]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/swap_state.c
block_invalidatepage(): only release page if the full page was invalidated
[mirror_ubuntu-jammy-kernel.git] / mm / swap_state.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/swap_state.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 *
8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
9 */
1da177e4 10#include <linux/mm.h>
5a0e3ad6 11#include <linux/gfp.h>
1da177e4
LT
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
46017e95 14#include <linux/swapops.h>
1da177e4
LT
15#include <linux/init.h>
16#include <linux/pagemap.h>
1da177e4 17#include <linux/backing-dev.h>
3fb5c298 18#include <linux/blkdev.h>
c484d410 19#include <linux/pagevec.h>
b20a3503 20#include <linux/migrate.h>
4b3ef9da 21#include <linux/vmalloc.h>
67afa38e 22#include <linux/swap_slots.h>
38d8b4e6 23#include <linux/huge_mm.h>
1da177e4
LT
24
25#include <asm/pgtable.h>
26
27/*
28 * swapper_space is a fiction, retained to simplify the path through
7eaceacc 29 * vmscan's shrink_page_list.
1da177e4 30 */
f5e54d6e 31static const struct address_space_operations swap_aops = {
1da177e4 32 .writepage = swap_writepage,
62c230bc 33 .set_page_dirty = swap_set_page_dirty,
1c93923c 34#ifdef CONFIG_MIGRATION
e965f963 35 .migratepage = migrate_page,
1c93923c 36#endif
1da177e4
LT
37};
38
783cb68e
CD
39struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
40static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
e9e9b7ec 41bool enable_vma_readahead __read_mostly = true;
ec560175 42
ec560175
HY
43#define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
44#define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
45#define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
46#define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
47
48#define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
49#define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
50#define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
51
52#define SWAP_RA_VAL(addr, win, hits) \
53 (((addr) & PAGE_MASK) | \
54 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
55 ((hits) & SWAP_RA_HITS_MASK))
56
57/* Initial readahead hits is 4 to start up with a small window */
58#define GET_SWAP_RA_VAL(vma) \
59 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
1da177e4
LT
60
61#define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
38d8b4e6 62#define ADD_CACHE_INFO(x, nr) do { swap_cache_info.x += (nr); } while (0)
1da177e4
LT
63
64static struct {
65 unsigned long add_total;
66 unsigned long del_total;
67 unsigned long find_success;
68 unsigned long find_total;
1da177e4
LT
69} swap_cache_info;
70
33806f06
SL
71unsigned long total_swapcache_pages(void)
72{
4b3ef9da 73 unsigned int i, j, nr;
33806f06 74 unsigned long ret = 0;
4b3ef9da 75 struct address_space *spaces;
33806f06 76
4b3ef9da
HY
77 rcu_read_lock();
78 for (i = 0; i < MAX_SWAPFILES; i++) {
79 /*
80 * The corresponding entries in nr_swapper_spaces and
81 * swapper_spaces will be reused only after at least
82 * one grace period. So it is impossible for them
83 * belongs to different usage.
84 */
85 nr = nr_swapper_spaces[i];
86 spaces = rcu_dereference(swapper_spaces[i]);
87 if (!nr || !spaces)
88 continue;
89 for (j = 0; j < nr; j++)
90 ret += spaces[j].nrpages;
91 }
92 rcu_read_unlock();
33806f06
SL
93 return ret;
94}
95
579f8290
SL
96static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
97
1da177e4
LT
98void show_swap_cache_info(void)
99{
33806f06 100 printk("%lu pages in swap cache\n", total_swapcache_pages());
2c97b7fc 101 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
1da177e4 102 swap_cache_info.add_total, swap_cache_info.del_total,
bb63be0a 103 swap_cache_info.find_success, swap_cache_info.find_total);
ec8acf20
SL
104 printk("Free swap = %ldkB\n",
105 get_nr_swap_pages() << (PAGE_SHIFT - 10));
1da177e4
LT
106 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
107}
108
109/*
31a56396 110 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
1da177e4
LT
111 * but sets SwapCache flag and private instead of mapping and index.
112 */
2f772e6c 113int __add_to_swap_cache(struct page *page, swp_entry_t entry)
1da177e4 114{
38d8b4e6 115 int error, i, nr = hpage_nr_pages(page);
33806f06 116 struct address_space *address_space;
38d8b4e6 117 pgoff_t idx = swp_offset(entry);
1da177e4 118
309381fe
SL
119 VM_BUG_ON_PAGE(!PageLocked(page), page);
120 VM_BUG_ON_PAGE(PageSwapCache(page), page);
121 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
51726b12 122
38d8b4e6 123 page_ref_add(page, nr);
31a56396 124 SetPageSwapCache(page);
31a56396 125
33806f06
SL
126 address_space = swap_address_space(entry);
127 spin_lock_irq(&address_space->tree_lock);
38d8b4e6
HY
128 for (i = 0; i < nr; i++) {
129 set_page_private(page + i, entry.val + i);
130 error = radix_tree_insert(&address_space->page_tree,
131 idx + i, page + i);
132 if (unlikely(error))
133 break;
31a56396 134 }
38d8b4e6
HY
135 if (likely(!error)) {
136 address_space->nrpages += nr;
137 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
138 ADD_CACHE_INFO(add_total, nr);
139 } else {
2ca4532a
DN
140 /*
141 * Only the context which have set SWAP_HAS_CACHE flag
142 * would call add_to_swap_cache().
143 * So add_to_swap_cache() doesn't returns -EEXIST.
144 */
145 VM_BUG_ON(error == -EEXIST);
38d8b4e6
HY
146 set_page_private(page + i, 0UL);
147 while (i--) {
148 radix_tree_delete(&address_space->page_tree, idx + i);
149 set_page_private(page + i, 0UL);
150 }
31a56396 151 ClearPageSwapCache(page);
38d8b4e6 152 page_ref_sub(page, nr);
31a56396 153 }
38d8b4e6 154 spin_unlock_irq(&address_space->tree_lock);
31a56396
DN
155
156 return error;
157}
158
159
160int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
161{
162 int error;
163
38d8b4e6 164 error = radix_tree_maybe_preload_order(gfp_mask, compound_order(page));
35c754d7 165 if (!error) {
31a56396 166 error = __add_to_swap_cache(page, entry);
1da177e4 167 radix_tree_preload_end();
fa1de900 168 }
1da177e4
LT
169 return error;
170}
171
1da177e4
LT
172/*
173 * This must be called only on pages that have
174 * been verified to be in the swap cache.
175 */
176void __delete_from_swap_cache(struct page *page)
177{
33806f06 178 struct address_space *address_space;
38d8b4e6
HY
179 int i, nr = hpage_nr_pages(page);
180 swp_entry_t entry;
181 pgoff_t idx;
33806f06 182
309381fe
SL
183 VM_BUG_ON_PAGE(!PageLocked(page), page);
184 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
185 VM_BUG_ON_PAGE(PageWriteback(page), page);
1da177e4 186
33806f06
SL
187 entry.val = page_private(page);
188 address_space = swap_address_space(entry);
38d8b4e6
HY
189 idx = swp_offset(entry);
190 for (i = 0; i < nr; i++) {
191 radix_tree_delete(&address_space->page_tree, idx + i);
192 set_page_private(page + i, 0);
193 }
1da177e4 194 ClearPageSwapCache(page);
38d8b4e6
HY
195 address_space->nrpages -= nr;
196 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
197 ADD_CACHE_INFO(del_total, nr);
1da177e4
LT
198}
199
200/**
201 * add_to_swap - allocate swap space for a page
202 * @page: page we want to move to swap
203 *
204 * Allocate swap space for the page and add the page to the
205 * swap cache. Caller needs to hold the page lock.
206 */
0f074658 207int add_to_swap(struct page *page)
1da177e4
LT
208{
209 swp_entry_t entry;
1da177e4
LT
210 int err;
211
309381fe
SL
212 VM_BUG_ON_PAGE(!PageLocked(page), page);
213 VM_BUG_ON_PAGE(!PageUptodate(page), page);
1da177e4 214
38d8b4e6 215 entry = get_swap_page(page);
2ca4532a 216 if (!entry.val)
0f074658
MK
217 return 0;
218
38d8b4e6 219 if (mem_cgroup_try_charge_swap(page, entry))
0f074658 220 goto fail;
3f04f62f 221
2ca4532a
DN
222 /*
223 * Radix-tree node allocations from PF_MEMALLOC contexts could
224 * completely exhaust the page allocator. __GFP_NOMEMALLOC
225 * stops emergency reserves from being allocated.
226 *
227 * TODO: this could cause a theoretical memory reclaim
228 * deadlock in the swap out path.
229 */
230 /*
854e9ed0 231 * Add it to the swap cache.
2ca4532a
DN
232 */
233 err = add_to_swap_cache(page, entry,
234 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
38d8b4e6
HY
235 /* -ENOMEM radix-tree allocation failure */
236 if (err)
bd53b714 237 /*
2ca4532a
DN
238 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
239 * clear SWAP_HAS_CACHE flag.
1da177e4 240 */
0f074658 241 goto fail;
9625456c
SL
242 /*
243 * Normally the page will be dirtied in unmap because its pte should be
244 * dirty. A special case is MADV_FREE page. The page'e pte could have
245 * dirty bit cleared but the page's SwapBacked bit is still set because
246 * clearing the dirty bit and SwapBacked bit has no lock protected. For
247 * such page, unmap will not set dirty bit for it, so page reclaim will
248 * not write the page out. This can cause data corruption when the page
249 * is swap in later. Always setting the dirty bit for the page solves
250 * the problem.
251 */
252 set_page_dirty(page);
38d8b4e6
HY
253
254 return 1;
255
38d8b4e6 256fail:
0f074658 257 put_swap_page(page, entry);
38d8b4e6 258 return 0;
1da177e4
LT
259}
260
261/*
262 * This must be called only on pages that have
263 * been verified to be in the swap cache and locked.
264 * It will never put the page into the free list,
265 * the caller has a reference on the page.
266 */
267void delete_from_swap_cache(struct page *page)
268{
269 swp_entry_t entry;
33806f06 270 struct address_space *address_space;
1da177e4 271
4c21e2f2 272 entry.val = page_private(page);
1da177e4 273
33806f06
SL
274 address_space = swap_address_space(entry);
275 spin_lock_irq(&address_space->tree_lock);
1da177e4 276 __delete_from_swap_cache(page);
33806f06 277 spin_unlock_irq(&address_space->tree_lock);
1da177e4 278
75f6d6d2 279 put_swap_page(page, entry);
38d8b4e6 280 page_ref_sub(page, hpage_nr_pages(page));
1da177e4
LT
281}
282
1da177e4
LT
283/*
284 * If we are the only user, then try to free up the swap cache.
285 *
286 * Its ok to check for PageSwapCache without the page lock
a2c43eed
HD
287 * here because we are going to recheck again inside
288 * try_to_free_swap() _with_ the lock.
1da177e4
LT
289 * - Marcelo
290 */
291static inline void free_swap_cache(struct page *page)
292{
a2c43eed
HD
293 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
294 try_to_free_swap(page);
1da177e4
LT
295 unlock_page(page);
296 }
297}
298
299/*
300 * Perform a free_page(), also freeing any swap cache associated with
b8072f09 301 * this page if it is the last user of the page.
1da177e4
LT
302 */
303void free_page_and_swap_cache(struct page *page)
304{
305 free_swap_cache(page);
6fcb52a5 306 if (!is_huge_zero_page(page))
770a5370 307 put_page(page);
1da177e4
LT
308}
309
310/*
311 * Passed an array of pages, drop them all from swapcache and then release
312 * them. They are removed from the LRU and freed if this is their last use.
313 */
314void free_pages_and_swap_cache(struct page **pages, int nr)
315{
1da177e4 316 struct page **pagep = pages;
aabfb572 317 int i;
1da177e4
LT
318
319 lru_add_drain();
aabfb572
MH
320 for (i = 0; i < nr; i++)
321 free_swap_cache(pagep[i]);
c6f92f9f 322 release_pages(pagep, nr);
1da177e4
LT
323}
324
e9e9b7ec
MK
325static inline bool swap_use_vma_readahead(void)
326{
327 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
328}
329
1da177e4
LT
330/*
331 * Lookup a swap entry in the swap cache. A found page will be returned
332 * unlocked and with its refcount incremented - we rely on the kernel
333 * lock getting page table operations atomic even if we drop the page
334 * lock before returning.
335 */
ec560175
HY
336struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
337 unsigned long addr)
1da177e4
LT
338{
339 struct page *page;
340
f6ab1f7f 341 page = find_get_page(swap_address_space(entry), swp_offset(entry));
1da177e4 342
ec560175
HY
343 INC_CACHE_INFO(find_total);
344 if (page) {
eaf649eb
MK
345 bool vma_ra = swap_use_vma_readahead();
346 bool readahead;
347
1da177e4 348 INC_CACHE_INFO(find_success);
eaf649eb
MK
349 /*
350 * At the moment, we don't support PG_readahead for anon THP
351 * so let's bail out rather than confusing the readahead stat.
352 */
ec560175
HY
353 if (unlikely(PageTransCompound(page)))
354 return page;
eaf649eb 355
ec560175 356 readahead = TestClearPageReadahead(page);
eaf649eb
MK
357 if (vma && vma_ra) {
358 unsigned long ra_val;
359 int win, hits;
360
361 ra_val = GET_SWAP_RA_VAL(vma);
362 win = SWAP_RA_WIN(ra_val);
363 hits = SWAP_RA_HITS(ra_val);
ec560175
HY
364 if (readahead)
365 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
366 atomic_long_set(&vma->swap_readahead_info,
367 SWAP_RA_VAL(addr, win, hits));
368 }
eaf649eb 369
ec560175 370 if (readahead) {
cbc65df2 371 count_vm_event(SWAP_RA_HIT);
eaf649eb 372 if (!vma || !vma_ra)
ec560175 373 atomic_inc(&swapin_readahead_hits);
cbc65df2 374 }
579f8290 375 }
eaf649eb 376
1da177e4
LT
377 return page;
378}
379
5b999aad
DS
380struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
381 struct vm_area_struct *vma, unsigned long addr,
382 bool *new_page_allocated)
1da177e4
LT
383{
384 struct page *found_page, *new_page = NULL;
5b999aad 385 struct address_space *swapper_space = swap_address_space(entry);
1da177e4 386 int err;
5b999aad 387 *new_page_allocated = false;
1da177e4
LT
388
389 do {
390 /*
391 * First check the swap cache. Since this is normally
392 * called after lookup_swap_cache() failed, re-calling
393 * that would confuse statistics.
394 */
f6ab1f7f 395 found_page = find_get_page(swapper_space, swp_offset(entry));
1da177e4
LT
396 if (found_page)
397 break;
398
ba81f838
HY
399 /*
400 * Just skip read ahead for unused swap slot.
401 * During swap_off when swap_slot_cache is disabled,
402 * we have to handle the race between putting
403 * swap entry in swap cache and marking swap slot
404 * as SWAP_HAS_CACHE. That's done in later part of code or
405 * else swap_off will be aborted if we return NULL.
406 */
407 if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
408 break;
e8c26ab6 409
1da177e4
LT
410 /*
411 * Get a new page to read into from swap.
412 */
413 if (!new_page) {
02098fea 414 new_page = alloc_page_vma(gfp_mask, vma, addr);
1da177e4
LT
415 if (!new_page)
416 break; /* Out of memory */
417 }
418
31a56396
DN
419 /*
420 * call radix_tree_preload() while we can wait.
421 */
5e4c0d97 422 err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
31a56396
DN
423 if (err)
424 break;
425
f000944d
HD
426 /*
427 * Swap entry may have been freed since our caller observed it.
428 */
355cfa73 429 err = swapcache_prepare(entry);
cbab0e4e 430 if (err == -EEXIST) {
31a56396 431 radix_tree_preload_end();
cbab0e4e
RA
432 /*
433 * We might race against get_swap_page() and stumble
434 * across a SWAP_HAS_CACHE swap_map entry whose page
9c1cc2e4 435 * has not been brought into the swapcache yet.
cbab0e4e
RA
436 */
437 cond_resched();
355cfa73 438 continue;
31a56396
DN
439 }
440 if (err) { /* swp entry is obsolete ? */
441 radix_tree_preload_end();
f000944d 442 break;
31a56396 443 }
f000944d 444
2ca4532a 445 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
48c935ad 446 __SetPageLocked(new_page);
fa9949da 447 __SetPageSwapBacked(new_page);
31a56396 448 err = __add_to_swap_cache(new_page, entry);
529ae9aa 449 if (likely(!err)) {
31a56396 450 radix_tree_preload_end();
1da177e4
LT
451 /*
452 * Initiate read into locked page and return.
453 */
c5fdae46 454 lru_cache_add_anon(new_page);
5b999aad 455 *new_page_allocated = true;
1da177e4
LT
456 return new_page;
457 }
31a56396 458 radix_tree_preload_end();
48c935ad 459 __ClearPageLocked(new_page);
2ca4532a
DN
460 /*
461 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
462 * clear SWAP_HAS_CACHE flag.
463 */
75f6d6d2 464 put_swap_page(new_page, entry);
f000944d 465 } while (err != -ENOMEM);
1da177e4
LT
466
467 if (new_page)
09cbfeaf 468 put_page(new_page);
1da177e4
LT
469 return found_page;
470}
46017e95 471
5b999aad
DS
472/*
473 * Locate a page of swap in physical memory, reserving swap cache space
474 * and reading the disk if it is not already cached.
475 * A failure return means that either the page allocation failed or that
476 * the swap entry is no longer in use.
477 */
478struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
23955622 479 struct vm_area_struct *vma, unsigned long addr, bool do_poll)
5b999aad
DS
480{
481 bool page_was_allocated;
482 struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
483 vma, addr, &page_was_allocated);
484
485 if (page_was_allocated)
23955622 486 swap_readpage(retpage, do_poll);
5b999aad
DS
487
488 return retpage;
489}
490
ec560175
HY
491static unsigned int __swapin_nr_pages(unsigned long prev_offset,
492 unsigned long offset,
493 int hits,
494 int max_pages,
495 int prev_win)
579f8290 496{
ec560175 497 unsigned int pages, last_ra;
579f8290
SL
498
499 /*
500 * This heuristic has been found to work well on both sequential and
501 * random loads, swapping to hard disk or to SSD: please don't ask
502 * what the "+ 2" means, it just happens to work well, that's all.
503 */
ec560175 504 pages = hits + 2;
579f8290
SL
505 if (pages == 2) {
506 /*
507 * We can have no readahead hits to judge by: but must not get
508 * stuck here forever, so check for an adjacent offset instead
509 * (and don't even bother to check whether swap type is same).
510 */
511 if (offset != prev_offset + 1 && offset != prev_offset - 1)
512 pages = 1;
579f8290
SL
513 } else {
514 unsigned int roundup = 4;
515 while (roundup < pages)
516 roundup <<= 1;
517 pages = roundup;
518 }
519
520 if (pages > max_pages)
521 pages = max_pages;
522
523 /* Don't shrink readahead too fast */
ec560175 524 last_ra = prev_win / 2;
579f8290
SL
525 if (pages < last_ra)
526 pages = last_ra;
ec560175
HY
527
528 return pages;
529}
530
531static unsigned long swapin_nr_pages(unsigned long offset)
532{
533 static unsigned long prev_offset;
534 unsigned int hits, pages, max_pages;
535 static atomic_t last_readahead_pages;
536
537 max_pages = 1 << READ_ONCE(page_cluster);
538 if (max_pages <= 1)
539 return 1;
540
541 hits = atomic_xchg(&swapin_readahead_hits, 0);
542 pages = __swapin_nr_pages(prev_offset, offset, hits, max_pages,
543 atomic_read(&last_readahead_pages));
544 if (!hits)
545 prev_offset = offset;
579f8290
SL
546 atomic_set(&last_readahead_pages, pages);
547
548 return pages;
549}
550
46017e95 551/**
e9e9b7ec 552 * swap_cluster_readahead - swap in pages in hope we need them soon
46017e95 553 * @entry: swap entry of this memory
7682486b 554 * @gfp_mask: memory allocation flags
e9e9b7ec 555 * @vmf: fault information
46017e95
HD
556 *
557 * Returns the struct page for entry and addr, after queueing swapin.
558 *
559 * Primitive swap readahead code. We simply read an aligned block of
560 * (1 << page_cluster) entries in the swap area. This method is chosen
561 * because it doesn't cost us any seek time. We also make sure to queue
562 * the 'original' request together with the readahead ones...
563 *
564 * This has been extended to use the NUMA policies from the mm triggering
565 * the readahead.
566 *
e9e9b7ec 567 * Caller must hold down_read on the vma->vm_mm if vmf->vma is not NULL.
46017e95 568 */
e9e9b7ec
MK
569struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
570 struct vm_fault *vmf)
46017e95 571{
46017e95 572 struct page *page;
579f8290
SL
573 unsigned long entry_offset = swp_offset(entry);
574 unsigned long offset = entry_offset;
67f96aa2 575 unsigned long start_offset, end_offset;
579f8290 576 unsigned long mask;
e9a6effa 577 struct swap_info_struct *si = swp_swap_info(entry);
3fb5c298 578 struct blk_plug plug;
c4fa6309 579 bool do_poll = true, page_allocated;
e9e9b7ec
MK
580 struct vm_area_struct *vma = vmf->vma;
581 unsigned long addr = vmf->address;
46017e95 582
579f8290
SL
583 mask = swapin_nr_pages(offset) - 1;
584 if (!mask)
585 goto skip;
586
23955622 587 do_poll = false;
67f96aa2
RR
588 /* Read a page_cluster sized and aligned cluster around offset. */
589 start_offset = offset & ~mask;
590 end_offset = offset | mask;
591 if (!start_offset) /* First page is swap header. */
592 start_offset++;
e9a6effa
HY
593 if (end_offset >= si->max)
594 end_offset = si->max - 1;
67f96aa2 595
3fb5c298 596 blk_start_plug(&plug);
67f96aa2 597 for (offset = start_offset; offset <= end_offset ; offset++) {
46017e95 598 /* Ok, do the async read-ahead now */
c4fa6309
HY
599 page = __read_swap_cache_async(
600 swp_entry(swp_type(entry), offset),
601 gfp_mask, vma, addr, &page_allocated);
46017e95 602 if (!page)
67f96aa2 603 continue;
c4fa6309
HY
604 if (page_allocated) {
605 swap_readpage(page, false);
eaf649eb 606 if (offset != entry_offset) {
c4fa6309
HY
607 SetPageReadahead(page);
608 count_vm_event(SWAP_RA);
609 }
cbc65df2 610 }
09cbfeaf 611 put_page(page);
46017e95 612 }
3fb5c298
CE
613 blk_finish_plug(&plug);
614
46017e95 615 lru_add_drain(); /* Push any new pages onto the LRU now */
579f8290 616skip:
23955622 617 return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
46017e95 618}
4b3ef9da
HY
619
620int init_swap_address_space(unsigned int type, unsigned long nr_pages)
621{
622 struct address_space *spaces, *space;
623 unsigned int i, nr;
624
625 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
54f180d3 626 spaces = kvzalloc(sizeof(struct address_space) * nr, GFP_KERNEL);
4b3ef9da
HY
627 if (!spaces)
628 return -ENOMEM;
629 for (i = 0; i < nr; i++) {
630 space = spaces + i;
631 INIT_RADIX_TREE(&space->page_tree, GFP_ATOMIC|__GFP_NOWARN);
632 atomic_set(&space->i_mmap_writable, 0);
633 space->a_ops = &swap_aops;
634 /* swap cache doesn't use writeback related tags */
635 mapping_set_no_writeback_tags(space);
636 spin_lock_init(&space->tree_lock);
637 }
638 nr_swapper_spaces[type] = nr;
639 rcu_assign_pointer(swapper_spaces[type], spaces);
640
641 return 0;
642}
643
644void exit_swap_address_space(unsigned int type)
645{
646 struct address_space *spaces;
647
648 spaces = swapper_spaces[type];
649 nr_swapper_spaces[type] = 0;
650 rcu_assign_pointer(swapper_spaces[type], NULL);
651 synchronize_rcu();
652 kvfree(spaces);
653}
ec560175
HY
654
655static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
656 unsigned long faddr,
657 unsigned long lpfn,
658 unsigned long rpfn,
659 unsigned long *start,
660 unsigned long *end)
661{
662 *start = max3(lpfn, PFN_DOWN(vma->vm_start),
663 PFN_DOWN(faddr & PMD_MASK));
664 *end = min3(rpfn, PFN_DOWN(vma->vm_end),
665 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
666}
667
eaf649eb
MK
668static void swap_ra_info(struct vm_fault *vmf,
669 struct vma_swap_readahead *ra_info)
ec560175
HY
670{
671 struct vm_area_struct *vma = vmf->vma;
eaf649eb 672 unsigned long ra_val;
ec560175
HY
673 swp_entry_t entry;
674 unsigned long faddr, pfn, fpfn;
675 unsigned long start, end;
eaf649eb 676 pte_t *pte, *orig_pte;
ec560175
HY
677 unsigned int max_win, hits, prev_win, win, left;
678#ifndef CONFIG_64BIT
679 pte_t *tpte;
680#endif
681
61b63972
HY
682 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
683 SWAP_RA_ORDER_CEILING);
684 if (max_win == 1) {
eaf649eb
MK
685 ra_info->win = 1;
686 return;
61b63972
HY
687 }
688
ec560175 689 faddr = vmf->address;
eaf649eb
MK
690 orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
691 entry = pte_to_swp_entry(*pte);
692 if ((unlikely(non_swap_entry(entry)))) {
693 pte_unmap(orig_pte);
694 return;
695 }
ec560175 696
ec560175 697 fpfn = PFN_DOWN(faddr);
eaf649eb
MK
698 ra_val = GET_SWAP_RA_VAL(vma);
699 pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
700 prev_win = SWAP_RA_WIN(ra_val);
701 hits = SWAP_RA_HITS(ra_val);
702 ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
ec560175
HY
703 max_win, prev_win);
704 atomic_long_set(&vma->swap_readahead_info,
705 SWAP_RA_VAL(faddr, win, 0));
706
eaf649eb
MK
707 if (win == 1) {
708 pte_unmap(orig_pte);
709 return;
710 }
ec560175
HY
711
712 /* Copy the PTEs because the page table may be unmapped */
713 if (fpfn == pfn + 1)
714 swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
715 else if (pfn == fpfn + 1)
716 swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
717 &start, &end);
718 else {
719 left = (win - 1) / 2;
720 swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
721 &start, &end);
722 }
eaf649eb
MK
723 ra_info->nr_pte = end - start;
724 ra_info->offset = fpfn - start;
725 pte -= ra_info->offset;
ec560175 726#ifdef CONFIG_64BIT
eaf649eb 727 ra_info->ptes = pte;
ec560175 728#else
eaf649eb 729 tpte = ra_info->ptes;
ec560175
HY
730 for (pfn = start; pfn != end; pfn++)
731 *tpte++ = *pte++;
732#endif
eaf649eb 733 pte_unmap(orig_pte);
ec560175
HY
734}
735
e9e9b7ec 736struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
eaf649eb 737 struct vm_fault *vmf)
ec560175
HY
738{
739 struct blk_plug plug;
740 struct vm_area_struct *vma = vmf->vma;
741 struct page *page;
742 pte_t *pte, pentry;
743 swp_entry_t entry;
744 unsigned int i;
745 bool page_allocated;
eaf649eb 746 struct vma_swap_readahead ra_info = {0,};
ec560175 747
eaf649eb
MK
748 swap_ra_info(vmf, &ra_info);
749 if (ra_info.win == 1)
ec560175
HY
750 goto skip;
751
752 blk_start_plug(&plug);
eaf649eb 753 for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
ec560175
HY
754 i++, pte++) {
755 pentry = *pte;
756 if (pte_none(pentry))
757 continue;
758 if (pte_present(pentry))
759 continue;
760 entry = pte_to_swp_entry(pentry);
761 if (unlikely(non_swap_entry(entry)))
762 continue;
763 page = __read_swap_cache_async(entry, gfp_mask, vma,
764 vmf->address, &page_allocated);
765 if (!page)
766 continue;
767 if (page_allocated) {
768 swap_readpage(page, false);
eaf649eb 769 if (i != ra_info.offset) {
ec560175
HY
770 SetPageReadahead(page);
771 count_vm_event(SWAP_RA);
772 }
773 }
774 put_page(page);
775 }
776 blk_finish_plug(&plug);
777 lru_add_drain();
778skip:
779 return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
eaf649eb 780 ra_info.win == 1);
ec560175 781}
d9bfcfdc 782
e9e9b7ec
MK
783/**
784 * swapin_readahead - swap in pages in hope we need them soon
785 * @entry: swap entry of this memory
786 * @gfp_mask: memory allocation flags
787 * @vmf: fault information
788 *
789 * Returns the struct page for entry and addr, after queueing swapin.
790 *
791 * It's a main entry function for swap readahead. By the configuration,
792 * it will read ahead blocks by cluster-based(ie, physical disk based)
793 * or vma-based(ie, virtual address based on faulty address) readahead.
794 */
795struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
796 struct vm_fault *vmf)
797{
798 return swap_use_vma_readahead() ?
799 swap_vma_readahead(entry, gfp_mask, vmf) :
800 swap_cluster_readahead(entry, gfp_mask, vmf);
801}
802
d9bfcfdc
HY
803#ifdef CONFIG_SYSFS
804static ssize_t vma_ra_enabled_show(struct kobject *kobj,
805 struct kobj_attribute *attr, char *buf)
806{
e9e9b7ec 807 return sprintf(buf, "%s\n", enable_vma_readahead ? "true" : "false");
d9bfcfdc
HY
808}
809static ssize_t vma_ra_enabled_store(struct kobject *kobj,
810 struct kobj_attribute *attr,
811 const char *buf, size_t count)
812{
813 if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
e9e9b7ec 814 enable_vma_readahead = true;
d9bfcfdc 815 else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
e9e9b7ec 816 enable_vma_readahead = false;
d9bfcfdc
HY
817 else
818 return -EINVAL;
819
820 return count;
821}
822static struct kobj_attribute vma_ra_enabled_attr =
823 __ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
824 vma_ra_enabled_store);
825
d9bfcfdc
HY
826static struct attribute *swap_attrs[] = {
827 &vma_ra_enabled_attr.attr,
d9bfcfdc
HY
828 NULL,
829};
830
831static struct attribute_group swap_attr_group = {
832 .attrs = swap_attrs,
833};
834
835static int __init swap_init_sysfs(void)
836{
837 int err;
838 struct kobject *swap_kobj;
839
840 swap_kobj = kobject_create_and_add("swap", mm_kobj);
841 if (!swap_kobj) {
842 pr_err("failed to create swap kobject\n");
843 return -ENOMEM;
844 }
845 err = sysfs_create_group(swap_kobj, &swap_attr_group);
846 if (err) {
847 pr_err("failed to register swap group\n");
848 goto delete_obj;
849 }
850 return 0;
851
852delete_obj:
853 kobject_put(swap_kobj);
854 return err;
855}
856subsys_initcall(swap_init_sysfs);
857#endif