]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/swap_state.c
mm: page_vma_mapped: ensure pmd is loaded with READ_ONCE outside of lock
[mirror_ubuntu-bionic-kernel.git] / mm / swap_state.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swap_state.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 *
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
8 */
1da177e4 9#include <linux/mm.h>
5a0e3ad6 10#include <linux/gfp.h>
1da177e4
LT
11#include <linux/kernel_stat.h>
12#include <linux/swap.h>
46017e95 13#include <linux/swapops.h>
1da177e4
LT
14#include <linux/init.h>
15#include <linux/pagemap.h>
1da177e4 16#include <linux/backing-dev.h>
3fb5c298 17#include <linux/blkdev.h>
c484d410 18#include <linux/pagevec.h>
b20a3503 19#include <linux/migrate.h>
4b3ef9da 20#include <linux/vmalloc.h>
67afa38e 21#include <linux/swap_slots.h>
38d8b4e6 22#include <linux/huge_mm.h>
1da177e4
LT
23
24#include <asm/pgtable.h>
25
26/*
27 * swapper_space is a fiction, retained to simplify the path through
7eaceacc 28 * vmscan's shrink_page_list.
1da177e4 29 */
f5e54d6e 30static const struct address_space_operations swap_aops = {
1da177e4 31 .writepage = swap_writepage,
62c230bc 32 .set_page_dirty = swap_set_page_dirty,
1c93923c 33#ifdef CONFIG_MIGRATION
e965f963 34 .migratepage = migrate_page,
1c93923c 35#endif
1da177e4
LT
36};
37
4b3ef9da
HY
38struct address_space *swapper_spaces[MAX_SWAPFILES];
39static unsigned int nr_swapper_spaces[MAX_SWAPFILES];
ec560175
HY
40bool swap_vma_readahead = true;
41
42#define SWAP_RA_MAX_ORDER_DEFAULT 3
43
44static int swap_ra_max_order = SWAP_RA_MAX_ORDER_DEFAULT;
45
46#define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
47#define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
48#define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
49#define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
50
51#define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
52#define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
53#define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
54
55#define SWAP_RA_VAL(addr, win, hits) \
56 (((addr) & PAGE_MASK) | \
57 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
58 ((hits) & SWAP_RA_HITS_MASK))
59
60/* Initial readahead hits is 4 to start up with a small window */
61#define GET_SWAP_RA_VAL(vma) \
62 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
1da177e4
LT
63
64#define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
38d8b4e6 65#define ADD_CACHE_INFO(x, nr) do { swap_cache_info.x += (nr); } while (0)
1da177e4
LT
66
67static struct {
68 unsigned long add_total;
69 unsigned long del_total;
70 unsigned long find_success;
71 unsigned long find_total;
1da177e4
LT
72} swap_cache_info;
73
33806f06
SL
74unsigned long total_swapcache_pages(void)
75{
4b3ef9da 76 unsigned int i, j, nr;
33806f06 77 unsigned long ret = 0;
4b3ef9da 78 struct address_space *spaces;
33806f06 79
4b3ef9da
HY
80 rcu_read_lock();
81 for (i = 0; i < MAX_SWAPFILES; i++) {
82 /*
83 * The corresponding entries in nr_swapper_spaces and
84 * swapper_spaces will be reused only after at least
85 * one grace period. So it is impossible for them
86 * belongs to different usage.
87 */
88 nr = nr_swapper_spaces[i];
89 spaces = rcu_dereference(swapper_spaces[i]);
90 if (!nr || !spaces)
91 continue;
92 for (j = 0; j < nr; j++)
93 ret += spaces[j].nrpages;
94 }
95 rcu_read_unlock();
33806f06
SL
96 return ret;
97}
98
579f8290
SL
99static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
100
1da177e4
LT
101void show_swap_cache_info(void)
102{
33806f06 103 printk("%lu pages in swap cache\n", total_swapcache_pages());
2c97b7fc 104 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
1da177e4 105 swap_cache_info.add_total, swap_cache_info.del_total,
bb63be0a 106 swap_cache_info.find_success, swap_cache_info.find_total);
ec8acf20
SL
107 printk("Free swap = %ldkB\n",
108 get_nr_swap_pages() << (PAGE_SHIFT - 10));
1da177e4
LT
109 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
110}
111
112/*
31a56396 113 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
1da177e4
LT
114 * but sets SwapCache flag and private instead of mapping and index.
115 */
2f772e6c 116int __add_to_swap_cache(struct page *page, swp_entry_t entry)
1da177e4 117{
38d8b4e6 118 int error, i, nr = hpage_nr_pages(page);
33806f06 119 struct address_space *address_space;
38d8b4e6 120 pgoff_t idx = swp_offset(entry);
1da177e4 121
309381fe
SL
122 VM_BUG_ON_PAGE(!PageLocked(page), page);
123 VM_BUG_ON_PAGE(PageSwapCache(page), page);
124 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
51726b12 125
38d8b4e6 126 page_ref_add(page, nr);
31a56396 127 SetPageSwapCache(page);
31a56396 128
33806f06
SL
129 address_space = swap_address_space(entry);
130 spin_lock_irq(&address_space->tree_lock);
38d8b4e6
HY
131 for (i = 0; i < nr; i++) {
132 set_page_private(page + i, entry.val + i);
133 error = radix_tree_insert(&address_space->page_tree,
134 idx + i, page + i);
135 if (unlikely(error))
136 break;
31a56396 137 }
38d8b4e6
HY
138 if (likely(!error)) {
139 address_space->nrpages += nr;
140 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
141 ADD_CACHE_INFO(add_total, nr);
142 } else {
2ca4532a
DN
143 /*
144 * Only the context which have set SWAP_HAS_CACHE flag
145 * would call add_to_swap_cache().
146 * So add_to_swap_cache() doesn't returns -EEXIST.
147 */
148 VM_BUG_ON(error == -EEXIST);
38d8b4e6
HY
149 set_page_private(page + i, 0UL);
150 while (i--) {
151 radix_tree_delete(&address_space->page_tree, idx + i);
152 set_page_private(page + i, 0UL);
153 }
31a56396 154 ClearPageSwapCache(page);
38d8b4e6 155 page_ref_sub(page, nr);
31a56396 156 }
38d8b4e6 157 spin_unlock_irq(&address_space->tree_lock);
31a56396
DN
158
159 return error;
160}
161
162
163int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
164{
165 int error;
166
38d8b4e6 167 error = radix_tree_maybe_preload_order(gfp_mask, compound_order(page));
35c754d7 168 if (!error) {
31a56396 169 error = __add_to_swap_cache(page, entry);
1da177e4 170 radix_tree_preload_end();
fa1de900 171 }
1da177e4
LT
172 return error;
173}
174
1da177e4
LT
175/*
176 * This must be called only on pages that have
177 * been verified to be in the swap cache.
178 */
179void __delete_from_swap_cache(struct page *page)
180{
33806f06 181 struct address_space *address_space;
38d8b4e6
HY
182 int i, nr = hpage_nr_pages(page);
183 swp_entry_t entry;
184 pgoff_t idx;
33806f06 185
309381fe
SL
186 VM_BUG_ON_PAGE(!PageLocked(page), page);
187 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
188 VM_BUG_ON_PAGE(PageWriteback(page), page);
1da177e4 189
33806f06
SL
190 entry.val = page_private(page);
191 address_space = swap_address_space(entry);
38d8b4e6
HY
192 idx = swp_offset(entry);
193 for (i = 0; i < nr; i++) {
194 radix_tree_delete(&address_space->page_tree, idx + i);
195 set_page_private(page + i, 0);
196 }
1da177e4 197 ClearPageSwapCache(page);
38d8b4e6
HY
198 address_space->nrpages -= nr;
199 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
200 ADD_CACHE_INFO(del_total, nr);
1da177e4
LT
201}
202
203/**
204 * add_to_swap - allocate swap space for a page
205 * @page: page we want to move to swap
206 *
207 * Allocate swap space for the page and add the page to the
208 * swap cache. Caller needs to hold the page lock.
209 */
0f074658 210int add_to_swap(struct page *page)
1da177e4
LT
211{
212 swp_entry_t entry;
1da177e4
LT
213 int err;
214
309381fe
SL
215 VM_BUG_ON_PAGE(!PageLocked(page), page);
216 VM_BUG_ON_PAGE(!PageUptodate(page), page);
1da177e4 217
38d8b4e6 218 entry = get_swap_page(page);
2ca4532a 219 if (!entry.val)
0f074658
MK
220 return 0;
221
38d8b4e6 222 if (mem_cgroup_try_charge_swap(page, entry))
0f074658 223 goto fail;
3f04f62f 224
2ca4532a
DN
225 /*
226 * Radix-tree node allocations from PF_MEMALLOC contexts could
227 * completely exhaust the page allocator. __GFP_NOMEMALLOC
228 * stops emergency reserves from being allocated.
229 *
230 * TODO: this could cause a theoretical memory reclaim
231 * deadlock in the swap out path.
232 */
233 /*
854e9ed0 234 * Add it to the swap cache.
2ca4532a
DN
235 */
236 err = add_to_swap_cache(page, entry,
237 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
38d8b4e6
HY
238 /* -ENOMEM radix-tree allocation failure */
239 if (err)
bd53b714 240 /*
2ca4532a
DN
241 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
242 * clear SWAP_HAS_CACHE flag.
1da177e4 243 */
0f074658 244 goto fail;
9625456c
SL
245 /*
246 * Normally the page will be dirtied in unmap because its pte should be
247 * dirty. A special case is MADV_FREE page. The page'e pte could have
248 * dirty bit cleared but the page's SwapBacked bit is still set because
249 * clearing the dirty bit and SwapBacked bit has no lock protected. For
250 * such page, unmap will not set dirty bit for it, so page reclaim will
251 * not write the page out. This can cause data corruption when the page
252 * is swap in later. Always setting the dirty bit for the page solves
253 * the problem.
254 */
255 set_page_dirty(page);
38d8b4e6
HY
256
257 return 1;
258
38d8b4e6 259fail:
0f074658 260 put_swap_page(page, entry);
38d8b4e6 261 return 0;
1da177e4
LT
262}
263
264/*
265 * This must be called only on pages that have
266 * been verified to be in the swap cache and locked.
267 * It will never put the page into the free list,
268 * the caller has a reference on the page.
269 */
270void delete_from_swap_cache(struct page *page)
271{
272 swp_entry_t entry;
33806f06 273 struct address_space *address_space;
1da177e4 274
4c21e2f2 275 entry.val = page_private(page);
1da177e4 276
33806f06
SL
277 address_space = swap_address_space(entry);
278 spin_lock_irq(&address_space->tree_lock);
1da177e4 279 __delete_from_swap_cache(page);
33806f06 280 spin_unlock_irq(&address_space->tree_lock);
1da177e4 281
75f6d6d2 282 put_swap_page(page, entry);
38d8b4e6 283 page_ref_sub(page, hpage_nr_pages(page));
1da177e4
LT
284}
285
1da177e4
LT
286/*
287 * If we are the only user, then try to free up the swap cache.
288 *
289 * Its ok to check for PageSwapCache without the page lock
a2c43eed
HD
290 * here because we are going to recheck again inside
291 * try_to_free_swap() _with_ the lock.
1da177e4
LT
292 * - Marcelo
293 */
294static inline void free_swap_cache(struct page *page)
295{
a2c43eed
HD
296 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
297 try_to_free_swap(page);
1da177e4
LT
298 unlock_page(page);
299 }
300}
301
302/*
303 * Perform a free_page(), also freeing any swap cache associated with
b8072f09 304 * this page if it is the last user of the page.
1da177e4
LT
305 */
306void free_page_and_swap_cache(struct page *page)
307{
308 free_swap_cache(page);
6fcb52a5 309 if (!is_huge_zero_page(page))
770a5370 310 put_page(page);
1da177e4
LT
311}
312
313/*
314 * Passed an array of pages, drop them all from swapcache and then release
315 * them. They are removed from the LRU and freed if this is their last use.
316 */
317void free_pages_and_swap_cache(struct page **pages, int nr)
318{
1da177e4 319 struct page **pagep = pages;
aabfb572 320 int i;
1da177e4
LT
321
322 lru_add_drain();
aabfb572
MH
323 for (i = 0; i < nr; i++)
324 free_swap_cache(pagep[i]);
325 release_pages(pagep, nr, false);
1da177e4
LT
326}
327
328/*
329 * Lookup a swap entry in the swap cache. A found page will be returned
330 * unlocked and with its refcount incremented - we rely on the kernel
331 * lock getting page table operations atomic even if we drop the page
332 * lock before returning.
333 */
ec560175
HY
334struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
335 unsigned long addr)
1da177e4
LT
336{
337 struct page *page;
ec560175
HY
338 unsigned long ra_info;
339 int win, hits, readahead;
1da177e4 340
f6ab1f7f 341 page = find_get_page(swap_address_space(entry), swp_offset(entry));
1da177e4 342
ec560175
HY
343 INC_CACHE_INFO(find_total);
344 if (page) {
1da177e4 345 INC_CACHE_INFO(find_success);
ec560175
HY
346 if (unlikely(PageTransCompound(page)))
347 return page;
348 readahead = TestClearPageReadahead(page);
349 if (vma) {
350 ra_info = GET_SWAP_RA_VAL(vma);
351 win = SWAP_RA_WIN(ra_info);
352 hits = SWAP_RA_HITS(ra_info);
353 if (readahead)
354 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
355 atomic_long_set(&vma->swap_readahead_info,
356 SWAP_RA_VAL(addr, win, hits));
357 }
358 if (readahead) {
cbc65df2 359 count_vm_event(SWAP_RA_HIT);
ec560175
HY
360 if (!vma)
361 atomic_inc(&swapin_readahead_hits);
cbc65df2 362 }
579f8290 363 }
1da177e4
LT
364 return page;
365}
366
5b999aad
DS
367struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
368 struct vm_area_struct *vma, unsigned long addr,
369 bool *new_page_allocated)
1da177e4
LT
370{
371 struct page *found_page, *new_page = NULL;
5b999aad 372 struct address_space *swapper_space = swap_address_space(entry);
1da177e4 373 int err;
5b999aad 374 *new_page_allocated = false;
1da177e4
LT
375
376 do {
377 /*
378 * First check the swap cache. Since this is normally
379 * called after lookup_swap_cache() failed, re-calling
380 * that would confuse statistics.
381 */
f6ab1f7f 382 found_page = find_get_page(swapper_space, swp_offset(entry));
1da177e4
LT
383 if (found_page)
384 break;
385
ba81f838
HY
386 /*
387 * Just skip read ahead for unused swap slot.
388 * During swap_off when swap_slot_cache is disabled,
389 * we have to handle the race between putting
390 * swap entry in swap cache and marking swap slot
391 * as SWAP_HAS_CACHE. That's done in later part of code or
392 * else swap_off will be aborted if we return NULL.
393 */
394 if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
395 break;
e8c26ab6 396
1da177e4
LT
397 /*
398 * Get a new page to read into from swap.
399 */
400 if (!new_page) {
02098fea 401 new_page = alloc_page_vma(gfp_mask, vma, addr);
1da177e4
LT
402 if (!new_page)
403 break; /* Out of memory */
404 }
405
31a56396
DN
406 /*
407 * call radix_tree_preload() while we can wait.
408 */
5e4c0d97 409 err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
31a56396
DN
410 if (err)
411 break;
412
f000944d
HD
413 /*
414 * Swap entry may have been freed since our caller observed it.
415 */
355cfa73 416 err = swapcache_prepare(entry);
cbab0e4e 417 if (err == -EEXIST) {
31a56396 418 radix_tree_preload_end();
cbab0e4e
RA
419 /*
420 * We might race against get_swap_page() and stumble
421 * across a SWAP_HAS_CACHE swap_map entry whose page
9c1cc2e4 422 * has not been brought into the swapcache yet.
cbab0e4e
RA
423 */
424 cond_resched();
355cfa73 425 continue;
31a56396
DN
426 }
427 if (err) { /* swp entry is obsolete ? */
428 radix_tree_preload_end();
f000944d 429 break;
31a56396 430 }
f000944d 431
2ca4532a 432 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
48c935ad 433 __SetPageLocked(new_page);
fa9949da 434 __SetPageSwapBacked(new_page);
31a56396 435 err = __add_to_swap_cache(new_page, entry);
529ae9aa 436 if (likely(!err)) {
31a56396 437 radix_tree_preload_end();
1da177e4
LT
438 /*
439 * Initiate read into locked page and return.
440 */
c5fdae46 441 lru_cache_add_anon(new_page);
5b999aad 442 *new_page_allocated = true;
1da177e4
LT
443 return new_page;
444 }
31a56396 445 radix_tree_preload_end();
48c935ad 446 __ClearPageLocked(new_page);
2ca4532a
DN
447 /*
448 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
449 * clear SWAP_HAS_CACHE flag.
450 */
75f6d6d2 451 put_swap_page(new_page, entry);
f000944d 452 } while (err != -ENOMEM);
1da177e4
LT
453
454 if (new_page)
09cbfeaf 455 put_page(new_page);
1da177e4
LT
456 return found_page;
457}
46017e95 458
5b999aad
DS
459/*
460 * Locate a page of swap in physical memory, reserving swap cache space
461 * and reading the disk if it is not already cached.
462 * A failure return means that either the page allocation failed or that
463 * the swap entry is no longer in use.
464 */
465struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
23955622 466 struct vm_area_struct *vma, unsigned long addr, bool do_poll)
5b999aad
DS
467{
468 bool page_was_allocated;
469 struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
470 vma, addr, &page_was_allocated);
471
472 if (page_was_allocated)
23955622 473 swap_readpage(retpage, do_poll);
5b999aad
DS
474
475 return retpage;
476}
477
ec560175
HY
478static unsigned int __swapin_nr_pages(unsigned long prev_offset,
479 unsigned long offset,
480 int hits,
481 int max_pages,
482 int prev_win)
579f8290 483{
ec560175 484 unsigned int pages, last_ra;
579f8290
SL
485
486 /*
487 * This heuristic has been found to work well on both sequential and
488 * random loads, swapping to hard disk or to SSD: please don't ask
489 * what the "+ 2" means, it just happens to work well, that's all.
490 */
ec560175 491 pages = hits + 2;
579f8290
SL
492 if (pages == 2) {
493 /*
494 * We can have no readahead hits to judge by: but must not get
495 * stuck here forever, so check for an adjacent offset instead
496 * (and don't even bother to check whether swap type is same).
497 */
498 if (offset != prev_offset + 1 && offset != prev_offset - 1)
499 pages = 1;
579f8290
SL
500 } else {
501 unsigned int roundup = 4;
502 while (roundup < pages)
503 roundup <<= 1;
504 pages = roundup;
505 }
506
507 if (pages > max_pages)
508 pages = max_pages;
509
510 /* Don't shrink readahead too fast */
ec560175 511 last_ra = prev_win / 2;
579f8290
SL
512 if (pages < last_ra)
513 pages = last_ra;
ec560175
HY
514
515 return pages;
516}
517
518static unsigned long swapin_nr_pages(unsigned long offset)
519{
520 static unsigned long prev_offset;
521 unsigned int hits, pages, max_pages;
522 static atomic_t last_readahead_pages;
523
524 max_pages = 1 << READ_ONCE(page_cluster);
525 if (max_pages <= 1)
526 return 1;
527
528 hits = atomic_xchg(&swapin_readahead_hits, 0);
529 pages = __swapin_nr_pages(prev_offset, offset, hits, max_pages,
530 atomic_read(&last_readahead_pages));
531 if (!hits)
532 prev_offset = offset;
579f8290
SL
533 atomic_set(&last_readahead_pages, pages);
534
535 return pages;
536}
537
46017e95
HD
538/**
539 * swapin_readahead - swap in pages in hope we need them soon
540 * @entry: swap entry of this memory
7682486b 541 * @gfp_mask: memory allocation flags
46017e95
HD
542 * @vma: user vma this address belongs to
543 * @addr: target address for mempolicy
544 *
545 * Returns the struct page for entry and addr, after queueing swapin.
546 *
547 * Primitive swap readahead code. We simply read an aligned block of
548 * (1 << page_cluster) entries in the swap area. This method is chosen
549 * because it doesn't cost us any seek time. We also make sure to queue
550 * the 'original' request together with the readahead ones...
551 *
552 * This has been extended to use the NUMA policies from the mm triggering
553 * the readahead.
554 *
555 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
556 */
02098fea 557struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
46017e95
HD
558 struct vm_area_struct *vma, unsigned long addr)
559{
46017e95 560 struct page *page;
579f8290
SL
561 unsigned long entry_offset = swp_offset(entry);
562 unsigned long offset = entry_offset;
67f96aa2 563 unsigned long start_offset, end_offset;
579f8290 564 unsigned long mask;
3fb5c298 565 struct blk_plug plug;
c4fa6309 566 bool do_poll = true, page_allocated;
46017e95 567
579f8290
SL
568 mask = swapin_nr_pages(offset) - 1;
569 if (!mask)
570 goto skip;
571
23955622 572 do_poll = false;
67f96aa2
RR
573 /* Read a page_cluster sized and aligned cluster around offset. */
574 start_offset = offset & ~mask;
575 end_offset = offset | mask;
576 if (!start_offset) /* First page is swap header. */
577 start_offset++;
578
3fb5c298 579 blk_start_plug(&plug);
67f96aa2 580 for (offset = start_offset; offset <= end_offset ; offset++) {
46017e95 581 /* Ok, do the async read-ahead now */
c4fa6309
HY
582 page = __read_swap_cache_async(
583 swp_entry(swp_type(entry), offset),
584 gfp_mask, vma, addr, &page_allocated);
46017e95 585 if (!page)
67f96aa2 586 continue;
c4fa6309
HY
587 if (page_allocated) {
588 swap_readpage(page, false);
589 if (offset != entry_offset &&
590 likely(!PageTransCompound(page))) {
591 SetPageReadahead(page);
592 count_vm_event(SWAP_RA);
593 }
cbc65df2 594 }
09cbfeaf 595 put_page(page);
46017e95 596 }
3fb5c298
CE
597 blk_finish_plug(&plug);
598
46017e95 599 lru_add_drain(); /* Push any new pages onto the LRU now */
579f8290 600skip:
23955622 601 return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
46017e95 602}
4b3ef9da
HY
603
604int init_swap_address_space(unsigned int type, unsigned long nr_pages)
605{
606 struct address_space *spaces, *space;
607 unsigned int i, nr;
608
609 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
54f180d3 610 spaces = kvzalloc(sizeof(struct address_space) * nr, GFP_KERNEL);
4b3ef9da
HY
611 if (!spaces)
612 return -ENOMEM;
613 for (i = 0; i < nr; i++) {
614 space = spaces + i;
615 INIT_RADIX_TREE(&space->page_tree, GFP_ATOMIC|__GFP_NOWARN);
616 atomic_set(&space->i_mmap_writable, 0);
617 space->a_ops = &swap_aops;
618 /* swap cache doesn't use writeback related tags */
619 mapping_set_no_writeback_tags(space);
620 spin_lock_init(&space->tree_lock);
621 }
622 nr_swapper_spaces[type] = nr;
623 rcu_assign_pointer(swapper_spaces[type], spaces);
624
625 return 0;
626}
627
628void exit_swap_address_space(unsigned int type)
629{
630 struct address_space *spaces;
631
632 spaces = swapper_spaces[type];
633 nr_swapper_spaces[type] = 0;
634 rcu_assign_pointer(swapper_spaces[type], NULL);
635 synchronize_rcu();
636 kvfree(spaces);
637}
ec560175
HY
638
639static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
640 unsigned long faddr,
641 unsigned long lpfn,
642 unsigned long rpfn,
643 unsigned long *start,
644 unsigned long *end)
645{
646 *start = max3(lpfn, PFN_DOWN(vma->vm_start),
647 PFN_DOWN(faddr & PMD_MASK));
648 *end = min3(rpfn, PFN_DOWN(vma->vm_end),
649 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
650}
651
652struct page *swap_readahead_detect(struct vm_fault *vmf,
653 struct vma_swap_readahead *swap_ra)
654{
655 struct vm_area_struct *vma = vmf->vma;
656 unsigned long swap_ra_info;
657 struct page *page;
658 swp_entry_t entry;
659 unsigned long faddr, pfn, fpfn;
660 unsigned long start, end;
661 pte_t *pte;
662 unsigned int max_win, hits, prev_win, win, left;
663#ifndef CONFIG_64BIT
664 pte_t *tpte;
665#endif
666
667 faddr = vmf->address;
668 entry = pte_to_swp_entry(vmf->orig_pte);
669 if ((unlikely(non_swap_entry(entry))))
670 return NULL;
671 page = lookup_swap_cache(entry, vma, faddr);
672 if (page)
673 return page;
674
675 max_win = 1 << READ_ONCE(swap_ra_max_order);
676 if (max_win == 1) {
677 swap_ra->win = 1;
678 return NULL;
679 }
680
681 fpfn = PFN_DOWN(faddr);
682 swap_ra_info = GET_SWAP_RA_VAL(vma);
683 pfn = PFN_DOWN(SWAP_RA_ADDR(swap_ra_info));
684 prev_win = SWAP_RA_WIN(swap_ra_info);
685 hits = SWAP_RA_HITS(swap_ra_info);
686 swap_ra->win = win = __swapin_nr_pages(pfn, fpfn, hits,
687 max_win, prev_win);
688 atomic_long_set(&vma->swap_readahead_info,
689 SWAP_RA_VAL(faddr, win, 0));
690
691 if (win == 1)
692 return NULL;
693
694 /* Copy the PTEs because the page table may be unmapped */
695 if (fpfn == pfn + 1)
696 swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
697 else if (pfn == fpfn + 1)
698 swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
699 &start, &end);
700 else {
701 left = (win - 1) / 2;
702 swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
703 &start, &end);
704 }
705 swap_ra->nr_pte = end - start;
706 swap_ra->offset = fpfn - start;
707 pte = vmf->pte - swap_ra->offset;
708#ifdef CONFIG_64BIT
709 swap_ra->ptes = pte;
710#else
711 tpte = swap_ra->ptes;
712 for (pfn = start; pfn != end; pfn++)
713 *tpte++ = *pte++;
714#endif
715
716 return NULL;
717}
718
719struct page *do_swap_page_readahead(swp_entry_t fentry, gfp_t gfp_mask,
720 struct vm_fault *vmf,
721 struct vma_swap_readahead *swap_ra)
722{
723 struct blk_plug plug;
724 struct vm_area_struct *vma = vmf->vma;
725 struct page *page;
726 pte_t *pte, pentry;
727 swp_entry_t entry;
728 unsigned int i;
729 bool page_allocated;
730
731 if (swap_ra->win == 1)
732 goto skip;
733
734 blk_start_plug(&plug);
735 for (i = 0, pte = swap_ra->ptes; i < swap_ra->nr_pte;
736 i++, pte++) {
737 pentry = *pte;
738 if (pte_none(pentry))
739 continue;
740 if (pte_present(pentry))
741 continue;
742 entry = pte_to_swp_entry(pentry);
743 if (unlikely(non_swap_entry(entry)))
744 continue;
745 page = __read_swap_cache_async(entry, gfp_mask, vma,
746 vmf->address, &page_allocated);
747 if (!page)
748 continue;
749 if (page_allocated) {
750 swap_readpage(page, false);
751 if (i != swap_ra->offset &&
752 likely(!PageTransCompound(page))) {
753 SetPageReadahead(page);
754 count_vm_event(SWAP_RA);
755 }
756 }
757 put_page(page);
758 }
759 blk_finish_plug(&plug);
760 lru_add_drain();
761skip:
762 return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
763 swap_ra->win == 1);
764}
d9bfcfdc
HY
765
766#ifdef CONFIG_SYSFS
767static ssize_t vma_ra_enabled_show(struct kobject *kobj,
768 struct kobj_attribute *attr, char *buf)
769{
770 return sprintf(buf, "%s\n", swap_vma_readahead ? "true" : "false");
771}
772static ssize_t vma_ra_enabled_store(struct kobject *kobj,
773 struct kobj_attribute *attr,
774 const char *buf, size_t count)
775{
776 if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
777 swap_vma_readahead = true;
778 else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
779 swap_vma_readahead = false;
780 else
781 return -EINVAL;
782
783 return count;
784}
785static struct kobj_attribute vma_ra_enabled_attr =
786 __ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
787 vma_ra_enabled_store);
788
789static ssize_t vma_ra_max_order_show(struct kobject *kobj,
790 struct kobj_attribute *attr, char *buf)
791{
792 return sprintf(buf, "%d\n", swap_ra_max_order);
793}
794static ssize_t vma_ra_max_order_store(struct kobject *kobj,
795 struct kobj_attribute *attr,
796 const char *buf, size_t count)
797{
798 int err, v;
799
800 err = kstrtoint(buf, 10, &v);
801 if (err || v > SWAP_RA_ORDER_CEILING || v <= 0)
802 return -EINVAL;
803
804 swap_ra_max_order = v;
805
806 return count;
807}
808static struct kobj_attribute vma_ra_max_order_attr =
809 __ATTR(vma_ra_max_order, 0644, vma_ra_max_order_show,
810 vma_ra_max_order_store);
811
812static struct attribute *swap_attrs[] = {
813 &vma_ra_enabled_attr.attr,
814 &vma_ra_max_order_attr.attr,
815 NULL,
816};
817
818static struct attribute_group swap_attr_group = {
819 .attrs = swap_attrs,
820};
821
822static int __init swap_init_sysfs(void)
823{
824 int err;
825 struct kobject *swap_kobj;
826
827 swap_kobj = kobject_create_and_add("swap", mm_kobj);
828 if (!swap_kobj) {
829 pr_err("failed to create swap kobject\n");
830 return -ENOMEM;
831 }
832 err = sysfs_create_group(swap_kobj, &swap_attr_group);
833 if (err) {
834 pr_err("failed to register swap group\n");
835 goto delete_obj;
836 }
837 return 0;
838
839delete_obj:
840 kobject_put(swap_kobj);
841 return err;
842}
843subsys_initcall(swap_init_sysfs);
844#endif