]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/swapfile.c
Merge tag 'timers-core-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-hirsute-kernel.git] / mm / swapfile.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
1da177e4 9#include <linux/mm.h>
6e84f315 10#include <linux/sched/mm.h>
29930025 11#include <linux/sched/task.h>
1da177e4
LT
12#include <linux/hugetlb.h>
13#include <linux/mman.h>
14#include <linux/slab.h>
15#include <linux/kernel_stat.h>
16#include <linux/swap.h>
17#include <linux/vmalloc.h>
18#include <linux/pagemap.h>
19#include <linux/namei.h>
072441e2 20#include <linux/shmem_fs.h>
1da177e4 21#include <linux/blkdev.h>
20137a49 22#include <linux/random.h>
1da177e4
LT
23#include <linux/writeback.h>
24#include <linux/proc_fs.h>
25#include <linux/seq_file.h>
26#include <linux/init.h>
5ad64688 27#include <linux/ksm.h>
1da177e4
LT
28#include <linux/rmap.h>
29#include <linux/security.h>
30#include <linux/backing-dev.h>
fc0abb14 31#include <linux/mutex.h>
c59ede7b 32#include <linux/capability.h>
1da177e4 33#include <linux/syscalls.h>
8a9f3ccd 34#include <linux/memcontrol.h>
66d7dd51 35#include <linux/poll.h>
72788c38 36#include <linux/oom.h>
38b5faf4
DM
37#include <linux/frontswap.h>
38#include <linux/swapfile.h>
f981c595 39#include <linux/export.h>
67afa38e 40#include <linux/swap_slots.h>
155b5f88 41#include <linux/sort.h>
1da177e4 42
1da177e4
LT
43#include <asm/tlbflush.h>
44#include <linux/swapops.h>
5d1ea48b 45#include <linux/swap_cgroup.h>
1da177e4 46
570a335b
HD
47static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 unsigned char);
49static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 50static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 51
38b5faf4 52DEFINE_SPINLOCK(swap_lock);
7c363b8c 53static unsigned int nr_swapfiles;
ec8acf20 54atomic_long_t nr_swap_pages;
fb0fec50
CW
55/*
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
59 */
60EXPORT_SYMBOL_GPL(nr_swap_pages);
ec8acf20 61/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 62long total_swap_pages;
a2468cc9 63static int least_priority = -1;
1da177e4 64
1da177e4
LT
65static const char Bad_file[] = "Bad swap file entry ";
66static const char Unused_file[] = "Unused swap file entry ";
67static const char Bad_offset[] = "Bad swap offset entry ";
68static const char Unused_offset[] = "Unused swap offset entry ";
69
adfab836
DS
70/*
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
73 */
18ab4d4c
DS
74PLIST_HEAD(swap_active_head);
75
76/*
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
87 */
bfc6b1ca 88static struct plist_head *swap_avail_heads;
18ab4d4c 89static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 90
38b5faf4 91struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 92
fc0abb14 93static DEFINE_MUTEX(swapon_mutex);
1da177e4 94
66d7dd51
KS
95static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96/* Activity counter to indicate that a swapon or swapoff has occurred */
97static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
81a0298b
HY
99atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
c10d38cc
DJ
101static struct swap_info_struct *swap_type_to_swap_info(int type)
102{
103 if (type >= READ_ONCE(nr_swapfiles))
104 return NULL;
105
106 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */
107 return READ_ONCE(swap_info[type]);
108}
109
8d69aaee 110static inline unsigned char swap_count(unsigned char ent)
355cfa73 111{
955c97f0 112 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
355cfa73
KH
113}
114
bcd49e86
HY
115/* Reclaim the swap entry anyway if possible */
116#define TTRS_ANYWAY 0x1
117/*
118 * Reclaim the swap entry if there are no more mappings of the
119 * corresponding page
120 */
121#define TTRS_UNMAPPED 0x2
122/* Reclaim the swap entry if swap is getting full*/
123#define TTRS_FULL 0x4
124
efa90a98 125/* returns 1 if swap entry is freed */
bcd49e86
HY
126static int __try_to_reclaim_swap(struct swap_info_struct *si,
127 unsigned long offset, unsigned long flags)
c9e44410 128{
efa90a98 129 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
130 struct page *page;
131 int ret = 0;
132
bcd49e86 133 page = find_get_page(swap_address_space(entry), offset);
c9e44410
KH
134 if (!page)
135 return 0;
136 /*
bcd49e86
HY
137 * When this function is called from scan_swap_map_slots() and it's
138 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
139 * here. We have to use trylock for avoiding deadlock. This is a special
c9e44410
KH
140 * case and you should use try_to_free_swap() with explicit lock_page()
141 * in usual operations.
142 */
143 if (trylock_page(page)) {
bcd49e86
HY
144 if ((flags & TTRS_ANYWAY) ||
145 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
146 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
147 ret = try_to_free_swap(page);
c9e44410
KH
148 unlock_page(page);
149 }
09cbfeaf 150 put_page(page);
c9e44410
KH
151 return ret;
152}
355cfa73 153
4efaceb1
AL
154static inline struct swap_extent *first_se(struct swap_info_struct *sis)
155{
156 struct rb_node *rb = rb_first(&sis->swap_extent_root);
157 return rb_entry(rb, struct swap_extent, rb_node);
158}
159
160static inline struct swap_extent *next_se(struct swap_extent *se)
161{
162 struct rb_node *rb = rb_next(&se->rb_node);
163 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
164}
165
6a6ba831
HD
166/*
167 * swapon tell device that all the old swap contents can be discarded,
168 * to allow the swap device to optimize its wear-levelling.
169 */
170static int discard_swap(struct swap_info_struct *si)
171{
172 struct swap_extent *se;
9625a5f2
HD
173 sector_t start_block;
174 sector_t nr_blocks;
6a6ba831
HD
175 int err = 0;
176
9625a5f2 177 /* Do not discard the swap header page! */
4efaceb1 178 se = first_se(si);
9625a5f2
HD
179 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
180 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
181 if (nr_blocks) {
182 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 183 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
184 if (err)
185 return err;
186 cond_resched();
187 }
6a6ba831 188
4efaceb1 189 for (se = next_se(se); se; se = next_se(se)) {
9625a5f2
HD
190 start_block = se->start_block << (PAGE_SHIFT - 9);
191 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
192
193 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 194 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
195 if (err)
196 break;
197
198 cond_resched();
199 }
200 return err; /* That will often be -EOPNOTSUPP */
201}
202
4efaceb1
AL
203static struct swap_extent *
204offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
205{
206 struct swap_extent *se;
207 struct rb_node *rb;
208
209 rb = sis->swap_extent_root.rb_node;
210 while (rb) {
211 se = rb_entry(rb, struct swap_extent, rb_node);
212 if (offset < se->start_page)
213 rb = rb->rb_left;
214 else if (offset >= se->start_page + se->nr_pages)
215 rb = rb->rb_right;
216 else
217 return se;
218 }
219 /* It *must* be present */
220 BUG();
221}
222
7992fde7
HD
223/*
224 * swap allocation tell device that a cluster of swap can now be discarded,
225 * to allow the swap device to optimize its wear-levelling.
226 */
227static void discard_swap_cluster(struct swap_info_struct *si,
228 pgoff_t start_page, pgoff_t nr_pages)
229{
4efaceb1 230 struct swap_extent *se = offset_to_swap_extent(si, start_page);
7992fde7
HD
231
232 while (nr_pages) {
4efaceb1
AL
233 pgoff_t offset = start_page - se->start_page;
234 sector_t start_block = se->start_block + offset;
235 sector_t nr_blocks = se->nr_pages - offset;
236
237 if (nr_blocks > nr_pages)
238 nr_blocks = nr_pages;
239 start_page += nr_blocks;
240 nr_pages -= nr_blocks;
241
242 start_block <<= PAGE_SHIFT - 9;
243 nr_blocks <<= PAGE_SHIFT - 9;
244 if (blkdev_issue_discard(si->bdev, start_block,
245 nr_blocks, GFP_NOIO, 0))
246 break;
7992fde7 247
4efaceb1 248 se = next_se(se);
7992fde7
HD
249 }
250}
251
38d8b4e6
HY
252#ifdef CONFIG_THP_SWAP
253#define SWAPFILE_CLUSTER HPAGE_PMD_NR
a448f2d0
HY
254
255#define swap_entry_size(size) (size)
38d8b4e6 256#else
048c27fd 257#define SWAPFILE_CLUSTER 256
a448f2d0
HY
258
259/*
260 * Define swap_entry_size() as constant to let compiler to optimize
261 * out some code if !CONFIG_THP_SWAP
262 */
263#define swap_entry_size(size) 1
38d8b4e6 264#endif
048c27fd
HD
265#define LATENCY_LIMIT 256
266
2a8f9449
SL
267static inline void cluster_set_flag(struct swap_cluster_info *info,
268 unsigned int flag)
269{
270 info->flags = flag;
271}
272
273static inline unsigned int cluster_count(struct swap_cluster_info *info)
274{
275 return info->data;
276}
277
278static inline void cluster_set_count(struct swap_cluster_info *info,
279 unsigned int c)
280{
281 info->data = c;
282}
283
284static inline void cluster_set_count_flag(struct swap_cluster_info *info,
285 unsigned int c, unsigned int f)
286{
287 info->flags = f;
288 info->data = c;
289}
290
291static inline unsigned int cluster_next(struct swap_cluster_info *info)
292{
293 return info->data;
294}
295
296static inline void cluster_set_next(struct swap_cluster_info *info,
297 unsigned int n)
298{
299 info->data = n;
300}
301
302static inline void cluster_set_next_flag(struct swap_cluster_info *info,
303 unsigned int n, unsigned int f)
304{
305 info->flags = f;
306 info->data = n;
307}
308
309static inline bool cluster_is_free(struct swap_cluster_info *info)
310{
311 return info->flags & CLUSTER_FLAG_FREE;
312}
313
314static inline bool cluster_is_null(struct swap_cluster_info *info)
315{
316 return info->flags & CLUSTER_FLAG_NEXT_NULL;
317}
318
319static inline void cluster_set_null(struct swap_cluster_info *info)
320{
321 info->flags = CLUSTER_FLAG_NEXT_NULL;
322 info->data = 0;
323}
324
e0709829
HY
325static inline bool cluster_is_huge(struct swap_cluster_info *info)
326{
33ee011e
HY
327 if (IS_ENABLED(CONFIG_THP_SWAP))
328 return info->flags & CLUSTER_FLAG_HUGE;
329 return false;
e0709829
HY
330}
331
332static inline void cluster_clear_huge(struct swap_cluster_info *info)
333{
334 info->flags &= ~CLUSTER_FLAG_HUGE;
335}
336
235b6217
HY
337static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
338 unsigned long offset)
339{
340 struct swap_cluster_info *ci;
341
342 ci = si->cluster_info;
343 if (ci) {
344 ci += offset / SWAPFILE_CLUSTER;
345 spin_lock(&ci->lock);
346 }
347 return ci;
348}
349
350static inline void unlock_cluster(struct swap_cluster_info *ci)
351{
352 if (ci)
353 spin_unlock(&ci->lock);
354}
355
59d98bf3
HY
356/*
357 * Determine the locking method in use for this device. Return
358 * swap_cluster_info if SSD-style cluster-based locking is in place.
359 */
235b6217 360static inline struct swap_cluster_info *lock_cluster_or_swap_info(
59d98bf3 361 struct swap_info_struct *si, unsigned long offset)
235b6217
HY
362{
363 struct swap_cluster_info *ci;
364
59d98bf3 365 /* Try to use fine-grained SSD-style locking if available: */
235b6217 366 ci = lock_cluster(si, offset);
59d98bf3 367 /* Otherwise, fall back to traditional, coarse locking: */
235b6217
HY
368 if (!ci)
369 spin_lock(&si->lock);
370
371 return ci;
372}
373
374static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
375 struct swap_cluster_info *ci)
376{
377 if (ci)
378 unlock_cluster(ci);
379 else
380 spin_unlock(&si->lock);
381}
382
6b534915
HY
383static inline bool cluster_list_empty(struct swap_cluster_list *list)
384{
385 return cluster_is_null(&list->head);
386}
387
388static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
389{
390 return cluster_next(&list->head);
391}
392
393static void cluster_list_init(struct swap_cluster_list *list)
394{
395 cluster_set_null(&list->head);
396 cluster_set_null(&list->tail);
397}
398
399static void cluster_list_add_tail(struct swap_cluster_list *list,
400 struct swap_cluster_info *ci,
401 unsigned int idx)
402{
403 if (cluster_list_empty(list)) {
404 cluster_set_next_flag(&list->head, idx, 0);
405 cluster_set_next_flag(&list->tail, idx, 0);
406 } else {
235b6217 407 struct swap_cluster_info *ci_tail;
6b534915
HY
408 unsigned int tail = cluster_next(&list->tail);
409
235b6217
HY
410 /*
411 * Nested cluster lock, but both cluster locks are
412 * only acquired when we held swap_info_struct->lock
413 */
414 ci_tail = ci + tail;
415 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
416 cluster_set_next(ci_tail, idx);
0ef017d1 417 spin_unlock(&ci_tail->lock);
6b534915
HY
418 cluster_set_next_flag(&list->tail, idx, 0);
419 }
420}
421
422static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
423 struct swap_cluster_info *ci)
424{
425 unsigned int idx;
426
427 idx = cluster_next(&list->head);
428 if (cluster_next(&list->tail) == idx) {
429 cluster_set_null(&list->head);
430 cluster_set_null(&list->tail);
431 } else
432 cluster_set_next_flag(&list->head,
433 cluster_next(&ci[idx]), 0);
434
435 return idx;
436}
437
815c2c54
SL
438/* Add a cluster to discard list and schedule it to do discard */
439static void swap_cluster_schedule_discard(struct swap_info_struct *si,
440 unsigned int idx)
441{
442 /*
443 * If scan_swap_map() can't find a free cluster, it will check
444 * si->swap_map directly. To make sure the discarding cluster isn't
445 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
446 * will be cleared after discard
447 */
448 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
449 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
450
6b534915 451 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
815c2c54
SL
452
453 schedule_work(&si->discard_work);
454}
455
38d8b4e6
HY
456static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
457{
458 struct swap_cluster_info *ci = si->cluster_info;
459
460 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
461 cluster_list_add_tail(&si->free_clusters, ci, idx);
462}
463
815c2c54
SL
464/*
465 * Doing discard actually. After a cluster discard is finished, the cluster
466 * will be added to free cluster list. caller should hold si->lock.
467*/
468static void swap_do_scheduled_discard(struct swap_info_struct *si)
469{
235b6217 470 struct swap_cluster_info *info, *ci;
815c2c54
SL
471 unsigned int idx;
472
473 info = si->cluster_info;
474
6b534915
HY
475 while (!cluster_list_empty(&si->discard_clusters)) {
476 idx = cluster_list_del_first(&si->discard_clusters, info);
815c2c54
SL
477 spin_unlock(&si->lock);
478
479 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
480 SWAPFILE_CLUSTER);
481
482 spin_lock(&si->lock);
235b6217 483 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
38d8b4e6 484 __free_cluster(si, idx);
815c2c54
SL
485 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
486 0, SWAPFILE_CLUSTER);
235b6217 487 unlock_cluster(ci);
815c2c54
SL
488 }
489}
490
491static void swap_discard_work(struct work_struct *work)
492{
493 struct swap_info_struct *si;
494
495 si = container_of(work, struct swap_info_struct, discard_work);
496
497 spin_lock(&si->lock);
498 swap_do_scheduled_discard(si);
499 spin_unlock(&si->lock);
500}
501
38d8b4e6
HY
502static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
503{
504 struct swap_cluster_info *ci = si->cluster_info;
505
506 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
507 cluster_list_del_first(&si->free_clusters, ci);
508 cluster_set_count_flag(ci + idx, 0, 0);
509}
510
511static void free_cluster(struct swap_info_struct *si, unsigned long idx)
512{
513 struct swap_cluster_info *ci = si->cluster_info + idx;
514
515 VM_BUG_ON(cluster_count(ci) != 0);
516 /*
517 * If the swap is discardable, prepare discard the cluster
518 * instead of free it immediately. The cluster will be freed
519 * after discard.
520 */
521 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
522 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
523 swap_cluster_schedule_discard(si, idx);
524 return;
525 }
526
527 __free_cluster(si, idx);
528}
529
2a8f9449
SL
530/*
531 * The cluster corresponding to page_nr will be used. The cluster will be
532 * removed from free cluster list and its usage counter will be increased.
533 */
534static void inc_cluster_info_page(struct swap_info_struct *p,
535 struct swap_cluster_info *cluster_info, unsigned long page_nr)
536{
537 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
538
539 if (!cluster_info)
540 return;
38d8b4e6
HY
541 if (cluster_is_free(&cluster_info[idx]))
542 alloc_cluster(p, idx);
2a8f9449
SL
543
544 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
545 cluster_set_count(&cluster_info[idx],
546 cluster_count(&cluster_info[idx]) + 1);
547}
548
549/*
550 * The cluster corresponding to page_nr decreases one usage. If the usage
551 * counter becomes 0, which means no page in the cluster is in using, we can
552 * optionally discard the cluster and add it to free cluster list.
553 */
554static void dec_cluster_info_page(struct swap_info_struct *p,
555 struct swap_cluster_info *cluster_info, unsigned long page_nr)
556{
557 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
558
559 if (!cluster_info)
560 return;
561
562 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
563 cluster_set_count(&cluster_info[idx],
564 cluster_count(&cluster_info[idx]) - 1);
565
38d8b4e6
HY
566 if (cluster_count(&cluster_info[idx]) == 0)
567 free_cluster(p, idx);
2a8f9449
SL
568}
569
570/*
571 * It's possible scan_swap_map() uses a free cluster in the middle of free
572 * cluster list. Avoiding such abuse to avoid list corruption.
573 */
ebc2a1a6
SL
574static bool
575scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
576 unsigned long offset)
577{
ebc2a1a6
SL
578 struct percpu_cluster *percpu_cluster;
579 bool conflict;
580
2a8f9449 581 offset /= SWAPFILE_CLUSTER;
6b534915
HY
582 conflict = !cluster_list_empty(&si->free_clusters) &&
583 offset != cluster_list_first(&si->free_clusters) &&
2a8f9449 584 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
585
586 if (!conflict)
587 return false;
588
589 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
590 cluster_set_null(&percpu_cluster->index);
591 return true;
592}
593
594/*
595 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
596 * might involve allocating a new cluster for current CPU too.
597 */
36005bae 598static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
ebc2a1a6
SL
599 unsigned long *offset, unsigned long *scan_base)
600{
601 struct percpu_cluster *cluster;
235b6217 602 struct swap_cluster_info *ci;
235b6217 603 unsigned long tmp, max;
ebc2a1a6
SL
604
605new_cluster:
606 cluster = this_cpu_ptr(si->percpu_cluster);
607 if (cluster_is_null(&cluster->index)) {
6b534915
HY
608 if (!cluster_list_empty(&si->free_clusters)) {
609 cluster->index = si->free_clusters.head;
ebc2a1a6
SL
610 cluster->next = cluster_next(&cluster->index) *
611 SWAPFILE_CLUSTER;
6b534915 612 } else if (!cluster_list_empty(&si->discard_clusters)) {
ebc2a1a6
SL
613 /*
614 * we don't have free cluster but have some clusters in
49070588
HY
615 * discarding, do discard now and reclaim them, then
616 * reread cluster_next_cpu since we dropped si->lock
ebc2a1a6
SL
617 */
618 swap_do_scheduled_discard(si);
49070588
HY
619 *scan_base = this_cpu_read(*si->cluster_next_cpu);
620 *offset = *scan_base;
ebc2a1a6
SL
621 goto new_cluster;
622 } else
36005bae 623 return false;
ebc2a1a6
SL
624 }
625
ebc2a1a6
SL
626 /*
627 * Other CPUs can use our cluster if they can't find a free cluster,
628 * check if there is still free entry in the cluster
629 */
630 tmp = cluster->next;
235b6217
HY
631 max = min_t(unsigned long, si->max,
632 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
7b9e2de1
WY
633 if (tmp < max) {
634 ci = lock_cluster(si, tmp);
635 while (tmp < max) {
636 if (!si->swap_map[tmp])
637 break;
638 tmp++;
639 }
640 unlock_cluster(ci);
ebc2a1a6 641 }
0fd0e19e 642 if (tmp >= max) {
ebc2a1a6
SL
643 cluster_set_null(&cluster->index);
644 goto new_cluster;
645 }
646 cluster->next = tmp + 1;
647 *offset = tmp;
648 *scan_base = tmp;
fdff1deb 649 return true;
2a8f9449
SL
650}
651
a2468cc9
AL
652static void __del_from_avail_list(struct swap_info_struct *p)
653{
654 int nid;
655
656 for_each_node(nid)
657 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
658}
659
660static void del_from_avail_list(struct swap_info_struct *p)
661{
662 spin_lock(&swap_avail_lock);
663 __del_from_avail_list(p);
664 spin_unlock(&swap_avail_lock);
665}
666
38d8b4e6
HY
667static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
668 unsigned int nr_entries)
669{
670 unsigned int end = offset + nr_entries - 1;
671
672 if (offset == si->lowest_bit)
673 si->lowest_bit += nr_entries;
674 if (end == si->highest_bit)
a449bf58 675 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
38d8b4e6
HY
676 si->inuse_pages += nr_entries;
677 if (si->inuse_pages == si->pages) {
678 si->lowest_bit = si->max;
679 si->highest_bit = 0;
a2468cc9 680 del_from_avail_list(si);
38d8b4e6
HY
681 }
682}
683
a2468cc9
AL
684static void add_to_avail_list(struct swap_info_struct *p)
685{
686 int nid;
687
688 spin_lock(&swap_avail_lock);
689 for_each_node(nid) {
690 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
691 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
692 }
693 spin_unlock(&swap_avail_lock);
694}
695
38d8b4e6
HY
696static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
697 unsigned int nr_entries)
698{
3852f676 699 unsigned long begin = offset;
38d8b4e6
HY
700 unsigned long end = offset + nr_entries - 1;
701 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
702
703 if (offset < si->lowest_bit)
704 si->lowest_bit = offset;
705 if (end > si->highest_bit) {
706 bool was_full = !si->highest_bit;
707
a449bf58 708 WRITE_ONCE(si->highest_bit, end);
a2468cc9
AL
709 if (was_full && (si->flags & SWP_WRITEOK))
710 add_to_avail_list(si);
38d8b4e6
HY
711 }
712 atomic_long_add(nr_entries, &nr_swap_pages);
713 si->inuse_pages -= nr_entries;
714 if (si->flags & SWP_BLKDEV)
715 swap_slot_free_notify =
716 si->bdev->bd_disk->fops->swap_slot_free_notify;
717 else
718 swap_slot_free_notify = NULL;
719 while (offset <= end) {
8a84802e 720 arch_swap_invalidate_page(si->type, offset);
38d8b4e6
HY
721 frontswap_invalidate_page(si->type, offset);
722 if (swap_slot_free_notify)
723 swap_slot_free_notify(si->bdev, offset);
724 offset++;
725 }
3852f676 726 clear_shadow_from_swap_cache(si->type, begin, end);
38d8b4e6
HY
727}
728
49070588
HY
729static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
730{
731 unsigned long prev;
732
733 if (!(si->flags & SWP_SOLIDSTATE)) {
734 si->cluster_next = next;
735 return;
736 }
737
738 prev = this_cpu_read(*si->cluster_next_cpu);
739 /*
740 * Cross the swap address space size aligned trunk, choose
741 * another trunk randomly to avoid lock contention on swap
742 * address space if possible.
743 */
744 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
745 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
746 /* No free swap slots available */
747 if (si->highest_bit <= si->lowest_bit)
748 return;
749 next = si->lowest_bit +
750 prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
751 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
752 next = max_t(unsigned int, next, si->lowest_bit);
753 }
754 this_cpu_write(*si->cluster_next_cpu, next);
755}
756
36005bae
TC
757static int scan_swap_map_slots(struct swap_info_struct *si,
758 unsigned char usage, int nr,
759 swp_entry_t slots[])
1da177e4 760{
235b6217 761 struct swap_cluster_info *ci;
ebebbbe9 762 unsigned long offset;
c60aa176 763 unsigned long scan_base;
7992fde7 764 unsigned long last_in_cluster = 0;
048c27fd 765 int latency_ration = LATENCY_LIMIT;
36005bae 766 int n_ret = 0;
ed43af10 767 bool scanned_many = false;
36005bae 768
886bb7e9 769 /*
7dfad418
HD
770 * We try to cluster swap pages by allocating them sequentially
771 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
772 * way, however, we resort to first-free allocation, starting
773 * a new cluster. This prevents us from scattering swap pages
774 * all over the entire swap partition, so that we reduce
775 * overall disk seek times between swap pages. -- sct
776 * But we do now try to find an empty cluster. -Andrea
c60aa176 777 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
778 */
779
52b7efdb 780 si->flags += SWP_SCANNING;
49070588
HY
781 /*
782 * Use percpu scan base for SSD to reduce lock contention on
783 * cluster and swap cache. For HDD, sequential access is more
784 * important.
785 */
786 if (si->flags & SWP_SOLIDSTATE)
787 scan_base = this_cpu_read(*si->cluster_next_cpu);
788 else
789 scan_base = si->cluster_next;
790 offset = scan_base;
ebebbbe9 791
ebc2a1a6
SL
792 /* SSD algorithm */
793 if (si->cluster_info) {
bd2d18da 794 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
36005bae 795 goto scan;
f4eaf51a 796 } else if (unlikely(!si->cluster_nr--)) {
ebebbbe9
HD
797 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
798 si->cluster_nr = SWAPFILE_CLUSTER - 1;
799 goto checks;
800 }
2a8f9449 801
ec8acf20 802 spin_unlock(&si->lock);
7dfad418 803
c60aa176
HD
804 /*
805 * If seek is expensive, start searching for new cluster from
806 * start of partition, to minimize the span of allocated swap.
50088c44
CY
807 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
808 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 809 */
50088c44 810 scan_base = offset = si->lowest_bit;
7dfad418
HD
811 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
812
813 /* Locate the first empty (unaligned) cluster */
814 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 815 if (si->swap_map[offset])
7dfad418
HD
816 last_in_cluster = offset + SWAPFILE_CLUSTER;
817 else if (offset == last_in_cluster) {
ec8acf20 818 spin_lock(&si->lock);
ebebbbe9
HD
819 offset -= SWAPFILE_CLUSTER - 1;
820 si->cluster_next = offset;
821 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
822 goto checks;
823 }
824 if (unlikely(--latency_ration < 0)) {
825 cond_resched();
826 latency_ration = LATENCY_LIMIT;
827 }
828 }
829
830 offset = scan_base;
ec8acf20 831 spin_lock(&si->lock);
ebebbbe9 832 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 833 }
7dfad418 834
ebebbbe9 835checks:
ebc2a1a6 836 if (si->cluster_info) {
36005bae
TC
837 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
838 /* take a break if we already got some slots */
839 if (n_ret)
840 goto done;
841 if (!scan_swap_map_try_ssd_cluster(si, &offset,
842 &scan_base))
843 goto scan;
844 }
ebc2a1a6 845 }
ebebbbe9 846 if (!(si->flags & SWP_WRITEOK))
52b7efdb 847 goto no_page;
7dfad418
HD
848 if (!si->highest_bit)
849 goto no_page;
ebebbbe9 850 if (offset > si->highest_bit)
c60aa176 851 scan_base = offset = si->lowest_bit;
c9e44410 852
235b6217 853 ci = lock_cluster(si, offset);
b73d7fce
HD
854 /* reuse swap entry of cache-only swap if not busy. */
855 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 856 int swap_was_freed;
235b6217 857 unlock_cluster(ci);
ec8acf20 858 spin_unlock(&si->lock);
bcd49e86 859 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
ec8acf20 860 spin_lock(&si->lock);
c9e44410
KH
861 /* entry was freed successfully, try to use this again */
862 if (swap_was_freed)
863 goto checks;
864 goto scan; /* check next one */
865 }
866
235b6217
HY
867 if (si->swap_map[offset]) {
868 unlock_cluster(ci);
36005bae
TC
869 if (!n_ret)
870 goto scan;
871 else
872 goto done;
235b6217 873 }
a449bf58 874 WRITE_ONCE(si->swap_map[offset], usage);
2872bb2d
HY
875 inc_cluster_info_page(si, si->cluster_info, offset);
876 unlock_cluster(ci);
ebebbbe9 877
38d8b4e6 878 swap_range_alloc(si, offset, 1);
36005bae
TC
879 slots[n_ret++] = swp_entry(si->type, offset);
880
881 /* got enough slots or reach max slots? */
882 if ((n_ret == nr) || (offset >= si->highest_bit))
883 goto done;
884
885 /* search for next available slot */
886
887 /* time to take a break? */
888 if (unlikely(--latency_ration < 0)) {
889 if (n_ret)
890 goto done;
891 spin_unlock(&si->lock);
892 cond_resched();
893 spin_lock(&si->lock);
894 latency_ration = LATENCY_LIMIT;
895 }
896
897 /* try to get more slots in cluster */
898 if (si->cluster_info) {
899 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
900 goto checks;
f4eaf51a
WY
901 } else if (si->cluster_nr && !si->swap_map[++offset]) {
902 /* non-ssd case, still more slots in cluster? */
36005bae
TC
903 --si->cluster_nr;
904 goto checks;
905 }
7992fde7 906
ed43af10
HY
907 /*
908 * Even if there's no free clusters available (fragmented),
909 * try to scan a little more quickly with lock held unless we
910 * have scanned too many slots already.
911 */
912 if (!scanned_many) {
913 unsigned long scan_limit;
914
915 if (offset < scan_base)
916 scan_limit = scan_base;
917 else
918 scan_limit = si->highest_bit;
919 for (; offset <= scan_limit && --latency_ration > 0;
920 offset++) {
921 if (!si->swap_map[offset])
922 goto checks;
923 }
924 }
925
36005bae 926done:
49070588 927 set_cluster_next(si, offset + 1);
36005bae
TC
928 si->flags -= SWP_SCANNING;
929 return n_ret;
7dfad418 930
ebebbbe9 931scan:
ec8acf20 932 spin_unlock(&si->lock);
a449bf58
QC
933 while (++offset <= READ_ONCE(si->highest_bit)) {
934 if (data_race(!si->swap_map[offset])) {
ec8acf20 935 spin_lock(&si->lock);
52b7efdb
HD
936 goto checks;
937 }
a449bf58
QC
938 if (vm_swap_full() &&
939 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
ec8acf20 940 spin_lock(&si->lock);
c9e44410
KH
941 goto checks;
942 }
048c27fd
HD
943 if (unlikely(--latency_ration < 0)) {
944 cond_resched();
945 latency_ration = LATENCY_LIMIT;
ed43af10 946 scanned_many = true;
048c27fd 947 }
7dfad418 948 }
c60aa176 949 offset = si->lowest_bit;
a5998061 950 while (offset < scan_base) {
a449bf58 951 if (data_race(!si->swap_map[offset])) {
ec8acf20 952 spin_lock(&si->lock);
c60aa176
HD
953 goto checks;
954 }
a449bf58
QC
955 if (vm_swap_full() &&
956 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
ec8acf20 957 spin_lock(&si->lock);
c9e44410
KH
958 goto checks;
959 }
c60aa176
HD
960 if (unlikely(--latency_ration < 0)) {
961 cond_resched();
962 latency_ration = LATENCY_LIMIT;
ed43af10 963 scanned_many = true;
c60aa176 964 }
a5998061 965 offset++;
c60aa176 966 }
ec8acf20 967 spin_lock(&si->lock);
7dfad418
HD
968
969no_page:
52b7efdb 970 si->flags -= SWP_SCANNING;
36005bae 971 return n_ret;
1da177e4
LT
972}
973
38d8b4e6
HY
974static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
975{
976 unsigned long idx;
977 struct swap_cluster_info *ci;
978 unsigned long offset, i;
979 unsigned char *map;
980
fe5266d5
HY
981 /*
982 * Should not even be attempting cluster allocations when huge
983 * page swap is disabled. Warn and fail the allocation.
984 */
985 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
986 VM_WARN_ON_ONCE(1);
987 return 0;
988 }
989
38d8b4e6
HY
990 if (cluster_list_empty(&si->free_clusters))
991 return 0;
992
993 idx = cluster_list_first(&si->free_clusters);
994 offset = idx * SWAPFILE_CLUSTER;
995 ci = lock_cluster(si, offset);
996 alloc_cluster(si, idx);
e0709829 997 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
38d8b4e6
HY
998
999 map = si->swap_map + offset;
1000 for (i = 0; i < SWAPFILE_CLUSTER; i++)
1001 map[i] = SWAP_HAS_CACHE;
1002 unlock_cluster(ci);
1003 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1004 *slot = swp_entry(si->type, offset);
1005
1006 return 1;
1007}
1008
1009static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1010{
1011 unsigned long offset = idx * SWAPFILE_CLUSTER;
1012 struct swap_cluster_info *ci;
1013
1014 ci = lock_cluster(si, offset);
979aafa5 1015 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
38d8b4e6
HY
1016 cluster_set_count_flag(ci, 0, 0);
1017 free_cluster(si, idx);
1018 unlock_cluster(ci);
1019 swap_range_free(si, offset, SWAPFILE_CLUSTER);
1020}
38d8b4e6 1021
36005bae
TC
1022static unsigned long scan_swap_map(struct swap_info_struct *si,
1023 unsigned char usage)
1024{
1025 swp_entry_t entry;
1026 int n_ret;
1027
1028 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1029
1030 if (n_ret)
1031 return swp_offset(entry);
1032 else
1033 return 0;
1034
1035}
1036
5d5e8f19 1037int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1da177e4 1038{
5d5e8f19 1039 unsigned long size = swap_entry_size(entry_size);
adfab836 1040 struct swap_info_struct *si, *next;
36005bae
TC
1041 long avail_pgs;
1042 int n_ret = 0;
a2468cc9 1043 int node;
1da177e4 1044
38d8b4e6 1045 /* Only single cluster request supported */
5d5e8f19 1046 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
38d8b4e6 1047
5d5e8f19 1048 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
36005bae 1049 if (avail_pgs <= 0)
fb4f88dc 1050 goto noswap;
36005bae 1051
08d3090f 1052 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
36005bae 1053
5d5e8f19 1054 atomic_long_sub(n_goal * size, &nr_swap_pages);
fb4f88dc 1055
18ab4d4c
DS
1056 spin_lock(&swap_avail_lock);
1057
1058start_over:
a2468cc9
AL
1059 node = numa_node_id();
1060 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
18ab4d4c 1061 /* requeue si to after same-priority siblings */
a2468cc9 1062 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
18ab4d4c 1063 spin_unlock(&swap_avail_lock);
ec8acf20 1064 spin_lock(&si->lock);
adfab836 1065 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c 1066 spin_lock(&swap_avail_lock);
a2468cc9 1067 if (plist_node_empty(&si->avail_lists[node])) {
18ab4d4c
DS
1068 spin_unlock(&si->lock);
1069 goto nextsi;
1070 }
1071 WARN(!si->highest_bit,
1072 "swap_info %d in list but !highest_bit\n",
1073 si->type);
1074 WARN(!(si->flags & SWP_WRITEOK),
1075 "swap_info %d in list but !SWP_WRITEOK\n",
1076 si->type);
a2468cc9 1077 __del_from_avail_list(si);
ec8acf20 1078 spin_unlock(&si->lock);
18ab4d4c 1079 goto nextsi;
ec8acf20 1080 }
5d5e8f19 1081 if (size == SWAPFILE_CLUSTER) {
41663430 1082 if (si->flags & SWP_BLKDEV)
f0eea189
HY
1083 n_ret = swap_alloc_cluster(si, swp_entries);
1084 } else
38d8b4e6
HY
1085 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1086 n_goal, swp_entries);
ec8acf20 1087 spin_unlock(&si->lock);
5d5e8f19 1088 if (n_ret || size == SWAPFILE_CLUSTER)
36005bae 1089 goto check_out;
18ab4d4c 1090 pr_debug("scan_swap_map of si %d failed to find offset\n",
36005bae
TC
1091 si->type);
1092
18ab4d4c
DS
1093 spin_lock(&swap_avail_lock);
1094nextsi:
adfab836
DS
1095 /*
1096 * if we got here, it's likely that si was almost full before,
1097 * and since scan_swap_map() can drop the si->lock, multiple
1098 * callers probably all tried to get a page from the same si
18ab4d4c
DS
1099 * and it filled up before we could get one; or, the si filled
1100 * up between us dropping swap_avail_lock and taking si->lock.
1101 * Since we dropped the swap_avail_lock, the swap_avail_head
1102 * list may have been modified; so if next is still in the
36005bae
TC
1103 * swap_avail_head list then try it, otherwise start over
1104 * if we have not gotten any slots.
adfab836 1105 */
a2468cc9 1106 if (plist_node_empty(&next->avail_lists[node]))
18ab4d4c 1107 goto start_over;
1da177e4 1108 }
fb4f88dc 1109
18ab4d4c
DS
1110 spin_unlock(&swap_avail_lock);
1111
36005bae
TC
1112check_out:
1113 if (n_ret < n_goal)
5d5e8f19 1114 atomic_long_add((long)(n_goal - n_ret) * size,
38d8b4e6 1115 &nr_swap_pages);
fb4f88dc 1116noswap:
36005bae
TC
1117 return n_ret;
1118}
1119
2de1a7e4 1120/* The only caller of this function is now suspend routine */
910321ea
HD
1121swp_entry_t get_swap_page_of_type(int type)
1122{
c10d38cc 1123 struct swap_info_struct *si = swap_type_to_swap_info(type);
910321ea
HD
1124 pgoff_t offset;
1125
c10d38cc
DJ
1126 if (!si)
1127 goto fail;
1128
ec8acf20 1129 spin_lock(&si->lock);
c10d38cc 1130 if (si->flags & SWP_WRITEOK) {
ec8acf20 1131 atomic_long_dec(&nr_swap_pages);
910321ea
HD
1132 /* This is called for allocating swap entry, not cache */
1133 offset = scan_swap_map(si, 1);
1134 if (offset) {
ec8acf20 1135 spin_unlock(&si->lock);
910321ea
HD
1136 return swp_entry(type, offset);
1137 }
ec8acf20 1138 atomic_long_inc(&nr_swap_pages);
910321ea 1139 }
ec8acf20 1140 spin_unlock(&si->lock);
c10d38cc 1141fail:
910321ea
HD
1142 return (swp_entry_t) {0};
1143}
1144
e8c26ab6 1145static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1da177e4 1146{
73c34b6a 1147 struct swap_info_struct *p;
eb085574 1148 unsigned long offset;
1da177e4
LT
1149
1150 if (!entry.val)
1151 goto out;
eb085574 1152 p = swp_swap_info(entry);
c10d38cc 1153 if (!p)
1da177e4 1154 goto bad_nofile;
a449bf58 1155 if (data_race(!(p->flags & SWP_USED)))
1da177e4
LT
1156 goto bad_device;
1157 offset = swp_offset(entry);
1158 if (offset >= p->max)
1159 goto bad_offset;
1da177e4
LT
1160 return p;
1161
1da177e4 1162bad_offset:
6a991fc7 1163 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
1164 goto out;
1165bad_device:
6a991fc7 1166 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
1167 goto out;
1168bad_nofile:
6a991fc7 1169 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
1170out:
1171 return NULL;
886bb7e9 1172}
1da177e4 1173
e8c26ab6
TC
1174static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1175{
1176 struct swap_info_struct *p;
1177
1178 p = __swap_info_get(entry);
1179 if (!p)
1180 goto out;
a449bf58 1181 if (data_race(!p->swap_map[swp_offset(entry)]))
e8c26ab6
TC
1182 goto bad_free;
1183 return p;
1184
1185bad_free:
1186 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1187 goto out;
1188out:
1189 return NULL;
1190}
1191
235b6217
HY
1192static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1193{
1194 struct swap_info_struct *p;
1195
1196 p = _swap_info_get(entry);
1197 if (p)
1198 spin_lock(&p->lock);
1199 return p;
1200}
1201
7c00bafe
TC
1202static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1203 struct swap_info_struct *q)
1204{
1205 struct swap_info_struct *p;
1206
1207 p = _swap_info_get(entry);
1208
1209 if (p != q) {
1210 if (q != NULL)
1211 spin_unlock(&q->lock);
1212 if (p != NULL)
1213 spin_lock(&p->lock);
1214 }
1215 return p;
1216}
1217
b32d5f32
HY
1218static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1219 unsigned long offset,
1220 unsigned char usage)
1da177e4 1221{
8d69aaee
HD
1222 unsigned char count;
1223 unsigned char has_cache;
235b6217 1224
253d553b 1225 count = p->swap_map[offset];
235b6217 1226
253d553b
HD
1227 has_cache = count & SWAP_HAS_CACHE;
1228 count &= ~SWAP_HAS_CACHE;
355cfa73 1229
253d553b 1230 if (usage == SWAP_HAS_CACHE) {
355cfa73 1231 VM_BUG_ON(!has_cache);
253d553b 1232 has_cache = 0;
aaa46865
HD
1233 } else if (count == SWAP_MAP_SHMEM) {
1234 /*
1235 * Or we could insist on shmem.c using a special
1236 * swap_shmem_free() and free_shmem_swap_and_cache()...
1237 */
1238 count = 0;
570a335b
HD
1239 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1240 if (count == COUNT_CONTINUED) {
1241 if (swap_count_continued(p, offset, count))
1242 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1243 else
1244 count = SWAP_MAP_MAX;
1245 } else
1246 count--;
1247 }
253d553b 1248
253d553b 1249 usage = count | has_cache;
a449bf58
QC
1250 if (usage)
1251 WRITE_ONCE(p->swap_map[offset], usage);
1252 else
1253 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
7c00bafe 1254
b32d5f32
HY
1255 return usage;
1256}
1257
eb085574
HY
1258/*
1259 * Check whether swap entry is valid in the swap device. If so,
1260 * return pointer to swap_info_struct, and keep the swap entry valid
1261 * via preventing the swap device from being swapoff, until
1262 * put_swap_device() is called. Otherwise return NULL.
1263 *
1264 * The entirety of the RCU read critical section must come before the
1265 * return from or after the call to synchronize_rcu() in
1266 * enable_swap_info() or swapoff(). So if "si->flags & SWP_VALID" is
1267 * true, the si->map, si->cluster_info, etc. must be valid in the
1268 * critical section.
1269 *
1270 * Notice that swapoff or swapoff+swapon can still happen before the
1271 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1272 * in put_swap_device() if there isn't any other way to prevent
1273 * swapoff, such as page lock, page table lock, etc. The caller must
1274 * be prepared for that. For example, the following situation is
1275 * possible.
1276 *
1277 * CPU1 CPU2
1278 * do_swap_page()
1279 * ... swapoff+swapon
1280 * __read_swap_cache_async()
1281 * swapcache_prepare()
1282 * __swap_duplicate()
1283 * // check swap_map
1284 * // verify PTE not changed
1285 *
1286 * In __swap_duplicate(), the swap_map need to be checked before
1287 * changing partly because the specified swap entry may be for another
1288 * swap device which has been swapoff. And in do_swap_page(), after
1289 * the page is read from the swap device, the PTE is verified not
1290 * changed with the page table locked to check whether the swap device
1291 * has been swapoff or swapoff+swapon.
1292 */
1293struct swap_info_struct *get_swap_device(swp_entry_t entry)
1294{
1295 struct swap_info_struct *si;
1296 unsigned long offset;
1297
1298 if (!entry.val)
1299 goto out;
1300 si = swp_swap_info(entry);
1301 if (!si)
1302 goto bad_nofile;
1303
1304 rcu_read_lock();
a449bf58 1305 if (data_race(!(si->flags & SWP_VALID)))
eb085574
HY
1306 goto unlock_out;
1307 offset = swp_offset(entry);
1308 if (offset >= si->max)
1309 goto unlock_out;
1310
1311 return si;
1312bad_nofile:
1313 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1314out:
1315 return NULL;
1316unlock_out:
1317 rcu_read_unlock();
1318 return NULL;
1319}
1320
b32d5f32 1321static unsigned char __swap_entry_free(struct swap_info_struct *p,
33e16272 1322 swp_entry_t entry)
b32d5f32
HY
1323{
1324 struct swap_cluster_info *ci;
1325 unsigned long offset = swp_offset(entry);
33e16272 1326 unsigned char usage;
b32d5f32
HY
1327
1328 ci = lock_cluster_or_swap_info(p, offset);
33e16272 1329 usage = __swap_entry_free_locked(p, offset, 1);
7c00bafe 1330 unlock_cluster_or_swap_info(p, ci);
10e364da
HY
1331 if (!usage)
1332 free_swap_slot(entry);
7c00bafe
TC
1333
1334 return usage;
1335}
355cfa73 1336
7c00bafe
TC
1337static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1338{
1339 struct swap_cluster_info *ci;
1340 unsigned long offset = swp_offset(entry);
1341 unsigned char count;
1342
1343 ci = lock_cluster(p, offset);
1344 count = p->swap_map[offset];
1345 VM_BUG_ON(count != SWAP_HAS_CACHE);
1346 p->swap_map[offset] = 0;
1347 dec_cluster_info_page(p, p->cluster_info, offset);
235b6217
HY
1348 unlock_cluster(ci);
1349
38d8b4e6
HY
1350 mem_cgroup_uncharge_swap(entry, 1);
1351 swap_range_free(p, offset, 1);
1da177e4
LT
1352}
1353
1354/*
2de1a7e4 1355 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
1356 * is still around or has not been recycled.
1357 */
1358void swap_free(swp_entry_t entry)
1359{
73c34b6a 1360 struct swap_info_struct *p;
1da177e4 1361
235b6217 1362 p = _swap_info_get(entry);
10e364da 1363 if (p)
33e16272 1364 __swap_entry_free(p, entry);
1da177e4
LT
1365}
1366
cb4b86ba
KH
1367/*
1368 * Called after dropping swapcache to decrease refcnt to swap entries.
1369 */
a448f2d0 1370void put_swap_page(struct page *page, swp_entry_t entry)
38d8b4e6
HY
1371{
1372 unsigned long offset = swp_offset(entry);
1373 unsigned long idx = offset / SWAPFILE_CLUSTER;
1374 struct swap_cluster_info *ci;
1375 struct swap_info_struct *si;
1376 unsigned char *map;
a3aea839
HY
1377 unsigned int i, free_entries = 0;
1378 unsigned char val;
6c357848 1379 int size = swap_entry_size(thp_nr_pages(page));
fe5266d5 1380
a3aea839 1381 si = _swap_info_get(entry);
38d8b4e6
HY
1382 if (!si)
1383 return;
1384
c2343d27 1385 ci = lock_cluster_or_swap_info(si, offset);
a448f2d0 1386 if (size == SWAPFILE_CLUSTER) {
a448f2d0
HY
1387 VM_BUG_ON(!cluster_is_huge(ci));
1388 map = si->swap_map + offset;
1389 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1390 val = map[i];
1391 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1392 if (val == SWAP_HAS_CACHE)
1393 free_entries++;
1394 }
a448f2d0 1395 cluster_clear_huge(ci);
a448f2d0 1396 if (free_entries == SWAPFILE_CLUSTER) {
c2343d27 1397 unlock_cluster_or_swap_info(si, ci);
a448f2d0 1398 spin_lock(&si->lock);
a448f2d0
HY
1399 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1400 swap_free_cluster(si, idx);
1401 spin_unlock(&si->lock);
1402 return;
1403 }
1404 }
c2343d27
HY
1405 for (i = 0; i < size; i++, entry.val++) {
1406 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1407 unlock_cluster_or_swap_info(si, ci);
1408 free_swap_slot(entry);
1409 if (i == size - 1)
1410 return;
1411 lock_cluster_or_swap_info(si, offset);
a3aea839
HY
1412 }
1413 }
c2343d27 1414 unlock_cluster_or_swap_info(si, ci);
38d8b4e6 1415}
59807685 1416
fe5266d5 1417#ifdef CONFIG_THP_SWAP
59807685
HY
1418int split_swap_cluster(swp_entry_t entry)
1419{
1420 struct swap_info_struct *si;
1421 struct swap_cluster_info *ci;
1422 unsigned long offset = swp_offset(entry);
1423
1424 si = _swap_info_get(entry);
1425 if (!si)
1426 return -EBUSY;
1427 ci = lock_cluster(si, offset);
1428 cluster_clear_huge(ci);
1429 unlock_cluster(ci);
1430 return 0;
1431}
fe5266d5 1432#endif
38d8b4e6 1433
155b5f88
HY
1434static int swp_entry_cmp(const void *ent1, const void *ent2)
1435{
1436 const swp_entry_t *e1 = ent1, *e2 = ent2;
1437
1438 return (int)swp_type(*e1) - (int)swp_type(*e2);
1439}
1440
7c00bafe
TC
1441void swapcache_free_entries(swp_entry_t *entries, int n)
1442{
1443 struct swap_info_struct *p, *prev;
1444 int i;
1445
1446 if (n <= 0)
1447 return;
1448
1449 prev = NULL;
1450 p = NULL;
155b5f88
HY
1451
1452 /*
1453 * Sort swap entries by swap device, so each lock is only taken once.
1454 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1455 * so low that it isn't necessary to optimize further.
1456 */
1457 if (nr_swapfiles > 1)
1458 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
7c00bafe
TC
1459 for (i = 0; i < n; ++i) {
1460 p = swap_info_get_cont(entries[i], prev);
1461 if (p)
1462 swap_entry_free(p, entries[i]);
7c00bafe
TC
1463 prev = p;
1464 }
235b6217 1465 if (p)
7c00bafe 1466 spin_unlock(&p->lock);
cb4b86ba
KH
1467}
1468
1da177e4 1469/*
c475a8ab 1470 * How many references to page are currently swapped out?
570a335b
HD
1471 * This does not give an exact answer when swap count is continued,
1472 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 1473 */
bde05d1c 1474int page_swapcount(struct page *page)
1da177e4 1475{
c475a8ab
HD
1476 int count = 0;
1477 struct swap_info_struct *p;
235b6217 1478 struct swap_cluster_info *ci;
1da177e4 1479 swp_entry_t entry;
235b6217 1480 unsigned long offset;
1da177e4 1481
4c21e2f2 1482 entry.val = page_private(page);
235b6217 1483 p = _swap_info_get(entry);
1da177e4 1484 if (p) {
235b6217
HY
1485 offset = swp_offset(entry);
1486 ci = lock_cluster_or_swap_info(p, offset);
1487 count = swap_count(p->swap_map[offset]);
1488 unlock_cluster_or_swap_info(p, ci);
1da177e4 1489 }
c475a8ab 1490 return count;
1da177e4
LT
1491}
1492
eb085574 1493int __swap_count(swp_entry_t entry)
aa8d22a1 1494{
eb085574 1495 struct swap_info_struct *si;
aa8d22a1 1496 pgoff_t offset = swp_offset(entry);
eb085574 1497 int count = 0;
aa8d22a1 1498
eb085574
HY
1499 si = get_swap_device(entry);
1500 if (si) {
1501 count = swap_count(si->swap_map[offset]);
1502 put_swap_device(si);
1503 }
1504 return count;
aa8d22a1
MK
1505}
1506
322b8afe
HY
1507static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1508{
1509 int count = 0;
1510 pgoff_t offset = swp_offset(entry);
1511 struct swap_cluster_info *ci;
1512
1513 ci = lock_cluster_or_swap_info(si, offset);
1514 count = swap_count(si->swap_map[offset]);
1515 unlock_cluster_or_swap_info(si, ci);
1516 return count;
1517}
1518
e8c26ab6
TC
1519/*
1520 * How many references to @entry are currently swapped out?
1521 * This does not give an exact answer when swap count is continued,
1522 * but does include the high COUNT_CONTINUED flag to allow for that.
1523 */
1524int __swp_swapcount(swp_entry_t entry)
1525{
1526 int count = 0;
e8c26ab6 1527 struct swap_info_struct *si;
e8c26ab6 1528
eb085574
HY
1529 si = get_swap_device(entry);
1530 if (si) {
322b8afe 1531 count = swap_swapcount(si, entry);
eb085574
HY
1532 put_swap_device(si);
1533 }
e8c26ab6
TC
1534 return count;
1535}
1536
8334b962
MK
1537/*
1538 * How many references to @entry are currently swapped out?
1539 * This considers COUNT_CONTINUED so it returns exact answer.
1540 */
1541int swp_swapcount(swp_entry_t entry)
1542{
1543 int count, tmp_count, n;
1544 struct swap_info_struct *p;
235b6217 1545 struct swap_cluster_info *ci;
8334b962
MK
1546 struct page *page;
1547 pgoff_t offset;
1548 unsigned char *map;
1549
235b6217 1550 p = _swap_info_get(entry);
8334b962
MK
1551 if (!p)
1552 return 0;
1553
235b6217
HY
1554 offset = swp_offset(entry);
1555
1556 ci = lock_cluster_or_swap_info(p, offset);
1557
1558 count = swap_count(p->swap_map[offset]);
8334b962
MK
1559 if (!(count & COUNT_CONTINUED))
1560 goto out;
1561
1562 count &= ~COUNT_CONTINUED;
1563 n = SWAP_MAP_MAX + 1;
1564
8334b962
MK
1565 page = vmalloc_to_page(p->swap_map + offset);
1566 offset &= ~PAGE_MASK;
1567 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1568
1569 do {
a8ae4991 1570 page = list_next_entry(page, lru);
8334b962
MK
1571 map = kmap_atomic(page);
1572 tmp_count = map[offset];
1573 kunmap_atomic(map);
1574
1575 count += (tmp_count & ~COUNT_CONTINUED) * n;
1576 n *= (SWAP_CONT_MAX + 1);
1577 } while (tmp_count & COUNT_CONTINUED);
1578out:
235b6217 1579 unlock_cluster_or_swap_info(p, ci);
8334b962
MK
1580 return count;
1581}
1582
e0709829
HY
1583static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1584 swp_entry_t entry)
1585{
1586 struct swap_cluster_info *ci;
1587 unsigned char *map = si->swap_map;
1588 unsigned long roffset = swp_offset(entry);
1589 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1590 int i;
1591 bool ret = false;
1592
1593 ci = lock_cluster_or_swap_info(si, offset);
1594 if (!ci || !cluster_is_huge(ci)) {
afa4711e 1595 if (swap_count(map[roffset]))
e0709829
HY
1596 ret = true;
1597 goto unlock_out;
1598 }
1599 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
afa4711e 1600 if (swap_count(map[offset + i])) {
e0709829
HY
1601 ret = true;
1602 break;
1603 }
1604 }
1605unlock_out:
1606 unlock_cluster_or_swap_info(si, ci);
1607 return ret;
1608}
1609
1610static bool page_swapped(struct page *page)
1611{
1612 swp_entry_t entry;
1613 struct swap_info_struct *si;
1614
fe5266d5 1615 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
e0709829
HY
1616 return page_swapcount(page) != 0;
1617
1618 page = compound_head(page);
1619 entry.val = page_private(page);
1620 si = _swap_info_get(entry);
1621 if (si)
1622 return swap_page_trans_huge_swapped(si, entry);
1623 return false;
1624}
ba3c4ce6
HY
1625
1626static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1627 int *total_swapcount)
1628{
1629 int i, map_swapcount, _total_mapcount, _total_swapcount;
1630 unsigned long offset = 0;
1631 struct swap_info_struct *si;
1632 struct swap_cluster_info *ci = NULL;
1633 unsigned char *map = NULL;
1634 int mapcount, swapcount = 0;
1635
1636 /* hugetlbfs shouldn't call it */
1637 VM_BUG_ON_PAGE(PageHuge(page), page);
1638
fe5266d5
HY
1639 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1640 mapcount = page_trans_huge_mapcount(page, total_mapcount);
ba3c4ce6
HY
1641 if (PageSwapCache(page))
1642 swapcount = page_swapcount(page);
1643 if (total_swapcount)
1644 *total_swapcount = swapcount;
1645 return mapcount + swapcount;
1646 }
1647
1648 page = compound_head(page);
1649
1650 _total_mapcount = _total_swapcount = map_swapcount = 0;
1651 if (PageSwapCache(page)) {
1652 swp_entry_t entry;
1653
1654 entry.val = page_private(page);
1655 si = _swap_info_get(entry);
1656 if (si) {
1657 map = si->swap_map;
1658 offset = swp_offset(entry);
1659 }
1660 }
1661 if (map)
1662 ci = lock_cluster(si, offset);
1663 for (i = 0; i < HPAGE_PMD_NR; i++) {
1664 mapcount = atomic_read(&page[i]._mapcount) + 1;
1665 _total_mapcount += mapcount;
1666 if (map) {
1667 swapcount = swap_count(map[offset + i]);
1668 _total_swapcount += swapcount;
1669 }
1670 map_swapcount = max(map_swapcount, mapcount + swapcount);
1671 }
1672 unlock_cluster(ci);
1673 if (PageDoubleMap(page)) {
1674 map_swapcount -= 1;
1675 _total_mapcount -= HPAGE_PMD_NR;
1676 }
1677 mapcount = compound_mapcount(page);
1678 map_swapcount += mapcount;
1679 _total_mapcount += mapcount;
1680 if (total_mapcount)
1681 *total_mapcount = _total_mapcount;
1682 if (total_swapcount)
1683 *total_swapcount = _total_swapcount;
1684
1685 return map_swapcount;
1686}
e0709829 1687
1da177e4 1688/*
7b1fe597
HD
1689 * We can write to an anon page without COW if there are no other references
1690 * to it. And as a side-effect, free up its swap: because the old content
1691 * on disk will never be read, and seeking back there to write new content
1692 * later would only waste time away from clustering.
6d0a07ed 1693 *
ba3c4ce6 1694 * NOTE: total_map_swapcount should not be relied upon by the caller if
6d0a07ed
AA
1695 * reuse_swap_page() returns false, but it may be always overwritten
1696 * (see the other implementation for CONFIG_SWAP=n).
1da177e4 1697 */
ba3c4ce6 1698bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1da177e4 1699{
ba3c4ce6 1700 int count, total_mapcount, total_swapcount;
c475a8ab 1701
309381fe 1702 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688 1703 if (unlikely(PageKsm(page)))
6d0a07ed 1704 return false;
ba3c4ce6
HY
1705 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1706 &total_swapcount);
1707 if (total_map_swapcount)
1708 *total_map_swapcount = total_mapcount + total_swapcount;
1709 if (count == 1 && PageSwapCache(page) &&
1710 (likely(!PageTransCompound(page)) ||
1711 /* The remaining swap count will be freed soon */
1712 total_swapcount == page_swapcount(page))) {
f0571429 1713 if (!PageWriteback(page)) {
ba3c4ce6 1714 page = compound_head(page);
7b1fe597
HD
1715 delete_from_swap_cache(page);
1716 SetPageDirty(page);
f0571429
MK
1717 } else {
1718 swp_entry_t entry;
1719 struct swap_info_struct *p;
1720
1721 entry.val = page_private(page);
1722 p = swap_info_get(entry);
1723 if (p->flags & SWP_STABLE_WRITES) {
1724 spin_unlock(&p->lock);
1725 return false;
1726 }
1727 spin_unlock(&p->lock);
7b1fe597
HD
1728 }
1729 }
ba3c4ce6 1730
5ad64688 1731 return count <= 1;
1da177e4
LT
1732}
1733
1734/*
a2c43eed
HD
1735 * If swap is getting full, or if there are no more mappings of this page,
1736 * then try_to_free_swap is called to free its swap space.
1da177e4 1737 */
a2c43eed 1738int try_to_free_swap(struct page *page)
1da177e4 1739{
309381fe 1740 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
1741
1742 if (!PageSwapCache(page))
1743 return 0;
1744 if (PageWriteback(page))
1745 return 0;
e0709829 1746 if (page_swapped(page))
1da177e4
LT
1747 return 0;
1748
b73d7fce
HD
1749 /*
1750 * Once hibernation has begun to create its image of memory,
1751 * there's a danger that one of the calls to try_to_free_swap()
1752 * - most probably a call from __try_to_reclaim_swap() while
1753 * hibernation is allocating its own swap pages for the image,
1754 * but conceivably even a call from memory reclaim - will free
1755 * the swap from a page which has already been recorded in the
1756 * image as a clean swapcache page, and then reuse its swap for
1757 * another page of the image. On waking from hibernation, the
1758 * original page might be freed under memory pressure, then
1759 * later read back in from swap, now with the wrong data.
1760 *
2de1a7e4 1761 * Hibernation suspends storage while it is writing the image
f90ac398 1762 * to disk so check that here.
b73d7fce 1763 */
f90ac398 1764 if (pm_suspended_storage())
b73d7fce
HD
1765 return 0;
1766
e0709829 1767 page = compound_head(page);
a2c43eed
HD
1768 delete_from_swap_cache(page);
1769 SetPageDirty(page);
1770 return 1;
68a22394
RR
1771}
1772
1da177e4
LT
1773/*
1774 * Free the swap entry like above, but also try to
1775 * free the page cache entry if it is the last user.
1776 */
2509ef26 1777int free_swap_and_cache(swp_entry_t entry)
1da177e4 1778{
2509ef26 1779 struct swap_info_struct *p;
7c00bafe 1780 unsigned char count;
1da177e4 1781
a7420aa5 1782 if (non_swap_entry(entry))
2509ef26 1783 return 1;
0697212a 1784
7c00bafe 1785 p = _swap_info_get(entry);
1da177e4 1786 if (p) {
33e16272 1787 count = __swap_entry_free(p, entry);
e0709829 1788 if (count == SWAP_HAS_CACHE &&
bcd49e86
HY
1789 !swap_page_trans_huge_swapped(p, entry))
1790 __try_to_reclaim_swap(p, swp_offset(entry),
1791 TTRS_UNMAPPED | TTRS_FULL);
1da177e4 1792 }
2509ef26 1793 return p != NULL;
1da177e4
LT
1794}
1795
b0cb1a19 1796#ifdef CONFIG_HIBERNATION
f577eb30 1797/*
915bae9e 1798 * Find the swap type that corresponds to given device (if any).
f577eb30 1799 *
915bae9e
RW
1800 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1801 * from 0, in which the swap header is expected to be located.
1802 *
1803 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1804 */
7bf23687 1805int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 1806{
915bae9e 1807 struct block_device *bdev = NULL;
efa90a98 1808 int type;
f577eb30 1809
915bae9e
RW
1810 if (device)
1811 bdev = bdget(device);
1812
f577eb30 1813 spin_lock(&swap_lock);
efa90a98
HD
1814 for (type = 0; type < nr_swapfiles; type++) {
1815 struct swap_info_struct *sis = swap_info[type];
f577eb30 1816
915bae9e 1817 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1818 continue;
b6b5bce3 1819
915bae9e 1820 if (!bdev) {
7bf23687 1821 if (bdev_p)
dddac6a7 1822 *bdev_p = bdgrab(sis->bdev);
7bf23687 1823
6e1819d6 1824 spin_unlock(&swap_lock);
efa90a98 1825 return type;
6e1819d6 1826 }
915bae9e 1827 if (bdev == sis->bdev) {
4efaceb1 1828 struct swap_extent *se = first_se(sis);
915bae9e 1829
915bae9e 1830 if (se->start_block == offset) {
7bf23687 1831 if (bdev_p)
dddac6a7 1832 *bdev_p = bdgrab(sis->bdev);
7bf23687 1833
915bae9e
RW
1834 spin_unlock(&swap_lock);
1835 bdput(bdev);
efa90a98 1836 return type;
915bae9e 1837 }
f577eb30
RW
1838 }
1839 }
1840 spin_unlock(&swap_lock);
915bae9e
RW
1841 if (bdev)
1842 bdput(bdev);
1843
f577eb30
RW
1844 return -ENODEV;
1845}
1846
73c34b6a
HD
1847/*
1848 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1849 * corresponding to given index in swap_info (swap type).
1850 */
1851sector_t swapdev_block(int type, pgoff_t offset)
1852{
1853 struct block_device *bdev;
c10d38cc 1854 struct swap_info_struct *si = swap_type_to_swap_info(type);
73c34b6a 1855
c10d38cc 1856 if (!si || !(si->flags & SWP_WRITEOK))
73c34b6a 1857 return 0;
d4906e1a 1858 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
1859}
1860
f577eb30
RW
1861/*
1862 * Return either the total number of swap pages of given type, or the number
1863 * of free pages of that type (depending on @free)
1864 *
1865 * This is needed for software suspend
1866 */
1867unsigned int count_swap_pages(int type, int free)
1868{
1869 unsigned int n = 0;
1870
efa90a98
HD
1871 spin_lock(&swap_lock);
1872 if ((unsigned int)type < nr_swapfiles) {
1873 struct swap_info_struct *sis = swap_info[type];
1874
ec8acf20 1875 spin_lock(&sis->lock);
efa90a98
HD
1876 if (sis->flags & SWP_WRITEOK) {
1877 n = sis->pages;
f577eb30 1878 if (free)
efa90a98 1879 n -= sis->inuse_pages;
f577eb30 1880 }
ec8acf20 1881 spin_unlock(&sis->lock);
f577eb30 1882 }
efa90a98 1883 spin_unlock(&swap_lock);
f577eb30
RW
1884 return n;
1885}
73c34b6a 1886#endif /* CONFIG_HIBERNATION */
f577eb30 1887
9f8bdb3f 1888static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
179ef71c 1889{
9f8bdb3f 1890 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
179ef71c
CG
1891}
1892
1da177e4 1893/*
72866f6f
HD
1894 * No need to decide whether this PTE shares the swap entry with others,
1895 * just let do_wp_page work it out if a write is requested later - to
1896 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1897 */
044d66c1 1898static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1899 unsigned long addr, swp_entry_t entry, struct page *page)
1900{
9e16b7fb 1901 struct page *swapcache;
044d66c1
HD
1902 spinlock_t *ptl;
1903 pte_t *pte;
1904 int ret = 1;
1905
9e16b7fb
HD
1906 swapcache = page;
1907 page = ksm_might_need_to_copy(page, vma, addr);
1908 if (unlikely(!page))
1909 return -ENOMEM;
1910
044d66c1 1911 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
9f8bdb3f 1912 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
044d66c1
HD
1913 ret = 0;
1914 goto out;
1915 }
8a9f3ccd 1916
b084d435 1917 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1918 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1919 get_page(page);
1920 set_pte_at(vma->vm_mm, addr, pte,
1921 pte_mkold(mk_pte(page, vma->vm_page_prot)));
00501b53 1922 if (page == swapcache) {
be5d0a74 1923 page_add_anon_rmap(page, vma, addr, false);
00501b53 1924 } else { /* ksm created a completely new copy */
be5d0a74 1925 page_add_new_anon_rmap(page, vma, addr, false);
b518154e 1926 lru_cache_add_inactive_or_unevictable(page, vma);
00501b53 1927 }
1da177e4
LT
1928 swap_free(entry);
1929 /*
1930 * Move the page to the active list so it is not
1931 * immediately swapped out again after swapon.
1932 */
1933 activate_page(page);
044d66c1
HD
1934out:
1935 pte_unmap_unlock(pte, ptl);
9e16b7fb
HD
1936 if (page != swapcache) {
1937 unlock_page(page);
1938 put_page(page);
1939 }
044d66c1 1940 return ret;
1da177e4
LT
1941}
1942
1943static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
b56a2d8a
VRP
1944 unsigned long addr, unsigned long end,
1945 unsigned int type, bool frontswap,
1946 unsigned long *fs_pages_to_unuse)
1da177e4 1947{
b56a2d8a
VRP
1948 struct page *page;
1949 swp_entry_t entry;
705e87c0 1950 pte_t *pte;
b56a2d8a
VRP
1951 struct swap_info_struct *si;
1952 unsigned long offset;
8a9f3ccd 1953 int ret = 0;
b56a2d8a 1954 volatile unsigned char *swap_map;
1da177e4 1955
b56a2d8a 1956 si = swap_info[type];
044d66c1 1957 pte = pte_offset_map(pmd, addr);
1da177e4 1958 do {
b56a2d8a
VRP
1959 struct vm_fault vmf;
1960
1961 if (!is_swap_pte(*pte))
1962 continue;
1963
1964 entry = pte_to_swp_entry(*pte);
1965 if (swp_type(entry) != type)
1966 continue;
1967
1968 offset = swp_offset(entry);
1969 if (frontswap && !frontswap_test(si, offset))
1970 continue;
1971
1972 pte_unmap(pte);
1973 swap_map = &si->swap_map[offset];
ebc5951e
AR
1974 page = lookup_swap_cache(entry, vma, addr);
1975 if (!page) {
1976 vmf.vma = vma;
1977 vmf.address = addr;
1978 vmf.pmd = pmd;
1979 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1980 &vmf);
1981 }
b56a2d8a
VRP
1982 if (!page) {
1983 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1984 goto try_next;
1985 return -ENOMEM;
1986 }
1987
1988 lock_page(page);
1989 wait_on_page_writeback(page);
1990 ret = unuse_pte(vma, pmd, addr, entry, page);
1991 if (ret < 0) {
1992 unlock_page(page);
1993 put_page(page);
1994 goto out;
1995 }
1996
1997 try_to_free_swap(page);
1998 unlock_page(page);
1999 put_page(page);
2000
2001 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
2002 ret = FRONTSWAP_PAGES_UNUSED;
2003 goto out;
1da177e4 2004 }
b56a2d8a
VRP
2005try_next:
2006 pte = pte_offset_map(pmd, addr);
1da177e4 2007 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1 2008 pte_unmap(pte - 1);
b56a2d8a
VRP
2009
2010 ret = 0;
044d66c1 2011out:
8a9f3ccd 2012 return ret;
1da177e4
LT
2013}
2014
2015static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2016 unsigned long addr, unsigned long end,
b56a2d8a
VRP
2017 unsigned int type, bool frontswap,
2018 unsigned long *fs_pages_to_unuse)
1da177e4
LT
2019{
2020 pmd_t *pmd;
2021 unsigned long next;
8a9f3ccd 2022 int ret;
1da177e4
LT
2023
2024 pmd = pmd_offset(pud, addr);
2025 do {
dc644a07 2026 cond_resched();
1da177e4 2027 next = pmd_addr_end(addr, end);
1a5a9906 2028 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 2029 continue;
b56a2d8a
VRP
2030 ret = unuse_pte_range(vma, pmd, addr, next, type,
2031 frontswap, fs_pages_to_unuse);
8a9f3ccd
BS
2032 if (ret)
2033 return ret;
1da177e4
LT
2034 } while (pmd++, addr = next, addr != end);
2035 return 0;
2036}
2037
c2febafc 2038static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 2039 unsigned long addr, unsigned long end,
b56a2d8a
VRP
2040 unsigned int type, bool frontswap,
2041 unsigned long *fs_pages_to_unuse)
1da177e4
LT
2042{
2043 pud_t *pud;
2044 unsigned long next;
8a9f3ccd 2045 int ret;
1da177e4 2046
c2febafc 2047 pud = pud_offset(p4d, addr);
1da177e4
LT
2048 do {
2049 next = pud_addr_end(addr, end);
2050 if (pud_none_or_clear_bad(pud))
2051 continue;
b56a2d8a
VRP
2052 ret = unuse_pmd_range(vma, pud, addr, next, type,
2053 frontswap, fs_pages_to_unuse);
8a9f3ccd
BS
2054 if (ret)
2055 return ret;
1da177e4
LT
2056 } while (pud++, addr = next, addr != end);
2057 return 0;
2058}
2059
c2febafc
KS
2060static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2061 unsigned long addr, unsigned long end,
b56a2d8a
VRP
2062 unsigned int type, bool frontswap,
2063 unsigned long *fs_pages_to_unuse)
c2febafc
KS
2064{
2065 p4d_t *p4d;
2066 unsigned long next;
2067 int ret;
2068
2069 p4d = p4d_offset(pgd, addr);
2070 do {
2071 next = p4d_addr_end(addr, end);
2072 if (p4d_none_or_clear_bad(p4d))
2073 continue;
b56a2d8a
VRP
2074 ret = unuse_pud_range(vma, p4d, addr, next, type,
2075 frontswap, fs_pages_to_unuse);
c2febafc
KS
2076 if (ret)
2077 return ret;
2078 } while (p4d++, addr = next, addr != end);
2079 return 0;
2080}
2081
b56a2d8a
VRP
2082static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2083 bool frontswap, unsigned long *fs_pages_to_unuse)
1da177e4
LT
2084{
2085 pgd_t *pgd;
2086 unsigned long addr, end, next;
8a9f3ccd 2087 int ret;
1da177e4 2088
b56a2d8a
VRP
2089 addr = vma->vm_start;
2090 end = vma->vm_end;
1da177e4
LT
2091
2092 pgd = pgd_offset(vma->vm_mm, addr);
2093 do {
2094 next = pgd_addr_end(addr, end);
2095 if (pgd_none_or_clear_bad(pgd))
2096 continue;
b56a2d8a
VRP
2097 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2098 frontswap, fs_pages_to_unuse);
8a9f3ccd
BS
2099 if (ret)
2100 return ret;
1da177e4
LT
2101 } while (pgd++, addr = next, addr != end);
2102 return 0;
2103}
2104
b56a2d8a
VRP
2105static int unuse_mm(struct mm_struct *mm, unsigned int type,
2106 bool frontswap, unsigned long *fs_pages_to_unuse)
1da177e4
LT
2107{
2108 struct vm_area_struct *vma;
8a9f3ccd 2109 int ret = 0;
1da177e4 2110
d8ed45c5 2111 mmap_read_lock(mm);
1da177e4 2112 for (vma = mm->mmap; vma; vma = vma->vm_next) {
b56a2d8a
VRP
2113 if (vma->anon_vma) {
2114 ret = unuse_vma(vma, type, frontswap,
2115 fs_pages_to_unuse);
2116 if (ret)
2117 break;
2118 }
dc644a07 2119 cond_resched();
1da177e4 2120 }
d8ed45c5 2121 mmap_read_unlock(mm);
b56a2d8a 2122 return ret;
1da177e4
LT
2123}
2124
2125/*
38b5faf4 2126 * Scan swap_map (or frontswap_map if frontswap parameter is true)
b56a2d8a
VRP
2127 * from current position to next entry still in use. Return 0
2128 * if there are no inuse entries after prev till end of the map.
1da177e4 2129 */
6eb396dc 2130static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 2131 unsigned int prev, bool frontswap)
1da177e4 2132{
b56a2d8a 2133 unsigned int i;
8d69aaee 2134 unsigned char count;
1da177e4
LT
2135
2136 /*
5d337b91 2137 * No need for swap_lock here: we're just looking
1da177e4
LT
2138 * for whether an entry is in use, not modifying it; false
2139 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 2140 * allocations from this area (while holding swap_lock).
1da177e4 2141 */
b56a2d8a 2142 for (i = prev + 1; i < si->max; i++) {
4db0c3c2 2143 count = READ_ONCE(si->swap_map[i]);
355cfa73 2144 if (count && swap_count(count) != SWAP_MAP_BAD)
dc644a07
HD
2145 if (!frontswap || frontswap_test(si, i))
2146 break;
2147 if ((i % LATENCY_LIMIT) == 0)
2148 cond_resched();
1da177e4 2149 }
b56a2d8a
VRP
2150
2151 if (i == si->max)
2152 i = 0;
2153
1da177e4
LT
2154 return i;
2155}
2156
2157/*
b56a2d8a 2158 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
38b5faf4 2159 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 2160 */
38b5faf4
DM
2161int try_to_unuse(unsigned int type, bool frontswap,
2162 unsigned long pages_to_unuse)
1da177e4 2163{
b56a2d8a
VRP
2164 struct mm_struct *prev_mm;
2165 struct mm_struct *mm;
2166 struct list_head *p;
2167 int retval = 0;
efa90a98 2168 struct swap_info_struct *si = swap_info[type];
1da177e4
LT
2169 struct page *page;
2170 swp_entry_t entry;
b56a2d8a 2171 unsigned int i;
1da177e4 2172
21820948 2173 if (!READ_ONCE(si->inuse_pages))
b56a2d8a 2174 return 0;
1da177e4 2175
b56a2d8a
VRP
2176 if (!frontswap)
2177 pages_to_unuse = 0;
2178
2179retry:
2180 retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2181 if (retval)
2182 goto out;
2183
2184 prev_mm = &init_mm;
2185 mmget(prev_mm);
2186
2187 spin_lock(&mmlist_lock);
2188 p = &init_mm.mmlist;
21820948 2189 while (READ_ONCE(si->inuse_pages) &&
64165b1a
HD
2190 !signal_pending(current) &&
2191 (p = p->next) != &init_mm.mmlist) {
1da177e4 2192
b56a2d8a
VRP
2193 mm = list_entry(p, struct mm_struct, mmlist);
2194 if (!mmget_not_zero(mm))
2195 continue;
2196 spin_unlock(&mmlist_lock);
2197 mmput(prev_mm);
2198 prev_mm = mm;
2199 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
1da177e4 2200
b56a2d8a
VRP
2201 if (retval) {
2202 mmput(prev_mm);
2203 goto out;
1da177e4
LT
2204 }
2205
2206 /*
b56a2d8a
VRP
2207 * Make sure that we aren't completely killing
2208 * interactive performance.
1da177e4 2209 */
b56a2d8a
VRP
2210 cond_resched();
2211 spin_lock(&mmlist_lock);
2212 }
2213 spin_unlock(&mmlist_lock);
1da177e4 2214
b56a2d8a 2215 mmput(prev_mm);
1da177e4 2216
b56a2d8a 2217 i = 0;
21820948 2218 while (READ_ONCE(si->inuse_pages) &&
64165b1a
HD
2219 !signal_pending(current) &&
2220 (i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4 2221
b56a2d8a
VRP
2222 entry = swp_entry(type, i);
2223 page = find_get_page(swap_address_space(entry), i);
2224 if (!page)
2225 continue;
68bdc8d6
HD
2226
2227 /*
2228 * It is conceivable that a racing task removed this page from
b56a2d8a
VRP
2229 * swap cache just before we acquired the page lock. The page
2230 * might even be back in swap cache on another swap area. But
2231 * that is okay, try_to_free_swap() only removes stale pages.
1da177e4 2232 */
b56a2d8a
VRP
2233 lock_page(page);
2234 wait_on_page_writeback(page);
2235 try_to_free_swap(page);
1da177e4 2236 unlock_page(page);
09cbfeaf 2237 put_page(page);
1da177e4
LT
2238
2239 /*
b56a2d8a
VRP
2240 * For frontswap, we just need to unuse pages_to_unuse, if
2241 * it was specified. Need not check frontswap again here as
2242 * we already zeroed out pages_to_unuse if not frontswap.
1da177e4 2243 */
b56a2d8a
VRP
2244 if (pages_to_unuse && --pages_to_unuse == 0)
2245 goto out;
1da177e4
LT
2246 }
2247
b56a2d8a
VRP
2248 /*
2249 * Lets check again to see if there are still swap entries in the map.
2250 * If yes, we would need to do retry the unuse logic again.
2251 * Under global memory pressure, swap entries can be reinserted back
2252 * into process space after the mmlist loop above passes over them.
dd862deb 2253 *
af53d3e9
HD
2254 * Limit the number of retries? No: when mmget_not_zero() above fails,
2255 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2256 * at its own independent pace; and even shmem_writepage() could have
2257 * been preempted after get_swap_page(), temporarily hiding that swap.
2258 * It's easy and robust (though cpu-intensive) just to keep retrying.
b56a2d8a 2259 */
21820948 2260 if (READ_ONCE(si->inuse_pages)) {
64165b1a
HD
2261 if (!signal_pending(current))
2262 goto retry;
2263 retval = -EINTR;
2264 }
b56a2d8a
VRP
2265out:
2266 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
1da177e4
LT
2267}
2268
2269/*
5d337b91
HD
2270 * After a successful try_to_unuse, if no swap is now in use, we know
2271 * we can empty the mmlist. swap_lock must be held on entry and exit.
2272 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
2273 * added to the mmlist just after page_duplicate - before would be racy.
2274 */
2275static void drain_mmlist(void)
2276{
2277 struct list_head *p, *next;
efa90a98 2278 unsigned int type;
1da177e4 2279
efa90a98
HD
2280 for (type = 0; type < nr_swapfiles; type++)
2281 if (swap_info[type]->inuse_pages)
1da177e4
LT
2282 return;
2283 spin_lock(&mmlist_lock);
2284 list_for_each_safe(p, next, &init_mm.mmlist)
2285 list_del_init(p);
2286 spin_unlock(&mmlist_lock);
2287}
2288
2289/*
2290 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
2291 * corresponds to page offset for the specified swap entry.
2292 * Note that the type of this function is sector_t, but it returns page offset
2293 * into the bdev, not sector offset.
1da177e4 2294 */
d4906e1a 2295static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 2296{
f29ad6a9 2297 struct swap_info_struct *sis;
f29ad6a9
HD
2298 struct swap_extent *se;
2299 pgoff_t offset;
2300
c10d38cc 2301 sis = swp_swap_info(entry);
f29ad6a9
HD
2302 *bdev = sis->bdev;
2303
2304 offset = swp_offset(entry);
4efaceb1
AL
2305 se = offset_to_swap_extent(sis, offset);
2306 return se->start_block + (offset - se->start_page);
1da177e4
LT
2307}
2308
d4906e1a
LS
2309/*
2310 * Returns the page offset into bdev for the specified page's swap entry.
2311 */
2312sector_t map_swap_page(struct page *page, struct block_device **bdev)
2313{
2314 swp_entry_t entry;
2315 entry.val = page_private(page);
2316 return map_swap_entry(entry, bdev);
2317}
2318
1da177e4
LT
2319/*
2320 * Free all of a swapdev's extent information
2321 */
2322static void destroy_swap_extents(struct swap_info_struct *sis)
2323{
4efaceb1
AL
2324 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2325 struct rb_node *rb = sis->swap_extent_root.rb_node;
2326 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
1da177e4 2327
4efaceb1 2328 rb_erase(rb, &sis->swap_extent_root);
1da177e4
LT
2329 kfree(se);
2330 }
62c230bc 2331
bc4ae27d 2332 if (sis->flags & SWP_ACTIVATED) {
62c230bc
MG
2333 struct file *swap_file = sis->swap_file;
2334 struct address_space *mapping = swap_file->f_mapping;
2335
bc4ae27d
OS
2336 sis->flags &= ~SWP_ACTIVATED;
2337 if (mapping->a_ops->swap_deactivate)
2338 mapping->a_ops->swap_deactivate(swap_file);
62c230bc 2339 }
1da177e4
LT
2340}
2341
2342/*
2343 * Add a block range (and the corresponding page range) into this swapdev's
4efaceb1 2344 * extent tree.
1da177e4 2345 *
11d31886 2346 * This function rather assumes that it is called in ascending page order.
1da177e4 2347 */
a509bc1a 2348int
1da177e4
LT
2349add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2350 unsigned long nr_pages, sector_t start_block)
2351{
4efaceb1 2352 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
1da177e4
LT
2353 struct swap_extent *se;
2354 struct swap_extent *new_se;
4efaceb1
AL
2355
2356 /*
2357 * place the new node at the right most since the
2358 * function is called in ascending page order.
2359 */
2360 while (*link) {
2361 parent = *link;
2362 link = &parent->rb_right;
2363 }
2364
2365 if (parent) {
2366 se = rb_entry(parent, struct swap_extent, rb_node);
11d31886
HD
2367 BUG_ON(se->start_page + se->nr_pages != start_page);
2368 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
2369 /* Merge it */
2370 se->nr_pages += nr_pages;
2371 return 0;
2372 }
1da177e4
LT
2373 }
2374
4efaceb1 2375 /* No merge, insert a new extent. */
1da177e4
LT
2376 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2377 if (new_se == NULL)
2378 return -ENOMEM;
2379 new_se->start_page = start_page;
2380 new_se->nr_pages = nr_pages;
2381 new_se->start_block = start_block;
2382
4efaceb1
AL
2383 rb_link_node(&new_se->rb_node, parent, link);
2384 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
53092a74 2385 return 1;
1da177e4 2386}
aa8aa8a3 2387EXPORT_SYMBOL_GPL(add_swap_extent);
1da177e4
LT
2388
2389/*
2390 * A `swap extent' is a simple thing which maps a contiguous range of pages
2391 * onto a contiguous range of disk blocks. An ordered list of swap extents
2392 * is built at swapon time and is then used at swap_writepage/swap_readpage
2393 * time for locating where on disk a page belongs.
2394 *
2395 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2396 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2397 * swap files identically.
2398 *
2399 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2400 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2401 * swapfiles are handled *identically* after swapon time.
2402 *
2403 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2404 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2405 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2406 * requirements, they are simply tossed out - we will never use those blocks
2407 * for swapping.
2408 *
1638045c
DW
2409 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2410 * prevents users from writing to the swap device, which will corrupt memory.
1da177e4
LT
2411 *
2412 * The amount of disk space which a single swap extent represents varies.
2413 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2414 * extents in the list. To avoid much list walking, we cache the previous
2415 * search location in `curr_swap_extent', and start new searches from there.
2416 * This is extremely effective. The average number of iterations in
2417 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2418 */
53092a74 2419static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 2420{
62c230bc
MG
2421 struct file *swap_file = sis->swap_file;
2422 struct address_space *mapping = swap_file->f_mapping;
2423 struct inode *inode = mapping->host;
1da177e4
LT
2424 int ret;
2425
1da177e4
LT
2426 if (S_ISBLK(inode->i_mode)) {
2427 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 2428 *span = sis->pages;
a509bc1a 2429 return ret;
1da177e4
LT
2430 }
2431
62c230bc 2432 if (mapping->a_ops->swap_activate) {
a509bc1a 2433 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
bc4ae27d
OS
2434 if (ret >= 0)
2435 sis->flags |= SWP_ACTIVATED;
62c230bc 2436 if (!ret) {
bc4ae27d 2437 sis->flags |= SWP_FS;
62c230bc
MG
2438 ret = add_swap_extent(sis, 0, sis->max, 0);
2439 *span = sis->pages;
2440 }
a509bc1a 2441 return ret;
62c230bc
MG
2442 }
2443
a509bc1a 2444 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
2445}
2446
a2468cc9
AL
2447static int swap_node(struct swap_info_struct *p)
2448{
2449 struct block_device *bdev;
2450
2451 if (p->bdev)
2452 bdev = p->bdev;
2453 else
2454 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2455
2456 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2457}
2458
eb085574
HY
2459static void setup_swap_info(struct swap_info_struct *p, int prio,
2460 unsigned char *swap_map,
2461 struct swap_cluster_info *cluster_info)
40531542 2462{
a2468cc9
AL
2463 int i;
2464
40531542
CEB
2465 if (prio >= 0)
2466 p->prio = prio;
2467 else
2468 p->prio = --least_priority;
18ab4d4c
DS
2469 /*
2470 * the plist prio is negated because plist ordering is
2471 * low-to-high, while swap ordering is high-to-low
2472 */
2473 p->list.prio = -p->prio;
a2468cc9
AL
2474 for_each_node(i) {
2475 if (p->prio >= 0)
2476 p->avail_lists[i].prio = -p->prio;
2477 else {
2478 if (swap_node(p) == i)
2479 p->avail_lists[i].prio = 1;
2480 else
2481 p->avail_lists[i].prio = -p->prio;
2482 }
2483 }
40531542 2484 p->swap_map = swap_map;
2a8f9449 2485 p->cluster_info = cluster_info;
eb085574
HY
2486}
2487
2488static void _enable_swap_info(struct swap_info_struct *p)
2489{
2490 p->flags |= SWP_WRITEOK | SWP_VALID;
ec8acf20 2491 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
2492 total_swap_pages += p->pages;
2493
adfab836 2494 assert_spin_locked(&swap_lock);
adfab836 2495 /*
18ab4d4c
DS
2496 * both lists are plists, and thus priority ordered.
2497 * swap_active_head needs to be priority ordered for swapoff(),
2498 * which on removal of any swap_info_struct with an auto-assigned
2499 * (i.e. negative) priority increments the auto-assigned priority
2500 * of any lower-priority swap_info_structs.
2501 * swap_avail_head needs to be priority ordered for get_swap_page(),
2502 * which allocates swap pages from the highest available priority
2503 * swap_info_struct.
adfab836 2504 */
18ab4d4c 2505 plist_add(&p->list, &swap_active_head);
a2468cc9 2506 add_to_avail_list(p);
cf0cac0a
CEB
2507}
2508
2509static void enable_swap_info(struct swap_info_struct *p, int prio,
2510 unsigned char *swap_map,
2a8f9449 2511 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
2512 unsigned long *frontswap_map)
2513{
4f89849d 2514 frontswap_init(p->type, frontswap_map);
cf0cac0a 2515 spin_lock(&swap_lock);
ec8acf20 2516 spin_lock(&p->lock);
eb085574
HY
2517 setup_swap_info(p, prio, swap_map, cluster_info);
2518 spin_unlock(&p->lock);
2519 spin_unlock(&swap_lock);
2520 /*
2521 * Guarantee swap_map, cluster_info, etc. fields are valid
2522 * between get/put_swap_device() if SWP_VALID bit is set
2523 */
2524 synchronize_rcu();
2525 spin_lock(&swap_lock);
2526 spin_lock(&p->lock);
2527 _enable_swap_info(p);
ec8acf20 2528 spin_unlock(&p->lock);
cf0cac0a
CEB
2529 spin_unlock(&swap_lock);
2530}
2531
2532static void reinsert_swap_info(struct swap_info_struct *p)
2533{
2534 spin_lock(&swap_lock);
ec8acf20 2535 spin_lock(&p->lock);
eb085574
HY
2536 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2537 _enable_swap_info(p);
ec8acf20 2538 spin_unlock(&p->lock);
40531542
CEB
2539 spin_unlock(&swap_lock);
2540}
2541
67afa38e
TC
2542bool has_usable_swap(void)
2543{
2544 bool ret = true;
2545
2546 spin_lock(&swap_lock);
2547 if (plist_head_empty(&swap_active_head))
2548 ret = false;
2549 spin_unlock(&swap_lock);
2550 return ret;
2551}
2552
c4ea37c2 2553SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 2554{
73c34b6a 2555 struct swap_info_struct *p = NULL;
8d69aaee 2556 unsigned char *swap_map;
2a8f9449 2557 struct swap_cluster_info *cluster_info;
4f89849d 2558 unsigned long *frontswap_map;
1da177e4
LT
2559 struct file *swap_file, *victim;
2560 struct address_space *mapping;
2561 struct inode *inode;
91a27b2a 2562 struct filename *pathname;
adfab836 2563 int err, found = 0;
5b808a23 2564 unsigned int old_block_size;
886bb7e9 2565
1da177e4
LT
2566 if (!capable(CAP_SYS_ADMIN))
2567 return -EPERM;
2568
191c5424
AV
2569 BUG_ON(!current->mm);
2570
1da177e4 2571 pathname = getname(specialfile);
1da177e4 2572 if (IS_ERR(pathname))
f58b59c1 2573 return PTR_ERR(pathname);
1da177e4 2574
669abf4e 2575 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
2576 err = PTR_ERR(victim);
2577 if (IS_ERR(victim))
2578 goto out;
2579
2580 mapping = victim->f_mapping;
5d337b91 2581 spin_lock(&swap_lock);
18ab4d4c 2582 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 2583 if (p->flags & SWP_WRITEOK) {
adfab836
DS
2584 if (p->swap_file->f_mapping == mapping) {
2585 found = 1;
1da177e4 2586 break;
adfab836 2587 }
1da177e4 2588 }
1da177e4 2589 }
adfab836 2590 if (!found) {
1da177e4 2591 err = -EINVAL;
5d337b91 2592 spin_unlock(&swap_lock);
1da177e4
LT
2593 goto out_dput;
2594 }
191c5424 2595 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
2596 vm_unacct_memory(p->pages);
2597 else {
2598 err = -ENOMEM;
5d337b91 2599 spin_unlock(&swap_lock);
1da177e4
LT
2600 goto out_dput;
2601 }
a2468cc9 2602 del_from_avail_list(p);
ec8acf20 2603 spin_lock(&p->lock);
78ecba08 2604 if (p->prio < 0) {
adfab836 2605 struct swap_info_struct *si = p;
a2468cc9 2606 int nid;
adfab836 2607
18ab4d4c 2608 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 2609 si->prio++;
18ab4d4c 2610 si->list.prio--;
a2468cc9
AL
2611 for_each_node(nid) {
2612 if (si->avail_lists[nid].prio != 1)
2613 si->avail_lists[nid].prio--;
2614 }
adfab836 2615 }
78ecba08
HD
2616 least_priority++;
2617 }
18ab4d4c 2618 plist_del(&p->list, &swap_active_head);
ec8acf20 2619 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
2620 total_swap_pages -= p->pages;
2621 p->flags &= ~SWP_WRITEOK;
ec8acf20 2622 spin_unlock(&p->lock);
5d337b91 2623 spin_unlock(&swap_lock);
fb4f88dc 2624
039939a6
TC
2625 disable_swap_slots_cache_lock();
2626
e1e12d2f 2627 set_current_oom_origin();
adfab836 2628 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
e1e12d2f 2629 clear_current_oom_origin();
1da177e4 2630
1da177e4
LT
2631 if (err) {
2632 /* re-insert swap space back into swap_list */
cf0cac0a 2633 reinsert_swap_info(p);
039939a6 2634 reenable_swap_slots_cache_unlock();
1da177e4
LT
2635 goto out_dput;
2636 }
52b7efdb 2637
039939a6
TC
2638 reenable_swap_slots_cache_unlock();
2639
eb085574
HY
2640 spin_lock(&swap_lock);
2641 spin_lock(&p->lock);
2642 p->flags &= ~SWP_VALID; /* mark swap device as invalid */
2643 spin_unlock(&p->lock);
2644 spin_unlock(&swap_lock);
2645 /*
2646 * wait for swap operations protected by get/put_swap_device()
2647 * to complete
2648 */
2649 synchronize_rcu();
2650
815c2c54
SL
2651 flush_work(&p->discard_work);
2652
5d337b91 2653 destroy_swap_extents(p);
570a335b
HD
2654 if (p->flags & SWP_CONTINUED)
2655 free_swap_count_continuations(p);
2656
81a0298b
HY
2657 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2658 atomic_dec(&nr_rotate_swap);
2659
fc0abb14 2660 mutex_lock(&swapon_mutex);
5d337b91 2661 spin_lock(&swap_lock);
ec8acf20 2662 spin_lock(&p->lock);
5d337b91
HD
2663 drain_mmlist();
2664
52b7efdb 2665 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
2666 p->highest_bit = 0; /* cuts scans short */
2667 while (p->flags >= SWP_SCANNING) {
ec8acf20 2668 spin_unlock(&p->lock);
5d337b91 2669 spin_unlock(&swap_lock);
13e4b57f 2670 schedule_timeout_uninterruptible(1);
5d337b91 2671 spin_lock(&swap_lock);
ec8acf20 2672 spin_lock(&p->lock);
52b7efdb 2673 }
52b7efdb 2674
1da177e4 2675 swap_file = p->swap_file;
5b808a23 2676 old_block_size = p->old_block_size;
1da177e4
LT
2677 p->swap_file = NULL;
2678 p->max = 0;
2679 swap_map = p->swap_map;
2680 p->swap_map = NULL;
2a8f9449
SL
2681 cluster_info = p->cluster_info;
2682 p->cluster_info = NULL;
4f89849d 2683 frontswap_map = frontswap_map_get(p);
ec8acf20 2684 spin_unlock(&p->lock);
5d337b91 2685 spin_unlock(&swap_lock);
8a84802e 2686 arch_swap_invalidate_area(p->type);
adfab836 2687 frontswap_invalidate_area(p->type);
58e97ba6 2688 frontswap_map_set(p, NULL);
fc0abb14 2689 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
2690 free_percpu(p->percpu_cluster);
2691 p->percpu_cluster = NULL;
49070588
HY
2692 free_percpu(p->cluster_next_cpu);
2693 p->cluster_next_cpu = NULL;
1da177e4 2694 vfree(swap_map);
54f180d3
HY
2695 kvfree(cluster_info);
2696 kvfree(frontswap_map);
2de1a7e4 2697 /* Destroy swap account information */
adfab836 2698 swap_cgroup_swapoff(p->type);
4b3ef9da 2699 exit_swap_address_space(p->type);
27a7faa0 2700
1da177e4
LT
2701 inode = mapping->host;
2702 if (S_ISBLK(inode->i_mode)) {
2703 struct block_device *bdev = I_BDEV(inode);
1638045c 2704
5b808a23 2705 set_blocksize(bdev, old_block_size);
e525fd89 2706 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2707 }
1638045c
DW
2708
2709 inode_lock(inode);
2710 inode->i_flags &= ~S_SWAPFILE;
2711 inode_unlock(inode);
1da177e4 2712 filp_close(swap_file, NULL);
f893ab41
WY
2713
2714 /*
2715 * Clear the SWP_USED flag after all resources are freed so that swapon
2716 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2717 * not hold p->lock after we cleared its SWP_WRITEOK.
2718 */
2719 spin_lock(&swap_lock);
2720 p->flags = 0;
2721 spin_unlock(&swap_lock);
2722
1da177e4 2723 err = 0;
66d7dd51
KS
2724 atomic_inc(&proc_poll_event);
2725 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
2726
2727out_dput:
2728 filp_close(victim, NULL);
2729out:
f58b59c1 2730 putname(pathname);
1da177e4
LT
2731 return err;
2732}
2733
2734#ifdef CONFIG_PROC_FS
9dd95748 2735static __poll_t swaps_poll(struct file *file, poll_table *wait)
66d7dd51 2736{
f1514638 2737 struct seq_file *seq = file->private_data;
66d7dd51
KS
2738
2739 poll_wait(file, &proc_poll_wait, wait);
2740
f1514638
KS
2741 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2742 seq->poll_event = atomic_read(&proc_poll_event);
a9a08845 2743 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
66d7dd51
KS
2744 }
2745
a9a08845 2746 return EPOLLIN | EPOLLRDNORM;
66d7dd51
KS
2747}
2748
1da177e4
LT
2749/* iterator */
2750static void *swap_start(struct seq_file *swap, loff_t *pos)
2751{
efa90a98
HD
2752 struct swap_info_struct *si;
2753 int type;
1da177e4
LT
2754 loff_t l = *pos;
2755
fc0abb14 2756 mutex_lock(&swapon_mutex);
1da177e4 2757
881e4aab
SS
2758 if (!l)
2759 return SEQ_START_TOKEN;
2760
c10d38cc 2761 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
efa90a98 2762 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2763 continue;
881e4aab 2764 if (!--l)
efa90a98 2765 return si;
1da177e4
LT
2766 }
2767
2768 return NULL;
2769}
2770
2771static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2772{
efa90a98
HD
2773 struct swap_info_struct *si = v;
2774 int type;
1da177e4 2775
881e4aab 2776 if (v == SEQ_START_TOKEN)
efa90a98
HD
2777 type = 0;
2778 else
2779 type = si->type + 1;
881e4aab 2780
10c8d69f 2781 ++(*pos);
c10d38cc 2782 for (; (si = swap_type_to_swap_info(type)); type++) {
efa90a98 2783 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2784 continue;
efa90a98 2785 return si;
1da177e4
LT
2786 }
2787
2788 return NULL;
2789}
2790
2791static void swap_stop(struct seq_file *swap, void *v)
2792{
fc0abb14 2793 mutex_unlock(&swapon_mutex);
1da177e4
LT
2794}
2795
2796static int swap_show(struct seq_file *swap, void *v)
2797{
efa90a98 2798 struct swap_info_struct *si = v;
1da177e4
LT
2799 struct file *file;
2800 int len;
6f793940 2801 unsigned int bytes, inuse;
1da177e4 2802
efa90a98 2803 if (si == SEQ_START_TOKEN) {
6f793940 2804 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
881e4aab
SS
2805 return 0;
2806 }
1da177e4 2807
6f793940
RD
2808 bytes = si->pages << (PAGE_SHIFT - 10);
2809 inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2810
efa90a98 2811 file = si->swap_file;
2726d566 2812 len = seq_file_path(swap, file, " \t\n\\");
6f793940 2813 seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
886bb7e9 2814 len < 40 ? 40 - len : 1, " ",
496ad9aa 2815 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2816 "partition" : "file\t",
6f793940
RD
2817 bytes, bytes < 10000000 ? "\t" : "",
2818 inuse, inuse < 10000000 ? "\t" : "",
efa90a98 2819 si->prio);
1da177e4
LT
2820 return 0;
2821}
2822
15ad7cdc 2823static const struct seq_operations swaps_op = {
1da177e4
LT
2824 .start = swap_start,
2825 .next = swap_next,
2826 .stop = swap_stop,
2827 .show = swap_show
2828};
2829
2830static int swaps_open(struct inode *inode, struct file *file)
2831{
f1514638 2832 struct seq_file *seq;
66d7dd51
KS
2833 int ret;
2834
66d7dd51 2835 ret = seq_open(file, &swaps_op);
f1514638 2836 if (ret)
66d7dd51 2837 return ret;
66d7dd51 2838
f1514638
KS
2839 seq = file->private_data;
2840 seq->poll_event = atomic_read(&proc_poll_event);
2841 return 0;
1da177e4
LT
2842}
2843
97a32539 2844static const struct proc_ops swaps_proc_ops = {
d919b33d 2845 .proc_flags = PROC_ENTRY_PERMANENT,
97a32539
AD
2846 .proc_open = swaps_open,
2847 .proc_read = seq_read,
2848 .proc_lseek = seq_lseek,
2849 .proc_release = seq_release,
2850 .proc_poll = swaps_poll,
1da177e4
LT
2851};
2852
2853static int __init procswaps_init(void)
2854{
97a32539 2855 proc_create("swaps", 0, NULL, &swaps_proc_ops);
1da177e4
LT
2856 return 0;
2857}
2858__initcall(procswaps_init);
2859#endif /* CONFIG_PROC_FS */
2860
1796316a
JB
2861#ifdef MAX_SWAPFILES_CHECK
2862static int __init max_swapfiles_check(void)
2863{
2864 MAX_SWAPFILES_CHECK();
2865 return 0;
2866}
2867late_initcall(max_swapfiles_check);
2868#endif
2869
53cbb243 2870static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2871{
73c34b6a 2872 struct swap_info_struct *p;
1da177e4 2873 unsigned int type;
a2468cc9 2874 int i;
efa90a98 2875
96008744 2876 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
efa90a98 2877 if (!p)
53cbb243 2878 return ERR_PTR(-ENOMEM);
efa90a98 2879
5d337b91 2880 spin_lock(&swap_lock);
efa90a98
HD
2881 for (type = 0; type < nr_swapfiles; type++) {
2882 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2883 break;
efa90a98 2884 }
0697212a 2885 if (type >= MAX_SWAPFILES) {
5d337b91 2886 spin_unlock(&swap_lock);
873d7bcf 2887 kvfree(p);
730c0581 2888 return ERR_PTR(-EPERM);
1da177e4 2889 }
efa90a98
HD
2890 if (type >= nr_swapfiles) {
2891 p->type = type;
c10d38cc 2892 WRITE_ONCE(swap_info[type], p);
efa90a98
HD
2893 /*
2894 * Write swap_info[type] before nr_swapfiles, in case a
2895 * racing procfs swap_start() or swap_next() is reading them.
2896 * (We never shrink nr_swapfiles, we never free this entry.)
2897 */
2898 smp_wmb();
c10d38cc 2899 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
efa90a98 2900 } else {
873d7bcf 2901 kvfree(p);
efa90a98
HD
2902 p = swap_info[type];
2903 /*
2904 * Do not memset this entry: a racing procfs swap_next()
2905 * would be relying on p->type to remain valid.
2906 */
2907 }
4efaceb1 2908 p->swap_extent_root = RB_ROOT;
18ab4d4c 2909 plist_node_init(&p->list, 0);
a2468cc9
AL
2910 for_each_node(i)
2911 plist_node_init(&p->avail_lists[i], 0);
1da177e4 2912 p->flags = SWP_USED;
5d337b91 2913 spin_unlock(&swap_lock);
ec8acf20 2914 spin_lock_init(&p->lock);
2628bd6f 2915 spin_lock_init(&p->cont_lock);
efa90a98 2916
53cbb243 2917 return p;
53cbb243
CEB
2918}
2919
4d0e1e10
CEB
2920static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2921{
2922 int error;
2923
2924 if (S_ISBLK(inode->i_mode)) {
2925 p->bdev = bdgrab(I_BDEV(inode));
2926 error = blkdev_get(p->bdev,
6f179af8 2927 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
4d0e1e10
CEB
2928 if (error < 0) {
2929 p->bdev = NULL;
6f179af8 2930 return error;
4d0e1e10
CEB
2931 }
2932 p->old_block_size = block_size(p->bdev);
2933 error = set_blocksize(p->bdev, PAGE_SIZE);
2934 if (error < 0)
87ade72a 2935 return error;
12d2966d
NA
2936 /*
2937 * Zoned block devices contain zones that have a sequential
2938 * write only restriction. Hence zoned block devices are not
2939 * suitable for swapping. Disallow them here.
2940 */
e556f6ba 2941 if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
12d2966d 2942 return -EINVAL;
4d0e1e10
CEB
2943 p->flags |= SWP_BLKDEV;
2944 } else if (S_ISREG(inode->i_mode)) {
2945 p->bdev = inode->i_sb->s_bdev;
1638045c
DW
2946 }
2947
4d0e1e10 2948 return 0;
4d0e1e10
CEB
2949}
2950
377eeaa8
AK
2951
2952/*
2953 * Find out how many pages are allowed for a single swap device. There
2954 * are two limiting factors:
2955 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2956 * 2) the number of bits in the swap pte, as defined by the different
2957 * architectures.
2958 *
2959 * In order to find the largest possible bit mask, a swap entry with
2960 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2961 * decoded to a swp_entry_t again, and finally the swap offset is
2962 * extracted.
2963 *
2964 * This will mask all the bits from the initial ~0UL mask that can't
2965 * be encoded in either the swp_entry_t or the architecture definition
2966 * of a swap pte.
2967 */
2968unsigned long generic_max_swapfile_size(void)
2969{
2970 return swp_offset(pte_to_swp_entry(
2971 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2972}
2973
2974/* Can be overridden by an architecture for additional checks. */
2975__weak unsigned long max_swapfile_size(void)
2976{
2977 return generic_max_swapfile_size();
2978}
2979
ca8bd38b
CEB
2980static unsigned long read_swap_header(struct swap_info_struct *p,
2981 union swap_header *swap_header,
2982 struct inode *inode)
2983{
2984 int i;
2985 unsigned long maxpages;
2986 unsigned long swapfilepages;
d6bbbd29 2987 unsigned long last_page;
ca8bd38b
CEB
2988
2989 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2990 pr_err("Unable to find swap-space signature\n");
38719025 2991 return 0;
ca8bd38b
CEB
2992 }
2993
2994 /* swap partition endianess hack... */
2995 if (swab32(swap_header->info.version) == 1) {
2996 swab32s(&swap_header->info.version);
2997 swab32s(&swap_header->info.last_page);
2998 swab32s(&swap_header->info.nr_badpages);
dd111be6
JH
2999 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3000 return 0;
ca8bd38b
CEB
3001 for (i = 0; i < swap_header->info.nr_badpages; i++)
3002 swab32s(&swap_header->info.badpages[i]);
3003 }
3004 /* Check the swap header's sub-version */
3005 if (swap_header->info.version != 1) {
465c47fd
AM
3006 pr_warn("Unable to handle swap header version %d\n",
3007 swap_header->info.version);
38719025 3008 return 0;
ca8bd38b
CEB
3009 }
3010
3011 p->lowest_bit = 1;
3012 p->cluster_next = 1;
3013 p->cluster_nr = 0;
3014
377eeaa8 3015 maxpages = max_swapfile_size();
d6bbbd29 3016 last_page = swap_header->info.last_page;
a06ad633
TA
3017 if (!last_page) {
3018 pr_warn("Empty swap-file\n");
3019 return 0;
3020 }
d6bbbd29 3021 if (last_page > maxpages) {
465c47fd 3022 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
3023 maxpages << (PAGE_SHIFT - 10),
3024 last_page << (PAGE_SHIFT - 10));
3025 }
3026 if (maxpages > last_page) {
3027 maxpages = last_page + 1;
ca8bd38b
CEB
3028 /* p->max is an unsigned int: don't overflow it */
3029 if ((unsigned int)maxpages == 0)
3030 maxpages = UINT_MAX;
3031 }
3032 p->highest_bit = maxpages - 1;
3033
3034 if (!maxpages)
38719025 3035 return 0;
ca8bd38b
CEB
3036 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3037 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 3038 pr_warn("Swap area shorter than signature indicates\n");
38719025 3039 return 0;
ca8bd38b
CEB
3040 }
3041 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 3042 return 0;
ca8bd38b 3043 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 3044 return 0;
ca8bd38b
CEB
3045
3046 return maxpages;
ca8bd38b
CEB
3047}
3048
4b3ef9da 3049#define SWAP_CLUSTER_INFO_COLS \
235b6217 3050 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
4b3ef9da
HY
3051#define SWAP_CLUSTER_SPACE_COLS \
3052 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3053#define SWAP_CLUSTER_COLS \
3054 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
235b6217 3055
915d4d7b
CEB
3056static int setup_swap_map_and_extents(struct swap_info_struct *p,
3057 union swap_header *swap_header,
3058 unsigned char *swap_map,
2a8f9449 3059 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
3060 unsigned long maxpages,
3061 sector_t *span)
3062{
235b6217 3063 unsigned int j, k;
915d4d7b
CEB
3064 unsigned int nr_good_pages;
3065 int nr_extents;
2a8f9449 3066 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
235b6217
HY
3067 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3068 unsigned long i, idx;
915d4d7b
CEB
3069
3070 nr_good_pages = maxpages - 1; /* omit header page */
3071
6b534915
HY
3072 cluster_list_init(&p->free_clusters);
3073 cluster_list_init(&p->discard_clusters);
2a8f9449 3074
915d4d7b
CEB
3075 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3076 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
3077 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3078 return -EINVAL;
915d4d7b
CEB
3079 if (page_nr < maxpages) {
3080 swap_map[page_nr] = SWAP_MAP_BAD;
3081 nr_good_pages--;
2a8f9449
SL
3082 /*
3083 * Haven't marked the cluster free yet, no list
3084 * operation involved
3085 */
3086 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
3087 }
3088 }
3089
2a8f9449
SL
3090 /* Haven't marked the cluster free yet, no list operation involved */
3091 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3092 inc_cluster_info_page(p, cluster_info, i);
3093
915d4d7b
CEB
3094 if (nr_good_pages) {
3095 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
3096 /*
3097 * Not mark the cluster free yet, no list
3098 * operation involved
3099 */
3100 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
3101 p->max = maxpages;
3102 p->pages = nr_good_pages;
3103 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
3104 if (nr_extents < 0)
3105 return nr_extents;
915d4d7b
CEB
3106 nr_good_pages = p->pages;
3107 }
3108 if (!nr_good_pages) {
465c47fd 3109 pr_warn("Empty swap-file\n");
bdb8e3f6 3110 return -EINVAL;
915d4d7b
CEB
3111 }
3112
2a8f9449
SL
3113 if (!cluster_info)
3114 return nr_extents;
3115
235b6217 3116
4b3ef9da
HY
3117 /*
3118 * Reduce false cache line sharing between cluster_info and
3119 * sharing same address space.
3120 */
235b6217
HY
3121 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3122 j = (k + col) % SWAP_CLUSTER_COLS;
3123 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3124 idx = i * SWAP_CLUSTER_COLS + j;
3125 if (idx >= nr_clusters)
3126 continue;
3127 if (cluster_count(&cluster_info[idx]))
3128 continue;
2a8f9449 3129 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
6b534915
HY
3130 cluster_list_add_tail(&p->free_clusters, cluster_info,
3131 idx);
2a8f9449 3132 }
2a8f9449 3133 }
915d4d7b 3134 return nr_extents;
915d4d7b
CEB
3135}
3136
dcf6b7dd
RA
3137/*
3138 * Helper to sys_swapon determining if a given swap
3139 * backing device queue supports DISCARD operations.
3140 */
3141static bool swap_discardable(struct swap_info_struct *si)
3142{
3143 struct request_queue *q = bdev_get_queue(si->bdev);
3144
3145 if (!q || !blk_queue_discard(q))
3146 return false;
3147
3148 return true;
3149}
3150
53cbb243
CEB
3151SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3152{
3153 struct swap_info_struct *p;
91a27b2a 3154 struct filename *name;
53cbb243
CEB
3155 struct file *swap_file = NULL;
3156 struct address_space *mapping;
40531542 3157 int prio;
53cbb243
CEB
3158 int error;
3159 union swap_header *swap_header;
915d4d7b 3160 int nr_extents;
53cbb243
CEB
3161 sector_t span;
3162 unsigned long maxpages;
53cbb243 3163 unsigned char *swap_map = NULL;
2a8f9449 3164 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 3165 unsigned long *frontswap_map = NULL;
53cbb243
CEB
3166 struct page *page = NULL;
3167 struct inode *inode = NULL;
7cbf3192 3168 bool inced_nr_rotate_swap = false;
53cbb243 3169
d15cab97
HD
3170 if (swap_flags & ~SWAP_FLAGS_VALID)
3171 return -EINVAL;
3172
53cbb243
CEB
3173 if (!capable(CAP_SYS_ADMIN))
3174 return -EPERM;
3175
a2468cc9
AL
3176 if (!swap_avail_heads)
3177 return -ENOMEM;
3178
53cbb243 3179 p = alloc_swap_info();
2542e513
CEB
3180 if (IS_ERR(p))
3181 return PTR_ERR(p);
53cbb243 3182
815c2c54
SL
3183 INIT_WORK(&p->discard_work, swap_discard_work);
3184
1da177e4 3185 name = getname(specialfile);
1da177e4 3186 if (IS_ERR(name)) {
7de7fb6b 3187 error = PTR_ERR(name);
1da177e4 3188 name = NULL;
bd69010b 3189 goto bad_swap;
1da177e4 3190 }
669abf4e 3191 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 3192 if (IS_ERR(swap_file)) {
7de7fb6b 3193 error = PTR_ERR(swap_file);
1da177e4 3194 swap_file = NULL;
bd69010b 3195 goto bad_swap;
1da177e4
LT
3196 }
3197
3198 p->swap_file = swap_file;
3199 mapping = swap_file->f_mapping;
2130781e 3200 inode = mapping->host;
6f179af8 3201
4d0e1e10
CEB
3202 error = claim_swapfile(p, inode);
3203 if (unlikely(error))
1da177e4 3204 goto bad_swap;
1da177e4 3205
d795a90e
NA
3206 inode_lock(inode);
3207 if (IS_SWAPFILE(inode)) {
3208 error = -EBUSY;
3209 goto bad_swap_unlock_inode;
3210 }
3211
1da177e4
LT
3212 /*
3213 * Read the swap header.
3214 */
3215 if (!mapping->a_ops->readpage) {
3216 error = -EINVAL;
d795a90e 3217 goto bad_swap_unlock_inode;
1da177e4 3218 }
090d2b18 3219 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
3220 if (IS_ERR(page)) {
3221 error = PTR_ERR(page);
d795a90e 3222 goto bad_swap_unlock_inode;
1da177e4 3223 }
81e33971 3224 swap_header = kmap(page);
1da177e4 3225
ca8bd38b
CEB
3226 maxpages = read_swap_header(p, swap_header, inode);
3227 if (unlikely(!maxpages)) {
1da177e4 3228 error = -EINVAL;
d795a90e 3229 goto bad_swap_unlock_inode;
1da177e4 3230 }
886bb7e9 3231
81e33971 3232 /* OK, set up the swap map and apply the bad block list */
803d0c83 3233 swap_map = vzalloc(maxpages);
81e33971
HD
3234 if (!swap_map) {
3235 error = -ENOMEM;
d795a90e 3236 goto bad_swap_unlock_inode;
81e33971 3237 }
f0571429
MK
3238
3239 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3240 p->flags |= SWP_STABLE_WRITES;
3241
539a6fea
MK
3242 if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3243 p->flags |= SWP_SYNCHRONOUS_IO;
3244
2a8f9449 3245 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
6f179af8 3246 int cpu;
235b6217 3247 unsigned long ci, nr_cluster;
6f179af8 3248
2a8f9449 3249 p->flags |= SWP_SOLIDSTATE;
49070588
HY
3250 p->cluster_next_cpu = alloc_percpu(unsigned int);
3251 if (!p->cluster_next_cpu) {
3252 error = -ENOMEM;
3253 goto bad_swap_unlock_inode;
3254 }
2a8f9449
SL
3255 /*
3256 * select a random position to start with to help wear leveling
3257 * SSD
3258 */
49070588
HY
3259 for_each_possible_cpu(cpu) {
3260 per_cpu(*p->cluster_next_cpu, cpu) =
3261 1 + prandom_u32_max(p->highest_bit);
3262 }
235b6217 3263 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2a8f9449 3264
778e1cdd 3265 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
54f180d3 3266 GFP_KERNEL);
2a8f9449
SL
3267 if (!cluster_info) {
3268 error = -ENOMEM;
d795a90e 3269 goto bad_swap_unlock_inode;
2a8f9449 3270 }
235b6217
HY
3271
3272 for (ci = 0; ci < nr_cluster; ci++)
3273 spin_lock_init(&((cluster_info + ci)->lock));
3274
ebc2a1a6
SL
3275 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3276 if (!p->percpu_cluster) {
3277 error = -ENOMEM;
d795a90e 3278 goto bad_swap_unlock_inode;
ebc2a1a6 3279 }
6f179af8 3280 for_each_possible_cpu(cpu) {
ebc2a1a6 3281 struct percpu_cluster *cluster;
6f179af8 3282 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
ebc2a1a6
SL
3283 cluster_set_null(&cluster->index);
3284 }
7cbf3192 3285 } else {
81a0298b 3286 atomic_inc(&nr_rotate_swap);
7cbf3192
OS
3287 inced_nr_rotate_swap = true;
3288 }
1da177e4 3289
1421ef3c
CEB
3290 error = swap_cgroup_swapon(p->type, maxpages);
3291 if (error)
d795a90e 3292 goto bad_swap_unlock_inode;
1421ef3c 3293
915d4d7b 3294 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 3295 cluster_info, maxpages, &span);
915d4d7b
CEB
3296 if (unlikely(nr_extents < 0)) {
3297 error = nr_extents;
d795a90e 3298 goto bad_swap_unlock_inode;
1da177e4 3299 }
38b5faf4 3300 /* frontswap enabled? set up bit-per-page map for frontswap */
8ea1d2a1 3301 if (IS_ENABLED(CONFIG_FRONTSWAP))
778e1cdd
KC
3302 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3303 sizeof(long),
54f180d3 3304 GFP_KERNEL);
1da177e4 3305
2a8f9449
SL
3306 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3307 /*
3308 * When discard is enabled for swap with no particular
3309 * policy flagged, we set all swap discard flags here in
3310 * order to sustain backward compatibility with older
3311 * swapon(8) releases.
3312 */
3313 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3314 SWP_PAGE_DISCARD);
dcf6b7dd 3315
2a8f9449
SL
3316 /*
3317 * By flagging sys_swapon, a sysadmin can tell us to
3318 * either do single-time area discards only, or to just
3319 * perform discards for released swap page-clusters.
3320 * Now it's time to adjust the p->flags accordingly.
3321 */
3322 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3323 p->flags &= ~SWP_PAGE_DISCARD;
3324 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3325 p->flags &= ~SWP_AREA_DISCARD;
3326
3327 /* issue a swapon-time discard if it's still required */
3328 if (p->flags & SWP_AREA_DISCARD) {
3329 int err = discard_swap(p);
3330 if (unlikely(err))
3331 pr_err("swapon: discard_swap(%p): %d\n",
3332 p, err);
dcf6b7dd 3333 }
20137a49 3334 }
6a6ba831 3335
4b3ef9da
HY
3336 error = init_swap_address_space(p->type, maxpages);
3337 if (error)
d795a90e 3338 goto bad_swap_unlock_inode;
4b3ef9da 3339
dc617f29
DW
3340 /*
3341 * Flush any pending IO and dirty mappings before we start using this
3342 * swap device.
3343 */
3344 inode->i_flags |= S_SWAPFILE;
3345 error = inode_drain_writes(inode);
3346 if (error) {
3347 inode->i_flags &= ~S_SWAPFILE;
d795a90e 3348 goto bad_swap_unlock_inode;
dc617f29
DW
3349 }
3350
fc0abb14 3351 mutex_lock(&swapon_mutex);
40531542 3352 prio = -1;
78ecba08 3353 if (swap_flags & SWAP_FLAG_PREFER)
40531542 3354 prio =
78ecba08 3355 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 3356 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 3357
756a025f 3358 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 3359 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
3360 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3361 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 3362 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
3363 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3364 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 3365 (frontswap_map) ? "FS" : "");
c69dbfb8 3366
fc0abb14 3367 mutex_unlock(&swapon_mutex);
66d7dd51
KS
3368 atomic_inc(&proc_poll_event);
3369 wake_up_interruptible(&proc_poll_wait);
3370
1da177e4
LT
3371 error = 0;
3372 goto out;
d795a90e
NA
3373bad_swap_unlock_inode:
3374 inode_unlock(inode);
1da177e4 3375bad_swap:
ebc2a1a6
SL
3376 free_percpu(p->percpu_cluster);
3377 p->percpu_cluster = NULL;
49070588
HY
3378 free_percpu(p->cluster_next_cpu);
3379 p->cluster_next_cpu = NULL;
bd69010b 3380 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
3381 set_blocksize(p->bdev, p->old_block_size);
3382 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 3383 }
d795a90e 3384 inode = NULL;
4cd3bb10 3385 destroy_swap_extents(p);
e8e6c2ec 3386 swap_cgroup_swapoff(p->type);
5d337b91 3387 spin_lock(&swap_lock);
1da177e4 3388 p->swap_file = NULL;
1da177e4 3389 p->flags = 0;
5d337b91 3390 spin_unlock(&swap_lock);
1da177e4 3391 vfree(swap_map);
8606a1a9 3392 kvfree(cluster_info);
b6b1fd2a 3393 kvfree(frontswap_map);
7cbf3192
OS
3394 if (inced_nr_rotate_swap)
3395 atomic_dec(&nr_rotate_swap);
d795a90e 3396 if (swap_file)
1da177e4
LT
3397 filp_close(swap_file, NULL);
3398out:
3399 if (page && !IS_ERR(page)) {
3400 kunmap(page);
09cbfeaf 3401 put_page(page);
1da177e4
LT
3402 }
3403 if (name)
3404 putname(name);
1638045c 3405 if (inode)
5955102c 3406 inode_unlock(inode);
039939a6
TC
3407 if (!error)
3408 enable_swap_slots_cache();
1da177e4
LT
3409 return error;
3410}
3411
3412void si_swapinfo(struct sysinfo *val)
3413{
efa90a98 3414 unsigned int type;
1da177e4
LT
3415 unsigned long nr_to_be_unused = 0;
3416
5d337b91 3417 spin_lock(&swap_lock);
efa90a98
HD
3418 for (type = 0; type < nr_swapfiles; type++) {
3419 struct swap_info_struct *si = swap_info[type];
3420
3421 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3422 nr_to_be_unused += si->inuse_pages;
1da177e4 3423 }
ec8acf20 3424 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 3425 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 3426 spin_unlock(&swap_lock);
1da177e4
LT
3427}
3428
3429/*
3430 * Verify that a swap entry is valid and increment its swap map count.
3431 *
355cfa73
KH
3432 * Returns error code in following case.
3433 * - success -> 0
3434 * - swp_entry is invalid -> EINVAL
3435 * - swp_entry is migration entry -> EINVAL
3436 * - swap-cache reference is requested but there is already one. -> EEXIST
3437 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 3438 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 3439 */
8d69aaee 3440static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 3441{
73c34b6a 3442 struct swap_info_struct *p;
235b6217 3443 struct swap_cluster_info *ci;
c10d38cc 3444 unsigned long offset;
8d69aaee
HD
3445 unsigned char count;
3446 unsigned char has_cache;
253d553b 3447 int err = -EINVAL;
1da177e4 3448
eb085574 3449 p = get_swap_device(entry);
c10d38cc 3450 if (!p)
235b6217
HY
3451 goto out;
3452
eb085574 3453 offset = swp_offset(entry);
235b6217 3454 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 3455
253d553b 3456 count = p->swap_map[offset];
edfe23da
SL
3457
3458 /*
3459 * swapin_readahead() doesn't check if a swap entry is valid, so the
3460 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3461 */
3462 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3463 err = -ENOENT;
3464 goto unlock_out;
3465 }
3466
253d553b
HD
3467 has_cache = count & SWAP_HAS_CACHE;
3468 count &= ~SWAP_HAS_CACHE;
3469 err = 0;
355cfa73 3470
253d553b 3471 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
3472
3473 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
3474 if (!has_cache && count)
3475 has_cache = SWAP_HAS_CACHE;
3476 else if (has_cache) /* someone else added cache */
3477 err = -EEXIST;
3478 else /* no users remaining */
3479 err = -ENOENT;
355cfa73
KH
3480
3481 } else if (count || has_cache) {
253d553b 3482
570a335b
HD
3483 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3484 count += usage;
3485 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 3486 err = -EINVAL;
570a335b
HD
3487 else if (swap_count_continued(p, offset, count))
3488 count = COUNT_CONTINUED;
3489 else
3490 err = -ENOMEM;
355cfa73 3491 } else
253d553b
HD
3492 err = -ENOENT; /* unused swap entry */
3493
a449bf58 3494 WRITE_ONCE(p->swap_map[offset], count | has_cache);
253d553b 3495
355cfa73 3496unlock_out:
235b6217 3497 unlock_cluster_or_swap_info(p, ci);
1da177e4 3498out:
eb085574
HY
3499 if (p)
3500 put_swap_device(p);
253d553b 3501 return err;
1da177e4 3502}
253d553b 3503
aaa46865
HD
3504/*
3505 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3506 * (in which case its reference count is never incremented).
3507 */
3508void swap_shmem_alloc(swp_entry_t entry)
3509{
3510 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3511}
3512
355cfa73 3513/*
08259d58
HD
3514 * Increase reference count of swap entry by 1.
3515 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3516 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3517 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3518 * might occur if a page table entry has got corrupted.
355cfa73 3519 */
570a335b 3520int swap_duplicate(swp_entry_t entry)
355cfa73 3521{
570a335b
HD
3522 int err = 0;
3523
3524 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3525 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3526 return err;
355cfa73 3527}
1da177e4 3528
cb4b86ba 3529/*
355cfa73
KH
3530 * @entry: swap entry for which we allocate swap cache.
3531 *
73c34b6a 3532 * Called when allocating swap cache for existing swap entry,
355cfa73 3533 * This can return error codes. Returns 0 at success.
3eeba135 3534 * -EEXIST means there is a swap cache.
355cfa73 3535 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
3536 */
3537int swapcache_prepare(swp_entry_t entry)
3538{
253d553b 3539 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
3540}
3541
0bcac06f
MK
3542struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3543{
c10d38cc 3544 return swap_type_to_swap_info(swp_type(entry));
0bcac06f
MK
3545}
3546
f981c595
MG
3547struct swap_info_struct *page_swap_info(struct page *page)
3548{
0bcac06f
MK
3549 swp_entry_t entry = { .val = page_private(page) };
3550 return swp_swap_info(entry);
f981c595
MG
3551}
3552
3553/*
3554 * out-of-line __page_file_ methods to avoid include hell.
3555 */
3556struct address_space *__page_file_mapping(struct page *page)
3557{
f981c595
MG
3558 return page_swap_info(page)->swap_file->f_mapping;
3559}
3560EXPORT_SYMBOL_GPL(__page_file_mapping);
3561
3562pgoff_t __page_file_index(struct page *page)
3563{
3564 swp_entry_t swap = { .val = page_private(page) };
f981c595
MG
3565 return swp_offset(swap);
3566}
3567EXPORT_SYMBOL_GPL(__page_file_index);
3568
570a335b
HD
3569/*
3570 * add_swap_count_continuation - called when a swap count is duplicated
3571 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3572 * page of the original vmalloc'ed swap_map, to hold the continuation count
3573 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3574 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3575 *
3576 * These continuation pages are seldom referenced: the common paths all work
3577 * on the original swap_map, only referring to a continuation page when the
3578 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3579 *
3580 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3581 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3582 * can be called after dropping locks.
3583 */
3584int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3585{
3586 struct swap_info_struct *si;
235b6217 3587 struct swap_cluster_info *ci;
570a335b
HD
3588 struct page *head;
3589 struct page *page;
3590 struct page *list_page;
3591 pgoff_t offset;
3592 unsigned char count;
eb085574 3593 int ret = 0;
570a335b
HD
3594
3595 /*
3596 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3597 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3598 */
3599 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3600
eb085574 3601 si = get_swap_device(entry);
570a335b
HD
3602 if (!si) {
3603 /*
3604 * An acceptable race has occurred since the failing
eb085574 3605 * __swap_duplicate(): the swap device may be swapoff
570a335b
HD
3606 */
3607 goto outer;
3608 }
eb085574 3609 spin_lock(&si->lock);
570a335b
HD
3610
3611 offset = swp_offset(entry);
235b6217
HY
3612
3613 ci = lock_cluster(si, offset);
3614
570a335b
HD
3615 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3616
3617 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3618 /*
3619 * The higher the swap count, the more likely it is that tasks
3620 * will race to add swap count continuation: we need to avoid
3621 * over-provisioning.
3622 */
3623 goto out;
3624 }
3625
3626 if (!page) {
eb085574
HY
3627 ret = -ENOMEM;
3628 goto out;
570a335b
HD
3629 }
3630
3631 /*
3632 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
3633 * no architecture is using highmem pages for kernel page tables: so it
3634 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
3635 */
3636 head = vmalloc_to_page(si->swap_map + offset);
3637 offset &= ~PAGE_MASK;
3638
2628bd6f 3639 spin_lock(&si->cont_lock);
570a335b
HD
3640 /*
3641 * Page allocation does not initialize the page's lru field,
3642 * but it does always reset its private field.
3643 */
3644 if (!page_private(head)) {
3645 BUG_ON(count & COUNT_CONTINUED);
3646 INIT_LIST_HEAD(&head->lru);
3647 set_page_private(head, SWP_CONTINUED);
3648 si->flags |= SWP_CONTINUED;
3649 }
3650
3651 list_for_each_entry(list_page, &head->lru, lru) {
3652 unsigned char *map;
3653
3654 /*
3655 * If the previous map said no continuation, but we've found
3656 * a continuation page, free our allocation and use this one.
3657 */
3658 if (!(count & COUNT_CONTINUED))
2628bd6f 3659 goto out_unlock_cont;
570a335b 3660
9b04c5fe 3661 map = kmap_atomic(list_page) + offset;
570a335b 3662 count = *map;
9b04c5fe 3663 kunmap_atomic(map);
570a335b
HD
3664
3665 /*
3666 * If this continuation count now has some space in it,
3667 * free our allocation and use this one.
3668 */
3669 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2628bd6f 3670 goto out_unlock_cont;
570a335b
HD
3671 }
3672
3673 list_add_tail(&page->lru, &head->lru);
3674 page = NULL; /* now it's attached, don't free it */
2628bd6f
HY
3675out_unlock_cont:
3676 spin_unlock(&si->cont_lock);
570a335b 3677out:
235b6217 3678 unlock_cluster(ci);
ec8acf20 3679 spin_unlock(&si->lock);
eb085574 3680 put_swap_device(si);
570a335b
HD
3681outer:
3682 if (page)
3683 __free_page(page);
eb085574 3684 return ret;
570a335b
HD
3685}
3686
3687/*
3688 * swap_count_continued - when the original swap_map count is incremented
3689 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3690 * into, carry if so, or else fail until a new continuation page is allocated;
3691 * when the original swap_map count is decremented from 0 with continuation,
3692 * borrow from the continuation and report whether it still holds more.
235b6217
HY
3693 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3694 * lock.
570a335b
HD
3695 */
3696static bool swap_count_continued(struct swap_info_struct *si,
3697 pgoff_t offset, unsigned char count)
3698{
3699 struct page *head;
3700 struct page *page;
3701 unsigned char *map;
2628bd6f 3702 bool ret;
570a335b
HD
3703
3704 head = vmalloc_to_page(si->swap_map + offset);
3705 if (page_private(head) != SWP_CONTINUED) {
3706 BUG_ON(count & COUNT_CONTINUED);
3707 return false; /* need to add count continuation */
3708 }
3709
2628bd6f 3710 spin_lock(&si->cont_lock);
570a335b 3711 offset &= ~PAGE_MASK;
213516ac 3712 page = list_next_entry(head, lru);
9b04c5fe 3713 map = kmap_atomic(page) + offset;
570a335b
HD
3714
3715 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3716 goto init_map; /* jump over SWAP_CONT_MAX checks */
3717
3718 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3719 /*
3720 * Think of how you add 1 to 999
3721 */
3722 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 3723 kunmap_atomic(map);
213516ac 3724 page = list_next_entry(page, lru);
570a335b 3725 BUG_ON(page == head);
9b04c5fe 3726 map = kmap_atomic(page) + offset;
570a335b
HD
3727 }
3728 if (*map == SWAP_CONT_MAX) {
9b04c5fe 3729 kunmap_atomic(map);
213516ac 3730 page = list_next_entry(page, lru);
2628bd6f
HY
3731 if (page == head) {
3732 ret = false; /* add count continuation */
3733 goto out;
3734 }
9b04c5fe 3735 map = kmap_atomic(page) + offset;
570a335b
HD
3736init_map: *map = 0; /* we didn't zero the page */
3737 }
3738 *map += 1;
9b04c5fe 3739 kunmap_atomic(map);
213516ac 3740 while ((page = list_prev_entry(page, lru)) != head) {
9b04c5fe 3741 map = kmap_atomic(page) + offset;
570a335b 3742 *map = COUNT_CONTINUED;
9b04c5fe 3743 kunmap_atomic(map);
570a335b 3744 }
2628bd6f 3745 ret = true; /* incremented */
570a335b
HD
3746
3747 } else { /* decrementing */
3748 /*
3749 * Think of how you subtract 1 from 1000
3750 */
3751 BUG_ON(count != COUNT_CONTINUED);
3752 while (*map == COUNT_CONTINUED) {
9b04c5fe 3753 kunmap_atomic(map);
213516ac 3754 page = list_next_entry(page, lru);
570a335b 3755 BUG_ON(page == head);
9b04c5fe 3756 map = kmap_atomic(page) + offset;
570a335b
HD
3757 }
3758 BUG_ON(*map == 0);
3759 *map -= 1;
3760 if (*map == 0)
3761 count = 0;
9b04c5fe 3762 kunmap_atomic(map);
213516ac 3763 while ((page = list_prev_entry(page, lru)) != head) {
9b04c5fe 3764 map = kmap_atomic(page) + offset;
570a335b
HD
3765 *map = SWAP_CONT_MAX | count;
3766 count = COUNT_CONTINUED;
9b04c5fe 3767 kunmap_atomic(map);
570a335b 3768 }
2628bd6f 3769 ret = count == COUNT_CONTINUED;
570a335b 3770 }
2628bd6f
HY
3771out:
3772 spin_unlock(&si->cont_lock);
3773 return ret;
570a335b
HD
3774}
3775
3776/*
3777 * free_swap_count_continuations - swapoff free all the continuation pages
3778 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3779 */
3780static void free_swap_count_continuations(struct swap_info_struct *si)
3781{
3782 pgoff_t offset;
3783
3784 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3785 struct page *head;
3786 head = vmalloc_to_page(si->swap_map + offset);
3787 if (page_private(head)) {
0d576d20
GT
3788 struct page *page, *next;
3789
3790 list_for_each_entry_safe(page, next, &head->lru, lru) {
3791 list_del(&page->lru);
570a335b
HD
3792 __free_page(page);
3793 }
3794 }
3795 }
3796}
a2468cc9 3797
2cf85583 3798#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
6caa6a07 3799void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
2cf85583
TH
3800{
3801 struct swap_info_struct *si, *next;
6caa6a07
JW
3802 int nid = page_to_nid(page);
3803
3804 if (!(gfp_mask & __GFP_IO))
2cf85583
TH
3805 return;
3806
3807 if (!blk_cgroup_congested())
3808 return;
3809
3810 /*
3811 * We've already scheduled a throttle, avoid taking the global swap
3812 * lock.
3813 */
3814 if (current->throttle_queue)
3815 return;
3816
3817 spin_lock(&swap_avail_lock);
6caa6a07
JW
3818 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3819 avail_lists[nid]) {
2cf85583 3820 if (si->bdev) {
6caa6a07 3821 blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
2cf85583
TH
3822 break;
3823 }
3824 }
3825 spin_unlock(&swap_avail_lock);
3826}
3827#endif
3828
a2468cc9
AL
3829static int __init swapfile_init(void)
3830{
3831 int nid;
3832
3833 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3834 GFP_KERNEL);
3835 if (!swap_avail_heads) {
3836 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3837 return -ENOMEM;
3838 }
3839
3840 for_each_node(nid)
3841 plist_head_init(&swap_avail_heads[nid]);
3842
3843 return 0;
3844}
3845subsys_initcall(swapfile_init);