]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
1da177e4 LT |
2 | /* |
3 | * linux/mm/swap_state.c | |
4 | * | |
5 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
6 | * Swap reorganised 29.12.95, Stephen Tweedie | |
7 | * | |
8 | * Rewritten to use page cache, (C) 1998 Stephen Tweedie | |
9 | */ | |
1da177e4 | 10 | #include <linux/mm.h> |
5a0e3ad6 | 11 | #include <linux/gfp.h> |
1da177e4 LT |
12 | #include <linux/kernel_stat.h> |
13 | #include <linux/swap.h> | |
46017e95 | 14 | #include <linux/swapops.h> |
1da177e4 LT |
15 | #include <linux/init.h> |
16 | #include <linux/pagemap.h> | |
1da177e4 | 17 | #include <linux/backing-dev.h> |
3fb5c298 | 18 | #include <linux/blkdev.h> |
c484d410 | 19 | #include <linux/pagevec.h> |
b20a3503 | 20 | #include <linux/migrate.h> |
4b3ef9da | 21 | #include <linux/vmalloc.h> |
67afa38e | 22 | #include <linux/swap_slots.h> |
38d8b4e6 | 23 | #include <linux/huge_mm.h> |
61ef1865 | 24 | #include <linux/shmem_fs.h> |
243bce09 | 25 | #include "internal.h" |
1da177e4 LT |
26 | |
27 | /* | |
28 | * swapper_space is a fiction, retained to simplify the path through | |
7eaceacc | 29 | * vmscan's shrink_page_list. |
1da177e4 | 30 | */ |
f5e54d6e | 31 | static const struct address_space_operations swap_aops = { |
1da177e4 | 32 | .writepage = swap_writepage, |
62c230bc | 33 | .set_page_dirty = swap_set_page_dirty, |
1c93923c | 34 | #ifdef CONFIG_MIGRATION |
e965f963 | 35 | .migratepage = migrate_page, |
1c93923c | 36 | #endif |
1da177e4 LT |
37 | }; |
38 | ||
783cb68e CD |
39 | struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly; |
40 | static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly; | |
f5c754d6 | 41 | static bool enable_vma_readahead __read_mostly = true; |
ec560175 | 42 | |
ec560175 HY |
43 | #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2) |
44 | #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1) | |
45 | #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK | |
46 | #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK) | |
47 | ||
48 | #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK) | |
49 | #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT) | |
50 | #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK) | |
51 | ||
52 | #define SWAP_RA_VAL(addr, win, hits) \ | |
53 | (((addr) & PAGE_MASK) | \ | |
54 | (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \ | |
55 | ((hits) & SWAP_RA_HITS_MASK)) | |
56 | ||
57 | /* Initial readahead hits is 4 to start up with a small window */ | |
58 | #define GET_SWAP_RA_VAL(vma) \ | |
59 | (atomic_long_read(&(vma)->swap_readahead_info) ? : 4) | |
1da177e4 | 60 | |
b96a3db2 QC |
61 | #define INC_CACHE_INFO(x) data_race(swap_cache_info.x++) |
62 | #define ADD_CACHE_INFO(x, nr) data_race(swap_cache_info.x += (nr)) | |
1da177e4 LT |
63 | |
64 | static struct { | |
65 | unsigned long add_total; | |
66 | unsigned long del_total; | |
67 | unsigned long find_success; | |
68 | unsigned long find_total; | |
1da177e4 LT |
69 | } swap_cache_info; |
70 | ||
33806f06 SL |
71 | unsigned long total_swapcache_pages(void) |
72 | { | |
4b3ef9da | 73 | unsigned int i, j, nr; |
33806f06 | 74 | unsigned long ret = 0; |
4b3ef9da | 75 | struct address_space *spaces; |
054f1d1f | 76 | struct swap_info_struct *si; |
33806f06 | 77 | |
4b3ef9da | 78 | for (i = 0; i < MAX_SWAPFILES; i++) { |
054f1d1f HY |
79 | swp_entry_t entry = swp_entry(i, 1); |
80 | ||
81 | /* Avoid get_swap_device() to warn for bad swap entry */ | |
82 | if (!swp_swap_info(entry)) | |
83 | continue; | |
84 | /* Prevent swapoff to free swapper_spaces */ | |
85 | si = get_swap_device(entry); | |
86 | if (!si) | |
4b3ef9da | 87 | continue; |
054f1d1f HY |
88 | nr = nr_swapper_spaces[i]; |
89 | spaces = swapper_spaces[i]; | |
4b3ef9da HY |
90 | for (j = 0; j < nr; j++) |
91 | ret += spaces[j].nrpages; | |
054f1d1f | 92 | put_swap_device(si); |
4b3ef9da | 93 | } |
33806f06 SL |
94 | return ret; |
95 | } | |
96 | ||
579f8290 SL |
97 | static atomic_t swapin_readahead_hits = ATOMIC_INIT(4); |
98 | ||
1da177e4 LT |
99 | void show_swap_cache_info(void) |
100 | { | |
33806f06 | 101 | printk("%lu pages in swap cache\n", total_swapcache_pages()); |
2c97b7fc | 102 | printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n", |
1da177e4 | 103 | swap_cache_info.add_total, swap_cache_info.del_total, |
bb63be0a | 104 | swap_cache_info.find_success, swap_cache_info.find_total); |
ec8acf20 SL |
105 | printk("Free swap = %ldkB\n", |
106 | get_nr_swap_pages() << (PAGE_SHIFT - 10)); | |
1da177e4 LT |
107 | printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); |
108 | } | |
109 | ||
aae466b0 JK |
110 | void *get_shadow_from_swap_cache(swp_entry_t entry) |
111 | { | |
112 | struct address_space *address_space = swap_address_space(entry); | |
113 | pgoff_t idx = swp_offset(entry); | |
114 | struct page *page; | |
115 | ||
116 | page = find_get_entry(address_space, idx); | |
117 | if (xa_is_value(page)) | |
118 | return page; | |
119 | if (page) | |
120 | put_page(page); | |
121 | return NULL; | |
122 | } | |
123 | ||
1da177e4 | 124 | /* |
8d93b41c | 125 | * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space, |
1da177e4 LT |
126 | * but sets SwapCache flag and private instead of mapping and index. |
127 | */ | |
3852f676 JK |
128 | int add_to_swap_cache(struct page *page, swp_entry_t entry, |
129 | gfp_t gfp, void **shadowp) | |
1da177e4 | 130 | { |
8d93b41c | 131 | struct address_space *address_space = swap_address_space(entry); |
38d8b4e6 | 132 | pgoff_t idx = swp_offset(entry); |
8d93b41c | 133 | XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page)); |
6c357848 | 134 | unsigned long i, nr = thp_nr_pages(page); |
3852f676 | 135 | void *old; |
1da177e4 | 136 | |
309381fe SL |
137 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
138 | VM_BUG_ON_PAGE(PageSwapCache(page), page); | |
139 | VM_BUG_ON_PAGE(!PageSwapBacked(page), page); | |
51726b12 | 140 | |
38d8b4e6 | 141 | page_ref_add(page, nr); |
31a56396 | 142 | SetPageSwapCache(page); |
31a56396 | 143 | |
8d93b41c | 144 | do { |
3852f676 JK |
145 | unsigned long nr_shadows = 0; |
146 | ||
8d93b41c MW |
147 | xas_lock_irq(&xas); |
148 | xas_create_range(&xas); | |
149 | if (xas_error(&xas)) | |
150 | goto unlock; | |
151 | for (i = 0; i < nr; i++) { | |
152 | VM_BUG_ON_PAGE(xas.xa_index != idx + i, page); | |
3852f676 JK |
153 | old = xas_load(&xas); |
154 | if (xa_is_value(old)) { | |
155 | nr_shadows++; | |
156 | if (shadowp) | |
157 | *shadowp = old; | |
158 | } | |
8d93b41c | 159 | set_page_private(page + i, entry.val + i); |
4101196b | 160 | xas_store(&xas, page); |
8d93b41c MW |
161 | xas_next(&xas); |
162 | } | |
3852f676 | 163 | address_space->nrexceptional -= nr_shadows; |
38d8b4e6 HY |
164 | address_space->nrpages += nr; |
165 | __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); | |
166 | ADD_CACHE_INFO(add_total, nr); | |
8d93b41c MW |
167 | unlock: |
168 | xas_unlock_irq(&xas); | |
169 | } while (xas_nomem(&xas, gfp)); | |
31a56396 | 170 | |
8d93b41c MW |
171 | if (!xas_error(&xas)) |
172 | return 0; | |
31a56396 | 173 | |
8d93b41c MW |
174 | ClearPageSwapCache(page); |
175 | page_ref_sub(page, nr); | |
176 | return xas_error(&xas); | |
1da177e4 LT |
177 | } |
178 | ||
1da177e4 LT |
179 | /* |
180 | * This must be called only on pages that have | |
181 | * been verified to be in the swap cache. | |
182 | */ | |
3852f676 JK |
183 | void __delete_from_swap_cache(struct page *page, |
184 | swp_entry_t entry, void *shadow) | |
1da177e4 | 185 | { |
4e17ec25 | 186 | struct address_space *address_space = swap_address_space(entry); |
6c357848 | 187 | int i, nr = thp_nr_pages(page); |
4e17ec25 MW |
188 | pgoff_t idx = swp_offset(entry); |
189 | XA_STATE(xas, &address_space->i_pages, idx); | |
33806f06 | 190 | |
309381fe SL |
191 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
192 | VM_BUG_ON_PAGE(!PageSwapCache(page), page); | |
193 | VM_BUG_ON_PAGE(PageWriteback(page), page); | |
1da177e4 | 194 | |
38d8b4e6 | 195 | for (i = 0; i < nr; i++) { |
3852f676 | 196 | void *entry = xas_store(&xas, shadow); |
4101196b | 197 | VM_BUG_ON_PAGE(entry != page, entry); |
38d8b4e6 | 198 | set_page_private(page + i, 0); |
4e17ec25 | 199 | xas_next(&xas); |
38d8b4e6 | 200 | } |
1da177e4 | 201 | ClearPageSwapCache(page); |
3852f676 JK |
202 | if (shadow) |
203 | address_space->nrexceptional += nr; | |
38d8b4e6 HY |
204 | address_space->nrpages -= nr; |
205 | __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); | |
206 | ADD_CACHE_INFO(del_total, nr); | |
1da177e4 LT |
207 | } |
208 | ||
209 | /** | |
210 | * add_to_swap - allocate swap space for a page | |
211 | * @page: page we want to move to swap | |
212 | * | |
213 | * Allocate swap space for the page and add the page to the | |
214 | * swap cache. Caller needs to hold the page lock. | |
215 | */ | |
0f074658 | 216 | int add_to_swap(struct page *page) |
1da177e4 LT |
217 | { |
218 | swp_entry_t entry; | |
1da177e4 LT |
219 | int err; |
220 | ||
309381fe SL |
221 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
222 | VM_BUG_ON_PAGE(!PageUptodate(page), page); | |
1da177e4 | 223 | |
38d8b4e6 | 224 | entry = get_swap_page(page); |
2ca4532a | 225 | if (!entry.val) |
0f074658 MK |
226 | return 0; |
227 | ||
2ca4532a | 228 | /* |
8d93b41c | 229 | * XArray node allocations from PF_MEMALLOC contexts could |
2ca4532a DN |
230 | * completely exhaust the page allocator. __GFP_NOMEMALLOC |
231 | * stops emergency reserves from being allocated. | |
232 | * | |
233 | * TODO: this could cause a theoretical memory reclaim | |
234 | * deadlock in the swap out path. | |
235 | */ | |
236 | /* | |
854e9ed0 | 237 | * Add it to the swap cache. |
2ca4532a DN |
238 | */ |
239 | err = add_to_swap_cache(page, entry, | |
3852f676 | 240 | __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL); |
38d8b4e6 | 241 | if (err) |
bd53b714 | 242 | /* |
2ca4532a DN |
243 | * add_to_swap_cache() doesn't return -EEXIST, so we can safely |
244 | * clear SWAP_HAS_CACHE flag. | |
1da177e4 | 245 | */ |
0f074658 | 246 | goto fail; |
9625456c SL |
247 | /* |
248 | * Normally the page will be dirtied in unmap because its pte should be | |
0e9aa675 | 249 | * dirty. A special case is MADV_FREE page. The page's pte could have |
9625456c SL |
250 | * dirty bit cleared but the page's SwapBacked bit is still set because |
251 | * clearing the dirty bit and SwapBacked bit has no lock protected. For | |
252 | * such page, unmap will not set dirty bit for it, so page reclaim will | |
253 | * not write the page out. This can cause data corruption when the page | |
254 | * is swap in later. Always setting the dirty bit for the page solves | |
255 | * the problem. | |
256 | */ | |
257 | set_page_dirty(page); | |
38d8b4e6 HY |
258 | |
259 | return 1; | |
260 | ||
38d8b4e6 | 261 | fail: |
0f074658 | 262 | put_swap_page(page, entry); |
38d8b4e6 | 263 | return 0; |
1da177e4 LT |
264 | } |
265 | ||
266 | /* | |
267 | * This must be called only on pages that have | |
268 | * been verified to be in the swap cache and locked. | |
269 | * It will never put the page into the free list, | |
270 | * the caller has a reference on the page. | |
271 | */ | |
272 | void delete_from_swap_cache(struct page *page) | |
273 | { | |
4e17ec25 MW |
274 | swp_entry_t entry = { .val = page_private(page) }; |
275 | struct address_space *address_space = swap_address_space(entry); | |
1da177e4 | 276 | |
b93b0163 | 277 | xa_lock_irq(&address_space->i_pages); |
3852f676 | 278 | __delete_from_swap_cache(page, entry, NULL); |
b93b0163 | 279 | xa_unlock_irq(&address_space->i_pages); |
1da177e4 | 280 | |
75f6d6d2 | 281 | put_swap_page(page, entry); |
6c357848 | 282 | page_ref_sub(page, thp_nr_pages(page)); |
1da177e4 LT |
283 | } |
284 | ||
3852f676 JK |
285 | void clear_shadow_from_swap_cache(int type, unsigned long begin, |
286 | unsigned long end) | |
287 | { | |
288 | unsigned long curr = begin; | |
289 | void *old; | |
290 | ||
291 | for (;;) { | |
292 | unsigned long nr_shadows = 0; | |
293 | swp_entry_t entry = swp_entry(type, curr); | |
294 | struct address_space *address_space = swap_address_space(entry); | |
295 | XA_STATE(xas, &address_space->i_pages, curr); | |
296 | ||
297 | xa_lock_irq(&address_space->i_pages); | |
298 | xas_for_each(&xas, old, end) { | |
299 | if (!xa_is_value(old)) | |
300 | continue; | |
301 | xas_store(&xas, NULL); | |
302 | nr_shadows++; | |
303 | } | |
304 | address_space->nrexceptional -= nr_shadows; | |
305 | xa_unlock_irq(&address_space->i_pages); | |
306 | ||
307 | /* search the next swapcache until we meet end */ | |
308 | curr >>= SWAP_ADDRESS_SPACE_SHIFT; | |
309 | curr++; | |
310 | curr <<= SWAP_ADDRESS_SPACE_SHIFT; | |
311 | if (curr > end) | |
312 | break; | |
313 | } | |
314 | } | |
315 | ||
1da177e4 LT |
316 | /* |
317 | * If we are the only user, then try to free up the swap cache. | |
318 | * | |
319 | * Its ok to check for PageSwapCache without the page lock | |
a2c43eed HD |
320 | * here because we are going to recheck again inside |
321 | * try_to_free_swap() _with_ the lock. | |
1da177e4 LT |
322 | * - Marcelo |
323 | */ | |
324 | static inline void free_swap_cache(struct page *page) | |
325 | { | |
a2c43eed HD |
326 | if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) { |
327 | try_to_free_swap(page); | |
1da177e4 LT |
328 | unlock_page(page); |
329 | } | |
330 | } | |
331 | ||
332 | /* | |
333 | * Perform a free_page(), also freeing any swap cache associated with | |
b8072f09 | 334 | * this page if it is the last user of the page. |
1da177e4 LT |
335 | */ |
336 | void free_page_and_swap_cache(struct page *page) | |
337 | { | |
338 | free_swap_cache(page); | |
6fcb52a5 | 339 | if (!is_huge_zero_page(page)) |
770a5370 | 340 | put_page(page); |
1da177e4 LT |
341 | } |
342 | ||
343 | /* | |
344 | * Passed an array of pages, drop them all from swapcache and then release | |
345 | * them. They are removed from the LRU and freed if this is their last use. | |
346 | */ | |
347 | void free_pages_and_swap_cache(struct page **pages, int nr) | |
348 | { | |
1da177e4 | 349 | struct page **pagep = pages; |
aabfb572 | 350 | int i; |
1da177e4 LT |
351 | |
352 | lru_add_drain(); | |
aabfb572 MH |
353 | for (i = 0; i < nr; i++) |
354 | free_swap_cache(pagep[i]); | |
c6f92f9f | 355 | release_pages(pagep, nr); |
1da177e4 LT |
356 | } |
357 | ||
e9e9b7ec MK |
358 | static inline bool swap_use_vma_readahead(void) |
359 | { | |
360 | return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap); | |
361 | } | |
362 | ||
1da177e4 LT |
363 | /* |
364 | * Lookup a swap entry in the swap cache. A found page will be returned | |
365 | * unlocked and with its refcount incremented - we rely on the kernel | |
366 | * lock getting page table operations atomic even if we drop the page | |
367 | * lock before returning. | |
368 | */ | |
ec560175 HY |
369 | struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma, |
370 | unsigned long addr) | |
1da177e4 LT |
371 | { |
372 | struct page *page; | |
eb085574 | 373 | struct swap_info_struct *si; |
1da177e4 | 374 | |
eb085574 HY |
375 | si = get_swap_device(entry); |
376 | if (!si) | |
377 | return NULL; | |
f6ab1f7f | 378 | page = find_get_page(swap_address_space(entry), swp_offset(entry)); |
eb085574 | 379 | put_swap_device(si); |
1da177e4 | 380 | |
ec560175 HY |
381 | INC_CACHE_INFO(find_total); |
382 | if (page) { | |
eaf649eb MK |
383 | bool vma_ra = swap_use_vma_readahead(); |
384 | bool readahead; | |
385 | ||
1da177e4 | 386 | INC_CACHE_INFO(find_success); |
eaf649eb MK |
387 | /* |
388 | * At the moment, we don't support PG_readahead for anon THP | |
389 | * so let's bail out rather than confusing the readahead stat. | |
390 | */ | |
ec560175 HY |
391 | if (unlikely(PageTransCompound(page))) |
392 | return page; | |
eaf649eb | 393 | |
ec560175 | 394 | readahead = TestClearPageReadahead(page); |
eaf649eb MK |
395 | if (vma && vma_ra) { |
396 | unsigned long ra_val; | |
397 | int win, hits; | |
398 | ||
399 | ra_val = GET_SWAP_RA_VAL(vma); | |
400 | win = SWAP_RA_WIN(ra_val); | |
401 | hits = SWAP_RA_HITS(ra_val); | |
ec560175 HY |
402 | if (readahead) |
403 | hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX); | |
404 | atomic_long_set(&vma->swap_readahead_info, | |
405 | SWAP_RA_VAL(addr, win, hits)); | |
406 | } | |
eaf649eb | 407 | |
ec560175 | 408 | if (readahead) { |
cbc65df2 | 409 | count_vm_event(SWAP_RA_HIT); |
eaf649eb | 410 | if (!vma || !vma_ra) |
ec560175 | 411 | atomic_inc(&swapin_readahead_hits); |
cbc65df2 | 412 | } |
579f8290 | 413 | } |
eaf649eb | 414 | |
1da177e4 LT |
415 | return page; |
416 | } | |
417 | ||
61ef1865 MWO |
418 | /** |
419 | * find_get_incore_page - Find and get a page from the page or swap caches. | |
420 | * @mapping: The address_space to search. | |
421 | * @index: The page cache index. | |
422 | * | |
423 | * This differs from find_get_page() in that it will also look for the | |
424 | * page in the swap cache. | |
425 | * | |
426 | * Return: The found page or %NULL. | |
427 | */ | |
428 | struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index) | |
429 | { | |
430 | swp_entry_t swp; | |
431 | struct swap_info_struct *si; | |
432 | struct page *page = find_get_entry(mapping, index); | |
433 | ||
a6de4b48 | 434 | if (!page) |
61ef1865 | 435 | return page; |
a6de4b48 MWO |
436 | if (!xa_is_value(page)) |
437 | return find_subpage(page, index); | |
61ef1865 MWO |
438 | if (!shmem_mapping(mapping)) |
439 | return NULL; | |
440 | ||
441 | swp = radix_to_swp_entry(page); | |
442 | /* Prevent swapoff from happening to us */ | |
443 | si = get_swap_device(swp); | |
444 | if (!si) | |
445 | return NULL; | |
446 | page = find_get_page(swap_address_space(swp), swp_offset(swp)); | |
447 | put_swap_device(si); | |
448 | return page; | |
449 | } | |
450 | ||
5b999aad DS |
451 | struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, |
452 | struct vm_area_struct *vma, unsigned long addr, | |
453 | bool *new_page_allocated) | |
1da177e4 | 454 | { |
eb085574 | 455 | struct swap_info_struct *si; |
4c6355b2 | 456 | struct page *page; |
aae466b0 | 457 | void *shadow = NULL; |
4c6355b2 | 458 | |
5b999aad | 459 | *new_page_allocated = false; |
1da177e4 | 460 | |
4c6355b2 JW |
461 | for (;;) { |
462 | int err; | |
1da177e4 LT |
463 | /* |
464 | * First check the swap cache. Since this is normally | |
465 | * called after lookup_swap_cache() failed, re-calling | |
466 | * that would confuse statistics. | |
467 | */ | |
eb085574 HY |
468 | si = get_swap_device(entry); |
469 | if (!si) | |
4c6355b2 JW |
470 | return NULL; |
471 | page = find_get_page(swap_address_space(entry), | |
472 | swp_offset(entry)); | |
eb085574 | 473 | put_swap_device(si); |
4c6355b2 JW |
474 | if (page) |
475 | return page; | |
1da177e4 | 476 | |
ba81f838 HY |
477 | /* |
478 | * Just skip read ahead for unused swap slot. | |
479 | * During swap_off when swap_slot_cache is disabled, | |
480 | * we have to handle the race between putting | |
481 | * swap entry in swap cache and marking swap slot | |
482 | * as SWAP_HAS_CACHE. That's done in later part of code or | |
483 | * else swap_off will be aborted if we return NULL. | |
484 | */ | |
485 | if (!__swp_swapcount(entry) && swap_slot_cache_enabled) | |
4c6355b2 | 486 | return NULL; |
e8c26ab6 | 487 | |
1da177e4 | 488 | /* |
4c6355b2 JW |
489 | * Get a new page to read into from swap. Allocate it now, |
490 | * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will | |
491 | * cause any racers to loop around until we add it to cache. | |
1da177e4 | 492 | */ |
4c6355b2 JW |
493 | page = alloc_page_vma(gfp_mask, vma, addr); |
494 | if (!page) | |
495 | return NULL; | |
1da177e4 | 496 | |
f000944d HD |
497 | /* |
498 | * Swap entry may have been freed since our caller observed it. | |
499 | */ | |
355cfa73 | 500 | err = swapcache_prepare(entry); |
4c6355b2 | 501 | if (!err) |
f000944d HD |
502 | break; |
503 | ||
4c6355b2 JW |
504 | put_page(page); |
505 | if (err != -EEXIST) | |
506 | return NULL; | |
507 | ||
2ca4532a | 508 | /* |
4c6355b2 JW |
509 | * We might race against __delete_from_swap_cache(), and |
510 | * stumble across a swap_map entry whose SWAP_HAS_CACHE | |
511 | * has not yet been cleared. Or race against another | |
512 | * __read_swap_cache_async(), which has set SWAP_HAS_CACHE | |
513 | * in swap_map, but not yet added its page to swap cache. | |
2ca4532a | 514 | */ |
4c6355b2 JW |
515 | cond_resched(); |
516 | } | |
517 | ||
518 | /* | |
519 | * The swap entry is ours to swap in. Prepare the new page. | |
520 | */ | |
521 | ||
522 | __SetPageLocked(page); | |
523 | __SetPageSwapBacked(page); | |
524 | ||
525 | /* May fail (-ENOMEM) if XArray node allocation failed. */ | |
aae466b0 | 526 | if (add_to_swap_cache(page, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow)) { |
4c6355b2 JW |
527 | put_swap_page(page, entry); |
528 | goto fail_unlock; | |
529 | } | |
530 | ||
d9eb1ea2 | 531 | if (mem_cgroup_charge(page, NULL, gfp_mask)) { |
4c6355b2 JW |
532 | delete_from_swap_cache(page); |
533 | goto fail_unlock; | |
534 | } | |
535 | ||
aae466b0 JK |
536 | if (shadow) |
537 | workingset_refault(page, shadow); | |
314b57fb | 538 | |
4c6355b2 JW |
539 | /* Caller will initiate read into locked page */ |
540 | SetPageWorkingset(page); | |
6058eaec | 541 | lru_cache_add(page); |
4c6355b2 JW |
542 | *new_page_allocated = true; |
543 | return page; | |
1da177e4 | 544 | |
4c6355b2 JW |
545 | fail_unlock: |
546 | unlock_page(page); | |
547 | put_page(page); | |
548 | return NULL; | |
1da177e4 | 549 | } |
46017e95 | 550 | |
5b999aad DS |
551 | /* |
552 | * Locate a page of swap in physical memory, reserving swap cache space | |
553 | * and reading the disk if it is not already cached. | |
554 | * A failure return means that either the page allocation failed or that | |
555 | * the swap entry is no longer in use. | |
556 | */ | |
557 | struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, | |
23955622 | 558 | struct vm_area_struct *vma, unsigned long addr, bool do_poll) |
5b999aad DS |
559 | { |
560 | bool page_was_allocated; | |
561 | struct page *retpage = __read_swap_cache_async(entry, gfp_mask, | |
562 | vma, addr, &page_was_allocated); | |
563 | ||
564 | if (page_was_allocated) | |
23955622 | 565 | swap_readpage(retpage, do_poll); |
5b999aad DS |
566 | |
567 | return retpage; | |
568 | } | |
569 | ||
ec560175 HY |
570 | static unsigned int __swapin_nr_pages(unsigned long prev_offset, |
571 | unsigned long offset, | |
572 | int hits, | |
573 | int max_pages, | |
574 | int prev_win) | |
579f8290 | 575 | { |
ec560175 | 576 | unsigned int pages, last_ra; |
579f8290 SL |
577 | |
578 | /* | |
579 | * This heuristic has been found to work well on both sequential and | |
580 | * random loads, swapping to hard disk or to SSD: please don't ask | |
581 | * what the "+ 2" means, it just happens to work well, that's all. | |
582 | */ | |
ec560175 | 583 | pages = hits + 2; |
579f8290 SL |
584 | if (pages == 2) { |
585 | /* | |
586 | * We can have no readahead hits to judge by: but must not get | |
587 | * stuck here forever, so check for an adjacent offset instead | |
588 | * (and don't even bother to check whether swap type is same). | |
589 | */ | |
590 | if (offset != prev_offset + 1 && offset != prev_offset - 1) | |
591 | pages = 1; | |
579f8290 SL |
592 | } else { |
593 | unsigned int roundup = 4; | |
594 | while (roundup < pages) | |
595 | roundup <<= 1; | |
596 | pages = roundup; | |
597 | } | |
598 | ||
599 | if (pages > max_pages) | |
600 | pages = max_pages; | |
601 | ||
602 | /* Don't shrink readahead too fast */ | |
ec560175 | 603 | last_ra = prev_win / 2; |
579f8290 SL |
604 | if (pages < last_ra) |
605 | pages = last_ra; | |
ec560175 HY |
606 | |
607 | return pages; | |
608 | } | |
609 | ||
610 | static unsigned long swapin_nr_pages(unsigned long offset) | |
611 | { | |
612 | static unsigned long prev_offset; | |
613 | unsigned int hits, pages, max_pages; | |
614 | static atomic_t last_readahead_pages; | |
615 | ||
616 | max_pages = 1 << READ_ONCE(page_cluster); | |
617 | if (max_pages <= 1) | |
618 | return 1; | |
619 | ||
620 | hits = atomic_xchg(&swapin_readahead_hits, 0); | |
d6c1f098 QC |
621 | pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits, |
622 | max_pages, | |
ec560175 HY |
623 | atomic_read(&last_readahead_pages)); |
624 | if (!hits) | |
d6c1f098 | 625 | WRITE_ONCE(prev_offset, offset); |
579f8290 SL |
626 | atomic_set(&last_readahead_pages, pages); |
627 | ||
628 | return pages; | |
629 | } | |
630 | ||
46017e95 | 631 | /** |
e9e9b7ec | 632 | * swap_cluster_readahead - swap in pages in hope we need them soon |
46017e95 | 633 | * @entry: swap entry of this memory |
7682486b | 634 | * @gfp_mask: memory allocation flags |
e9e9b7ec | 635 | * @vmf: fault information |
46017e95 HD |
636 | * |
637 | * Returns the struct page for entry and addr, after queueing swapin. | |
638 | * | |
639 | * Primitive swap readahead code. We simply read an aligned block of | |
640 | * (1 << page_cluster) entries in the swap area. This method is chosen | |
641 | * because it doesn't cost us any seek time. We also make sure to queue | |
642 | * the 'original' request together with the readahead ones... | |
643 | * | |
644 | * This has been extended to use the NUMA policies from the mm triggering | |
645 | * the readahead. | |
646 | * | |
c1e8d7c6 | 647 | * Caller must hold read mmap_lock if vmf->vma is not NULL. |
46017e95 | 648 | */ |
e9e9b7ec MK |
649 | struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask, |
650 | struct vm_fault *vmf) | |
46017e95 | 651 | { |
46017e95 | 652 | struct page *page; |
579f8290 SL |
653 | unsigned long entry_offset = swp_offset(entry); |
654 | unsigned long offset = entry_offset; | |
67f96aa2 | 655 | unsigned long start_offset, end_offset; |
579f8290 | 656 | unsigned long mask; |
e9a6effa | 657 | struct swap_info_struct *si = swp_swap_info(entry); |
3fb5c298 | 658 | struct blk_plug plug; |
c4fa6309 | 659 | bool do_poll = true, page_allocated; |
e9e9b7ec MK |
660 | struct vm_area_struct *vma = vmf->vma; |
661 | unsigned long addr = vmf->address; | |
46017e95 | 662 | |
579f8290 SL |
663 | mask = swapin_nr_pages(offset) - 1; |
664 | if (!mask) | |
665 | goto skip; | |
666 | ||
8fd2e0b5 | 667 | /* Test swap type to make sure the dereference is safe */ |
32646315 | 668 | if (likely(si->flags & (SWP_BLKDEV | SWP_FS_OPS))) { |
8fd2e0b5 YS |
669 | struct inode *inode = si->swap_file->f_mapping->host; |
670 | if (inode_read_congested(inode)) | |
671 | goto skip; | |
672 | } | |
673 | ||
23955622 | 674 | do_poll = false; |
67f96aa2 RR |
675 | /* Read a page_cluster sized and aligned cluster around offset. */ |
676 | start_offset = offset & ~mask; | |
677 | end_offset = offset | mask; | |
678 | if (!start_offset) /* First page is swap header. */ | |
679 | start_offset++; | |
e9a6effa HY |
680 | if (end_offset >= si->max) |
681 | end_offset = si->max - 1; | |
67f96aa2 | 682 | |
3fb5c298 | 683 | blk_start_plug(&plug); |
67f96aa2 | 684 | for (offset = start_offset; offset <= end_offset ; offset++) { |
46017e95 | 685 | /* Ok, do the async read-ahead now */ |
c4fa6309 HY |
686 | page = __read_swap_cache_async( |
687 | swp_entry(swp_type(entry), offset), | |
688 | gfp_mask, vma, addr, &page_allocated); | |
46017e95 | 689 | if (!page) |
67f96aa2 | 690 | continue; |
c4fa6309 HY |
691 | if (page_allocated) { |
692 | swap_readpage(page, false); | |
eaf649eb | 693 | if (offset != entry_offset) { |
c4fa6309 HY |
694 | SetPageReadahead(page); |
695 | count_vm_event(SWAP_RA); | |
696 | } | |
cbc65df2 | 697 | } |
09cbfeaf | 698 | put_page(page); |
46017e95 | 699 | } |
3fb5c298 CE |
700 | blk_finish_plug(&plug); |
701 | ||
46017e95 | 702 | lru_add_drain(); /* Push any new pages onto the LRU now */ |
579f8290 | 703 | skip: |
23955622 | 704 | return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll); |
46017e95 | 705 | } |
4b3ef9da HY |
706 | |
707 | int init_swap_address_space(unsigned int type, unsigned long nr_pages) | |
708 | { | |
709 | struct address_space *spaces, *space; | |
710 | unsigned int i, nr; | |
711 | ||
712 | nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES); | |
778e1cdd | 713 | spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL); |
4b3ef9da HY |
714 | if (!spaces) |
715 | return -ENOMEM; | |
716 | for (i = 0; i < nr; i++) { | |
717 | space = spaces + i; | |
a2833486 | 718 | xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ); |
4b3ef9da HY |
719 | atomic_set(&space->i_mmap_writable, 0); |
720 | space->a_ops = &swap_aops; | |
721 | /* swap cache doesn't use writeback related tags */ | |
722 | mapping_set_no_writeback_tags(space); | |
4b3ef9da HY |
723 | } |
724 | nr_swapper_spaces[type] = nr; | |
054f1d1f | 725 | swapper_spaces[type] = spaces; |
4b3ef9da HY |
726 | |
727 | return 0; | |
728 | } | |
729 | ||
730 | void exit_swap_address_space(unsigned int type) | |
731 | { | |
054f1d1f | 732 | kvfree(swapper_spaces[type]); |
4b3ef9da | 733 | nr_swapper_spaces[type] = 0; |
054f1d1f | 734 | swapper_spaces[type] = NULL; |
4b3ef9da | 735 | } |
ec560175 HY |
736 | |
737 | static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma, | |
738 | unsigned long faddr, | |
739 | unsigned long lpfn, | |
740 | unsigned long rpfn, | |
741 | unsigned long *start, | |
742 | unsigned long *end) | |
743 | { | |
744 | *start = max3(lpfn, PFN_DOWN(vma->vm_start), | |
745 | PFN_DOWN(faddr & PMD_MASK)); | |
746 | *end = min3(rpfn, PFN_DOWN(vma->vm_end), | |
747 | PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE)); | |
748 | } | |
749 | ||
eaf649eb MK |
750 | static void swap_ra_info(struct vm_fault *vmf, |
751 | struct vma_swap_readahead *ra_info) | |
ec560175 HY |
752 | { |
753 | struct vm_area_struct *vma = vmf->vma; | |
eaf649eb | 754 | unsigned long ra_val; |
ec560175 HY |
755 | swp_entry_t entry; |
756 | unsigned long faddr, pfn, fpfn; | |
757 | unsigned long start, end; | |
eaf649eb | 758 | pte_t *pte, *orig_pte; |
ec560175 HY |
759 | unsigned int max_win, hits, prev_win, win, left; |
760 | #ifndef CONFIG_64BIT | |
761 | pte_t *tpte; | |
762 | #endif | |
763 | ||
61b63972 HY |
764 | max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster), |
765 | SWAP_RA_ORDER_CEILING); | |
766 | if (max_win == 1) { | |
eaf649eb MK |
767 | ra_info->win = 1; |
768 | return; | |
61b63972 HY |
769 | } |
770 | ||
ec560175 | 771 | faddr = vmf->address; |
eaf649eb MK |
772 | orig_pte = pte = pte_offset_map(vmf->pmd, faddr); |
773 | entry = pte_to_swp_entry(*pte); | |
774 | if ((unlikely(non_swap_entry(entry)))) { | |
775 | pte_unmap(orig_pte); | |
776 | return; | |
777 | } | |
ec560175 | 778 | |
ec560175 | 779 | fpfn = PFN_DOWN(faddr); |
eaf649eb MK |
780 | ra_val = GET_SWAP_RA_VAL(vma); |
781 | pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val)); | |
782 | prev_win = SWAP_RA_WIN(ra_val); | |
783 | hits = SWAP_RA_HITS(ra_val); | |
784 | ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits, | |
ec560175 HY |
785 | max_win, prev_win); |
786 | atomic_long_set(&vma->swap_readahead_info, | |
787 | SWAP_RA_VAL(faddr, win, 0)); | |
788 | ||
eaf649eb MK |
789 | if (win == 1) { |
790 | pte_unmap(orig_pte); | |
791 | return; | |
792 | } | |
ec560175 HY |
793 | |
794 | /* Copy the PTEs because the page table may be unmapped */ | |
795 | if (fpfn == pfn + 1) | |
796 | swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end); | |
797 | else if (pfn == fpfn + 1) | |
798 | swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1, | |
799 | &start, &end); | |
800 | else { | |
801 | left = (win - 1) / 2; | |
802 | swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left, | |
803 | &start, &end); | |
804 | } | |
eaf649eb MK |
805 | ra_info->nr_pte = end - start; |
806 | ra_info->offset = fpfn - start; | |
807 | pte -= ra_info->offset; | |
ec560175 | 808 | #ifdef CONFIG_64BIT |
eaf649eb | 809 | ra_info->ptes = pte; |
ec560175 | 810 | #else |
eaf649eb | 811 | tpte = ra_info->ptes; |
ec560175 HY |
812 | for (pfn = start; pfn != end; pfn++) |
813 | *tpte++ = *pte++; | |
814 | #endif | |
eaf649eb | 815 | pte_unmap(orig_pte); |
ec560175 HY |
816 | } |
817 | ||
e9f59873 YS |
818 | /** |
819 | * swap_vma_readahead - swap in pages in hope we need them soon | |
27ec4878 | 820 | * @fentry: swap entry of this memory |
e9f59873 YS |
821 | * @gfp_mask: memory allocation flags |
822 | * @vmf: fault information | |
823 | * | |
824 | * Returns the struct page for entry and addr, after queueing swapin. | |
825 | * | |
826 | * Primitive swap readahead code. We simply read in a few pages whoes | |
827 | * virtual addresses are around the fault address in the same vma. | |
828 | * | |
c1e8d7c6 | 829 | * Caller must hold read mmap_lock if vmf->vma is not NULL. |
e9f59873 YS |
830 | * |
831 | */ | |
f5c754d6 CIK |
832 | static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask, |
833 | struct vm_fault *vmf) | |
ec560175 HY |
834 | { |
835 | struct blk_plug plug; | |
836 | struct vm_area_struct *vma = vmf->vma; | |
837 | struct page *page; | |
838 | pte_t *pte, pentry; | |
839 | swp_entry_t entry; | |
840 | unsigned int i; | |
841 | bool page_allocated; | |
e97af699 ML |
842 | struct vma_swap_readahead ra_info = { |
843 | .win = 1, | |
844 | }; | |
ec560175 | 845 | |
eaf649eb MK |
846 | swap_ra_info(vmf, &ra_info); |
847 | if (ra_info.win == 1) | |
ec560175 HY |
848 | goto skip; |
849 | ||
850 | blk_start_plug(&plug); | |
eaf649eb | 851 | for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte; |
ec560175 HY |
852 | i++, pte++) { |
853 | pentry = *pte; | |
854 | if (pte_none(pentry)) | |
855 | continue; | |
856 | if (pte_present(pentry)) | |
857 | continue; | |
858 | entry = pte_to_swp_entry(pentry); | |
859 | if (unlikely(non_swap_entry(entry))) | |
860 | continue; | |
861 | page = __read_swap_cache_async(entry, gfp_mask, vma, | |
862 | vmf->address, &page_allocated); | |
863 | if (!page) | |
864 | continue; | |
865 | if (page_allocated) { | |
866 | swap_readpage(page, false); | |
eaf649eb | 867 | if (i != ra_info.offset) { |
ec560175 HY |
868 | SetPageReadahead(page); |
869 | count_vm_event(SWAP_RA); | |
870 | } | |
871 | } | |
872 | put_page(page); | |
873 | } | |
874 | blk_finish_plug(&plug); | |
875 | lru_add_drain(); | |
876 | skip: | |
877 | return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address, | |
eaf649eb | 878 | ra_info.win == 1); |
ec560175 | 879 | } |
d9bfcfdc | 880 | |
e9e9b7ec MK |
881 | /** |
882 | * swapin_readahead - swap in pages in hope we need them soon | |
883 | * @entry: swap entry of this memory | |
884 | * @gfp_mask: memory allocation flags | |
885 | * @vmf: fault information | |
886 | * | |
887 | * Returns the struct page for entry and addr, after queueing swapin. | |
888 | * | |
889 | * It's a main entry function for swap readahead. By the configuration, | |
890 | * it will read ahead blocks by cluster-based(ie, physical disk based) | |
891 | * or vma-based(ie, virtual address based on faulty address) readahead. | |
892 | */ | |
893 | struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, | |
894 | struct vm_fault *vmf) | |
895 | { | |
896 | return swap_use_vma_readahead() ? | |
897 | swap_vma_readahead(entry, gfp_mask, vmf) : | |
898 | swap_cluster_readahead(entry, gfp_mask, vmf); | |
899 | } | |
900 | ||
d9bfcfdc HY |
901 | #ifdef CONFIG_SYSFS |
902 | static ssize_t vma_ra_enabled_show(struct kobject *kobj, | |
903 | struct kobj_attribute *attr, char *buf) | |
904 | { | |
e9e9b7ec | 905 | return sprintf(buf, "%s\n", enable_vma_readahead ? "true" : "false"); |
d9bfcfdc HY |
906 | } |
907 | static ssize_t vma_ra_enabled_store(struct kobject *kobj, | |
908 | struct kobj_attribute *attr, | |
909 | const char *buf, size_t count) | |
910 | { | |
911 | if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1)) | |
e9e9b7ec | 912 | enable_vma_readahead = true; |
d9bfcfdc | 913 | else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1)) |
e9e9b7ec | 914 | enable_vma_readahead = false; |
d9bfcfdc HY |
915 | else |
916 | return -EINVAL; | |
917 | ||
918 | return count; | |
919 | } | |
920 | static struct kobj_attribute vma_ra_enabled_attr = | |
921 | __ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show, | |
922 | vma_ra_enabled_store); | |
923 | ||
d9bfcfdc HY |
924 | static struct attribute *swap_attrs[] = { |
925 | &vma_ra_enabled_attr.attr, | |
d9bfcfdc HY |
926 | NULL, |
927 | }; | |
928 | ||
929 | static struct attribute_group swap_attr_group = { | |
930 | .attrs = swap_attrs, | |
931 | }; | |
932 | ||
933 | static int __init swap_init_sysfs(void) | |
934 | { | |
935 | int err; | |
936 | struct kobject *swap_kobj; | |
937 | ||
938 | swap_kobj = kobject_create_and_add("swap", mm_kobj); | |
939 | if (!swap_kobj) { | |
940 | pr_err("failed to create swap kobject\n"); | |
941 | return -ENOMEM; | |
942 | } | |
943 | err = sysfs_create_group(swap_kobj, &swap_attr_group); | |
944 | if (err) { | |
945 | pr_err("failed to register swap group\n"); | |
946 | goto delete_obj; | |
947 | } | |
948 | return 0; | |
949 | ||
950 | delete_obj: | |
951 | kobject_put(swap_kobj); | |
952 | return err; | |
953 | } | |
954 | subsys_initcall(swap_init_sysfs); | |
955 | #endif |