]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/swapfile.c
sfc: add missing licence info to mcdi_filters.c
[mirror_ubuntu-hirsute-kernel.git] / mm / swapfile.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
1da177e4 9#include <linux/mm.h>
6e84f315 10#include <linux/sched/mm.h>
29930025 11#include <linux/sched/task.h>
1da177e4
LT
12#include <linux/hugetlb.h>
13#include <linux/mman.h>
14#include <linux/slab.h>
15#include <linux/kernel_stat.h>
16#include <linux/swap.h>
17#include <linux/vmalloc.h>
18#include <linux/pagemap.h>
19#include <linux/namei.h>
072441e2 20#include <linux/shmem_fs.h>
1da177e4 21#include <linux/blkdev.h>
20137a49 22#include <linux/random.h>
1da177e4
LT
23#include <linux/writeback.h>
24#include <linux/proc_fs.h>
25#include <linux/seq_file.h>
26#include <linux/init.h>
5ad64688 27#include <linux/ksm.h>
1da177e4
LT
28#include <linux/rmap.h>
29#include <linux/security.h>
30#include <linux/backing-dev.h>
fc0abb14 31#include <linux/mutex.h>
c59ede7b 32#include <linux/capability.h>
1da177e4 33#include <linux/syscalls.h>
8a9f3ccd 34#include <linux/memcontrol.h>
66d7dd51 35#include <linux/poll.h>
72788c38 36#include <linux/oom.h>
38b5faf4
DM
37#include <linux/frontswap.h>
38#include <linux/swapfile.h>
f981c595 39#include <linux/export.h>
67afa38e 40#include <linux/swap_slots.h>
155b5f88 41#include <linux/sort.h>
1da177e4 42
1da177e4
LT
43#include <asm/tlbflush.h>
44#include <linux/swapops.h>
5d1ea48b 45#include <linux/swap_cgroup.h>
1da177e4 46
570a335b
HD
47static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 unsigned char);
49static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 50static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 51
38b5faf4 52DEFINE_SPINLOCK(swap_lock);
7c363b8c 53static unsigned int nr_swapfiles;
ec8acf20 54atomic_long_t nr_swap_pages;
fb0fec50
CW
55/*
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
59 */
60EXPORT_SYMBOL_GPL(nr_swap_pages);
ec8acf20 61/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 62long total_swap_pages;
a2468cc9 63static int least_priority = -1;
1da177e4 64
1da177e4
LT
65static const char Bad_file[] = "Bad swap file entry ";
66static const char Unused_file[] = "Unused swap file entry ";
67static const char Bad_offset[] = "Bad swap offset entry ";
68static const char Unused_offset[] = "Unused swap offset entry ";
69
adfab836
DS
70/*
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
73 */
18ab4d4c
DS
74PLIST_HEAD(swap_active_head);
75
76/*
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
87 */
bfc6b1ca 88static struct plist_head *swap_avail_heads;
18ab4d4c 89static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 90
38b5faf4 91struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 92
fc0abb14 93static DEFINE_MUTEX(swapon_mutex);
1da177e4 94
66d7dd51
KS
95static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96/* Activity counter to indicate that a swapon or swapoff has occurred */
97static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
81a0298b
HY
99atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
c10d38cc
DJ
101static struct swap_info_struct *swap_type_to_swap_info(int type)
102{
103 if (type >= READ_ONCE(nr_swapfiles))
104 return NULL;
105
106 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */
107 return READ_ONCE(swap_info[type]);
108}
109
8d69aaee 110static inline unsigned char swap_count(unsigned char ent)
355cfa73 111{
955c97f0 112 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
355cfa73
KH
113}
114
bcd49e86
HY
115/* Reclaim the swap entry anyway if possible */
116#define TTRS_ANYWAY 0x1
117/*
118 * Reclaim the swap entry if there are no more mappings of the
119 * corresponding page
120 */
121#define TTRS_UNMAPPED 0x2
122/* Reclaim the swap entry if swap is getting full*/
123#define TTRS_FULL 0x4
124
efa90a98 125/* returns 1 if swap entry is freed */
bcd49e86
HY
126static int __try_to_reclaim_swap(struct swap_info_struct *si,
127 unsigned long offset, unsigned long flags)
c9e44410 128{
efa90a98 129 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
130 struct page *page;
131 int ret = 0;
132
bcd49e86 133 page = find_get_page(swap_address_space(entry), offset);
c9e44410
KH
134 if (!page)
135 return 0;
136 /*
bcd49e86
HY
137 * When this function is called from scan_swap_map_slots() and it's
138 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
139 * here. We have to use trylock for avoiding deadlock. This is a special
c9e44410
KH
140 * case and you should use try_to_free_swap() with explicit lock_page()
141 * in usual operations.
142 */
143 if (trylock_page(page)) {
bcd49e86
HY
144 if ((flags & TTRS_ANYWAY) ||
145 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
146 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
147 ret = try_to_free_swap(page);
c9e44410
KH
148 unlock_page(page);
149 }
09cbfeaf 150 put_page(page);
c9e44410
KH
151 return ret;
152}
355cfa73 153
4efaceb1
AL
154static inline struct swap_extent *first_se(struct swap_info_struct *sis)
155{
156 struct rb_node *rb = rb_first(&sis->swap_extent_root);
157 return rb_entry(rb, struct swap_extent, rb_node);
158}
159
160static inline struct swap_extent *next_se(struct swap_extent *se)
161{
162 struct rb_node *rb = rb_next(&se->rb_node);
163 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
164}
165
6a6ba831
HD
166/*
167 * swapon tell device that all the old swap contents can be discarded,
168 * to allow the swap device to optimize its wear-levelling.
169 */
170static int discard_swap(struct swap_info_struct *si)
171{
172 struct swap_extent *se;
9625a5f2
HD
173 sector_t start_block;
174 sector_t nr_blocks;
6a6ba831
HD
175 int err = 0;
176
9625a5f2 177 /* Do not discard the swap header page! */
4efaceb1 178 se = first_se(si);
9625a5f2
HD
179 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
180 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
181 if (nr_blocks) {
182 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 183 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
184 if (err)
185 return err;
186 cond_resched();
187 }
6a6ba831 188
4efaceb1 189 for (se = next_se(se); se; se = next_se(se)) {
9625a5f2
HD
190 start_block = se->start_block << (PAGE_SHIFT - 9);
191 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
192
193 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 194 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
195 if (err)
196 break;
197
198 cond_resched();
199 }
200 return err; /* That will often be -EOPNOTSUPP */
201}
202
4efaceb1
AL
203static struct swap_extent *
204offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
205{
206 struct swap_extent *se;
207 struct rb_node *rb;
208
209 rb = sis->swap_extent_root.rb_node;
210 while (rb) {
211 se = rb_entry(rb, struct swap_extent, rb_node);
212 if (offset < se->start_page)
213 rb = rb->rb_left;
214 else if (offset >= se->start_page + se->nr_pages)
215 rb = rb->rb_right;
216 else
217 return se;
218 }
219 /* It *must* be present */
220 BUG();
221}
222
7992fde7
HD
223/*
224 * swap allocation tell device that a cluster of swap can now be discarded,
225 * to allow the swap device to optimize its wear-levelling.
226 */
227static void discard_swap_cluster(struct swap_info_struct *si,
228 pgoff_t start_page, pgoff_t nr_pages)
229{
4efaceb1 230 struct swap_extent *se = offset_to_swap_extent(si, start_page);
7992fde7
HD
231
232 while (nr_pages) {
4efaceb1
AL
233 pgoff_t offset = start_page - se->start_page;
234 sector_t start_block = se->start_block + offset;
235 sector_t nr_blocks = se->nr_pages - offset;
236
237 if (nr_blocks > nr_pages)
238 nr_blocks = nr_pages;
239 start_page += nr_blocks;
240 nr_pages -= nr_blocks;
241
242 start_block <<= PAGE_SHIFT - 9;
243 nr_blocks <<= PAGE_SHIFT - 9;
244 if (blkdev_issue_discard(si->bdev, start_block,
245 nr_blocks, GFP_NOIO, 0))
246 break;
7992fde7 247
4efaceb1 248 se = next_se(se);
7992fde7
HD
249 }
250}
251
38d8b4e6
HY
252#ifdef CONFIG_THP_SWAP
253#define SWAPFILE_CLUSTER HPAGE_PMD_NR
a448f2d0
HY
254
255#define swap_entry_size(size) (size)
38d8b4e6 256#else
048c27fd 257#define SWAPFILE_CLUSTER 256
a448f2d0
HY
258
259/*
260 * Define swap_entry_size() as constant to let compiler to optimize
261 * out some code if !CONFIG_THP_SWAP
262 */
263#define swap_entry_size(size) 1
38d8b4e6 264#endif
048c27fd
HD
265#define LATENCY_LIMIT 256
266
2a8f9449
SL
267static inline void cluster_set_flag(struct swap_cluster_info *info,
268 unsigned int flag)
269{
270 info->flags = flag;
271}
272
273static inline unsigned int cluster_count(struct swap_cluster_info *info)
274{
275 return info->data;
276}
277
278static inline void cluster_set_count(struct swap_cluster_info *info,
279 unsigned int c)
280{
281 info->data = c;
282}
283
284static inline void cluster_set_count_flag(struct swap_cluster_info *info,
285 unsigned int c, unsigned int f)
286{
287 info->flags = f;
288 info->data = c;
289}
290
291static inline unsigned int cluster_next(struct swap_cluster_info *info)
292{
293 return info->data;
294}
295
296static inline void cluster_set_next(struct swap_cluster_info *info,
297 unsigned int n)
298{
299 info->data = n;
300}
301
302static inline void cluster_set_next_flag(struct swap_cluster_info *info,
303 unsigned int n, unsigned int f)
304{
305 info->flags = f;
306 info->data = n;
307}
308
309static inline bool cluster_is_free(struct swap_cluster_info *info)
310{
311 return info->flags & CLUSTER_FLAG_FREE;
312}
313
314static inline bool cluster_is_null(struct swap_cluster_info *info)
315{
316 return info->flags & CLUSTER_FLAG_NEXT_NULL;
317}
318
319static inline void cluster_set_null(struct swap_cluster_info *info)
320{
321 info->flags = CLUSTER_FLAG_NEXT_NULL;
322 info->data = 0;
323}
324
e0709829
HY
325static inline bool cluster_is_huge(struct swap_cluster_info *info)
326{
33ee011e
HY
327 if (IS_ENABLED(CONFIG_THP_SWAP))
328 return info->flags & CLUSTER_FLAG_HUGE;
329 return false;
e0709829
HY
330}
331
332static inline void cluster_clear_huge(struct swap_cluster_info *info)
333{
334 info->flags &= ~CLUSTER_FLAG_HUGE;
335}
336
235b6217
HY
337static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
338 unsigned long offset)
339{
340 struct swap_cluster_info *ci;
341
342 ci = si->cluster_info;
343 if (ci) {
344 ci += offset / SWAPFILE_CLUSTER;
345 spin_lock(&ci->lock);
346 }
347 return ci;
348}
349
350static inline void unlock_cluster(struct swap_cluster_info *ci)
351{
352 if (ci)
353 spin_unlock(&ci->lock);
354}
355
59d98bf3
HY
356/*
357 * Determine the locking method in use for this device. Return
358 * swap_cluster_info if SSD-style cluster-based locking is in place.
359 */
235b6217 360static inline struct swap_cluster_info *lock_cluster_or_swap_info(
59d98bf3 361 struct swap_info_struct *si, unsigned long offset)
235b6217
HY
362{
363 struct swap_cluster_info *ci;
364
59d98bf3 365 /* Try to use fine-grained SSD-style locking if available: */
235b6217 366 ci = lock_cluster(si, offset);
59d98bf3 367 /* Otherwise, fall back to traditional, coarse locking: */
235b6217
HY
368 if (!ci)
369 spin_lock(&si->lock);
370
371 return ci;
372}
373
374static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
375 struct swap_cluster_info *ci)
376{
377 if (ci)
378 unlock_cluster(ci);
379 else
380 spin_unlock(&si->lock);
381}
382
6b534915
HY
383static inline bool cluster_list_empty(struct swap_cluster_list *list)
384{
385 return cluster_is_null(&list->head);
386}
387
388static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
389{
390 return cluster_next(&list->head);
391}
392
393static void cluster_list_init(struct swap_cluster_list *list)
394{
395 cluster_set_null(&list->head);
396 cluster_set_null(&list->tail);
397}
398
399static void cluster_list_add_tail(struct swap_cluster_list *list,
400 struct swap_cluster_info *ci,
401 unsigned int idx)
402{
403 if (cluster_list_empty(list)) {
404 cluster_set_next_flag(&list->head, idx, 0);
405 cluster_set_next_flag(&list->tail, idx, 0);
406 } else {
235b6217 407 struct swap_cluster_info *ci_tail;
6b534915
HY
408 unsigned int tail = cluster_next(&list->tail);
409
235b6217
HY
410 /*
411 * Nested cluster lock, but both cluster locks are
412 * only acquired when we held swap_info_struct->lock
413 */
414 ci_tail = ci + tail;
415 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
416 cluster_set_next(ci_tail, idx);
0ef017d1 417 spin_unlock(&ci_tail->lock);
6b534915
HY
418 cluster_set_next_flag(&list->tail, idx, 0);
419 }
420}
421
422static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
423 struct swap_cluster_info *ci)
424{
425 unsigned int idx;
426
427 idx = cluster_next(&list->head);
428 if (cluster_next(&list->tail) == idx) {
429 cluster_set_null(&list->head);
430 cluster_set_null(&list->tail);
431 } else
432 cluster_set_next_flag(&list->head,
433 cluster_next(&ci[idx]), 0);
434
435 return idx;
436}
437
815c2c54
SL
438/* Add a cluster to discard list and schedule it to do discard */
439static void swap_cluster_schedule_discard(struct swap_info_struct *si,
440 unsigned int idx)
441{
442 /*
443 * If scan_swap_map() can't find a free cluster, it will check
444 * si->swap_map directly. To make sure the discarding cluster isn't
445 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
446 * will be cleared after discard
447 */
448 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
449 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
450
6b534915 451 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
815c2c54
SL
452
453 schedule_work(&si->discard_work);
454}
455
38d8b4e6
HY
456static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
457{
458 struct swap_cluster_info *ci = si->cluster_info;
459
460 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
461 cluster_list_add_tail(&si->free_clusters, ci, idx);
462}
463
815c2c54
SL
464/*
465 * Doing discard actually. After a cluster discard is finished, the cluster
466 * will be added to free cluster list. caller should hold si->lock.
467*/
468static void swap_do_scheduled_discard(struct swap_info_struct *si)
469{
235b6217 470 struct swap_cluster_info *info, *ci;
815c2c54
SL
471 unsigned int idx;
472
473 info = si->cluster_info;
474
6b534915
HY
475 while (!cluster_list_empty(&si->discard_clusters)) {
476 idx = cluster_list_del_first(&si->discard_clusters, info);
815c2c54
SL
477 spin_unlock(&si->lock);
478
479 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
480 SWAPFILE_CLUSTER);
481
482 spin_lock(&si->lock);
235b6217 483 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
38d8b4e6 484 __free_cluster(si, idx);
815c2c54
SL
485 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
486 0, SWAPFILE_CLUSTER);
235b6217 487 unlock_cluster(ci);
815c2c54
SL
488 }
489}
490
491static void swap_discard_work(struct work_struct *work)
492{
493 struct swap_info_struct *si;
494
495 si = container_of(work, struct swap_info_struct, discard_work);
496
497 spin_lock(&si->lock);
498 swap_do_scheduled_discard(si);
499 spin_unlock(&si->lock);
500}
501
38d8b4e6
HY
502static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
503{
504 struct swap_cluster_info *ci = si->cluster_info;
505
506 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
507 cluster_list_del_first(&si->free_clusters, ci);
508 cluster_set_count_flag(ci + idx, 0, 0);
509}
510
511static void free_cluster(struct swap_info_struct *si, unsigned long idx)
512{
513 struct swap_cluster_info *ci = si->cluster_info + idx;
514
515 VM_BUG_ON(cluster_count(ci) != 0);
516 /*
517 * If the swap is discardable, prepare discard the cluster
518 * instead of free it immediately. The cluster will be freed
519 * after discard.
520 */
521 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
522 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
523 swap_cluster_schedule_discard(si, idx);
524 return;
525 }
526
527 __free_cluster(si, idx);
528}
529
2a8f9449
SL
530/*
531 * The cluster corresponding to page_nr will be used. The cluster will be
532 * removed from free cluster list and its usage counter will be increased.
533 */
534static void inc_cluster_info_page(struct swap_info_struct *p,
535 struct swap_cluster_info *cluster_info, unsigned long page_nr)
536{
537 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
538
539 if (!cluster_info)
540 return;
38d8b4e6
HY
541 if (cluster_is_free(&cluster_info[idx]))
542 alloc_cluster(p, idx);
2a8f9449
SL
543
544 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
545 cluster_set_count(&cluster_info[idx],
546 cluster_count(&cluster_info[idx]) + 1);
547}
548
549/*
550 * The cluster corresponding to page_nr decreases one usage. If the usage
551 * counter becomes 0, which means no page in the cluster is in using, we can
552 * optionally discard the cluster and add it to free cluster list.
553 */
554static void dec_cluster_info_page(struct swap_info_struct *p,
555 struct swap_cluster_info *cluster_info, unsigned long page_nr)
556{
557 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
558
559 if (!cluster_info)
560 return;
561
562 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
563 cluster_set_count(&cluster_info[idx],
564 cluster_count(&cluster_info[idx]) - 1);
565
38d8b4e6
HY
566 if (cluster_count(&cluster_info[idx]) == 0)
567 free_cluster(p, idx);
2a8f9449
SL
568}
569
570/*
571 * It's possible scan_swap_map() uses a free cluster in the middle of free
572 * cluster list. Avoiding such abuse to avoid list corruption.
573 */
ebc2a1a6
SL
574static bool
575scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
576 unsigned long offset)
577{
ebc2a1a6
SL
578 struct percpu_cluster *percpu_cluster;
579 bool conflict;
580
2a8f9449 581 offset /= SWAPFILE_CLUSTER;
6b534915
HY
582 conflict = !cluster_list_empty(&si->free_clusters) &&
583 offset != cluster_list_first(&si->free_clusters) &&
2a8f9449 584 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
585
586 if (!conflict)
587 return false;
588
589 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
590 cluster_set_null(&percpu_cluster->index);
591 return true;
592}
593
594/*
595 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
596 * might involve allocating a new cluster for current CPU too.
597 */
36005bae 598static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
ebc2a1a6
SL
599 unsigned long *offset, unsigned long *scan_base)
600{
601 struct percpu_cluster *cluster;
235b6217 602 struct swap_cluster_info *ci;
235b6217 603 unsigned long tmp, max;
ebc2a1a6
SL
604
605new_cluster:
606 cluster = this_cpu_ptr(si->percpu_cluster);
607 if (cluster_is_null(&cluster->index)) {
6b534915
HY
608 if (!cluster_list_empty(&si->free_clusters)) {
609 cluster->index = si->free_clusters.head;
ebc2a1a6
SL
610 cluster->next = cluster_next(&cluster->index) *
611 SWAPFILE_CLUSTER;
6b534915 612 } else if (!cluster_list_empty(&si->discard_clusters)) {
ebc2a1a6
SL
613 /*
614 * we don't have free cluster but have some clusters in
49070588
HY
615 * discarding, do discard now and reclaim them, then
616 * reread cluster_next_cpu since we dropped si->lock
ebc2a1a6
SL
617 */
618 swap_do_scheduled_discard(si);
49070588
HY
619 *scan_base = this_cpu_read(*si->cluster_next_cpu);
620 *offset = *scan_base;
ebc2a1a6
SL
621 goto new_cluster;
622 } else
36005bae 623 return false;
ebc2a1a6
SL
624 }
625
ebc2a1a6
SL
626 /*
627 * Other CPUs can use our cluster if they can't find a free cluster,
628 * check if there is still free entry in the cluster
629 */
630 tmp = cluster->next;
235b6217
HY
631 max = min_t(unsigned long, si->max,
632 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
7b9e2de1
WY
633 if (tmp < max) {
634 ci = lock_cluster(si, tmp);
635 while (tmp < max) {
636 if (!si->swap_map[tmp])
637 break;
638 tmp++;
639 }
640 unlock_cluster(ci);
ebc2a1a6 641 }
0fd0e19e 642 if (tmp >= max) {
ebc2a1a6
SL
643 cluster_set_null(&cluster->index);
644 goto new_cluster;
645 }
646 cluster->next = tmp + 1;
647 *offset = tmp;
648 *scan_base = tmp;
fdff1deb 649 return true;
2a8f9449
SL
650}
651
a2468cc9
AL
652static void __del_from_avail_list(struct swap_info_struct *p)
653{
654 int nid;
655
656 for_each_node(nid)
657 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
658}
659
660static void del_from_avail_list(struct swap_info_struct *p)
661{
662 spin_lock(&swap_avail_lock);
663 __del_from_avail_list(p);
664 spin_unlock(&swap_avail_lock);
665}
666
38d8b4e6
HY
667static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
668 unsigned int nr_entries)
669{
670 unsigned int end = offset + nr_entries - 1;
671
672 if (offset == si->lowest_bit)
673 si->lowest_bit += nr_entries;
674 if (end == si->highest_bit)
675 si->highest_bit -= nr_entries;
676 si->inuse_pages += nr_entries;
677 if (si->inuse_pages == si->pages) {
678 si->lowest_bit = si->max;
679 si->highest_bit = 0;
a2468cc9 680 del_from_avail_list(si);
38d8b4e6
HY
681 }
682}
683
a2468cc9
AL
684static void add_to_avail_list(struct swap_info_struct *p)
685{
686 int nid;
687
688 spin_lock(&swap_avail_lock);
689 for_each_node(nid) {
690 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
691 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
692 }
693 spin_unlock(&swap_avail_lock);
694}
695
38d8b4e6
HY
696static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
697 unsigned int nr_entries)
698{
699 unsigned long end = offset + nr_entries - 1;
700 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
701
702 if (offset < si->lowest_bit)
703 si->lowest_bit = offset;
704 if (end > si->highest_bit) {
705 bool was_full = !si->highest_bit;
706
707 si->highest_bit = end;
a2468cc9
AL
708 if (was_full && (si->flags & SWP_WRITEOK))
709 add_to_avail_list(si);
38d8b4e6
HY
710 }
711 atomic_long_add(nr_entries, &nr_swap_pages);
712 si->inuse_pages -= nr_entries;
713 if (si->flags & SWP_BLKDEV)
714 swap_slot_free_notify =
715 si->bdev->bd_disk->fops->swap_slot_free_notify;
716 else
717 swap_slot_free_notify = NULL;
718 while (offset <= end) {
719 frontswap_invalidate_page(si->type, offset);
720 if (swap_slot_free_notify)
721 swap_slot_free_notify(si->bdev, offset);
722 offset++;
723 }
724}
725
49070588
HY
726static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
727{
728 unsigned long prev;
729
730 if (!(si->flags & SWP_SOLIDSTATE)) {
731 si->cluster_next = next;
732 return;
733 }
734
735 prev = this_cpu_read(*si->cluster_next_cpu);
736 /*
737 * Cross the swap address space size aligned trunk, choose
738 * another trunk randomly to avoid lock contention on swap
739 * address space if possible.
740 */
741 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
742 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
743 /* No free swap slots available */
744 if (si->highest_bit <= si->lowest_bit)
745 return;
746 next = si->lowest_bit +
747 prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
748 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
749 next = max_t(unsigned int, next, si->lowest_bit);
750 }
751 this_cpu_write(*si->cluster_next_cpu, next);
752}
753
36005bae
TC
754static int scan_swap_map_slots(struct swap_info_struct *si,
755 unsigned char usage, int nr,
756 swp_entry_t slots[])
1da177e4 757{
235b6217 758 struct swap_cluster_info *ci;
ebebbbe9 759 unsigned long offset;
c60aa176 760 unsigned long scan_base;
7992fde7 761 unsigned long last_in_cluster = 0;
048c27fd 762 int latency_ration = LATENCY_LIMIT;
36005bae 763 int n_ret = 0;
ed43af10 764 bool scanned_many = false;
36005bae 765
886bb7e9 766 /*
7dfad418
HD
767 * We try to cluster swap pages by allocating them sequentially
768 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
769 * way, however, we resort to first-free allocation, starting
770 * a new cluster. This prevents us from scattering swap pages
771 * all over the entire swap partition, so that we reduce
772 * overall disk seek times between swap pages. -- sct
773 * But we do now try to find an empty cluster. -Andrea
c60aa176 774 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
775 */
776
52b7efdb 777 si->flags += SWP_SCANNING;
49070588
HY
778 /*
779 * Use percpu scan base for SSD to reduce lock contention on
780 * cluster and swap cache. For HDD, sequential access is more
781 * important.
782 */
783 if (si->flags & SWP_SOLIDSTATE)
784 scan_base = this_cpu_read(*si->cluster_next_cpu);
785 else
786 scan_base = si->cluster_next;
787 offset = scan_base;
ebebbbe9 788
ebc2a1a6
SL
789 /* SSD algorithm */
790 if (si->cluster_info) {
bd2d18da 791 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
36005bae 792 goto scan;
f4eaf51a 793 } else if (unlikely(!si->cluster_nr--)) {
ebebbbe9
HD
794 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
795 si->cluster_nr = SWAPFILE_CLUSTER - 1;
796 goto checks;
797 }
2a8f9449 798
ec8acf20 799 spin_unlock(&si->lock);
7dfad418 800
c60aa176
HD
801 /*
802 * If seek is expensive, start searching for new cluster from
803 * start of partition, to minimize the span of allocated swap.
50088c44
CY
804 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
805 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 806 */
50088c44 807 scan_base = offset = si->lowest_bit;
7dfad418
HD
808 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
809
810 /* Locate the first empty (unaligned) cluster */
811 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 812 if (si->swap_map[offset])
7dfad418
HD
813 last_in_cluster = offset + SWAPFILE_CLUSTER;
814 else if (offset == last_in_cluster) {
ec8acf20 815 spin_lock(&si->lock);
ebebbbe9
HD
816 offset -= SWAPFILE_CLUSTER - 1;
817 si->cluster_next = offset;
818 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
819 goto checks;
820 }
821 if (unlikely(--latency_ration < 0)) {
822 cond_resched();
823 latency_ration = LATENCY_LIMIT;
824 }
825 }
826
827 offset = scan_base;
ec8acf20 828 spin_lock(&si->lock);
ebebbbe9 829 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 830 }
7dfad418 831
ebebbbe9 832checks:
ebc2a1a6 833 if (si->cluster_info) {
36005bae
TC
834 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
835 /* take a break if we already got some slots */
836 if (n_ret)
837 goto done;
838 if (!scan_swap_map_try_ssd_cluster(si, &offset,
839 &scan_base))
840 goto scan;
841 }
ebc2a1a6 842 }
ebebbbe9 843 if (!(si->flags & SWP_WRITEOK))
52b7efdb 844 goto no_page;
7dfad418
HD
845 if (!si->highest_bit)
846 goto no_page;
ebebbbe9 847 if (offset > si->highest_bit)
c60aa176 848 scan_base = offset = si->lowest_bit;
c9e44410 849
235b6217 850 ci = lock_cluster(si, offset);
b73d7fce
HD
851 /* reuse swap entry of cache-only swap if not busy. */
852 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 853 int swap_was_freed;
235b6217 854 unlock_cluster(ci);
ec8acf20 855 spin_unlock(&si->lock);
bcd49e86 856 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
ec8acf20 857 spin_lock(&si->lock);
c9e44410
KH
858 /* entry was freed successfully, try to use this again */
859 if (swap_was_freed)
860 goto checks;
861 goto scan; /* check next one */
862 }
863
235b6217
HY
864 if (si->swap_map[offset]) {
865 unlock_cluster(ci);
36005bae
TC
866 if (!n_ret)
867 goto scan;
868 else
869 goto done;
235b6217 870 }
2872bb2d
HY
871 si->swap_map[offset] = usage;
872 inc_cluster_info_page(si, si->cluster_info, offset);
873 unlock_cluster(ci);
ebebbbe9 874
38d8b4e6 875 swap_range_alloc(si, offset, 1);
36005bae
TC
876 slots[n_ret++] = swp_entry(si->type, offset);
877
878 /* got enough slots or reach max slots? */
879 if ((n_ret == nr) || (offset >= si->highest_bit))
880 goto done;
881
882 /* search for next available slot */
883
884 /* time to take a break? */
885 if (unlikely(--latency_ration < 0)) {
886 if (n_ret)
887 goto done;
888 spin_unlock(&si->lock);
889 cond_resched();
890 spin_lock(&si->lock);
891 latency_ration = LATENCY_LIMIT;
892 }
893
894 /* try to get more slots in cluster */
895 if (si->cluster_info) {
896 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
897 goto checks;
f4eaf51a
WY
898 } else if (si->cluster_nr && !si->swap_map[++offset]) {
899 /* non-ssd case, still more slots in cluster? */
36005bae
TC
900 --si->cluster_nr;
901 goto checks;
902 }
7992fde7 903
ed43af10
HY
904 /*
905 * Even if there's no free clusters available (fragmented),
906 * try to scan a little more quickly with lock held unless we
907 * have scanned too many slots already.
908 */
909 if (!scanned_many) {
910 unsigned long scan_limit;
911
912 if (offset < scan_base)
913 scan_limit = scan_base;
914 else
915 scan_limit = si->highest_bit;
916 for (; offset <= scan_limit && --latency_ration > 0;
917 offset++) {
918 if (!si->swap_map[offset])
919 goto checks;
920 }
921 }
922
36005bae 923done:
49070588 924 set_cluster_next(si, offset + 1);
36005bae
TC
925 si->flags -= SWP_SCANNING;
926 return n_ret;
7dfad418 927
ebebbbe9 928scan:
ec8acf20 929 spin_unlock(&si->lock);
7dfad418 930 while (++offset <= si->highest_bit) {
52b7efdb 931 if (!si->swap_map[offset]) {
ec8acf20 932 spin_lock(&si->lock);
52b7efdb
HD
933 goto checks;
934 }
c9e44410 935 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 936 spin_lock(&si->lock);
c9e44410
KH
937 goto checks;
938 }
048c27fd
HD
939 if (unlikely(--latency_ration < 0)) {
940 cond_resched();
941 latency_ration = LATENCY_LIMIT;
ed43af10 942 scanned_many = true;
048c27fd 943 }
7dfad418 944 }
c60aa176 945 offset = si->lowest_bit;
a5998061 946 while (offset < scan_base) {
c60aa176 947 if (!si->swap_map[offset]) {
ec8acf20 948 spin_lock(&si->lock);
c60aa176
HD
949 goto checks;
950 }
c9e44410 951 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 952 spin_lock(&si->lock);
c9e44410
KH
953 goto checks;
954 }
c60aa176
HD
955 if (unlikely(--latency_ration < 0)) {
956 cond_resched();
957 latency_ration = LATENCY_LIMIT;
ed43af10 958 scanned_many = true;
c60aa176 959 }
a5998061 960 offset++;
c60aa176 961 }
ec8acf20 962 spin_lock(&si->lock);
7dfad418
HD
963
964no_page:
52b7efdb 965 si->flags -= SWP_SCANNING;
36005bae 966 return n_ret;
1da177e4
LT
967}
968
38d8b4e6
HY
969static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
970{
971 unsigned long idx;
972 struct swap_cluster_info *ci;
973 unsigned long offset, i;
974 unsigned char *map;
975
fe5266d5
HY
976 /*
977 * Should not even be attempting cluster allocations when huge
978 * page swap is disabled. Warn and fail the allocation.
979 */
980 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
981 VM_WARN_ON_ONCE(1);
982 return 0;
983 }
984
38d8b4e6
HY
985 if (cluster_list_empty(&si->free_clusters))
986 return 0;
987
988 idx = cluster_list_first(&si->free_clusters);
989 offset = idx * SWAPFILE_CLUSTER;
990 ci = lock_cluster(si, offset);
991 alloc_cluster(si, idx);
e0709829 992 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
38d8b4e6
HY
993
994 map = si->swap_map + offset;
995 for (i = 0; i < SWAPFILE_CLUSTER; i++)
996 map[i] = SWAP_HAS_CACHE;
997 unlock_cluster(ci);
998 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
999 *slot = swp_entry(si->type, offset);
1000
1001 return 1;
1002}
1003
1004static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1005{
1006 unsigned long offset = idx * SWAPFILE_CLUSTER;
1007 struct swap_cluster_info *ci;
1008
1009 ci = lock_cluster(si, offset);
979aafa5 1010 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
38d8b4e6
HY
1011 cluster_set_count_flag(ci, 0, 0);
1012 free_cluster(si, idx);
1013 unlock_cluster(ci);
1014 swap_range_free(si, offset, SWAPFILE_CLUSTER);
1015}
38d8b4e6 1016
36005bae
TC
1017static unsigned long scan_swap_map(struct swap_info_struct *si,
1018 unsigned char usage)
1019{
1020 swp_entry_t entry;
1021 int n_ret;
1022
1023 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1024
1025 if (n_ret)
1026 return swp_offset(entry);
1027 else
1028 return 0;
1029
1030}
1031
5d5e8f19 1032int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1da177e4 1033{
5d5e8f19 1034 unsigned long size = swap_entry_size(entry_size);
adfab836 1035 struct swap_info_struct *si, *next;
36005bae
TC
1036 long avail_pgs;
1037 int n_ret = 0;
a2468cc9 1038 int node;
1da177e4 1039
38d8b4e6 1040 /* Only single cluster request supported */
5d5e8f19 1041 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
38d8b4e6 1042
5d5e8f19 1043 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
36005bae 1044 if (avail_pgs <= 0)
fb4f88dc 1045 goto noswap;
36005bae 1046
08d3090f 1047 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
36005bae 1048
5d5e8f19 1049 atomic_long_sub(n_goal * size, &nr_swap_pages);
fb4f88dc 1050
18ab4d4c
DS
1051 spin_lock(&swap_avail_lock);
1052
1053start_over:
a2468cc9
AL
1054 node = numa_node_id();
1055 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
18ab4d4c 1056 /* requeue si to after same-priority siblings */
a2468cc9 1057 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
18ab4d4c 1058 spin_unlock(&swap_avail_lock);
ec8acf20 1059 spin_lock(&si->lock);
adfab836 1060 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c 1061 spin_lock(&swap_avail_lock);
a2468cc9 1062 if (plist_node_empty(&si->avail_lists[node])) {
18ab4d4c
DS
1063 spin_unlock(&si->lock);
1064 goto nextsi;
1065 }
1066 WARN(!si->highest_bit,
1067 "swap_info %d in list but !highest_bit\n",
1068 si->type);
1069 WARN(!(si->flags & SWP_WRITEOK),
1070 "swap_info %d in list but !SWP_WRITEOK\n",
1071 si->type);
a2468cc9 1072 __del_from_avail_list(si);
ec8acf20 1073 spin_unlock(&si->lock);
18ab4d4c 1074 goto nextsi;
ec8acf20 1075 }
5d5e8f19 1076 if (size == SWAPFILE_CLUSTER) {
bc4ae27d 1077 if (!(si->flags & SWP_FS))
f0eea189
HY
1078 n_ret = swap_alloc_cluster(si, swp_entries);
1079 } else
38d8b4e6
HY
1080 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1081 n_goal, swp_entries);
ec8acf20 1082 spin_unlock(&si->lock);
5d5e8f19 1083 if (n_ret || size == SWAPFILE_CLUSTER)
36005bae 1084 goto check_out;
18ab4d4c 1085 pr_debug("scan_swap_map of si %d failed to find offset\n",
36005bae
TC
1086 si->type);
1087
18ab4d4c
DS
1088 spin_lock(&swap_avail_lock);
1089nextsi:
adfab836
DS
1090 /*
1091 * if we got here, it's likely that si was almost full before,
1092 * and since scan_swap_map() can drop the si->lock, multiple
1093 * callers probably all tried to get a page from the same si
18ab4d4c
DS
1094 * and it filled up before we could get one; or, the si filled
1095 * up between us dropping swap_avail_lock and taking si->lock.
1096 * Since we dropped the swap_avail_lock, the swap_avail_head
1097 * list may have been modified; so if next is still in the
36005bae
TC
1098 * swap_avail_head list then try it, otherwise start over
1099 * if we have not gotten any slots.
adfab836 1100 */
a2468cc9 1101 if (plist_node_empty(&next->avail_lists[node]))
18ab4d4c 1102 goto start_over;
1da177e4 1103 }
fb4f88dc 1104
18ab4d4c
DS
1105 spin_unlock(&swap_avail_lock);
1106
36005bae
TC
1107check_out:
1108 if (n_ret < n_goal)
5d5e8f19 1109 atomic_long_add((long)(n_goal - n_ret) * size,
38d8b4e6 1110 &nr_swap_pages);
fb4f88dc 1111noswap:
36005bae
TC
1112 return n_ret;
1113}
1114
2de1a7e4 1115/* The only caller of this function is now suspend routine */
910321ea
HD
1116swp_entry_t get_swap_page_of_type(int type)
1117{
c10d38cc 1118 struct swap_info_struct *si = swap_type_to_swap_info(type);
910321ea
HD
1119 pgoff_t offset;
1120
c10d38cc
DJ
1121 if (!si)
1122 goto fail;
1123
ec8acf20 1124 spin_lock(&si->lock);
c10d38cc 1125 if (si->flags & SWP_WRITEOK) {
ec8acf20 1126 atomic_long_dec(&nr_swap_pages);
910321ea
HD
1127 /* This is called for allocating swap entry, not cache */
1128 offset = scan_swap_map(si, 1);
1129 if (offset) {
ec8acf20 1130 spin_unlock(&si->lock);
910321ea
HD
1131 return swp_entry(type, offset);
1132 }
ec8acf20 1133 atomic_long_inc(&nr_swap_pages);
910321ea 1134 }
ec8acf20 1135 spin_unlock(&si->lock);
c10d38cc 1136fail:
910321ea
HD
1137 return (swp_entry_t) {0};
1138}
1139
e8c26ab6 1140static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1da177e4 1141{
73c34b6a 1142 struct swap_info_struct *p;
eb085574 1143 unsigned long offset;
1da177e4
LT
1144
1145 if (!entry.val)
1146 goto out;
eb085574 1147 p = swp_swap_info(entry);
c10d38cc 1148 if (!p)
1da177e4 1149 goto bad_nofile;
1da177e4
LT
1150 if (!(p->flags & SWP_USED))
1151 goto bad_device;
1152 offset = swp_offset(entry);
1153 if (offset >= p->max)
1154 goto bad_offset;
1da177e4
LT
1155 return p;
1156
1da177e4 1157bad_offset:
6a991fc7 1158 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
1159 goto out;
1160bad_device:
6a991fc7 1161 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
1162 goto out;
1163bad_nofile:
6a991fc7 1164 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
1165out:
1166 return NULL;
886bb7e9 1167}
1da177e4 1168
e8c26ab6
TC
1169static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1170{
1171 struct swap_info_struct *p;
1172
1173 p = __swap_info_get(entry);
1174 if (!p)
1175 goto out;
1176 if (!p->swap_map[swp_offset(entry)])
1177 goto bad_free;
1178 return p;
1179
1180bad_free:
1181 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1182 goto out;
1183out:
1184 return NULL;
1185}
1186
235b6217
HY
1187static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1188{
1189 struct swap_info_struct *p;
1190
1191 p = _swap_info_get(entry);
1192 if (p)
1193 spin_lock(&p->lock);
1194 return p;
1195}
1196
7c00bafe
TC
1197static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1198 struct swap_info_struct *q)
1199{
1200 struct swap_info_struct *p;
1201
1202 p = _swap_info_get(entry);
1203
1204 if (p != q) {
1205 if (q != NULL)
1206 spin_unlock(&q->lock);
1207 if (p != NULL)
1208 spin_lock(&p->lock);
1209 }
1210 return p;
1211}
1212
b32d5f32
HY
1213static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1214 unsigned long offset,
1215 unsigned char usage)
1da177e4 1216{
8d69aaee
HD
1217 unsigned char count;
1218 unsigned char has_cache;
235b6217 1219
253d553b 1220 count = p->swap_map[offset];
235b6217 1221
253d553b
HD
1222 has_cache = count & SWAP_HAS_CACHE;
1223 count &= ~SWAP_HAS_CACHE;
355cfa73 1224
253d553b 1225 if (usage == SWAP_HAS_CACHE) {
355cfa73 1226 VM_BUG_ON(!has_cache);
253d553b 1227 has_cache = 0;
aaa46865
HD
1228 } else if (count == SWAP_MAP_SHMEM) {
1229 /*
1230 * Or we could insist on shmem.c using a special
1231 * swap_shmem_free() and free_shmem_swap_and_cache()...
1232 */
1233 count = 0;
570a335b
HD
1234 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1235 if (count == COUNT_CONTINUED) {
1236 if (swap_count_continued(p, offset, count))
1237 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1238 else
1239 count = SWAP_MAP_MAX;
1240 } else
1241 count--;
1242 }
253d553b 1243
253d553b 1244 usage = count | has_cache;
7c00bafe
TC
1245 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1246
b32d5f32
HY
1247 return usage;
1248}
1249
eb085574
HY
1250/*
1251 * Check whether swap entry is valid in the swap device. If so,
1252 * return pointer to swap_info_struct, and keep the swap entry valid
1253 * via preventing the swap device from being swapoff, until
1254 * put_swap_device() is called. Otherwise return NULL.
1255 *
1256 * The entirety of the RCU read critical section must come before the
1257 * return from or after the call to synchronize_rcu() in
1258 * enable_swap_info() or swapoff(). So if "si->flags & SWP_VALID" is
1259 * true, the si->map, si->cluster_info, etc. must be valid in the
1260 * critical section.
1261 *
1262 * Notice that swapoff or swapoff+swapon can still happen before the
1263 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1264 * in put_swap_device() if there isn't any other way to prevent
1265 * swapoff, such as page lock, page table lock, etc. The caller must
1266 * be prepared for that. For example, the following situation is
1267 * possible.
1268 *
1269 * CPU1 CPU2
1270 * do_swap_page()
1271 * ... swapoff+swapon
1272 * __read_swap_cache_async()
1273 * swapcache_prepare()
1274 * __swap_duplicate()
1275 * // check swap_map
1276 * // verify PTE not changed
1277 *
1278 * In __swap_duplicate(), the swap_map need to be checked before
1279 * changing partly because the specified swap entry may be for another
1280 * swap device which has been swapoff. And in do_swap_page(), after
1281 * the page is read from the swap device, the PTE is verified not
1282 * changed with the page table locked to check whether the swap device
1283 * has been swapoff or swapoff+swapon.
1284 */
1285struct swap_info_struct *get_swap_device(swp_entry_t entry)
1286{
1287 struct swap_info_struct *si;
1288 unsigned long offset;
1289
1290 if (!entry.val)
1291 goto out;
1292 si = swp_swap_info(entry);
1293 if (!si)
1294 goto bad_nofile;
1295
1296 rcu_read_lock();
1297 if (!(si->flags & SWP_VALID))
1298 goto unlock_out;
1299 offset = swp_offset(entry);
1300 if (offset >= si->max)
1301 goto unlock_out;
1302
1303 return si;
1304bad_nofile:
1305 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1306out:
1307 return NULL;
1308unlock_out:
1309 rcu_read_unlock();
1310 return NULL;
1311}
1312
b32d5f32 1313static unsigned char __swap_entry_free(struct swap_info_struct *p,
33e16272 1314 swp_entry_t entry)
b32d5f32
HY
1315{
1316 struct swap_cluster_info *ci;
1317 unsigned long offset = swp_offset(entry);
33e16272 1318 unsigned char usage;
b32d5f32
HY
1319
1320 ci = lock_cluster_or_swap_info(p, offset);
33e16272 1321 usage = __swap_entry_free_locked(p, offset, 1);
7c00bafe 1322 unlock_cluster_or_swap_info(p, ci);
10e364da
HY
1323 if (!usage)
1324 free_swap_slot(entry);
7c00bafe
TC
1325
1326 return usage;
1327}
355cfa73 1328
7c00bafe
TC
1329static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1330{
1331 struct swap_cluster_info *ci;
1332 unsigned long offset = swp_offset(entry);
1333 unsigned char count;
1334
1335 ci = lock_cluster(p, offset);
1336 count = p->swap_map[offset];
1337 VM_BUG_ON(count != SWAP_HAS_CACHE);
1338 p->swap_map[offset] = 0;
1339 dec_cluster_info_page(p, p->cluster_info, offset);
235b6217
HY
1340 unlock_cluster(ci);
1341
38d8b4e6
HY
1342 mem_cgroup_uncharge_swap(entry, 1);
1343 swap_range_free(p, offset, 1);
1da177e4
LT
1344}
1345
1346/*
2de1a7e4 1347 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
1348 * is still around or has not been recycled.
1349 */
1350void swap_free(swp_entry_t entry)
1351{
73c34b6a 1352 struct swap_info_struct *p;
1da177e4 1353
235b6217 1354 p = _swap_info_get(entry);
10e364da 1355 if (p)
33e16272 1356 __swap_entry_free(p, entry);
1da177e4
LT
1357}
1358
cb4b86ba
KH
1359/*
1360 * Called after dropping swapcache to decrease refcnt to swap entries.
1361 */
a448f2d0 1362void put_swap_page(struct page *page, swp_entry_t entry)
38d8b4e6
HY
1363{
1364 unsigned long offset = swp_offset(entry);
1365 unsigned long idx = offset / SWAPFILE_CLUSTER;
1366 struct swap_cluster_info *ci;
1367 struct swap_info_struct *si;
1368 unsigned char *map;
a3aea839
HY
1369 unsigned int i, free_entries = 0;
1370 unsigned char val;
a448f2d0 1371 int size = swap_entry_size(hpage_nr_pages(page));
fe5266d5 1372
a3aea839 1373 si = _swap_info_get(entry);
38d8b4e6
HY
1374 if (!si)
1375 return;
1376
c2343d27 1377 ci = lock_cluster_or_swap_info(si, offset);
a448f2d0 1378 if (size == SWAPFILE_CLUSTER) {
a448f2d0
HY
1379 VM_BUG_ON(!cluster_is_huge(ci));
1380 map = si->swap_map + offset;
1381 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1382 val = map[i];
1383 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1384 if (val == SWAP_HAS_CACHE)
1385 free_entries++;
1386 }
a448f2d0 1387 cluster_clear_huge(ci);
a448f2d0 1388 if (free_entries == SWAPFILE_CLUSTER) {
c2343d27 1389 unlock_cluster_or_swap_info(si, ci);
a448f2d0 1390 spin_lock(&si->lock);
a448f2d0
HY
1391 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1392 swap_free_cluster(si, idx);
1393 spin_unlock(&si->lock);
1394 return;
1395 }
1396 }
c2343d27
HY
1397 for (i = 0; i < size; i++, entry.val++) {
1398 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1399 unlock_cluster_or_swap_info(si, ci);
1400 free_swap_slot(entry);
1401 if (i == size - 1)
1402 return;
1403 lock_cluster_or_swap_info(si, offset);
a3aea839
HY
1404 }
1405 }
c2343d27 1406 unlock_cluster_or_swap_info(si, ci);
38d8b4e6 1407}
59807685 1408
fe5266d5 1409#ifdef CONFIG_THP_SWAP
59807685
HY
1410int split_swap_cluster(swp_entry_t entry)
1411{
1412 struct swap_info_struct *si;
1413 struct swap_cluster_info *ci;
1414 unsigned long offset = swp_offset(entry);
1415
1416 si = _swap_info_get(entry);
1417 if (!si)
1418 return -EBUSY;
1419 ci = lock_cluster(si, offset);
1420 cluster_clear_huge(ci);
1421 unlock_cluster(ci);
1422 return 0;
1423}
fe5266d5 1424#endif
38d8b4e6 1425
155b5f88
HY
1426static int swp_entry_cmp(const void *ent1, const void *ent2)
1427{
1428 const swp_entry_t *e1 = ent1, *e2 = ent2;
1429
1430 return (int)swp_type(*e1) - (int)swp_type(*e2);
1431}
1432
7c00bafe
TC
1433void swapcache_free_entries(swp_entry_t *entries, int n)
1434{
1435 struct swap_info_struct *p, *prev;
1436 int i;
1437
1438 if (n <= 0)
1439 return;
1440
1441 prev = NULL;
1442 p = NULL;
155b5f88
HY
1443
1444 /*
1445 * Sort swap entries by swap device, so each lock is only taken once.
1446 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1447 * so low that it isn't necessary to optimize further.
1448 */
1449 if (nr_swapfiles > 1)
1450 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
7c00bafe
TC
1451 for (i = 0; i < n; ++i) {
1452 p = swap_info_get_cont(entries[i], prev);
1453 if (p)
1454 swap_entry_free(p, entries[i]);
7c00bafe
TC
1455 prev = p;
1456 }
235b6217 1457 if (p)
7c00bafe 1458 spin_unlock(&p->lock);
cb4b86ba
KH
1459}
1460
1da177e4 1461/*
c475a8ab 1462 * How many references to page are currently swapped out?
570a335b
HD
1463 * This does not give an exact answer when swap count is continued,
1464 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 1465 */
bde05d1c 1466int page_swapcount(struct page *page)
1da177e4 1467{
c475a8ab
HD
1468 int count = 0;
1469 struct swap_info_struct *p;
235b6217 1470 struct swap_cluster_info *ci;
1da177e4 1471 swp_entry_t entry;
235b6217 1472 unsigned long offset;
1da177e4 1473
4c21e2f2 1474 entry.val = page_private(page);
235b6217 1475 p = _swap_info_get(entry);
1da177e4 1476 if (p) {
235b6217
HY
1477 offset = swp_offset(entry);
1478 ci = lock_cluster_or_swap_info(p, offset);
1479 count = swap_count(p->swap_map[offset]);
1480 unlock_cluster_or_swap_info(p, ci);
1da177e4 1481 }
c475a8ab 1482 return count;
1da177e4
LT
1483}
1484
eb085574 1485int __swap_count(swp_entry_t entry)
aa8d22a1 1486{
eb085574 1487 struct swap_info_struct *si;
aa8d22a1 1488 pgoff_t offset = swp_offset(entry);
eb085574 1489 int count = 0;
aa8d22a1 1490
eb085574
HY
1491 si = get_swap_device(entry);
1492 if (si) {
1493 count = swap_count(si->swap_map[offset]);
1494 put_swap_device(si);
1495 }
1496 return count;
aa8d22a1
MK
1497}
1498
322b8afe
HY
1499static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1500{
1501 int count = 0;
1502 pgoff_t offset = swp_offset(entry);
1503 struct swap_cluster_info *ci;
1504
1505 ci = lock_cluster_or_swap_info(si, offset);
1506 count = swap_count(si->swap_map[offset]);
1507 unlock_cluster_or_swap_info(si, ci);
1508 return count;
1509}
1510
e8c26ab6
TC
1511/*
1512 * How many references to @entry are currently swapped out?
1513 * This does not give an exact answer when swap count is continued,
1514 * but does include the high COUNT_CONTINUED flag to allow for that.
1515 */
1516int __swp_swapcount(swp_entry_t entry)
1517{
1518 int count = 0;
e8c26ab6 1519 struct swap_info_struct *si;
e8c26ab6 1520
eb085574
HY
1521 si = get_swap_device(entry);
1522 if (si) {
322b8afe 1523 count = swap_swapcount(si, entry);
eb085574
HY
1524 put_swap_device(si);
1525 }
e8c26ab6
TC
1526 return count;
1527}
1528
8334b962
MK
1529/*
1530 * How many references to @entry are currently swapped out?
1531 * This considers COUNT_CONTINUED so it returns exact answer.
1532 */
1533int swp_swapcount(swp_entry_t entry)
1534{
1535 int count, tmp_count, n;
1536 struct swap_info_struct *p;
235b6217 1537 struct swap_cluster_info *ci;
8334b962
MK
1538 struct page *page;
1539 pgoff_t offset;
1540 unsigned char *map;
1541
235b6217 1542 p = _swap_info_get(entry);
8334b962
MK
1543 if (!p)
1544 return 0;
1545
235b6217
HY
1546 offset = swp_offset(entry);
1547
1548 ci = lock_cluster_or_swap_info(p, offset);
1549
1550 count = swap_count(p->swap_map[offset]);
8334b962
MK
1551 if (!(count & COUNT_CONTINUED))
1552 goto out;
1553
1554 count &= ~COUNT_CONTINUED;
1555 n = SWAP_MAP_MAX + 1;
1556
8334b962
MK
1557 page = vmalloc_to_page(p->swap_map + offset);
1558 offset &= ~PAGE_MASK;
1559 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1560
1561 do {
a8ae4991 1562 page = list_next_entry(page, lru);
8334b962
MK
1563 map = kmap_atomic(page);
1564 tmp_count = map[offset];
1565 kunmap_atomic(map);
1566
1567 count += (tmp_count & ~COUNT_CONTINUED) * n;
1568 n *= (SWAP_CONT_MAX + 1);
1569 } while (tmp_count & COUNT_CONTINUED);
1570out:
235b6217 1571 unlock_cluster_or_swap_info(p, ci);
8334b962
MK
1572 return count;
1573}
1574
e0709829
HY
1575static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1576 swp_entry_t entry)
1577{
1578 struct swap_cluster_info *ci;
1579 unsigned char *map = si->swap_map;
1580 unsigned long roffset = swp_offset(entry);
1581 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1582 int i;
1583 bool ret = false;
1584
1585 ci = lock_cluster_or_swap_info(si, offset);
1586 if (!ci || !cluster_is_huge(ci)) {
afa4711e 1587 if (swap_count(map[roffset]))
e0709829
HY
1588 ret = true;
1589 goto unlock_out;
1590 }
1591 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
afa4711e 1592 if (swap_count(map[offset + i])) {
e0709829
HY
1593 ret = true;
1594 break;
1595 }
1596 }
1597unlock_out:
1598 unlock_cluster_or_swap_info(si, ci);
1599 return ret;
1600}
1601
1602static bool page_swapped(struct page *page)
1603{
1604 swp_entry_t entry;
1605 struct swap_info_struct *si;
1606
fe5266d5 1607 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
e0709829
HY
1608 return page_swapcount(page) != 0;
1609
1610 page = compound_head(page);
1611 entry.val = page_private(page);
1612 si = _swap_info_get(entry);
1613 if (si)
1614 return swap_page_trans_huge_swapped(si, entry);
1615 return false;
1616}
ba3c4ce6
HY
1617
1618static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1619 int *total_swapcount)
1620{
1621 int i, map_swapcount, _total_mapcount, _total_swapcount;
1622 unsigned long offset = 0;
1623 struct swap_info_struct *si;
1624 struct swap_cluster_info *ci = NULL;
1625 unsigned char *map = NULL;
1626 int mapcount, swapcount = 0;
1627
1628 /* hugetlbfs shouldn't call it */
1629 VM_BUG_ON_PAGE(PageHuge(page), page);
1630
fe5266d5
HY
1631 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1632 mapcount = page_trans_huge_mapcount(page, total_mapcount);
ba3c4ce6
HY
1633 if (PageSwapCache(page))
1634 swapcount = page_swapcount(page);
1635 if (total_swapcount)
1636 *total_swapcount = swapcount;
1637 return mapcount + swapcount;
1638 }
1639
1640 page = compound_head(page);
1641
1642 _total_mapcount = _total_swapcount = map_swapcount = 0;
1643 if (PageSwapCache(page)) {
1644 swp_entry_t entry;
1645
1646 entry.val = page_private(page);
1647 si = _swap_info_get(entry);
1648 if (si) {
1649 map = si->swap_map;
1650 offset = swp_offset(entry);
1651 }
1652 }
1653 if (map)
1654 ci = lock_cluster(si, offset);
1655 for (i = 0; i < HPAGE_PMD_NR; i++) {
1656 mapcount = atomic_read(&page[i]._mapcount) + 1;
1657 _total_mapcount += mapcount;
1658 if (map) {
1659 swapcount = swap_count(map[offset + i]);
1660 _total_swapcount += swapcount;
1661 }
1662 map_swapcount = max(map_swapcount, mapcount + swapcount);
1663 }
1664 unlock_cluster(ci);
1665 if (PageDoubleMap(page)) {
1666 map_swapcount -= 1;
1667 _total_mapcount -= HPAGE_PMD_NR;
1668 }
1669 mapcount = compound_mapcount(page);
1670 map_swapcount += mapcount;
1671 _total_mapcount += mapcount;
1672 if (total_mapcount)
1673 *total_mapcount = _total_mapcount;
1674 if (total_swapcount)
1675 *total_swapcount = _total_swapcount;
1676
1677 return map_swapcount;
1678}
e0709829 1679
1da177e4 1680/*
7b1fe597
HD
1681 * We can write to an anon page without COW if there are no other references
1682 * to it. And as a side-effect, free up its swap: because the old content
1683 * on disk will never be read, and seeking back there to write new content
1684 * later would only waste time away from clustering.
6d0a07ed 1685 *
ba3c4ce6 1686 * NOTE: total_map_swapcount should not be relied upon by the caller if
6d0a07ed
AA
1687 * reuse_swap_page() returns false, but it may be always overwritten
1688 * (see the other implementation for CONFIG_SWAP=n).
1da177e4 1689 */
ba3c4ce6 1690bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1da177e4 1691{
ba3c4ce6 1692 int count, total_mapcount, total_swapcount;
c475a8ab 1693
309381fe 1694 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688 1695 if (unlikely(PageKsm(page)))
6d0a07ed 1696 return false;
ba3c4ce6
HY
1697 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1698 &total_swapcount);
1699 if (total_map_swapcount)
1700 *total_map_swapcount = total_mapcount + total_swapcount;
1701 if (count == 1 && PageSwapCache(page) &&
1702 (likely(!PageTransCompound(page)) ||
1703 /* The remaining swap count will be freed soon */
1704 total_swapcount == page_swapcount(page))) {
f0571429 1705 if (!PageWriteback(page)) {
ba3c4ce6 1706 page = compound_head(page);
7b1fe597
HD
1707 delete_from_swap_cache(page);
1708 SetPageDirty(page);
f0571429
MK
1709 } else {
1710 swp_entry_t entry;
1711 struct swap_info_struct *p;
1712
1713 entry.val = page_private(page);
1714 p = swap_info_get(entry);
1715 if (p->flags & SWP_STABLE_WRITES) {
1716 spin_unlock(&p->lock);
1717 return false;
1718 }
1719 spin_unlock(&p->lock);
7b1fe597
HD
1720 }
1721 }
ba3c4ce6 1722
5ad64688 1723 return count <= 1;
1da177e4
LT
1724}
1725
1726/*
a2c43eed
HD
1727 * If swap is getting full, or if there are no more mappings of this page,
1728 * then try_to_free_swap is called to free its swap space.
1da177e4 1729 */
a2c43eed 1730int try_to_free_swap(struct page *page)
1da177e4 1731{
309381fe 1732 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
1733
1734 if (!PageSwapCache(page))
1735 return 0;
1736 if (PageWriteback(page))
1737 return 0;
e0709829 1738 if (page_swapped(page))
1da177e4
LT
1739 return 0;
1740
b73d7fce
HD
1741 /*
1742 * Once hibernation has begun to create its image of memory,
1743 * there's a danger that one of the calls to try_to_free_swap()
1744 * - most probably a call from __try_to_reclaim_swap() while
1745 * hibernation is allocating its own swap pages for the image,
1746 * but conceivably even a call from memory reclaim - will free
1747 * the swap from a page which has already been recorded in the
1748 * image as a clean swapcache page, and then reuse its swap for
1749 * another page of the image. On waking from hibernation, the
1750 * original page might be freed under memory pressure, then
1751 * later read back in from swap, now with the wrong data.
1752 *
2de1a7e4 1753 * Hibernation suspends storage while it is writing the image
f90ac398 1754 * to disk so check that here.
b73d7fce 1755 */
f90ac398 1756 if (pm_suspended_storage())
b73d7fce
HD
1757 return 0;
1758
e0709829 1759 page = compound_head(page);
a2c43eed
HD
1760 delete_from_swap_cache(page);
1761 SetPageDirty(page);
1762 return 1;
68a22394
RR
1763}
1764
1da177e4
LT
1765/*
1766 * Free the swap entry like above, but also try to
1767 * free the page cache entry if it is the last user.
1768 */
2509ef26 1769int free_swap_and_cache(swp_entry_t entry)
1da177e4 1770{
2509ef26 1771 struct swap_info_struct *p;
7c00bafe 1772 unsigned char count;
1da177e4 1773
a7420aa5 1774 if (non_swap_entry(entry))
2509ef26 1775 return 1;
0697212a 1776
7c00bafe 1777 p = _swap_info_get(entry);
1da177e4 1778 if (p) {
33e16272 1779 count = __swap_entry_free(p, entry);
e0709829 1780 if (count == SWAP_HAS_CACHE &&
bcd49e86
HY
1781 !swap_page_trans_huge_swapped(p, entry))
1782 __try_to_reclaim_swap(p, swp_offset(entry),
1783 TTRS_UNMAPPED | TTRS_FULL);
1da177e4 1784 }
2509ef26 1785 return p != NULL;
1da177e4
LT
1786}
1787
b0cb1a19 1788#ifdef CONFIG_HIBERNATION
f577eb30 1789/*
915bae9e 1790 * Find the swap type that corresponds to given device (if any).
f577eb30 1791 *
915bae9e
RW
1792 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1793 * from 0, in which the swap header is expected to be located.
1794 *
1795 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1796 */
7bf23687 1797int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 1798{
915bae9e 1799 struct block_device *bdev = NULL;
efa90a98 1800 int type;
f577eb30 1801
915bae9e
RW
1802 if (device)
1803 bdev = bdget(device);
1804
f577eb30 1805 spin_lock(&swap_lock);
efa90a98
HD
1806 for (type = 0; type < nr_swapfiles; type++) {
1807 struct swap_info_struct *sis = swap_info[type];
f577eb30 1808
915bae9e 1809 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1810 continue;
b6b5bce3 1811
915bae9e 1812 if (!bdev) {
7bf23687 1813 if (bdev_p)
dddac6a7 1814 *bdev_p = bdgrab(sis->bdev);
7bf23687 1815
6e1819d6 1816 spin_unlock(&swap_lock);
efa90a98 1817 return type;
6e1819d6 1818 }
915bae9e 1819 if (bdev == sis->bdev) {
4efaceb1 1820 struct swap_extent *se = first_se(sis);
915bae9e 1821
915bae9e 1822 if (se->start_block == offset) {
7bf23687 1823 if (bdev_p)
dddac6a7 1824 *bdev_p = bdgrab(sis->bdev);
7bf23687 1825
915bae9e
RW
1826 spin_unlock(&swap_lock);
1827 bdput(bdev);
efa90a98 1828 return type;
915bae9e 1829 }
f577eb30
RW
1830 }
1831 }
1832 spin_unlock(&swap_lock);
915bae9e
RW
1833 if (bdev)
1834 bdput(bdev);
1835
f577eb30
RW
1836 return -ENODEV;
1837}
1838
73c34b6a
HD
1839/*
1840 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1841 * corresponding to given index in swap_info (swap type).
1842 */
1843sector_t swapdev_block(int type, pgoff_t offset)
1844{
1845 struct block_device *bdev;
c10d38cc 1846 struct swap_info_struct *si = swap_type_to_swap_info(type);
73c34b6a 1847
c10d38cc 1848 if (!si || !(si->flags & SWP_WRITEOK))
73c34b6a 1849 return 0;
d4906e1a 1850 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
1851}
1852
f577eb30
RW
1853/*
1854 * Return either the total number of swap pages of given type, or the number
1855 * of free pages of that type (depending on @free)
1856 *
1857 * This is needed for software suspend
1858 */
1859unsigned int count_swap_pages(int type, int free)
1860{
1861 unsigned int n = 0;
1862
efa90a98
HD
1863 spin_lock(&swap_lock);
1864 if ((unsigned int)type < nr_swapfiles) {
1865 struct swap_info_struct *sis = swap_info[type];
1866
ec8acf20 1867 spin_lock(&sis->lock);
efa90a98
HD
1868 if (sis->flags & SWP_WRITEOK) {
1869 n = sis->pages;
f577eb30 1870 if (free)
efa90a98 1871 n -= sis->inuse_pages;
f577eb30 1872 }
ec8acf20 1873 spin_unlock(&sis->lock);
f577eb30 1874 }
efa90a98 1875 spin_unlock(&swap_lock);
f577eb30
RW
1876 return n;
1877}
73c34b6a 1878#endif /* CONFIG_HIBERNATION */
f577eb30 1879
9f8bdb3f 1880static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
179ef71c 1881{
9f8bdb3f 1882 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
179ef71c
CG
1883}
1884
1da177e4 1885/*
72866f6f
HD
1886 * No need to decide whether this PTE shares the swap entry with others,
1887 * just let do_wp_page work it out if a write is requested later - to
1888 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1889 */
044d66c1 1890static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1891 unsigned long addr, swp_entry_t entry, struct page *page)
1892{
9e16b7fb 1893 struct page *swapcache;
044d66c1
HD
1894 spinlock_t *ptl;
1895 pte_t *pte;
1896 int ret = 1;
1897
9e16b7fb
HD
1898 swapcache = page;
1899 page = ksm_might_need_to_copy(page, vma, addr);
1900 if (unlikely(!page))
1901 return -ENOMEM;
1902
044d66c1 1903 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
9f8bdb3f 1904 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
044d66c1
HD
1905 ret = 0;
1906 goto out;
1907 }
8a9f3ccd 1908
b084d435 1909 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1910 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1911 get_page(page);
1912 set_pte_at(vma->vm_mm, addr, pte,
1913 pte_mkold(mk_pte(page, vma->vm_page_prot)));
00501b53 1914 if (page == swapcache) {
be5d0a74 1915 page_add_anon_rmap(page, vma, addr, false);
00501b53 1916 } else { /* ksm created a completely new copy */
be5d0a74 1917 page_add_new_anon_rmap(page, vma, addr, false);
00501b53
JW
1918 lru_cache_add_active_or_unevictable(page, vma);
1919 }
1da177e4
LT
1920 swap_free(entry);
1921 /*
1922 * Move the page to the active list so it is not
1923 * immediately swapped out again after swapon.
1924 */
1925 activate_page(page);
044d66c1
HD
1926out:
1927 pte_unmap_unlock(pte, ptl);
9e16b7fb
HD
1928 if (page != swapcache) {
1929 unlock_page(page);
1930 put_page(page);
1931 }
044d66c1 1932 return ret;
1da177e4
LT
1933}
1934
1935static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
b56a2d8a
VRP
1936 unsigned long addr, unsigned long end,
1937 unsigned int type, bool frontswap,
1938 unsigned long *fs_pages_to_unuse)
1da177e4 1939{
b56a2d8a
VRP
1940 struct page *page;
1941 swp_entry_t entry;
705e87c0 1942 pte_t *pte;
b56a2d8a
VRP
1943 struct swap_info_struct *si;
1944 unsigned long offset;
8a9f3ccd 1945 int ret = 0;
b56a2d8a 1946 volatile unsigned char *swap_map;
1da177e4 1947
b56a2d8a 1948 si = swap_info[type];
044d66c1 1949 pte = pte_offset_map(pmd, addr);
1da177e4 1950 do {
b56a2d8a
VRP
1951 struct vm_fault vmf;
1952
1953 if (!is_swap_pte(*pte))
1954 continue;
1955
1956 entry = pte_to_swp_entry(*pte);
1957 if (swp_type(entry) != type)
1958 continue;
1959
1960 offset = swp_offset(entry);
1961 if (frontswap && !frontswap_test(si, offset))
1962 continue;
1963
1964 pte_unmap(pte);
1965 swap_map = &si->swap_map[offset];
ebc5951e
AR
1966 page = lookup_swap_cache(entry, vma, addr);
1967 if (!page) {
1968 vmf.vma = vma;
1969 vmf.address = addr;
1970 vmf.pmd = pmd;
1971 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1972 &vmf);
1973 }
b56a2d8a
VRP
1974 if (!page) {
1975 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1976 goto try_next;
1977 return -ENOMEM;
1978 }
1979
1980 lock_page(page);
1981 wait_on_page_writeback(page);
1982 ret = unuse_pte(vma, pmd, addr, entry, page);
1983 if (ret < 0) {
1984 unlock_page(page);
1985 put_page(page);
1986 goto out;
1987 }
1988
1989 try_to_free_swap(page);
1990 unlock_page(page);
1991 put_page(page);
1992
1993 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1994 ret = FRONTSWAP_PAGES_UNUSED;
1995 goto out;
1da177e4 1996 }
b56a2d8a
VRP
1997try_next:
1998 pte = pte_offset_map(pmd, addr);
1da177e4 1999 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1 2000 pte_unmap(pte - 1);
b56a2d8a
VRP
2001
2002 ret = 0;
044d66c1 2003out:
8a9f3ccd 2004 return ret;
1da177e4
LT
2005}
2006
2007static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2008 unsigned long addr, unsigned long end,
b56a2d8a
VRP
2009 unsigned int type, bool frontswap,
2010 unsigned long *fs_pages_to_unuse)
1da177e4
LT
2011{
2012 pmd_t *pmd;
2013 unsigned long next;
8a9f3ccd 2014 int ret;
1da177e4
LT
2015
2016 pmd = pmd_offset(pud, addr);
2017 do {
dc644a07 2018 cond_resched();
1da177e4 2019 next = pmd_addr_end(addr, end);
1a5a9906 2020 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 2021 continue;
b56a2d8a
VRP
2022 ret = unuse_pte_range(vma, pmd, addr, next, type,
2023 frontswap, fs_pages_to_unuse);
8a9f3ccd
BS
2024 if (ret)
2025 return ret;
1da177e4
LT
2026 } while (pmd++, addr = next, addr != end);
2027 return 0;
2028}
2029
c2febafc 2030static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 2031 unsigned long addr, unsigned long end,
b56a2d8a
VRP
2032 unsigned int type, bool frontswap,
2033 unsigned long *fs_pages_to_unuse)
1da177e4
LT
2034{
2035 pud_t *pud;
2036 unsigned long next;
8a9f3ccd 2037 int ret;
1da177e4 2038
c2febafc 2039 pud = pud_offset(p4d, addr);
1da177e4
LT
2040 do {
2041 next = pud_addr_end(addr, end);
2042 if (pud_none_or_clear_bad(pud))
2043 continue;
b56a2d8a
VRP
2044 ret = unuse_pmd_range(vma, pud, addr, next, type,
2045 frontswap, fs_pages_to_unuse);
8a9f3ccd
BS
2046 if (ret)
2047 return ret;
1da177e4
LT
2048 } while (pud++, addr = next, addr != end);
2049 return 0;
2050}
2051
c2febafc
KS
2052static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2053 unsigned long addr, unsigned long end,
b56a2d8a
VRP
2054 unsigned int type, bool frontswap,
2055 unsigned long *fs_pages_to_unuse)
c2febafc
KS
2056{
2057 p4d_t *p4d;
2058 unsigned long next;
2059 int ret;
2060
2061 p4d = p4d_offset(pgd, addr);
2062 do {
2063 next = p4d_addr_end(addr, end);
2064 if (p4d_none_or_clear_bad(p4d))
2065 continue;
b56a2d8a
VRP
2066 ret = unuse_pud_range(vma, p4d, addr, next, type,
2067 frontswap, fs_pages_to_unuse);
c2febafc
KS
2068 if (ret)
2069 return ret;
2070 } while (p4d++, addr = next, addr != end);
2071 return 0;
2072}
2073
b56a2d8a
VRP
2074static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2075 bool frontswap, unsigned long *fs_pages_to_unuse)
1da177e4
LT
2076{
2077 pgd_t *pgd;
2078 unsigned long addr, end, next;
8a9f3ccd 2079 int ret;
1da177e4 2080
b56a2d8a
VRP
2081 addr = vma->vm_start;
2082 end = vma->vm_end;
1da177e4
LT
2083
2084 pgd = pgd_offset(vma->vm_mm, addr);
2085 do {
2086 next = pgd_addr_end(addr, end);
2087 if (pgd_none_or_clear_bad(pgd))
2088 continue;
b56a2d8a
VRP
2089 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2090 frontswap, fs_pages_to_unuse);
8a9f3ccd
BS
2091 if (ret)
2092 return ret;
1da177e4
LT
2093 } while (pgd++, addr = next, addr != end);
2094 return 0;
2095}
2096
b56a2d8a
VRP
2097static int unuse_mm(struct mm_struct *mm, unsigned int type,
2098 bool frontswap, unsigned long *fs_pages_to_unuse)
1da177e4
LT
2099{
2100 struct vm_area_struct *vma;
8a9f3ccd 2101 int ret = 0;
1da177e4 2102
d8ed45c5 2103 mmap_read_lock(mm);
1da177e4 2104 for (vma = mm->mmap; vma; vma = vma->vm_next) {
b56a2d8a
VRP
2105 if (vma->anon_vma) {
2106 ret = unuse_vma(vma, type, frontswap,
2107 fs_pages_to_unuse);
2108 if (ret)
2109 break;
2110 }
dc644a07 2111 cond_resched();
1da177e4 2112 }
d8ed45c5 2113 mmap_read_unlock(mm);
b56a2d8a 2114 return ret;
1da177e4
LT
2115}
2116
2117/*
38b5faf4 2118 * Scan swap_map (or frontswap_map if frontswap parameter is true)
b56a2d8a
VRP
2119 * from current position to next entry still in use. Return 0
2120 * if there are no inuse entries after prev till end of the map.
1da177e4 2121 */
6eb396dc 2122static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 2123 unsigned int prev, bool frontswap)
1da177e4 2124{
b56a2d8a 2125 unsigned int i;
8d69aaee 2126 unsigned char count;
1da177e4
LT
2127
2128 /*
5d337b91 2129 * No need for swap_lock here: we're just looking
1da177e4
LT
2130 * for whether an entry is in use, not modifying it; false
2131 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 2132 * allocations from this area (while holding swap_lock).
1da177e4 2133 */
b56a2d8a 2134 for (i = prev + 1; i < si->max; i++) {
4db0c3c2 2135 count = READ_ONCE(si->swap_map[i]);
355cfa73 2136 if (count && swap_count(count) != SWAP_MAP_BAD)
dc644a07
HD
2137 if (!frontswap || frontswap_test(si, i))
2138 break;
2139 if ((i % LATENCY_LIMIT) == 0)
2140 cond_resched();
1da177e4 2141 }
b56a2d8a
VRP
2142
2143 if (i == si->max)
2144 i = 0;
2145
1da177e4
LT
2146 return i;
2147}
2148
2149/*
b56a2d8a 2150 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
38b5faf4 2151 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 2152 */
38b5faf4
DM
2153int try_to_unuse(unsigned int type, bool frontswap,
2154 unsigned long pages_to_unuse)
1da177e4 2155{
b56a2d8a
VRP
2156 struct mm_struct *prev_mm;
2157 struct mm_struct *mm;
2158 struct list_head *p;
2159 int retval = 0;
efa90a98 2160 struct swap_info_struct *si = swap_info[type];
1da177e4
LT
2161 struct page *page;
2162 swp_entry_t entry;
b56a2d8a 2163 unsigned int i;
1da177e4 2164
21820948 2165 if (!READ_ONCE(si->inuse_pages))
b56a2d8a 2166 return 0;
1da177e4 2167
b56a2d8a
VRP
2168 if (!frontswap)
2169 pages_to_unuse = 0;
2170
2171retry:
2172 retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2173 if (retval)
2174 goto out;
2175
2176 prev_mm = &init_mm;
2177 mmget(prev_mm);
2178
2179 spin_lock(&mmlist_lock);
2180 p = &init_mm.mmlist;
21820948 2181 while (READ_ONCE(si->inuse_pages) &&
64165b1a
HD
2182 !signal_pending(current) &&
2183 (p = p->next) != &init_mm.mmlist) {
1da177e4 2184
b56a2d8a
VRP
2185 mm = list_entry(p, struct mm_struct, mmlist);
2186 if (!mmget_not_zero(mm))
2187 continue;
2188 spin_unlock(&mmlist_lock);
2189 mmput(prev_mm);
2190 prev_mm = mm;
2191 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
1da177e4 2192
b56a2d8a
VRP
2193 if (retval) {
2194 mmput(prev_mm);
2195 goto out;
1da177e4
LT
2196 }
2197
2198 /*
b56a2d8a
VRP
2199 * Make sure that we aren't completely killing
2200 * interactive performance.
1da177e4 2201 */
b56a2d8a
VRP
2202 cond_resched();
2203 spin_lock(&mmlist_lock);
2204 }
2205 spin_unlock(&mmlist_lock);
1da177e4 2206
b56a2d8a 2207 mmput(prev_mm);
1da177e4 2208
b56a2d8a 2209 i = 0;
21820948 2210 while (READ_ONCE(si->inuse_pages) &&
64165b1a
HD
2211 !signal_pending(current) &&
2212 (i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4 2213
b56a2d8a
VRP
2214 entry = swp_entry(type, i);
2215 page = find_get_page(swap_address_space(entry), i);
2216 if (!page)
2217 continue;
68bdc8d6
HD
2218
2219 /*
2220 * It is conceivable that a racing task removed this page from
b56a2d8a
VRP
2221 * swap cache just before we acquired the page lock. The page
2222 * might even be back in swap cache on another swap area. But
2223 * that is okay, try_to_free_swap() only removes stale pages.
1da177e4 2224 */
b56a2d8a
VRP
2225 lock_page(page);
2226 wait_on_page_writeback(page);
2227 try_to_free_swap(page);
1da177e4 2228 unlock_page(page);
09cbfeaf 2229 put_page(page);
1da177e4
LT
2230
2231 /*
b56a2d8a
VRP
2232 * For frontswap, we just need to unuse pages_to_unuse, if
2233 * it was specified. Need not check frontswap again here as
2234 * we already zeroed out pages_to_unuse if not frontswap.
1da177e4 2235 */
b56a2d8a
VRP
2236 if (pages_to_unuse && --pages_to_unuse == 0)
2237 goto out;
1da177e4
LT
2238 }
2239
b56a2d8a
VRP
2240 /*
2241 * Lets check again to see if there are still swap entries in the map.
2242 * If yes, we would need to do retry the unuse logic again.
2243 * Under global memory pressure, swap entries can be reinserted back
2244 * into process space after the mmlist loop above passes over them.
dd862deb 2245 *
af53d3e9
HD
2246 * Limit the number of retries? No: when mmget_not_zero() above fails,
2247 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2248 * at its own independent pace; and even shmem_writepage() could have
2249 * been preempted after get_swap_page(), temporarily hiding that swap.
2250 * It's easy and robust (though cpu-intensive) just to keep retrying.
b56a2d8a 2251 */
21820948 2252 if (READ_ONCE(si->inuse_pages)) {
64165b1a
HD
2253 if (!signal_pending(current))
2254 goto retry;
2255 retval = -EINTR;
2256 }
b56a2d8a
VRP
2257out:
2258 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
1da177e4
LT
2259}
2260
2261/*
5d337b91
HD
2262 * After a successful try_to_unuse, if no swap is now in use, we know
2263 * we can empty the mmlist. swap_lock must be held on entry and exit.
2264 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
2265 * added to the mmlist just after page_duplicate - before would be racy.
2266 */
2267static void drain_mmlist(void)
2268{
2269 struct list_head *p, *next;
efa90a98 2270 unsigned int type;
1da177e4 2271
efa90a98
HD
2272 for (type = 0; type < nr_swapfiles; type++)
2273 if (swap_info[type]->inuse_pages)
1da177e4
LT
2274 return;
2275 spin_lock(&mmlist_lock);
2276 list_for_each_safe(p, next, &init_mm.mmlist)
2277 list_del_init(p);
2278 spin_unlock(&mmlist_lock);
2279}
2280
2281/*
2282 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
2283 * corresponds to page offset for the specified swap entry.
2284 * Note that the type of this function is sector_t, but it returns page offset
2285 * into the bdev, not sector offset.
1da177e4 2286 */
d4906e1a 2287static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 2288{
f29ad6a9 2289 struct swap_info_struct *sis;
f29ad6a9
HD
2290 struct swap_extent *se;
2291 pgoff_t offset;
2292
c10d38cc 2293 sis = swp_swap_info(entry);
f29ad6a9
HD
2294 *bdev = sis->bdev;
2295
2296 offset = swp_offset(entry);
4efaceb1
AL
2297 se = offset_to_swap_extent(sis, offset);
2298 return se->start_block + (offset - se->start_page);
1da177e4
LT
2299}
2300
d4906e1a
LS
2301/*
2302 * Returns the page offset into bdev for the specified page's swap entry.
2303 */
2304sector_t map_swap_page(struct page *page, struct block_device **bdev)
2305{
2306 swp_entry_t entry;
2307 entry.val = page_private(page);
2308 return map_swap_entry(entry, bdev);
2309}
2310
1da177e4
LT
2311/*
2312 * Free all of a swapdev's extent information
2313 */
2314static void destroy_swap_extents(struct swap_info_struct *sis)
2315{
4efaceb1
AL
2316 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2317 struct rb_node *rb = sis->swap_extent_root.rb_node;
2318 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
1da177e4 2319
4efaceb1 2320 rb_erase(rb, &sis->swap_extent_root);
1da177e4
LT
2321 kfree(se);
2322 }
62c230bc 2323
bc4ae27d 2324 if (sis->flags & SWP_ACTIVATED) {
62c230bc
MG
2325 struct file *swap_file = sis->swap_file;
2326 struct address_space *mapping = swap_file->f_mapping;
2327
bc4ae27d
OS
2328 sis->flags &= ~SWP_ACTIVATED;
2329 if (mapping->a_ops->swap_deactivate)
2330 mapping->a_ops->swap_deactivate(swap_file);
62c230bc 2331 }
1da177e4
LT
2332}
2333
2334/*
2335 * Add a block range (and the corresponding page range) into this swapdev's
4efaceb1 2336 * extent tree.
1da177e4 2337 *
11d31886 2338 * This function rather assumes that it is called in ascending page order.
1da177e4 2339 */
a509bc1a 2340int
1da177e4
LT
2341add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2342 unsigned long nr_pages, sector_t start_block)
2343{
4efaceb1 2344 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
1da177e4
LT
2345 struct swap_extent *se;
2346 struct swap_extent *new_se;
4efaceb1
AL
2347
2348 /*
2349 * place the new node at the right most since the
2350 * function is called in ascending page order.
2351 */
2352 while (*link) {
2353 parent = *link;
2354 link = &parent->rb_right;
2355 }
2356
2357 if (parent) {
2358 se = rb_entry(parent, struct swap_extent, rb_node);
11d31886
HD
2359 BUG_ON(se->start_page + se->nr_pages != start_page);
2360 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
2361 /* Merge it */
2362 se->nr_pages += nr_pages;
2363 return 0;
2364 }
1da177e4
LT
2365 }
2366
4efaceb1 2367 /* No merge, insert a new extent. */
1da177e4
LT
2368 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2369 if (new_se == NULL)
2370 return -ENOMEM;
2371 new_se->start_page = start_page;
2372 new_se->nr_pages = nr_pages;
2373 new_se->start_block = start_block;
2374
4efaceb1
AL
2375 rb_link_node(&new_se->rb_node, parent, link);
2376 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
53092a74 2377 return 1;
1da177e4 2378}
aa8aa8a3 2379EXPORT_SYMBOL_GPL(add_swap_extent);
1da177e4
LT
2380
2381/*
2382 * A `swap extent' is a simple thing which maps a contiguous range of pages
2383 * onto a contiguous range of disk blocks. An ordered list of swap extents
2384 * is built at swapon time and is then used at swap_writepage/swap_readpage
2385 * time for locating where on disk a page belongs.
2386 *
2387 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2388 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2389 * swap files identically.
2390 *
2391 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2392 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2393 * swapfiles are handled *identically* after swapon time.
2394 *
2395 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2396 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2397 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2398 * requirements, they are simply tossed out - we will never use those blocks
2399 * for swapping.
2400 *
1638045c
DW
2401 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2402 * prevents users from writing to the swap device, which will corrupt memory.
1da177e4
LT
2403 *
2404 * The amount of disk space which a single swap extent represents varies.
2405 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2406 * extents in the list. To avoid much list walking, we cache the previous
2407 * search location in `curr_swap_extent', and start new searches from there.
2408 * This is extremely effective. The average number of iterations in
2409 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2410 */
53092a74 2411static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 2412{
62c230bc
MG
2413 struct file *swap_file = sis->swap_file;
2414 struct address_space *mapping = swap_file->f_mapping;
2415 struct inode *inode = mapping->host;
1da177e4
LT
2416 int ret;
2417
1da177e4
LT
2418 if (S_ISBLK(inode->i_mode)) {
2419 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 2420 *span = sis->pages;
a509bc1a 2421 return ret;
1da177e4
LT
2422 }
2423
62c230bc 2424 if (mapping->a_ops->swap_activate) {
a509bc1a 2425 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
bc4ae27d
OS
2426 if (ret >= 0)
2427 sis->flags |= SWP_ACTIVATED;
62c230bc 2428 if (!ret) {
bc4ae27d 2429 sis->flags |= SWP_FS;
62c230bc
MG
2430 ret = add_swap_extent(sis, 0, sis->max, 0);
2431 *span = sis->pages;
2432 }
a509bc1a 2433 return ret;
62c230bc
MG
2434 }
2435
a509bc1a 2436 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
2437}
2438
a2468cc9
AL
2439static int swap_node(struct swap_info_struct *p)
2440{
2441 struct block_device *bdev;
2442
2443 if (p->bdev)
2444 bdev = p->bdev;
2445 else
2446 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2447
2448 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2449}
2450
eb085574
HY
2451static void setup_swap_info(struct swap_info_struct *p, int prio,
2452 unsigned char *swap_map,
2453 struct swap_cluster_info *cluster_info)
40531542 2454{
a2468cc9
AL
2455 int i;
2456
40531542
CEB
2457 if (prio >= 0)
2458 p->prio = prio;
2459 else
2460 p->prio = --least_priority;
18ab4d4c
DS
2461 /*
2462 * the plist prio is negated because plist ordering is
2463 * low-to-high, while swap ordering is high-to-low
2464 */
2465 p->list.prio = -p->prio;
a2468cc9
AL
2466 for_each_node(i) {
2467 if (p->prio >= 0)
2468 p->avail_lists[i].prio = -p->prio;
2469 else {
2470 if (swap_node(p) == i)
2471 p->avail_lists[i].prio = 1;
2472 else
2473 p->avail_lists[i].prio = -p->prio;
2474 }
2475 }
40531542 2476 p->swap_map = swap_map;
2a8f9449 2477 p->cluster_info = cluster_info;
eb085574
HY
2478}
2479
2480static void _enable_swap_info(struct swap_info_struct *p)
2481{
2482 p->flags |= SWP_WRITEOK | SWP_VALID;
ec8acf20 2483 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
2484 total_swap_pages += p->pages;
2485
adfab836 2486 assert_spin_locked(&swap_lock);
adfab836 2487 /*
18ab4d4c
DS
2488 * both lists are plists, and thus priority ordered.
2489 * swap_active_head needs to be priority ordered for swapoff(),
2490 * which on removal of any swap_info_struct with an auto-assigned
2491 * (i.e. negative) priority increments the auto-assigned priority
2492 * of any lower-priority swap_info_structs.
2493 * swap_avail_head needs to be priority ordered for get_swap_page(),
2494 * which allocates swap pages from the highest available priority
2495 * swap_info_struct.
adfab836 2496 */
18ab4d4c 2497 plist_add(&p->list, &swap_active_head);
a2468cc9 2498 add_to_avail_list(p);
cf0cac0a
CEB
2499}
2500
2501static void enable_swap_info(struct swap_info_struct *p, int prio,
2502 unsigned char *swap_map,
2a8f9449 2503 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
2504 unsigned long *frontswap_map)
2505{
4f89849d 2506 frontswap_init(p->type, frontswap_map);
cf0cac0a 2507 spin_lock(&swap_lock);
ec8acf20 2508 spin_lock(&p->lock);
eb085574
HY
2509 setup_swap_info(p, prio, swap_map, cluster_info);
2510 spin_unlock(&p->lock);
2511 spin_unlock(&swap_lock);
2512 /*
2513 * Guarantee swap_map, cluster_info, etc. fields are valid
2514 * between get/put_swap_device() if SWP_VALID bit is set
2515 */
2516 synchronize_rcu();
2517 spin_lock(&swap_lock);
2518 spin_lock(&p->lock);
2519 _enable_swap_info(p);
ec8acf20 2520 spin_unlock(&p->lock);
cf0cac0a
CEB
2521 spin_unlock(&swap_lock);
2522}
2523
2524static void reinsert_swap_info(struct swap_info_struct *p)
2525{
2526 spin_lock(&swap_lock);
ec8acf20 2527 spin_lock(&p->lock);
eb085574
HY
2528 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2529 _enable_swap_info(p);
ec8acf20 2530 spin_unlock(&p->lock);
40531542
CEB
2531 spin_unlock(&swap_lock);
2532}
2533
67afa38e
TC
2534bool has_usable_swap(void)
2535{
2536 bool ret = true;
2537
2538 spin_lock(&swap_lock);
2539 if (plist_head_empty(&swap_active_head))
2540 ret = false;
2541 spin_unlock(&swap_lock);
2542 return ret;
2543}
2544
c4ea37c2 2545SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 2546{
73c34b6a 2547 struct swap_info_struct *p = NULL;
8d69aaee 2548 unsigned char *swap_map;
2a8f9449 2549 struct swap_cluster_info *cluster_info;
4f89849d 2550 unsigned long *frontswap_map;
1da177e4
LT
2551 struct file *swap_file, *victim;
2552 struct address_space *mapping;
2553 struct inode *inode;
91a27b2a 2554 struct filename *pathname;
adfab836 2555 int err, found = 0;
5b808a23 2556 unsigned int old_block_size;
886bb7e9 2557
1da177e4
LT
2558 if (!capable(CAP_SYS_ADMIN))
2559 return -EPERM;
2560
191c5424
AV
2561 BUG_ON(!current->mm);
2562
1da177e4 2563 pathname = getname(specialfile);
1da177e4 2564 if (IS_ERR(pathname))
f58b59c1 2565 return PTR_ERR(pathname);
1da177e4 2566
669abf4e 2567 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
2568 err = PTR_ERR(victim);
2569 if (IS_ERR(victim))
2570 goto out;
2571
2572 mapping = victim->f_mapping;
5d337b91 2573 spin_lock(&swap_lock);
18ab4d4c 2574 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 2575 if (p->flags & SWP_WRITEOK) {
adfab836
DS
2576 if (p->swap_file->f_mapping == mapping) {
2577 found = 1;
1da177e4 2578 break;
adfab836 2579 }
1da177e4 2580 }
1da177e4 2581 }
adfab836 2582 if (!found) {
1da177e4 2583 err = -EINVAL;
5d337b91 2584 spin_unlock(&swap_lock);
1da177e4
LT
2585 goto out_dput;
2586 }
191c5424 2587 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
2588 vm_unacct_memory(p->pages);
2589 else {
2590 err = -ENOMEM;
5d337b91 2591 spin_unlock(&swap_lock);
1da177e4
LT
2592 goto out_dput;
2593 }
a2468cc9 2594 del_from_avail_list(p);
ec8acf20 2595 spin_lock(&p->lock);
78ecba08 2596 if (p->prio < 0) {
adfab836 2597 struct swap_info_struct *si = p;
a2468cc9 2598 int nid;
adfab836 2599
18ab4d4c 2600 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 2601 si->prio++;
18ab4d4c 2602 si->list.prio--;
a2468cc9
AL
2603 for_each_node(nid) {
2604 if (si->avail_lists[nid].prio != 1)
2605 si->avail_lists[nid].prio--;
2606 }
adfab836 2607 }
78ecba08
HD
2608 least_priority++;
2609 }
18ab4d4c 2610 plist_del(&p->list, &swap_active_head);
ec8acf20 2611 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
2612 total_swap_pages -= p->pages;
2613 p->flags &= ~SWP_WRITEOK;
ec8acf20 2614 spin_unlock(&p->lock);
5d337b91 2615 spin_unlock(&swap_lock);
fb4f88dc 2616
039939a6
TC
2617 disable_swap_slots_cache_lock();
2618
e1e12d2f 2619 set_current_oom_origin();
adfab836 2620 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
e1e12d2f 2621 clear_current_oom_origin();
1da177e4 2622
1da177e4
LT
2623 if (err) {
2624 /* re-insert swap space back into swap_list */
cf0cac0a 2625 reinsert_swap_info(p);
039939a6 2626 reenable_swap_slots_cache_unlock();
1da177e4
LT
2627 goto out_dput;
2628 }
52b7efdb 2629
039939a6
TC
2630 reenable_swap_slots_cache_unlock();
2631
eb085574
HY
2632 spin_lock(&swap_lock);
2633 spin_lock(&p->lock);
2634 p->flags &= ~SWP_VALID; /* mark swap device as invalid */
2635 spin_unlock(&p->lock);
2636 spin_unlock(&swap_lock);
2637 /*
2638 * wait for swap operations protected by get/put_swap_device()
2639 * to complete
2640 */
2641 synchronize_rcu();
2642
815c2c54
SL
2643 flush_work(&p->discard_work);
2644
5d337b91 2645 destroy_swap_extents(p);
570a335b
HD
2646 if (p->flags & SWP_CONTINUED)
2647 free_swap_count_continuations(p);
2648
81a0298b
HY
2649 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2650 atomic_dec(&nr_rotate_swap);
2651
fc0abb14 2652 mutex_lock(&swapon_mutex);
5d337b91 2653 spin_lock(&swap_lock);
ec8acf20 2654 spin_lock(&p->lock);
5d337b91
HD
2655 drain_mmlist();
2656
52b7efdb 2657 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
2658 p->highest_bit = 0; /* cuts scans short */
2659 while (p->flags >= SWP_SCANNING) {
ec8acf20 2660 spin_unlock(&p->lock);
5d337b91 2661 spin_unlock(&swap_lock);
13e4b57f 2662 schedule_timeout_uninterruptible(1);
5d337b91 2663 spin_lock(&swap_lock);
ec8acf20 2664 spin_lock(&p->lock);
52b7efdb 2665 }
52b7efdb 2666
1da177e4 2667 swap_file = p->swap_file;
5b808a23 2668 old_block_size = p->old_block_size;
1da177e4
LT
2669 p->swap_file = NULL;
2670 p->max = 0;
2671 swap_map = p->swap_map;
2672 p->swap_map = NULL;
2a8f9449
SL
2673 cluster_info = p->cluster_info;
2674 p->cluster_info = NULL;
4f89849d 2675 frontswap_map = frontswap_map_get(p);
ec8acf20 2676 spin_unlock(&p->lock);
5d337b91 2677 spin_unlock(&swap_lock);
adfab836 2678 frontswap_invalidate_area(p->type);
58e97ba6 2679 frontswap_map_set(p, NULL);
fc0abb14 2680 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
2681 free_percpu(p->percpu_cluster);
2682 p->percpu_cluster = NULL;
49070588
HY
2683 free_percpu(p->cluster_next_cpu);
2684 p->cluster_next_cpu = NULL;
1da177e4 2685 vfree(swap_map);
54f180d3
HY
2686 kvfree(cluster_info);
2687 kvfree(frontswap_map);
2de1a7e4 2688 /* Destroy swap account information */
adfab836 2689 swap_cgroup_swapoff(p->type);
4b3ef9da 2690 exit_swap_address_space(p->type);
27a7faa0 2691
1da177e4
LT
2692 inode = mapping->host;
2693 if (S_ISBLK(inode->i_mode)) {
2694 struct block_device *bdev = I_BDEV(inode);
1638045c 2695
5b808a23 2696 set_blocksize(bdev, old_block_size);
e525fd89 2697 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2698 }
1638045c
DW
2699
2700 inode_lock(inode);
2701 inode->i_flags &= ~S_SWAPFILE;
2702 inode_unlock(inode);
1da177e4 2703 filp_close(swap_file, NULL);
f893ab41
WY
2704
2705 /*
2706 * Clear the SWP_USED flag after all resources are freed so that swapon
2707 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2708 * not hold p->lock after we cleared its SWP_WRITEOK.
2709 */
2710 spin_lock(&swap_lock);
2711 p->flags = 0;
2712 spin_unlock(&swap_lock);
2713
1da177e4 2714 err = 0;
66d7dd51
KS
2715 atomic_inc(&proc_poll_event);
2716 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
2717
2718out_dput:
2719 filp_close(victim, NULL);
2720out:
f58b59c1 2721 putname(pathname);
1da177e4
LT
2722 return err;
2723}
2724
2725#ifdef CONFIG_PROC_FS
9dd95748 2726static __poll_t swaps_poll(struct file *file, poll_table *wait)
66d7dd51 2727{
f1514638 2728 struct seq_file *seq = file->private_data;
66d7dd51
KS
2729
2730 poll_wait(file, &proc_poll_wait, wait);
2731
f1514638
KS
2732 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2733 seq->poll_event = atomic_read(&proc_poll_event);
a9a08845 2734 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
66d7dd51
KS
2735 }
2736
a9a08845 2737 return EPOLLIN | EPOLLRDNORM;
66d7dd51
KS
2738}
2739
1da177e4
LT
2740/* iterator */
2741static void *swap_start(struct seq_file *swap, loff_t *pos)
2742{
efa90a98
HD
2743 struct swap_info_struct *si;
2744 int type;
1da177e4
LT
2745 loff_t l = *pos;
2746
fc0abb14 2747 mutex_lock(&swapon_mutex);
1da177e4 2748
881e4aab
SS
2749 if (!l)
2750 return SEQ_START_TOKEN;
2751
c10d38cc 2752 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
efa90a98 2753 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2754 continue;
881e4aab 2755 if (!--l)
efa90a98 2756 return si;
1da177e4
LT
2757 }
2758
2759 return NULL;
2760}
2761
2762static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2763{
efa90a98
HD
2764 struct swap_info_struct *si = v;
2765 int type;
1da177e4 2766
881e4aab 2767 if (v == SEQ_START_TOKEN)
efa90a98
HD
2768 type = 0;
2769 else
2770 type = si->type + 1;
881e4aab 2771
10c8d69f 2772 ++(*pos);
c10d38cc 2773 for (; (si = swap_type_to_swap_info(type)); type++) {
efa90a98 2774 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2775 continue;
efa90a98 2776 return si;
1da177e4
LT
2777 }
2778
2779 return NULL;
2780}
2781
2782static void swap_stop(struct seq_file *swap, void *v)
2783{
fc0abb14 2784 mutex_unlock(&swapon_mutex);
1da177e4
LT
2785}
2786
2787static int swap_show(struct seq_file *swap, void *v)
2788{
efa90a98 2789 struct swap_info_struct *si = v;
1da177e4
LT
2790 struct file *file;
2791 int len;
6f793940 2792 unsigned int bytes, inuse;
1da177e4 2793
efa90a98 2794 if (si == SEQ_START_TOKEN) {
6f793940 2795 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
881e4aab
SS
2796 return 0;
2797 }
1da177e4 2798
6f793940
RD
2799 bytes = si->pages << (PAGE_SHIFT - 10);
2800 inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2801
efa90a98 2802 file = si->swap_file;
2726d566 2803 len = seq_file_path(swap, file, " \t\n\\");
6f793940 2804 seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
886bb7e9 2805 len < 40 ? 40 - len : 1, " ",
496ad9aa 2806 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2807 "partition" : "file\t",
6f793940
RD
2808 bytes, bytes < 10000000 ? "\t" : "",
2809 inuse, inuse < 10000000 ? "\t" : "",
efa90a98 2810 si->prio);
1da177e4
LT
2811 return 0;
2812}
2813
15ad7cdc 2814static const struct seq_operations swaps_op = {
1da177e4
LT
2815 .start = swap_start,
2816 .next = swap_next,
2817 .stop = swap_stop,
2818 .show = swap_show
2819};
2820
2821static int swaps_open(struct inode *inode, struct file *file)
2822{
f1514638 2823 struct seq_file *seq;
66d7dd51
KS
2824 int ret;
2825
66d7dd51 2826 ret = seq_open(file, &swaps_op);
f1514638 2827 if (ret)
66d7dd51 2828 return ret;
66d7dd51 2829
f1514638
KS
2830 seq = file->private_data;
2831 seq->poll_event = atomic_read(&proc_poll_event);
2832 return 0;
1da177e4
LT
2833}
2834
97a32539 2835static const struct proc_ops swaps_proc_ops = {
d919b33d 2836 .proc_flags = PROC_ENTRY_PERMANENT,
97a32539
AD
2837 .proc_open = swaps_open,
2838 .proc_read = seq_read,
2839 .proc_lseek = seq_lseek,
2840 .proc_release = seq_release,
2841 .proc_poll = swaps_poll,
1da177e4
LT
2842};
2843
2844static int __init procswaps_init(void)
2845{
97a32539 2846 proc_create("swaps", 0, NULL, &swaps_proc_ops);
1da177e4
LT
2847 return 0;
2848}
2849__initcall(procswaps_init);
2850#endif /* CONFIG_PROC_FS */
2851
1796316a
JB
2852#ifdef MAX_SWAPFILES_CHECK
2853static int __init max_swapfiles_check(void)
2854{
2855 MAX_SWAPFILES_CHECK();
2856 return 0;
2857}
2858late_initcall(max_swapfiles_check);
2859#endif
2860
53cbb243 2861static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2862{
73c34b6a 2863 struct swap_info_struct *p;
1da177e4 2864 unsigned int type;
a2468cc9 2865 int i;
efa90a98 2866
96008744 2867 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
efa90a98 2868 if (!p)
53cbb243 2869 return ERR_PTR(-ENOMEM);
efa90a98 2870
5d337b91 2871 spin_lock(&swap_lock);
efa90a98
HD
2872 for (type = 0; type < nr_swapfiles; type++) {
2873 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2874 break;
efa90a98 2875 }
0697212a 2876 if (type >= MAX_SWAPFILES) {
5d337b91 2877 spin_unlock(&swap_lock);
873d7bcf 2878 kvfree(p);
730c0581 2879 return ERR_PTR(-EPERM);
1da177e4 2880 }
efa90a98
HD
2881 if (type >= nr_swapfiles) {
2882 p->type = type;
c10d38cc 2883 WRITE_ONCE(swap_info[type], p);
efa90a98
HD
2884 /*
2885 * Write swap_info[type] before nr_swapfiles, in case a
2886 * racing procfs swap_start() or swap_next() is reading them.
2887 * (We never shrink nr_swapfiles, we never free this entry.)
2888 */
2889 smp_wmb();
c10d38cc 2890 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
efa90a98 2891 } else {
873d7bcf 2892 kvfree(p);
efa90a98
HD
2893 p = swap_info[type];
2894 /*
2895 * Do not memset this entry: a racing procfs swap_next()
2896 * would be relying on p->type to remain valid.
2897 */
2898 }
4efaceb1 2899 p->swap_extent_root = RB_ROOT;
18ab4d4c 2900 plist_node_init(&p->list, 0);
a2468cc9
AL
2901 for_each_node(i)
2902 plist_node_init(&p->avail_lists[i], 0);
1da177e4 2903 p->flags = SWP_USED;
5d337b91 2904 spin_unlock(&swap_lock);
ec8acf20 2905 spin_lock_init(&p->lock);
2628bd6f 2906 spin_lock_init(&p->cont_lock);
efa90a98 2907
53cbb243 2908 return p;
53cbb243
CEB
2909}
2910
4d0e1e10
CEB
2911static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2912{
2913 int error;
2914
2915 if (S_ISBLK(inode->i_mode)) {
2916 p->bdev = bdgrab(I_BDEV(inode));
2917 error = blkdev_get(p->bdev,
6f179af8 2918 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
4d0e1e10
CEB
2919 if (error < 0) {
2920 p->bdev = NULL;
6f179af8 2921 return error;
4d0e1e10
CEB
2922 }
2923 p->old_block_size = block_size(p->bdev);
2924 error = set_blocksize(p->bdev, PAGE_SIZE);
2925 if (error < 0)
87ade72a 2926 return error;
12d2966d
NA
2927 /*
2928 * Zoned block devices contain zones that have a sequential
2929 * write only restriction. Hence zoned block devices are not
2930 * suitable for swapping. Disallow them here.
2931 */
2932 if (blk_queue_is_zoned(p->bdev->bd_queue))
2933 return -EINVAL;
4d0e1e10
CEB
2934 p->flags |= SWP_BLKDEV;
2935 } else if (S_ISREG(inode->i_mode)) {
2936 p->bdev = inode->i_sb->s_bdev;
1638045c
DW
2937 }
2938
4d0e1e10 2939 return 0;
4d0e1e10
CEB
2940}
2941
377eeaa8
AK
2942
2943/*
2944 * Find out how many pages are allowed for a single swap device. There
2945 * are two limiting factors:
2946 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2947 * 2) the number of bits in the swap pte, as defined by the different
2948 * architectures.
2949 *
2950 * In order to find the largest possible bit mask, a swap entry with
2951 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2952 * decoded to a swp_entry_t again, and finally the swap offset is
2953 * extracted.
2954 *
2955 * This will mask all the bits from the initial ~0UL mask that can't
2956 * be encoded in either the swp_entry_t or the architecture definition
2957 * of a swap pte.
2958 */
2959unsigned long generic_max_swapfile_size(void)
2960{
2961 return swp_offset(pte_to_swp_entry(
2962 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2963}
2964
2965/* Can be overridden by an architecture for additional checks. */
2966__weak unsigned long max_swapfile_size(void)
2967{
2968 return generic_max_swapfile_size();
2969}
2970
ca8bd38b
CEB
2971static unsigned long read_swap_header(struct swap_info_struct *p,
2972 union swap_header *swap_header,
2973 struct inode *inode)
2974{
2975 int i;
2976 unsigned long maxpages;
2977 unsigned long swapfilepages;
d6bbbd29 2978 unsigned long last_page;
ca8bd38b
CEB
2979
2980 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2981 pr_err("Unable to find swap-space signature\n");
38719025 2982 return 0;
ca8bd38b
CEB
2983 }
2984
2985 /* swap partition endianess hack... */
2986 if (swab32(swap_header->info.version) == 1) {
2987 swab32s(&swap_header->info.version);
2988 swab32s(&swap_header->info.last_page);
2989 swab32s(&swap_header->info.nr_badpages);
dd111be6
JH
2990 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2991 return 0;
ca8bd38b
CEB
2992 for (i = 0; i < swap_header->info.nr_badpages; i++)
2993 swab32s(&swap_header->info.badpages[i]);
2994 }
2995 /* Check the swap header's sub-version */
2996 if (swap_header->info.version != 1) {
465c47fd
AM
2997 pr_warn("Unable to handle swap header version %d\n",
2998 swap_header->info.version);
38719025 2999 return 0;
ca8bd38b
CEB
3000 }
3001
3002 p->lowest_bit = 1;
3003 p->cluster_next = 1;
3004 p->cluster_nr = 0;
3005
377eeaa8 3006 maxpages = max_swapfile_size();
d6bbbd29 3007 last_page = swap_header->info.last_page;
a06ad633
TA
3008 if (!last_page) {
3009 pr_warn("Empty swap-file\n");
3010 return 0;
3011 }
d6bbbd29 3012 if (last_page > maxpages) {
465c47fd 3013 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
3014 maxpages << (PAGE_SHIFT - 10),
3015 last_page << (PAGE_SHIFT - 10));
3016 }
3017 if (maxpages > last_page) {
3018 maxpages = last_page + 1;
ca8bd38b
CEB
3019 /* p->max is an unsigned int: don't overflow it */
3020 if ((unsigned int)maxpages == 0)
3021 maxpages = UINT_MAX;
3022 }
3023 p->highest_bit = maxpages - 1;
3024
3025 if (!maxpages)
38719025 3026 return 0;
ca8bd38b
CEB
3027 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3028 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 3029 pr_warn("Swap area shorter than signature indicates\n");
38719025 3030 return 0;
ca8bd38b
CEB
3031 }
3032 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 3033 return 0;
ca8bd38b 3034 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 3035 return 0;
ca8bd38b
CEB
3036
3037 return maxpages;
ca8bd38b
CEB
3038}
3039
4b3ef9da 3040#define SWAP_CLUSTER_INFO_COLS \
235b6217 3041 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
4b3ef9da
HY
3042#define SWAP_CLUSTER_SPACE_COLS \
3043 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3044#define SWAP_CLUSTER_COLS \
3045 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
235b6217 3046
915d4d7b
CEB
3047static int setup_swap_map_and_extents(struct swap_info_struct *p,
3048 union swap_header *swap_header,
3049 unsigned char *swap_map,
2a8f9449 3050 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
3051 unsigned long maxpages,
3052 sector_t *span)
3053{
235b6217 3054 unsigned int j, k;
915d4d7b
CEB
3055 unsigned int nr_good_pages;
3056 int nr_extents;
2a8f9449 3057 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
235b6217
HY
3058 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3059 unsigned long i, idx;
915d4d7b
CEB
3060
3061 nr_good_pages = maxpages - 1; /* omit header page */
3062
6b534915
HY
3063 cluster_list_init(&p->free_clusters);
3064 cluster_list_init(&p->discard_clusters);
2a8f9449 3065
915d4d7b
CEB
3066 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3067 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
3068 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3069 return -EINVAL;
915d4d7b
CEB
3070 if (page_nr < maxpages) {
3071 swap_map[page_nr] = SWAP_MAP_BAD;
3072 nr_good_pages--;
2a8f9449
SL
3073 /*
3074 * Haven't marked the cluster free yet, no list
3075 * operation involved
3076 */
3077 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
3078 }
3079 }
3080
2a8f9449
SL
3081 /* Haven't marked the cluster free yet, no list operation involved */
3082 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3083 inc_cluster_info_page(p, cluster_info, i);
3084
915d4d7b
CEB
3085 if (nr_good_pages) {
3086 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
3087 /*
3088 * Not mark the cluster free yet, no list
3089 * operation involved
3090 */
3091 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
3092 p->max = maxpages;
3093 p->pages = nr_good_pages;
3094 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
3095 if (nr_extents < 0)
3096 return nr_extents;
915d4d7b
CEB
3097 nr_good_pages = p->pages;
3098 }
3099 if (!nr_good_pages) {
465c47fd 3100 pr_warn("Empty swap-file\n");
bdb8e3f6 3101 return -EINVAL;
915d4d7b
CEB
3102 }
3103
2a8f9449
SL
3104 if (!cluster_info)
3105 return nr_extents;
3106
235b6217 3107
4b3ef9da
HY
3108 /*
3109 * Reduce false cache line sharing between cluster_info and
3110 * sharing same address space.
3111 */
235b6217
HY
3112 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3113 j = (k + col) % SWAP_CLUSTER_COLS;
3114 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3115 idx = i * SWAP_CLUSTER_COLS + j;
3116 if (idx >= nr_clusters)
3117 continue;
3118 if (cluster_count(&cluster_info[idx]))
3119 continue;
2a8f9449 3120 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
6b534915
HY
3121 cluster_list_add_tail(&p->free_clusters, cluster_info,
3122 idx);
2a8f9449 3123 }
2a8f9449 3124 }
915d4d7b 3125 return nr_extents;
915d4d7b
CEB
3126}
3127
dcf6b7dd
RA
3128/*
3129 * Helper to sys_swapon determining if a given swap
3130 * backing device queue supports DISCARD operations.
3131 */
3132static bool swap_discardable(struct swap_info_struct *si)
3133{
3134 struct request_queue *q = bdev_get_queue(si->bdev);
3135
3136 if (!q || !blk_queue_discard(q))
3137 return false;
3138
3139 return true;
3140}
3141
53cbb243
CEB
3142SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3143{
3144 struct swap_info_struct *p;
91a27b2a 3145 struct filename *name;
53cbb243
CEB
3146 struct file *swap_file = NULL;
3147 struct address_space *mapping;
40531542 3148 int prio;
53cbb243
CEB
3149 int error;
3150 union swap_header *swap_header;
915d4d7b 3151 int nr_extents;
53cbb243
CEB
3152 sector_t span;
3153 unsigned long maxpages;
53cbb243 3154 unsigned char *swap_map = NULL;
2a8f9449 3155 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 3156 unsigned long *frontswap_map = NULL;
53cbb243
CEB
3157 struct page *page = NULL;
3158 struct inode *inode = NULL;
7cbf3192 3159 bool inced_nr_rotate_swap = false;
53cbb243 3160
d15cab97
HD
3161 if (swap_flags & ~SWAP_FLAGS_VALID)
3162 return -EINVAL;
3163
53cbb243
CEB
3164 if (!capable(CAP_SYS_ADMIN))
3165 return -EPERM;
3166
a2468cc9
AL
3167 if (!swap_avail_heads)
3168 return -ENOMEM;
3169
53cbb243 3170 p = alloc_swap_info();
2542e513
CEB
3171 if (IS_ERR(p))
3172 return PTR_ERR(p);
53cbb243 3173
815c2c54
SL
3174 INIT_WORK(&p->discard_work, swap_discard_work);
3175
1da177e4 3176 name = getname(specialfile);
1da177e4 3177 if (IS_ERR(name)) {
7de7fb6b 3178 error = PTR_ERR(name);
1da177e4 3179 name = NULL;
bd69010b 3180 goto bad_swap;
1da177e4 3181 }
669abf4e 3182 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 3183 if (IS_ERR(swap_file)) {
7de7fb6b 3184 error = PTR_ERR(swap_file);
1da177e4 3185 swap_file = NULL;
bd69010b 3186 goto bad_swap;
1da177e4
LT
3187 }
3188
3189 p->swap_file = swap_file;
3190 mapping = swap_file->f_mapping;
2130781e 3191 inode = mapping->host;
6f179af8 3192
4d0e1e10
CEB
3193 error = claim_swapfile(p, inode);
3194 if (unlikely(error))
1da177e4 3195 goto bad_swap;
1da177e4 3196
d795a90e
NA
3197 inode_lock(inode);
3198 if (IS_SWAPFILE(inode)) {
3199 error = -EBUSY;
3200 goto bad_swap_unlock_inode;
3201 }
3202
1da177e4
LT
3203 /*
3204 * Read the swap header.
3205 */
3206 if (!mapping->a_ops->readpage) {
3207 error = -EINVAL;
d795a90e 3208 goto bad_swap_unlock_inode;
1da177e4 3209 }
090d2b18 3210 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
3211 if (IS_ERR(page)) {
3212 error = PTR_ERR(page);
d795a90e 3213 goto bad_swap_unlock_inode;
1da177e4 3214 }
81e33971 3215 swap_header = kmap(page);
1da177e4 3216
ca8bd38b
CEB
3217 maxpages = read_swap_header(p, swap_header, inode);
3218 if (unlikely(!maxpages)) {
1da177e4 3219 error = -EINVAL;
d795a90e 3220 goto bad_swap_unlock_inode;
1da177e4 3221 }
886bb7e9 3222
81e33971 3223 /* OK, set up the swap map and apply the bad block list */
803d0c83 3224 swap_map = vzalloc(maxpages);
81e33971
HD
3225 if (!swap_map) {
3226 error = -ENOMEM;
d795a90e 3227 goto bad_swap_unlock_inode;
81e33971 3228 }
f0571429
MK
3229
3230 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3231 p->flags |= SWP_STABLE_WRITES;
3232
539a6fea
MK
3233 if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3234 p->flags |= SWP_SYNCHRONOUS_IO;
3235
2a8f9449 3236 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
6f179af8 3237 int cpu;
235b6217 3238 unsigned long ci, nr_cluster;
6f179af8 3239
2a8f9449 3240 p->flags |= SWP_SOLIDSTATE;
49070588
HY
3241 p->cluster_next_cpu = alloc_percpu(unsigned int);
3242 if (!p->cluster_next_cpu) {
3243 error = -ENOMEM;
3244 goto bad_swap_unlock_inode;
3245 }
2a8f9449
SL
3246 /*
3247 * select a random position to start with to help wear leveling
3248 * SSD
3249 */
49070588
HY
3250 for_each_possible_cpu(cpu) {
3251 per_cpu(*p->cluster_next_cpu, cpu) =
3252 1 + prandom_u32_max(p->highest_bit);
3253 }
235b6217 3254 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2a8f9449 3255
778e1cdd 3256 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
54f180d3 3257 GFP_KERNEL);
2a8f9449
SL
3258 if (!cluster_info) {
3259 error = -ENOMEM;
d795a90e 3260 goto bad_swap_unlock_inode;
2a8f9449 3261 }
235b6217
HY
3262
3263 for (ci = 0; ci < nr_cluster; ci++)
3264 spin_lock_init(&((cluster_info + ci)->lock));
3265
ebc2a1a6
SL
3266 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3267 if (!p->percpu_cluster) {
3268 error = -ENOMEM;
d795a90e 3269 goto bad_swap_unlock_inode;
ebc2a1a6 3270 }
6f179af8 3271 for_each_possible_cpu(cpu) {
ebc2a1a6 3272 struct percpu_cluster *cluster;
6f179af8 3273 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
ebc2a1a6
SL
3274 cluster_set_null(&cluster->index);
3275 }
7cbf3192 3276 } else {
81a0298b 3277 atomic_inc(&nr_rotate_swap);
7cbf3192
OS
3278 inced_nr_rotate_swap = true;
3279 }
1da177e4 3280
1421ef3c
CEB
3281 error = swap_cgroup_swapon(p->type, maxpages);
3282 if (error)
d795a90e 3283 goto bad_swap_unlock_inode;
1421ef3c 3284
915d4d7b 3285 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 3286 cluster_info, maxpages, &span);
915d4d7b
CEB
3287 if (unlikely(nr_extents < 0)) {
3288 error = nr_extents;
d795a90e 3289 goto bad_swap_unlock_inode;
1da177e4 3290 }
38b5faf4 3291 /* frontswap enabled? set up bit-per-page map for frontswap */
8ea1d2a1 3292 if (IS_ENABLED(CONFIG_FRONTSWAP))
778e1cdd
KC
3293 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3294 sizeof(long),
54f180d3 3295 GFP_KERNEL);
1da177e4 3296
2a8f9449
SL
3297 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3298 /*
3299 * When discard is enabled for swap with no particular
3300 * policy flagged, we set all swap discard flags here in
3301 * order to sustain backward compatibility with older
3302 * swapon(8) releases.
3303 */
3304 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3305 SWP_PAGE_DISCARD);
dcf6b7dd 3306
2a8f9449
SL
3307 /*
3308 * By flagging sys_swapon, a sysadmin can tell us to
3309 * either do single-time area discards only, or to just
3310 * perform discards for released swap page-clusters.
3311 * Now it's time to adjust the p->flags accordingly.
3312 */
3313 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3314 p->flags &= ~SWP_PAGE_DISCARD;
3315 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3316 p->flags &= ~SWP_AREA_DISCARD;
3317
3318 /* issue a swapon-time discard if it's still required */
3319 if (p->flags & SWP_AREA_DISCARD) {
3320 int err = discard_swap(p);
3321 if (unlikely(err))
3322 pr_err("swapon: discard_swap(%p): %d\n",
3323 p, err);
dcf6b7dd 3324 }
20137a49 3325 }
6a6ba831 3326
4b3ef9da
HY
3327 error = init_swap_address_space(p->type, maxpages);
3328 if (error)
d795a90e 3329 goto bad_swap_unlock_inode;
4b3ef9da 3330
dc617f29
DW
3331 /*
3332 * Flush any pending IO and dirty mappings before we start using this
3333 * swap device.
3334 */
3335 inode->i_flags |= S_SWAPFILE;
3336 error = inode_drain_writes(inode);
3337 if (error) {
3338 inode->i_flags &= ~S_SWAPFILE;
d795a90e 3339 goto bad_swap_unlock_inode;
dc617f29
DW
3340 }
3341
fc0abb14 3342 mutex_lock(&swapon_mutex);
40531542 3343 prio = -1;
78ecba08 3344 if (swap_flags & SWAP_FLAG_PREFER)
40531542 3345 prio =
78ecba08 3346 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 3347 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 3348
756a025f 3349 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 3350 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
3351 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3352 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 3353 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
3354 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3355 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 3356 (frontswap_map) ? "FS" : "");
c69dbfb8 3357
fc0abb14 3358 mutex_unlock(&swapon_mutex);
66d7dd51
KS
3359 atomic_inc(&proc_poll_event);
3360 wake_up_interruptible(&proc_poll_wait);
3361
1da177e4
LT
3362 error = 0;
3363 goto out;
d795a90e
NA
3364bad_swap_unlock_inode:
3365 inode_unlock(inode);
1da177e4 3366bad_swap:
ebc2a1a6
SL
3367 free_percpu(p->percpu_cluster);
3368 p->percpu_cluster = NULL;
49070588
HY
3369 free_percpu(p->cluster_next_cpu);
3370 p->cluster_next_cpu = NULL;
bd69010b 3371 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
3372 set_blocksize(p->bdev, p->old_block_size);
3373 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 3374 }
d795a90e 3375 inode = NULL;
4cd3bb10 3376 destroy_swap_extents(p);
e8e6c2ec 3377 swap_cgroup_swapoff(p->type);
5d337b91 3378 spin_lock(&swap_lock);
1da177e4 3379 p->swap_file = NULL;
1da177e4 3380 p->flags = 0;
5d337b91 3381 spin_unlock(&swap_lock);
1da177e4 3382 vfree(swap_map);
8606a1a9 3383 kvfree(cluster_info);
b6b1fd2a 3384 kvfree(frontswap_map);
7cbf3192
OS
3385 if (inced_nr_rotate_swap)
3386 atomic_dec(&nr_rotate_swap);
d795a90e 3387 if (swap_file)
1da177e4
LT
3388 filp_close(swap_file, NULL);
3389out:
3390 if (page && !IS_ERR(page)) {
3391 kunmap(page);
09cbfeaf 3392 put_page(page);
1da177e4
LT
3393 }
3394 if (name)
3395 putname(name);
1638045c 3396 if (inode)
5955102c 3397 inode_unlock(inode);
039939a6
TC
3398 if (!error)
3399 enable_swap_slots_cache();
1da177e4
LT
3400 return error;
3401}
3402
3403void si_swapinfo(struct sysinfo *val)
3404{
efa90a98 3405 unsigned int type;
1da177e4
LT
3406 unsigned long nr_to_be_unused = 0;
3407
5d337b91 3408 spin_lock(&swap_lock);
efa90a98
HD
3409 for (type = 0; type < nr_swapfiles; type++) {
3410 struct swap_info_struct *si = swap_info[type];
3411
3412 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3413 nr_to_be_unused += si->inuse_pages;
1da177e4 3414 }
ec8acf20 3415 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 3416 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 3417 spin_unlock(&swap_lock);
1da177e4
LT
3418}
3419
3420/*
3421 * Verify that a swap entry is valid and increment its swap map count.
3422 *
355cfa73
KH
3423 * Returns error code in following case.
3424 * - success -> 0
3425 * - swp_entry is invalid -> EINVAL
3426 * - swp_entry is migration entry -> EINVAL
3427 * - swap-cache reference is requested but there is already one. -> EEXIST
3428 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 3429 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 3430 */
8d69aaee 3431static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 3432{
73c34b6a 3433 struct swap_info_struct *p;
235b6217 3434 struct swap_cluster_info *ci;
c10d38cc 3435 unsigned long offset;
8d69aaee
HD
3436 unsigned char count;
3437 unsigned char has_cache;
253d553b 3438 int err = -EINVAL;
1da177e4 3439
eb085574 3440 p = get_swap_device(entry);
c10d38cc 3441 if (!p)
235b6217
HY
3442 goto out;
3443
eb085574 3444 offset = swp_offset(entry);
235b6217 3445 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 3446
253d553b 3447 count = p->swap_map[offset];
edfe23da
SL
3448
3449 /*
3450 * swapin_readahead() doesn't check if a swap entry is valid, so the
3451 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3452 */
3453 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3454 err = -ENOENT;
3455 goto unlock_out;
3456 }
3457
253d553b
HD
3458 has_cache = count & SWAP_HAS_CACHE;
3459 count &= ~SWAP_HAS_CACHE;
3460 err = 0;
355cfa73 3461
253d553b 3462 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
3463
3464 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
3465 if (!has_cache && count)
3466 has_cache = SWAP_HAS_CACHE;
3467 else if (has_cache) /* someone else added cache */
3468 err = -EEXIST;
3469 else /* no users remaining */
3470 err = -ENOENT;
355cfa73
KH
3471
3472 } else if (count || has_cache) {
253d553b 3473
570a335b
HD
3474 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3475 count += usage;
3476 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 3477 err = -EINVAL;
570a335b
HD
3478 else if (swap_count_continued(p, offset, count))
3479 count = COUNT_CONTINUED;
3480 else
3481 err = -ENOMEM;
355cfa73 3482 } else
253d553b
HD
3483 err = -ENOENT; /* unused swap entry */
3484
3485 p->swap_map[offset] = count | has_cache;
3486
355cfa73 3487unlock_out:
235b6217 3488 unlock_cluster_or_swap_info(p, ci);
1da177e4 3489out:
eb085574
HY
3490 if (p)
3491 put_swap_device(p);
253d553b 3492 return err;
1da177e4 3493}
253d553b 3494
aaa46865
HD
3495/*
3496 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3497 * (in which case its reference count is never incremented).
3498 */
3499void swap_shmem_alloc(swp_entry_t entry)
3500{
3501 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3502}
3503
355cfa73 3504/*
08259d58
HD
3505 * Increase reference count of swap entry by 1.
3506 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3507 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3508 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3509 * might occur if a page table entry has got corrupted.
355cfa73 3510 */
570a335b 3511int swap_duplicate(swp_entry_t entry)
355cfa73 3512{
570a335b
HD
3513 int err = 0;
3514
3515 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3516 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3517 return err;
355cfa73 3518}
1da177e4 3519
cb4b86ba 3520/*
355cfa73
KH
3521 * @entry: swap entry for which we allocate swap cache.
3522 *
73c34b6a 3523 * Called when allocating swap cache for existing swap entry,
355cfa73 3524 * This can return error codes. Returns 0 at success.
3eeba135 3525 * -EEXIST means there is a swap cache.
355cfa73 3526 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
3527 */
3528int swapcache_prepare(swp_entry_t entry)
3529{
253d553b 3530 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
3531}
3532
0bcac06f
MK
3533struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3534{
c10d38cc 3535 return swap_type_to_swap_info(swp_type(entry));
0bcac06f
MK
3536}
3537
f981c595
MG
3538struct swap_info_struct *page_swap_info(struct page *page)
3539{
0bcac06f
MK
3540 swp_entry_t entry = { .val = page_private(page) };
3541 return swp_swap_info(entry);
f981c595
MG
3542}
3543
3544/*
3545 * out-of-line __page_file_ methods to avoid include hell.
3546 */
3547struct address_space *__page_file_mapping(struct page *page)
3548{
f981c595
MG
3549 return page_swap_info(page)->swap_file->f_mapping;
3550}
3551EXPORT_SYMBOL_GPL(__page_file_mapping);
3552
3553pgoff_t __page_file_index(struct page *page)
3554{
3555 swp_entry_t swap = { .val = page_private(page) };
f981c595
MG
3556 return swp_offset(swap);
3557}
3558EXPORT_SYMBOL_GPL(__page_file_index);
3559
570a335b
HD
3560/*
3561 * add_swap_count_continuation - called when a swap count is duplicated
3562 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3563 * page of the original vmalloc'ed swap_map, to hold the continuation count
3564 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3565 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3566 *
3567 * These continuation pages are seldom referenced: the common paths all work
3568 * on the original swap_map, only referring to a continuation page when the
3569 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3570 *
3571 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3572 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3573 * can be called after dropping locks.
3574 */
3575int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3576{
3577 struct swap_info_struct *si;
235b6217 3578 struct swap_cluster_info *ci;
570a335b
HD
3579 struct page *head;
3580 struct page *page;
3581 struct page *list_page;
3582 pgoff_t offset;
3583 unsigned char count;
eb085574 3584 int ret = 0;
570a335b
HD
3585
3586 /*
3587 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3588 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3589 */
3590 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3591
eb085574 3592 si = get_swap_device(entry);
570a335b
HD
3593 if (!si) {
3594 /*
3595 * An acceptable race has occurred since the failing
eb085574 3596 * __swap_duplicate(): the swap device may be swapoff
570a335b
HD
3597 */
3598 goto outer;
3599 }
eb085574 3600 spin_lock(&si->lock);
570a335b
HD
3601
3602 offset = swp_offset(entry);
235b6217
HY
3603
3604 ci = lock_cluster(si, offset);
3605
570a335b
HD
3606 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3607
3608 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3609 /*
3610 * The higher the swap count, the more likely it is that tasks
3611 * will race to add swap count continuation: we need to avoid
3612 * over-provisioning.
3613 */
3614 goto out;
3615 }
3616
3617 if (!page) {
eb085574
HY
3618 ret = -ENOMEM;
3619 goto out;
570a335b
HD
3620 }
3621
3622 /*
3623 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
3624 * no architecture is using highmem pages for kernel page tables: so it
3625 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
3626 */
3627 head = vmalloc_to_page(si->swap_map + offset);
3628 offset &= ~PAGE_MASK;
3629
2628bd6f 3630 spin_lock(&si->cont_lock);
570a335b
HD
3631 /*
3632 * Page allocation does not initialize the page's lru field,
3633 * but it does always reset its private field.
3634 */
3635 if (!page_private(head)) {
3636 BUG_ON(count & COUNT_CONTINUED);
3637 INIT_LIST_HEAD(&head->lru);
3638 set_page_private(head, SWP_CONTINUED);
3639 si->flags |= SWP_CONTINUED;
3640 }
3641
3642 list_for_each_entry(list_page, &head->lru, lru) {
3643 unsigned char *map;
3644
3645 /*
3646 * If the previous map said no continuation, but we've found
3647 * a continuation page, free our allocation and use this one.
3648 */
3649 if (!(count & COUNT_CONTINUED))
2628bd6f 3650 goto out_unlock_cont;
570a335b 3651
9b04c5fe 3652 map = kmap_atomic(list_page) + offset;
570a335b 3653 count = *map;
9b04c5fe 3654 kunmap_atomic(map);
570a335b
HD
3655
3656 /*
3657 * If this continuation count now has some space in it,
3658 * free our allocation and use this one.
3659 */
3660 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2628bd6f 3661 goto out_unlock_cont;
570a335b
HD
3662 }
3663
3664 list_add_tail(&page->lru, &head->lru);
3665 page = NULL; /* now it's attached, don't free it */
2628bd6f
HY
3666out_unlock_cont:
3667 spin_unlock(&si->cont_lock);
570a335b 3668out:
235b6217 3669 unlock_cluster(ci);
ec8acf20 3670 spin_unlock(&si->lock);
eb085574 3671 put_swap_device(si);
570a335b
HD
3672outer:
3673 if (page)
3674 __free_page(page);
eb085574 3675 return ret;
570a335b
HD
3676}
3677
3678/*
3679 * swap_count_continued - when the original swap_map count is incremented
3680 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3681 * into, carry if so, or else fail until a new continuation page is allocated;
3682 * when the original swap_map count is decremented from 0 with continuation,
3683 * borrow from the continuation and report whether it still holds more.
235b6217
HY
3684 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3685 * lock.
570a335b
HD
3686 */
3687static bool swap_count_continued(struct swap_info_struct *si,
3688 pgoff_t offset, unsigned char count)
3689{
3690 struct page *head;
3691 struct page *page;
3692 unsigned char *map;
2628bd6f 3693 bool ret;
570a335b
HD
3694
3695 head = vmalloc_to_page(si->swap_map + offset);
3696 if (page_private(head) != SWP_CONTINUED) {
3697 BUG_ON(count & COUNT_CONTINUED);
3698 return false; /* need to add count continuation */
3699 }
3700
2628bd6f 3701 spin_lock(&si->cont_lock);
570a335b 3702 offset &= ~PAGE_MASK;
213516ac 3703 page = list_next_entry(head, lru);
9b04c5fe 3704 map = kmap_atomic(page) + offset;
570a335b
HD
3705
3706 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3707 goto init_map; /* jump over SWAP_CONT_MAX checks */
3708
3709 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3710 /*
3711 * Think of how you add 1 to 999
3712 */
3713 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 3714 kunmap_atomic(map);
213516ac 3715 page = list_next_entry(page, lru);
570a335b 3716 BUG_ON(page == head);
9b04c5fe 3717 map = kmap_atomic(page) + offset;
570a335b
HD
3718 }
3719 if (*map == SWAP_CONT_MAX) {
9b04c5fe 3720 kunmap_atomic(map);
213516ac 3721 page = list_next_entry(page, lru);
2628bd6f
HY
3722 if (page == head) {
3723 ret = false; /* add count continuation */
3724 goto out;
3725 }
9b04c5fe 3726 map = kmap_atomic(page) + offset;
570a335b
HD
3727init_map: *map = 0; /* we didn't zero the page */
3728 }
3729 *map += 1;
9b04c5fe 3730 kunmap_atomic(map);
213516ac 3731 while ((page = list_prev_entry(page, lru)) != head) {
9b04c5fe 3732 map = kmap_atomic(page) + offset;
570a335b 3733 *map = COUNT_CONTINUED;
9b04c5fe 3734 kunmap_atomic(map);
570a335b 3735 }
2628bd6f 3736 ret = true; /* incremented */
570a335b
HD
3737
3738 } else { /* decrementing */
3739 /*
3740 * Think of how you subtract 1 from 1000
3741 */
3742 BUG_ON(count != COUNT_CONTINUED);
3743 while (*map == COUNT_CONTINUED) {
9b04c5fe 3744 kunmap_atomic(map);
213516ac 3745 page = list_next_entry(page, lru);
570a335b 3746 BUG_ON(page == head);
9b04c5fe 3747 map = kmap_atomic(page) + offset;
570a335b
HD
3748 }
3749 BUG_ON(*map == 0);
3750 *map -= 1;
3751 if (*map == 0)
3752 count = 0;
9b04c5fe 3753 kunmap_atomic(map);
213516ac 3754 while ((page = list_prev_entry(page, lru)) != head) {
9b04c5fe 3755 map = kmap_atomic(page) + offset;
570a335b
HD
3756 *map = SWAP_CONT_MAX | count;
3757 count = COUNT_CONTINUED;
9b04c5fe 3758 kunmap_atomic(map);
570a335b 3759 }
2628bd6f 3760 ret = count == COUNT_CONTINUED;
570a335b 3761 }
2628bd6f
HY
3762out:
3763 spin_unlock(&si->cont_lock);
3764 return ret;
570a335b
HD
3765}
3766
3767/*
3768 * free_swap_count_continuations - swapoff free all the continuation pages
3769 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3770 */
3771static void free_swap_count_continuations(struct swap_info_struct *si)
3772{
3773 pgoff_t offset;
3774
3775 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3776 struct page *head;
3777 head = vmalloc_to_page(si->swap_map + offset);
3778 if (page_private(head)) {
0d576d20
GT
3779 struct page *page, *next;
3780
3781 list_for_each_entry_safe(page, next, &head->lru, lru) {
3782 list_del(&page->lru);
570a335b
HD
3783 __free_page(page);
3784 }
3785 }
3786 }
3787}
a2468cc9 3788
2cf85583 3789#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
6caa6a07 3790void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
2cf85583
TH
3791{
3792 struct swap_info_struct *si, *next;
6caa6a07
JW
3793 int nid = page_to_nid(page);
3794
3795 if (!(gfp_mask & __GFP_IO))
2cf85583
TH
3796 return;
3797
3798 if (!blk_cgroup_congested())
3799 return;
3800
3801 /*
3802 * We've already scheduled a throttle, avoid taking the global swap
3803 * lock.
3804 */
3805 if (current->throttle_queue)
3806 return;
3807
3808 spin_lock(&swap_avail_lock);
6caa6a07
JW
3809 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3810 avail_lists[nid]) {
2cf85583 3811 if (si->bdev) {
6caa6a07 3812 blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
2cf85583
TH
3813 break;
3814 }
3815 }
3816 spin_unlock(&swap_avail_lock);
3817}
3818#endif
3819
a2468cc9
AL
3820static int __init swapfile_init(void)
3821{
3822 int nid;
3823
3824 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3825 GFP_KERNEL);
3826 if (!swap_avail_heads) {
3827 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3828 return -ENOMEM;
3829 }
3830
3831 for_each_node(nid)
3832 plist_head_init(&swap_avail_heads[nid]);
3833
3834 return 0;
3835}
3836subsys_initcall(swapfile_init);