]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/swap_state.c
mm/vmstat.c: standardize file operations variable names
[mirror_ubuntu-jammy-kernel.git] / mm / swap_state.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swap_state.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 *
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
8 */
1da177e4 9#include <linux/mm.h>
5a0e3ad6 10#include <linux/gfp.h>
1da177e4
LT
11#include <linux/kernel_stat.h>
12#include <linux/swap.h>
46017e95 13#include <linux/swapops.h>
1da177e4
LT
14#include <linux/init.h>
15#include <linux/pagemap.h>
1da177e4 16#include <linux/backing-dev.h>
3fb5c298 17#include <linux/blkdev.h>
c484d410 18#include <linux/pagevec.h>
b20a3503 19#include <linux/migrate.h>
4b3ef9da 20#include <linux/vmalloc.h>
67afa38e 21#include <linux/swap_slots.h>
1da177e4
LT
22
23#include <asm/pgtable.h>
24
25/*
26 * swapper_space is a fiction, retained to simplify the path through
7eaceacc 27 * vmscan's shrink_page_list.
1da177e4 28 */
f5e54d6e 29static const struct address_space_operations swap_aops = {
1da177e4 30 .writepage = swap_writepage,
62c230bc 31 .set_page_dirty = swap_set_page_dirty,
1c93923c 32#ifdef CONFIG_MIGRATION
e965f963 33 .migratepage = migrate_page,
1c93923c 34#endif
1da177e4
LT
35};
36
4b3ef9da
HY
37struct address_space *swapper_spaces[MAX_SWAPFILES];
38static unsigned int nr_swapper_spaces[MAX_SWAPFILES];
1da177e4
LT
39
40#define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
41
42static struct {
43 unsigned long add_total;
44 unsigned long del_total;
45 unsigned long find_success;
46 unsigned long find_total;
1da177e4
LT
47} swap_cache_info;
48
33806f06
SL
49unsigned long total_swapcache_pages(void)
50{
4b3ef9da 51 unsigned int i, j, nr;
33806f06 52 unsigned long ret = 0;
4b3ef9da 53 struct address_space *spaces;
33806f06 54
4b3ef9da
HY
55 rcu_read_lock();
56 for (i = 0; i < MAX_SWAPFILES; i++) {
57 /*
58 * The corresponding entries in nr_swapper_spaces and
59 * swapper_spaces will be reused only after at least
60 * one grace period. So it is impossible for them
61 * belongs to different usage.
62 */
63 nr = nr_swapper_spaces[i];
64 spaces = rcu_dereference(swapper_spaces[i]);
65 if (!nr || !spaces)
66 continue;
67 for (j = 0; j < nr; j++)
68 ret += spaces[j].nrpages;
69 }
70 rcu_read_unlock();
33806f06
SL
71 return ret;
72}
73
579f8290
SL
74static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
75
1da177e4
LT
76void show_swap_cache_info(void)
77{
33806f06 78 printk("%lu pages in swap cache\n", total_swapcache_pages());
2c97b7fc 79 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
1da177e4 80 swap_cache_info.add_total, swap_cache_info.del_total,
bb63be0a 81 swap_cache_info.find_success, swap_cache_info.find_total);
ec8acf20
SL
82 printk("Free swap = %ldkB\n",
83 get_nr_swap_pages() << (PAGE_SHIFT - 10));
1da177e4
LT
84 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
85}
86
87/*
31a56396 88 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
1da177e4
LT
89 * but sets SwapCache flag and private instead of mapping and index.
90 */
2f772e6c 91int __add_to_swap_cache(struct page *page, swp_entry_t entry)
1da177e4
LT
92{
93 int error;
33806f06 94 struct address_space *address_space;
1da177e4 95
309381fe
SL
96 VM_BUG_ON_PAGE(!PageLocked(page), page);
97 VM_BUG_ON_PAGE(PageSwapCache(page), page);
98 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
51726b12 99
09cbfeaf 100 get_page(page);
31a56396
DN
101 SetPageSwapCache(page);
102 set_page_private(page, entry.val);
103
33806f06
SL
104 address_space = swap_address_space(entry);
105 spin_lock_irq(&address_space->tree_lock);
106 error = radix_tree_insert(&address_space->page_tree,
f6ab1f7f 107 swp_offset(entry), page);
31a56396 108 if (likely(!error)) {
33806f06 109 address_space->nrpages++;
11fb9989 110 __inc_node_page_state(page, NR_FILE_PAGES);
31a56396
DN
111 INC_CACHE_INFO(add_total);
112 }
33806f06 113 spin_unlock_irq(&address_space->tree_lock);
31a56396
DN
114
115 if (unlikely(error)) {
2ca4532a
DN
116 /*
117 * Only the context which have set SWAP_HAS_CACHE flag
118 * would call add_to_swap_cache().
119 * So add_to_swap_cache() doesn't returns -EEXIST.
120 */
121 VM_BUG_ON(error == -EEXIST);
31a56396
DN
122 set_page_private(page, 0UL);
123 ClearPageSwapCache(page);
09cbfeaf 124 put_page(page);
31a56396
DN
125 }
126
127 return error;
128}
129
130
131int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
132{
133 int error;
134
5e4c0d97 135 error = radix_tree_maybe_preload(gfp_mask);
35c754d7 136 if (!error) {
31a56396 137 error = __add_to_swap_cache(page, entry);
1da177e4 138 radix_tree_preload_end();
fa1de900 139 }
1da177e4
LT
140 return error;
141}
142
1da177e4
LT
143/*
144 * This must be called only on pages that have
145 * been verified to be in the swap cache.
146 */
147void __delete_from_swap_cache(struct page *page)
148{
33806f06
SL
149 swp_entry_t entry;
150 struct address_space *address_space;
151
309381fe
SL
152 VM_BUG_ON_PAGE(!PageLocked(page), page);
153 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
154 VM_BUG_ON_PAGE(PageWriteback(page), page);
1da177e4 155
33806f06
SL
156 entry.val = page_private(page);
157 address_space = swap_address_space(entry);
f6ab1f7f 158 radix_tree_delete(&address_space->page_tree, swp_offset(entry));
4c21e2f2 159 set_page_private(page, 0);
1da177e4 160 ClearPageSwapCache(page);
33806f06 161 address_space->nrpages--;
11fb9989 162 __dec_node_page_state(page, NR_FILE_PAGES);
1da177e4
LT
163 INC_CACHE_INFO(del_total);
164}
165
166/**
167 * add_to_swap - allocate swap space for a page
168 * @page: page we want to move to swap
169 *
170 * Allocate swap space for the page and add the page to the
171 * swap cache. Caller needs to hold the page lock.
172 */
5bc7b8ac 173int add_to_swap(struct page *page, struct list_head *list)
1da177e4
LT
174{
175 swp_entry_t entry;
1da177e4
LT
176 int err;
177
309381fe
SL
178 VM_BUG_ON_PAGE(!PageLocked(page), page);
179 VM_BUG_ON_PAGE(!PageUptodate(page), page);
1da177e4 180
2ca4532a
DN
181 entry = get_swap_page();
182 if (!entry.val)
183 return 0;
184
37e84351
VD
185 if (mem_cgroup_try_charge_swap(page, entry)) {
186 swapcache_free(entry);
187 return 0;
188 }
189
3f04f62f 190 if (unlikely(PageTransHuge(page)))
5bc7b8ac 191 if (unlikely(split_huge_page_to_list(page, list))) {
0a31bc97 192 swapcache_free(entry);
3f04f62f
AA
193 return 0;
194 }
195
2ca4532a
DN
196 /*
197 * Radix-tree node allocations from PF_MEMALLOC contexts could
198 * completely exhaust the page allocator. __GFP_NOMEMALLOC
199 * stops emergency reserves from being allocated.
200 *
201 * TODO: this could cause a theoretical memory reclaim
202 * deadlock in the swap out path.
203 */
204 /*
854e9ed0 205 * Add it to the swap cache.
2ca4532a
DN
206 */
207 err = add_to_swap_cache(page, entry,
208 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
209
854e9ed0 210 if (!err) {
2ca4532a
DN
211 return 1;
212 } else { /* -ENOMEM radix-tree allocation failure */
bd53b714 213 /*
2ca4532a
DN
214 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
215 * clear SWAP_HAS_CACHE flag.
1da177e4 216 */
0a31bc97 217 swapcache_free(entry);
2ca4532a 218 return 0;
1da177e4
LT
219 }
220}
221
222/*
223 * This must be called only on pages that have
224 * been verified to be in the swap cache and locked.
225 * It will never put the page into the free list,
226 * the caller has a reference on the page.
227 */
228void delete_from_swap_cache(struct page *page)
229{
230 swp_entry_t entry;
33806f06 231 struct address_space *address_space;
1da177e4 232
4c21e2f2 233 entry.val = page_private(page);
1da177e4 234
33806f06
SL
235 address_space = swap_address_space(entry);
236 spin_lock_irq(&address_space->tree_lock);
1da177e4 237 __delete_from_swap_cache(page);
33806f06 238 spin_unlock_irq(&address_space->tree_lock);
1da177e4 239
0a31bc97 240 swapcache_free(entry);
09cbfeaf 241 put_page(page);
1da177e4
LT
242}
243
1da177e4
LT
244/*
245 * If we are the only user, then try to free up the swap cache.
246 *
247 * Its ok to check for PageSwapCache without the page lock
a2c43eed
HD
248 * here because we are going to recheck again inside
249 * try_to_free_swap() _with_ the lock.
1da177e4
LT
250 * - Marcelo
251 */
252static inline void free_swap_cache(struct page *page)
253{
a2c43eed
HD
254 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
255 try_to_free_swap(page);
1da177e4
LT
256 unlock_page(page);
257 }
258}
259
260/*
261 * Perform a free_page(), also freeing any swap cache associated with
b8072f09 262 * this page if it is the last user of the page.
1da177e4
LT
263 */
264void free_page_and_swap_cache(struct page *page)
265{
266 free_swap_cache(page);
6fcb52a5 267 if (!is_huge_zero_page(page))
770a5370 268 put_page(page);
1da177e4
LT
269}
270
271/*
272 * Passed an array of pages, drop them all from swapcache and then release
273 * them. They are removed from the LRU and freed if this is their last use.
274 */
275void free_pages_and_swap_cache(struct page **pages, int nr)
276{
1da177e4 277 struct page **pagep = pages;
aabfb572 278 int i;
1da177e4
LT
279
280 lru_add_drain();
aabfb572
MH
281 for (i = 0; i < nr; i++)
282 free_swap_cache(pagep[i]);
283 release_pages(pagep, nr, false);
1da177e4
LT
284}
285
286/*
287 * Lookup a swap entry in the swap cache. A found page will be returned
288 * unlocked and with its refcount incremented - we rely on the kernel
289 * lock getting page table operations atomic even if we drop the page
290 * lock before returning.
291 */
292struct page * lookup_swap_cache(swp_entry_t entry)
293{
294 struct page *page;
295
f6ab1f7f 296 page = find_get_page(swap_address_space(entry), swp_offset(entry));
1da177e4 297
579f8290 298 if (page) {
1da177e4 299 INC_CACHE_INFO(find_success);
579f8290
SL
300 if (TestClearPageReadahead(page))
301 atomic_inc(&swapin_readahead_hits);
302 }
1da177e4
LT
303
304 INC_CACHE_INFO(find_total);
305 return page;
306}
307
5b999aad
DS
308struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
309 struct vm_area_struct *vma, unsigned long addr,
310 bool *new_page_allocated)
1da177e4
LT
311{
312 struct page *found_page, *new_page = NULL;
5b999aad 313 struct address_space *swapper_space = swap_address_space(entry);
1da177e4 314 int err;
5b999aad 315 *new_page_allocated = false;
1da177e4
LT
316
317 do {
318 /*
319 * First check the swap cache. Since this is normally
320 * called after lookup_swap_cache() failed, re-calling
321 * that would confuse statistics.
322 */
f6ab1f7f 323 found_page = find_get_page(swapper_space, swp_offset(entry));
1da177e4
LT
324 if (found_page)
325 break;
326
ba81f838
HY
327 /*
328 * Just skip read ahead for unused swap slot.
329 * During swap_off when swap_slot_cache is disabled,
330 * we have to handle the race between putting
331 * swap entry in swap cache and marking swap slot
332 * as SWAP_HAS_CACHE. That's done in later part of code or
333 * else swap_off will be aborted if we return NULL.
334 */
335 if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
336 break;
e8c26ab6 337
1da177e4
LT
338 /*
339 * Get a new page to read into from swap.
340 */
341 if (!new_page) {
02098fea 342 new_page = alloc_page_vma(gfp_mask, vma, addr);
1da177e4
LT
343 if (!new_page)
344 break; /* Out of memory */
345 }
346
31a56396
DN
347 /*
348 * call radix_tree_preload() while we can wait.
349 */
5e4c0d97 350 err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
31a56396
DN
351 if (err)
352 break;
353
f000944d
HD
354 /*
355 * Swap entry may have been freed since our caller observed it.
356 */
355cfa73 357 err = swapcache_prepare(entry);
cbab0e4e 358 if (err == -EEXIST) {
31a56396 359 radix_tree_preload_end();
cbab0e4e
RA
360 /*
361 * We might race against get_swap_page() and stumble
362 * across a SWAP_HAS_CACHE swap_map entry whose page
9c1cc2e4 363 * has not been brought into the swapcache yet.
cbab0e4e
RA
364 */
365 cond_resched();
355cfa73 366 continue;
31a56396
DN
367 }
368 if (err) { /* swp entry is obsolete ? */
369 radix_tree_preload_end();
f000944d 370 break;
31a56396 371 }
f000944d 372
2ca4532a 373 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
48c935ad 374 __SetPageLocked(new_page);
fa9949da 375 __SetPageSwapBacked(new_page);
31a56396 376 err = __add_to_swap_cache(new_page, entry);
529ae9aa 377 if (likely(!err)) {
31a56396 378 radix_tree_preload_end();
1da177e4
LT
379 /*
380 * Initiate read into locked page and return.
381 */
c5fdae46 382 lru_cache_add_anon(new_page);
5b999aad 383 *new_page_allocated = true;
1da177e4
LT
384 return new_page;
385 }
31a56396 386 radix_tree_preload_end();
48c935ad 387 __ClearPageLocked(new_page);
2ca4532a
DN
388 /*
389 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
390 * clear SWAP_HAS_CACHE flag.
391 */
0a31bc97 392 swapcache_free(entry);
f000944d 393 } while (err != -ENOMEM);
1da177e4
LT
394
395 if (new_page)
09cbfeaf 396 put_page(new_page);
1da177e4
LT
397 return found_page;
398}
46017e95 399
5b999aad
DS
400/*
401 * Locate a page of swap in physical memory, reserving swap cache space
402 * and reading the disk if it is not already cached.
403 * A failure return means that either the page allocation failed or that
404 * the swap entry is no longer in use.
405 */
406struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
407 struct vm_area_struct *vma, unsigned long addr)
408{
409 bool page_was_allocated;
410 struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
411 vma, addr, &page_was_allocated);
412
413 if (page_was_allocated)
414 swap_readpage(retpage);
415
416 return retpage;
417}
418
579f8290
SL
419static unsigned long swapin_nr_pages(unsigned long offset)
420{
421 static unsigned long prev_offset;
422 unsigned int pages, max_pages, last_ra;
423 static atomic_t last_readahead_pages;
424
4db0c3c2 425 max_pages = 1 << READ_ONCE(page_cluster);
579f8290
SL
426 if (max_pages <= 1)
427 return 1;
428
429 /*
430 * This heuristic has been found to work well on both sequential and
431 * random loads, swapping to hard disk or to SSD: please don't ask
432 * what the "+ 2" means, it just happens to work well, that's all.
433 */
434 pages = atomic_xchg(&swapin_readahead_hits, 0) + 2;
435 if (pages == 2) {
436 /*
437 * We can have no readahead hits to judge by: but must not get
438 * stuck here forever, so check for an adjacent offset instead
439 * (and don't even bother to check whether swap type is same).
440 */
441 if (offset != prev_offset + 1 && offset != prev_offset - 1)
442 pages = 1;
443 prev_offset = offset;
444 } else {
445 unsigned int roundup = 4;
446 while (roundup < pages)
447 roundup <<= 1;
448 pages = roundup;
449 }
450
451 if (pages > max_pages)
452 pages = max_pages;
453
454 /* Don't shrink readahead too fast */
455 last_ra = atomic_read(&last_readahead_pages) / 2;
456 if (pages < last_ra)
457 pages = last_ra;
458 atomic_set(&last_readahead_pages, pages);
459
460 return pages;
461}
462
46017e95
HD
463/**
464 * swapin_readahead - swap in pages in hope we need them soon
465 * @entry: swap entry of this memory
7682486b 466 * @gfp_mask: memory allocation flags
46017e95
HD
467 * @vma: user vma this address belongs to
468 * @addr: target address for mempolicy
469 *
470 * Returns the struct page for entry and addr, after queueing swapin.
471 *
472 * Primitive swap readahead code. We simply read an aligned block of
473 * (1 << page_cluster) entries in the swap area. This method is chosen
474 * because it doesn't cost us any seek time. We also make sure to queue
475 * the 'original' request together with the readahead ones...
476 *
477 * This has been extended to use the NUMA policies from the mm triggering
478 * the readahead.
479 *
480 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
481 */
02098fea 482struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
46017e95
HD
483 struct vm_area_struct *vma, unsigned long addr)
484{
46017e95 485 struct page *page;
579f8290
SL
486 unsigned long entry_offset = swp_offset(entry);
487 unsigned long offset = entry_offset;
67f96aa2 488 unsigned long start_offset, end_offset;
579f8290 489 unsigned long mask;
3fb5c298 490 struct blk_plug plug;
46017e95 491
579f8290
SL
492 mask = swapin_nr_pages(offset) - 1;
493 if (!mask)
494 goto skip;
495
67f96aa2
RR
496 /* Read a page_cluster sized and aligned cluster around offset. */
497 start_offset = offset & ~mask;
498 end_offset = offset | mask;
499 if (!start_offset) /* First page is swap header. */
500 start_offset++;
501
3fb5c298 502 blk_start_plug(&plug);
67f96aa2 503 for (offset = start_offset; offset <= end_offset ; offset++) {
46017e95
HD
504 /* Ok, do the async read-ahead now */
505 page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
02098fea 506 gfp_mask, vma, addr);
46017e95 507 if (!page)
67f96aa2 508 continue;
579f8290
SL
509 if (offset != entry_offset)
510 SetPageReadahead(page);
09cbfeaf 511 put_page(page);
46017e95 512 }
3fb5c298
CE
513 blk_finish_plug(&plug);
514
46017e95 515 lru_add_drain(); /* Push any new pages onto the LRU now */
579f8290 516skip:
02098fea 517 return read_swap_cache_async(entry, gfp_mask, vma, addr);
46017e95 518}
4b3ef9da
HY
519
520int init_swap_address_space(unsigned int type, unsigned long nr_pages)
521{
522 struct address_space *spaces, *space;
523 unsigned int i, nr;
524
525 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
54f180d3 526 spaces = kvzalloc(sizeof(struct address_space) * nr, GFP_KERNEL);
4b3ef9da
HY
527 if (!spaces)
528 return -ENOMEM;
529 for (i = 0; i < nr; i++) {
530 space = spaces + i;
531 INIT_RADIX_TREE(&space->page_tree, GFP_ATOMIC|__GFP_NOWARN);
532 atomic_set(&space->i_mmap_writable, 0);
533 space->a_ops = &swap_aops;
534 /* swap cache doesn't use writeback related tags */
535 mapping_set_no_writeback_tags(space);
536 spin_lock_init(&space->tree_lock);
537 }
538 nr_swapper_spaces[type] = nr;
539 rcu_assign_pointer(swapper_spaces[type], spaces);
540
541 return 0;
542}
543
544void exit_swap_address_space(unsigned int type)
545{
546 struct address_space *spaces;
547
548 spaces = swapper_spaces[type];
549 nr_swapper_spaces[type] = 0;
550 rcu_assign_pointer(swapper_spaces[type], NULL);
551 synchronize_rcu();
552 kvfree(spaces);
553}