfdc
HY
790#ifdef CONFIG_SYSFS
791static ssize_t vma_ra_enabled_show(struct kobject *kobj,
792 struct kobj_attribute *attr, char *buf)
793{
e9e9b7ec 794 return sprintf(buf, "%s\n", enable_vma_readahead ? "true" : "false");
d9bfcfdc
HY
795}
796static ssize_t vma_ra_enabled_store(struct kobject *kobj,
797 struct kobj_attribute *attr,
798 const char *buf, size_t count)
799{
800 if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
e9e9b7ec 801 enable_vma_readahead = true;
d9bfcfdc 802 else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
e9e9b7ec 803 enable_vma_readahead = false;
d9bfcfdc
HY
804 else
805 return -EINVAL;
806
807 return count;
808}
809static struct kobj_attribute vma_ra_enabled_attr =
810 __ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
811 vma_ra_enabled_store);
812
d9bfcfdc
HY
813static struct attribute *swap_attrs[] = {
814 &vma_ra_enabled_attr.attr,
d9bfcfdc
HY
815 NULL,
816};
817
818static struct attribute_group swap_attr_group = {
819 .attrs = swap_attrs,
820};
821
822static int __init swap_init_sysfs(void)
823{
824 int err;
825 struct kobject *swap_kobj;
826
827 swap_kobj = kobject_create_and_add("swap", mm_kobj);
828 if (!swap_kobj) {
829 pr_err("failed to create swap kobject\n");
830 return -ENOMEM;
831 }
832 err = sysfs_create_group(swap_kobj, &swap_attr_group);
833 if (err) {
834 pr_err("failed to register swap group\n");
835 goto delete_obj;
836 }
837 return 0;
838
839delete_obj:
840 kobject_put(swap_kobj);
841 return err;
842}
843subsys_initcall(swap_init_sysfs);
844#endif