]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/swap_state.c
mm/swap: enable swap slots cache usage
[mirror_ubuntu-bionic-kernel.git] / mm / swap_state.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swap_state.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 *
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
8 */
1da177e4 9#include <linux/mm.h>
5a0e3ad6 10#include <linux/gfp.h>
1da177e4
LT
11#include <linux/kernel_stat.h>
12#include <linux/swap.h>
46017e95 13#include <linux/swapops.h>
1da177e4
LT
14#include <linux/init.h>
15#include <linux/pagemap.h>
1da177e4 16#include <linux/backing-dev.h>
3fb5c298 17#include <linux/blkdev.h>
c484d410 18#include <linux/pagevec.h>
b20a3503 19#include <linux/migrate.h>
4b3ef9da 20#include <linux/vmalloc.h>
67afa38e 21#include <linux/swap_slots.h>
1da177e4
LT
22
23#include <asm/pgtable.h>
24
25/*
26 * swapper_space is a fiction, retained to simplify the path through
7eaceacc 27 * vmscan's shrink_page_list.
1da177e4 28 */
f5e54d6e 29static const struct address_space_operations swap_aops = {
1da177e4 30 .writepage = swap_writepage,
62c230bc 31 .set_page_dirty = swap_set_page_dirty,
1c93923c 32#ifdef CONFIG_MIGRATION
e965f963 33 .migratepage = migrate_page,
1c93923c 34#endif
1da177e4
LT
35};
36
4b3ef9da
HY
37struct address_space *swapper_spaces[MAX_SWAPFILES];
38static unsigned int nr_swapper_spaces[MAX_SWAPFILES];
1da177e4
LT
39
40#define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
41
42static struct {
43 unsigned long add_total;
44 unsigned long del_total;
45 unsigned long find_success;
46 unsigned long find_total;
1da177e4
LT
47} swap_cache_info;
48
33806f06
SL
49unsigned long total_swapcache_pages(void)
50{
4b3ef9da 51 unsigned int i, j, nr;
33806f06 52 unsigned long ret = 0;
4b3ef9da 53 struct address_space *spaces;
33806f06 54
4b3ef9da
HY
55 rcu_read_lock();
56 for (i = 0; i < MAX_SWAPFILES; i++) {
57 /*
58 * The corresponding entries in nr_swapper_spaces and
59 * swapper_spaces will be reused only after at least
60 * one grace period. So it is impossible for them
61 * belongs to different usage.
62 */
63 nr = nr_swapper_spaces[i];
64 spaces = rcu_dereference(swapper_spaces[i]);
65 if (!nr || !spaces)
66 continue;
67 for (j = 0; j < nr; j++)
68 ret += spaces[j].nrpages;
69 }
70 rcu_read_unlock();
33806f06
SL
71 return ret;
72}
73
579f8290
SL
74static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
75
1da177e4
LT
76void show_swap_cache_info(void)
77{
33806f06 78 printk("%lu pages in swap cache\n", total_swapcache_pages());
2c97b7fc 79 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
1da177e4 80 swap_cache_info.add_total, swap_cache_info.del_total,
bb63be0a 81 swap_cache_info.find_success, swap_cache_info.find_total);
ec8acf20
SL
82 printk("Free swap = %ldkB\n",
83 get_nr_swap_pages() << (PAGE_SHIFT - 10));
1da177e4
LT
84 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
85}
86
87/*
31a56396 88 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
1da177e4
LT
89 * but sets SwapCache flag and private instead of mapping and index.
90 */
2f772e6c 91int __add_to_swap_cache(struct page *page, swp_entry_t entry)
1da177e4
LT
92{
93 int error;
33806f06 94 struct address_space *address_space;
1da177e4 95
309381fe
SL
96 VM_BUG_ON_PAGE(!PageLocked(page), page);
97 VM_BUG_ON_PAGE(PageSwapCache(page), page);
98 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
51726b12 99
09cbfeaf 100 get_page(page);
31a56396
DN
101 SetPageSwapCache(page);
102 set_page_private(page, entry.val);
103
33806f06
SL
104 address_space = swap_address_space(entry);
105 spin_lock_irq(&address_space->tree_lock);
106 error = radix_tree_insert(&address_space->page_tree,
f6ab1f7f 107 swp_offset(entry), page);
31a56396 108 if (likely(!error)) {
33806f06 109 address_space->nrpages++;
11fb9989 110 __inc_node_page_state(page, NR_FILE_PAGES);
31a56396
DN
111 INC_CACHE_INFO(add_total);
112 }
33806f06 113 spin_unlock_irq(&address_space->tree_lock);
31a56396
DN
114
115 if (unlikely(error)) {
2ca4532a
DN
116 /*
117 * Only the context which have set SWAP_HAS_CACHE flag
118 * would call add_to_swap_cache().
119 * So add_to_swap_cache() doesn't returns -EEXIST.
120 */
121 VM_BUG_ON(error == -EEXIST);
31a56396
DN
122 set_page_private(page, 0UL);
123 ClearPageSwapCache(page);
09cbfeaf 124 put_page(page);
31a56396
DN
125 }
126
127 return error;
128}
129
130
131int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
132{
133 int error;
134
5e4c0d97 135 error = radix_tree_maybe_preload(gfp_mask);
35c754d7 136 if (!error) {
31a56396 137 error = __add_to_swap_cache(page, entry);
1da177e4 138 radix_tree_preload_end();
fa1de900 139 }
1da177e4
LT
140 return error;
141}
142
1da177e4
LT
143/*
144 * This must be called only on pages that have
145 * been verified to be in the swap cache.
146 */
147void __delete_from_swap_cache(struct page *page)
148{
33806f06
SL
149 swp_entry_t entry;
150 struct address_space *address_space;
151
309381fe
SL
152 VM_BUG_ON_PAGE(!PageLocked(page), page);
153 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
154 VM_BUG_ON_PAGE(PageWriteback(page), page);
1da177e4 155
33806f06
SL
156 entry.val = page_private(page);
157 address_space = swap_address_space(entry);
f6ab1f7f 158 radix_tree_delete(&address_space->page_tree, swp_offset(entry));
4c21e2f2 159 set_page_private(page, 0);
1da177e4 160 ClearPageSwapCache(page);
33806f06 161 address_space->nrpages--;
11fb9989 162 __dec_node_page_state(page, NR_FILE_PAGES);
1da177e4
LT
163 INC_CACHE_INFO(del_total);
164}
165
166/**
167 * add_to_swap - allocate swap space for a page
168 * @page: page we want to move to swap
169 *
170 * Allocate swap space for the page and add the page to the
171 * swap cache. Caller needs to hold the page lock.
172 */
5bc7b8ac 173int add_to_swap(struct page *page, struct list_head *list)
1da177e4
LT
174{
175 swp_entry_t entry;
1da177e4
LT
176 int err;
177
309381fe
SL
178 VM_BUG_ON_PAGE(!PageLocked(page), page);
179 VM_BUG_ON_PAGE(!PageUptodate(page), page);
1da177e4 180
2ca4532a
DN
181 entry = get_swap_page();
182 if (!entry.val)
183 return 0;
184
37e84351
VD
185 if (mem_cgroup_try_charge_swap(page, entry)) {
186 swapcache_free(entry);
187 return 0;
188 }
189
3f04f62f 190 if (unlikely(PageTransHuge(page)))
5bc7b8ac 191 if (unlikely(split_huge_page_to_list(page, list))) {
0a31bc97 192 swapcache_free(entry);
3f04f62f
AA
193 return 0;
194 }
195
2ca4532a
DN
196 /*
197 * Radix-tree node allocations from PF_MEMALLOC contexts could
198 * completely exhaust the page allocator. __GFP_NOMEMALLOC
199 * stops emergency reserves from being allocated.
200 *
201 * TODO: this could cause a theoretical memory reclaim
202 * deadlock in the swap out path.
203 */
204 /*
854e9ed0 205 * Add it to the swap cache.
2ca4532a
DN
206 */
207 err = add_to_swap_cache(page, entry,
208 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
209
854e9ed0 210 if (!err) {
2ca4532a
DN
211 return 1;
212 } else { /* -ENOMEM radix-tree allocation failure */
bd53b714 213 /*
2ca4532a
DN
214 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
215 * clear SWAP_HAS_CACHE flag.
1da177e4 216 */
0a31bc97 217 swapcache_free(entry);
2ca4532a 218 return 0;
1da177e4
LT
219 }
220}
221
222/*
223 * This must be called only on pages that have
224 * been verified to be in the swap cache and locked.
225 * It will never put the page into the free list,
226 * the caller has a reference on the page.
227 */
228void delete_from_swap_cache(struct page *page)
229{
230 swp_entry_t entry;
33806f06 231 struct address_space *address_space;
1da177e4 232
4c21e2f2 233 entry.val = page_private(page);
1da177e4 234
33806f06
SL
235 address_space = swap_address_space(entry);
236 spin_lock_irq(&address_space->tree_lock);
1da177e4 237 __delete_from_swap_cache(page);
33806f06 238 spin_unlock_irq(&address_space->tree_lock);
1da177e4 239
0a31bc97 240 swapcache_free(entry);
09cbfeaf 241 put_page(page);
1da177e4
LT
242}
243
1da177e4
LT
244/*
245 * If we are the only user, then try to free up the swap cache.
246 *
247 * Its ok to check for PageSwapCache without the page lock
a2c43eed
HD
248 * here because we are going to recheck again inside
249 * try_to_free_swap() _with_ the lock.
1da177e4
LT
250 * - Marcelo
251 */
252static inline void free_swap_cache(struct page *page)
253{
a2c43eed
HD
254 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
255 try_to_free_swap(page);
1da177e4
LT
256 unlock_page(page);
257 }
258}
259
260/*
261 * Perform a free_page(), also freeing any swap cache associated with
b8072f09 262 * this page if it is the last user of the page.
1da177e4
LT
263 */
264void free_page_and_swap_cache(struct page *page)
265{
266 free_swap_cache(page);
6fcb52a5 267 if (!is_huge_zero_page(page))
770a5370 268 put_page(page);
1da177e4
LT
269}
270
271/*
272 * Passed an array of pages, drop them all from swapcache and then release
273 * them. They are removed from the LRU and freed if this is their last use.
274 */
275void free_pages_and_swap_cache(struct page **pages, int nr)
276{
1da177e4 277 struct page **pagep = pages;
aabfb572 278 int i;
1da177e4
LT
279
280 lru_add_drain();
aabfb572
MH
281 for (i = 0; i < nr; i++)
282 free_swap_cache(pagep[i]);
283 release_pages(pagep, nr, false);
1da177e4
LT
284}
285
286/*
287 * Lookup a swap entry in the swap cache. A found page will be returned
288 * unlocked and with its refcount incremented - we rely on the kernel
289 * lock getting page table operations atomic even if we drop the page
290 * lock before returning.
291 */
292struct page * lookup_swap_cache(swp_entry_t entry)
293{
294 struct page *page;
295
f6ab1f7f 296 page = find_get_page(swap_address_space(entry), swp_offset(entry));
1da177e4 297
579f8290 298 if (page) {
1da177e4 299 INC_CACHE_INFO(find_success);
579f8290
SL
300 if (TestClearPageReadahead(page))
301 atomic_inc(&swapin_readahead_hits);
302 }
1da177e4
LT
303
304 INC_CACHE_INFO(find_total);
305 return page;
306}
307
5b999aad
DS
308struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
309 struct vm_area_struct *vma, unsigned long addr,
310 bool *new_page_allocated)
1da177e4
LT
311{
312 struct page *found_page, *new_page = NULL;
5b999aad 313 struct address_space *swapper_space = swap_address_space(entry);
1da177e4 314 int err;
5b999aad 315 *new_page_allocated = false;
1da177e4
LT
316
317 do {
318 /*
319 * First check the swap cache. Since this is normally
320 * called after lookup_swap_cache() failed, re-calling
321 * that would confuse statistics.
322 */
f6ab1f7f 323 found_page = find_get_page(swapper_space, swp_offset(entry));
1da177e4
LT
324 if (found_page)
325 break;
326
e8c26ab6
TC
327 /* Just skip read ahead for unused swap slot */
328 if (!__swp_swapcount(entry))
329 return NULL;
330
1da177e4
LT
331 /*
332 * Get a new page to read into from swap.
333 */
334 if (!new_page) {
02098fea 335 new_page = alloc_page_vma(gfp_mask, vma, addr);
1da177e4
LT
336 if (!new_page)
337 break; /* Out of memory */
338 }
339
31a56396
DN
340 /*
341 * call radix_tree_preload() while we can wait.
342 */
5e4c0d97 343 err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
31a56396
DN
344 if (err)
345 break;
346
f000944d
HD
347 /*
348 * Swap entry may have been freed since our caller observed it.
349 */
355cfa73 350 err = swapcache_prepare(entry);
cbab0e4e 351 if (err == -EEXIST) {
31a56396 352 radix_tree_preload_end();
cbab0e4e
RA
353 /*
354 * We might race against get_swap_page() and stumble
355 * across a SWAP_HAS_CACHE swap_map entry whose page
356 * has not been brought into the swapcache yet, while
357 * the other end is scheduled away waiting on discard
358 * I/O completion at scan_swap_map().
359 *
360 * In order to avoid turning this transitory state
361 * into a permanent loop around this -EEXIST case
362 * if !CONFIG_PREEMPT and the I/O completion happens
363 * to be waiting on the CPU waitqueue where we are now
364 * busy looping, we just conditionally invoke the
365 * scheduler here, if there are some more important
366 * tasks to run.
367 */
368 cond_resched();
355cfa73 369 continue;
31a56396
DN
370 }
371 if (err) { /* swp entry is obsolete ? */
372 radix_tree_preload_end();
f000944d 373 break;
31a56396 374 }
f000944d 375
2ca4532a 376 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
48c935ad 377 __SetPageLocked(new_page);
fa9949da 378 __SetPageSwapBacked(new_page);
31a56396 379 err = __add_to_swap_cache(new_page, entry);
529ae9aa 380 if (likely(!err)) {
31a56396 381 radix_tree_preload_end();
1da177e4
LT
382 /*
383 * Initiate read into locked page and return.
384 */
c5fdae46 385 lru_cache_add_anon(new_page);
5b999aad 386 *new_page_allocated = true;
1da177e4
LT
387 return new_page;
388 }
31a56396 389 radix_tree_preload_end();
48c935ad 390 __ClearPageLocked(new_page);
2ca4532a
DN
391 /*
392 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
393 * clear SWAP_HAS_CACHE flag.
394 */
0a31bc97 395 swapcache_free(entry);
f000944d 396 } while (err != -ENOMEM);
1da177e4
LT
397
398 if (new_page)
09cbfeaf 399 put_page(new_page);
1da177e4
LT
400 return found_page;
401}
46017e95 402
5b999aad
DS
403/*
404 * Locate a page of swap in physical memory, reserving swap cache space
405 * and reading the disk if it is not already cached.
406 * A failure return means that either the page allocation failed or that
407 * the swap entry is no longer in use.
408 */
409struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
410 struct vm_area_struct *vma, unsigned long addr)
411{
412 bool page_was_allocated;
413 struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
414 vma, addr, &page_was_allocated);
415
416 if (page_was_allocated)
417 swap_readpage(retpage);
418
419 return retpage;
420}
421
579f8290
SL
422static unsigned long swapin_nr_pages(unsigned long offset)
423{
424 static unsigned long prev_offset;
425 unsigned int pages, max_pages, last_ra;
426 static atomic_t last_readahead_pages;
427
4db0c3c2 428 max_pages = 1 << READ_ONCE(page_cluster);
579f8290
SL
429 if (max_pages <= 1)
430 return 1;
431
432 /*
433 * This heuristic has been found to work well on both sequential and
434 * random loads, swapping to hard disk or to SSD: please don't ask
435 * what the "+ 2" means, it just happens to work well, that's all.
436 */
437 pages = atomic_xchg(&swapin_readahead_hits, 0) + 2;
438 if (pages == 2) {
439 /*
440 * We can have no readahead hits to judge by: but must not get
441 * stuck here forever, so check for an adjacent offset instead
442 * (and don't even bother to check whether swap type is same).
443 */
444 if (offset != prev_offset + 1 && offset != prev_offset - 1)
445 pages = 1;
446 prev_offset = offset;
447 } else {
448 unsigned int roundup = 4;
449 while (roundup < pages)
450 roundup <<= 1;
451 pages = roundup;
452 }
453
454 if (pages > max_pages)
455 pages = max_pages;
456
457 /* Don't shrink readahead too fast */
458 last_ra = atomic_read(&last_readahead_pages) / 2;
459 if (pages < last_ra)
460 pages = last_ra;
461 atomic_set(&last_readahead_pages, pages);
462
463 return pages;
464}
465
46017e95
HD
466/**
467 * swapin_readahead - swap in pages in hope we need them soon
468 * @entry: swap entry of this memory
7682486b 469 * @gfp_mask: memory allocation flags
46017e95
HD
470 * @vma: user vma this address belongs to
471 * @addr: target address for mempolicy
472 *
473 * Returns the struct page for entry and addr, after queueing swapin.
474 *
475 * Primitive swap readahead code. We simply read an aligned block of
476 * (1 << page_cluster) entries in the swap area. This method is chosen
477 * because it doesn't cost us any seek time. We also make sure to queue
478 * the 'original' request together with the readahead ones...
479 *
480 * This has been extended to use the NUMA policies from the mm triggering
481 * the readahead.
482 *
483 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
484 */
02098fea 485struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
46017e95
HD
486 struct vm_area_struct *vma, unsigned long addr)
487{
46017e95 488 struct page *page;
579f8290
SL
489 unsigned long entry_offset = swp_offset(entry);
490 unsigned long offset = entry_offset;
67f96aa2 491 unsigned long start_offset, end_offset;
579f8290 492 unsigned long mask;
3fb5c298 493 struct blk_plug plug;
46017e95 494
579f8290
SL
495 mask = swapin_nr_pages(offset) - 1;
496 if (!mask)
497 goto skip;
498
67f96aa2
RR
499 /* Read a page_cluster sized and aligned cluster around offset. */
500 start_offset = offset & ~mask;
501 end_offset = offset | mask;
502 if (!start_offset) /* First page is swap header. */
503 start_offset++;
504
3fb5c298 505 blk_start_plug(&plug);
67f96aa2 506 for (offset = start_offset; offset <= end_offset ; offset++) {
46017e95
HD
507 /* Ok, do the async read-ahead now */
508 page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
02098fea 509 gfp_mask, vma, addr);
46017e95 510 if (!page)
67f96aa2 511 continue;
579f8290
SL
512 if (offset != entry_offset)
513 SetPageReadahead(page);
09cbfeaf 514 put_page(page);
46017e95 515 }
3fb5c298
CE
516 blk_finish_plug(&plug);
517
46017e95 518 lru_add_drain(); /* Push any new pages onto the LRU now */
579f8290 519skip:
02098fea 520 return read_swap_cache_async(entry, gfp_mask, vma, addr);
46017e95 521}
4b3ef9da
HY
522
523int init_swap_address_space(unsigned int type, unsigned long nr_pages)
524{
525 struct address_space *spaces, *space;
526 unsigned int i, nr;
527
528 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
529 spaces = vzalloc(sizeof(struct address_space) * nr);
530 if (!spaces)
531 return -ENOMEM;
532 for (i = 0; i < nr; i++) {
533 space = spaces + i;
534 INIT_RADIX_TREE(&space->page_tree, GFP_ATOMIC|__GFP_NOWARN);
535 atomic_set(&space->i_mmap_writable, 0);
536 space->a_ops = &swap_aops;
537 /* swap cache doesn't use writeback related tags */
538 mapping_set_no_writeback_tags(space);
539 spin_lock_init(&space->tree_lock);
540 }
541 nr_swapper_spaces[type] = nr;
542 rcu_assign_pointer(swapper_spaces[type], spaces);
543
544 return 0;
545}
546
547void exit_swap_address_space(unsigned int type)
548{
549 struct address_space *spaces;
550
551 spaces = swapper_spaces[type];
552 nr_swapper_spaces[type] = 0;
553 rcu_assign_pointer(swapper_spaces[type], NULL);
554 synchronize_rcu();
555 kvfree(spaces);
556}