]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/swap_state.c
mm, THP, swap: delay splitting THP during swap out
[mirror_ubuntu-artful-kernel.git] / mm / swap_state.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swap_state.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 *
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
8 */
1da177e4 9#include <linux/mm.h>
5a0e3ad6 10#include <linux/gfp.h>
1da177e4
LT
11#include <linux/kernel_stat.h>
12#include <linux/swap.h>
46017e95 13#include <linux/swapops.h>
1da177e4
LT
14#include <linux/init.h>
15#include <linux/pagemap.h>
1da177e4 16#include <linux/backing-dev.h>
3fb5c298 17#include <linux/blkdev.h>
c484d410 18#include <linux/pagevec.h>
b20a3503 19#include <linux/migrate.h>
4b3ef9da 20#include <linux/vmalloc.h>
67afa38e 21#include <linux/swap_slots.h>
38d8b4e6 22#include <linux/huge_mm.h>
1da177e4
LT
23
24#include <asm/pgtable.h>
25
26/*
27 * swapper_space is a fiction, retained to simplify the path through
7eaceacc 28 * vmscan's shrink_page_list.
1da177e4 29 */
f5e54d6e 30static const struct address_space_operations swap_aops = {
1da177e4 31 .writepage = swap_writepage,
62c230bc 32 .set_page_dirty = swap_set_page_dirty,
1c93923c 33#ifdef CONFIG_MIGRATION
e965f963 34 .migratepage = migrate_page,
1c93923c 35#endif
1da177e4
LT
36};
37
4b3ef9da
HY
38struct address_space *swapper_spaces[MAX_SWAPFILES];
39static unsigned int nr_swapper_spaces[MAX_SWAPFILES];
1da177e4
LT
40
41#define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
38d8b4e6 42#define ADD_CACHE_INFO(x, nr) do { swap_cache_info.x += (nr); } while (0)
1da177e4
LT
43
44static struct {
45 unsigned long add_total;
46 unsigned long del_total;
47 unsigned long find_success;
48 unsigned long find_total;
1da177e4
LT
49} swap_cache_info;
50
33806f06
SL
51unsigned long total_swapcache_pages(void)
52{
4b3ef9da 53 unsigned int i, j, nr;
33806f06 54 unsigned long ret = 0;
4b3ef9da 55 struct address_space *spaces;
33806f06 56
4b3ef9da
HY
57 rcu_read_lock();
58 for (i = 0; i < MAX_SWAPFILES; i++) {
59 /*
60 * The corresponding entries in nr_swapper_spaces and
61 * swapper_spaces will be reused only after at least
62 * one grace period. So it is impossible for them
63 * belongs to different usage.
64 */
65 nr = nr_swapper_spaces[i];
66 spaces = rcu_dereference(swapper_spaces[i]);
67 if (!nr || !spaces)
68 continue;
69 for (j = 0; j < nr; j++)
70 ret += spaces[j].nrpages;
71 }
72 rcu_read_unlock();
33806f06
SL
73 return ret;
74}
75
579f8290
SL
76static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
77
1da177e4
LT
78void show_swap_cache_info(void)
79{
33806f06 80 printk("%lu pages in swap cache\n", total_swapcache_pages());
2c97b7fc 81 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
1da177e4 82 swap_cache_info.add_total, swap_cache_info.del_total,
bb63be0a 83 swap_cache_info.find_success, swap_cache_info.find_total);
ec8acf20
SL
84 printk("Free swap = %ldkB\n",
85 get_nr_swap_pages() << (PAGE_SHIFT - 10));
1da177e4
LT
86 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
87}
88
89/*
31a56396 90 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
1da177e4
LT
91 * but sets SwapCache flag and private instead of mapping and index.
92 */
2f772e6c 93int __add_to_swap_cache(struct page *page, swp_entry_t entry)
1da177e4 94{
38d8b4e6 95 int error, i, nr = hpage_nr_pages(page);
33806f06 96 struct address_space *address_space;
38d8b4e6 97 pgoff_t idx = swp_offset(entry);
1da177e4 98
309381fe
SL
99 VM_BUG_ON_PAGE(!PageLocked(page), page);
100 VM_BUG_ON_PAGE(PageSwapCache(page), page);
101 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
51726b12 102
38d8b4e6 103 page_ref_add(page, nr);
31a56396 104 SetPageSwapCache(page);
31a56396 105
33806f06
SL
106 address_space = swap_address_space(entry);
107 spin_lock_irq(&address_space->tree_lock);
38d8b4e6
HY
108 for (i = 0; i < nr; i++) {
109 set_page_private(page + i, entry.val + i);
110 error = radix_tree_insert(&address_space->page_tree,
111 idx + i, page + i);
112 if (unlikely(error))
113 break;
31a56396 114 }
38d8b4e6
HY
115 if (likely(!error)) {
116 address_space->nrpages += nr;
117 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
118 ADD_CACHE_INFO(add_total, nr);
119 } else {
2ca4532a
DN
120 /*
121 * Only the context which have set SWAP_HAS_CACHE flag
122 * would call add_to_swap_cache().
123 * So add_to_swap_cache() doesn't returns -EEXIST.
124 */
125 VM_BUG_ON(error == -EEXIST);
38d8b4e6
HY
126 set_page_private(page + i, 0UL);
127 while (i--) {
128 radix_tree_delete(&address_space->page_tree, idx + i);
129 set_page_private(page + i, 0UL);
130 }
31a56396 131 ClearPageSwapCache(page);
38d8b4e6 132 page_ref_sub(page, nr);
31a56396 133 }
38d8b4e6 134 spin_unlock_irq(&address_space->tree_lock);
31a56396
DN
135
136 return error;
137}
138
139
140int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
141{
142 int error;
143
38d8b4e6 144 error = radix_tree_maybe_preload_order(gfp_mask, compound_order(page));
35c754d7 145 if (!error) {
31a56396 146 error = __add_to_swap_cache(page, entry);
1da177e4 147 radix_tree_preload_end();
fa1de900 148 }
1da177e4
LT
149 return error;
150}
151
1da177e4
LT
152/*
153 * This must be called only on pages that have
154 * been verified to be in the swap cache.
155 */
156void __delete_from_swap_cache(struct page *page)
157{
33806f06 158 struct address_space *address_space;
38d8b4e6
HY
159 int i, nr = hpage_nr_pages(page);
160 swp_entry_t entry;
161 pgoff_t idx;
33806f06 162
309381fe
SL
163 VM_BUG_ON_PAGE(!PageLocked(page), page);
164 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
165 VM_BUG_ON_PAGE(PageWriteback(page), page);
1da177e4 166
33806f06
SL
167 entry.val = page_private(page);
168 address_space = swap_address_space(entry);
38d8b4e6
HY
169 idx = swp_offset(entry);
170 for (i = 0; i < nr; i++) {
171 radix_tree_delete(&address_space->page_tree, idx + i);
172 set_page_private(page + i, 0);
173 }
1da177e4 174 ClearPageSwapCache(page);
38d8b4e6
HY
175 address_space->nrpages -= nr;
176 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
177 ADD_CACHE_INFO(del_total, nr);
1da177e4
LT
178}
179
180/**
181 * add_to_swap - allocate swap space for a page
182 * @page: page we want to move to swap
183 *
184 * Allocate swap space for the page and add the page to the
185 * swap cache. Caller needs to hold the page lock.
186 */
5bc7b8ac 187int add_to_swap(struct page *page, struct list_head *list)
1da177e4
LT
188{
189 swp_entry_t entry;
1da177e4
LT
190 int err;
191
309381fe
SL
192 VM_BUG_ON_PAGE(!PageLocked(page), page);
193 VM_BUG_ON_PAGE(!PageUptodate(page), page);
1da177e4 194
38d8b4e6
HY
195retry:
196 entry = get_swap_page(page);
2ca4532a 197 if (!entry.val)
38d8b4e6
HY
198 goto fail;
199 if (mem_cgroup_try_charge_swap(page, entry))
200 goto fail_free;
3f04f62f 201
2ca4532a
DN
202 /*
203 * Radix-tree node allocations from PF_MEMALLOC contexts could
204 * completely exhaust the page allocator. __GFP_NOMEMALLOC
205 * stops emergency reserves from being allocated.
206 *
207 * TODO: this could cause a theoretical memory reclaim
208 * deadlock in the swap out path.
209 */
210 /*
854e9ed0 211 * Add it to the swap cache.
2ca4532a
DN
212 */
213 err = add_to_swap_cache(page, entry,
214 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
38d8b4e6
HY
215 /* -ENOMEM radix-tree allocation failure */
216 if (err)
bd53b714 217 /*
2ca4532a
DN
218 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
219 * clear SWAP_HAS_CACHE flag.
1da177e4 220 */
38d8b4e6
HY
221 goto fail_free;
222
223 if (PageTransHuge(page)) {
224 err = split_huge_page_to_list(page, list);
225 if (err) {
226 delete_from_swap_cache(page);
227 return 0;
228 }
1da177e4 229 }
38d8b4e6
HY
230
231 return 1;
232
233fail_free:
234 if (PageTransHuge(page))
235 swapcache_free_cluster(entry);
236 else
237 swapcache_free(entry);
238fail:
239 if (PageTransHuge(page) && !split_huge_page_to_list(page, list))
240 goto retry;
241 return 0;
1da177e4
LT
242}
243
244/*
245 * This must be called only on pages that have
246 * been verified to be in the swap cache and locked.
247 * It will never put the page into the free list,
248 * the caller has a reference on the page.
249 */
250void delete_from_swap_cache(struct page *page)
251{
252 swp_entry_t entry;
33806f06 253 struct address_space *address_space;
1da177e4 254
4c21e2f2 255 entry.val = page_private(page);
1da177e4 256
33806f06
SL
257 address_space = swap_address_space(entry);
258 spin_lock_irq(&address_space->tree_lock);
1da177e4 259 __delete_from_swap_cache(page);
33806f06 260 spin_unlock_irq(&address_space->tree_lock);
1da177e4 261
38d8b4e6
HY
262 if (PageTransHuge(page))
263 swapcache_free_cluster(entry);
264 else
265 swapcache_free(entry);
266
267 page_ref_sub(page, hpage_nr_pages(page));
1da177e4
LT
268}
269
1da177e4
LT
270/*
271 * If we are the only user, then try to free up the swap cache.
272 *
273 * Its ok to check for PageSwapCache without the page lock
a2c43eed
HD
274 * here because we are going to recheck again inside
275 * try_to_free_swap() _with_ the lock.
1da177e4
LT
276 * - Marcelo
277 */
278static inline void free_swap_cache(struct page *page)
279{
a2c43eed
HD
280 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
281 try_to_free_swap(page);
1da177e4
LT
282 unlock_page(page);
283 }
284}
285
286/*
287 * Perform a free_page(), also freeing any swap cache associated with
b8072f09 288 * this page if it is the last user of the page.
1da177e4
LT
289 */
290void free_page_and_swap_cache(struct page *page)
291{
292 free_swap_cache(page);
6fcb52a5 293 if (!is_huge_zero_page(page))
770a5370 294 put_page(page);
1da177e4
LT
295}
296
297/*
298 * Passed an array of pages, drop them all from swapcache and then release
299 * them. They are removed from the LRU and freed if this is their last use.
300 */
301void free_pages_and_swap_cache(struct page **pages, int nr)
302{
1da177e4 303 struct page **pagep = pages;
aabfb572 304 int i;
1da177e4
LT
305
306 lru_add_drain();
aabfb572
MH
307 for (i = 0; i < nr; i++)
308 free_swap_cache(pagep[i]);
309 release_pages(pagep, nr, false);
1da177e4
LT
310}
311
312/*
313 * Lookup a swap entry in the swap cache. A found page will be returned
314 * unlocked and with its refcount incremented - we rely on the kernel
315 * lock getting page table operations atomic even if we drop the page
316 * lock before returning.
317 */
318struct page * lookup_swap_cache(swp_entry_t entry)
319{
320 struct page *page;
321
f6ab1f7f 322 page = find_get_page(swap_address_space(entry), swp_offset(entry));
1da177e4 323
38d8b4e6 324 if (page && likely(!PageTransCompound(page))) {
1da177e4 325 INC_CACHE_INFO(find_success);
579f8290
SL
326 if (TestClearPageReadahead(page))
327 atomic_inc(&swapin_readahead_hits);
328 }
1da177e4
LT
329
330 INC_CACHE_INFO(find_total);
331 return page;
332}
333
5b999aad
DS
334struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
335 struct vm_area_struct *vma, unsigned long addr,
336 bool *new_page_allocated)
1da177e4
LT
337{
338 struct page *found_page, *new_page = NULL;
5b999aad 339 struct address_space *swapper_space = swap_address_space(entry);
1da177e4 340 int err;
5b999aad 341 *new_page_allocated = false;
1da177e4
LT
342
343 do {
344 /*
345 * First check the swap cache. Since this is normally
346 * called after lookup_swap_cache() failed, re-calling
347 * that would confuse statistics.
348 */
f6ab1f7f 349 found_page = find_get_page(swapper_space, swp_offset(entry));
1da177e4
LT
350 if (found_page)
351 break;
352
ba81f838
HY
353 /*
354 * Just skip read ahead for unused swap slot.
355 * During swap_off when swap_slot_cache is disabled,
356 * we have to handle the race between putting
357 * swap entry in swap cache and marking swap slot
358 * as SWAP_HAS_CACHE. That's done in later part of code or
359 * else swap_off will be aborted if we return NULL.
360 */
361 if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
362 break;
e8c26ab6 363
1da177e4
LT
364 /*
365 * Get a new page to read into from swap.
366 */
367 if (!new_page) {
02098fea 368 new_page = alloc_page_vma(gfp_mask, vma, addr);
1da177e4
LT
369 if (!new_page)
370 break; /* Out of memory */
371 }
372
31a56396
DN
373 /*
374 * call radix_tree_preload() while we can wait.
375 */
5e4c0d97 376 err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
31a56396
DN
377 if (err)
378 break;
379
f000944d
HD
380 /*
381 * Swap entry may have been freed since our caller observed it.
382 */
355cfa73 383 err = swapcache_prepare(entry);
cbab0e4e 384 if (err == -EEXIST) {
31a56396 385 radix_tree_preload_end();
cbab0e4e
RA
386 /*
387 * We might race against get_swap_page() and stumble
388 * across a SWAP_HAS_CACHE swap_map entry whose page
9c1cc2e4 389 * has not been brought into the swapcache yet.
cbab0e4e
RA
390 */
391 cond_resched();
355cfa73 392 continue;
31a56396
DN
393 }
394 if (err) { /* swp entry is obsolete ? */
395 radix_tree_preload_end();
f000944d 396 break;
31a56396 397 }
f000944d 398
2ca4532a 399 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
48c935ad 400 __SetPageLocked(new_page);
fa9949da 401 __SetPageSwapBacked(new_page);
31a56396 402 err = __add_to_swap_cache(new_page, entry);
529ae9aa 403 if (likely(!err)) {
31a56396 404 radix_tree_preload_end();
1da177e4
LT
405 /*
406 * Initiate read into locked page and return.
407 */
c5fdae46 408 lru_cache_add_anon(new_page);
5b999aad 409 *new_page_allocated = true;
1da177e4
LT
410 return new_page;
411 }
31a56396 412 radix_tree_preload_end();
48c935ad 413 __ClearPageLocked(new_page);
2ca4532a
DN
414 /*
415 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
416 * clear SWAP_HAS_CACHE flag.
417 */
0a31bc97 418 swapcache_free(entry);
f000944d 419 } while (err != -ENOMEM);
1da177e4
LT
420
421 if (new_page)
09cbfeaf 422 put_page(new_page);
1da177e4
LT
423 return found_page;
424}
46017e95 425
5b999aad
DS
426/*
427 * Locate a page of swap in physical memory, reserving swap cache space
428 * and reading the disk if it is not already cached.
429 * A failure return means that either the page allocation failed or that
430 * the swap entry is no longer in use.
431 */
432struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
433 struct vm_area_struct *vma, unsigned long addr)
434{
435 bool page_was_allocated;
436 struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
437 vma, addr, &page_was_allocated);
438
439 if (page_was_allocated)
440 swap_readpage(retpage);
441
442 return retpage;
443}
444
579f8290
SL
445static unsigned long swapin_nr_pages(unsigned long offset)
446{
447 static unsigned long prev_offset;
448 unsigned int pages, max_pages, last_ra;
449 static atomic_t last_readahead_pages;
450
4db0c3c2 451 max_pages = 1 << READ_ONCE(page_cluster);
579f8290
SL
452 if (max_pages <= 1)
453 return 1;
454
455 /*
456 * This heuristic has been found to work well on both sequential and
457 * random loads, swapping to hard disk or to SSD: please don't ask
458 * what the "+ 2" means, it just happens to work well, that's all.
459 */
460 pages = atomic_xchg(&swapin_readahead_hits, 0) + 2;
461 if (pages == 2) {
462 /*
463 * We can have no readahead hits to judge by: but must not get
464 * stuck here forever, so check for an adjacent offset instead
465 * (and don't even bother to check whether swap type is same).
466 */
467 if (offset != prev_offset + 1 && offset != prev_offset - 1)
468 pages = 1;
469 prev_offset = offset;
470 } else {
471 unsigned int roundup = 4;
472 while (roundup < pages)
473 roundup <<= 1;
474 pages = roundup;
475 }
476
477 if (pages > max_pages)
478 pages = max_pages;
479
480 /* Don't shrink readahead too fast */
481 last_ra = atomic_read(&last_readahead_pages) / 2;
482 if (pages < last_ra)
483 pages = last_ra;
484 atomic_set(&last_readahead_pages, pages);
485
486 return pages;
487}
488
46017e95
HD
489/**
490 * swapin_readahead - swap in pages in hope we need them soon
491 * @entry: swap entry of this memory
7682486b 492 * @gfp_mask: memory allocation flags
46017e95
HD
493 * @vma: user vma this address belongs to
494 * @addr: target address for mempolicy
495 *
496 * Returns the struct page for entry and addr, after queueing swapin.
497 *
498 * Primitive swap readahead code. We simply read an aligned block of
499 * (1 << page_cluster) entries in the swap area. This method is chosen
500 * because it doesn't cost us any seek time. We also make sure to queue
501 * the 'original' request together with the readahead ones...
502 *
503 * This has been extended to use the NUMA policies from the mm triggering
504 * the readahead.
505 *
506 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
507 */
02098fea 508struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
46017e95
HD
509 struct vm_area_struct *vma, unsigned long addr)
510{
46017e95 511 struct page *page;
579f8290
SL
512 unsigned long entry_offset = swp_offset(entry);
513 unsigned long offset = entry_offset;
67f96aa2 514 unsigned long start_offset, end_offset;
579f8290 515 unsigned long mask;
3fb5c298 516 struct blk_plug plug;
46017e95 517
579f8290
SL
518 mask = swapin_nr_pages(offset) - 1;
519 if (!mask)
520 goto skip;
521
67f96aa2
RR
522 /* Read a page_cluster sized and aligned cluster around offset. */
523 start_offset = offset & ~mask;
524 end_offset = offset | mask;
525 if (!start_offset) /* First page is swap header. */
526 start_offset++;
527
3fb5c298 528 blk_start_plug(&plug);
67f96aa2 529 for (offset = start_offset; offset <= end_offset ; offset++) {
46017e95
HD
530 /* Ok, do the async read-ahead now */
531 page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
02098fea 532 gfp_mask, vma, addr);
46017e95 533 if (!page)
67f96aa2 534 continue;
38d8b4e6 535 if (offset != entry_offset && likely(!PageTransCompound(page)))
579f8290 536 SetPageReadahead(page);
09cbfeaf 537 put_page(page);
46017e95 538 }
3fb5c298
CE
539 blk_finish_plug(&plug);
540
46017e95 541 lru_add_drain(); /* Push any new pages onto the LRU now */
579f8290 542skip:
02098fea 543 return read_swap_cache_async(entry, gfp_mask, vma, addr);
46017e95 544}
4b3ef9da
HY
545
546int init_swap_address_space(unsigned int type, unsigned long nr_pages)
547{
548 struct address_space *spaces, *space;
549 unsigned int i, nr;
550
551 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
54f180d3 552 spaces = kvzalloc(sizeof(struct address_space) * nr, GFP_KERNEL);
4b3ef9da
HY
553 if (!spaces)
554 return -ENOMEM;
555 for (i = 0; i < nr; i++) {
556 space = spaces + i;
557 INIT_RADIX_TREE(&space->page_tree, GFP_ATOMIC|__GFP_NOWARN);
558 atomic_set(&space->i_mmap_writable, 0);
559 space->a_ops = &swap_aops;
560 /* swap cache doesn't use writeback related tags */
561 mapping_set_no_writeback_tags(space);
562 spin_lock_init(&space->tree_lock);
563 }
564 nr_swapper_spaces[type] = nr;
565 rcu_assign_pointer(swapper_spaces[type], spaces);
566
567 return 0;
568}
569
570void exit_swap_address_space(unsigned int type)
571{
572 struct address_space *spaces;
573
574 spaces = swapper_spaces[type];
575 nr_swapper_spaces[type] = 0;
576 rcu_assign_pointer(swapper_spaces[type], NULL);
577 synchronize_rcu();
578 kvfree(spaces);
579}