]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
1da177e4 LT |
2 | /* |
3 | * linux/mm/swap_state.c | |
4 | * | |
5 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
6 | * Swap reorganised 29.12.95, Stephen Tweedie | |
7 | * | |
8 | * Rewritten to use page cache, (C) 1998 Stephen Tweedie | |
9 | */ | |
1da177e4 | 10 | #include <linux/mm.h> |
5a0e3ad6 | 11 | #include <linux/gfp.h> |
1da177e4 LT |
12 | #include <linux/kernel_stat.h> |
13 | #include <linux/swap.h> | |
46017e95 | 14 | #include <linux/swapops.h> |
1da177e4 LT |
15 | #include <linux/init.h> |
16 | #include <linux/pagemap.h> | |
1da177e4 | 17 | #include <linux/backing-dev.h> |
3fb5c298 | 18 | #include <linux/blkdev.h> |
c484d410 | 19 | #include <linux/pagevec.h> |
b20a3503 | 20 | #include <linux/migrate.h> |
4b3ef9da | 21 | #include <linux/vmalloc.h> |
67afa38e | 22 | #include <linux/swap_slots.h> |
38d8b4e6 | 23 | #include <linux/huge_mm.h> |
1da177e4 LT |
24 | |
25 | #include <asm/pgtable.h> | |
26 | ||
27 | /* | |
28 | * swapper_space is a fiction, retained to simplify the path through | |
7eaceacc | 29 | * vmscan's shrink_page_list. |
1da177e4 | 30 | */ |
f5e54d6e | 31 | static const struct address_space_operations swap_aops = { |
1da177e4 | 32 | .writepage = swap_writepage, |
62c230bc | 33 | .set_page_dirty = swap_set_page_dirty, |
1c93923c | 34 | #ifdef CONFIG_MIGRATION |
e965f963 | 35 | .migratepage = migrate_page, |
1c93923c | 36 | #endif |
1da177e4 LT |
37 | }; |
38 | ||
783cb68e CD |
39 | struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly; |
40 | static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly; | |
f5c754d6 | 41 | static bool enable_vma_readahead __read_mostly = true; |
ec560175 | 42 | |
ec560175 HY |
43 | #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2) |
44 | #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1) | |
45 | #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK | |
46 | #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK) | |
47 | ||
48 | #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK) | |
49 | #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT) | |
50 | #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK) | |
51 | ||
52 | #define SWAP_RA_VAL(addr, win, hits) \ | |
53 | (((addr) & PAGE_MASK) | \ | |
54 | (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \ | |
55 | ((hits) & SWAP_RA_HITS_MASK)) | |
56 | ||
57 | /* Initial readahead hits is 4 to start up with a small window */ | |
58 | #define GET_SWAP_RA_VAL(vma) \ | |
59 | (atomic_long_read(&(vma)->swap_readahead_info) ? : 4) | |
1da177e4 LT |
60 | |
61 | #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0) | |
38d8b4e6 | 62 | #define ADD_CACHE_INFO(x, nr) do { swap_cache_info.x += (nr); } while (0) |
1da177e4 LT |
63 | |
64 | static struct { | |
65 | unsigned long add_total; | |
66 | unsigned long del_total; | |
67 | unsigned long find_success; | |
68 | unsigned long find_total; | |
1da177e4 LT |
69 | } swap_cache_info; |
70 | ||
33806f06 SL |
71 | unsigned long total_swapcache_pages(void) |
72 | { | |
4b3ef9da | 73 | unsigned int i, j, nr; |
33806f06 | 74 | unsigned long ret = 0; |
4b3ef9da | 75 | struct address_space *spaces; |
054f1d1f | 76 | struct swap_info_struct *si; |
33806f06 | 77 | |
4b3ef9da | 78 | for (i = 0; i < MAX_SWAPFILES; i++) { |
054f1d1f HY |
79 | swp_entry_t entry = swp_entry(i, 1); |
80 | ||
81 | /* Avoid get_swap_device() to warn for bad swap entry */ | |
82 | if (!swp_swap_info(entry)) | |
83 | continue; | |
84 | /* Prevent swapoff to free swapper_spaces */ | |
85 | si = get_swap_device(entry); | |
86 | if (!si) | |
4b3ef9da | 87 | continue; |
054f1d1f HY |
88 | nr = nr_swapper_spaces[i]; |
89 | spaces = swapper_spaces[i]; | |
4b3ef9da HY |
90 | for (j = 0; j < nr; j++) |
91 | ret += spaces[j].nrpages; | |
054f1d1f | 92 | put_swap_device(si); |
4b3ef9da | 93 | } |
33806f06 SL |
94 | return ret; |
95 | } | |
96 | ||
579f8290 SL |
97 | static atomic_t swapin_readahead_hits = ATOMIC_INIT(4); |
98 | ||
1da177e4 LT |
99 | void show_swap_cache_info(void) |
100 | { | |
33806f06 | 101 | printk("%lu pages in swap cache\n", total_swapcache_pages()); |
2c97b7fc | 102 | printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n", |
1da177e4 | 103 | swap_cache_info.add_total, swap_cache_info.del_total, |
bb63be0a | 104 | swap_cache_info.find_success, swap_cache_info.find_total); |
ec8acf20 SL |
105 | printk("Free swap = %ldkB\n", |
106 | get_nr_swap_pages() << (PAGE_SHIFT - 10)); | |
1da177e4 LT |
107 | printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); |
108 | } | |
109 | ||
110 | /* | |
8d93b41c | 111 | * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space, |
1da177e4 LT |
112 | * but sets SwapCache flag and private instead of mapping and index. |
113 | */ | |
8d93b41c | 114 | int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp) |
1da177e4 | 115 | { |
8d93b41c | 116 | struct address_space *address_space = swap_address_space(entry); |
38d8b4e6 | 117 | pgoff_t idx = swp_offset(entry); |
8d93b41c | 118 | XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page)); |
d8c6546b | 119 | unsigned long i, nr = compound_nr(page); |
1da177e4 | 120 | |
309381fe SL |
121 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
122 | VM_BUG_ON_PAGE(PageSwapCache(page), page); | |
123 | VM_BUG_ON_PAGE(!PageSwapBacked(page), page); | |
51726b12 | 124 | |
38d8b4e6 | 125 | page_ref_add(page, nr); |
31a56396 | 126 | SetPageSwapCache(page); |
31a56396 | 127 | |
8d93b41c MW |
128 | do { |
129 | xas_lock_irq(&xas); | |
130 | xas_create_range(&xas); | |
131 | if (xas_error(&xas)) | |
132 | goto unlock; | |
133 | for (i = 0; i < nr; i++) { | |
134 | VM_BUG_ON_PAGE(xas.xa_index != idx + i, page); | |
135 | set_page_private(page + i, entry.val + i); | |
69bf4b6b | 136 | xas_store(&xas, page + i); |
8d93b41c MW |
137 | xas_next(&xas); |
138 | } | |
38d8b4e6 HY |
139 | address_space->nrpages += nr; |
140 | __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); | |
141 | ADD_CACHE_INFO(add_total, nr); | |
8d93b41c MW |
142 | unlock: |
143 | xas_unlock_irq(&xas); | |
144 | } while (xas_nomem(&xas, gfp)); | |
31a56396 | 145 | |
8d93b41c MW |
146 | if (!xas_error(&xas)) |
147 | return 0; | |
31a56396 | 148 | |
8d93b41c MW |
149 | ClearPageSwapCache(page); |
150 | page_ref_sub(page, nr); | |
151 | return xas_error(&xas); | |
1da177e4 LT |
152 | } |
153 | ||
1da177e4 LT |
154 | /* |
155 | * This must be called only on pages that have | |
156 | * been verified to be in the swap cache. | |
157 | */ | |
4e17ec25 | 158 | void __delete_from_swap_cache(struct page *page, swp_entry_t entry) |
1da177e4 | 159 | { |
4e17ec25 | 160 | struct address_space *address_space = swap_address_space(entry); |
38d8b4e6 | 161 | int i, nr = hpage_nr_pages(page); |
4e17ec25 MW |
162 | pgoff_t idx = swp_offset(entry); |
163 | XA_STATE(xas, &address_space->i_pages, idx); | |
33806f06 | 164 | |
309381fe SL |
165 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
166 | VM_BUG_ON_PAGE(!PageSwapCache(page), page); | |
167 | VM_BUG_ON_PAGE(PageWriteback(page), page); | |
1da177e4 | 168 | |
38d8b4e6 | 169 | for (i = 0; i < nr; i++) { |
4e17ec25 | 170 | void *entry = xas_store(&xas, NULL); |
69bf4b6b | 171 | VM_BUG_ON_PAGE(entry != page + i, entry); |
38d8b4e6 | 172 | set_page_private(page + i, 0); |
4e17ec25 | 173 | xas_next(&xas); |
38d8b4e6 | 174 | } |
1da177e4 | 175 | ClearPageSwapCache(page); |
38d8b4e6 HY |
176 | address_space->nrpages -= nr; |
177 | __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); | |
178 | ADD_CACHE_INFO(del_total, nr); | |
1da177e4 LT |
179 | } |
180 | ||
181 | /** | |
182 | * add_to_swap - allocate swap space for a page | |
183 | * @page: page we want to move to swap | |
184 | * | |
185 | * Allocate swap space for the page and add the page to the | |
186 | * swap cache. Caller needs to hold the page lock. | |
187 | */ | |
0f074658 | 188 | int add_to_swap(struct page *page) |
1da177e4 LT |
189 | { |
190 | swp_entry_t entry; | |
1da177e4 LT |
191 | int err; |
192 | ||
309381fe SL |
193 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
194 | VM_BUG_ON_PAGE(!PageUptodate(page), page); | |
1da177e4 | 195 | |
38d8b4e6 | 196 | entry = get_swap_page(page); |
2ca4532a | 197 | if (!entry.val) |
0f074658 MK |
198 | return 0; |
199 | ||
2ca4532a | 200 | /* |
8d93b41c | 201 | * XArray node allocations from PF_MEMALLOC contexts could |
2ca4532a DN |
202 | * completely exhaust the page allocator. __GFP_NOMEMALLOC |
203 | * stops emergency reserves from being allocated. | |
204 | * | |
205 | * TODO: this could cause a theoretical memory reclaim | |
206 | * deadlock in the swap out path. | |
207 | */ | |
208 | /* | |
854e9ed0 | 209 | * Add it to the swap cache. |
2ca4532a DN |
210 | */ |
211 | err = add_to_swap_cache(page, entry, | |
212 | __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN); | |
38d8b4e6 | 213 | if (err) |
bd53b714 | 214 | /* |
2ca4532a DN |
215 | * add_to_swap_cache() doesn't return -EEXIST, so we can safely |
216 | * clear SWAP_HAS_CACHE flag. | |
1da177e4 | 217 | */ |
0f074658 | 218 | goto fail; |
9625456c SL |
219 | /* |
220 | * Normally the page will be dirtied in unmap because its pte should be | |
221 | * dirty. A special case is MADV_FREE page. The page'e pte could have | |
222 | * dirty bit cleared but the page's SwapBacked bit is still set because | |
223 | * clearing the dirty bit and SwapBacked bit has no lock protected. For | |
224 | * such page, unmap will not set dirty bit for it, so page reclaim will | |
225 | * not write the page out. This can cause data corruption when the page | |
226 | * is swap in later. Always setting the dirty bit for the page solves | |
227 | * the problem. | |
228 | */ | |
229 | set_page_dirty(page); | |
38d8b4e6 HY |
230 | |
231 | return 1; | |
232 | ||
38d8b4e6 | 233 | fail: |
0f074658 | 234 | put_swap_page(page, entry); |
38d8b4e6 | 235 | return 0; |
1da177e4 LT |
236 | } |
237 | ||
238 | /* | |
239 | * This must be called only on pages that have | |
240 | * been verified to be in the swap cache and locked. | |
241 | * It will never put the page into the free list, | |
242 | * the caller has a reference on the page. | |
243 | */ | |
244 | void delete_from_swap_cache(struct page *page) | |
245 | { | |
4e17ec25 MW |
246 | swp_entry_t entry = { .val = page_private(page) }; |
247 | struct address_space *address_space = swap_address_space(entry); | |
1da177e4 | 248 | |
b93b0163 | 249 | xa_lock_irq(&address_space->i_pages); |
4e17ec25 | 250 | __delete_from_swap_cache(page, entry); |
b93b0163 | 251 | xa_unlock_irq(&address_space->i_pages); |
1da177e4 | 252 | |
75f6d6d2 | 253 | put_swap_page(page, entry); |
38d8b4e6 | 254 | page_ref_sub(page, hpage_nr_pages(page)); |
1da177e4 LT |
255 | } |
256 | ||
1da177e4 LT |
257 | /* |
258 | * If we are the only user, then try to free up the swap cache. | |
259 | * | |
260 | * Its ok to check for PageSwapCache without the page lock | |
a2c43eed HD |
261 | * here because we are going to recheck again inside |
262 | * try_to_free_swap() _with_ the lock. | |
1da177e4 LT |
263 | * - Marcelo |
264 | */ | |
265 | static inline void free_swap_cache(struct page *page) | |
266 | { | |
a2c43eed HD |
267 | if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) { |
268 | try_to_free_swap(page); | |
1da177e4 LT |
269 | unlock_page(page); |
270 | } | |
271 | } | |
272 | ||
273 | /* | |
274 | * Perform a free_page(), also freeing any swap cache associated with | |
b8072f09 | 275 | * this page if it is the last user of the page. |
1da177e4 LT |
276 | */ |
277 | void free_page_and_swap_cache(struct page *page) | |
278 | { | |
279 | free_swap_cache(page); | |
6fcb52a5 | 280 | if (!is_huge_zero_page(page)) |
770a5370 | 281 | put_page(page); |
1da177e4 LT |
282 | } |
283 | ||
284 | /* | |
285 | * Passed an array of pages, drop them all from swapcache and then release | |
286 | * them. They are removed from the LRU and freed if this is their last use. | |
287 | */ | |
288 | void free_pages_and_swap_cache(struct page **pages, int nr) | |
289 | { | |
1da177e4 | 290 | struct page **pagep = pages; |
aabfb572 | 291 | int i; |
1da177e4 LT |
292 | |
293 | lru_add_drain(); | |
aabfb572 MH |
294 | for (i = 0; i < nr; i++) |
295 | free_swap_cache(pagep[i]); | |
c6f92f9f | 296 | release_pages(pagep, nr); |
1da177e4 LT |
297 | } |
298 | ||
e9e9b7ec MK |
299 | static inline bool swap_use_vma_readahead(void) |
300 | { | |
301 | return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap); | |
302 | } | |
303 | ||
1da177e4 LT |
304 | /* |
305 | * Lookup a swap entry in the swap cache. A found page will be returned | |
306 | * unlocked and with its refcount incremented - we rely on the kernel | |
307 | * lock getting page table operations atomic even if we drop the page | |
308 | * lock before returning. | |
309 | */ | |
ec560175 HY |
310 | struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma, |
311 | unsigned long addr) | |
1da177e4 LT |
312 | { |
313 | struct page *page; | |
eb085574 | 314 | struct swap_info_struct *si; |
1da177e4 | 315 | |
eb085574 HY |
316 | si = get_swap_device(entry); |
317 | if (!si) | |
318 | return NULL; | |
f6ab1f7f | 319 | page = find_get_page(swap_address_space(entry), swp_offset(entry)); |
eb085574 | 320 | put_swap_device(si); |
1da177e4 | 321 | |
ec560175 HY |
322 | INC_CACHE_INFO(find_total); |
323 | if (page) { | |
eaf649eb MK |
324 | bool vma_ra = swap_use_vma_readahead(); |
325 | bool readahead; | |
326 | ||
1da177e4 | 327 | INC_CACHE_INFO(find_success); |
eaf649eb MK |
328 | /* |
329 | * At the moment, we don't support PG_readahead for anon THP | |
330 | * so let's bail out rather than confusing the readahead stat. | |
331 | */ | |
ec560175 HY |
332 | if (unlikely(PageTransCompound(page))) |
333 | return page; | |
eaf649eb | 334 | |
ec560175 | 335 | readahead = TestClearPageReadahead(page); |
eaf649eb MK |
336 | if (vma && vma_ra) { |
337 | unsigned long ra_val; | |
338 | int win, hits; | |
339 | ||
340 | ra_val = GET_SWAP_RA_VAL(vma); | |
341 | win = SWAP_RA_WIN(ra_val); | |
342 | hits = SWAP_RA_HITS(ra_val); | |
ec560175 HY |
343 | if (readahead) |
344 | hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX); | |
345 | atomic_long_set(&vma->swap_readahead_info, | |
346 | SWAP_RA_VAL(addr, win, hits)); | |
347 | } | |
eaf649eb | 348 | |
ec560175 | 349 | if (readahead) { |
cbc65df2 | 350 | count_vm_event(SWAP_RA_HIT); |
eaf649eb | 351 | if (!vma || !vma_ra) |
ec560175 | 352 | atomic_inc(&swapin_readahead_hits); |
cbc65df2 | 353 | } |
579f8290 | 354 | } |
eaf649eb | 355 | |
1da177e4 LT |
356 | return page; |
357 | } | |
358 | ||
5b999aad DS |
359 | struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, |
360 | struct vm_area_struct *vma, unsigned long addr, | |
361 | bool *new_page_allocated) | |
1da177e4 | 362 | { |
eb085574 HY |
363 | struct page *found_page = NULL, *new_page = NULL; |
364 | struct swap_info_struct *si; | |
1da177e4 | 365 | int err; |
5b999aad | 366 | *new_page_allocated = false; |
1da177e4 LT |
367 | |
368 | do { | |
369 | /* | |
370 | * First check the swap cache. Since this is normally | |
371 | * called after lookup_swap_cache() failed, re-calling | |
372 | * that would confuse statistics. | |
373 | */ | |
eb085574 HY |
374 | si = get_swap_device(entry); |
375 | if (!si) | |
376 | break; | |
377 | found_page = find_get_page(swap_address_space(entry), | |
378 | swp_offset(entry)); | |
379 | put_swap_device(si); | |
1da177e4 LT |
380 | if (found_page) |
381 | break; | |
382 | ||
ba81f838 HY |
383 | /* |
384 | * Just skip read ahead for unused swap slot. | |
385 | * During swap_off when swap_slot_cache is disabled, | |
386 | * we have to handle the race between putting | |
387 | * swap entry in swap cache and marking swap slot | |
388 | * as SWAP_HAS_CACHE. That's done in later part of code or | |
389 | * else swap_off will be aborted if we return NULL. | |
390 | */ | |
391 | if (!__swp_swapcount(entry) && swap_slot_cache_enabled) | |
392 | break; | |
e8c26ab6 | 393 | |
1da177e4 LT |
394 | /* |
395 | * Get a new page to read into from swap. | |
396 | */ | |
397 | if (!new_page) { | |
02098fea | 398 | new_page = alloc_page_vma(gfp_mask, vma, addr); |
1da177e4 LT |
399 | if (!new_page) |
400 | break; /* Out of memory */ | |
401 | } | |
402 | ||
f000944d HD |
403 | /* |
404 | * Swap entry may have been freed since our caller observed it. | |
405 | */ | |
355cfa73 | 406 | err = swapcache_prepare(entry); |
cbab0e4e | 407 | if (err == -EEXIST) { |
cbab0e4e RA |
408 | /* |
409 | * We might race against get_swap_page() and stumble | |
410 | * across a SWAP_HAS_CACHE swap_map entry whose page | |
9c1cc2e4 | 411 | * has not been brought into the swapcache yet. |
cbab0e4e RA |
412 | */ |
413 | cond_resched(); | |
355cfa73 | 414 | continue; |
8d93b41c | 415 | } else if (err) /* swp entry is obsolete ? */ |
f000944d HD |
416 | break; |
417 | ||
8d93b41c | 418 | /* May fail (-ENOMEM) if XArray node allocation failed. */ |
48c935ad | 419 | __SetPageLocked(new_page); |
fa9949da | 420 | __SetPageSwapBacked(new_page); |
8d93b41c | 421 | err = add_to_swap_cache(new_page, entry, gfp_mask & GFP_KERNEL); |
529ae9aa | 422 | if (likely(!err)) { |
8d93b41c | 423 | /* Initiate read into locked page */ |
1899ad18 | 424 | SetPageWorkingset(new_page); |
c5fdae46 | 425 | lru_cache_add_anon(new_page); |
5b999aad | 426 | *new_page_allocated = true; |
1da177e4 LT |
427 | return new_page; |
428 | } | |
48c935ad | 429 | __ClearPageLocked(new_page); |
2ca4532a DN |
430 | /* |
431 | * add_to_swap_cache() doesn't return -EEXIST, so we can safely | |
432 | * clear SWAP_HAS_CACHE flag. | |
433 | */ | |
75f6d6d2 | 434 | put_swap_page(new_page, entry); |
f000944d | 435 | } while (err != -ENOMEM); |
1da177e4 LT |
436 | |
437 | if (new_page) | |
09cbfeaf | 438 | put_page(new_page); |
1da177e4 LT |
439 | return found_page; |
440 | } | |
46017e95 | 441 | |
5b999aad DS |
442 | /* |
443 | * Locate a page of swap in physical memory, reserving swap cache space | |
444 | * and reading the disk if it is not already cached. | |
445 | * A failure return means that either the page allocation failed or that | |
446 | * the swap entry is no longer in use. | |
447 | */ | |
448 | struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, | |
23955622 | 449 | struct vm_area_struct *vma, unsigned long addr, bool do_poll) |
5b999aad DS |
450 | { |
451 | bool page_was_allocated; | |
452 | struct page *retpage = __read_swap_cache_async(entry, gfp_mask, | |
453 | vma, addr, &page_was_allocated); | |
454 | ||
455 | if (page_was_allocated) | |
23955622 | 456 | swap_readpage(retpage, do_poll); |
5b999aad DS |
457 | |
458 | return retpage; | |
459 | } | |
460 | ||
ec560175 HY |
461 | static unsigned int __swapin_nr_pages(unsigned long prev_offset, |
462 | unsigned long offset, | |
463 | int hits, | |
464 | int max_pages, | |
465 | int prev_win) | |
579f8290 | 466 | { |
ec560175 | 467 | unsigned int pages, last_ra; |
579f8290 SL |
468 | |
469 | /* | |
470 | * This heuristic has been found to work well on both sequential and | |
471 | * random loads, swapping to hard disk or to SSD: please don't ask | |
472 | * what the "+ 2" means, it just happens to work well, that's all. | |
473 | */ | |
ec560175 | 474 | pages = hits + 2; |
579f8290 SL |
475 | if (pages == 2) { |
476 | /* | |
477 | * We can have no readahead hits to judge by: but must not get | |
478 | * stuck here forever, so check for an adjacent offset instead | |
479 | * (and don't even bother to check whether swap type is same). | |
480 | */ | |
481 | if (offset != prev_offset + 1 && offset != prev_offset - 1) | |
482 | pages = 1; | |
579f8290 SL |
483 | } else { |
484 | unsigned int roundup = 4; | |
485 | while (roundup < pages) | |
486 | roundup <<= 1; | |
487 | pages = roundup; | |
488 | } | |
489 | ||
490 | if (pages > max_pages) | |
491 | pages = max_pages; | |
492 | ||
493 | /* Don't shrink readahead too fast */ | |
ec560175 | 494 | last_ra = prev_win / 2; |
579f8290 SL |
495 | if (pages < last_ra) |
496 | pages = last_ra; | |
ec560175 HY |
497 | |
498 | return pages; | |
499 | } | |
500 | ||
501 | static unsigned long swapin_nr_pages(unsigned long offset) | |
502 | { | |
503 | static unsigned long prev_offset; | |
504 | unsigned int hits, pages, max_pages; | |
505 | static atomic_t last_readahead_pages; | |
506 | ||
507 | max_pages = 1 << READ_ONCE(page_cluster); | |
508 | if (max_pages <= 1) | |
509 | return 1; | |
510 | ||
511 | hits = atomic_xchg(&swapin_readahead_hits, 0); | |
512 | pages = __swapin_nr_pages(prev_offset, offset, hits, max_pages, | |
513 | atomic_read(&last_readahead_pages)); | |
514 | if (!hits) | |
515 | prev_offset = offset; | |
579f8290 SL |
516 | atomic_set(&last_readahead_pages, pages); |
517 | ||
518 | return pages; | |
519 | } | |
520 | ||
46017e95 | 521 | /** |
e9e9b7ec | 522 | * swap_cluster_readahead - swap in pages in hope we need them soon |
46017e95 | 523 | * @entry: swap entry of this memory |
7682486b | 524 | * @gfp_mask: memory allocation flags |
e9e9b7ec | 525 | * @vmf: fault information |
46017e95 HD |
526 | * |
527 | * Returns the struct page for entry and addr, after queueing swapin. | |
528 | * | |
529 | * Primitive swap readahead code. We simply read an aligned block of | |
530 | * (1 << page_cluster) entries in the swap area. This method is chosen | |
531 | * because it doesn't cost us any seek time. We also make sure to queue | |
532 | * the 'original' request together with the readahead ones... | |
533 | * | |
534 | * This has been extended to use the NUMA policies from the mm triggering | |
535 | * the readahead. | |
536 | * | |
e9f59873 | 537 | * Caller must hold read mmap_sem if vmf->vma is not NULL. |
46017e95 | 538 | */ |
e9e9b7ec MK |
539 | struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask, |
540 | struct vm_fault *vmf) | |
46017e95 | 541 | { |
46017e95 | 542 | struct page *page; |
579f8290 SL |
543 | unsigned long entry_offset = swp_offset(entry); |
544 | unsigned long offset = entry_offset; | |
67f96aa2 | 545 | unsigned long start_offset, end_offset; |
579f8290 | 546 | unsigned long mask; |
e9a6effa | 547 | struct swap_info_struct *si = swp_swap_info(entry); |
3fb5c298 | 548 | struct blk_plug plug; |
c4fa6309 | 549 | bool do_poll = true, page_allocated; |
e9e9b7ec MK |
550 | struct vm_area_struct *vma = vmf->vma; |
551 | unsigned long addr = vmf->address; | |
46017e95 | 552 | |
579f8290 SL |
553 | mask = swapin_nr_pages(offset) - 1; |
554 | if (!mask) | |
555 | goto skip; | |
556 | ||
8fd2e0b5 YS |
557 | /* Test swap type to make sure the dereference is safe */ |
558 | if (likely(si->flags & (SWP_BLKDEV | SWP_FS))) { | |
559 | struct inode *inode = si->swap_file->f_mapping->host; | |
560 | if (inode_read_congested(inode)) | |
561 | goto skip; | |
562 | } | |
563 | ||
23955622 | 564 | do_poll = false; |
67f96aa2 RR |
565 | /* Read a page_cluster sized and aligned cluster around offset. */ |
566 | start_offset = offset & ~mask; | |
567 | end_offset = offset | mask; | |
568 | if (!start_offset) /* First page is swap header. */ | |
569 | start_offset++; | |
e9a6effa HY |
570 | if (end_offset >= si->max) |
571 | end_offset = si->max - 1; | |
67f96aa2 | 572 | |
3fb5c298 | 573 | blk_start_plug(&plug); |
67f96aa2 | 574 | for (offset = start_offset; offset <= end_offset ; offset++) { |
46017e95 | 575 | /* Ok, do the async read-ahead now */ |
c4fa6309 HY |
576 | page = __read_swap_cache_async( |
577 | swp_entry(swp_type(entry), offset), | |
578 | gfp_mask, vma, addr, &page_allocated); | |
46017e95 | 579 | if (!page) |
67f96aa2 | 580 | continue; |
c4fa6309 HY |
581 | if (page_allocated) { |
582 | swap_readpage(page, false); | |
eaf649eb | 583 | if (offset != entry_offset) { |
c4fa6309 HY |
584 | SetPageReadahead(page); |
585 | count_vm_event(SWAP_RA); | |
586 | } | |
cbc65df2 | 587 | } |
09cbfeaf | 588 | put_page(page); |
46017e95 | 589 | } |
3fb5c298 CE |
590 | blk_finish_plug(&plug); |
591 | ||
46017e95 | 592 | lru_add_drain(); /* Push any new pages onto the LRU now */ |
579f8290 | 593 | skip: |
23955622 | 594 | return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll); |
46017e95 | 595 | } |
4b3ef9da HY |
596 | |
597 | int init_swap_address_space(unsigned int type, unsigned long nr_pages) | |
598 | { | |
599 | struct address_space *spaces, *space; | |
600 | unsigned int i, nr; | |
601 | ||
602 | nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES); | |
778e1cdd | 603 | spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL); |
4b3ef9da HY |
604 | if (!spaces) |
605 | return -ENOMEM; | |
606 | for (i = 0; i < nr; i++) { | |
607 | space = spaces + i; | |
a2833486 | 608 | xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ); |
4b3ef9da HY |
609 | atomic_set(&space->i_mmap_writable, 0); |
610 | space->a_ops = &swap_aops; | |
611 | /* swap cache doesn't use writeback related tags */ | |
612 | mapping_set_no_writeback_tags(space); | |
4b3ef9da HY |
613 | } |
614 | nr_swapper_spaces[type] = nr; | |
054f1d1f | 615 | swapper_spaces[type] = spaces; |
4b3ef9da HY |
616 | |
617 | return 0; | |
618 | } | |
619 | ||
620 | void exit_swap_address_space(unsigned int type) | |
621 | { | |
054f1d1f | 622 | kvfree(swapper_spaces[type]); |
4b3ef9da | 623 | nr_swapper_spaces[type] = 0; |
054f1d1f | 624 | swapper_spaces[type] = NULL; |
4b3ef9da | 625 | } |
ec560175 HY |
626 | |
627 | static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma, | |
628 | unsigned long faddr, | |
629 | unsigned long lpfn, | |
630 | unsigned long rpfn, | |
631 | unsigned long *start, | |
632 | unsigned long *end) | |
633 | { | |
634 | *start = max3(lpfn, PFN_DOWN(vma->vm_start), | |
635 | PFN_DOWN(faddr & PMD_MASK)); | |
636 | *end = min3(rpfn, PFN_DOWN(vma->vm_end), | |
637 | PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE)); | |
638 | } | |
639 | ||
eaf649eb MK |
640 | static void swap_ra_info(struct vm_fault *vmf, |
641 | struct vma_swap_readahead *ra_info) | |
ec560175 HY |
642 | { |
643 | struct vm_area_struct *vma = vmf->vma; | |
eaf649eb | 644 | unsigned long ra_val; |
ec560175 HY |
645 | swp_entry_t entry; |
646 | unsigned long faddr, pfn, fpfn; | |
647 | unsigned long start, end; | |
eaf649eb | 648 | pte_t *pte, *orig_pte; |
ec560175 HY |
649 | unsigned int max_win, hits, prev_win, win, left; |
650 | #ifndef CONFIG_64BIT | |
651 | pte_t *tpte; | |
652 | #endif | |
653 | ||
61b63972 HY |
654 | max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster), |
655 | SWAP_RA_ORDER_CEILING); | |
656 | if (max_win == 1) { | |
eaf649eb MK |
657 | ra_info->win = 1; |
658 | return; | |
61b63972 HY |
659 | } |
660 | ||
ec560175 | 661 | faddr = vmf->address; |
eaf649eb MK |
662 | orig_pte = pte = pte_offset_map(vmf->pmd, faddr); |
663 | entry = pte_to_swp_entry(*pte); | |
664 | if ((unlikely(non_swap_entry(entry)))) { | |
665 | pte_unmap(orig_pte); | |
666 | return; | |
667 | } | |
ec560175 | 668 | |
ec560175 | 669 | fpfn = PFN_DOWN(faddr); |
eaf649eb MK |
670 | ra_val = GET_SWAP_RA_VAL(vma); |
671 | pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val)); | |
672 | prev_win = SWAP_RA_WIN(ra_val); | |
673 | hits = SWAP_RA_HITS(ra_val); | |
674 | ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits, | |
ec560175 HY |
675 | max_win, prev_win); |
676 | atomic_long_set(&vma->swap_readahead_info, | |
677 | SWAP_RA_VAL(faddr, win, 0)); | |
678 | ||
eaf649eb MK |
679 | if (win == 1) { |
680 | pte_unmap(orig_pte); | |
681 | return; | |
682 | } | |
ec560175 HY |
683 | |
684 | /* Copy the PTEs because the page table may be unmapped */ | |
685 | if (fpfn == pfn + 1) | |
686 | swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end); | |
687 | else if (pfn == fpfn + 1) | |
688 | swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1, | |
689 | &start, &end); | |
690 | else { | |
691 | left = (win - 1) / 2; | |
692 | swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left, | |
693 | &start, &end); | |
694 | } | |
eaf649eb MK |
695 | ra_info->nr_pte = end - start; |
696 | ra_info->offset = fpfn - start; | |
697 | pte -= ra_info->offset; | |
ec560175 | 698 | #ifdef CONFIG_64BIT |
eaf649eb | 699 | ra_info->ptes = pte; |
ec560175 | 700 | #else |
eaf649eb | 701 | tpte = ra_info->ptes; |
ec560175 HY |
702 | for (pfn = start; pfn != end; pfn++) |
703 | *tpte++ = *pte++; | |
704 | #endif | |
eaf649eb | 705 | pte_unmap(orig_pte); |
ec560175 HY |
706 | } |
707 | ||
e9f59873 YS |
708 | /** |
709 | * swap_vma_readahead - swap in pages in hope we need them soon | |
710 | * @entry: swap entry of this memory | |
711 | * @gfp_mask: memory allocation flags | |
712 | * @vmf: fault information | |
713 | * | |
714 | * Returns the struct page for entry and addr, after queueing swapin. | |
715 | * | |
716 | * Primitive swap readahead code. We simply read in a few pages whoes | |
717 | * virtual addresses are around the fault address in the same vma. | |
718 | * | |
719 | * Caller must hold read mmap_sem if vmf->vma is not NULL. | |
720 | * | |
721 | */ | |
f5c754d6 CIK |
722 | static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask, |
723 | struct vm_fault *vmf) | |
ec560175 HY |
724 | { |
725 | struct blk_plug plug; | |
726 | struct vm_area_struct *vma = vmf->vma; | |
727 | struct page *page; | |
728 | pte_t *pte, pentry; | |
729 | swp_entry_t entry; | |
730 | unsigned int i; | |
731 | bool page_allocated; | |
eaf649eb | 732 | struct vma_swap_readahead ra_info = {0,}; |
ec560175 | 733 | |
eaf649eb MK |
734 | swap_ra_info(vmf, &ra_info); |
735 | if (ra_info.win == 1) | |
ec560175 HY |
736 | goto skip; |
737 | ||
738 | blk_start_plug(&plug); | |
eaf649eb | 739 | for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte; |
ec560175 HY |
740 | i++, pte++) { |
741 | pentry = *pte; | |
742 | if (pte_none(pentry)) | |
743 | continue; | |
744 | if (pte_present(pentry)) | |
745 | continue; | |
746 | entry = pte_to_swp_entry(pentry); | |
747 | if (unlikely(non_swap_entry(entry))) | |
748 | continue; | |
749 | page = __read_swap_cache_async(entry, gfp_mask, vma, | |
750 | vmf->address, &page_allocated); | |
751 | if (!page) | |
752 | continue; | |
753 | if (page_allocated) { | |
754 | swap_readpage(page, false); | |
eaf649eb | 755 | if (i != ra_info.offset) { |
ec560175 HY |
756 | SetPageReadahead(page); |
757 | count_vm_event(SWAP_RA); | |
758 | } | |
759 | } | |
760 | put_page(page); | |
761 | } | |
762 | blk_finish_plug(&plug); | |
763 | lru_add_drain(); | |
764 | skip: | |
765 | return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address, | |
eaf649eb | 766 | ra_info.win == 1); |
ec560175 | 767 | } |
d9bfcfdc | 768 | |
e9e9b7ec MK |
769 | /** |
770 | * swapin_readahead - swap in pages in hope we need them soon | |
771 | * @entry: swap entry of this memory | |
772 | * @gfp_mask: memory allocation flags | |
773 | * @vmf: fault information | |
774 | * | |
775 | * Returns the struct page for entry and addr, after queueing swapin. | |
776 | * | |
777 | * It's a main entry function for swap readahead. By the configuration, | |
778 | * it will read ahead blocks by cluster-based(ie, physical disk based) | |
779 | * or vma-based(ie, virtual address based on faulty address) readahead. | |
780 | */ | |
781 | struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, | |
782 | struct vm_fault *vmf) | |
783 | { | |
784 | return swap_use_vma_readahead() ? | |
785 | swap_vma_readahead(entry, gfp_mask, vmf) : | |
786 | swap_cluster_readahead(entry, gfp_mask, vmf); | |
787 | } | |
788 | ||
d9bfcfdc HY |
789 | #ifdef CONFIG_SYSFS |
790 | static ssize_t vma_ra_enabled_show(struct kobject *kobj, | |
791 | struct kobj_attribute *attr, char *buf) | |
792 | { | |
e9e9b7ec | 793 | return sprintf(buf, "%s\n", enable_vma_readahead ? "true" : "false"); |
d9bfcfdc HY |
794 | } |
795 | static ssize_t vma_ra_enabled_store(struct kobject *kobj, | |
796 | struct kobj_attribute *attr, | |
797 | const char *buf, size_t count) | |
798 | { | |
799 | if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1)) | |
e9e9b7ec | 800 | enable_vma_readahead = true; |
d9bfcfdc | 801 | else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1)) |
e9e9b7ec | 802 | enable_vma_readahead = false; |
d9bfcfdc HY |
803 | else |
804 | return -EINVAL; | |
805 | ||
806 | return count; | |
807 | } | |
808 | static struct kobj_attribute vma_ra_enabled_attr = | |
809 | __ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show, | |
810 | vma_ra_enabled_store); | |
811 | ||
d9bfcfdc HY |
812 | static struct attribute *swap_attrs[] = { |
813 | &vma_ra_enabled_attr.attr, | |
d9bfcfdc HY |
814 | NULL, |
815 | }; | |
816 | ||
817 | static struct attribute_group swap_attr_group = { | |
818 | .attrs = swap_attrs, | |
819 | }; | |
820 | ||
821 | static int __init swap_init_sysfs(void) | |
822 | { | |
823 | int err; | |
824 | struct kobject *swap_kobj; | |
825 | ||
826 | swap_kobj = kobject_create_and_add("swap", mm_kobj); | |
827 | if (!swap_kobj) { | |
828 | pr_err("failed to create swap kobject\n"); | |
829 | return -ENOMEM; | |
830 | } | |
831 | err = sysfs_create_group(swap_kobj, &swap_attr_group); | |
832 | if (err) { | |
833 | pr_err("failed to register swap group\n"); | |
834 | goto delete_obj; | |
835 | } | |
836 | return 0; | |
837 | ||
838 | delete_obj: | |
839 | kobject_put(swap_kobj); | |
840 | return err; | |
841 | } | |
842 | subsys_initcall(swap_init_sysfs); | |
843 | #endif |