]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/swap_state.c
mm: allow swappiness that prefers reclaiming anon over the file workingset
[mirror_ubuntu-jammy-kernel.git] / mm / swap_state.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/swap_state.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 *
8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
9 */
1da177e4 10#include <linux/mm.h>
5a0e3ad6 11#include <linux/gfp.h>
1da177e4
LT
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
46017e95 14#include <linux/swapops.h>
1da177e4
LT
15#include <linux/init.h>
16#include <linux/pagemap.h>
1da177e4 17#include <linux/backing-dev.h>
3fb5c298 18#include <linux/blkdev.h>
c484d410 19#include <linux/pagevec.h>
b20a3503 20#include <linux/migrate.h>
4b3ef9da 21#include <linux/vmalloc.h>
67afa38e 22#include <linux/swap_slots.h>
38d8b4e6 23#include <linux/huge_mm.h>
1da177e4
LT
24
25#include <asm/pgtable.h>
26
27/*
28 * swapper_space is a fiction, retained to simplify the path through
7eaceacc 29 * vmscan's shrink_page_list.
1da177e4 30 */
f5e54d6e 31static const struct address_space_operations swap_aops = {
1da177e4 32 .writepage = swap_writepage,
62c230bc 33 .set_page_dirty = swap_set_page_dirty,
1c93923c 34#ifdef CONFIG_MIGRATION
e965f963 35 .migratepage = migrate_page,
1c93923c 36#endif
1da177e4
LT
37};
38
783cb68e
CD
39struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
40static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
f5c754d6 41static bool enable_vma_readahead __read_mostly = true;
ec560175 42
ec560175
HY
43#define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
44#define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
45#define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
46#define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
47
48#define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
49#define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
50#define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
51
52#define SWAP_RA_VAL(addr, win, hits) \
53 (((addr) & PAGE_MASK) | \
54 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
55 ((hits) & SWAP_RA_HITS_MASK))
56
57/* Initial readahead hits is 4 to start up with a small window */
58#define GET_SWAP_RA_VAL(vma) \
59 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
1da177e4
LT
60
61#define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
38d8b4e6 62#define ADD_CACHE_INFO(x, nr) do { swap_cache_info.x += (nr); } while (0)
1da177e4
LT
63
64static struct {
65 unsigned long add_total;
66 unsigned long del_total;
67 unsigned long find_success;
68 unsigned long find_total;
1da177e4
LT
69} swap_cache_info;
70
33806f06
SL
71unsigned long total_swapcache_pages(void)
72{
4b3ef9da 73 unsigned int i, j, nr;
33806f06 74 unsigned long ret = 0;
4b3ef9da 75 struct address_space *spaces;
054f1d1f 76 struct swap_info_struct *si;
33806f06 77
4b3ef9da 78 for (i = 0; i < MAX_SWAPFILES; i++) {
054f1d1f
HY
79 swp_entry_t entry = swp_entry(i, 1);
80
81 /* Avoid get_swap_device() to warn for bad swap entry */
82 if (!swp_swap_info(entry))
83 continue;
84 /* Prevent swapoff to free swapper_spaces */
85 si = get_swap_device(entry);
86 if (!si)
4b3ef9da 87 continue;
054f1d1f
HY
88 nr = nr_swapper_spaces[i];
89 spaces = swapper_spaces[i];
4b3ef9da
HY
90 for (j = 0; j < nr; j++)
91 ret += spaces[j].nrpages;
054f1d1f 92 put_swap_device(si);
4b3ef9da 93 }
33806f06
SL
94 return ret;
95}
96
579f8290
SL
97static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
98
1da177e4
LT
99void show_swap_cache_info(void)
100{
33806f06 101 printk("%lu pages in swap cache\n", total_swapcache_pages());
2c97b7fc 102 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
1da177e4 103 swap_cache_info.add_total, swap_cache_info.del_total,
bb63be0a 104 swap_cache_info.find_success, swap_cache_info.find_total);
ec8acf20
SL
105 printk("Free swap = %ldkB\n",
106 get_nr_swap_pages() << (PAGE_SHIFT - 10));
1da177e4
LT
107 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
108}
109
110/*
8d93b41c 111 * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
1da177e4
LT
112 * but sets SwapCache flag and private instead of mapping and index.
113 */
8d93b41c 114int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp)
1da177e4 115{
8d93b41c 116 struct address_space *address_space = swap_address_space(entry);
38d8b4e6 117 pgoff_t idx = swp_offset(entry);
8d93b41c 118 XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page));
cb774451 119 unsigned long i, nr = hpage_nr_pages(page);
1da177e4 120
309381fe
SL
121 VM_BUG_ON_PAGE(!PageLocked(page), page);
122 VM_BUG_ON_PAGE(PageSwapCache(page), page);
123 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
51726b12 124
38d8b4e6 125 page_ref_add(page, nr);
31a56396 126 SetPageSwapCache(page);
31a56396 127
8d93b41c
MW
128 do {
129 xas_lock_irq(&xas);
130 xas_create_range(&xas);
131 if (xas_error(&xas))
132 goto unlock;
133 for (i = 0; i < nr; i++) {
134 VM_BUG_ON_PAGE(xas.xa_index != idx + i, page);
135 set_page_private(page + i, entry.val + i);
4101196b 136 xas_store(&xas, page);
8d93b41c
MW
137 xas_next(&xas);
138 }
38d8b4e6
HY
139 address_space->nrpages += nr;
140 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
141 ADD_CACHE_INFO(add_total, nr);
8d93b41c
MW
142unlock:
143 xas_unlock_irq(&xas);
144 } while (xas_nomem(&xas, gfp));
31a56396 145
8d93b41c
MW
146 if (!xas_error(&xas))
147 return 0;
31a56396 148
8d93b41c
MW
149 ClearPageSwapCache(page);
150 page_ref_sub(page, nr);
151 return xas_error(&xas);
1da177e4
LT
152}
153
1da177e4
LT
154/*
155 * This must be called only on pages that have
156 * been verified to be in the swap cache.
157 */
4e17ec25 158void __delete_from_swap_cache(struct page *page, swp_entry_t entry)
1da177e4 159{
4e17ec25 160 struct address_space *address_space = swap_address_space(entry);
38d8b4e6 161 int i, nr = hpage_nr_pages(page);
4e17ec25
MW
162 pgoff_t idx = swp_offset(entry);
163 XA_STATE(xas, &address_space->i_pages, idx);
33806f06 164
309381fe
SL
165 VM_BUG_ON_PAGE(!PageLocked(page), page);
166 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
167 VM_BUG_ON_PAGE(PageWriteback(page), page);
1da177e4 168
38d8b4e6 169 for (i = 0; i < nr; i++) {
4e17ec25 170 void *entry = xas_store(&xas, NULL);
4101196b 171 VM_BUG_ON_PAGE(entry != page, entry);
38d8b4e6 172 set_page_private(page + i, 0);
4e17ec25 173 xas_next(&xas);
38d8b4e6 174 }
1da177e4 175 ClearPageSwapCache(page);
38d8b4e6
HY
176 address_space->nrpages -= nr;
177 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
178 ADD_CACHE_INFO(del_total, nr);
1da177e4
LT
179}
180
181/**
182 * add_to_swap - allocate swap space for a page
183 * @page: page we want to move to swap
184 *
185 * Allocate swap space for the page and add the page to the
186 * swap cache. Caller needs to hold the page lock.
187 */
0f074658 188int add_to_swap(struct page *page)
1da177e4
LT
189{
190 swp_entry_t entry;
1da177e4
LT
191 int err;
192
309381fe
SL
193 VM_BUG_ON_PAGE(!PageLocked(page), page);
194 VM_BUG_ON_PAGE(!PageUptodate(page), page);
1da177e4 195
38d8b4e6 196 entry = get_swap_page(page);
2ca4532a 197 if (!entry.val)
0f074658
MK
198 return 0;
199
2ca4532a 200 /*
8d93b41c 201 * XArray node allocations from PF_MEMALLOC contexts could
2ca4532a
DN
202 * completely exhaust the page allocator. __GFP_NOMEMALLOC
203 * stops emergency reserves from being allocated.
204 *
205 * TODO: this could cause a theoretical memory reclaim
206 * deadlock in the swap out path.
207 */
208 /*
854e9ed0 209 * Add it to the swap cache.
2ca4532a
DN
210 */
211 err = add_to_swap_cache(page, entry,
212 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
38d8b4e6 213 if (err)
bd53b714 214 /*
2ca4532a
DN
215 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
216 * clear SWAP_HAS_CACHE flag.
1da177e4 217 */
0f074658 218 goto fail;
9625456c
SL
219 /*
220 * Normally the page will be dirtied in unmap because its pte should be
221 * dirty. A special case is MADV_FREE page. The page'e pte could have
222 * dirty bit cleared but the page's SwapBacked bit is still set because
223 * clearing the dirty bit and SwapBacked bit has no lock protected. For
224 * such page, unmap will not set dirty bit for it, so page reclaim will
225 * not write the page out. This can cause data corruption when the page
226 * is swap in later. Always setting the dirty bit for the page solves
227 * the problem.
228 */
229 set_page_dirty(page);
38d8b4e6
HY
230
231 return 1;
232
38d8b4e6 233fail:
0f074658 234 put_swap_page(page, entry);
38d8b4e6 235 return 0;
1da177e4
LT
236}
237
238/*
239 * This must be called only on pages that have
240 * been verified to be in the swap cache and locked.
241 * It will never put the page into the free list,
242 * the caller has a reference on the page.
243 */
244void delete_from_swap_cache(struct page *page)
245{
4e17ec25
MW
246 swp_entry_t entry = { .val = page_private(page) };
247 struct address_space *address_space = swap_address_space(entry);
1da177e4 248
b93b0163 249 xa_lock_irq(&address_space->i_pages);
4e17ec25 250 __delete_from_swap_cache(page, entry);
b93b0163 251 xa_unlock_irq(&address_space->i_pages);
1da177e4 252
75f6d6d2 253 put_swap_page(page, entry);
38d8b4e6 254 page_ref_sub(page, hpage_nr_pages(page));
1da177e4
LT
255}
256
1da177e4
LT
257/*
258 * If we are the only user, then try to free up the swap cache.
259 *
260 * Its ok to check for PageSwapCache without the page lock
a2c43eed
HD
261 * here because we are going to recheck again inside
262 * try_to_free_swap() _with_ the lock.
1da177e4
LT
263 * - Marcelo
264 */
265static inline void free_swap_cache(struct page *page)
266{
a2c43eed
HD
267 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
268 try_to_free_swap(page);
1da177e4
LT
269 unlock_page(page);
270 }
271}
272
273/*
274 * Perform a free_page(), also freeing any swap cache associated with
b8072f09 275 * this page if it is the last user of the page.
1da177e4
LT
276 */
277void free_page_and_swap_cache(struct page *page)
278{
279 free_swap_cache(page);
6fcb52a5 280 if (!is_huge_zero_page(page))
770a5370 281 put_page(page);
1da177e4
LT
282}
283
284/*
285 * Passed an array of pages, drop them all from swapcache and then release
286 * them. They are removed from the LRU and freed if this is their last use.
287 */
288void free_pages_and_swap_cache(struct page **pages, int nr)
289{
1da177e4 290 struct page **pagep = pages;
aabfb572 291 int i;
1da177e4
LT
292
293 lru_add_drain();
aabfb572
MH
294 for (i = 0; i < nr; i++)
295 free_swap_cache(pagep[i]);
c6f92f9f 296 release_pages(pagep, nr);
1da177e4
LT
297}
298
e9e9b7ec
MK
299static inline bool swap_use_vma_readahead(void)
300{
301 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
302}
303
1da177e4
LT
304/*
305 * Lookup a swap entry in the swap cache. A found page will be returned
306 * unlocked and with its refcount incremented - we rely on the kernel
307 * lock getting page table operations atomic even if we drop the page
308 * lock before returning.
309 */
ec560175
HY
310struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
311 unsigned long addr)
1da177e4
LT
312{
313 struct page *page;
eb085574 314 struct swap_info_struct *si;
1da177e4 315
eb085574
HY
316 si = get_swap_device(entry);
317 if (!si)
318 return NULL;
f6ab1f7f 319 page = find_get_page(swap_address_space(entry), swp_offset(entry));
eb085574 320 put_swap_device(si);
1da177e4 321
ec560175
HY
322 INC_CACHE_INFO(find_total);
323 if (page) {
eaf649eb
MK
324 bool vma_ra = swap_use_vma_readahead();
325 bool readahead;
326
1da177e4 327 INC_CACHE_INFO(find_success);
eaf649eb
MK
328 /*
329 * At the moment, we don't support PG_readahead for anon THP
330 * so let's bail out rather than confusing the readahead stat.
331 */
ec560175
HY
332 if (unlikely(PageTransCompound(page)))
333 return page;
eaf649eb 334
ec560175 335 readahead = TestClearPageReadahead(page);
eaf649eb
MK
336 if (vma && vma_ra) {
337 unsigned long ra_val;
338 int win, hits;
339
340 ra_val = GET_SWAP_RA_VAL(vma);
341 win = SWAP_RA_WIN(ra_val);
342 hits = SWAP_RA_HITS(ra_val);
ec560175
HY
343 if (readahead)
344 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
345 atomic_long_set(&vma->swap_readahead_info,
346 SWAP_RA_VAL(addr, win, hits));
347 }
eaf649eb 348
ec560175 349 if (readahead) {
cbc65df2 350 count_vm_event(SWAP_RA_HIT);
eaf649eb 351 if (!vma || !vma_ra)
ec560175 352 atomic_inc(&swapin_readahead_hits);
cbc65df2 353 }
579f8290 354 }
eaf649eb 355
1da177e4
LT
356 return page;
357}
358
5b999aad
DS
359struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
360 struct vm_area_struct *vma, unsigned long addr,
361 bool *new_page_allocated)
1da177e4 362{
eb085574 363 struct swap_info_struct *si;
4c6355b2
JW
364 struct page *page;
365
5b999aad 366 *new_page_allocated = false;
1da177e4 367
4c6355b2
JW
368 for (;;) {
369 int err;
1da177e4
LT
370 /*
371 * First check the swap cache. Since this is normally
372 * called after lookup_swap_cache() failed, re-calling
373 * that would confuse statistics.
374 */
eb085574
HY
375 si = get_swap_device(entry);
376 if (!si)
4c6355b2
JW
377 return NULL;
378 page = find_get_page(swap_address_space(entry),
379 swp_offset(entry));
eb085574 380 put_swap_device(si);
4c6355b2
JW
381 if (page)
382 return page;
1da177e4 383
ba81f838
HY
384 /*
385 * Just skip read ahead for unused swap slot.
386 * During swap_off when swap_slot_cache is disabled,
387 * we have to handle the race between putting
388 * swap entry in swap cache and marking swap slot
389 * as SWAP_HAS_CACHE. That's done in later part of code or
390 * else swap_off will be aborted if we return NULL.
391 */
392 if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
4c6355b2 393 return NULL;
e8c26ab6 394
1da177e4 395 /*
4c6355b2
JW
396 * Get a new page to read into from swap. Allocate it now,
397 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
398 * cause any racers to loop around until we add it to cache.
1da177e4 399 */
4c6355b2
JW
400 page = alloc_page_vma(gfp_mask, vma, addr);
401 if (!page)
402 return NULL;
1da177e4 403
f000944d
HD
404 /*
405 * Swap entry may have been freed since our caller observed it.
406 */
355cfa73 407 err = swapcache_prepare(entry);
4c6355b2 408 if (!err)
f000944d
HD
409 break;
410
4c6355b2
JW
411 put_page(page);
412 if (err != -EEXIST)
413 return NULL;
414
2ca4532a 415 /*
4c6355b2
JW
416 * We might race against __delete_from_swap_cache(), and
417 * stumble across a swap_map entry whose SWAP_HAS_CACHE
418 * has not yet been cleared. Or race against another
419 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
420 * in swap_map, but not yet added its page to swap cache.
2ca4532a 421 */
4c6355b2
JW
422 cond_resched();
423 }
424
425 /*
426 * The swap entry is ours to swap in. Prepare the new page.
427 */
428
429 __SetPageLocked(page);
430 __SetPageSwapBacked(page);
431
432 /* May fail (-ENOMEM) if XArray node allocation failed. */
433 if (add_to_swap_cache(page, entry, gfp_mask & GFP_KERNEL)) {
434 put_swap_page(page, entry);
435 goto fail_unlock;
436 }
437
d9eb1ea2 438 if (mem_cgroup_charge(page, NULL, gfp_mask)) {
4c6355b2
JW
439 delete_from_swap_cache(page);
440 goto fail_unlock;
441 }
442
443 /* Caller will initiate read into locked page */
444 SetPageWorkingset(page);
445 lru_cache_add_anon(page);
446 *new_page_allocated = true;
447 return page;
1da177e4 448
4c6355b2
JW
449fail_unlock:
450 unlock_page(page);
451 put_page(page);
452 return NULL;
1da177e4 453}
46017e95 454
5b999aad
DS
455/*
456 * Locate a page of swap in physical memory, reserving swap cache space
457 * and reading the disk if it is not already cached.
458 * A failure return means that either the page allocation failed or that
459 * the swap entry is no longer in use.
460 */
461struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
23955622 462 struct vm_area_struct *vma, unsigned long addr, bool do_poll)
5b999aad
DS
463{
464 bool page_was_allocated;
465 struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
466 vma, addr, &page_was_allocated);
467
468 if (page_was_allocated)
23955622 469 swap_readpage(retpage, do_poll);
5b999aad
DS
470
471 return retpage;
472}
473
ec560175
HY
474static unsigned int __swapin_nr_pages(unsigned long prev_offset,
475 unsigned long offset,
476 int hits,
477 int max_pages,
478 int prev_win)
579f8290 479{
ec560175 480 unsigned int pages, last_ra;
579f8290
SL
481
482 /*
483 * This heuristic has been found to work well on both sequential and
484 * random loads, swapping to hard disk or to SSD: please don't ask
485 * what the "+ 2" means, it just happens to work well, that's all.
486 */
ec560175 487 pages = hits + 2;
579f8290
SL
488 if (pages == 2) {
489 /*
490 * We can have no readahead hits to judge by: but must not get
491 * stuck here forever, so check for an adjacent offset instead
492 * (and don't even bother to check whether swap type is same).
493 */
494 if (offset != prev_offset + 1 && offset != prev_offset - 1)
495 pages = 1;
579f8290
SL
496 } else {
497 unsigned int roundup = 4;
498 while (roundup < pages)
499 roundup <<= 1;
500 pages = roundup;
501 }
502
503 if (pages > max_pages)
504 pages = max_pages;
505
506 /* Don't shrink readahead too fast */
ec560175 507 last_ra = prev_win / 2;
579f8290
SL
508 if (pages < last_ra)
509 pages = last_ra;
ec560175
HY
510
511 return pages;
512}
513
514static unsigned long swapin_nr_pages(unsigned long offset)
515{
516 static unsigned long prev_offset;
517 unsigned int hits, pages, max_pages;
518 static atomic_t last_readahead_pages;
519
520 max_pages = 1 << READ_ONCE(page_cluster);
521 if (max_pages <= 1)
522 return 1;
523
524 hits = atomic_xchg(&swapin_readahead_hits, 0);
d6c1f098
QC
525 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
526 max_pages,
ec560175
HY
527 atomic_read(&last_readahead_pages));
528 if (!hits)
d6c1f098 529 WRITE_ONCE(prev_offset, offset);
579f8290
SL
530 atomic_set(&last_readahead_pages, pages);
531
532 return pages;
533}
534
46017e95 535/**
e9e9b7ec 536 * swap_cluster_readahead - swap in pages in hope we need them soon
46017e95 537 * @entry: swap entry of this memory
7682486b 538 * @gfp_mask: memory allocation flags
e9e9b7ec 539 * @vmf: fault information
46017e95
HD
540 *
541 * Returns the struct page for entry and addr, after queueing swapin.
542 *
543 * Primitive swap readahead code. We simply read an aligned block of
544 * (1 << page_cluster) entries in the swap area. This method is chosen
545 * because it doesn't cost us any seek time. We also make sure to queue
546 * the 'original' request together with the readahead ones...
547 *
548 * This has been extended to use the NUMA policies from the mm triggering
549 * the readahead.
550 *
e9f59873 551 * Caller must hold read mmap_sem if vmf->vma is not NULL.
46017e95 552 */
e9e9b7ec
MK
553struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
554 struct vm_fault *vmf)
46017e95 555{
46017e95 556 struct page *page;
579f8290
SL
557 unsigned long entry_offset = swp_offset(entry);
558 unsigned long offset = entry_offset;
67f96aa2 559 unsigned long start_offset, end_offset;
579f8290 560 unsigned long mask;
e9a6effa 561 struct swap_info_struct *si = swp_swap_info(entry);
3fb5c298 562 struct blk_plug plug;
c4fa6309 563 bool do_poll = true, page_allocated;
e9e9b7ec
MK
564 struct vm_area_struct *vma = vmf->vma;
565 unsigned long addr = vmf->address;
46017e95 566
579f8290
SL
567 mask = swapin_nr_pages(offset) - 1;
568 if (!mask)
569 goto skip;
570
8fd2e0b5
YS
571 /* Test swap type to make sure the dereference is safe */
572 if (likely(si->flags & (SWP_BLKDEV | SWP_FS))) {
573 struct inode *inode = si->swap_file->f_mapping->host;
574 if (inode_read_congested(inode))
575 goto skip;
576 }
577
23955622 578 do_poll = false;
67f96aa2
RR
579 /* Read a page_cluster sized and aligned cluster around offset. */
580 start_offset = offset & ~mask;
581 end_offset = offset | mask;
582 if (!start_offset) /* First page is swap header. */
583 start_offset++;
e9a6effa
HY
584 if (end_offset >= si->max)
585 end_offset = si->max - 1;
67f96aa2 586
3fb5c298 587 blk_start_plug(&plug);
67f96aa2 588 for (offset = start_offset; offset <= end_offset ; offset++) {
46017e95 589 /* Ok, do the async read-ahead now */
c4fa6309
HY
590 page = __read_swap_cache_async(
591 swp_entry(swp_type(entry), offset),
592 gfp_mask, vma, addr, &page_allocated);
46017e95 593 if (!page)
67f96aa2 594 continue;
c4fa6309
HY
595 if (page_allocated) {
596 swap_readpage(page, false);
eaf649eb 597 if (offset != entry_offset) {
c4fa6309
HY
598 SetPageReadahead(page);
599 count_vm_event(SWAP_RA);
600 }
cbc65df2 601 }
09cbfeaf 602 put_page(page);
46017e95 603 }
3fb5c298
CE
604 blk_finish_plug(&plug);
605
46017e95 606 lru_add_drain(); /* Push any new pages onto the LRU now */
579f8290 607skip:
23955622 608 return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
46017e95 609}
4b3ef9da
HY
610
611int init_swap_address_space(unsigned int type, unsigned long nr_pages)
612{
613 struct address_space *spaces, *space;
614 unsigned int i, nr;
615
616 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
778e1cdd 617 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
4b3ef9da
HY
618 if (!spaces)
619 return -ENOMEM;
620 for (i = 0; i < nr; i++) {
621 space = spaces + i;
a2833486 622 xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
4b3ef9da
HY
623 atomic_set(&space->i_mmap_writable, 0);
624 space->a_ops = &swap_aops;
625 /* swap cache doesn't use writeback related tags */
626 mapping_set_no_writeback_tags(space);
4b3ef9da
HY
627 }
628 nr_swapper_spaces[type] = nr;
054f1d1f 629 swapper_spaces[type] = spaces;
4b3ef9da
HY
630
631 return 0;
632}
633
634void exit_swap_address_space(unsigned int type)
635{
054f1d1f 636 kvfree(swapper_spaces[type]);
4b3ef9da 637 nr_swapper_spaces[type] = 0;
054f1d1f 638 swapper_spaces[type] = NULL;
4b3ef9da 639}
ec560175
HY
640
641static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
642 unsigned long faddr,
643 unsigned long lpfn,
644 unsigned long rpfn,
645 unsigned long *start,
646 unsigned long *end)
647{
648 *start = max3(lpfn, PFN_DOWN(vma->vm_start),
649 PFN_DOWN(faddr & PMD_MASK));
650 *end = min3(rpfn, PFN_DOWN(vma->vm_end),
651 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
652}
653
eaf649eb
MK
654static void swap_ra_info(struct vm_fault *vmf,
655 struct vma_swap_readahead *ra_info)
ec560175
HY
656{
657 struct vm_area_struct *vma = vmf->vma;
eaf649eb 658 unsigned long ra_val;
ec560175
HY
659 swp_entry_t entry;
660 unsigned long faddr, pfn, fpfn;
661 unsigned long start, end;
eaf649eb 662 pte_t *pte, *orig_pte;
ec560175
HY
663 unsigned int max_win, hits, prev_win, win, left;
664#ifndef CONFIG_64BIT
665 pte_t *tpte;
666#endif
667
61b63972
HY
668 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
669 SWAP_RA_ORDER_CEILING);
670 if (max_win == 1) {
eaf649eb
MK
671 ra_info->win = 1;
672 return;
61b63972
HY
673 }
674
ec560175 675 faddr = vmf->address;
eaf649eb
MK
676 orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
677 entry = pte_to_swp_entry(*pte);
678 if ((unlikely(non_swap_entry(entry)))) {
679 pte_unmap(orig_pte);
680 return;
681 }
ec560175 682
ec560175 683 fpfn = PFN_DOWN(faddr);
eaf649eb
MK
684 ra_val = GET_SWAP_RA_VAL(vma);
685 pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
686 prev_win = SWAP_RA_WIN(ra_val);
687 hits = SWAP_RA_HITS(ra_val);
688 ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
ec560175
HY
689 max_win, prev_win);
690 atomic_long_set(&vma->swap_readahead_info,
691 SWAP_RA_VAL(faddr, win, 0));
692
eaf649eb
MK
693 if (win == 1) {
694 pte_unmap(orig_pte);
695 return;
696 }
ec560175
HY
697
698 /* Copy the PTEs because the page table may be unmapped */
699 if (fpfn == pfn + 1)
700 swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
701 else if (pfn == fpfn + 1)
702 swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
703 &start, &end);
704 else {
705 left = (win - 1) / 2;
706 swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
707 &start, &end);
708 }
eaf649eb
MK
709 ra_info->nr_pte = end - start;
710 ra_info->offset = fpfn - start;
711 pte -= ra_info->offset;
ec560175 712#ifdef CONFIG_64BIT
eaf649eb 713 ra_info->ptes = pte;
ec560175 714#else
eaf649eb 715 tpte = ra_info->ptes;
ec560175
HY
716 for (pfn = start; pfn != end; pfn++)
717 *tpte++ = *pte++;
718#endif
eaf649eb 719 pte_unmap(orig_pte);
ec560175
HY
720}
721
e9f59873
YS
722/**
723 * swap_vma_readahead - swap in pages in hope we need them soon
724 * @entry: swap entry of this memory
725 * @gfp_mask: memory allocation flags
726 * @vmf: fault information
727 *
728 * Returns the struct page for entry and addr, after queueing swapin.
729 *
730 * Primitive swap readahead code. We simply read in a few pages whoes
731 * virtual addresses are around the fault address in the same vma.
732 *
733 * Caller must hold read mmap_sem if vmf->vma is not NULL.
734 *
735 */
f5c754d6
CIK
736static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
737 struct vm_fault *vmf)
ec560175
HY
738{
739 struct blk_plug plug;
740 struct vm_area_struct *vma = vmf->vma;
741 struct page *page;
742 pte_t *pte, pentry;
743 swp_entry_t entry;
744 unsigned int i;
745 bool page_allocated;
eaf649eb 746 struct vma_swap_readahead ra_info = {0,};
ec560175 747
eaf649eb
MK
748 swap_ra_info(vmf, &ra_info);
749 if (ra_info.win == 1)
ec560175
HY
750 goto skip;
751
752 blk_start_plug(&plug);
eaf649eb 753 for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
ec560175
HY
754 i++, pte++) {
755 pentry = *pte;
756 if (pte_none(pentry))
757 continue;
758 if (pte_present(pentry))
759 continue;
760 entry = pte_to_swp_entry(pentry);
761 if (unlikely(non_swap_entry(entry)))
762 continue;
763 page = __read_swap_cache_async(entry, gfp_mask, vma,
764 vmf->address, &page_allocated);
765 if (!page)
766 continue;
767 if (page_allocated) {
768 swap_readpage(page, false);
eaf649eb 769 if (i != ra_info.offset) {
ec560175
HY
770 SetPageReadahead(page);
771 count_vm_event(SWAP_RA);
772 }
773 }
774 put_page(page);
775 }
776 blk_finish_plug(&plug);
777 lru_add_drain();
778skip:
779 return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
eaf649eb 780 ra_info.win == 1);
ec560175 781}
d9bfcfdc 782
e9e9b7ec
MK
783/**
784 * swapin_readahead - swap in pages in hope we need them soon
785 * @entry: swap entry of this memory
786 * @gfp_mask: memory allocation flags
787 * @vmf: fault information
788 *
789 * Returns the struct page for entry and addr, after queueing swapin.
790 *
791 * It's a main entry function for swap readahead. By the configuration,
792 * it will read ahead blocks by cluster-based(ie, physical disk based)
793 * or vma-based(ie, virtual address based on faulty address) readahead.
794 */
795struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
796 struct vm_fault *vmf)
797{
798 return swap_use_vma_readahead() ?
799 swap_vma_readahead(entry, gfp_mask, vmf) :
800 swap_cluster_readahead(entry, gfp_mask, vmf);
801}
802
d9bfcfdc
HY
803#ifdef CONFIG_SYSFS
804static ssize_t vma_ra_enabled_show(struct kobject *kobj,
805 struct kobj_attribute *attr, char *buf)
806{
e9e9b7ec 807 return sprintf(buf, "%s\n", enable_vma_readahead ? "true" : "false");
d9bfcfdc
HY
808}
809static ssize_t vma_ra_enabled_store(struct kobject *kobj,
810 struct kobj_attribute *attr,
811 const char *buf, size_t count)
812{
813 if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
e9e9b7ec 814 enable_vma_readahead = true;
d9bfcfdc 815 else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
e9e9b7ec 816 enable_vma_readahead = false;
d9bfcfdc
HY
817 else
818 return -EINVAL;
819
820 return count;
821}
822static struct kobj_attribute vma_ra_enabled_attr =
823 __ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
824 vma_ra_enabled_store);
825
d9bfcfdc
HY
826static struct attribute *swap_attrs[] = {
827 &vma_ra_enabled_attr.attr,
d9bfcfdc
HY
828 NULL,
829};
830
831static struct attribute_group swap_attr_group = {
832 .attrs = swap_attrs,
833};
834
835static int __init swap_init_sysfs(void)
836{
837 int err;
838 struct kobject *swap_kobj;
839
840 swap_kobj = kobject_create_and_add("swap", mm_kobj);
841 if (!swap_kobj) {
842 pr_err("failed to create swap kobject\n");
843 return -ENOMEM;
844 }
845 err = sysfs_create_group(swap_kobj, &swap_attr_group);
846 if (err) {
847 pr_err("failed to register swap group\n");
848 goto delete_obj;
849 }
850 return 0;
851
852delete_obj:
853 kobject_put(swap_kobj);
854 return err;
855}
856subsys_initcall(swap_init_sysfs);
857#endif