]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/swapfile.c
mm: memcontrol: rewrite charge API
[mirror_ubuntu-jammy-kernel.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
072441e2 17#include <linux/shmem_fs.h>
1da177e4 18#include <linux/blkdev.h>
20137a49 19#include <linux/random.h>
1da177e4
LT
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
5ad64688 24#include <linux/ksm.h>
1da177e4
LT
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
fc0abb14 28#include <linux/mutex.h>
c59ede7b 29#include <linux/capability.h>
1da177e4 30#include <linux/syscalls.h>
8a9f3ccd 31#include <linux/memcontrol.h>
66d7dd51 32#include <linux/poll.h>
72788c38 33#include <linux/oom.h>
38b5faf4
DM
34#include <linux/frontswap.h>
35#include <linux/swapfile.h>
f981c595 36#include <linux/export.h>
1da177e4
LT
37
38#include <asm/pgtable.h>
39#include <asm/tlbflush.h>
40#include <linux/swapops.h>
27a7faa0 41#include <linux/page_cgroup.h>
1da177e4 42
570a335b
HD
43static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 unsigned char);
45static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 46static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 47
38b5faf4 48DEFINE_SPINLOCK(swap_lock);
7c363b8c 49static unsigned int nr_swapfiles;
ec8acf20
SL
50atomic_long_t nr_swap_pages;
51/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 52long total_swap_pages;
78ecba08 53static int least_priority;
1da177e4 54
1da177e4
LT
55static const char Bad_file[] = "Bad swap file entry ";
56static const char Unused_file[] = "Unused swap file entry ";
57static const char Bad_offset[] = "Bad swap offset entry ";
58static const char Unused_offset[] = "Unused swap offset entry ";
59
adfab836
DS
60/*
61 * all active swap_info_structs
62 * protected with swap_lock, and ordered by priority.
63 */
18ab4d4c
DS
64PLIST_HEAD(swap_active_head);
65
66/*
67 * all available (active, not full) swap_info_structs
68 * protected with swap_avail_lock, ordered by priority.
69 * This is used by get_swap_page() instead of swap_active_head
70 * because swap_active_head includes all swap_info_structs,
71 * but get_swap_page() doesn't need to look at full ones.
72 * This uses its own lock instead of swap_lock because when a
73 * swap_info_struct changes between not-full/full, it needs to
74 * add/remove itself to/from this list, but the swap_info_struct->lock
75 * is held and the locking order requires swap_lock to be taken
76 * before any swap_info_struct->lock.
77 */
78static PLIST_HEAD(swap_avail_head);
79static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 80
38b5faf4 81struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 82
fc0abb14 83static DEFINE_MUTEX(swapon_mutex);
1da177e4 84
66d7dd51
KS
85static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
86/* Activity counter to indicate that a swapon or swapoff has occurred */
87static atomic_t proc_poll_event = ATOMIC_INIT(0);
88
8d69aaee 89static inline unsigned char swap_count(unsigned char ent)
355cfa73 90{
570a335b 91 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
355cfa73
KH
92}
93
efa90a98 94/* returns 1 if swap entry is freed */
c9e44410
KH
95static int
96__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
97{
efa90a98 98 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
99 struct page *page;
100 int ret = 0;
101
33806f06 102 page = find_get_page(swap_address_space(entry), entry.val);
c9e44410
KH
103 if (!page)
104 return 0;
105 /*
106 * This function is called from scan_swap_map() and it's called
107 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
108 * We have to use trylock for avoiding deadlock. This is a special
109 * case and you should use try_to_free_swap() with explicit lock_page()
110 * in usual operations.
111 */
112 if (trylock_page(page)) {
113 ret = try_to_free_swap(page);
114 unlock_page(page);
115 }
116 page_cache_release(page);
117 return ret;
118}
355cfa73 119
6a6ba831
HD
120/*
121 * swapon tell device that all the old swap contents can be discarded,
122 * to allow the swap device to optimize its wear-levelling.
123 */
124static int discard_swap(struct swap_info_struct *si)
125{
126 struct swap_extent *se;
9625a5f2
HD
127 sector_t start_block;
128 sector_t nr_blocks;
6a6ba831
HD
129 int err = 0;
130
9625a5f2
HD
131 /* Do not discard the swap header page! */
132 se = &si->first_swap_extent;
133 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
134 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
135 if (nr_blocks) {
136 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 137 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
138 if (err)
139 return err;
140 cond_resched();
141 }
6a6ba831 142
9625a5f2
HD
143 list_for_each_entry(se, &si->first_swap_extent.list, list) {
144 start_block = se->start_block << (PAGE_SHIFT - 9);
145 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
146
147 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 148 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
149 if (err)
150 break;
151
152 cond_resched();
153 }
154 return err; /* That will often be -EOPNOTSUPP */
155}
156
7992fde7
HD
157/*
158 * swap allocation tell device that a cluster of swap can now be discarded,
159 * to allow the swap device to optimize its wear-levelling.
160 */
161static void discard_swap_cluster(struct swap_info_struct *si,
162 pgoff_t start_page, pgoff_t nr_pages)
163{
164 struct swap_extent *se = si->curr_swap_extent;
165 int found_extent = 0;
166
167 while (nr_pages) {
168 struct list_head *lh;
169
170 if (se->start_page <= start_page &&
171 start_page < se->start_page + se->nr_pages) {
172 pgoff_t offset = start_page - se->start_page;
173 sector_t start_block = se->start_block + offset;
858a2990 174 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
175
176 if (nr_blocks > nr_pages)
177 nr_blocks = nr_pages;
178 start_page += nr_blocks;
179 nr_pages -= nr_blocks;
180
181 if (!found_extent++)
182 si->curr_swap_extent = se;
183
184 start_block <<= PAGE_SHIFT - 9;
185 nr_blocks <<= PAGE_SHIFT - 9;
186 if (blkdev_issue_discard(si->bdev, start_block,
dd3932ed 187 nr_blocks, GFP_NOIO, 0))
7992fde7
HD
188 break;
189 }
190
191 lh = se->list.next;
7992fde7
HD
192 se = list_entry(lh, struct swap_extent, list);
193 }
194}
195
048c27fd
HD
196#define SWAPFILE_CLUSTER 256
197#define LATENCY_LIMIT 256
198
2a8f9449
SL
199static inline void cluster_set_flag(struct swap_cluster_info *info,
200 unsigned int flag)
201{
202 info->flags = flag;
203}
204
205static inline unsigned int cluster_count(struct swap_cluster_info *info)
206{
207 return info->data;
208}
209
210static inline void cluster_set_count(struct swap_cluster_info *info,
211 unsigned int c)
212{
213 info->data = c;
214}
215
216static inline void cluster_set_count_flag(struct swap_cluster_info *info,
217 unsigned int c, unsigned int f)
218{
219 info->flags = f;
220 info->data = c;
221}
222
223static inline unsigned int cluster_next(struct swap_cluster_info *info)
224{
225 return info->data;
226}
227
228static inline void cluster_set_next(struct swap_cluster_info *info,
229 unsigned int n)
230{
231 info->data = n;
232}
233
234static inline void cluster_set_next_flag(struct swap_cluster_info *info,
235 unsigned int n, unsigned int f)
236{
237 info->flags = f;
238 info->data = n;
239}
240
241static inline bool cluster_is_free(struct swap_cluster_info *info)
242{
243 return info->flags & CLUSTER_FLAG_FREE;
244}
245
246static inline bool cluster_is_null(struct swap_cluster_info *info)
247{
248 return info->flags & CLUSTER_FLAG_NEXT_NULL;
249}
250
251static inline void cluster_set_null(struct swap_cluster_info *info)
252{
253 info->flags = CLUSTER_FLAG_NEXT_NULL;
254 info->data = 0;
255}
256
815c2c54
SL
257/* Add a cluster to discard list and schedule it to do discard */
258static void swap_cluster_schedule_discard(struct swap_info_struct *si,
259 unsigned int idx)
260{
261 /*
262 * If scan_swap_map() can't find a free cluster, it will check
263 * si->swap_map directly. To make sure the discarding cluster isn't
264 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
265 * will be cleared after discard
266 */
267 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
268 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
269
270 if (cluster_is_null(&si->discard_cluster_head)) {
271 cluster_set_next_flag(&si->discard_cluster_head,
272 idx, 0);
273 cluster_set_next_flag(&si->discard_cluster_tail,
274 idx, 0);
275 } else {
276 unsigned int tail = cluster_next(&si->discard_cluster_tail);
277 cluster_set_next(&si->cluster_info[tail], idx);
278 cluster_set_next_flag(&si->discard_cluster_tail,
279 idx, 0);
280 }
281
282 schedule_work(&si->discard_work);
283}
284
285/*
286 * Doing discard actually. After a cluster discard is finished, the cluster
287 * will be added to free cluster list. caller should hold si->lock.
288*/
289static void swap_do_scheduled_discard(struct swap_info_struct *si)
290{
291 struct swap_cluster_info *info;
292 unsigned int idx;
293
294 info = si->cluster_info;
295
296 while (!cluster_is_null(&si->discard_cluster_head)) {
297 idx = cluster_next(&si->discard_cluster_head);
298
299 cluster_set_next_flag(&si->discard_cluster_head,
300 cluster_next(&info[idx]), 0);
301 if (cluster_next(&si->discard_cluster_tail) == idx) {
302 cluster_set_null(&si->discard_cluster_head);
303 cluster_set_null(&si->discard_cluster_tail);
304 }
305 spin_unlock(&si->lock);
306
307 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
308 SWAPFILE_CLUSTER);
309
310 spin_lock(&si->lock);
311 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
312 if (cluster_is_null(&si->free_cluster_head)) {
313 cluster_set_next_flag(&si->free_cluster_head,
314 idx, 0);
315 cluster_set_next_flag(&si->free_cluster_tail,
316 idx, 0);
317 } else {
318 unsigned int tail;
319
320 tail = cluster_next(&si->free_cluster_tail);
321 cluster_set_next(&info[tail], idx);
322 cluster_set_next_flag(&si->free_cluster_tail,
323 idx, 0);
324 }
325 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
326 0, SWAPFILE_CLUSTER);
327 }
328}
329
330static void swap_discard_work(struct work_struct *work)
331{
332 struct swap_info_struct *si;
333
334 si = container_of(work, struct swap_info_struct, discard_work);
335
336 spin_lock(&si->lock);
337 swap_do_scheduled_discard(si);
338 spin_unlock(&si->lock);
339}
340
2a8f9449
SL
341/*
342 * The cluster corresponding to page_nr will be used. The cluster will be
343 * removed from free cluster list and its usage counter will be increased.
344 */
345static void inc_cluster_info_page(struct swap_info_struct *p,
346 struct swap_cluster_info *cluster_info, unsigned long page_nr)
347{
348 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
349
350 if (!cluster_info)
351 return;
352 if (cluster_is_free(&cluster_info[idx])) {
353 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
354 cluster_set_next_flag(&p->free_cluster_head,
355 cluster_next(&cluster_info[idx]), 0);
356 if (cluster_next(&p->free_cluster_tail) == idx) {
357 cluster_set_null(&p->free_cluster_tail);
358 cluster_set_null(&p->free_cluster_head);
359 }
360 cluster_set_count_flag(&cluster_info[idx], 0, 0);
361 }
362
363 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
364 cluster_set_count(&cluster_info[idx],
365 cluster_count(&cluster_info[idx]) + 1);
366}
367
368/*
369 * The cluster corresponding to page_nr decreases one usage. If the usage
370 * counter becomes 0, which means no page in the cluster is in using, we can
371 * optionally discard the cluster and add it to free cluster list.
372 */
373static void dec_cluster_info_page(struct swap_info_struct *p,
374 struct swap_cluster_info *cluster_info, unsigned long page_nr)
375{
376 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
377
378 if (!cluster_info)
379 return;
380
381 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
382 cluster_set_count(&cluster_info[idx],
383 cluster_count(&cluster_info[idx]) - 1);
384
385 if (cluster_count(&cluster_info[idx]) == 0) {
815c2c54
SL
386 /*
387 * If the swap is discardable, prepare discard the cluster
388 * instead of free it immediately. The cluster will be freed
389 * after discard.
390 */
edfe23da
SL
391 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
392 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
815c2c54
SL
393 swap_cluster_schedule_discard(p, idx);
394 return;
395 }
396
2a8f9449
SL
397 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
398 if (cluster_is_null(&p->free_cluster_head)) {
399 cluster_set_next_flag(&p->free_cluster_head, idx, 0);
400 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
401 } else {
402 unsigned int tail = cluster_next(&p->free_cluster_tail);
403 cluster_set_next(&cluster_info[tail], idx);
404 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
405 }
406 }
407}
408
409/*
410 * It's possible scan_swap_map() uses a free cluster in the middle of free
411 * cluster list. Avoiding such abuse to avoid list corruption.
412 */
ebc2a1a6
SL
413static bool
414scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
415 unsigned long offset)
416{
ebc2a1a6
SL
417 struct percpu_cluster *percpu_cluster;
418 bool conflict;
419
2a8f9449 420 offset /= SWAPFILE_CLUSTER;
ebc2a1a6 421 conflict = !cluster_is_null(&si->free_cluster_head) &&
2a8f9449
SL
422 offset != cluster_next(&si->free_cluster_head) &&
423 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
424
425 if (!conflict)
426 return false;
427
428 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
429 cluster_set_null(&percpu_cluster->index);
430 return true;
431}
432
433/*
434 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
435 * might involve allocating a new cluster for current CPU too.
436 */
437static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
438 unsigned long *offset, unsigned long *scan_base)
439{
440 struct percpu_cluster *cluster;
441 bool found_free;
442 unsigned long tmp;
443
444new_cluster:
445 cluster = this_cpu_ptr(si->percpu_cluster);
446 if (cluster_is_null(&cluster->index)) {
447 if (!cluster_is_null(&si->free_cluster_head)) {
448 cluster->index = si->free_cluster_head;
449 cluster->next = cluster_next(&cluster->index) *
450 SWAPFILE_CLUSTER;
451 } else if (!cluster_is_null(&si->discard_cluster_head)) {
452 /*
453 * we don't have free cluster but have some clusters in
454 * discarding, do discard now and reclaim them
455 */
456 swap_do_scheduled_discard(si);
457 *scan_base = *offset = si->cluster_next;
458 goto new_cluster;
459 } else
460 return;
461 }
462
463 found_free = false;
464
465 /*
466 * Other CPUs can use our cluster if they can't find a free cluster,
467 * check if there is still free entry in the cluster
468 */
469 tmp = cluster->next;
470 while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
471 SWAPFILE_CLUSTER) {
472 if (!si->swap_map[tmp]) {
473 found_free = true;
474 break;
475 }
476 tmp++;
477 }
478 if (!found_free) {
479 cluster_set_null(&cluster->index);
480 goto new_cluster;
481 }
482 cluster->next = tmp + 1;
483 *offset = tmp;
484 *scan_base = tmp;
2a8f9449
SL
485}
486
24b8ff7c
CEB
487static unsigned long scan_swap_map(struct swap_info_struct *si,
488 unsigned char usage)
1da177e4 489{
ebebbbe9 490 unsigned long offset;
c60aa176 491 unsigned long scan_base;
7992fde7 492 unsigned long last_in_cluster = 0;
048c27fd 493 int latency_ration = LATENCY_LIMIT;
7dfad418 494
886bb7e9 495 /*
7dfad418
HD
496 * We try to cluster swap pages by allocating them sequentially
497 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
498 * way, however, we resort to first-free allocation, starting
499 * a new cluster. This prevents us from scattering swap pages
500 * all over the entire swap partition, so that we reduce
501 * overall disk seek times between swap pages. -- sct
502 * But we do now try to find an empty cluster. -Andrea
c60aa176 503 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
504 */
505
52b7efdb 506 si->flags += SWP_SCANNING;
c60aa176 507 scan_base = offset = si->cluster_next;
ebebbbe9 508
ebc2a1a6
SL
509 /* SSD algorithm */
510 if (si->cluster_info) {
511 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
512 goto checks;
513 }
514
ebebbbe9
HD
515 if (unlikely(!si->cluster_nr--)) {
516 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
517 si->cluster_nr = SWAPFILE_CLUSTER - 1;
518 goto checks;
519 }
2a8f9449 520
ec8acf20 521 spin_unlock(&si->lock);
7dfad418 522
c60aa176
HD
523 /*
524 * If seek is expensive, start searching for new cluster from
525 * start of partition, to minimize the span of allocated swap.
50088c44
CY
526 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
527 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 528 */
50088c44 529 scan_base = offset = si->lowest_bit;
7dfad418
HD
530 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
531
532 /* Locate the first empty (unaligned) cluster */
533 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 534 if (si->swap_map[offset])
7dfad418
HD
535 last_in_cluster = offset + SWAPFILE_CLUSTER;
536 else if (offset == last_in_cluster) {
ec8acf20 537 spin_lock(&si->lock);
ebebbbe9
HD
538 offset -= SWAPFILE_CLUSTER - 1;
539 si->cluster_next = offset;
540 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
541 goto checks;
542 }
543 if (unlikely(--latency_ration < 0)) {
544 cond_resched();
545 latency_ration = LATENCY_LIMIT;
546 }
547 }
548
549 offset = scan_base;
ec8acf20 550 spin_lock(&si->lock);
ebebbbe9 551 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 552 }
7dfad418 553
ebebbbe9 554checks:
ebc2a1a6
SL
555 if (si->cluster_info) {
556 while (scan_swap_map_ssd_cluster_conflict(si, offset))
557 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
558 }
ebebbbe9 559 if (!(si->flags & SWP_WRITEOK))
52b7efdb 560 goto no_page;
7dfad418
HD
561 if (!si->highest_bit)
562 goto no_page;
ebebbbe9 563 if (offset > si->highest_bit)
c60aa176 564 scan_base = offset = si->lowest_bit;
c9e44410 565
b73d7fce
HD
566 /* reuse swap entry of cache-only swap if not busy. */
567 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 568 int swap_was_freed;
ec8acf20 569 spin_unlock(&si->lock);
c9e44410 570 swap_was_freed = __try_to_reclaim_swap(si, offset);
ec8acf20 571 spin_lock(&si->lock);
c9e44410
KH
572 /* entry was freed successfully, try to use this again */
573 if (swap_was_freed)
574 goto checks;
575 goto scan; /* check next one */
576 }
577
ebebbbe9
HD
578 if (si->swap_map[offset])
579 goto scan;
580
581 if (offset == si->lowest_bit)
582 si->lowest_bit++;
583 if (offset == si->highest_bit)
584 si->highest_bit--;
585 si->inuse_pages++;
586 if (si->inuse_pages == si->pages) {
587 si->lowest_bit = si->max;
588 si->highest_bit = 0;
18ab4d4c
DS
589 spin_lock(&swap_avail_lock);
590 plist_del(&si->avail_list, &swap_avail_head);
591 spin_unlock(&swap_avail_lock);
1da177e4 592 }
253d553b 593 si->swap_map[offset] = usage;
2a8f9449 594 inc_cluster_info_page(si, si->cluster_info, offset);
ebebbbe9
HD
595 si->cluster_next = offset + 1;
596 si->flags -= SWP_SCANNING;
7992fde7 597
ebebbbe9 598 return offset;
7dfad418 599
ebebbbe9 600scan:
ec8acf20 601 spin_unlock(&si->lock);
7dfad418 602 while (++offset <= si->highest_bit) {
52b7efdb 603 if (!si->swap_map[offset]) {
ec8acf20 604 spin_lock(&si->lock);
52b7efdb
HD
605 goto checks;
606 }
c9e44410 607 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 608 spin_lock(&si->lock);
c9e44410
KH
609 goto checks;
610 }
048c27fd
HD
611 if (unlikely(--latency_ration < 0)) {
612 cond_resched();
613 latency_ration = LATENCY_LIMIT;
614 }
7dfad418 615 }
c60aa176 616 offset = si->lowest_bit;
a5998061 617 while (offset < scan_base) {
c60aa176 618 if (!si->swap_map[offset]) {
ec8acf20 619 spin_lock(&si->lock);
c60aa176
HD
620 goto checks;
621 }
c9e44410 622 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 623 spin_lock(&si->lock);
c9e44410
KH
624 goto checks;
625 }
c60aa176
HD
626 if (unlikely(--latency_ration < 0)) {
627 cond_resched();
628 latency_ration = LATENCY_LIMIT;
629 }
a5998061 630 offset++;
c60aa176 631 }
ec8acf20 632 spin_lock(&si->lock);
7dfad418
HD
633
634no_page:
52b7efdb 635 si->flags -= SWP_SCANNING;
1da177e4
LT
636 return 0;
637}
638
639swp_entry_t get_swap_page(void)
640{
adfab836 641 struct swap_info_struct *si, *next;
fb4f88dc 642 pgoff_t offset;
1da177e4 643
ec8acf20 644 if (atomic_long_read(&nr_swap_pages) <= 0)
fb4f88dc 645 goto noswap;
ec8acf20 646 atomic_long_dec(&nr_swap_pages);
fb4f88dc 647
18ab4d4c
DS
648 spin_lock(&swap_avail_lock);
649
650start_over:
651 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
652 /* requeue si to after same-priority siblings */
653 plist_requeue(&si->avail_list, &swap_avail_head);
654 spin_unlock(&swap_avail_lock);
ec8acf20 655 spin_lock(&si->lock);
adfab836 656 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c
DS
657 spin_lock(&swap_avail_lock);
658 if (plist_node_empty(&si->avail_list)) {
659 spin_unlock(&si->lock);
660 goto nextsi;
661 }
662 WARN(!si->highest_bit,
663 "swap_info %d in list but !highest_bit\n",
664 si->type);
665 WARN(!(si->flags & SWP_WRITEOK),
666 "swap_info %d in list but !SWP_WRITEOK\n",
667 si->type);
668 plist_del(&si->avail_list, &swap_avail_head);
ec8acf20 669 spin_unlock(&si->lock);
18ab4d4c 670 goto nextsi;
ec8acf20 671 }
fb4f88dc 672
355cfa73 673 /* This is called for allocating swap entry for cache */
253d553b 674 offset = scan_swap_map(si, SWAP_HAS_CACHE);
ec8acf20
SL
675 spin_unlock(&si->lock);
676 if (offset)
adfab836 677 return swp_entry(si->type, offset);
18ab4d4c
DS
678 pr_debug("scan_swap_map of si %d failed to find offset\n",
679 si->type);
680 spin_lock(&swap_avail_lock);
681nextsi:
adfab836
DS
682 /*
683 * if we got here, it's likely that si was almost full before,
684 * and since scan_swap_map() can drop the si->lock, multiple
685 * callers probably all tried to get a page from the same si
18ab4d4c
DS
686 * and it filled up before we could get one; or, the si filled
687 * up between us dropping swap_avail_lock and taking si->lock.
688 * Since we dropped the swap_avail_lock, the swap_avail_head
689 * list may have been modified; so if next is still in the
690 * swap_avail_head list then try it, otherwise start over.
adfab836 691 */
18ab4d4c
DS
692 if (plist_node_empty(&next->avail_list))
693 goto start_over;
1da177e4 694 }
fb4f88dc 695
18ab4d4c
DS
696 spin_unlock(&swap_avail_lock);
697
ec8acf20 698 atomic_long_inc(&nr_swap_pages);
fb4f88dc 699noswap:
fb4f88dc 700 return (swp_entry_t) {0};
1da177e4
LT
701}
702
2de1a7e4 703/* The only caller of this function is now suspend routine */
910321ea
HD
704swp_entry_t get_swap_page_of_type(int type)
705{
706 struct swap_info_struct *si;
707 pgoff_t offset;
708
910321ea 709 si = swap_info[type];
ec8acf20 710 spin_lock(&si->lock);
910321ea 711 if (si && (si->flags & SWP_WRITEOK)) {
ec8acf20 712 atomic_long_dec(&nr_swap_pages);
910321ea
HD
713 /* This is called for allocating swap entry, not cache */
714 offset = scan_swap_map(si, 1);
715 if (offset) {
ec8acf20 716 spin_unlock(&si->lock);
910321ea
HD
717 return swp_entry(type, offset);
718 }
ec8acf20 719 atomic_long_inc(&nr_swap_pages);
910321ea 720 }
ec8acf20 721 spin_unlock(&si->lock);
910321ea
HD
722 return (swp_entry_t) {0};
723}
724
73c34b6a 725static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1da177e4 726{
73c34b6a 727 struct swap_info_struct *p;
1da177e4
LT
728 unsigned long offset, type;
729
730 if (!entry.val)
731 goto out;
732 type = swp_type(entry);
733 if (type >= nr_swapfiles)
734 goto bad_nofile;
efa90a98 735 p = swap_info[type];
1da177e4
LT
736 if (!(p->flags & SWP_USED))
737 goto bad_device;
738 offset = swp_offset(entry);
739 if (offset >= p->max)
740 goto bad_offset;
741 if (!p->swap_map[offset])
742 goto bad_free;
ec8acf20 743 spin_lock(&p->lock);
1da177e4
LT
744 return p;
745
746bad_free:
465c47fd 747 pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
1da177e4
LT
748 goto out;
749bad_offset:
465c47fd 750 pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
751 goto out;
752bad_device:
465c47fd 753 pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
754 goto out;
755bad_nofile:
465c47fd 756 pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
757out:
758 return NULL;
886bb7e9 759}
1da177e4 760
8d69aaee
HD
761static unsigned char swap_entry_free(struct swap_info_struct *p,
762 swp_entry_t entry, unsigned char usage)
1da177e4 763{
253d553b 764 unsigned long offset = swp_offset(entry);
8d69aaee
HD
765 unsigned char count;
766 unsigned char has_cache;
355cfa73 767
253d553b
HD
768 count = p->swap_map[offset];
769 has_cache = count & SWAP_HAS_CACHE;
770 count &= ~SWAP_HAS_CACHE;
355cfa73 771
253d553b 772 if (usage == SWAP_HAS_CACHE) {
355cfa73 773 VM_BUG_ON(!has_cache);
253d553b 774 has_cache = 0;
aaa46865
HD
775 } else if (count == SWAP_MAP_SHMEM) {
776 /*
777 * Or we could insist on shmem.c using a special
778 * swap_shmem_free() and free_shmem_swap_and_cache()...
779 */
780 count = 0;
570a335b
HD
781 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
782 if (count == COUNT_CONTINUED) {
783 if (swap_count_continued(p, offset, count))
784 count = SWAP_MAP_MAX | COUNT_CONTINUED;
785 else
786 count = SWAP_MAP_MAX;
787 } else
788 count--;
789 }
253d553b
HD
790
791 if (!count)
792 mem_cgroup_uncharge_swap(entry);
793
794 usage = count | has_cache;
795 p->swap_map[offset] = usage;
355cfa73 796
355cfa73 797 /* free if no reference */
253d553b 798 if (!usage) {
2a8f9449 799 dec_cluster_info_page(p, p->cluster_info, offset);
355cfa73
KH
800 if (offset < p->lowest_bit)
801 p->lowest_bit = offset;
18ab4d4c
DS
802 if (offset > p->highest_bit) {
803 bool was_full = !p->highest_bit;
355cfa73 804 p->highest_bit = offset;
18ab4d4c
DS
805 if (was_full && (p->flags & SWP_WRITEOK)) {
806 spin_lock(&swap_avail_lock);
807 WARN_ON(!plist_node_empty(&p->avail_list));
808 if (plist_node_empty(&p->avail_list))
809 plist_add(&p->avail_list,
810 &swap_avail_head);
811 spin_unlock(&swap_avail_lock);
812 }
813 }
ec8acf20 814 atomic_long_inc(&nr_swap_pages);
355cfa73 815 p->inuse_pages--;
38b5faf4 816 frontswap_invalidate_page(p->type, offset);
73744923
MG
817 if (p->flags & SWP_BLKDEV) {
818 struct gendisk *disk = p->bdev->bd_disk;
819 if (disk->fops->swap_slot_free_notify)
820 disk->fops->swap_slot_free_notify(p->bdev,
821 offset);
822 }
1da177e4 823 }
253d553b
HD
824
825 return usage;
1da177e4
LT
826}
827
828/*
2de1a7e4 829 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
830 * is still around or has not been recycled.
831 */
832void swap_free(swp_entry_t entry)
833{
73c34b6a 834 struct swap_info_struct *p;
1da177e4
LT
835
836 p = swap_info_get(entry);
837 if (p) {
253d553b 838 swap_entry_free(p, entry, 1);
ec8acf20 839 spin_unlock(&p->lock);
1da177e4
LT
840 }
841}
842
cb4b86ba
KH
843/*
844 * Called after dropping swapcache to decrease refcnt to swap entries.
845 */
846void swapcache_free(swp_entry_t entry, struct page *page)
847{
355cfa73 848 struct swap_info_struct *p;
8d69aaee 849 unsigned char count;
355cfa73 850
355cfa73
KH
851 p = swap_info_get(entry);
852 if (p) {
253d553b
HD
853 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
854 if (page)
855 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
ec8acf20 856 spin_unlock(&p->lock);
355cfa73 857 }
cb4b86ba
KH
858}
859
1da177e4 860/*
c475a8ab 861 * How many references to page are currently swapped out?
570a335b
HD
862 * This does not give an exact answer when swap count is continued,
863 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 864 */
bde05d1c 865int page_swapcount(struct page *page)
1da177e4 866{
c475a8ab
HD
867 int count = 0;
868 struct swap_info_struct *p;
1da177e4
LT
869 swp_entry_t entry;
870
4c21e2f2 871 entry.val = page_private(page);
1da177e4
LT
872 p = swap_info_get(entry);
873 if (p) {
355cfa73 874 count = swap_count(p->swap_map[swp_offset(entry)]);
ec8acf20 875 spin_unlock(&p->lock);
1da177e4 876 }
c475a8ab 877 return count;
1da177e4
LT
878}
879
880/*
7b1fe597
HD
881 * We can write to an anon page without COW if there are no other references
882 * to it. And as a side-effect, free up its swap: because the old content
883 * on disk will never be read, and seeking back there to write new content
884 * later would only waste time away from clustering.
1da177e4 885 */
7b1fe597 886int reuse_swap_page(struct page *page)
1da177e4 887{
c475a8ab
HD
888 int count;
889
309381fe 890 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688
HD
891 if (unlikely(PageKsm(page)))
892 return 0;
c475a8ab 893 count = page_mapcount(page);
7b1fe597 894 if (count <= 1 && PageSwapCache(page)) {
c475a8ab 895 count += page_swapcount(page);
7b1fe597
HD
896 if (count == 1 && !PageWriteback(page)) {
897 delete_from_swap_cache(page);
898 SetPageDirty(page);
899 }
900 }
5ad64688 901 return count <= 1;
1da177e4
LT
902}
903
904/*
a2c43eed
HD
905 * If swap is getting full, or if there are no more mappings of this page,
906 * then try_to_free_swap is called to free its swap space.
1da177e4 907 */
a2c43eed 908int try_to_free_swap(struct page *page)
1da177e4 909{
309381fe 910 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
911
912 if (!PageSwapCache(page))
913 return 0;
914 if (PageWriteback(page))
915 return 0;
a2c43eed 916 if (page_swapcount(page))
1da177e4
LT
917 return 0;
918
b73d7fce
HD
919 /*
920 * Once hibernation has begun to create its image of memory,
921 * there's a danger that one of the calls to try_to_free_swap()
922 * - most probably a call from __try_to_reclaim_swap() while
923 * hibernation is allocating its own swap pages for the image,
924 * but conceivably even a call from memory reclaim - will free
925 * the swap from a page which has already been recorded in the
926 * image as a clean swapcache page, and then reuse its swap for
927 * another page of the image. On waking from hibernation, the
928 * original page might be freed under memory pressure, then
929 * later read back in from swap, now with the wrong data.
930 *
2de1a7e4 931 * Hibernation suspends storage while it is writing the image
f90ac398 932 * to disk so check that here.
b73d7fce 933 */
f90ac398 934 if (pm_suspended_storage())
b73d7fce
HD
935 return 0;
936
a2c43eed
HD
937 delete_from_swap_cache(page);
938 SetPageDirty(page);
939 return 1;
68a22394
RR
940}
941
1da177e4
LT
942/*
943 * Free the swap entry like above, but also try to
944 * free the page cache entry if it is the last user.
945 */
2509ef26 946int free_swap_and_cache(swp_entry_t entry)
1da177e4 947{
2509ef26 948 struct swap_info_struct *p;
1da177e4
LT
949 struct page *page = NULL;
950
a7420aa5 951 if (non_swap_entry(entry))
2509ef26 952 return 1;
0697212a 953
1da177e4
LT
954 p = swap_info_get(entry);
955 if (p) {
253d553b 956 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
33806f06
SL
957 page = find_get_page(swap_address_space(entry),
958 entry.val);
8413ac9d 959 if (page && !trylock_page(page)) {
93fac704
NP
960 page_cache_release(page);
961 page = NULL;
962 }
963 }
ec8acf20 964 spin_unlock(&p->lock);
1da177e4
LT
965 }
966 if (page) {
a2c43eed
HD
967 /*
968 * Not mapped elsewhere, or swap space full? Free it!
969 * Also recheck PageSwapCache now page is locked (above).
970 */
93fac704 971 if (PageSwapCache(page) && !PageWriteback(page) &&
a2c43eed 972 (!page_mapped(page) || vm_swap_full())) {
1da177e4
LT
973 delete_from_swap_cache(page);
974 SetPageDirty(page);
975 }
976 unlock_page(page);
977 page_cache_release(page);
978 }
2509ef26 979 return p != NULL;
1da177e4
LT
980}
981
b0cb1a19 982#ifdef CONFIG_HIBERNATION
f577eb30 983/*
915bae9e 984 * Find the swap type that corresponds to given device (if any).
f577eb30 985 *
915bae9e
RW
986 * @offset - number of the PAGE_SIZE-sized block of the device, starting
987 * from 0, in which the swap header is expected to be located.
988 *
989 * This is needed for the suspend to disk (aka swsusp).
f577eb30 990 */
7bf23687 991int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 992{
915bae9e 993 struct block_device *bdev = NULL;
efa90a98 994 int type;
f577eb30 995
915bae9e
RW
996 if (device)
997 bdev = bdget(device);
998
f577eb30 999 spin_lock(&swap_lock);
efa90a98
HD
1000 for (type = 0; type < nr_swapfiles; type++) {
1001 struct swap_info_struct *sis = swap_info[type];
f577eb30 1002
915bae9e 1003 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1004 continue;
b6b5bce3 1005
915bae9e 1006 if (!bdev) {
7bf23687 1007 if (bdev_p)
dddac6a7 1008 *bdev_p = bdgrab(sis->bdev);
7bf23687 1009
6e1819d6 1010 spin_unlock(&swap_lock);
efa90a98 1011 return type;
6e1819d6 1012 }
915bae9e 1013 if (bdev == sis->bdev) {
9625a5f2 1014 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 1015
915bae9e 1016 if (se->start_block == offset) {
7bf23687 1017 if (bdev_p)
dddac6a7 1018 *bdev_p = bdgrab(sis->bdev);
7bf23687 1019
915bae9e
RW
1020 spin_unlock(&swap_lock);
1021 bdput(bdev);
efa90a98 1022 return type;
915bae9e 1023 }
f577eb30
RW
1024 }
1025 }
1026 spin_unlock(&swap_lock);
915bae9e
RW
1027 if (bdev)
1028 bdput(bdev);
1029
f577eb30
RW
1030 return -ENODEV;
1031}
1032
73c34b6a
HD
1033/*
1034 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1035 * corresponding to given index in swap_info (swap type).
1036 */
1037sector_t swapdev_block(int type, pgoff_t offset)
1038{
1039 struct block_device *bdev;
1040
1041 if ((unsigned int)type >= nr_swapfiles)
1042 return 0;
1043 if (!(swap_info[type]->flags & SWP_WRITEOK))
1044 return 0;
d4906e1a 1045 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
1046}
1047
f577eb30
RW
1048/*
1049 * Return either the total number of swap pages of given type, or the number
1050 * of free pages of that type (depending on @free)
1051 *
1052 * This is needed for software suspend
1053 */
1054unsigned int count_swap_pages(int type, int free)
1055{
1056 unsigned int n = 0;
1057
efa90a98
HD
1058 spin_lock(&swap_lock);
1059 if ((unsigned int)type < nr_swapfiles) {
1060 struct swap_info_struct *sis = swap_info[type];
1061
ec8acf20 1062 spin_lock(&sis->lock);
efa90a98
HD
1063 if (sis->flags & SWP_WRITEOK) {
1064 n = sis->pages;
f577eb30 1065 if (free)
efa90a98 1066 n -= sis->inuse_pages;
f577eb30 1067 }
ec8acf20 1068 spin_unlock(&sis->lock);
f577eb30 1069 }
efa90a98 1070 spin_unlock(&swap_lock);
f577eb30
RW
1071 return n;
1072}
73c34b6a 1073#endif /* CONFIG_HIBERNATION */
f577eb30 1074
179ef71c
CG
1075static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
1076{
1077#ifdef CONFIG_MEM_SOFT_DIRTY
1078 /*
1079 * When pte keeps soft dirty bit the pte generated
1080 * from swap entry does not has it, still it's same
1081 * pte from logical point of view.
1082 */
1083 pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
1084 return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
1085#else
1086 return pte_same(pte, swp_pte);
1087#endif
1088}
1089
1da177e4 1090/*
72866f6f
HD
1091 * No need to decide whether this PTE shares the swap entry with others,
1092 * just let do_wp_page work it out if a write is requested later - to
1093 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1094 */
044d66c1 1095static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1096 unsigned long addr, swp_entry_t entry, struct page *page)
1097{
9e16b7fb 1098 struct page *swapcache;
72835c86 1099 struct mem_cgroup *memcg;
044d66c1
HD
1100 spinlock_t *ptl;
1101 pte_t *pte;
1102 int ret = 1;
1103
9e16b7fb
HD
1104 swapcache = page;
1105 page = ksm_might_need_to_copy(page, vma, addr);
1106 if (unlikely(!page))
1107 return -ENOMEM;
1108
00501b53 1109 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg)) {
044d66c1 1110 ret = -ENOMEM;
85d9fc89
KH
1111 goto out_nolock;
1112 }
044d66c1
HD
1113
1114 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
179ef71c 1115 if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
00501b53 1116 mem_cgroup_cancel_charge(page, memcg);
044d66c1
HD
1117 ret = 0;
1118 goto out;
1119 }
8a9f3ccd 1120
b084d435 1121 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1122 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1123 get_page(page);
1124 set_pte_at(vma->vm_mm, addr, pte,
1125 pte_mkold(mk_pte(page, vma->vm_page_prot)));
00501b53 1126 if (page == swapcache) {
9e16b7fb 1127 page_add_anon_rmap(page, vma, addr);
00501b53
JW
1128 mem_cgroup_commit_charge(page, memcg, true);
1129 } else { /* ksm created a completely new copy */
9e16b7fb 1130 page_add_new_anon_rmap(page, vma, addr);
00501b53
JW
1131 mem_cgroup_commit_charge(page, memcg, false);
1132 lru_cache_add_active_or_unevictable(page, vma);
1133 }
1da177e4
LT
1134 swap_free(entry);
1135 /*
1136 * Move the page to the active list so it is not
1137 * immediately swapped out again after swapon.
1138 */
1139 activate_page(page);
044d66c1
HD
1140out:
1141 pte_unmap_unlock(pte, ptl);
85d9fc89 1142out_nolock:
9e16b7fb
HD
1143 if (page != swapcache) {
1144 unlock_page(page);
1145 put_page(page);
1146 }
044d66c1 1147 return ret;
1da177e4
LT
1148}
1149
1150static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1151 unsigned long addr, unsigned long end,
1152 swp_entry_t entry, struct page *page)
1153{
1da177e4 1154 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 1155 pte_t *pte;
8a9f3ccd 1156 int ret = 0;
1da177e4 1157
044d66c1
HD
1158 /*
1159 * We don't actually need pte lock while scanning for swp_pte: since
1160 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1161 * page table while we're scanning; though it could get zapped, and on
1162 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1163 * of unmatched parts which look like swp_pte, so unuse_pte must
1164 * recheck under pte lock. Scanning without pte lock lets it be
2de1a7e4 1165 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
044d66c1
HD
1166 */
1167 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1168 do {
1169 /*
1170 * swapoff spends a _lot_ of time in this loop!
1171 * Test inline before going to call unuse_pte.
1172 */
179ef71c 1173 if (unlikely(maybe_same_pte(*pte, swp_pte))) {
044d66c1
HD
1174 pte_unmap(pte);
1175 ret = unuse_pte(vma, pmd, addr, entry, page);
1176 if (ret)
1177 goto out;
1178 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1179 }
1180 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
1181 pte_unmap(pte - 1);
1182out:
8a9f3ccd 1183 return ret;
1da177e4
LT
1184}
1185
1186static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1187 unsigned long addr, unsigned long end,
1188 swp_entry_t entry, struct page *page)
1189{
1190 pmd_t *pmd;
1191 unsigned long next;
8a9f3ccd 1192 int ret;
1da177e4
LT
1193
1194 pmd = pmd_offset(pud, addr);
1195 do {
1196 next = pmd_addr_end(addr, end);
1a5a9906 1197 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 1198 continue;
8a9f3ccd
BS
1199 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1200 if (ret)
1201 return ret;
1da177e4
LT
1202 } while (pmd++, addr = next, addr != end);
1203 return 0;
1204}
1205
1206static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1207 unsigned long addr, unsigned long end,
1208 swp_entry_t entry, struct page *page)
1209{
1210 pud_t *pud;
1211 unsigned long next;
8a9f3ccd 1212 int ret;
1da177e4
LT
1213
1214 pud = pud_offset(pgd, addr);
1215 do {
1216 next = pud_addr_end(addr, end);
1217 if (pud_none_or_clear_bad(pud))
1218 continue;
8a9f3ccd
BS
1219 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1220 if (ret)
1221 return ret;
1da177e4
LT
1222 } while (pud++, addr = next, addr != end);
1223 return 0;
1224}
1225
1226static int unuse_vma(struct vm_area_struct *vma,
1227 swp_entry_t entry, struct page *page)
1228{
1229 pgd_t *pgd;
1230 unsigned long addr, end, next;
8a9f3ccd 1231 int ret;
1da177e4 1232
3ca7b3c5 1233 if (page_anon_vma(page)) {
1da177e4
LT
1234 addr = page_address_in_vma(page, vma);
1235 if (addr == -EFAULT)
1236 return 0;
1237 else
1238 end = addr + PAGE_SIZE;
1239 } else {
1240 addr = vma->vm_start;
1241 end = vma->vm_end;
1242 }
1243
1244 pgd = pgd_offset(vma->vm_mm, addr);
1245 do {
1246 next = pgd_addr_end(addr, end);
1247 if (pgd_none_or_clear_bad(pgd))
1248 continue;
8a9f3ccd
BS
1249 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1250 if (ret)
1251 return ret;
1da177e4
LT
1252 } while (pgd++, addr = next, addr != end);
1253 return 0;
1254}
1255
1256static int unuse_mm(struct mm_struct *mm,
1257 swp_entry_t entry, struct page *page)
1258{
1259 struct vm_area_struct *vma;
8a9f3ccd 1260 int ret = 0;
1da177e4
LT
1261
1262 if (!down_read_trylock(&mm->mmap_sem)) {
1263 /*
7d03431c
FLVC
1264 * Activate page so shrink_inactive_list is unlikely to unmap
1265 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 1266 */
c475a8ab 1267 activate_page(page);
1da177e4
LT
1268 unlock_page(page);
1269 down_read(&mm->mmap_sem);
1270 lock_page(page);
1271 }
1da177e4 1272 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 1273 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4
LT
1274 break;
1275 }
1da177e4 1276 up_read(&mm->mmap_sem);
8a9f3ccd 1277 return (ret < 0)? ret: 0;
1da177e4
LT
1278}
1279
1280/*
38b5faf4
DM
1281 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1282 * from current position to next entry still in use.
1da177e4
LT
1283 * Recycle to start on reaching the end, returning 0 when empty.
1284 */
6eb396dc 1285static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 1286 unsigned int prev, bool frontswap)
1da177e4 1287{
6eb396dc
HD
1288 unsigned int max = si->max;
1289 unsigned int i = prev;
8d69aaee 1290 unsigned char count;
1da177e4
LT
1291
1292 /*
5d337b91 1293 * No need for swap_lock here: we're just looking
1da177e4
LT
1294 * for whether an entry is in use, not modifying it; false
1295 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 1296 * allocations from this area (while holding swap_lock).
1da177e4
LT
1297 */
1298 for (;;) {
1299 if (++i >= max) {
1300 if (!prev) {
1301 i = 0;
1302 break;
1303 }
1304 /*
1305 * No entries in use at top of swap_map,
1306 * loop back to start and recheck there.
1307 */
1308 max = prev + 1;
1309 prev = 0;
1310 i = 1;
1311 }
38b5faf4
DM
1312 if (frontswap) {
1313 if (frontswap_test(si, i))
1314 break;
1315 else
1316 continue;
1317 }
edfe23da 1318 count = ACCESS_ONCE(si->swap_map[i]);
355cfa73 1319 if (count && swap_count(count) != SWAP_MAP_BAD)
1da177e4
LT
1320 break;
1321 }
1322 return i;
1323}
1324
1325/*
1326 * We completely avoid races by reading each swap page in advance,
1327 * and then search for the process using it. All the necessary
1328 * page table adjustments can then be made atomically.
38b5faf4
DM
1329 *
1330 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1331 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 1332 */
38b5faf4
DM
1333int try_to_unuse(unsigned int type, bool frontswap,
1334 unsigned long pages_to_unuse)
1da177e4 1335{
efa90a98 1336 struct swap_info_struct *si = swap_info[type];
1da177e4 1337 struct mm_struct *start_mm;
edfe23da
SL
1338 volatile unsigned char *swap_map; /* swap_map is accessed without
1339 * locking. Mark it as volatile
1340 * to prevent compiler doing
1341 * something odd.
1342 */
8d69aaee 1343 unsigned char swcount;
1da177e4
LT
1344 struct page *page;
1345 swp_entry_t entry;
6eb396dc 1346 unsigned int i = 0;
1da177e4 1347 int retval = 0;
1da177e4
LT
1348
1349 /*
1350 * When searching mms for an entry, a good strategy is to
1351 * start at the first mm we freed the previous entry from
1352 * (though actually we don't notice whether we or coincidence
1353 * freed the entry). Initialize this start_mm with a hold.
1354 *
1355 * A simpler strategy would be to start at the last mm we
1356 * freed the previous entry from; but that would take less
1357 * advantage of mmlist ordering, which clusters forked mms
1358 * together, child after parent. If we race with dup_mmap(), we
1359 * prefer to resolve parent before child, lest we miss entries
1360 * duplicated after we scanned child: using last mm would invert
570a335b 1361 * that.
1da177e4
LT
1362 */
1363 start_mm = &init_mm;
1364 atomic_inc(&init_mm.mm_users);
1365
1366 /*
1367 * Keep on scanning until all entries have gone. Usually,
1368 * one pass through swap_map is enough, but not necessarily:
1369 * there are races when an instance of an entry might be missed.
1370 */
38b5faf4 1371 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4
LT
1372 if (signal_pending(current)) {
1373 retval = -EINTR;
1374 break;
1375 }
1376
886bb7e9 1377 /*
1da177e4
LT
1378 * Get a page for the entry, using the existing swap
1379 * cache page if there is one. Otherwise, get a clean
886bb7e9 1380 * page and read the swap into it.
1da177e4
LT
1381 */
1382 swap_map = &si->swap_map[i];
1383 entry = swp_entry(type, i);
02098fea
HD
1384 page = read_swap_cache_async(entry,
1385 GFP_HIGHUSER_MOVABLE, NULL, 0);
1da177e4
LT
1386 if (!page) {
1387 /*
1388 * Either swap_duplicate() failed because entry
1389 * has been freed independently, and will not be
1390 * reused since sys_swapoff() already disabled
1391 * allocation from here, or alloc_page() failed.
1392 */
edfe23da
SL
1393 swcount = *swap_map;
1394 /*
1395 * We don't hold lock here, so the swap entry could be
1396 * SWAP_MAP_BAD (when the cluster is discarding).
1397 * Instead of fail out, We can just skip the swap
1398 * entry because swapoff will wait for discarding
1399 * finish anyway.
1400 */
1401 if (!swcount || swcount == SWAP_MAP_BAD)
1da177e4
LT
1402 continue;
1403 retval = -ENOMEM;
1404 break;
1405 }
1406
1407 /*
1408 * Don't hold on to start_mm if it looks like exiting.
1409 */
1410 if (atomic_read(&start_mm->mm_users) == 1) {
1411 mmput(start_mm);
1412 start_mm = &init_mm;
1413 atomic_inc(&init_mm.mm_users);
1414 }
1415
1416 /*
1417 * Wait for and lock page. When do_swap_page races with
1418 * try_to_unuse, do_swap_page can handle the fault much
1419 * faster than try_to_unuse can locate the entry. This
1420 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1421 * defer to do_swap_page in such a case - in some tests,
1422 * do_swap_page and try_to_unuse repeatedly compete.
1423 */
1424 wait_on_page_locked(page);
1425 wait_on_page_writeback(page);
1426 lock_page(page);
1427 wait_on_page_writeback(page);
1428
1429 /*
1430 * Remove all references to entry.
1da177e4 1431 */
1da177e4 1432 swcount = *swap_map;
aaa46865
HD
1433 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1434 retval = shmem_unuse(entry, page);
1435 /* page has already been unlocked and released */
1436 if (retval < 0)
1437 break;
1438 continue;
1da177e4 1439 }
aaa46865
HD
1440 if (swap_count(swcount) && start_mm != &init_mm)
1441 retval = unuse_mm(start_mm, entry, page);
1442
355cfa73 1443 if (swap_count(*swap_map)) {
1da177e4
LT
1444 int set_start_mm = (*swap_map >= swcount);
1445 struct list_head *p = &start_mm->mmlist;
1446 struct mm_struct *new_start_mm = start_mm;
1447 struct mm_struct *prev_mm = start_mm;
1448 struct mm_struct *mm;
1449
1450 atomic_inc(&new_start_mm->mm_users);
1451 atomic_inc(&prev_mm->mm_users);
1452 spin_lock(&mmlist_lock);
aaa46865 1453 while (swap_count(*swap_map) && !retval &&
1da177e4
LT
1454 (p = p->next) != &start_mm->mmlist) {
1455 mm = list_entry(p, struct mm_struct, mmlist);
70af7c5c 1456 if (!atomic_inc_not_zero(&mm->mm_users))
1da177e4 1457 continue;
1da177e4
LT
1458 spin_unlock(&mmlist_lock);
1459 mmput(prev_mm);
1460 prev_mm = mm;
1461
1462 cond_resched();
1463
1464 swcount = *swap_map;
355cfa73 1465 if (!swap_count(swcount)) /* any usage ? */
1da177e4 1466 ;
aaa46865 1467 else if (mm == &init_mm)
1da177e4 1468 set_start_mm = 1;
aaa46865 1469 else
1da177e4 1470 retval = unuse_mm(mm, entry, page);
355cfa73 1471
32c5fc10 1472 if (set_start_mm && *swap_map < swcount) {
1da177e4
LT
1473 mmput(new_start_mm);
1474 atomic_inc(&mm->mm_users);
1475 new_start_mm = mm;
1476 set_start_mm = 0;
1477 }
1478 spin_lock(&mmlist_lock);
1479 }
1480 spin_unlock(&mmlist_lock);
1481 mmput(prev_mm);
1482 mmput(start_mm);
1483 start_mm = new_start_mm;
1484 }
1485 if (retval) {
1486 unlock_page(page);
1487 page_cache_release(page);
1488 break;
1489 }
1490
1da177e4
LT
1491 /*
1492 * If a reference remains (rare), we would like to leave
1493 * the page in the swap cache; but try_to_unmap could
1494 * then re-duplicate the entry once we drop page lock,
1495 * so we might loop indefinitely; also, that page could
1496 * not be swapped out to other storage meanwhile. So:
1497 * delete from cache even if there's another reference,
1498 * after ensuring that the data has been saved to disk -
1499 * since if the reference remains (rarer), it will be
1500 * read from disk into another page. Splitting into two
1501 * pages would be incorrect if swap supported "shared
1502 * private" pages, but they are handled by tmpfs files.
5ad64688
HD
1503 *
1504 * Given how unuse_vma() targets one particular offset
1505 * in an anon_vma, once the anon_vma has been determined,
1506 * this splitting happens to be just what is needed to
1507 * handle where KSM pages have been swapped out: re-reading
1508 * is unnecessarily slow, but we can fix that later on.
1da177e4 1509 */
355cfa73
KH
1510 if (swap_count(*swap_map) &&
1511 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
1512 struct writeback_control wbc = {
1513 .sync_mode = WB_SYNC_NONE,
1514 };
1515
1516 swap_writepage(page, &wbc);
1517 lock_page(page);
1518 wait_on_page_writeback(page);
1519 }
68bdc8d6
HD
1520
1521 /*
1522 * It is conceivable that a racing task removed this page from
1523 * swap cache just before we acquired the page lock at the top,
1524 * or while we dropped it in unuse_mm(). The page might even
1525 * be back in swap cache on another swap area: that we must not
1526 * delete, since it may not have been written out to swap yet.
1527 */
1528 if (PageSwapCache(page) &&
1529 likely(page_private(page) == entry.val))
2e0e26c7 1530 delete_from_swap_cache(page);
1da177e4
LT
1531
1532 /*
1533 * So we could skip searching mms once swap count went
1534 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 1535 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
1536 */
1537 SetPageDirty(page);
1538 unlock_page(page);
1539 page_cache_release(page);
1540
1541 /*
1542 * Make sure that we aren't completely killing
1543 * interactive performance.
1544 */
1545 cond_resched();
38b5faf4
DM
1546 if (frontswap && pages_to_unuse > 0) {
1547 if (!--pages_to_unuse)
1548 break;
1549 }
1da177e4
LT
1550 }
1551
1552 mmput(start_mm);
1da177e4
LT
1553 return retval;
1554}
1555
1556/*
5d337b91
HD
1557 * After a successful try_to_unuse, if no swap is now in use, we know
1558 * we can empty the mmlist. swap_lock must be held on entry and exit.
1559 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
1560 * added to the mmlist just after page_duplicate - before would be racy.
1561 */
1562static void drain_mmlist(void)
1563{
1564 struct list_head *p, *next;
efa90a98 1565 unsigned int type;
1da177e4 1566
efa90a98
HD
1567 for (type = 0; type < nr_swapfiles; type++)
1568 if (swap_info[type]->inuse_pages)
1da177e4
LT
1569 return;
1570 spin_lock(&mmlist_lock);
1571 list_for_each_safe(p, next, &init_mm.mmlist)
1572 list_del_init(p);
1573 spin_unlock(&mmlist_lock);
1574}
1575
1576/*
1577 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
1578 * corresponds to page offset for the specified swap entry.
1579 * Note that the type of this function is sector_t, but it returns page offset
1580 * into the bdev, not sector offset.
1da177e4 1581 */
d4906e1a 1582static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 1583{
f29ad6a9
HD
1584 struct swap_info_struct *sis;
1585 struct swap_extent *start_se;
1586 struct swap_extent *se;
1587 pgoff_t offset;
1588
efa90a98 1589 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
1590 *bdev = sis->bdev;
1591
1592 offset = swp_offset(entry);
1593 start_se = sis->curr_swap_extent;
1594 se = start_se;
1da177e4
LT
1595
1596 for ( ; ; ) {
1597 struct list_head *lh;
1598
1599 if (se->start_page <= offset &&
1600 offset < (se->start_page + se->nr_pages)) {
1601 return se->start_block + (offset - se->start_page);
1602 }
11d31886 1603 lh = se->list.next;
1da177e4
LT
1604 se = list_entry(lh, struct swap_extent, list);
1605 sis->curr_swap_extent = se;
1606 BUG_ON(se == start_se); /* It *must* be present */
1607 }
1608}
1609
d4906e1a
LS
1610/*
1611 * Returns the page offset into bdev for the specified page's swap entry.
1612 */
1613sector_t map_swap_page(struct page *page, struct block_device **bdev)
1614{
1615 swp_entry_t entry;
1616 entry.val = page_private(page);
1617 return map_swap_entry(entry, bdev);
1618}
1619
1da177e4
LT
1620/*
1621 * Free all of a swapdev's extent information
1622 */
1623static void destroy_swap_extents(struct swap_info_struct *sis)
1624{
9625a5f2 1625 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
1626 struct swap_extent *se;
1627
9625a5f2 1628 se = list_entry(sis->first_swap_extent.list.next,
1da177e4
LT
1629 struct swap_extent, list);
1630 list_del(&se->list);
1631 kfree(se);
1632 }
62c230bc
MG
1633
1634 if (sis->flags & SWP_FILE) {
1635 struct file *swap_file = sis->swap_file;
1636 struct address_space *mapping = swap_file->f_mapping;
1637
1638 sis->flags &= ~SWP_FILE;
1639 mapping->a_ops->swap_deactivate(swap_file);
1640 }
1da177e4
LT
1641}
1642
1643/*
1644 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 1645 * extent list. The extent list is kept sorted in page order.
1da177e4 1646 *
11d31886 1647 * This function rather assumes that it is called in ascending page order.
1da177e4 1648 */
a509bc1a 1649int
1da177e4
LT
1650add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1651 unsigned long nr_pages, sector_t start_block)
1652{
1653 struct swap_extent *se;
1654 struct swap_extent *new_se;
1655 struct list_head *lh;
1656
9625a5f2
HD
1657 if (start_page == 0) {
1658 se = &sis->first_swap_extent;
1659 sis->curr_swap_extent = se;
1660 se->start_page = 0;
1661 se->nr_pages = nr_pages;
1662 se->start_block = start_block;
1663 return 1;
1664 } else {
1665 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 1666 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
1667 BUG_ON(se->start_page + se->nr_pages != start_page);
1668 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
1669 /* Merge it */
1670 se->nr_pages += nr_pages;
1671 return 0;
1672 }
1da177e4
LT
1673 }
1674
1675 /*
1676 * No merge. Insert a new extent, preserving ordering.
1677 */
1678 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1679 if (new_se == NULL)
1680 return -ENOMEM;
1681 new_se->start_page = start_page;
1682 new_se->nr_pages = nr_pages;
1683 new_se->start_block = start_block;
1684
9625a5f2 1685 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 1686 return 1;
1da177e4
LT
1687}
1688
1689/*
1690 * A `swap extent' is a simple thing which maps a contiguous range of pages
1691 * onto a contiguous range of disk blocks. An ordered list of swap extents
1692 * is built at swapon time and is then used at swap_writepage/swap_readpage
1693 * time for locating where on disk a page belongs.
1694 *
1695 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1696 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1697 * swap files identically.
1698 *
1699 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1700 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1701 * swapfiles are handled *identically* after swapon time.
1702 *
1703 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1704 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1705 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1706 * requirements, they are simply tossed out - we will never use those blocks
1707 * for swapping.
1708 *
b0d9bcd4 1709 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
1710 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1711 * which will scribble on the fs.
1712 *
1713 * The amount of disk space which a single swap extent represents varies.
1714 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1715 * extents in the list. To avoid much list walking, we cache the previous
1716 * search location in `curr_swap_extent', and start new searches from there.
1717 * This is extremely effective. The average number of iterations in
1718 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1719 */
53092a74 1720static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 1721{
62c230bc
MG
1722 struct file *swap_file = sis->swap_file;
1723 struct address_space *mapping = swap_file->f_mapping;
1724 struct inode *inode = mapping->host;
1da177e4
LT
1725 int ret;
1726
1da177e4
LT
1727 if (S_ISBLK(inode->i_mode)) {
1728 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 1729 *span = sis->pages;
a509bc1a 1730 return ret;
1da177e4
LT
1731 }
1732
62c230bc 1733 if (mapping->a_ops->swap_activate) {
a509bc1a 1734 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
62c230bc
MG
1735 if (!ret) {
1736 sis->flags |= SWP_FILE;
1737 ret = add_swap_extent(sis, 0, sis->max, 0);
1738 *span = sis->pages;
1739 }
a509bc1a 1740 return ret;
62c230bc
MG
1741 }
1742
a509bc1a 1743 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
1744}
1745
cf0cac0a 1746static void _enable_swap_info(struct swap_info_struct *p, int prio,
2a8f9449
SL
1747 unsigned char *swap_map,
1748 struct swap_cluster_info *cluster_info)
40531542 1749{
40531542
CEB
1750 if (prio >= 0)
1751 p->prio = prio;
1752 else
1753 p->prio = --least_priority;
18ab4d4c
DS
1754 /*
1755 * the plist prio is negated because plist ordering is
1756 * low-to-high, while swap ordering is high-to-low
1757 */
1758 p->list.prio = -p->prio;
1759 p->avail_list.prio = -p->prio;
40531542 1760 p->swap_map = swap_map;
2a8f9449 1761 p->cluster_info = cluster_info;
40531542 1762 p->flags |= SWP_WRITEOK;
ec8acf20 1763 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
1764 total_swap_pages += p->pages;
1765
adfab836 1766 assert_spin_locked(&swap_lock);
adfab836 1767 /*
18ab4d4c
DS
1768 * both lists are plists, and thus priority ordered.
1769 * swap_active_head needs to be priority ordered for swapoff(),
1770 * which on removal of any swap_info_struct with an auto-assigned
1771 * (i.e. negative) priority increments the auto-assigned priority
1772 * of any lower-priority swap_info_structs.
1773 * swap_avail_head needs to be priority ordered for get_swap_page(),
1774 * which allocates swap pages from the highest available priority
1775 * swap_info_struct.
adfab836 1776 */
18ab4d4c
DS
1777 plist_add(&p->list, &swap_active_head);
1778 spin_lock(&swap_avail_lock);
1779 plist_add(&p->avail_list, &swap_avail_head);
1780 spin_unlock(&swap_avail_lock);
cf0cac0a
CEB
1781}
1782
1783static void enable_swap_info(struct swap_info_struct *p, int prio,
1784 unsigned char *swap_map,
2a8f9449 1785 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
1786 unsigned long *frontswap_map)
1787{
4f89849d 1788 frontswap_init(p->type, frontswap_map);
cf0cac0a 1789 spin_lock(&swap_lock);
ec8acf20 1790 spin_lock(&p->lock);
2a8f9449 1791 _enable_swap_info(p, prio, swap_map, cluster_info);
ec8acf20 1792 spin_unlock(&p->lock);
cf0cac0a
CEB
1793 spin_unlock(&swap_lock);
1794}
1795
1796static void reinsert_swap_info(struct swap_info_struct *p)
1797{
1798 spin_lock(&swap_lock);
ec8acf20 1799 spin_lock(&p->lock);
2a8f9449 1800 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
ec8acf20 1801 spin_unlock(&p->lock);
40531542
CEB
1802 spin_unlock(&swap_lock);
1803}
1804
c4ea37c2 1805SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 1806{
73c34b6a 1807 struct swap_info_struct *p = NULL;
8d69aaee 1808 unsigned char *swap_map;
2a8f9449 1809 struct swap_cluster_info *cluster_info;
4f89849d 1810 unsigned long *frontswap_map;
1da177e4
LT
1811 struct file *swap_file, *victim;
1812 struct address_space *mapping;
1813 struct inode *inode;
91a27b2a 1814 struct filename *pathname;
adfab836 1815 int err, found = 0;
5b808a23 1816 unsigned int old_block_size;
886bb7e9 1817
1da177e4
LT
1818 if (!capable(CAP_SYS_ADMIN))
1819 return -EPERM;
1820
191c5424
AV
1821 BUG_ON(!current->mm);
1822
1da177e4 1823 pathname = getname(specialfile);
1da177e4 1824 if (IS_ERR(pathname))
f58b59c1 1825 return PTR_ERR(pathname);
1da177e4 1826
669abf4e 1827 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
1828 err = PTR_ERR(victim);
1829 if (IS_ERR(victim))
1830 goto out;
1831
1832 mapping = victim->f_mapping;
5d337b91 1833 spin_lock(&swap_lock);
18ab4d4c 1834 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 1835 if (p->flags & SWP_WRITEOK) {
adfab836
DS
1836 if (p->swap_file->f_mapping == mapping) {
1837 found = 1;
1da177e4 1838 break;
adfab836 1839 }
1da177e4 1840 }
1da177e4 1841 }
adfab836 1842 if (!found) {
1da177e4 1843 err = -EINVAL;
5d337b91 1844 spin_unlock(&swap_lock);
1da177e4
LT
1845 goto out_dput;
1846 }
191c5424 1847 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
1848 vm_unacct_memory(p->pages);
1849 else {
1850 err = -ENOMEM;
5d337b91 1851 spin_unlock(&swap_lock);
1da177e4
LT
1852 goto out_dput;
1853 }
18ab4d4c
DS
1854 spin_lock(&swap_avail_lock);
1855 plist_del(&p->avail_list, &swap_avail_head);
1856 spin_unlock(&swap_avail_lock);
ec8acf20 1857 spin_lock(&p->lock);
78ecba08 1858 if (p->prio < 0) {
adfab836
DS
1859 struct swap_info_struct *si = p;
1860
18ab4d4c 1861 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 1862 si->prio++;
18ab4d4c
DS
1863 si->list.prio--;
1864 si->avail_list.prio--;
adfab836 1865 }
78ecba08
HD
1866 least_priority++;
1867 }
18ab4d4c 1868 plist_del(&p->list, &swap_active_head);
ec8acf20 1869 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
1870 total_swap_pages -= p->pages;
1871 p->flags &= ~SWP_WRITEOK;
ec8acf20 1872 spin_unlock(&p->lock);
5d337b91 1873 spin_unlock(&swap_lock);
fb4f88dc 1874
e1e12d2f 1875 set_current_oom_origin();
adfab836 1876 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
e1e12d2f 1877 clear_current_oom_origin();
1da177e4 1878
1da177e4
LT
1879 if (err) {
1880 /* re-insert swap space back into swap_list */
cf0cac0a 1881 reinsert_swap_info(p);
1da177e4
LT
1882 goto out_dput;
1883 }
52b7efdb 1884
815c2c54
SL
1885 flush_work(&p->discard_work);
1886
5d337b91 1887 destroy_swap_extents(p);
570a335b
HD
1888 if (p->flags & SWP_CONTINUED)
1889 free_swap_count_continuations(p);
1890
fc0abb14 1891 mutex_lock(&swapon_mutex);
5d337b91 1892 spin_lock(&swap_lock);
ec8acf20 1893 spin_lock(&p->lock);
5d337b91
HD
1894 drain_mmlist();
1895
52b7efdb 1896 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
1897 p->highest_bit = 0; /* cuts scans short */
1898 while (p->flags >= SWP_SCANNING) {
ec8acf20 1899 spin_unlock(&p->lock);
5d337b91 1900 spin_unlock(&swap_lock);
13e4b57f 1901 schedule_timeout_uninterruptible(1);
5d337b91 1902 spin_lock(&swap_lock);
ec8acf20 1903 spin_lock(&p->lock);
52b7efdb 1904 }
52b7efdb 1905
1da177e4 1906 swap_file = p->swap_file;
5b808a23 1907 old_block_size = p->old_block_size;
1da177e4
LT
1908 p->swap_file = NULL;
1909 p->max = 0;
1910 swap_map = p->swap_map;
1911 p->swap_map = NULL;
2a8f9449
SL
1912 cluster_info = p->cluster_info;
1913 p->cluster_info = NULL;
4f89849d 1914 frontswap_map = frontswap_map_get(p);
ec8acf20 1915 spin_unlock(&p->lock);
5d337b91 1916 spin_unlock(&swap_lock);
adfab836 1917 frontswap_invalidate_area(p->type);
58e97ba6 1918 frontswap_map_set(p, NULL);
fc0abb14 1919 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
1920 free_percpu(p->percpu_cluster);
1921 p->percpu_cluster = NULL;
1da177e4 1922 vfree(swap_map);
2a8f9449 1923 vfree(cluster_info);
4f89849d 1924 vfree(frontswap_map);
2de1a7e4 1925 /* Destroy swap account information */
adfab836 1926 swap_cgroup_swapoff(p->type);
27a7faa0 1927
1da177e4
LT
1928 inode = mapping->host;
1929 if (S_ISBLK(inode->i_mode)) {
1930 struct block_device *bdev = I_BDEV(inode);
5b808a23 1931 set_blocksize(bdev, old_block_size);
e525fd89 1932 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 1933 } else {
1b1dcc1b 1934 mutex_lock(&inode->i_mutex);
1da177e4 1935 inode->i_flags &= ~S_SWAPFILE;
1b1dcc1b 1936 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1937 }
1938 filp_close(swap_file, NULL);
f893ab41
WY
1939
1940 /*
1941 * Clear the SWP_USED flag after all resources are freed so that swapon
1942 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
1943 * not hold p->lock after we cleared its SWP_WRITEOK.
1944 */
1945 spin_lock(&swap_lock);
1946 p->flags = 0;
1947 spin_unlock(&swap_lock);
1948
1da177e4 1949 err = 0;
66d7dd51
KS
1950 atomic_inc(&proc_poll_event);
1951 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
1952
1953out_dput:
1954 filp_close(victim, NULL);
1955out:
f58b59c1 1956 putname(pathname);
1da177e4
LT
1957 return err;
1958}
1959
1960#ifdef CONFIG_PROC_FS
66d7dd51
KS
1961static unsigned swaps_poll(struct file *file, poll_table *wait)
1962{
f1514638 1963 struct seq_file *seq = file->private_data;
66d7dd51
KS
1964
1965 poll_wait(file, &proc_poll_wait, wait);
1966
f1514638
KS
1967 if (seq->poll_event != atomic_read(&proc_poll_event)) {
1968 seq->poll_event = atomic_read(&proc_poll_event);
66d7dd51
KS
1969 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1970 }
1971
1972 return POLLIN | POLLRDNORM;
1973}
1974
1da177e4
LT
1975/* iterator */
1976static void *swap_start(struct seq_file *swap, loff_t *pos)
1977{
efa90a98
HD
1978 struct swap_info_struct *si;
1979 int type;
1da177e4
LT
1980 loff_t l = *pos;
1981
fc0abb14 1982 mutex_lock(&swapon_mutex);
1da177e4 1983
881e4aab
SS
1984 if (!l)
1985 return SEQ_START_TOKEN;
1986
efa90a98
HD
1987 for (type = 0; type < nr_swapfiles; type++) {
1988 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1989 si = swap_info[type];
1990 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 1991 continue;
881e4aab 1992 if (!--l)
efa90a98 1993 return si;
1da177e4
LT
1994 }
1995
1996 return NULL;
1997}
1998
1999static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2000{
efa90a98
HD
2001 struct swap_info_struct *si = v;
2002 int type;
1da177e4 2003
881e4aab 2004 if (v == SEQ_START_TOKEN)
efa90a98
HD
2005 type = 0;
2006 else
2007 type = si->type + 1;
881e4aab 2008
efa90a98
HD
2009 for (; type < nr_swapfiles; type++) {
2010 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2011 si = swap_info[type];
2012 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
2013 continue;
2014 ++*pos;
efa90a98 2015 return si;
1da177e4
LT
2016 }
2017
2018 return NULL;
2019}
2020
2021static void swap_stop(struct seq_file *swap, void *v)
2022{
fc0abb14 2023 mutex_unlock(&swapon_mutex);
1da177e4
LT
2024}
2025
2026static int swap_show(struct seq_file *swap, void *v)
2027{
efa90a98 2028 struct swap_info_struct *si = v;
1da177e4
LT
2029 struct file *file;
2030 int len;
2031
efa90a98 2032 if (si == SEQ_START_TOKEN) {
881e4aab
SS
2033 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2034 return 0;
2035 }
1da177e4 2036
efa90a98 2037 file = si->swap_file;
c32c2f63 2038 len = seq_path(swap, &file->f_path, " \t\n\\");
6eb396dc 2039 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9 2040 len < 40 ? 40 - len : 1, " ",
496ad9aa 2041 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2042 "partition" : "file\t",
efa90a98
HD
2043 si->pages << (PAGE_SHIFT - 10),
2044 si->inuse_pages << (PAGE_SHIFT - 10),
2045 si->prio);
1da177e4
LT
2046 return 0;
2047}
2048
15ad7cdc 2049static const struct seq_operations swaps_op = {
1da177e4
LT
2050 .start = swap_start,
2051 .next = swap_next,
2052 .stop = swap_stop,
2053 .show = swap_show
2054};
2055
2056static int swaps_open(struct inode *inode, struct file *file)
2057{
f1514638 2058 struct seq_file *seq;
66d7dd51
KS
2059 int ret;
2060
66d7dd51 2061 ret = seq_open(file, &swaps_op);
f1514638 2062 if (ret)
66d7dd51 2063 return ret;
66d7dd51 2064
f1514638
KS
2065 seq = file->private_data;
2066 seq->poll_event = atomic_read(&proc_poll_event);
2067 return 0;
1da177e4
LT
2068}
2069
15ad7cdc 2070static const struct file_operations proc_swaps_operations = {
1da177e4
LT
2071 .open = swaps_open,
2072 .read = seq_read,
2073 .llseek = seq_lseek,
2074 .release = seq_release,
66d7dd51 2075 .poll = swaps_poll,
1da177e4
LT
2076};
2077
2078static int __init procswaps_init(void)
2079{
3d71f86f 2080 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
2081 return 0;
2082}
2083__initcall(procswaps_init);
2084#endif /* CONFIG_PROC_FS */
2085
1796316a
JB
2086#ifdef MAX_SWAPFILES_CHECK
2087static int __init max_swapfiles_check(void)
2088{
2089 MAX_SWAPFILES_CHECK();
2090 return 0;
2091}
2092late_initcall(max_swapfiles_check);
2093#endif
2094
53cbb243 2095static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2096{
73c34b6a 2097 struct swap_info_struct *p;
1da177e4 2098 unsigned int type;
efa90a98
HD
2099
2100 p = kzalloc(sizeof(*p), GFP_KERNEL);
2101 if (!p)
53cbb243 2102 return ERR_PTR(-ENOMEM);
efa90a98 2103
5d337b91 2104 spin_lock(&swap_lock);
efa90a98
HD
2105 for (type = 0; type < nr_swapfiles; type++) {
2106 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2107 break;
efa90a98 2108 }
0697212a 2109 if (type >= MAX_SWAPFILES) {
5d337b91 2110 spin_unlock(&swap_lock);
efa90a98 2111 kfree(p);
730c0581 2112 return ERR_PTR(-EPERM);
1da177e4 2113 }
efa90a98
HD
2114 if (type >= nr_swapfiles) {
2115 p->type = type;
2116 swap_info[type] = p;
2117 /*
2118 * Write swap_info[type] before nr_swapfiles, in case a
2119 * racing procfs swap_start() or swap_next() is reading them.
2120 * (We never shrink nr_swapfiles, we never free this entry.)
2121 */
2122 smp_wmb();
2123 nr_swapfiles++;
2124 } else {
2125 kfree(p);
2126 p = swap_info[type];
2127 /*
2128 * Do not memset this entry: a racing procfs swap_next()
2129 * would be relying on p->type to remain valid.
2130 */
2131 }
9625a5f2 2132 INIT_LIST_HEAD(&p->first_swap_extent.list);
18ab4d4c
DS
2133 plist_node_init(&p->list, 0);
2134 plist_node_init(&p->avail_list, 0);
1da177e4 2135 p->flags = SWP_USED;
5d337b91 2136 spin_unlock(&swap_lock);
ec8acf20 2137 spin_lock_init(&p->lock);
efa90a98 2138
53cbb243 2139 return p;
53cbb243
CEB
2140}
2141
4d0e1e10
CEB
2142static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2143{
2144 int error;
2145
2146 if (S_ISBLK(inode->i_mode)) {
2147 p->bdev = bdgrab(I_BDEV(inode));
2148 error = blkdev_get(p->bdev,
2149 FMODE_READ | FMODE_WRITE | FMODE_EXCL,
2150 sys_swapon);
2151 if (error < 0) {
2152 p->bdev = NULL;
87ade72a 2153 return -EINVAL;
4d0e1e10
CEB
2154 }
2155 p->old_block_size = block_size(p->bdev);
2156 error = set_blocksize(p->bdev, PAGE_SIZE);
2157 if (error < 0)
87ade72a 2158 return error;
4d0e1e10
CEB
2159 p->flags |= SWP_BLKDEV;
2160 } else if (S_ISREG(inode->i_mode)) {
2161 p->bdev = inode->i_sb->s_bdev;
2162 mutex_lock(&inode->i_mutex);
87ade72a
CEB
2163 if (IS_SWAPFILE(inode))
2164 return -EBUSY;
2165 } else
2166 return -EINVAL;
4d0e1e10
CEB
2167
2168 return 0;
4d0e1e10
CEB
2169}
2170
ca8bd38b
CEB
2171static unsigned long read_swap_header(struct swap_info_struct *p,
2172 union swap_header *swap_header,
2173 struct inode *inode)
2174{
2175 int i;
2176 unsigned long maxpages;
2177 unsigned long swapfilepages;
d6bbbd29 2178 unsigned long last_page;
ca8bd38b
CEB
2179
2180 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2181 pr_err("Unable to find swap-space signature\n");
38719025 2182 return 0;
ca8bd38b
CEB
2183 }
2184
2185 /* swap partition endianess hack... */
2186 if (swab32(swap_header->info.version) == 1) {
2187 swab32s(&swap_header->info.version);
2188 swab32s(&swap_header->info.last_page);
2189 swab32s(&swap_header->info.nr_badpages);
2190 for (i = 0; i < swap_header->info.nr_badpages; i++)
2191 swab32s(&swap_header->info.badpages[i]);
2192 }
2193 /* Check the swap header's sub-version */
2194 if (swap_header->info.version != 1) {
465c47fd
AM
2195 pr_warn("Unable to handle swap header version %d\n",
2196 swap_header->info.version);
38719025 2197 return 0;
ca8bd38b
CEB
2198 }
2199
2200 p->lowest_bit = 1;
2201 p->cluster_next = 1;
2202 p->cluster_nr = 0;
2203
2204 /*
2205 * Find out how many pages are allowed for a single swap
9b15b817 2206 * device. There are two limiting factors: 1) the number
a2c16d6c
HD
2207 * of bits for the swap offset in the swp_entry_t type, and
2208 * 2) the number of bits in the swap pte as defined by the
9b15b817 2209 * different architectures. In order to find the
a2c16d6c 2210 * largest possible bit mask, a swap entry with swap type 0
ca8bd38b 2211 * and swap offset ~0UL is created, encoded to a swap pte,
a2c16d6c 2212 * decoded to a swp_entry_t again, and finally the swap
ca8bd38b
CEB
2213 * offset is extracted. This will mask all the bits from
2214 * the initial ~0UL mask that can't be encoded in either
2215 * the swp_entry_t or the architecture definition of a
9b15b817 2216 * swap pte.
ca8bd38b
CEB
2217 */
2218 maxpages = swp_offset(pte_to_swp_entry(
9b15b817 2219 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
d6bbbd29
RJ
2220 last_page = swap_header->info.last_page;
2221 if (last_page > maxpages) {
465c47fd 2222 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2223 maxpages << (PAGE_SHIFT - 10),
2224 last_page << (PAGE_SHIFT - 10));
2225 }
2226 if (maxpages > last_page) {
2227 maxpages = last_page + 1;
ca8bd38b
CEB
2228 /* p->max is an unsigned int: don't overflow it */
2229 if ((unsigned int)maxpages == 0)
2230 maxpages = UINT_MAX;
2231 }
2232 p->highest_bit = maxpages - 1;
2233
2234 if (!maxpages)
38719025 2235 return 0;
ca8bd38b
CEB
2236 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2237 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 2238 pr_warn("Swap area shorter than signature indicates\n");
38719025 2239 return 0;
ca8bd38b
CEB
2240 }
2241 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 2242 return 0;
ca8bd38b 2243 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 2244 return 0;
ca8bd38b
CEB
2245
2246 return maxpages;
ca8bd38b
CEB
2247}
2248
915d4d7b
CEB
2249static int setup_swap_map_and_extents(struct swap_info_struct *p,
2250 union swap_header *swap_header,
2251 unsigned char *swap_map,
2a8f9449 2252 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
2253 unsigned long maxpages,
2254 sector_t *span)
2255{
2256 int i;
915d4d7b
CEB
2257 unsigned int nr_good_pages;
2258 int nr_extents;
2a8f9449
SL
2259 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2260 unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
915d4d7b
CEB
2261
2262 nr_good_pages = maxpages - 1; /* omit header page */
2263
2a8f9449
SL
2264 cluster_set_null(&p->free_cluster_head);
2265 cluster_set_null(&p->free_cluster_tail);
815c2c54
SL
2266 cluster_set_null(&p->discard_cluster_head);
2267 cluster_set_null(&p->discard_cluster_tail);
2a8f9449 2268
915d4d7b
CEB
2269 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2270 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
2271 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2272 return -EINVAL;
915d4d7b
CEB
2273 if (page_nr < maxpages) {
2274 swap_map[page_nr] = SWAP_MAP_BAD;
2275 nr_good_pages--;
2a8f9449
SL
2276 /*
2277 * Haven't marked the cluster free yet, no list
2278 * operation involved
2279 */
2280 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
2281 }
2282 }
2283
2a8f9449
SL
2284 /* Haven't marked the cluster free yet, no list operation involved */
2285 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2286 inc_cluster_info_page(p, cluster_info, i);
2287
915d4d7b
CEB
2288 if (nr_good_pages) {
2289 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
2290 /*
2291 * Not mark the cluster free yet, no list
2292 * operation involved
2293 */
2294 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
2295 p->max = maxpages;
2296 p->pages = nr_good_pages;
2297 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
2298 if (nr_extents < 0)
2299 return nr_extents;
915d4d7b
CEB
2300 nr_good_pages = p->pages;
2301 }
2302 if (!nr_good_pages) {
465c47fd 2303 pr_warn("Empty swap-file\n");
bdb8e3f6 2304 return -EINVAL;
915d4d7b
CEB
2305 }
2306
2a8f9449
SL
2307 if (!cluster_info)
2308 return nr_extents;
2309
2310 for (i = 0; i < nr_clusters; i++) {
2311 if (!cluster_count(&cluster_info[idx])) {
2312 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2313 if (cluster_is_null(&p->free_cluster_head)) {
2314 cluster_set_next_flag(&p->free_cluster_head,
2315 idx, 0);
2316 cluster_set_next_flag(&p->free_cluster_tail,
2317 idx, 0);
2318 } else {
2319 unsigned int tail;
2320
2321 tail = cluster_next(&p->free_cluster_tail);
2322 cluster_set_next(&cluster_info[tail], idx);
2323 cluster_set_next_flag(&p->free_cluster_tail,
2324 idx, 0);
2325 }
2326 }
2327 idx++;
2328 if (idx == nr_clusters)
2329 idx = 0;
2330 }
915d4d7b 2331 return nr_extents;
915d4d7b
CEB
2332}
2333
dcf6b7dd
RA
2334/*
2335 * Helper to sys_swapon determining if a given swap
2336 * backing device queue supports DISCARD operations.
2337 */
2338static bool swap_discardable(struct swap_info_struct *si)
2339{
2340 struct request_queue *q = bdev_get_queue(si->bdev);
2341
2342 if (!q || !blk_queue_discard(q))
2343 return false;
2344
2345 return true;
2346}
2347
53cbb243
CEB
2348SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2349{
2350 struct swap_info_struct *p;
91a27b2a 2351 struct filename *name;
53cbb243
CEB
2352 struct file *swap_file = NULL;
2353 struct address_space *mapping;
40531542
CEB
2354 int i;
2355 int prio;
53cbb243
CEB
2356 int error;
2357 union swap_header *swap_header;
915d4d7b 2358 int nr_extents;
53cbb243
CEB
2359 sector_t span;
2360 unsigned long maxpages;
53cbb243 2361 unsigned char *swap_map = NULL;
2a8f9449 2362 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 2363 unsigned long *frontswap_map = NULL;
53cbb243
CEB
2364 struct page *page = NULL;
2365 struct inode *inode = NULL;
53cbb243 2366
d15cab97
HD
2367 if (swap_flags & ~SWAP_FLAGS_VALID)
2368 return -EINVAL;
2369
53cbb243
CEB
2370 if (!capable(CAP_SYS_ADMIN))
2371 return -EPERM;
2372
2373 p = alloc_swap_info();
2542e513
CEB
2374 if (IS_ERR(p))
2375 return PTR_ERR(p);
53cbb243 2376
815c2c54
SL
2377 INIT_WORK(&p->discard_work, swap_discard_work);
2378
1da177e4 2379 name = getname(specialfile);
1da177e4 2380 if (IS_ERR(name)) {
7de7fb6b 2381 error = PTR_ERR(name);
1da177e4 2382 name = NULL;
bd69010b 2383 goto bad_swap;
1da177e4 2384 }
669abf4e 2385 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 2386 if (IS_ERR(swap_file)) {
7de7fb6b 2387 error = PTR_ERR(swap_file);
1da177e4 2388 swap_file = NULL;
bd69010b 2389 goto bad_swap;
1da177e4
LT
2390 }
2391
2392 p->swap_file = swap_file;
2393 mapping = swap_file->f_mapping;
1da177e4 2394
1da177e4 2395 for (i = 0; i < nr_swapfiles; i++) {
efa90a98 2396 struct swap_info_struct *q = swap_info[i];
1da177e4 2397
e8e6c2ec 2398 if (q == p || !q->swap_file)
1da177e4 2399 continue;
7de7fb6b
CEB
2400 if (mapping == q->swap_file->f_mapping) {
2401 error = -EBUSY;
1da177e4 2402 goto bad_swap;
7de7fb6b 2403 }
1da177e4
LT
2404 }
2405
2130781e
CEB
2406 inode = mapping->host;
2407 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
4d0e1e10
CEB
2408 error = claim_swapfile(p, inode);
2409 if (unlikely(error))
1da177e4 2410 goto bad_swap;
1da177e4 2411
1da177e4
LT
2412 /*
2413 * Read the swap header.
2414 */
2415 if (!mapping->a_ops->readpage) {
2416 error = -EINVAL;
2417 goto bad_swap;
2418 }
090d2b18 2419 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
2420 if (IS_ERR(page)) {
2421 error = PTR_ERR(page);
2422 goto bad_swap;
2423 }
81e33971 2424 swap_header = kmap(page);
1da177e4 2425
ca8bd38b
CEB
2426 maxpages = read_swap_header(p, swap_header, inode);
2427 if (unlikely(!maxpages)) {
1da177e4
LT
2428 error = -EINVAL;
2429 goto bad_swap;
2430 }
886bb7e9 2431
81e33971 2432 /* OK, set up the swap map and apply the bad block list */
803d0c83 2433 swap_map = vzalloc(maxpages);
81e33971
HD
2434 if (!swap_map) {
2435 error = -ENOMEM;
2436 goto bad_swap;
2437 }
2a8f9449
SL
2438 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2439 p->flags |= SWP_SOLIDSTATE;
2440 /*
2441 * select a random position to start with to help wear leveling
2442 * SSD
2443 */
2444 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2445
2446 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2447 SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2448 if (!cluster_info) {
2449 error = -ENOMEM;
2450 goto bad_swap;
2451 }
ebc2a1a6
SL
2452 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2453 if (!p->percpu_cluster) {
2454 error = -ENOMEM;
2455 goto bad_swap;
2456 }
2457 for_each_possible_cpu(i) {
2458 struct percpu_cluster *cluster;
2459 cluster = per_cpu_ptr(p->percpu_cluster, i);
2460 cluster_set_null(&cluster->index);
2461 }
2a8f9449 2462 }
1da177e4 2463
1421ef3c
CEB
2464 error = swap_cgroup_swapon(p->type, maxpages);
2465 if (error)
2466 goto bad_swap;
2467
915d4d7b 2468 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 2469 cluster_info, maxpages, &span);
915d4d7b
CEB
2470 if (unlikely(nr_extents < 0)) {
2471 error = nr_extents;
1da177e4
LT
2472 goto bad_swap;
2473 }
38b5faf4
DM
2474 /* frontswap enabled? set up bit-per-page map for frontswap */
2475 if (frontswap_enabled)
7b57976d 2476 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
1da177e4 2477
2a8f9449
SL
2478 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2479 /*
2480 * When discard is enabled for swap with no particular
2481 * policy flagged, we set all swap discard flags here in
2482 * order to sustain backward compatibility with older
2483 * swapon(8) releases.
2484 */
2485 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2486 SWP_PAGE_DISCARD);
dcf6b7dd 2487
2a8f9449
SL
2488 /*
2489 * By flagging sys_swapon, a sysadmin can tell us to
2490 * either do single-time area discards only, or to just
2491 * perform discards for released swap page-clusters.
2492 * Now it's time to adjust the p->flags accordingly.
2493 */
2494 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2495 p->flags &= ~SWP_PAGE_DISCARD;
2496 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2497 p->flags &= ~SWP_AREA_DISCARD;
2498
2499 /* issue a swapon-time discard if it's still required */
2500 if (p->flags & SWP_AREA_DISCARD) {
2501 int err = discard_swap(p);
2502 if (unlikely(err))
2503 pr_err("swapon: discard_swap(%p): %d\n",
2504 p, err);
dcf6b7dd 2505 }
20137a49 2506 }
6a6ba831 2507
fc0abb14 2508 mutex_lock(&swapon_mutex);
40531542 2509 prio = -1;
78ecba08 2510 if (swap_flags & SWAP_FLAG_PREFER)
40531542 2511 prio =
78ecba08 2512 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 2513 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 2514
465c47fd 2515 pr_info("Adding %uk swap on %s. "
dcf6b7dd 2516 "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 2517 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
2518 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2519 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 2520 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
2521 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2522 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 2523 (frontswap_map) ? "FS" : "");
c69dbfb8 2524
fc0abb14 2525 mutex_unlock(&swapon_mutex);
66d7dd51
KS
2526 atomic_inc(&proc_poll_event);
2527 wake_up_interruptible(&proc_poll_wait);
2528
9b01c350
CEB
2529 if (S_ISREG(inode->i_mode))
2530 inode->i_flags |= S_SWAPFILE;
1da177e4
LT
2531 error = 0;
2532 goto out;
2533bad_swap:
ebc2a1a6
SL
2534 free_percpu(p->percpu_cluster);
2535 p->percpu_cluster = NULL;
bd69010b 2536 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
2537 set_blocksize(p->bdev, p->old_block_size);
2538 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2539 }
4cd3bb10 2540 destroy_swap_extents(p);
e8e6c2ec 2541 swap_cgroup_swapoff(p->type);
5d337b91 2542 spin_lock(&swap_lock);
1da177e4 2543 p->swap_file = NULL;
1da177e4 2544 p->flags = 0;
5d337b91 2545 spin_unlock(&swap_lock);
1da177e4 2546 vfree(swap_map);
2a8f9449 2547 vfree(cluster_info);
52c50567 2548 if (swap_file) {
2130781e 2549 if (inode && S_ISREG(inode->i_mode)) {
52c50567 2550 mutex_unlock(&inode->i_mutex);
2130781e
CEB
2551 inode = NULL;
2552 }
1da177e4 2553 filp_close(swap_file, NULL);
52c50567 2554 }
1da177e4
LT
2555out:
2556 if (page && !IS_ERR(page)) {
2557 kunmap(page);
2558 page_cache_release(page);
2559 }
2560 if (name)
2561 putname(name);
9b01c350 2562 if (inode && S_ISREG(inode->i_mode))
1b1dcc1b 2563 mutex_unlock(&inode->i_mutex);
1da177e4
LT
2564 return error;
2565}
2566
2567void si_swapinfo(struct sysinfo *val)
2568{
efa90a98 2569 unsigned int type;
1da177e4
LT
2570 unsigned long nr_to_be_unused = 0;
2571
5d337b91 2572 spin_lock(&swap_lock);
efa90a98
HD
2573 for (type = 0; type < nr_swapfiles; type++) {
2574 struct swap_info_struct *si = swap_info[type];
2575
2576 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2577 nr_to_be_unused += si->inuse_pages;
1da177e4 2578 }
ec8acf20 2579 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 2580 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 2581 spin_unlock(&swap_lock);
1da177e4
LT
2582}
2583
2584/*
2585 * Verify that a swap entry is valid and increment its swap map count.
2586 *
355cfa73
KH
2587 * Returns error code in following case.
2588 * - success -> 0
2589 * - swp_entry is invalid -> EINVAL
2590 * - swp_entry is migration entry -> EINVAL
2591 * - swap-cache reference is requested but there is already one. -> EEXIST
2592 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 2593 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 2594 */
8d69aaee 2595static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 2596{
73c34b6a 2597 struct swap_info_struct *p;
1da177e4 2598 unsigned long offset, type;
8d69aaee
HD
2599 unsigned char count;
2600 unsigned char has_cache;
253d553b 2601 int err = -EINVAL;
1da177e4 2602
a7420aa5 2603 if (non_swap_entry(entry))
253d553b 2604 goto out;
0697212a 2605
1da177e4
LT
2606 type = swp_type(entry);
2607 if (type >= nr_swapfiles)
2608 goto bad_file;
efa90a98 2609 p = swap_info[type];
1da177e4
LT
2610 offset = swp_offset(entry);
2611
ec8acf20 2612 spin_lock(&p->lock);
355cfa73
KH
2613 if (unlikely(offset >= p->max))
2614 goto unlock_out;
2615
253d553b 2616 count = p->swap_map[offset];
edfe23da
SL
2617
2618 /*
2619 * swapin_readahead() doesn't check if a swap entry is valid, so the
2620 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2621 */
2622 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2623 err = -ENOENT;
2624 goto unlock_out;
2625 }
2626
253d553b
HD
2627 has_cache = count & SWAP_HAS_CACHE;
2628 count &= ~SWAP_HAS_CACHE;
2629 err = 0;
355cfa73 2630
253d553b 2631 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
2632
2633 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
2634 if (!has_cache && count)
2635 has_cache = SWAP_HAS_CACHE;
2636 else if (has_cache) /* someone else added cache */
2637 err = -EEXIST;
2638 else /* no users remaining */
2639 err = -ENOENT;
355cfa73
KH
2640
2641 } else if (count || has_cache) {
253d553b 2642
570a335b
HD
2643 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2644 count += usage;
2645 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 2646 err = -EINVAL;
570a335b
HD
2647 else if (swap_count_continued(p, offset, count))
2648 count = COUNT_CONTINUED;
2649 else
2650 err = -ENOMEM;
355cfa73 2651 } else
253d553b
HD
2652 err = -ENOENT; /* unused swap entry */
2653
2654 p->swap_map[offset] = count | has_cache;
2655
355cfa73 2656unlock_out:
ec8acf20 2657 spin_unlock(&p->lock);
1da177e4 2658out:
253d553b 2659 return err;
1da177e4
LT
2660
2661bad_file:
465c47fd 2662 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
2663 goto out;
2664}
253d553b 2665
aaa46865
HD
2666/*
2667 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2668 * (in which case its reference count is never incremented).
2669 */
2670void swap_shmem_alloc(swp_entry_t entry)
2671{
2672 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2673}
2674
355cfa73 2675/*
08259d58
HD
2676 * Increase reference count of swap entry by 1.
2677 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2678 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2679 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2680 * might occur if a page table entry has got corrupted.
355cfa73 2681 */
570a335b 2682int swap_duplicate(swp_entry_t entry)
355cfa73 2683{
570a335b
HD
2684 int err = 0;
2685
2686 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2687 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2688 return err;
355cfa73 2689}
1da177e4 2690
cb4b86ba 2691/*
355cfa73
KH
2692 * @entry: swap entry for which we allocate swap cache.
2693 *
73c34b6a 2694 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
2695 * This can return error codes. Returns 0 at success.
2696 * -EBUSY means there is a swap cache.
2697 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
2698 */
2699int swapcache_prepare(swp_entry_t entry)
2700{
253d553b 2701 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
2702}
2703
f981c595
MG
2704struct swap_info_struct *page_swap_info(struct page *page)
2705{
2706 swp_entry_t swap = { .val = page_private(page) };
2707 BUG_ON(!PageSwapCache(page));
2708 return swap_info[swp_type(swap)];
2709}
2710
2711/*
2712 * out-of-line __page_file_ methods to avoid include hell.
2713 */
2714struct address_space *__page_file_mapping(struct page *page)
2715{
309381fe 2716 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
2717 return page_swap_info(page)->swap_file->f_mapping;
2718}
2719EXPORT_SYMBOL_GPL(__page_file_mapping);
2720
2721pgoff_t __page_file_index(struct page *page)
2722{
2723 swp_entry_t swap = { .val = page_private(page) };
309381fe 2724 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
2725 return swp_offset(swap);
2726}
2727EXPORT_SYMBOL_GPL(__page_file_index);
2728
570a335b
HD
2729/*
2730 * add_swap_count_continuation - called when a swap count is duplicated
2731 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2732 * page of the original vmalloc'ed swap_map, to hold the continuation count
2733 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2734 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2735 *
2736 * These continuation pages are seldom referenced: the common paths all work
2737 * on the original swap_map, only referring to a continuation page when the
2738 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2739 *
2740 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2741 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2742 * can be called after dropping locks.
2743 */
2744int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2745{
2746 struct swap_info_struct *si;
2747 struct page *head;
2748 struct page *page;
2749 struct page *list_page;
2750 pgoff_t offset;
2751 unsigned char count;
2752
2753 /*
2754 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2755 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2756 */
2757 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2758
2759 si = swap_info_get(entry);
2760 if (!si) {
2761 /*
2762 * An acceptable race has occurred since the failing
2763 * __swap_duplicate(): the swap entry has been freed,
2764 * perhaps even the whole swap_map cleared for swapoff.
2765 */
2766 goto outer;
2767 }
2768
2769 offset = swp_offset(entry);
2770 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2771
2772 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2773 /*
2774 * The higher the swap count, the more likely it is that tasks
2775 * will race to add swap count continuation: we need to avoid
2776 * over-provisioning.
2777 */
2778 goto out;
2779 }
2780
2781 if (!page) {
ec8acf20 2782 spin_unlock(&si->lock);
570a335b
HD
2783 return -ENOMEM;
2784 }
2785
2786 /*
2787 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
2788 * no architecture is using highmem pages for kernel page tables: so it
2789 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
2790 */
2791 head = vmalloc_to_page(si->swap_map + offset);
2792 offset &= ~PAGE_MASK;
2793
2794 /*
2795 * Page allocation does not initialize the page's lru field,
2796 * but it does always reset its private field.
2797 */
2798 if (!page_private(head)) {
2799 BUG_ON(count & COUNT_CONTINUED);
2800 INIT_LIST_HEAD(&head->lru);
2801 set_page_private(head, SWP_CONTINUED);
2802 si->flags |= SWP_CONTINUED;
2803 }
2804
2805 list_for_each_entry(list_page, &head->lru, lru) {
2806 unsigned char *map;
2807
2808 /*
2809 * If the previous map said no continuation, but we've found
2810 * a continuation page, free our allocation and use this one.
2811 */
2812 if (!(count & COUNT_CONTINUED))
2813 goto out;
2814
9b04c5fe 2815 map = kmap_atomic(list_page) + offset;
570a335b 2816 count = *map;
9b04c5fe 2817 kunmap_atomic(map);
570a335b
HD
2818
2819 /*
2820 * If this continuation count now has some space in it,
2821 * free our allocation and use this one.
2822 */
2823 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2824 goto out;
2825 }
2826
2827 list_add_tail(&page->lru, &head->lru);
2828 page = NULL; /* now it's attached, don't free it */
2829out:
ec8acf20 2830 spin_unlock(&si->lock);
570a335b
HD
2831outer:
2832 if (page)
2833 __free_page(page);
2834 return 0;
2835}
2836
2837/*
2838 * swap_count_continued - when the original swap_map count is incremented
2839 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2840 * into, carry if so, or else fail until a new continuation page is allocated;
2841 * when the original swap_map count is decremented from 0 with continuation,
2842 * borrow from the continuation and report whether it still holds more.
2843 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2844 */
2845static bool swap_count_continued(struct swap_info_struct *si,
2846 pgoff_t offset, unsigned char count)
2847{
2848 struct page *head;
2849 struct page *page;
2850 unsigned char *map;
2851
2852 head = vmalloc_to_page(si->swap_map + offset);
2853 if (page_private(head) != SWP_CONTINUED) {
2854 BUG_ON(count & COUNT_CONTINUED);
2855 return false; /* need to add count continuation */
2856 }
2857
2858 offset &= ~PAGE_MASK;
2859 page = list_entry(head->lru.next, struct page, lru);
9b04c5fe 2860 map = kmap_atomic(page) + offset;
570a335b
HD
2861
2862 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2863 goto init_map; /* jump over SWAP_CONT_MAX checks */
2864
2865 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2866 /*
2867 * Think of how you add 1 to 999
2868 */
2869 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 2870 kunmap_atomic(map);
570a335b
HD
2871 page = list_entry(page->lru.next, struct page, lru);
2872 BUG_ON(page == head);
9b04c5fe 2873 map = kmap_atomic(page) + offset;
570a335b
HD
2874 }
2875 if (*map == SWAP_CONT_MAX) {
9b04c5fe 2876 kunmap_atomic(map);
570a335b
HD
2877 page = list_entry(page->lru.next, struct page, lru);
2878 if (page == head)
2879 return false; /* add count continuation */
9b04c5fe 2880 map = kmap_atomic(page) + offset;
570a335b
HD
2881init_map: *map = 0; /* we didn't zero the page */
2882 }
2883 *map += 1;
9b04c5fe 2884 kunmap_atomic(map);
570a335b
HD
2885 page = list_entry(page->lru.prev, struct page, lru);
2886 while (page != head) {
9b04c5fe 2887 map = kmap_atomic(page) + offset;
570a335b 2888 *map = COUNT_CONTINUED;
9b04c5fe 2889 kunmap_atomic(map);
570a335b
HD
2890 page = list_entry(page->lru.prev, struct page, lru);
2891 }
2892 return true; /* incremented */
2893
2894 } else { /* decrementing */
2895 /*
2896 * Think of how you subtract 1 from 1000
2897 */
2898 BUG_ON(count != COUNT_CONTINUED);
2899 while (*map == COUNT_CONTINUED) {
9b04c5fe 2900 kunmap_atomic(map);
570a335b
HD
2901 page = list_entry(page->lru.next, struct page, lru);
2902 BUG_ON(page == head);
9b04c5fe 2903 map = kmap_atomic(page) + offset;
570a335b
HD
2904 }
2905 BUG_ON(*map == 0);
2906 *map -= 1;
2907 if (*map == 0)
2908 count = 0;
9b04c5fe 2909 kunmap_atomic(map);
570a335b
HD
2910 page = list_entry(page->lru.prev, struct page, lru);
2911 while (page != head) {
9b04c5fe 2912 map = kmap_atomic(page) + offset;
570a335b
HD
2913 *map = SWAP_CONT_MAX | count;
2914 count = COUNT_CONTINUED;
9b04c5fe 2915 kunmap_atomic(map);
570a335b
HD
2916 page = list_entry(page->lru.prev, struct page, lru);
2917 }
2918 return count == COUNT_CONTINUED;
2919 }
2920}
2921
2922/*
2923 * free_swap_count_continuations - swapoff free all the continuation pages
2924 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2925 */
2926static void free_swap_count_continuations(struct swap_info_struct *si)
2927{
2928 pgoff_t offset;
2929
2930 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2931 struct page *head;
2932 head = vmalloc_to_page(si->swap_map + offset);
2933 if (page_private(head)) {
2934 struct list_head *this, *next;
2935 list_for_each_safe(this, next, &head->lru) {
2936 struct page *page;
2937 page = list_entry(this, struct page, lru);
2938 list_del(this);
2939 __free_page(page);
2940 }
2941 }
2942 }
2943}