]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/swapfile.c
mm/swapfile.c: simplify the calculation of n_goal
[mirror_ubuntu-hirsute-kernel.git] / mm / swapfile.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
1da177e4 9#include <linux/mm.h>
6e84f315 10#include <linux/sched/mm.h>
29930025 11#include <linux/sched/task.h>
1da177e4
LT
12#include <linux/hugetlb.h>
13#include <linux/mman.h>
14#include <linux/slab.h>
15#include <linux/kernel_stat.h>
16#include <linux/swap.h>
17#include <linux/vmalloc.h>
18#include <linux/pagemap.h>
19#include <linux/namei.h>
072441e2 20#include <linux/shmem_fs.h>
1da177e4 21#include <linux/blkdev.h>
20137a49 22#include <linux/random.h>
1da177e4
LT
23#include <linux/writeback.h>
24#include <linux/proc_fs.h>
25#include <linux/seq_file.h>
26#include <linux/init.h>
5ad64688 27#include <linux/ksm.h>
1da177e4
LT
28#include <linux/rmap.h>
29#include <linux/security.h>
30#include <linux/backing-dev.h>
fc0abb14 31#include <linux/mutex.h>
c59ede7b 32#include <linux/capability.h>
1da177e4 33#include <linux/syscalls.h>
8a9f3ccd 34#include <linux/memcontrol.h>
66d7dd51 35#include <linux/poll.h>
72788c38 36#include <linux/oom.h>
38b5faf4
DM
37#include <linux/frontswap.h>
38#include <linux/swapfile.h>
f981c595 39#include <linux/export.h>
67afa38e 40#include <linux/swap_slots.h>
155b5f88 41#include <linux/sort.h>
1da177e4
LT
42
43#include <asm/pgtable.h>
44#include <asm/tlbflush.h>
45#include <linux/swapops.h>
5d1ea48b 46#include <linux/swap_cgroup.h>
1da177e4 47
570a335b
HD
48static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49 unsigned char);
50static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 51static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 52
38b5faf4 53DEFINE_SPINLOCK(swap_lock);
7c363b8c 54static unsigned int nr_swapfiles;
ec8acf20 55atomic_long_t nr_swap_pages;
fb0fec50
CW
56/*
57 * Some modules use swappable objects and may try to swap them out under
58 * memory pressure (via the shrinker). Before doing so, they may wish to
59 * check to see if any swap space is available.
60 */
61EXPORT_SYMBOL_GPL(nr_swap_pages);
ec8acf20 62/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 63long total_swap_pages;
a2468cc9 64static int least_priority = -1;
1da177e4 65
1da177e4
LT
66static const char Bad_file[] = "Bad swap file entry ";
67static const char Unused_file[] = "Unused swap file entry ";
68static const char Bad_offset[] = "Bad swap offset entry ";
69static const char Unused_offset[] = "Unused swap offset entry ";
70
adfab836
DS
71/*
72 * all active swap_info_structs
73 * protected with swap_lock, and ordered by priority.
74 */
18ab4d4c
DS
75PLIST_HEAD(swap_active_head);
76
77/*
78 * all available (active, not full) swap_info_structs
79 * protected with swap_avail_lock, ordered by priority.
80 * This is used by get_swap_page() instead of swap_active_head
81 * because swap_active_head includes all swap_info_structs,
82 * but get_swap_page() doesn't need to look at full ones.
83 * This uses its own lock instead of swap_lock because when a
84 * swap_info_struct changes between not-full/full, it needs to
85 * add/remove itself to/from this list, but the swap_info_struct->lock
86 * is held and the locking order requires swap_lock to be taken
87 * before any swap_info_struct->lock.
88 */
bfc6b1ca 89static struct plist_head *swap_avail_heads;
18ab4d4c 90static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 91
38b5faf4 92struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 93
fc0abb14 94static DEFINE_MUTEX(swapon_mutex);
1da177e4 95
66d7dd51
KS
96static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
97/* Activity counter to indicate that a swapon or swapoff has occurred */
98static atomic_t proc_poll_event = ATOMIC_INIT(0);
99
81a0298b
HY
100atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101
c10d38cc
DJ
102static struct swap_info_struct *swap_type_to_swap_info(int type)
103{
104 if (type >= READ_ONCE(nr_swapfiles))
105 return NULL;
106
107 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */
108 return READ_ONCE(swap_info[type]);
109}
110
8d69aaee 111static inline unsigned char swap_count(unsigned char ent)
355cfa73 112{
955c97f0 113 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
355cfa73
KH
114}
115
bcd49e86
HY
116/* Reclaim the swap entry anyway if possible */
117#define TTRS_ANYWAY 0x1
118/*
119 * Reclaim the swap entry if there are no more mappings of the
120 * corresponding page
121 */
122#define TTRS_UNMAPPED 0x2
123/* Reclaim the swap entry if swap is getting full*/
124#define TTRS_FULL 0x4
125
efa90a98 126/* returns 1 if swap entry is freed */
bcd49e86
HY
127static int __try_to_reclaim_swap(struct swap_info_struct *si,
128 unsigned long offset, unsigned long flags)
c9e44410 129{
efa90a98 130 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
131 struct page *page;
132 int ret = 0;
133
bcd49e86 134 page = find_get_page(swap_address_space(entry), offset);
c9e44410
KH
135 if (!page)
136 return 0;
137 /*
bcd49e86
HY
138 * When this function is called from scan_swap_map_slots() and it's
139 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
140 * here. We have to use trylock for avoiding deadlock. This is a special
c9e44410
KH
141 * case and you should use try_to_free_swap() with explicit lock_page()
142 * in usual operations.
143 */
144 if (trylock_page(page)) {
bcd49e86
HY
145 if ((flags & TTRS_ANYWAY) ||
146 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
147 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
148 ret = try_to_free_swap(page);
c9e44410
KH
149 unlock_page(page);
150 }
09cbfeaf 151 put_page(page);
c9e44410
KH
152 return ret;
153}
355cfa73 154
4efaceb1
AL
155static inline struct swap_extent *first_se(struct swap_info_struct *sis)
156{
157 struct rb_node *rb = rb_first(&sis->swap_extent_root);
158 return rb_entry(rb, struct swap_extent, rb_node);
159}
160
161static inline struct swap_extent *next_se(struct swap_extent *se)
162{
163 struct rb_node *rb = rb_next(&se->rb_node);
164 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
165}
166
6a6ba831
HD
167/*
168 * swapon tell device that all the old swap contents can be discarded,
169 * to allow the swap device to optimize its wear-levelling.
170 */
171static int discard_swap(struct swap_info_struct *si)
172{
173 struct swap_extent *se;
9625a5f2
HD
174 sector_t start_block;
175 sector_t nr_blocks;
6a6ba831
HD
176 int err = 0;
177
9625a5f2 178 /* Do not discard the swap header page! */
4efaceb1 179 se = first_se(si);
9625a5f2
HD
180 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
181 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
182 if (nr_blocks) {
183 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 184 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
185 if (err)
186 return err;
187 cond_resched();
188 }
6a6ba831 189
4efaceb1 190 for (se = next_se(se); se; se = next_se(se)) {
9625a5f2
HD
191 start_block = se->start_block << (PAGE_SHIFT - 9);
192 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
193
194 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 195 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
196 if (err)
197 break;
198
199 cond_resched();
200 }
201 return err; /* That will often be -EOPNOTSUPP */
202}
203
4efaceb1
AL
204static struct swap_extent *
205offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
206{
207 struct swap_extent *se;
208 struct rb_node *rb;
209
210 rb = sis->swap_extent_root.rb_node;
211 while (rb) {
212 se = rb_entry(rb, struct swap_extent, rb_node);
213 if (offset < se->start_page)
214 rb = rb->rb_left;
215 else if (offset >= se->start_page + se->nr_pages)
216 rb = rb->rb_right;
217 else
218 return se;
219 }
220 /* It *must* be present */
221 BUG();
222}
223
7992fde7
HD
224/*
225 * swap allocation tell device that a cluster of swap can now be discarded,
226 * to allow the swap device to optimize its wear-levelling.
227 */
228static void discard_swap_cluster(struct swap_info_struct *si,
229 pgoff_t start_page, pgoff_t nr_pages)
230{
4efaceb1 231 struct swap_extent *se = offset_to_swap_extent(si, start_page);
7992fde7
HD
232
233 while (nr_pages) {
4efaceb1
AL
234 pgoff_t offset = start_page - se->start_page;
235 sector_t start_block = se->start_block + offset;
236 sector_t nr_blocks = se->nr_pages - offset;
237
238 if (nr_blocks > nr_pages)
239 nr_blocks = nr_pages;
240 start_page += nr_blocks;
241 nr_pages -= nr_blocks;
242
243 start_block <<= PAGE_SHIFT - 9;
244 nr_blocks <<= PAGE_SHIFT - 9;
245 if (blkdev_issue_discard(si->bdev, start_block,
246 nr_blocks, GFP_NOIO, 0))
247 break;
7992fde7 248
4efaceb1 249 se = next_se(se);
7992fde7
HD
250 }
251}
252
38d8b4e6
HY
253#ifdef CONFIG_THP_SWAP
254#define SWAPFILE_CLUSTER HPAGE_PMD_NR
a448f2d0
HY
255
256#define swap_entry_size(size) (size)
38d8b4e6 257#else
048c27fd 258#define SWAPFILE_CLUSTER 256
a448f2d0
HY
259
260/*
261 * Define swap_entry_size() as constant to let compiler to optimize
262 * out some code if !CONFIG_THP_SWAP
263 */
264#define swap_entry_size(size) 1
38d8b4e6 265#endif
048c27fd
HD
266#define LATENCY_LIMIT 256
267
2a8f9449
SL
268static inline void cluster_set_flag(struct swap_cluster_info *info,
269 unsigned int flag)
270{
271 info->flags = flag;
272}
273
274static inline unsigned int cluster_count(struct swap_cluster_info *info)
275{
276 return info->data;
277}
278
279static inline void cluster_set_count(struct swap_cluster_info *info,
280 unsigned int c)
281{
282 info->data = c;
283}
284
285static inline void cluster_set_count_flag(struct swap_cluster_info *info,
286 unsigned int c, unsigned int f)
287{
288 info->flags = f;
289 info->data = c;
290}
291
292static inline unsigned int cluster_next(struct swap_cluster_info *info)
293{
294 return info->data;
295}
296
297static inline void cluster_set_next(struct swap_cluster_info *info,
298 unsigned int n)
299{
300 info->data = n;
301}
302
303static inline void cluster_set_next_flag(struct swap_cluster_info *info,
304 unsigned int n, unsigned int f)
305{
306 info->flags = f;
307 info->data = n;
308}
309
310static inline bool cluster_is_free(struct swap_cluster_info *info)
311{
312 return info->flags & CLUSTER_FLAG_FREE;
313}
314
315static inline bool cluster_is_null(struct swap_cluster_info *info)
316{
317 return info->flags & CLUSTER_FLAG_NEXT_NULL;
318}
319
320static inline void cluster_set_null(struct swap_cluster_info *info)
321{
322 info->flags = CLUSTER_FLAG_NEXT_NULL;
323 info->data = 0;
324}
325
e0709829
HY
326static inline bool cluster_is_huge(struct swap_cluster_info *info)
327{
33ee011e
HY
328 if (IS_ENABLED(CONFIG_THP_SWAP))
329 return info->flags & CLUSTER_FLAG_HUGE;
330 return false;
e0709829
HY
331}
332
333static inline void cluster_clear_huge(struct swap_cluster_info *info)
334{
335 info->flags &= ~CLUSTER_FLAG_HUGE;
336}
337
235b6217
HY
338static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
339 unsigned long offset)
340{
341 struct swap_cluster_info *ci;
342
343 ci = si->cluster_info;
344 if (ci) {
345 ci += offset / SWAPFILE_CLUSTER;
346 spin_lock(&ci->lock);
347 }
348 return ci;
349}
350
351static inline void unlock_cluster(struct swap_cluster_info *ci)
352{
353 if (ci)
354 spin_unlock(&ci->lock);
355}
356
59d98bf3
HY
357/*
358 * Determine the locking method in use for this device. Return
359 * swap_cluster_info if SSD-style cluster-based locking is in place.
360 */
235b6217 361static inline struct swap_cluster_info *lock_cluster_or_swap_info(
59d98bf3 362 struct swap_info_struct *si, unsigned long offset)
235b6217
HY
363{
364 struct swap_cluster_info *ci;
365
59d98bf3 366 /* Try to use fine-grained SSD-style locking if available: */
235b6217 367 ci = lock_cluster(si, offset);
59d98bf3 368 /* Otherwise, fall back to traditional, coarse locking: */
235b6217
HY
369 if (!ci)
370 spin_lock(&si->lock);
371
372 return ci;
373}
374
375static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
376 struct swap_cluster_info *ci)
377{
378 if (ci)
379 unlock_cluster(ci);
380 else
381 spin_unlock(&si->lock);
382}
383
6b534915
HY
384static inline bool cluster_list_empty(struct swap_cluster_list *list)
385{
386 return cluster_is_null(&list->head);
387}
388
389static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
390{
391 return cluster_next(&list->head);
392}
393
394static void cluster_list_init(struct swap_cluster_list *list)
395{
396 cluster_set_null(&list->head);
397 cluster_set_null(&list->tail);
398}
399
400static void cluster_list_add_tail(struct swap_cluster_list *list,
401 struct swap_cluster_info *ci,
402 unsigned int idx)
403{
404 if (cluster_list_empty(list)) {
405 cluster_set_next_flag(&list->head, idx, 0);
406 cluster_set_next_flag(&list->tail, idx, 0);
407 } else {
235b6217 408 struct swap_cluster_info *ci_tail;
6b534915
HY
409 unsigned int tail = cluster_next(&list->tail);
410
235b6217
HY
411 /*
412 * Nested cluster lock, but both cluster locks are
413 * only acquired when we held swap_info_struct->lock
414 */
415 ci_tail = ci + tail;
416 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
417 cluster_set_next(ci_tail, idx);
0ef017d1 418 spin_unlock(&ci_tail->lock);
6b534915
HY
419 cluster_set_next_flag(&list->tail, idx, 0);
420 }
421}
422
423static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
424 struct swap_cluster_info *ci)
425{
426 unsigned int idx;
427
428 idx = cluster_next(&list->head);
429 if (cluster_next(&list->tail) == idx) {
430 cluster_set_null(&list->head);
431 cluster_set_null(&list->tail);
432 } else
433 cluster_set_next_flag(&list->head,
434 cluster_next(&ci[idx]), 0);
435
436 return idx;
437}
438
815c2c54
SL
439/* Add a cluster to discard list and schedule it to do discard */
440static void swap_cluster_schedule_discard(struct swap_info_struct *si,
441 unsigned int idx)
442{
443 /*
444 * If scan_swap_map() can't find a free cluster, it will check
445 * si->swap_map directly. To make sure the discarding cluster isn't
446 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
447 * will be cleared after discard
448 */
449 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
450 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
451
6b534915 452 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
815c2c54
SL
453
454 schedule_work(&si->discard_work);
455}
456
38d8b4e6
HY
457static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
458{
459 struct swap_cluster_info *ci = si->cluster_info;
460
461 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
462 cluster_list_add_tail(&si->free_clusters, ci, idx);
463}
464
815c2c54
SL
465/*
466 * Doing discard actually. After a cluster discard is finished, the cluster
467 * will be added to free cluster list. caller should hold si->lock.
468*/
469static void swap_do_scheduled_discard(struct swap_info_struct *si)
470{
235b6217 471 struct swap_cluster_info *info, *ci;
815c2c54
SL
472 unsigned int idx;
473
474 info = si->cluster_info;
475
6b534915
HY
476 while (!cluster_list_empty(&si->discard_clusters)) {
477 idx = cluster_list_del_first(&si->discard_clusters, info);
815c2c54
SL
478 spin_unlock(&si->lock);
479
480 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
481 SWAPFILE_CLUSTER);
482
483 spin_lock(&si->lock);
235b6217 484 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
38d8b4e6 485 __free_cluster(si, idx);
815c2c54
SL
486 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
487 0, SWAPFILE_CLUSTER);
235b6217 488 unlock_cluster(ci);
815c2c54
SL
489 }
490}
491
492static void swap_discard_work(struct work_struct *work)
493{
494 struct swap_info_struct *si;
495
496 si = container_of(work, struct swap_info_struct, discard_work);
497
498 spin_lock(&si->lock);
499 swap_do_scheduled_discard(si);
500 spin_unlock(&si->lock);
501}
502
38d8b4e6
HY
503static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
504{
505 struct swap_cluster_info *ci = si->cluster_info;
506
507 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
508 cluster_list_del_first(&si->free_clusters, ci);
509 cluster_set_count_flag(ci + idx, 0, 0);
510}
511
512static void free_cluster(struct swap_info_struct *si, unsigned long idx)
513{
514 struct swap_cluster_info *ci = si->cluster_info + idx;
515
516 VM_BUG_ON(cluster_count(ci) != 0);
517 /*
518 * If the swap is discardable, prepare discard the cluster
519 * instead of free it immediately. The cluster will be freed
520 * after discard.
521 */
522 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
523 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
524 swap_cluster_schedule_discard(si, idx);
525 return;
526 }
527
528 __free_cluster(si, idx);
529}
530
2a8f9449
SL
531/*
532 * The cluster corresponding to page_nr will be used. The cluster will be
533 * removed from free cluster list and its usage counter will be increased.
534 */
535static void inc_cluster_info_page(struct swap_info_struct *p,
536 struct swap_cluster_info *cluster_info, unsigned long page_nr)
537{
538 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
539
540 if (!cluster_info)
541 return;
38d8b4e6
HY
542 if (cluster_is_free(&cluster_info[idx]))
543 alloc_cluster(p, idx);
2a8f9449
SL
544
545 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
546 cluster_set_count(&cluster_info[idx],
547 cluster_count(&cluster_info[idx]) + 1);
548}
549
550/*
551 * The cluster corresponding to page_nr decreases one usage. If the usage
552 * counter becomes 0, which means no page in the cluster is in using, we can
553 * optionally discard the cluster and add it to free cluster list.
554 */
555static void dec_cluster_info_page(struct swap_info_struct *p,
556 struct swap_cluster_info *cluster_info, unsigned long page_nr)
557{
558 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
559
560 if (!cluster_info)
561 return;
562
563 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
564 cluster_set_count(&cluster_info[idx],
565 cluster_count(&cluster_info[idx]) - 1);
566
38d8b4e6
HY
567 if (cluster_count(&cluster_info[idx]) == 0)
568 free_cluster(p, idx);
2a8f9449
SL
569}
570
571/*
572 * It's possible scan_swap_map() uses a free cluster in the middle of free
573 * cluster list. Avoiding such abuse to avoid list corruption.
574 */
ebc2a1a6
SL
575static bool
576scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
577 unsigned long offset)
578{
ebc2a1a6
SL
579 struct percpu_cluster *percpu_cluster;
580 bool conflict;
581
2a8f9449 582 offset /= SWAPFILE_CLUSTER;
6b534915
HY
583 conflict = !cluster_list_empty(&si->free_clusters) &&
584 offset != cluster_list_first(&si->free_clusters) &&
2a8f9449 585 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
586
587 if (!conflict)
588 return false;
589
590 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
591 cluster_set_null(&percpu_cluster->index);
592 return true;
593}
594
595/*
596 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
597 * might involve allocating a new cluster for current CPU too.
598 */
36005bae 599static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
ebc2a1a6
SL
600 unsigned long *offset, unsigned long *scan_base)
601{
602 struct percpu_cluster *cluster;
235b6217 603 struct swap_cluster_info *ci;
ebc2a1a6 604 bool found_free;
235b6217 605 unsigned long tmp, max;
ebc2a1a6
SL
606
607new_cluster:
608 cluster = this_cpu_ptr(si->percpu_cluster);
609 if (cluster_is_null(&cluster->index)) {
6b534915
HY
610 if (!cluster_list_empty(&si->free_clusters)) {
611 cluster->index = si->free_clusters.head;
ebc2a1a6
SL
612 cluster->next = cluster_next(&cluster->index) *
613 SWAPFILE_CLUSTER;
6b534915 614 } else if (!cluster_list_empty(&si->discard_clusters)) {
ebc2a1a6
SL
615 /*
616 * we don't have free cluster but have some clusters in
617 * discarding, do discard now and reclaim them
618 */
619 swap_do_scheduled_discard(si);
620 *scan_base = *offset = si->cluster_next;
621 goto new_cluster;
622 } else
36005bae 623 return false;
ebc2a1a6
SL
624 }
625
626 found_free = false;
627
628 /*
629 * Other CPUs can use our cluster if they can't find a free cluster,
630 * check if there is still free entry in the cluster
631 */
632 tmp = cluster->next;
235b6217
HY
633 max = min_t(unsigned long, si->max,
634 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
635 if (tmp >= max) {
636 cluster_set_null(&cluster->index);
637 goto new_cluster;
638 }
639 ci = lock_cluster(si, tmp);
640 while (tmp < max) {
ebc2a1a6
SL
641 if (!si->swap_map[tmp]) {
642 found_free = true;
643 break;
644 }
645 tmp++;
646 }
235b6217 647 unlock_cluster(ci);
ebc2a1a6
SL
648 if (!found_free) {
649 cluster_set_null(&cluster->index);
650 goto new_cluster;
651 }
652 cluster->next = tmp + 1;
653 *offset = tmp;
654 *scan_base = tmp;
36005bae 655 return found_free;
2a8f9449
SL
656}
657
a2468cc9
AL
658static void __del_from_avail_list(struct swap_info_struct *p)
659{
660 int nid;
661
662 for_each_node(nid)
663 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
664}
665
666static void del_from_avail_list(struct swap_info_struct *p)
667{
668 spin_lock(&swap_avail_lock);
669 __del_from_avail_list(p);
670 spin_unlock(&swap_avail_lock);
671}
672
38d8b4e6
HY
673static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
674 unsigned int nr_entries)
675{
676 unsigned int end = offset + nr_entries - 1;
677
678 if (offset == si->lowest_bit)
679 si->lowest_bit += nr_entries;
680 if (end == si->highest_bit)
681 si->highest_bit -= nr_entries;
682 si->inuse_pages += nr_entries;
683 if (si->inuse_pages == si->pages) {
684 si->lowest_bit = si->max;
685 si->highest_bit = 0;
a2468cc9 686 del_from_avail_list(si);
38d8b4e6
HY
687 }
688}
689
a2468cc9
AL
690static void add_to_avail_list(struct swap_info_struct *p)
691{
692 int nid;
693
694 spin_lock(&swap_avail_lock);
695 for_each_node(nid) {
696 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
697 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
698 }
699 spin_unlock(&swap_avail_lock);
700}
701
38d8b4e6
HY
702static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
703 unsigned int nr_entries)
704{
705 unsigned long end = offset + nr_entries - 1;
706 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
707
708 if (offset < si->lowest_bit)
709 si->lowest_bit = offset;
710 if (end > si->highest_bit) {
711 bool was_full = !si->highest_bit;
712
713 si->highest_bit = end;
a2468cc9
AL
714 if (was_full && (si->flags & SWP_WRITEOK))
715 add_to_avail_list(si);
38d8b4e6
HY
716 }
717 atomic_long_add(nr_entries, &nr_swap_pages);
718 si->inuse_pages -= nr_entries;
719 if (si->flags & SWP_BLKDEV)
720 swap_slot_free_notify =
721 si->bdev->bd_disk->fops->swap_slot_free_notify;
722 else
723 swap_slot_free_notify = NULL;
724 while (offset <= end) {
725 frontswap_invalidate_page(si->type, offset);
726 if (swap_slot_free_notify)
727 swap_slot_free_notify(si->bdev, offset);
728 offset++;
729 }
730}
731
36005bae
TC
732static int scan_swap_map_slots(struct swap_info_struct *si,
733 unsigned char usage, int nr,
734 swp_entry_t slots[])
1da177e4 735{
235b6217 736 struct swap_cluster_info *ci;
ebebbbe9 737 unsigned long offset;
c60aa176 738 unsigned long scan_base;
7992fde7 739 unsigned long last_in_cluster = 0;
048c27fd 740 int latency_ration = LATENCY_LIMIT;
36005bae
TC
741 int n_ret = 0;
742
743 if (nr > SWAP_BATCH)
744 nr = SWAP_BATCH;
7dfad418 745
886bb7e9 746 /*
7dfad418
HD
747 * We try to cluster swap pages by allocating them sequentially
748 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
749 * way, however, we resort to first-free allocation, starting
750 * a new cluster. This prevents us from scattering swap pages
751 * all over the entire swap partition, so that we reduce
752 * overall disk seek times between swap pages. -- sct
753 * But we do now try to find an empty cluster. -Andrea
c60aa176 754 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
755 */
756
52b7efdb 757 si->flags += SWP_SCANNING;
c60aa176 758 scan_base = offset = si->cluster_next;
ebebbbe9 759
ebc2a1a6
SL
760 /* SSD algorithm */
761 if (si->cluster_info) {
bd2d18da 762 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
36005bae 763 goto scan;
f4eaf51a 764 } else if (unlikely(!si->cluster_nr--)) {
ebebbbe9
HD
765 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
766 si->cluster_nr = SWAPFILE_CLUSTER - 1;
767 goto checks;
768 }
2a8f9449 769
ec8acf20 770 spin_unlock(&si->lock);
7dfad418 771
c60aa176
HD
772 /*
773 * If seek is expensive, start searching for new cluster from
774 * start of partition, to minimize the span of allocated swap.
50088c44
CY
775 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
776 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 777 */
50088c44 778 scan_base = offset = si->lowest_bit;
7dfad418
HD
779 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
780
781 /* Locate the first empty (unaligned) cluster */
782 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 783 if (si->swap_map[offset])
7dfad418
HD
784 last_in_cluster = offset + SWAPFILE_CLUSTER;
785 else if (offset == last_in_cluster) {
ec8acf20 786 spin_lock(&si->lock);
ebebbbe9
HD
787 offset -= SWAPFILE_CLUSTER - 1;
788 si->cluster_next = offset;
789 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
790 goto checks;
791 }
792 if (unlikely(--latency_ration < 0)) {
793 cond_resched();
794 latency_ration = LATENCY_LIMIT;
795 }
796 }
797
798 offset = scan_base;
ec8acf20 799 spin_lock(&si->lock);
ebebbbe9 800 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 801 }
7dfad418 802
ebebbbe9 803checks:
ebc2a1a6 804 if (si->cluster_info) {
36005bae
TC
805 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
806 /* take a break if we already got some slots */
807 if (n_ret)
808 goto done;
809 if (!scan_swap_map_try_ssd_cluster(si, &offset,
810 &scan_base))
811 goto scan;
812 }
ebc2a1a6 813 }
ebebbbe9 814 if (!(si->flags & SWP_WRITEOK))
52b7efdb 815 goto no_page;
7dfad418
HD
816 if (!si->highest_bit)
817 goto no_page;
ebebbbe9 818 if (offset > si->highest_bit)
c60aa176 819 scan_base = offset = si->lowest_bit;
c9e44410 820
235b6217 821 ci = lock_cluster(si, offset);
b73d7fce
HD
822 /* reuse swap entry of cache-only swap if not busy. */
823 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 824 int swap_was_freed;
235b6217 825 unlock_cluster(ci);
ec8acf20 826 spin_unlock(&si->lock);
bcd49e86 827 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
ec8acf20 828 spin_lock(&si->lock);
c9e44410
KH
829 /* entry was freed successfully, try to use this again */
830 if (swap_was_freed)
831 goto checks;
832 goto scan; /* check next one */
833 }
834
235b6217
HY
835 if (si->swap_map[offset]) {
836 unlock_cluster(ci);
36005bae
TC
837 if (!n_ret)
838 goto scan;
839 else
840 goto done;
235b6217 841 }
2872bb2d
HY
842 si->swap_map[offset] = usage;
843 inc_cluster_info_page(si, si->cluster_info, offset);
844 unlock_cluster(ci);
ebebbbe9 845
38d8b4e6 846 swap_range_alloc(si, offset, 1);
ebebbbe9 847 si->cluster_next = offset + 1;
36005bae
TC
848 slots[n_ret++] = swp_entry(si->type, offset);
849
850 /* got enough slots or reach max slots? */
851 if ((n_ret == nr) || (offset >= si->highest_bit))
852 goto done;
853
854 /* search for next available slot */
855
856 /* time to take a break? */
857 if (unlikely(--latency_ration < 0)) {
858 if (n_ret)
859 goto done;
860 spin_unlock(&si->lock);
861 cond_resched();
862 spin_lock(&si->lock);
863 latency_ration = LATENCY_LIMIT;
864 }
865
866 /* try to get more slots in cluster */
867 if (si->cluster_info) {
868 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
869 goto checks;
f4eaf51a
WY
870 } else if (si->cluster_nr && !si->swap_map[++offset]) {
871 /* non-ssd case, still more slots in cluster? */
36005bae
TC
872 --si->cluster_nr;
873 goto checks;
874 }
7992fde7 875
36005bae
TC
876done:
877 si->flags -= SWP_SCANNING;
878 return n_ret;
7dfad418 879
ebebbbe9 880scan:
ec8acf20 881 spin_unlock(&si->lock);
7dfad418 882 while (++offset <= si->highest_bit) {
52b7efdb 883 if (!si->swap_map[offset]) {
ec8acf20 884 spin_lock(&si->lock);
52b7efdb
HD
885 goto checks;
886 }
c9e44410 887 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 888 spin_lock(&si->lock);
c9e44410
KH
889 goto checks;
890 }
048c27fd
HD
891 if (unlikely(--latency_ration < 0)) {
892 cond_resched();
893 latency_ration = LATENCY_LIMIT;
894 }
7dfad418 895 }
c60aa176 896 offset = si->lowest_bit;
a5998061 897 while (offset < scan_base) {
c60aa176 898 if (!si->swap_map[offset]) {
ec8acf20 899 spin_lock(&si->lock);
c60aa176
HD
900 goto checks;
901 }
c9e44410 902 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 903 spin_lock(&si->lock);
c9e44410
KH
904 goto checks;
905 }
c60aa176
HD
906 if (unlikely(--latency_ration < 0)) {
907 cond_resched();
908 latency_ration = LATENCY_LIMIT;
909 }
a5998061 910 offset++;
c60aa176 911 }
ec8acf20 912 spin_lock(&si->lock);
7dfad418
HD
913
914no_page:
52b7efdb 915 si->flags -= SWP_SCANNING;
36005bae 916 return n_ret;
1da177e4
LT
917}
918
38d8b4e6
HY
919static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
920{
921 unsigned long idx;
922 struct swap_cluster_info *ci;
923 unsigned long offset, i;
924 unsigned char *map;
925
fe5266d5
HY
926 /*
927 * Should not even be attempting cluster allocations when huge
928 * page swap is disabled. Warn and fail the allocation.
929 */
930 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
931 VM_WARN_ON_ONCE(1);
932 return 0;
933 }
934
38d8b4e6
HY
935 if (cluster_list_empty(&si->free_clusters))
936 return 0;
937
938 idx = cluster_list_first(&si->free_clusters);
939 offset = idx * SWAPFILE_CLUSTER;
940 ci = lock_cluster(si, offset);
941 alloc_cluster(si, idx);
e0709829 942 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
38d8b4e6
HY
943
944 map = si->swap_map + offset;
945 for (i = 0; i < SWAPFILE_CLUSTER; i++)
946 map[i] = SWAP_HAS_CACHE;
947 unlock_cluster(ci);
948 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
949 *slot = swp_entry(si->type, offset);
950
951 return 1;
952}
953
954static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
955{
956 unsigned long offset = idx * SWAPFILE_CLUSTER;
957 struct swap_cluster_info *ci;
958
959 ci = lock_cluster(si, offset);
979aafa5 960 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
38d8b4e6
HY
961 cluster_set_count_flag(ci, 0, 0);
962 free_cluster(si, idx);
963 unlock_cluster(ci);
964 swap_range_free(si, offset, SWAPFILE_CLUSTER);
965}
38d8b4e6 966
36005bae
TC
967static unsigned long scan_swap_map(struct swap_info_struct *si,
968 unsigned char usage)
969{
970 swp_entry_t entry;
971 int n_ret;
972
973 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
974
975 if (n_ret)
976 return swp_offset(entry);
977 else
978 return 0;
979
980}
981
5d5e8f19 982int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1da177e4 983{
5d5e8f19 984 unsigned long size = swap_entry_size(entry_size);
adfab836 985 struct swap_info_struct *si, *next;
36005bae
TC
986 long avail_pgs;
987 int n_ret = 0;
a2468cc9 988 int node;
1da177e4 989
38d8b4e6 990 /* Only single cluster request supported */
5d5e8f19 991 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
38d8b4e6 992
5d5e8f19 993 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
36005bae 994 if (avail_pgs <= 0)
fb4f88dc 995 goto noswap;
36005bae 996
08d3090f 997 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
36005bae 998
5d5e8f19 999 atomic_long_sub(n_goal * size, &nr_swap_pages);
fb4f88dc 1000
18ab4d4c
DS
1001 spin_lock(&swap_avail_lock);
1002
1003start_over:
a2468cc9
AL
1004 node = numa_node_id();
1005 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
18ab4d4c 1006 /* requeue si to after same-priority siblings */
a2468cc9 1007 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
18ab4d4c 1008 spin_unlock(&swap_avail_lock);
ec8acf20 1009 spin_lock(&si->lock);
adfab836 1010 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c 1011 spin_lock(&swap_avail_lock);
a2468cc9 1012 if (plist_node_empty(&si->avail_lists[node])) {
18ab4d4c
DS
1013 spin_unlock(&si->lock);
1014 goto nextsi;
1015 }
1016 WARN(!si->highest_bit,
1017 "swap_info %d in list but !highest_bit\n",
1018 si->type);
1019 WARN(!(si->flags & SWP_WRITEOK),
1020 "swap_info %d in list but !SWP_WRITEOK\n",
1021 si->type);
a2468cc9 1022 __del_from_avail_list(si);
ec8acf20 1023 spin_unlock(&si->lock);
18ab4d4c 1024 goto nextsi;
ec8acf20 1025 }
5d5e8f19 1026 if (size == SWAPFILE_CLUSTER) {
bc4ae27d 1027 if (!(si->flags & SWP_FS))
f0eea189
HY
1028 n_ret = swap_alloc_cluster(si, swp_entries);
1029 } else
38d8b4e6
HY
1030 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1031 n_goal, swp_entries);
ec8acf20 1032 spin_unlock(&si->lock);
5d5e8f19 1033 if (n_ret || size == SWAPFILE_CLUSTER)
36005bae 1034 goto check_out;
18ab4d4c 1035 pr_debug("scan_swap_map of si %d failed to find offset\n",
36005bae
TC
1036 si->type);
1037
18ab4d4c
DS
1038 spin_lock(&swap_avail_lock);
1039nextsi:
adfab836
DS
1040 /*
1041 * if we got here, it's likely that si was almost full before,
1042 * and since scan_swap_map() can drop the si->lock, multiple
1043 * callers probably all tried to get a page from the same si
18ab4d4c
DS
1044 * and it filled up before we could get one; or, the si filled
1045 * up between us dropping swap_avail_lock and taking si->lock.
1046 * Since we dropped the swap_avail_lock, the swap_avail_head
1047 * list may have been modified; so if next is still in the
36005bae
TC
1048 * swap_avail_head list then try it, otherwise start over
1049 * if we have not gotten any slots.
adfab836 1050 */
a2468cc9 1051 if (plist_node_empty(&next->avail_lists[node]))
18ab4d4c 1052 goto start_over;
1da177e4 1053 }
fb4f88dc 1054
18ab4d4c
DS
1055 spin_unlock(&swap_avail_lock);
1056
36005bae
TC
1057check_out:
1058 if (n_ret < n_goal)
5d5e8f19 1059 atomic_long_add((long)(n_goal - n_ret) * size,
38d8b4e6 1060 &nr_swap_pages);
fb4f88dc 1061noswap:
36005bae
TC
1062 return n_ret;
1063}
1064
2de1a7e4 1065/* The only caller of this function is now suspend routine */
910321ea
HD
1066swp_entry_t get_swap_page_of_type(int type)
1067{
c10d38cc 1068 struct swap_info_struct *si = swap_type_to_swap_info(type);
910321ea
HD
1069 pgoff_t offset;
1070
c10d38cc
DJ
1071 if (!si)
1072 goto fail;
1073
ec8acf20 1074 spin_lock(&si->lock);
c10d38cc 1075 if (si->flags & SWP_WRITEOK) {
ec8acf20 1076 atomic_long_dec(&nr_swap_pages);
910321ea
HD
1077 /* This is called for allocating swap entry, not cache */
1078 offset = scan_swap_map(si, 1);
1079 if (offset) {
ec8acf20 1080 spin_unlock(&si->lock);
910321ea
HD
1081 return swp_entry(type, offset);
1082 }
ec8acf20 1083 atomic_long_inc(&nr_swap_pages);
910321ea 1084 }
ec8acf20 1085 spin_unlock(&si->lock);
c10d38cc 1086fail:
910321ea
HD
1087 return (swp_entry_t) {0};
1088}
1089
e8c26ab6 1090static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1da177e4 1091{
73c34b6a 1092 struct swap_info_struct *p;
eb085574 1093 unsigned long offset;
1da177e4
LT
1094
1095 if (!entry.val)
1096 goto out;
eb085574 1097 p = swp_swap_info(entry);
c10d38cc 1098 if (!p)
1da177e4 1099 goto bad_nofile;
1da177e4
LT
1100 if (!(p->flags & SWP_USED))
1101 goto bad_device;
1102 offset = swp_offset(entry);
1103 if (offset >= p->max)
1104 goto bad_offset;
1da177e4
LT
1105 return p;
1106
1da177e4 1107bad_offset:
6a991fc7 1108 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
1109 goto out;
1110bad_device:
6a991fc7 1111 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
1112 goto out;
1113bad_nofile:
6a991fc7 1114 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
1115out:
1116 return NULL;
886bb7e9 1117}
1da177e4 1118
e8c26ab6
TC
1119static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1120{
1121 struct swap_info_struct *p;
1122
1123 p = __swap_info_get(entry);
1124 if (!p)
1125 goto out;
1126 if (!p->swap_map[swp_offset(entry)])
1127 goto bad_free;
1128 return p;
1129
1130bad_free:
1131 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1132 goto out;
1133out:
1134 return NULL;
1135}
1136
235b6217
HY
1137static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1138{
1139 struct swap_info_struct *p;
1140
1141 p = _swap_info_get(entry);
1142 if (p)
1143 spin_lock(&p->lock);
1144 return p;
1145}
1146
7c00bafe
TC
1147static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1148 struct swap_info_struct *q)
1149{
1150 struct swap_info_struct *p;
1151
1152 p = _swap_info_get(entry);
1153
1154 if (p != q) {
1155 if (q != NULL)
1156 spin_unlock(&q->lock);
1157 if (p != NULL)
1158 spin_lock(&p->lock);
1159 }
1160 return p;
1161}
1162
b32d5f32
HY
1163static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1164 unsigned long offset,
1165 unsigned char usage)
1da177e4 1166{
8d69aaee
HD
1167 unsigned char count;
1168 unsigned char has_cache;
235b6217 1169
253d553b 1170 count = p->swap_map[offset];
235b6217 1171
253d553b
HD
1172 has_cache = count & SWAP_HAS_CACHE;
1173 count &= ~SWAP_HAS_CACHE;
355cfa73 1174
253d553b 1175 if (usage == SWAP_HAS_CACHE) {
355cfa73 1176 VM_BUG_ON(!has_cache);
253d553b 1177 has_cache = 0;
aaa46865
HD
1178 } else if (count == SWAP_MAP_SHMEM) {
1179 /*
1180 * Or we could insist on shmem.c using a special
1181 * swap_shmem_free() and free_shmem_swap_and_cache()...
1182 */
1183 count = 0;
570a335b
HD
1184 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1185 if (count == COUNT_CONTINUED) {
1186 if (swap_count_continued(p, offset, count))
1187 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1188 else
1189 count = SWAP_MAP_MAX;
1190 } else
1191 count--;
1192 }
253d553b 1193
253d553b 1194 usage = count | has_cache;
7c00bafe
TC
1195 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1196
b32d5f32
HY
1197 return usage;
1198}
1199
eb085574
HY
1200/*
1201 * Check whether swap entry is valid in the swap device. If so,
1202 * return pointer to swap_info_struct, and keep the swap entry valid
1203 * via preventing the swap device from being swapoff, until
1204 * put_swap_device() is called. Otherwise return NULL.
1205 *
1206 * The entirety of the RCU read critical section must come before the
1207 * return from or after the call to synchronize_rcu() in
1208 * enable_swap_info() or swapoff(). So if "si->flags & SWP_VALID" is
1209 * true, the si->map, si->cluster_info, etc. must be valid in the
1210 * critical section.
1211 *
1212 * Notice that swapoff or swapoff+swapon can still happen before the
1213 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1214 * in put_swap_device() if there isn't any other way to prevent
1215 * swapoff, such as page lock, page table lock, etc. The caller must
1216 * be prepared for that. For example, the following situation is
1217 * possible.
1218 *
1219 * CPU1 CPU2
1220 * do_swap_page()
1221 * ... swapoff+swapon
1222 * __read_swap_cache_async()
1223 * swapcache_prepare()
1224 * __swap_duplicate()
1225 * // check swap_map
1226 * // verify PTE not changed
1227 *
1228 * In __swap_duplicate(), the swap_map need to be checked before
1229 * changing partly because the specified swap entry may be for another
1230 * swap device which has been swapoff. And in do_swap_page(), after
1231 * the page is read from the swap device, the PTE is verified not
1232 * changed with the page table locked to check whether the swap device
1233 * has been swapoff or swapoff+swapon.
1234 */
1235struct swap_info_struct *get_swap_device(swp_entry_t entry)
1236{
1237 struct swap_info_struct *si;
1238 unsigned long offset;
1239
1240 if (!entry.val)
1241 goto out;
1242 si = swp_swap_info(entry);
1243 if (!si)
1244 goto bad_nofile;
1245
1246 rcu_read_lock();
1247 if (!(si->flags & SWP_VALID))
1248 goto unlock_out;
1249 offset = swp_offset(entry);
1250 if (offset >= si->max)
1251 goto unlock_out;
1252
1253 return si;
1254bad_nofile:
1255 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1256out:
1257 return NULL;
1258unlock_out:
1259 rcu_read_unlock();
1260 return NULL;
1261}
1262
b32d5f32
HY
1263static unsigned char __swap_entry_free(struct swap_info_struct *p,
1264 swp_entry_t entry, unsigned char usage)
1265{
1266 struct swap_cluster_info *ci;
1267 unsigned long offset = swp_offset(entry);
1268
1269 ci = lock_cluster_or_swap_info(p, offset);
1270 usage = __swap_entry_free_locked(p, offset, usage);
7c00bafe 1271 unlock_cluster_or_swap_info(p, ci);
10e364da
HY
1272 if (!usage)
1273 free_swap_slot(entry);
7c00bafe
TC
1274
1275 return usage;
1276}
355cfa73 1277
7c00bafe
TC
1278static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1279{
1280 struct swap_cluster_info *ci;
1281 unsigned long offset = swp_offset(entry);
1282 unsigned char count;
1283
1284 ci = lock_cluster(p, offset);
1285 count = p->swap_map[offset];
1286 VM_BUG_ON(count != SWAP_HAS_CACHE);
1287 p->swap_map[offset] = 0;
1288 dec_cluster_info_page(p, p->cluster_info, offset);
235b6217
HY
1289 unlock_cluster(ci);
1290
38d8b4e6
HY
1291 mem_cgroup_uncharge_swap(entry, 1);
1292 swap_range_free(p, offset, 1);
1da177e4
LT
1293}
1294
1295/*
2de1a7e4 1296 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
1297 * is still around or has not been recycled.
1298 */
1299void swap_free(swp_entry_t entry)
1300{
73c34b6a 1301 struct swap_info_struct *p;
1da177e4 1302
235b6217 1303 p = _swap_info_get(entry);
10e364da
HY
1304 if (p)
1305 __swap_entry_free(p, entry, 1);
1da177e4
LT
1306}
1307
cb4b86ba
KH
1308/*
1309 * Called after dropping swapcache to decrease refcnt to swap entries.
1310 */
a448f2d0 1311void put_swap_page(struct page *page, swp_entry_t entry)
38d8b4e6
HY
1312{
1313 unsigned long offset = swp_offset(entry);
1314 unsigned long idx = offset / SWAPFILE_CLUSTER;
1315 struct swap_cluster_info *ci;
1316 struct swap_info_struct *si;
1317 unsigned char *map;
a3aea839
HY
1318 unsigned int i, free_entries = 0;
1319 unsigned char val;
a448f2d0 1320 int size = swap_entry_size(hpage_nr_pages(page));
fe5266d5 1321
a3aea839 1322 si = _swap_info_get(entry);
38d8b4e6
HY
1323 if (!si)
1324 return;
1325
c2343d27 1326 ci = lock_cluster_or_swap_info(si, offset);
a448f2d0 1327 if (size == SWAPFILE_CLUSTER) {
a448f2d0
HY
1328 VM_BUG_ON(!cluster_is_huge(ci));
1329 map = si->swap_map + offset;
1330 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1331 val = map[i];
1332 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1333 if (val == SWAP_HAS_CACHE)
1334 free_entries++;
1335 }
a448f2d0 1336 cluster_clear_huge(ci);
a448f2d0 1337 if (free_entries == SWAPFILE_CLUSTER) {
c2343d27 1338 unlock_cluster_or_swap_info(si, ci);
a448f2d0 1339 spin_lock(&si->lock);
a448f2d0
HY
1340 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1341 swap_free_cluster(si, idx);
1342 spin_unlock(&si->lock);
1343 return;
1344 }
1345 }
c2343d27
HY
1346 for (i = 0; i < size; i++, entry.val++) {
1347 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1348 unlock_cluster_or_swap_info(si, ci);
1349 free_swap_slot(entry);
1350 if (i == size - 1)
1351 return;
1352 lock_cluster_or_swap_info(si, offset);
a3aea839
HY
1353 }
1354 }
c2343d27 1355 unlock_cluster_or_swap_info(si, ci);
38d8b4e6 1356}
59807685 1357
fe5266d5 1358#ifdef CONFIG_THP_SWAP
59807685
HY
1359int split_swap_cluster(swp_entry_t entry)
1360{
1361 struct swap_info_struct *si;
1362 struct swap_cluster_info *ci;
1363 unsigned long offset = swp_offset(entry);
1364
1365 si = _swap_info_get(entry);
1366 if (!si)
1367 return -EBUSY;
1368 ci = lock_cluster(si, offset);
1369 cluster_clear_huge(ci);
1370 unlock_cluster(ci);
1371 return 0;
1372}
fe5266d5 1373#endif
38d8b4e6 1374
155b5f88
HY
1375static int swp_entry_cmp(const void *ent1, const void *ent2)
1376{
1377 const swp_entry_t *e1 = ent1, *e2 = ent2;
1378
1379 return (int)swp_type(*e1) - (int)swp_type(*e2);
1380}
1381
7c00bafe
TC
1382void swapcache_free_entries(swp_entry_t *entries, int n)
1383{
1384 struct swap_info_struct *p, *prev;
1385 int i;
1386
1387 if (n <= 0)
1388 return;
1389
1390 prev = NULL;
1391 p = NULL;
155b5f88
HY
1392
1393 /*
1394 * Sort swap entries by swap device, so each lock is only taken once.
1395 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1396 * so low that it isn't necessary to optimize further.
1397 */
1398 if (nr_swapfiles > 1)
1399 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
7c00bafe
TC
1400 for (i = 0; i < n; ++i) {
1401 p = swap_info_get_cont(entries[i], prev);
1402 if (p)
1403 swap_entry_free(p, entries[i]);
7c00bafe
TC
1404 prev = p;
1405 }
235b6217 1406 if (p)
7c00bafe 1407 spin_unlock(&p->lock);
cb4b86ba
KH
1408}
1409
1da177e4 1410/*
c475a8ab 1411 * How many references to page are currently swapped out?
570a335b
HD
1412 * This does not give an exact answer when swap count is continued,
1413 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 1414 */
bde05d1c 1415int page_swapcount(struct page *page)
1da177e4 1416{
c475a8ab
HD
1417 int count = 0;
1418 struct swap_info_struct *p;
235b6217 1419 struct swap_cluster_info *ci;
1da177e4 1420 swp_entry_t entry;
235b6217 1421 unsigned long offset;
1da177e4 1422
4c21e2f2 1423 entry.val = page_private(page);
235b6217 1424 p = _swap_info_get(entry);
1da177e4 1425 if (p) {
235b6217
HY
1426 offset = swp_offset(entry);
1427 ci = lock_cluster_or_swap_info(p, offset);
1428 count = swap_count(p->swap_map[offset]);
1429 unlock_cluster_or_swap_info(p, ci);
1da177e4 1430 }
c475a8ab 1431 return count;
1da177e4
LT
1432}
1433
eb085574 1434int __swap_count(swp_entry_t entry)
aa8d22a1 1435{
eb085574 1436 struct swap_info_struct *si;
aa8d22a1 1437 pgoff_t offset = swp_offset(entry);
eb085574 1438 int count = 0;
aa8d22a1 1439
eb085574
HY
1440 si = get_swap_device(entry);
1441 if (si) {
1442 count = swap_count(si->swap_map[offset]);
1443 put_swap_device(si);
1444 }
1445 return count;
aa8d22a1
MK
1446}
1447
322b8afe
HY
1448static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1449{
1450 int count = 0;
1451 pgoff_t offset = swp_offset(entry);
1452 struct swap_cluster_info *ci;
1453
1454 ci = lock_cluster_or_swap_info(si, offset);
1455 count = swap_count(si->swap_map[offset]);
1456 unlock_cluster_or_swap_info(si, ci);
1457 return count;
1458}
1459
e8c26ab6
TC
1460/*
1461 * How many references to @entry are currently swapped out?
1462 * This does not give an exact answer when swap count is continued,
1463 * but does include the high COUNT_CONTINUED flag to allow for that.
1464 */
1465int __swp_swapcount(swp_entry_t entry)
1466{
1467 int count = 0;
e8c26ab6 1468 struct swap_info_struct *si;
e8c26ab6 1469
eb085574
HY
1470 si = get_swap_device(entry);
1471 if (si) {
322b8afe 1472 count = swap_swapcount(si, entry);
eb085574
HY
1473 put_swap_device(si);
1474 }
e8c26ab6
TC
1475 return count;
1476}
1477
8334b962
MK
1478/*
1479 * How many references to @entry are currently swapped out?
1480 * This considers COUNT_CONTINUED so it returns exact answer.
1481 */
1482int swp_swapcount(swp_entry_t entry)
1483{
1484 int count, tmp_count, n;
1485 struct swap_info_struct *p;
235b6217 1486 struct swap_cluster_info *ci;
8334b962
MK
1487 struct page *page;
1488 pgoff_t offset;
1489 unsigned char *map;
1490
235b6217 1491 p = _swap_info_get(entry);
8334b962
MK
1492 if (!p)
1493 return 0;
1494
235b6217
HY
1495 offset = swp_offset(entry);
1496
1497 ci = lock_cluster_or_swap_info(p, offset);
1498
1499 count = swap_count(p->swap_map[offset]);
8334b962
MK
1500 if (!(count & COUNT_CONTINUED))
1501 goto out;
1502
1503 count &= ~COUNT_CONTINUED;
1504 n = SWAP_MAP_MAX + 1;
1505
8334b962
MK
1506 page = vmalloc_to_page(p->swap_map + offset);
1507 offset &= ~PAGE_MASK;
1508 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1509
1510 do {
a8ae4991 1511 page = list_next_entry(page, lru);
8334b962
MK
1512 map = kmap_atomic(page);
1513 tmp_count = map[offset];
1514 kunmap_atomic(map);
1515
1516 count += (tmp_count & ~COUNT_CONTINUED) * n;
1517 n *= (SWAP_CONT_MAX + 1);
1518 } while (tmp_count & COUNT_CONTINUED);
1519out:
235b6217 1520 unlock_cluster_or_swap_info(p, ci);
8334b962
MK
1521 return count;
1522}
1523
e0709829
HY
1524static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1525 swp_entry_t entry)
1526{
1527 struct swap_cluster_info *ci;
1528 unsigned char *map = si->swap_map;
1529 unsigned long roffset = swp_offset(entry);
1530 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1531 int i;
1532 bool ret = false;
1533
1534 ci = lock_cluster_or_swap_info(si, offset);
1535 if (!ci || !cluster_is_huge(ci)) {
afa4711e 1536 if (swap_count(map[roffset]))
e0709829
HY
1537 ret = true;
1538 goto unlock_out;
1539 }
1540 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
afa4711e 1541 if (swap_count(map[offset + i])) {
e0709829
HY
1542 ret = true;
1543 break;
1544 }
1545 }
1546unlock_out:
1547 unlock_cluster_or_swap_info(si, ci);
1548 return ret;
1549}
1550
1551static bool page_swapped(struct page *page)
1552{
1553 swp_entry_t entry;
1554 struct swap_info_struct *si;
1555
fe5266d5 1556 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
e0709829
HY
1557 return page_swapcount(page) != 0;
1558
1559 page = compound_head(page);
1560 entry.val = page_private(page);
1561 si = _swap_info_get(entry);
1562 if (si)
1563 return swap_page_trans_huge_swapped(si, entry);
1564 return false;
1565}
ba3c4ce6
HY
1566
1567static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1568 int *total_swapcount)
1569{
1570 int i, map_swapcount, _total_mapcount, _total_swapcount;
1571 unsigned long offset = 0;
1572 struct swap_info_struct *si;
1573 struct swap_cluster_info *ci = NULL;
1574 unsigned char *map = NULL;
1575 int mapcount, swapcount = 0;
1576
1577 /* hugetlbfs shouldn't call it */
1578 VM_BUG_ON_PAGE(PageHuge(page), page);
1579
fe5266d5
HY
1580 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1581 mapcount = page_trans_huge_mapcount(page, total_mapcount);
ba3c4ce6
HY
1582 if (PageSwapCache(page))
1583 swapcount = page_swapcount(page);
1584 if (total_swapcount)
1585 *total_swapcount = swapcount;
1586 return mapcount + swapcount;
1587 }
1588
1589 page = compound_head(page);
1590
1591 _total_mapcount = _total_swapcount = map_swapcount = 0;
1592 if (PageSwapCache(page)) {
1593 swp_entry_t entry;
1594
1595 entry.val = page_private(page);
1596 si = _swap_info_get(entry);
1597 if (si) {
1598 map = si->swap_map;
1599 offset = swp_offset(entry);
1600 }
1601 }
1602 if (map)
1603 ci = lock_cluster(si, offset);
1604 for (i = 0; i < HPAGE_PMD_NR; i++) {
1605 mapcount = atomic_read(&page[i]._mapcount) + 1;
1606 _total_mapcount += mapcount;
1607 if (map) {
1608 swapcount = swap_count(map[offset + i]);
1609 _total_swapcount += swapcount;
1610 }
1611 map_swapcount = max(map_swapcount, mapcount + swapcount);
1612 }
1613 unlock_cluster(ci);
1614 if (PageDoubleMap(page)) {
1615 map_swapcount -= 1;
1616 _total_mapcount -= HPAGE_PMD_NR;
1617 }
1618 mapcount = compound_mapcount(page);
1619 map_swapcount += mapcount;
1620 _total_mapcount += mapcount;
1621 if (total_mapcount)
1622 *total_mapcount = _total_mapcount;
1623 if (total_swapcount)
1624 *total_swapcount = _total_swapcount;
1625
1626 return map_swapcount;
1627}
e0709829 1628
1da177e4 1629/*
7b1fe597
HD
1630 * We can write to an anon page without COW if there are no other references
1631 * to it. And as a side-effect, free up its swap: because the old content
1632 * on disk will never be read, and seeking back there to write new content
1633 * later would only waste time away from clustering.
6d0a07ed 1634 *
ba3c4ce6 1635 * NOTE: total_map_swapcount should not be relied upon by the caller if
6d0a07ed
AA
1636 * reuse_swap_page() returns false, but it may be always overwritten
1637 * (see the other implementation for CONFIG_SWAP=n).
1da177e4 1638 */
ba3c4ce6 1639bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1da177e4 1640{
ba3c4ce6 1641 int count, total_mapcount, total_swapcount;
c475a8ab 1642
309381fe 1643 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688 1644 if (unlikely(PageKsm(page)))
6d0a07ed 1645 return false;
ba3c4ce6
HY
1646 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1647 &total_swapcount);
1648 if (total_map_swapcount)
1649 *total_map_swapcount = total_mapcount + total_swapcount;
1650 if (count == 1 && PageSwapCache(page) &&
1651 (likely(!PageTransCompound(page)) ||
1652 /* The remaining swap count will be freed soon */
1653 total_swapcount == page_swapcount(page))) {
f0571429 1654 if (!PageWriteback(page)) {
ba3c4ce6 1655 page = compound_head(page);
7b1fe597
HD
1656 delete_from_swap_cache(page);
1657 SetPageDirty(page);
f0571429
MK
1658 } else {
1659 swp_entry_t entry;
1660 struct swap_info_struct *p;
1661
1662 entry.val = page_private(page);
1663 p = swap_info_get(entry);
1664 if (p->flags & SWP_STABLE_WRITES) {
1665 spin_unlock(&p->lock);
1666 return false;
1667 }
1668 spin_unlock(&p->lock);
7b1fe597
HD
1669 }
1670 }
ba3c4ce6 1671
5ad64688 1672 return count <= 1;
1da177e4
LT
1673}
1674
1675/*
a2c43eed
HD
1676 * If swap is getting full, or if there are no more mappings of this page,
1677 * then try_to_free_swap is called to free its swap space.
1da177e4 1678 */
a2c43eed 1679int try_to_free_swap(struct page *page)
1da177e4 1680{
309381fe 1681 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
1682
1683 if (!PageSwapCache(page))
1684 return 0;
1685 if (PageWriteback(page))
1686 return 0;
e0709829 1687 if (page_swapped(page))
1da177e4
LT
1688 return 0;
1689
b73d7fce
HD
1690 /*
1691 * Once hibernation has begun to create its image of memory,
1692 * there's a danger that one of the calls to try_to_free_swap()
1693 * - most probably a call from __try_to_reclaim_swap() while
1694 * hibernation is allocating its own swap pages for the image,
1695 * but conceivably even a call from memory reclaim - will free
1696 * the swap from a page which has already been recorded in the
1697 * image as a clean swapcache page, and then reuse its swap for
1698 * another page of the image. On waking from hibernation, the
1699 * original page might be freed under memory pressure, then
1700 * later read back in from swap, now with the wrong data.
1701 *
2de1a7e4 1702 * Hibernation suspends storage while it is writing the image
f90ac398 1703 * to disk so check that here.
b73d7fce 1704 */
f90ac398 1705 if (pm_suspended_storage())
b73d7fce
HD
1706 return 0;
1707
e0709829 1708 page = compound_head(page);
a2c43eed
HD
1709 delete_from_swap_cache(page);
1710 SetPageDirty(page);
1711 return 1;
68a22394
RR
1712}
1713
1da177e4
LT
1714/*
1715 * Free the swap entry like above, but also try to
1716 * free the page cache entry if it is the last user.
1717 */
2509ef26 1718int free_swap_and_cache(swp_entry_t entry)
1da177e4 1719{
2509ef26 1720 struct swap_info_struct *p;
7c00bafe 1721 unsigned char count;
1da177e4 1722
a7420aa5 1723 if (non_swap_entry(entry))
2509ef26 1724 return 1;
0697212a 1725
7c00bafe 1726 p = _swap_info_get(entry);
1da177e4 1727 if (p) {
7c00bafe 1728 count = __swap_entry_free(p, entry, 1);
e0709829 1729 if (count == SWAP_HAS_CACHE &&
bcd49e86
HY
1730 !swap_page_trans_huge_swapped(p, entry))
1731 __try_to_reclaim_swap(p, swp_offset(entry),
1732 TTRS_UNMAPPED | TTRS_FULL);
1da177e4 1733 }
2509ef26 1734 return p != NULL;
1da177e4
LT
1735}
1736
b0cb1a19 1737#ifdef CONFIG_HIBERNATION
f577eb30 1738/*
915bae9e 1739 * Find the swap type that corresponds to given device (if any).
f577eb30 1740 *
915bae9e
RW
1741 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1742 * from 0, in which the swap header is expected to be located.
1743 *
1744 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1745 */
7bf23687 1746int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 1747{
915bae9e 1748 struct block_device *bdev = NULL;
efa90a98 1749 int type;
f577eb30 1750
915bae9e
RW
1751 if (device)
1752 bdev = bdget(device);
1753
f577eb30 1754 spin_lock(&swap_lock);
efa90a98
HD
1755 for (type = 0; type < nr_swapfiles; type++) {
1756 struct swap_info_struct *sis = swap_info[type];
f577eb30 1757
915bae9e 1758 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1759 continue;
b6b5bce3 1760
915bae9e 1761 if (!bdev) {
7bf23687 1762 if (bdev_p)
dddac6a7 1763 *bdev_p = bdgrab(sis->bdev);
7bf23687 1764
6e1819d6 1765 spin_unlock(&swap_lock);
efa90a98 1766 return type;
6e1819d6 1767 }
915bae9e 1768 if (bdev == sis->bdev) {
4efaceb1 1769 struct swap_extent *se = first_se(sis);
915bae9e 1770
915bae9e 1771 if (se->start_block == offset) {
7bf23687 1772 if (bdev_p)
dddac6a7 1773 *bdev_p = bdgrab(sis->bdev);
7bf23687 1774
915bae9e
RW
1775 spin_unlock(&swap_lock);
1776 bdput(bdev);
efa90a98 1777 return type;
915bae9e 1778 }
f577eb30
RW
1779 }
1780 }
1781 spin_unlock(&swap_lock);
915bae9e
RW
1782 if (bdev)
1783 bdput(bdev);
1784
f577eb30
RW
1785 return -ENODEV;
1786}
1787
73c34b6a
HD
1788/*
1789 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1790 * corresponding to given index in swap_info (swap type).
1791 */
1792sector_t swapdev_block(int type, pgoff_t offset)
1793{
1794 struct block_device *bdev;
c10d38cc 1795 struct swap_info_struct *si = swap_type_to_swap_info(type);
73c34b6a 1796
c10d38cc 1797 if (!si || !(si->flags & SWP_WRITEOK))
73c34b6a 1798 return 0;
d4906e1a 1799 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
1800}
1801
f577eb30
RW
1802/*
1803 * Return either the total number of swap pages of given type, or the number
1804 * of free pages of that type (depending on @free)
1805 *
1806 * This is needed for software suspend
1807 */
1808unsigned int count_swap_pages(int type, int free)
1809{
1810 unsigned int n = 0;
1811
efa90a98
HD
1812 spin_lock(&swap_lock);
1813 if ((unsigned int)type < nr_swapfiles) {
1814 struct swap_info_struct *sis = swap_info[type];
1815
ec8acf20 1816 spin_lock(&sis->lock);
efa90a98
HD
1817 if (sis->flags & SWP_WRITEOK) {
1818 n = sis->pages;
f577eb30 1819 if (free)
efa90a98 1820 n -= sis->inuse_pages;
f577eb30 1821 }
ec8acf20 1822 spin_unlock(&sis->lock);
f577eb30 1823 }
efa90a98 1824 spin_unlock(&swap_lock);
f577eb30
RW
1825 return n;
1826}
73c34b6a 1827#endif /* CONFIG_HIBERNATION */
f577eb30 1828
9f8bdb3f 1829static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
179ef71c 1830{
9f8bdb3f 1831 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
179ef71c
CG
1832}
1833
1da177e4 1834/*
72866f6f
HD
1835 * No need to decide whether this PTE shares the swap entry with others,
1836 * just let do_wp_page work it out if a write is requested later - to
1837 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1838 */
044d66c1 1839static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1840 unsigned long addr, swp_entry_t entry, struct page *page)
1841{
9e16b7fb 1842 struct page *swapcache;
72835c86 1843 struct mem_cgroup *memcg;
044d66c1
HD
1844 spinlock_t *ptl;
1845 pte_t *pte;
1846 int ret = 1;
1847
9e16b7fb
HD
1848 swapcache = page;
1849 page = ksm_might_need_to_copy(page, vma, addr);
1850 if (unlikely(!page))
1851 return -ENOMEM;
1852
f627c2f5
KS
1853 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1854 &memcg, false)) {
044d66c1 1855 ret = -ENOMEM;
85d9fc89
KH
1856 goto out_nolock;
1857 }
044d66c1
HD
1858
1859 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
9f8bdb3f 1860 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
f627c2f5 1861 mem_cgroup_cancel_charge(page, memcg, false);
044d66c1
HD
1862 ret = 0;
1863 goto out;
1864 }
8a9f3ccd 1865
b084d435 1866 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1867 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1868 get_page(page);
1869 set_pte_at(vma->vm_mm, addr, pte,
1870 pte_mkold(mk_pte(page, vma->vm_page_prot)));
00501b53 1871 if (page == swapcache) {
d281ee61 1872 page_add_anon_rmap(page, vma, addr, false);
f627c2f5 1873 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1874 } else { /* ksm created a completely new copy */
d281ee61 1875 page_add_new_anon_rmap(page, vma, addr, false);
f627c2f5 1876 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
1877 lru_cache_add_active_or_unevictable(page, vma);
1878 }
1da177e4
LT
1879 swap_free(entry);
1880 /*
1881 * Move the page to the active list so it is not
1882 * immediately swapped out again after swapon.
1883 */
1884 activate_page(page);
044d66c1
HD
1885out:
1886 pte_unmap_unlock(pte, ptl);
85d9fc89 1887out_nolock:
9e16b7fb
HD
1888 if (page != swapcache) {
1889 unlock_page(page);
1890 put_page(page);
1891 }
044d66c1 1892 return ret;
1da177e4
LT
1893}
1894
1895static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
b56a2d8a
VRP
1896 unsigned long addr, unsigned long end,
1897 unsigned int type, bool frontswap,
1898 unsigned long *fs_pages_to_unuse)
1da177e4 1899{
b56a2d8a
VRP
1900 struct page *page;
1901 swp_entry_t entry;
705e87c0 1902 pte_t *pte;
b56a2d8a
VRP
1903 struct swap_info_struct *si;
1904 unsigned long offset;
8a9f3ccd 1905 int ret = 0;
b56a2d8a 1906 volatile unsigned char *swap_map;
1da177e4 1907
b56a2d8a 1908 si = swap_info[type];
044d66c1 1909 pte = pte_offset_map(pmd, addr);
1da177e4 1910 do {
b56a2d8a
VRP
1911 struct vm_fault vmf;
1912
1913 if (!is_swap_pte(*pte))
1914 continue;
1915
1916 entry = pte_to_swp_entry(*pte);
1917 if (swp_type(entry) != type)
1918 continue;
1919
1920 offset = swp_offset(entry);
1921 if (frontswap && !frontswap_test(si, offset))
1922 continue;
1923
1924 pte_unmap(pte);
1925 swap_map = &si->swap_map[offset];
ebc5951e
AR
1926 page = lookup_swap_cache(entry, vma, addr);
1927 if (!page) {
1928 vmf.vma = vma;
1929 vmf.address = addr;
1930 vmf.pmd = pmd;
1931 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1932 &vmf);
1933 }
b56a2d8a
VRP
1934 if (!page) {
1935 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1936 goto try_next;
1937 return -ENOMEM;
1938 }
1939
1940 lock_page(page);
1941 wait_on_page_writeback(page);
1942 ret = unuse_pte(vma, pmd, addr, entry, page);
1943 if (ret < 0) {
1944 unlock_page(page);
1945 put_page(page);
1946 goto out;
1947 }
1948
1949 try_to_free_swap(page);
1950 unlock_page(page);
1951 put_page(page);
1952
1953 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1954 ret = FRONTSWAP_PAGES_UNUSED;
1955 goto out;
1da177e4 1956 }
b56a2d8a
VRP
1957try_next:
1958 pte = pte_offset_map(pmd, addr);
1da177e4 1959 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1 1960 pte_unmap(pte - 1);
b56a2d8a
VRP
1961
1962 ret = 0;
044d66c1 1963out:
8a9f3ccd 1964 return ret;
1da177e4
LT
1965}
1966
1967static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1968 unsigned long addr, unsigned long end,
b56a2d8a
VRP
1969 unsigned int type, bool frontswap,
1970 unsigned long *fs_pages_to_unuse)
1da177e4
LT
1971{
1972 pmd_t *pmd;
1973 unsigned long next;
8a9f3ccd 1974 int ret;
1da177e4
LT
1975
1976 pmd = pmd_offset(pud, addr);
1977 do {
dc644a07 1978 cond_resched();
1da177e4 1979 next = pmd_addr_end(addr, end);
1a5a9906 1980 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 1981 continue;
b56a2d8a
VRP
1982 ret = unuse_pte_range(vma, pmd, addr, next, type,
1983 frontswap, fs_pages_to_unuse);
8a9f3ccd
BS
1984 if (ret)
1985 return ret;
1da177e4
LT
1986 } while (pmd++, addr = next, addr != end);
1987 return 0;
1988}
1989
c2febafc 1990static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1991 unsigned long addr, unsigned long end,
b56a2d8a
VRP
1992 unsigned int type, bool frontswap,
1993 unsigned long *fs_pages_to_unuse)
1da177e4
LT
1994{
1995 pud_t *pud;
1996 unsigned long next;
8a9f3ccd 1997 int ret;
1da177e4 1998
c2febafc 1999 pud = pud_offset(p4d, addr);
1da177e4
LT
2000 do {
2001 next = pud_addr_end(addr, end);
2002 if (pud_none_or_clear_bad(pud))
2003 continue;
b56a2d8a
VRP
2004 ret = unuse_pmd_range(vma, pud, addr, next, type,
2005 frontswap, fs_pages_to_unuse);
8a9f3ccd
BS
2006 if (ret)
2007 return ret;
1da177e4
LT
2008 } while (pud++, addr = next, addr != end);
2009 return 0;
2010}
2011
c2febafc
KS
2012static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2013 unsigned long addr, unsigned long end,
b56a2d8a
VRP
2014 unsigned int type, bool frontswap,
2015 unsigned long *fs_pages_to_unuse)
c2febafc
KS
2016{
2017 p4d_t *p4d;
2018 unsigned long next;
2019 int ret;
2020
2021 p4d = p4d_offset(pgd, addr);
2022 do {
2023 next = p4d_addr_end(addr, end);
2024 if (p4d_none_or_clear_bad(p4d))
2025 continue;
b56a2d8a
VRP
2026 ret = unuse_pud_range(vma, p4d, addr, next, type,
2027 frontswap, fs_pages_to_unuse);
c2febafc
KS
2028 if (ret)
2029 return ret;
2030 } while (p4d++, addr = next, addr != end);
2031 return 0;
2032}
2033
b56a2d8a
VRP
2034static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2035 bool frontswap, unsigned long *fs_pages_to_unuse)
1da177e4
LT
2036{
2037 pgd_t *pgd;
2038 unsigned long addr, end, next;
8a9f3ccd 2039 int ret;
1da177e4 2040
b56a2d8a
VRP
2041 addr = vma->vm_start;
2042 end = vma->vm_end;
1da177e4
LT
2043
2044 pgd = pgd_offset(vma->vm_mm, addr);
2045 do {
2046 next = pgd_addr_end(addr, end);
2047 if (pgd_none_or_clear_bad(pgd))
2048 continue;
b56a2d8a
VRP
2049 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2050 frontswap, fs_pages_to_unuse);
8a9f3ccd
BS
2051 if (ret)
2052 return ret;
1da177e4
LT
2053 } while (pgd++, addr = next, addr != end);
2054 return 0;
2055}
2056
b56a2d8a
VRP
2057static int unuse_mm(struct mm_struct *mm, unsigned int type,
2058 bool frontswap, unsigned long *fs_pages_to_unuse)
1da177e4
LT
2059{
2060 struct vm_area_struct *vma;
8a9f3ccd 2061 int ret = 0;
1da177e4 2062
b56a2d8a 2063 down_read(&mm->mmap_sem);
1da177e4 2064 for (vma = mm->mmap; vma; vma = vma->vm_next) {
b56a2d8a
VRP
2065 if (vma->anon_vma) {
2066 ret = unuse_vma(vma, type, frontswap,
2067 fs_pages_to_unuse);
2068 if (ret)
2069 break;
2070 }
dc644a07 2071 cond_resched();
1da177e4 2072 }
1da177e4 2073 up_read(&mm->mmap_sem);
b56a2d8a 2074 return ret;
1da177e4
LT
2075}
2076
2077/*
38b5faf4 2078 * Scan swap_map (or frontswap_map if frontswap parameter is true)
b56a2d8a
VRP
2079 * from current position to next entry still in use. Return 0
2080 * if there are no inuse entries after prev till end of the map.
1da177e4 2081 */
6eb396dc 2082static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 2083 unsigned int prev, bool frontswap)
1da177e4 2084{
b56a2d8a 2085 unsigned int i;
8d69aaee 2086 unsigned char count;
1da177e4
LT
2087
2088 /*
5d337b91 2089 * No need for swap_lock here: we're just looking
1da177e4
LT
2090 * for whether an entry is in use, not modifying it; false
2091 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 2092 * allocations from this area (while holding swap_lock).
1da177e4 2093 */
b56a2d8a 2094 for (i = prev + 1; i < si->max; i++) {
4db0c3c2 2095 count = READ_ONCE(si->swap_map[i]);
355cfa73 2096 if (count && swap_count(count) != SWAP_MAP_BAD)
dc644a07
HD
2097 if (!frontswap || frontswap_test(si, i))
2098 break;
2099 if ((i % LATENCY_LIMIT) == 0)
2100 cond_resched();
1da177e4 2101 }
b56a2d8a
VRP
2102
2103 if (i == si->max)
2104 i = 0;
2105
1da177e4
LT
2106 return i;
2107}
2108
2109/*
b56a2d8a 2110 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
38b5faf4 2111 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 2112 */
38b5faf4
DM
2113int try_to_unuse(unsigned int type, bool frontswap,
2114 unsigned long pages_to_unuse)
1da177e4 2115{
b56a2d8a
VRP
2116 struct mm_struct *prev_mm;
2117 struct mm_struct *mm;
2118 struct list_head *p;
2119 int retval = 0;
efa90a98 2120 struct swap_info_struct *si = swap_info[type];
1da177e4
LT
2121 struct page *page;
2122 swp_entry_t entry;
b56a2d8a 2123 unsigned int i;
1da177e4 2124
21820948 2125 if (!READ_ONCE(si->inuse_pages))
b56a2d8a 2126 return 0;
1da177e4 2127
b56a2d8a
VRP
2128 if (!frontswap)
2129 pages_to_unuse = 0;
2130
2131retry:
2132 retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2133 if (retval)
2134 goto out;
2135
2136 prev_mm = &init_mm;
2137 mmget(prev_mm);
2138
2139 spin_lock(&mmlist_lock);
2140 p = &init_mm.mmlist;
21820948 2141 while (READ_ONCE(si->inuse_pages) &&
64165b1a
HD
2142 !signal_pending(current) &&
2143 (p = p->next) != &init_mm.mmlist) {
1da177e4 2144
b56a2d8a
VRP
2145 mm = list_entry(p, struct mm_struct, mmlist);
2146 if (!mmget_not_zero(mm))
2147 continue;
2148 spin_unlock(&mmlist_lock);
2149 mmput(prev_mm);
2150 prev_mm = mm;
2151 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
1da177e4 2152
b56a2d8a
VRP
2153 if (retval) {
2154 mmput(prev_mm);
2155 goto out;
1da177e4
LT
2156 }
2157
2158 /*
b56a2d8a
VRP
2159 * Make sure that we aren't completely killing
2160 * interactive performance.
1da177e4 2161 */
b56a2d8a
VRP
2162 cond_resched();
2163 spin_lock(&mmlist_lock);
2164 }
2165 spin_unlock(&mmlist_lock);
1da177e4 2166
b56a2d8a 2167 mmput(prev_mm);
1da177e4 2168
b56a2d8a 2169 i = 0;
21820948 2170 while (READ_ONCE(si->inuse_pages) &&
64165b1a
HD
2171 !signal_pending(current) &&
2172 (i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4 2173
b56a2d8a
VRP
2174 entry = swp_entry(type, i);
2175 page = find_get_page(swap_address_space(entry), i);
2176 if (!page)
2177 continue;
68bdc8d6
HD
2178
2179 /*
2180 * It is conceivable that a racing task removed this page from
b56a2d8a
VRP
2181 * swap cache just before we acquired the page lock. The page
2182 * might even be back in swap cache on another swap area. But
2183 * that is okay, try_to_free_swap() only removes stale pages.
1da177e4 2184 */
b56a2d8a
VRP
2185 lock_page(page);
2186 wait_on_page_writeback(page);
2187 try_to_free_swap(page);
1da177e4 2188 unlock_page(page);
09cbfeaf 2189 put_page(page);
1da177e4
LT
2190
2191 /*
b56a2d8a
VRP
2192 * For frontswap, we just need to unuse pages_to_unuse, if
2193 * it was specified. Need not check frontswap again here as
2194 * we already zeroed out pages_to_unuse if not frontswap.
1da177e4 2195 */
b56a2d8a
VRP
2196 if (pages_to_unuse && --pages_to_unuse == 0)
2197 goto out;
1da177e4
LT
2198 }
2199
b56a2d8a
VRP
2200 /*
2201 * Lets check again to see if there are still swap entries in the map.
2202 * If yes, we would need to do retry the unuse logic again.
2203 * Under global memory pressure, swap entries can be reinserted back
2204 * into process space after the mmlist loop above passes over them.
dd862deb 2205 *
af53d3e9
HD
2206 * Limit the number of retries? No: when mmget_not_zero() above fails,
2207 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2208 * at its own independent pace; and even shmem_writepage() could have
2209 * been preempted after get_swap_page(), temporarily hiding that swap.
2210 * It's easy and robust (though cpu-intensive) just to keep retrying.
b56a2d8a 2211 */
21820948 2212 if (READ_ONCE(si->inuse_pages)) {
64165b1a
HD
2213 if (!signal_pending(current))
2214 goto retry;
2215 retval = -EINTR;
2216 }
b56a2d8a
VRP
2217out:
2218 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
1da177e4
LT
2219}
2220
2221/*
5d337b91
HD
2222 * After a successful try_to_unuse, if no swap is now in use, we know
2223 * we can empty the mmlist. swap_lock must be held on entry and exit.
2224 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
2225 * added to the mmlist just after page_duplicate - before would be racy.
2226 */
2227static void drain_mmlist(void)
2228{
2229 struct list_head *p, *next;
efa90a98 2230 unsigned int type;
1da177e4 2231
efa90a98
HD
2232 for (type = 0; type < nr_swapfiles; type++)
2233 if (swap_info[type]->inuse_pages)
1da177e4
LT
2234 return;
2235 spin_lock(&mmlist_lock);
2236 list_for_each_safe(p, next, &init_mm.mmlist)
2237 list_del_init(p);
2238 spin_unlock(&mmlist_lock);
2239}
2240
2241/*
2242 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
2243 * corresponds to page offset for the specified swap entry.
2244 * Note that the type of this function is sector_t, but it returns page offset
2245 * into the bdev, not sector offset.
1da177e4 2246 */
d4906e1a 2247static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 2248{
f29ad6a9 2249 struct swap_info_struct *sis;
f29ad6a9
HD
2250 struct swap_extent *se;
2251 pgoff_t offset;
2252
c10d38cc 2253 sis = swp_swap_info(entry);
f29ad6a9
HD
2254 *bdev = sis->bdev;
2255
2256 offset = swp_offset(entry);
4efaceb1
AL
2257 se = offset_to_swap_extent(sis, offset);
2258 return se->start_block + (offset - se->start_page);
1da177e4
LT
2259}
2260
d4906e1a
LS
2261/*
2262 * Returns the page offset into bdev for the specified page's swap entry.
2263 */
2264sector_t map_swap_page(struct page *page, struct block_device **bdev)
2265{
2266 swp_entry_t entry;
2267 entry.val = page_private(page);
2268 return map_swap_entry(entry, bdev);
2269}
2270
1da177e4
LT
2271/*
2272 * Free all of a swapdev's extent information
2273 */
2274static void destroy_swap_extents(struct swap_info_struct *sis)
2275{
4efaceb1
AL
2276 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2277 struct rb_node *rb = sis->swap_extent_root.rb_node;
2278 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
1da177e4 2279
4efaceb1 2280 rb_erase(rb, &sis->swap_extent_root);
1da177e4
LT
2281 kfree(se);
2282 }
62c230bc 2283
bc4ae27d 2284 if (sis->flags & SWP_ACTIVATED) {
62c230bc
MG
2285 struct file *swap_file = sis->swap_file;
2286 struct address_space *mapping = swap_file->f_mapping;
2287
bc4ae27d
OS
2288 sis->flags &= ~SWP_ACTIVATED;
2289 if (mapping->a_ops->swap_deactivate)
2290 mapping->a_ops->swap_deactivate(swap_file);
62c230bc 2291 }
1da177e4
LT
2292}
2293
2294/*
2295 * Add a block range (and the corresponding page range) into this swapdev's
4efaceb1 2296 * extent tree.
1da177e4 2297 *
11d31886 2298 * This function rather assumes that it is called in ascending page order.
1da177e4 2299 */
a509bc1a 2300int
1da177e4
LT
2301add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2302 unsigned long nr_pages, sector_t start_block)
2303{
4efaceb1 2304 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
1da177e4
LT
2305 struct swap_extent *se;
2306 struct swap_extent *new_se;
4efaceb1
AL
2307
2308 /*
2309 * place the new node at the right most since the
2310 * function is called in ascending page order.
2311 */
2312 while (*link) {
2313 parent = *link;
2314 link = &parent->rb_right;
2315 }
2316
2317 if (parent) {
2318 se = rb_entry(parent, struct swap_extent, rb_node);
11d31886
HD
2319 BUG_ON(se->start_page + se->nr_pages != start_page);
2320 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
2321 /* Merge it */
2322 se->nr_pages += nr_pages;
2323 return 0;
2324 }
1da177e4
LT
2325 }
2326
4efaceb1 2327 /* No merge, insert a new extent. */
1da177e4
LT
2328 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2329 if (new_se == NULL)
2330 return -ENOMEM;
2331 new_se->start_page = start_page;
2332 new_se->nr_pages = nr_pages;
2333 new_se->start_block = start_block;
2334
4efaceb1
AL
2335 rb_link_node(&new_se->rb_node, parent, link);
2336 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
53092a74 2337 return 1;
1da177e4 2338}
aa8aa8a3 2339EXPORT_SYMBOL_GPL(add_swap_extent);
1da177e4
LT
2340
2341/*
2342 * A `swap extent' is a simple thing which maps a contiguous range of pages
2343 * onto a contiguous range of disk blocks. An ordered list of swap extents
2344 * is built at swapon time and is then used at swap_writepage/swap_readpage
2345 * time for locating where on disk a page belongs.
2346 *
2347 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2348 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2349 * swap files identically.
2350 *
2351 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2352 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2353 * swapfiles are handled *identically* after swapon time.
2354 *
2355 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2356 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2357 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2358 * requirements, they are simply tossed out - we will never use those blocks
2359 * for swapping.
2360 *
1638045c
DW
2361 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2362 * prevents users from writing to the swap device, which will corrupt memory.
1da177e4
LT
2363 *
2364 * The amount of disk space which a single swap extent represents varies.
2365 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2366 * extents in the list. To avoid much list walking, we cache the previous
2367 * search location in `curr_swap_extent', and start new searches from there.
2368 * This is extremely effective. The average number of iterations in
2369 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2370 */
53092a74 2371static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 2372{
62c230bc
MG
2373 struct file *swap_file = sis->swap_file;
2374 struct address_space *mapping = swap_file->f_mapping;
2375 struct inode *inode = mapping->host;
1da177e4
LT
2376 int ret;
2377
1da177e4
LT
2378 if (S_ISBLK(inode->i_mode)) {
2379 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 2380 *span = sis->pages;
a509bc1a 2381 return ret;
1da177e4
LT
2382 }
2383
62c230bc 2384 if (mapping->a_ops->swap_activate) {
a509bc1a 2385 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
bc4ae27d
OS
2386 if (ret >= 0)
2387 sis->flags |= SWP_ACTIVATED;
62c230bc 2388 if (!ret) {
bc4ae27d 2389 sis->flags |= SWP_FS;
62c230bc
MG
2390 ret = add_swap_extent(sis, 0, sis->max, 0);
2391 *span = sis->pages;
2392 }
a509bc1a 2393 return ret;
62c230bc
MG
2394 }
2395
a509bc1a 2396 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
2397}
2398
a2468cc9
AL
2399static int swap_node(struct swap_info_struct *p)
2400{
2401 struct block_device *bdev;
2402
2403 if (p->bdev)
2404 bdev = p->bdev;
2405 else
2406 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2407
2408 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2409}
2410
eb085574
HY
2411static void setup_swap_info(struct swap_info_struct *p, int prio,
2412 unsigned char *swap_map,
2413 struct swap_cluster_info *cluster_info)
40531542 2414{
a2468cc9
AL
2415 int i;
2416
40531542
CEB
2417 if (prio >= 0)
2418 p->prio = prio;
2419 else
2420 p->prio = --least_priority;
18ab4d4c
DS
2421 /*
2422 * the plist prio is negated because plist ordering is
2423 * low-to-high, while swap ordering is high-to-low
2424 */
2425 p->list.prio = -p->prio;
a2468cc9
AL
2426 for_each_node(i) {
2427 if (p->prio >= 0)
2428 p->avail_lists[i].prio = -p->prio;
2429 else {
2430 if (swap_node(p) == i)
2431 p->avail_lists[i].prio = 1;
2432 else
2433 p->avail_lists[i].prio = -p->prio;
2434 }
2435 }
40531542 2436 p->swap_map = swap_map;
2a8f9449 2437 p->cluster_info = cluster_info;
eb085574
HY
2438}
2439
2440static void _enable_swap_info(struct swap_info_struct *p)
2441{
2442 p->flags |= SWP_WRITEOK | SWP_VALID;
ec8acf20 2443 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
2444 total_swap_pages += p->pages;
2445
adfab836 2446 assert_spin_locked(&swap_lock);
adfab836 2447 /*
18ab4d4c
DS
2448 * both lists are plists, and thus priority ordered.
2449 * swap_active_head needs to be priority ordered for swapoff(),
2450 * which on removal of any swap_info_struct with an auto-assigned
2451 * (i.e. negative) priority increments the auto-assigned priority
2452 * of any lower-priority swap_info_structs.
2453 * swap_avail_head needs to be priority ordered for get_swap_page(),
2454 * which allocates swap pages from the highest available priority
2455 * swap_info_struct.
adfab836 2456 */
18ab4d4c 2457 plist_add(&p->list, &swap_active_head);
a2468cc9 2458 add_to_avail_list(p);
cf0cac0a
CEB
2459}
2460
2461static void enable_swap_info(struct swap_info_struct *p, int prio,
2462 unsigned char *swap_map,
2a8f9449 2463 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
2464 unsigned long *frontswap_map)
2465{
4f89849d 2466 frontswap_init(p->type, frontswap_map);
cf0cac0a 2467 spin_lock(&swap_lock);
ec8acf20 2468 spin_lock(&p->lock);
eb085574
HY
2469 setup_swap_info(p, prio, swap_map, cluster_info);
2470 spin_unlock(&p->lock);
2471 spin_unlock(&swap_lock);
2472 /*
2473 * Guarantee swap_map, cluster_info, etc. fields are valid
2474 * between get/put_swap_device() if SWP_VALID bit is set
2475 */
2476 synchronize_rcu();
2477 spin_lock(&swap_lock);
2478 spin_lock(&p->lock);
2479 _enable_swap_info(p);
ec8acf20 2480 spin_unlock(&p->lock);
cf0cac0a
CEB
2481 spin_unlock(&swap_lock);
2482}
2483
2484static void reinsert_swap_info(struct swap_info_struct *p)
2485{
2486 spin_lock(&swap_lock);
ec8acf20 2487 spin_lock(&p->lock);
eb085574
HY
2488 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2489 _enable_swap_info(p);
ec8acf20 2490 spin_unlock(&p->lock);
40531542
CEB
2491 spin_unlock(&swap_lock);
2492}
2493
67afa38e
TC
2494bool has_usable_swap(void)
2495{
2496 bool ret = true;
2497
2498 spin_lock(&swap_lock);
2499 if (plist_head_empty(&swap_active_head))
2500 ret = false;
2501 spin_unlock(&swap_lock);
2502 return ret;
2503}
2504
c4ea37c2 2505SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 2506{
73c34b6a 2507 struct swap_info_struct *p = NULL;
8d69aaee 2508 unsigned char *swap_map;
2a8f9449 2509 struct swap_cluster_info *cluster_info;
4f89849d 2510 unsigned long *frontswap_map;
1da177e4
LT
2511 struct file *swap_file, *victim;
2512 struct address_space *mapping;
2513 struct inode *inode;
91a27b2a 2514 struct filename *pathname;
adfab836 2515 int err, found = 0;
5b808a23 2516 unsigned int old_block_size;
886bb7e9 2517
1da177e4
LT
2518 if (!capable(CAP_SYS_ADMIN))
2519 return -EPERM;
2520
191c5424
AV
2521 BUG_ON(!current->mm);
2522
1da177e4 2523 pathname = getname(specialfile);
1da177e4 2524 if (IS_ERR(pathname))
f58b59c1 2525 return PTR_ERR(pathname);
1da177e4 2526
669abf4e 2527 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
2528 err = PTR_ERR(victim);
2529 if (IS_ERR(victim))
2530 goto out;
2531
2532 mapping = victim->f_mapping;
5d337b91 2533 spin_lock(&swap_lock);
18ab4d4c 2534 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 2535 if (p->flags & SWP_WRITEOK) {
adfab836
DS
2536 if (p->swap_file->f_mapping == mapping) {
2537 found = 1;
1da177e4 2538 break;
adfab836 2539 }
1da177e4 2540 }
1da177e4 2541 }
adfab836 2542 if (!found) {
1da177e4 2543 err = -EINVAL;
5d337b91 2544 spin_unlock(&swap_lock);
1da177e4
LT
2545 goto out_dput;
2546 }
191c5424 2547 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
2548 vm_unacct_memory(p->pages);
2549 else {
2550 err = -ENOMEM;
5d337b91 2551 spin_unlock(&swap_lock);
1da177e4
LT
2552 goto out_dput;
2553 }
a2468cc9 2554 del_from_avail_list(p);
ec8acf20 2555 spin_lock(&p->lock);
78ecba08 2556 if (p->prio < 0) {
adfab836 2557 struct swap_info_struct *si = p;
a2468cc9 2558 int nid;
adfab836 2559
18ab4d4c 2560 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 2561 si->prio++;
18ab4d4c 2562 si->list.prio--;
a2468cc9
AL
2563 for_each_node(nid) {
2564 if (si->avail_lists[nid].prio != 1)
2565 si->avail_lists[nid].prio--;
2566 }
adfab836 2567 }
78ecba08
HD
2568 least_priority++;
2569 }
18ab4d4c 2570 plist_del(&p->list, &swap_active_head);
ec8acf20 2571 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
2572 total_swap_pages -= p->pages;
2573 p->flags &= ~SWP_WRITEOK;
ec8acf20 2574 spin_unlock(&p->lock);
5d337b91 2575 spin_unlock(&swap_lock);
fb4f88dc 2576
039939a6
TC
2577 disable_swap_slots_cache_lock();
2578
e1e12d2f 2579 set_current_oom_origin();
adfab836 2580 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
e1e12d2f 2581 clear_current_oom_origin();
1da177e4 2582
1da177e4
LT
2583 if (err) {
2584 /* re-insert swap space back into swap_list */
cf0cac0a 2585 reinsert_swap_info(p);
039939a6 2586 reenable_swap_slots_cache_unlock();
1da177e4
LT
2587 goto out_dput;
2588 }
52b7efdb 2589
039939a6
TC
2590 reenable_swap_slots_cache_unlock();
2591
eb085574
HY
2592 spin_lock(&swap_lock);
2593 spin_lock(&p->lock);
2594 p->flags &= ~SWP_VALID; /* mark swap device as invalid */
2595 spin_unlock(&p->lock);
2596 spin_unlock(&swap_lock);
2597 /*
2598 * wait for swap operations protected by get/put_swap_device()
2599 * to complete
2600 */
2601 synchronize_rcu();
2602
815c2c54
SL
2603 flush_work(&p->discard_work);
2604
5d337b91 2605 destroy_swap_extents(p);
570a335b
HD
2606 if (p->flags & SWP_CONTINUED)
2607 free_swap_count_continuations(p);
2608
81a0298b
HY
2609 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2610 atomic_dec(&nr_rotate_swap);
2611
fc0abb14 2612 mutex_lock(&swapon_mutex);
5d337b91 2613 spin_lock(&swap_lock);
ec8acf20 2614 spin_lock(&p->lock);
5d337b91
HD
2615 drain_mmlist();
2616
52b7efdb 2617 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
2618 p->highest_bit = 0; /* cuts scans short */
2619 while (p->flags >= SWP_SCANNING) {
ec8acf20 2620 spin_unlock(&p->lock);
5d337b91 2621 spin_unlock(&swap_lock);
13e4b57f 2622 schedule_timeout_uninterruptible(1);
5d337b91 2623 spin_lock(&swap_lock);
ec8acf20 2624 spin_lock(&p->lock);
52b7efdb 2625 }
52b7efdb 2626
1da177e4 2627 swap_file = p->swap_file;
5b808a23 2628 old_block_size = p->old_block_size;
1da177e4
LT
2629 p->swap_file = NULL;
2630 p->max = 0;
2631 swap_map = p->swap_map;
2632 p->swap_map = NULL;
2a8f9449
SL
2633 cluster_info = p->cluster_info;
2634 p->cluster_info = NULL;
4f89849d 2635 frontswap_map = frontswap_map_get(p);
ec8acf20 2636 spin_unlock(&p->lock);
5d337b91 2637 spin_unlock(&swap_lock);
adfab836 2638 frontswap_invalidate_area(p->type);
58e97ba6 2639 frontswap_map_set(p, NULL);
fc0abb14 2640 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
2641 free_percpu(p->percpu_cluster);
2642 p->percpu_cluster = NULL;
1da177e4 2643 vfree(swap_map);
54f180d3
HY
2644 kvfree(cluster_info);
2645 kvfree(frontswap_map);
2de1a7e4 2646 /* Destroy swap account information */
adfab836 2647 swap_cgroup_swapoff(p->type);
4b3ef9da 2648 exit_swap_address_space(p->type);
27a7faa0 2649
1da177e4
LT
2650 inode = mapping->host;
2651 if (S_ISBLK(inode->i_mode)) {
2652 struct block_device *bdev = I_BDEV(inode);
1638045c 2653
5b808a23 2654 set_blocksize(bdev, old_block_size);
e525fd89 2655 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2656 }
1638045c
DW
2657
2658 inode_lock(inode);
2659 inode->i_flags &= ~S_SWAPFILE;
2660 inode_unlock(inode);
1da177e4 2661 filp_close(swap_file, NULL);
f893ab41
WY
2662
2663 /*
2664 * Clear the SWP_USED flag after all resources are freed so that swapon
2665 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2666 * not hold p->lock after we cleared its SWP_WRITEOK.
2667 */
2668 spin_lock(&swap_lock);
2669 p->flags = 0;
2670 spin_unlock(&swap_lock);
2671
1da177e4 2672 err = 0;
66d7dd51
KS
2673 atomic_inc(&proc_poll_event);
2674 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
2675
2676out_dput:
2677 filp_close(victim, NULL);
2678out:
f58b59c1 2679 putname(pathname);
1da177e4
LT
2680 return err;
2681}
2682
2683#ifdef CONFIG_PROC_FS
9dd95748 2684static __poll_t swaps_poll(struct file *file, poll_table *wait)
66d7dd51 2685{
f1514638 2686 struct seq_file *seq = file->private_data;
66d7dd51
KS
2687
2688 poll_wait(file, &proc_poll_wait, wait);
2689
f1514638
KS
2690 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2691 seq->poll_event = atomic_read(&proc_poll_event);
a9a08845 2692 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
66d7dd51
KS
2693 }
2694
a9a08845 2695 return EPOLLIN | EPOLLRDNORM;
66d7dd51
KS
2696}
2697
1da177e4
LT
2698/* iterator */
2699static void *swap_start(struct seq_file *swap, loff_t *pos)
2700{
efa90a98
HD
2701 struct swap_info_struct *si;
2702 int type;
1da177e4
LT
2703 loff_t l = *pos;
2704
fc0abb14 2705 mutex_lock(&swapon_mutex);
1da177e4 2706
881e4aab
SS
2707 if (!l)
2708 return SEQ_START_TOKEN;
2709
c10d38cc 2710 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
efa90a98 2711 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2712 continue;
881e4aab 2713 if (!--l)
efa90a98 2714 return si;
1da177e4
LT
2715 }
2716
2717 return NULL;
2718}
2719
2720static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2721{
efa90a98
HD
2722 struct swap_info_struct *si = v;
2723 int type;
1da177e4 2724
881e4aab 2725 if (v == SEQ_START_TOKEN)
efa90a98
HD
2726 type = 0;
2727 else
2728 type = si->type + 1;
881e4aab 2729
10c8d69f 2730 ++(*pos);
c10d38cc 2731 for (; (si = swap_type_to_swap_info(type)); type++) {
efa90a98 2732 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2733 continue;
efa90a98 2734 return si;
1da177e4
LT
2735 }
2736
2737 return NULL;
2738}
2739
2740static void swap_stop(struct seq_file *swap, void *v)
2741{
fc0abb14 2742 mutex_unlock(&swapon_mutex);
1da177e4
LT
2743}
2744
2745static int swap_show(struct seq_file *swap, void *v)
2746{
efa90a98 2747 struct swap_info_struct *si = v;
1da177e4
LT
2748 struct file *file;
2749 int len;
2750
efa90a98 2751 if (si == SEQ_START_TOKEN) {
881e4aab
SS
2752 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2753 return 0;
2754 }
1da177e4 2755
efa90a98 2756 file = si->swap_file;
2726d566 2757 len = seq_file_path(swap, file, " \t\n\\");
6eb396dc 2758 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9 2759 len < 40 ? 40 - len : 1, " ",
496ad9aa 2760 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2761 "partition" : "file\t",
efa90a98
HD
2762 si->pages << (PAGE_SHIFT - 10),
2763 si->inuse_pages << (PAGE_SHIFT - 10),
2764 si->prio);
1da177e4
LT
2765 return 0;
2766}
2767
15ad7cdc 2768static const struct seq_operations swaps_op = {
1da177e4
LT
2769 .start = swap_start,
2770 .next = swap_next,
2771 .stop = swap_stop,
2772 .show = swap_show
2773};
2774
2775static int swaps_open(struct inode *inode, struct file *file)
2776{
f1514638 2777 struct seq_file *seq;
66d7dd51
KS
2778 int ret;
2779
66d7dd51 2780 ret = seq_open(file, &swaps_op);
f1514638 2781 if (ret)
66d7dd51 2782 return ret;
66d7dd51 2783
f1514638
KS
2784 seq = file->private_data;
2785 seq->poll_event = atomic_read(&proc_poll_event);
2786 return 0;
1da177e4
LT
2787}
2788
97a32539 2789static const struct proc_ops swaps_proc_ops = {
d919b33d 2790 .proc_flags = PROC_ENTRY_PERMANENT,
97a32539
AD
2791 .proc_open = swaps_open,
2792 .proc_read = seq_read,
2793 .proc_lseek = seq_lseek,
2794 .proc_release = seq_release,
2795 .proc_poll = swaps_poll,
1da177e4
LT
2796};
2797
2798static int __init procswaps_init(void)
2799{
97a32539 2800 proc_create("swaps", 0, NULL, &swaps_proc_ops);
1da177e4
LT
2801 return 0;
2802}
2803__initcall(procswaps_init);
2804#endif /* CONFIG_PROC_FS */
2805
1796316a
JB
2806#ifdef MAX_SWAPFILES_CHECK
2807static int __init max_swapfiles_check(void)
2808{
2809 MAX_SWAPFILES_CHECK();
2810 return 0;
2811}
2812late_initcall(max_swapfiles_check);
2813#endif
2814
53cbb243 2815static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2816{
73c34b6a 2817 struct swap_info_struct *p;
1da177e4 2818 unsigned int type;
a2468cc9 2819 int i;
efa90a98 2820
96008744 2821 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
efa90a98 2822 if (!p)
53cbb243 2823 return ERR_PTR(-ENOMEM);
efa90a98 2824
5d337b91 2825 spin_lock(&swap_lock);
efa90a98
HD
2826 for (type = 0; type < nr_swapfiles; type++) {
2827 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2828 break;
efa90a98 2829 }
0697212a 2830 if (type >= MAX_SWAPFILES) {
5d337b91 2831 spin_unlock(&swap_lock);
873d7bcf 2832 kvfree(p);
730c0581 2833 return ERR_PTR(-EPERM);
1da177e4 2834 }
efa90a98
HD
2835 if (type >= nr_swapfiles) {
2836 p->type = type;
c10d38cc 2837 WRITE_ONCE(swap_info[type], p);
efa90a98
HD
2838 /*
2839 * Write swap_info[type] before nr_swapfiles, in case a
2840 * racing procfs swap_start() or swap_next() is reading them.
2841 * (We never shrink nr_swapfiles, we never free this entry.)
2842 */
2843 smp_wmb();
c10d38cc 2844 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
efa90a98 2845 } else {
873d7bcf 2846 kvfree(p);
efa90a98
HD
2847 p = swap_info[type];
2848 /*
2849 * Do not memset this entry: a racing procfs swap_next()
2850 * would be relying on p->type to remain valid.
2851 */
2852 }
4efaceb1 2853 p->swap_extent_root = RB_ROOT;
18ab4d4c 2854 plist_node_init(&p->list, 0);
a2468cc9
AL
2855 for_each_node(i)
2856 plist_node_init(&p->avail_lists[i], 0);
1da177e4 2857 p->flags = SWP_USED;
5d337b91 2858 spin_unlock(&swap_lock);
ec8acf20 2859 spin_lock_init(&p->lock);
2628bd6f 2860 spin_lock_init(&p->cont_lock);
efa90a98 2861
53cbb243 2862 return p;
53cbb243
CEB
2863}
2864
4d0e1e10
CEB
2865static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2866{
2867 int error;
2868
2869 if (S_ISBLK(inode->i_mode)) {
2870 p->bdev = bdgrab(I_BDEV(inode));
2871 error = blkdev_get(p->bdev,
6f179af8 2872 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
4d0e1e10
CEB
2873 if (error < 0) {
2874 p->bdev = NULL;
6f179af8 2875 return error;
4d0e1e10
CEB
2876 }
2877 p->old_block_size = block_size(p->bdev);
2878 error = set_blocksize(p->bdev, PAGE_SIZE);
2879 if (error < 0)
87ade72a 2880 return error;
12d2966d
NA
2881 /*
2882 * Zoned block devices contain zones that have a sequential
2883 * write only restriction. Hence zoned block devices are not
2884 * suitable for swapping. Disallow them here.
2885 */
2886 if (blk_queue_is_zoned(p->bdev->bd_queue))
2887 return -EINVAL;
4d0e1e10
CEB
2888 p->flags |= SWP_BLKDEV;
2889 } else if (S_ISREG(inode->i_mode)) {
2890 p->bdev = inode->i_sb->s_bdev;
1638045c
DW
2891 }
2892
4d0e1e10 2893 return 0;
4d0e1e10
CEB
2894}
2895
377eeaa8
AK
2896
2897/*
2898 * Find out how many pages are allowed for a single swap device. There
2899 * are two limiting factors:
2900 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2901 * 2) the number of bits in the swap pte, as defined by the different
2902 * architectures.
2903 *
2904 * In order to find the largest possible bit mask, a swap entry with
2905 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2906 * decoded to a swp_entry_t again, and finally the swap offset is
2907 * extracted.
2908 *
2909 * This will mask all the bits from the initial ~0UL mask that can't
2910 * be encoded in either the swp_entry_t or the architecture definition
2911 * of a swap pte.
2912 */
2913unsigned long generic_max_swapfile_size(void)
2914{
2915 return swp_offset(pte_to_swp_entry(
2916 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2917}
2918
2919/* Can be overridden by an architecture for additional checks. */
2920__weak unsigned long max_swapfile_size(void)
2921{
2922 return generic_max_swapfile_size();
2923}
2924
ca8bd38b
CEB
2925static unsigned long read_swap_header(struct swap_info_struct *p,
2926 union swap_header *swap_header,
2927 struct inode *inode)
2928{
2929 int i;
2930 unsigned long maxpages;
2931 unsigned long swapfilepages;
d6bbbd29 2932 unsigned long last_page;
ca8bd38b
CEB
2933
2934 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2935 pr_err("Unable to find swap-space signature\n");
38719025 2936 return 0;
ca8bd38b
CEB
2937 }
2938
2939 /* swap partition endianess hack... */
2940 if (swab32(swap_header->info.version) == 1) {
2941 swab32s(&swap_header->info.version);
2942 swab32s(&swap_header->info.last_page);
2943 swab32s(&swap_header->info.nr_badpages);
dd111be6
JH
2944 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2945 return 0;
ca8bd38b
CEB
2946 for (i = 0; i < swap_header->info.nr_badpages; i++)
2947 swab32s(&swap_header->info.badpages[i]);
2948 }
2949 /* Check the swap header's sub-version */
2950 if (swap_header->info.version != 1) {
465c47fd
AM
2951 pr_warn("Unable to handle swap header version %d\n",
2952 swap_header->info.version);
38719025 2953 return 0;
ca8bd38b
CEB
2954 }
2955
2956 p->lowest_bit = 1;
2957 p->cluster_next = 1;
2958 p->cluster_nr = 0;
2959
377eeaa8 2960 maxpages = max_swapfile_size();
d6bbbd29 2961 last_page = swap_header->info.last_page;
a06ad633
TA
2962 if (!last_page) {
2963 pr_warn("Empty swap-file\n");
2964 return 0;
2965 }
d6bbbd29 2966 if (last_page > maxpages) {
465c47fd 2967 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2968 maxpages << (PAGE_SHIFT - 10),
2969 last_page << (PAGE_SHIFT - 10));
2970 }
2971 if (maxpages > last_page) {
2972 maxpages = last_page + 1;
ca8bd38b
CEB
2973 /* p->max is an unsigned int: don't overflow it */
2974 if ((unsigned int)maxpages == 0)
2975 maxpages = UINT_MAX;
2976 }
2977 p->highest_bit = maxpages - 1;
2978
2979 if (!maxpages)
38719025 2980 return 0;
ca8bd38b
CEB
2981 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2982 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 2983 pr_warn("Swap area shorter than signature indicates\n");
38719025 2984 return 0;
ca8bd38b
CEB
2985 }
2986 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 2987 return 0;
ca8bd38b 2988 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 2989 return 0;
ca8bd38b
CEB
2990
2991 return maxpages;
ca8bd38b
CEB
2992}
2993
4b3ef9da 2994#define SWAP_CLUSTER_INFO_COLS \
235b6217 2995 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
4b3ef9da
HY
2996#define SWAP_CLUSTER_SPACE_COLS \
2997 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2998#define SWAP_CLUSTER_COLS \
2999 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
235b6217 3000
915d4d7b
CEB
3001static int setup_swap_map_and_extents(struct swap_info_struct *p,
3002 union swap_header *swap_header,
3003 unsigned char *swap_map,
2a8f9449 3004 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
3005 unsigned long maxpages,
3006 sector_t *span)
3007{
235b6217 3008 unsigned int j, k;
915d4d7b
CEB
3009 unsigned int nr_good_pages;
3010 int nr_extents;
2a8f9449 3011 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
235b6217
HY
3012 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3013 unsigned long i, idx;
915d4d7b
CEB
3014
3015 nr_good_pages = maxpages - 1; /* omit header page */
3016
6b534915
HY
3017 cluster_list_init(&p->free_clusters);
3018 cluster_list_init(&p->discard_clusters);
2a8f9449 3019
915d4d7b
CEB
3020 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3021 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
3022 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3023 return -EINVAL;
915d4d7b
CEB
3024 if (page_nr < maxpages) {
3025 swap_map[page_nr] = SWAP_MAP_BAD;
3026 nr_good_pages--;
2a8f9449
SL
3027 /*
3028 * Haven't marked the cluster free yet, no list
3029 * operation involved
3030 */
3031 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
3032 }
3033 }
3034
2a8f9449
SL
3035 /* Haven't marked the cluster free yet, no list operation involved */
3036 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3037 inc_cluster_info_page(p, cluster_info, i);
3038
915d4d7b
CEB
3039 if (nr_good_pages) {
3040 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
3041 /*
3042 * Not mark the cluster free yet, no list
3043 * operation involved
3044 */
3045 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
3046 p->max = maxpages;
3047 p->pages = nr_good_pages;
3048 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
3049 if (nr_extents < 0)
3050 return nr_extents;
915d4d7b
CEB
3051 nr_good_pages = p->pages;
3052 }
3053 if (!nr_good_pages) {
465c47fd 3054 pr_warn("Empty swap-file\n");
bdb8e3f6 3055 return -EINVAL;
915d4d7b
CEB
3056 }
3057
2a8f9449
SL
3058 if (!cluster_info)
3059 return nr_extents;
3060
235b6217 3061
4b3ef9da
HY
3062 /*
3063 * Reduce false cache line sharing between cluster_info and
3064 * sharing same address space.
3065 */
235b6217
HY
3066 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3067 j = (k + col) % SWAP_CLUSTER_COLS;
3068 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3069 idx = i * SWAP_CLUSTER_COLS + j;
3070 if (idx >= nr_clusters)
3071 continue;
3072 if (cluster_count(&cluster_info[idx]))
3073 continue;
2a8f9449 3074 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
6b534915
HY
3075 cluster_list_add_tail(&p->free_clusters, cluster_info,
3076 idx);
2a8f9449 3077 }
2a8f9449 3078 }
915d4d7b 3079 return nr_extents;
915d4d7b
CEB
3080}
3081
dcf6b7dd
RA
3082/*
3083 * Helper to sys_swapon determining if a given swap
3084 * backing device queue supports DISCARD operations.
3085 */
3086static bool swap_discardable(struct swap_info_struct *si)
3087{
3088 struct request_queue *q = bdev_get_queue(si->bdev);
3089
3090 if (!q || !blk_queue_discard(q))
3091 return false;
3092
3093 return true;
3094}
3095
53cbb243
CEB
3096SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3097{
3098 struct swap_info_struct *p;
91a27b2a 3099 struct filename *name;
53cbb243
CEB
3100 struct file *swap_file = NULL;
3101 struct address_space *mapping;
40531542 3102 int prio;
53cbb243
CEB
3103 int error;
3104 union swap_header *swap_header;
915d4d7b 3105 int nr_extents;
53cbb243
CEB
3106 sector_t span;
3107 unsigned long maxpages;
53cbb243 3108 unsigned char *swap_map = NULL;
2a8f9449 3109 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 3110 unsigned long *frontswap_map = NULL;
53cbb243
CEB
3111 struct page *page = NULL;
3112 struct inode *inode = NULL;
7cbf3192 3113 bool inced_nr_rotate_swap = false;
53cbb243 3114
d15cab97
HD
3115 if (swap_flags & ~SWAP_FLAGS_VALID)
3116 return -EINVAL;
3117
53cbb243
CEB
3118 if (!capable(CAP_SYS_ADMIN))
3119 return -EPERM;
3120
a2468cc9
AL
3121 if (!swap_avail_heads)
3122 return -ENOMEM;
3123
53cbb243 3124 p = alloc_swap_info();
2542e513
CEB
3125 if (IS_ERR(p))
3126 return PTR_ERR(p);
53cbb243 3127
815c2c54
SL
3128 INIT_WORK(&p->discard_work, swap_discard_work);
3129
1da177e4 3130 name = getname(specialfile);
1da177e4 3131 if (IS_ERR(name)) {
7de7fb6b 3132 error = PTR_ERR(name);
1da177e4 3133 name = NULL;
bd69010b 3134 goto bad_swap;
1da177e4 3135 }
669abf4e 3136 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 3137 if (IS_ERR(swap_file)) {
7de7fb6b 3138 error = PTR_ERR(swap_file);
1da177e4 3139 swap_file = NULL;
bd69010b 3140 goto bad_swap;
1da177e4
LT
3141 }
3142
3143 p->swap_file = swap_file;
3144 mapping = swap_file->f_mapping;
2130781e 3145 inode = mapping->host;
6f179af8 3146
4d0e1e10
CEB
3147 error = claim_swapfile(p, inode);
3148 if (unlikely(error))
1da177e4 3149 goto bad_swap;
1da177e4 3150
d795a90e
NA
3151 inode_lock(inode);
3152 if (IS_SWAPFILE(inode)) {
3153 error = -EBUSY;
3154 goto bad_swap_unlock_inode;
3155 }
3156
1da177e4
LT
3157 /*
3158 * Read the swap header.
3159 */
3160 if (!mapping->a_ops->readpage) {
3161 error = -EINVAL;
d795a90e 3162 goto bad_swap_unlock_inode;
1da177e4 3163 }
090d2b18 3164 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
3165 if (IS_ERR(page)) {
3166 error = PTR_ERR(page);
d795a90e 3167 goto bad_swap_unlock_inode;
1da177e4 3168 }
81e33971 3169 swap_header = kmap(page);
1da177e4 3170
ca8bd38b
CEB
3171 maxpages = read_swap_header(p, swap_header, inode);
3172 if (unlikely(!maxpages)) {
1da177e4 3173 error = -EINVAL;
d795a90e 3174 goto bad_swap_unlock_inode;
1da177e4 3175 }
886bb7e9 3176
81e33971 3177 /* OK, set up the swap map and apply the bad block list */
803d0c83 3178 swap_map = vzalloc(maxpages);
81e33971
HD
3179 if (!swap_map) {
3180 error = -ENOMEM;
d795a90e 3181 goto bad_swap_unlock_inode;
81e33971 3182 }
f0571429
MK
3183
3184 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3185 p->flags |= SWP_STABLE_WRITES;
3186
539a6fea
MK
3187 if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3188 p->flags |= SWP_SYNCHRONOUS_IO;
3189
2a8f9449 3190 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
6f179af8 3191 int cpu;
235b6217 3192 unsigned long ci, nr_cluster;
6f179af8 3193
2a8f9449
SL
3194 p->flags |= SWP_SOLIDSTATE;
3195 /*
3196 * select a random position to start with to help wear leveling
3197 * SSD
3198 */
3199 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
235b6217 3200 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2a8f9449 3201
778e1cdd 3202 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
54f180d3 3203 GFP_KERNEL);
2a8f9449
SL
3204 if (!cluster_info) {
3205 error = -ENOMEM;
d795a90e 3206 goto bad_swap_unlock_inode;
2a8f9449 3207 }
235b6217
HY
3208
3209 for (ci = 0; ci < nr_cluster; ci++)
3210 spin_lock_init(&((cluster_info + ci)->lock));
3211
ebc2a1a6
SL
3212 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3213 if (!p->percpu_cluster) {
3214 error = -ENOMEM;
d795a90e 3215 goto bad_swap_unlock_inode;
ebc2a1a6 3216 }
6f179af8 3217 for_each_possible_cpu(cpu) {
ebc2a1a6 3218 struct percpu_cluster *cluster;
6f179af8 3219 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
ebc2a1a6
SL
3220 cluster_set_null(&cluster->index);
3221 }
7cbf3192 3222 } else {
81a0298b 3223 atomic_inc(&nr_rotate_swap);
7cbf3192
OS
3224 inced_nr_rotate_swap = true;
3225 }
1da177e4 3226
1421ef3c
CEB
3227 error = swap_cgroup_swapon(p->type, maxpages);
3228 if (error)
d795a90e 3229 goto bad_swap_unlock_inode;
1421ef3c 3230
915d4d7b 3231 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 3232 cluster_info, maxpages, &span);
915d4d7b
CEB
3233 if (unlikely(nr_extents < 0)) {
3234 error = nr_extents;
d795a90e 3235 goto bad_swap_unlock_inode;
1da177e4 3236 }
38b5faf4 3237 /* frontswap enabled? set up bit-per-page map for frontswap */
8ea1d2a1 3238 if (IS_ENABLED(CONFIG_FRONTSWAP))
778e1cdd
KC
3239 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3240 sizeof(long),
54f180d3 3241 GFP_KERNEL);
1da177e4 3242
2a8f9449
SL
3243 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3244 /*
3245 * When discard is enabled for swap with no particular
3246 * policy flagged, we set all swap discard flags here in
3247 * order to sustain backward compatibility with older
3248 * swapon(8) releases.
3249 */
3250 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3251 SWP_PAGE_DISCARD);
dcf6b7dd 3252
2a8f9449
SL
3253 /*
3254 * By flagging sys_swapon, a sysadmin can tell us to
3255 * either do single-time area discards only, or to just
3256 * perform discards for released swap page-clusters.
3257 * Now it's time to adjust the p->flags accordingly.
3258 */
3259 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3260 p->flags &= ~SWP_PAGE_DISCARD;
3261 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3262 p->flags &= ~SWP_AREA_DISCARD;
3263
3264 /* issue a swapon-time discard if it's still required */
3265 if (p->flags & SWP_AREA_DISCARD) {
3266 int err = discard_swap(p);
3267 if (unlikely(err))
3268 pr_err("swapon: discard_swap(%p): %d\n",
3269 p, err);
dcf6b7dd 3270 }
20137a49 3271 }
6a6ba831 3272
4b3ef9da
HY
3273 error = init_swap_address_space(p->type, maxpages);
3274 if (error)
d795a90e 3275 goto bad_swap_unlock_inode;
4b3ef9da 3276
dc617f29
DW
3277 /*
3278 * Flush any pending IO and dirty mappings before we start using this
3279 * swap device.
3280 */
3281 inode->i_flags |= S_SWAPFILE;
3282 error = inode_drain_writes(inode);
3283 if (error) {
3284 inode->i_flags &= ~S_SWAPFILE;
d795a90e 3285 goto bad_swap_unlock_inode;
dc617f29
DW
3286 }
3287
fc0abb14 3288 mutex_lock(&swapon_mutex);
40531542 3289 prio = -1;
78ecba08 3290 if (swap_flags & SWAP_FLAG_PREFER)
40531542 3291 prio =
78ecba08 3292 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 3293 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 3294
756a025f 3295 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 3296 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
3297 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3298 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 3299 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
3300 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3301 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 3302 (frontswap_map) ? "FS" : "");
c69dbfb8 3303
fc0abb14 3304 mutex_unlock(&swapon_mutex);
66d7dd51
KS
3305 atomic_inc(&proc_poll_event);
3306 wake_up_interruptible(&proc_poll_wait);
3307
1da177e4
LT
3308 error = 0;
3309 goto out;
d795a90e
NA
3310bad_swap_unlock_inode:
3311 inode_unlock(inode);
1da177e4 3312bad_swap:
ebc2a1a6
SL
3313 free_percpu(p->percpu_cluster);
3314 p->percpu_cluster = NULL;
bd69010b 3315 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
3316 set_blocksize(p->bdev, p->old_block_size);
3317 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 3318 }
d795a90e 3319 inode = NULL;
4cd3bb10 3320 destroy_swap_extents(p);
e8e6c2ec 3321 swap_cgroup_swapoff(p->type);
5d337b91 3322 spin_lock(&swap_lock);
1da177e4 3323 p->swap_file = NULL;
1da177e4 3324 p->flags = 0;
5d337b91 3325 spin_unlock(&swap_lock);
1da177e4 3326 vfree(swap_map);
8606a1a9 3327 kvfree(cluster_info);
b6b1fd2a 3328 kvfree(frontswap_map);
7cbf3192
OS
3329 if (inced_nr_rotate_swap)
3330 atomic_dec(&nr_rotate_swap);
d795a90e 3331 if (swap_file)
1da177e4
LT
3332 filp_close(swap_file, NULL);
3333out:
3334 if (page && !IS_ERR(page)) {
3335 kunmap(page);
09cbfeaf 3336 put_page(page);
1da177e4
LT
3337 }
3338 if (name)
3339 putname(name);
1638045c 3340 if (inode)
5955102c 3341 inode_unlock(inode);
039939a6
TC
3342 if (!error)
3343 enable_swap_slots_cache();
1da177e4
LT
3344 return error;
3345}
3346
3347void si_swapinfo(struct sysinfo *val)
3348{
efa90a98 3349 unsigned int type;
1da177e4
LT
3350 unsigned long nr_to_be_unused = 0;
3351
5d337b91 3352 spin_lock(&swap_lock);
efa90a98
HD
3353 for (type = 0; type < nr_swapfiles; type++) {
3354 struct swap_info_struct *si = swap_info[type];
3355
3356 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3357 nr_to_be_unused += si->inuse_pages;
1da177e4 3358 }
ec8acf20 3359 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 3360 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 3361 spin_unlock(&swap_lock);
1da177e4
LT
3362}
3363
3364/*
3365 * Verify that a swap entry is valid and increment its swap map count.
3366 *
355cfa73
KH
3367 * Returns error code in following case.
3368 * - success -> 0
3369 * - swp_entry is invalid -> EINVAL
3370 * - swp_entry is migration entry -> EINVAL
3371 * - swap-cache reference is requested but there is already one. -> EEXIST
3372 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 3373 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 3374 */
8d69aaee 3375static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 3376{
73c34b6a 3377 struct swap_info_struct *p;
235b6217 3378 struct swap_cluster_info *ci;
c10d38cc 3379 unsigned long offset;
8d69aaee
HD
3380 unsigned char count;
3381 unsigned char has_cache;
253d553b 3382 int err = -EINVAL;
1da177e4 3383
eb085574 3384 p = get_swap_device(entry);
c10d38cc 3385 if (!p)
235b6217
HY
3386 goto out;
3387
eb085574 3388 offset = swp_offset(entry);
235b6217 3389 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 3390
253d553b 3391 count = p->swap_map[offset];
edfe23da
SL
3392
3393 /*
3394 * swapin_readahead() doesn't check if a swap entry is valid, so the
3395 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3396 */
3397 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3398 err = -ENOENT;
3399 goto unlock_out;
3400 }
3401
253d553b
HD
3402 has_cache = count & SWAP_HAS_CACHE;
3403 count &= ~SWAP_HAS_CACHE;
3404 err = 0;
355cfa73 3405
253d553b 3406 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
3407
3408 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
3409 if (!has_cache && count)
3410 has_cache = SWAP_HAS_CACHE;
3411 else if (has_cache) /* someone else added cache */
3412 err = -EEXIST;
3413 else /* no users remaining */
3414 err = -ENOENT;
355cfa73
KH
3415
3416 } else if (count || has_cache) {
253d553b 3417
570a335b
HD
3418 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3419 count += usage;
3420 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 3421 err = -EINVAL;
570a335b
HD
3422 else if (swap_count_continued(p, offset, count))
3423 count = COUNT_CONTINUED;
3424 else
3425 err = -ENOMEM;
355cfa73 3426 } else
253d553b
HD
3427 err = -ENOENT; /* unused swap entry */
3428
3429 p->swap_map[offset] = count | has_cache;
3430
355cfa73 3431unlock_out:
235b6217 3432 unlock_cluster_or_swap_info(p, ci);
1da177e4 3433out:
eb085574
HY
3434 if (p)
3435 put_swap_device(p);
253d553b 3436 return err;
1da177e4 3437}
253d553b 3438
aaa46865
HD
3439/*
3440 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3441 * (in which case its reference count is never incremented).
3442 */
3443void swap_shmem_alloc(swp_entry_t entry)
3444{
3445 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3446}
3447
355cfa73 3448/*
08259d58
HD
3449 * Increase reference count of swap entry by 1.
3450 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3451 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3452 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3453 * might occur if a page table entry has got corrupted.
355cfa73 3454 */
570a335b 3455int swap_duplicate(swp_entry_t entry)
355cfa73 3456{
570a335b
HD
3457 int err = 0;
3458
3459 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3460 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3461 return err;
355cfa73 3462}
1da177e4 3463
cb4b86ba 3464/*
355cfa73
KH
3465 * @entry: swap entry for which we allocate swap cache.
3466 *
73c34b6a 3467 * Called when allocating swap cache for existing swap entry,
355cfa73 3468 * This can return error codes. Returns 0 at success.
3eeba135 3469 * -EEXIST means there is a swap cache.
355cfa73 3470 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
3471 */
3472int swapcache_prepare(swp_entry_t entry)
3473{
253d553b 3474 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
3475}
3476
0bcac06f
MK
3477struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3478{
c10d38cc 3479 return swap_type_to_swap_info(swp_type(entry));
0bcac06f
MK
3480}
3481
f981c595
MG
3482struct swap_info_struct *page_swap_info(struct page *page)
3483{
0bcac06f
MK
3484 swp_entry_t entry = { .val = page_private(page) };
3485 return swp_swap_info(entry);
f981c595
MG
3486}
3487
3488/*
3489 * out-of-line __page_file_ methods to avoid include hell.
3490 */
3491struct address_space *__page_file_mapping(struct page *page)
3492{
f981c595
MG
3493 return page_swap_info(page)->swap_file->f_mapping;
3494}
3495EXPORT_SYMBOL_GPL(__page_file_mapping);
3496
3497pgoff_t __page_file_index(struct page *page)
3498{
3499 swp_entry_t swap = { .val = page_private(page) };
f981c595
MG
3500 return swp_offset(swap);
3501}
3502EXPORT_SYMBOL_GPL(__page_file_index);
3503
570a335b
HD
3504/*
3505 * add_swap_count_continuation - called when a swap count is duplicated
3506 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3507 * page of the original vmalloc'ed swap_map, to hold the continuation count
3508 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3509 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3510 *
3511 * These continuation pages are seldom referenced: the common paths all work
3512 * on the original swap_map, only referring to a continuation page when the
3513 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3514 *
3515 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3516 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3517 * can be called after dropping locks.
3518 */
3519int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3520{
3521 struct swap_info_struct *si;
235b6217 3522 struct swap_cluster_info *ci;
570a335b
HD
3523 struct page *head;
3524 struct page *page;
3525 struct page *list_page;
3526 pgoff_t offset;
3527 unsigned char count;
eb085574 3528 int ret = 0;
570a335b
HD
3529
3530 /*
3531 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3532 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3533 */
3534 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3535
eb085574 3536 si = get_swap_device(entry);
570a335b
HD
3537 if (!si) {
3538 /*
3539 * An acceptable race has occurred since the failing
eb085574 3540 * __swap_duplicate(): the swap device may be swapoff
570a335b
HD
3541 */
3542 goto outer;
3543 }
eb085574 3544 spin_lock(&si->lock);
570a335b
HD
3545
3546 offset = swp_offset(entry);
235b6217
HY
3547
3548 ci = lock_cluster(si, offset);
3549
570a335b
HD
3550 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3551
3552 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3553 /*
3554 * The higher the swap count, the more likely it is that tasks
3555 * will race to add swap count continuation: we need to avoid
3556 * over-provisioning.
3557 */
3558 goto out;
3559 }
3560
3561 if (!page) {
eb085574
HY
3562 ret = -ENOMEM;
3563 goto out;
570a335b
HD
3564 }
3565
3566 /*
3567 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
3568 * no architecture is using highmem pages for kernel page tables: so it
3569 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
3570 */
3571 head = vmalloc_to_page(si->swap_map + offset);
3572 offset &= ~PAGE_MASK;
3573
2628bd6f 3574 spin_lock(&si->cont_lock);
570a335b
HD
3575 /*
3576 * Page allocation does not initialize the page's lru field,
3577 * but it does always reset its private field.
3578 */
3579 if (!page_private(head)) {
3580 BUG_ON(count & COUNT_CONTINUED);
3581 INIT_LIST_HEAD(&head->lru);
3582 set_page_private(head, SWP_CONTINUED);
3583 si->flags |= SWP_CONTINUED;
3584 }
3585
3586 list_for_each_entry(list_page, &head->lru, lru) {
3587 unsigned char *map;
3588
3589 /*
3590 * If the previous map said no continuation, but we've found
3591 * a continuation page, free our allocation and use this one.
3592 */
3593 if (!(count & COUNT_CONTINUED))
2628bd6f 3594 goto out_unlock_cont;
570a335b 3595
9b04c5fe 3596 map = kmap_atomic(list_page) + offset;
570a335b 3597 count = *map;
9b04c5fe 3598 kunmap_atomic(map);
570a335b
HD
3599
3600 /*
3601 * If this continuation count now has some space in it,
3602 * free our allocation and use this one.
3603 */
3604 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2628bd6f 3605 goto out_unlock_cont;
570a335b
HD
3606 }
3607
3608 list_add_tail(&page->lru, &head->lru);
3609 page = NULL; /* now it's attached, don't free it */
2628bd6f
HY
3610out_unlock_cont:
3611 spin_unlock(&si->cont_lock);
570a335b 3612out:
235b6217 3613 unlock_cluster(ci);
ec8acf20 3614 spin_unlock(&si->lock);
eb085574 3615 put_swap_device(si);
570a335b
HD
3616outer:
3617 if (page)
3618 __free_page(page);
eb085574 3619 return ret;
570a335b
HD
3620}
3621
3622/*
3623 * swap_count_continued - when the original swap_map count is incremented
3624 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3625 * into, carry if so, or else fail until a new continuation page is allocated;
3626 * when the original swap_map count is decremented from 0 with continuation,
3627 * borrow from the continuation and report whether it still holds more.
235b6217
HY
3628 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3629 * lock.
570a335b
HD
3630 */
3631static bool swap_count_continued(struct swap_info_struct *si,
3632 pgoff_t offset, unsigned char count)
3633{
3634 struct page *head;
3635 struct page *page;
3636 unsigned char *map;
2628bd6f 3637 bool ret;
570a335b
HD
3638
3639 head = vmalloc_to_page(si->swap_map + offset);
3640 if (page_private(head) != SWP_CONTINUED) {
3641 BUG_ON(count & COUNT_CONTINUED);
3642 return false; /* need to add count continuation */
3643 }
3644
2628bd6f 3645 spin_lock(&si->cont_lock);
570a335b 3646 offset &= ~PAGE_MASK;
213516ac 3647 page = list_next_entry(head, lru);
9b04c5fe 3648 map = kmap_atomic(page) + offset;
570a335b
HD
3649
3650 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3651 goto init_map; /* jump over SWAP_CONT_MAX checks */
3652
3653 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3654 /*
3655 * Think of how you add 1 to 999
3656 */
3657 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 3658 kunmap_atomic(map);
213516ac 3659 page = list_next_entry(page, lru);
570a335b 3660 BUG_ON(page == head);
9b04c5fe 3661 map = kmap_atomic(page) + offset;
570a335b
HD
3662 }
3663 if (*map == SWAP_CONT_MAX) {
9b04c5fe 3664 kunmap_atomic(map);
213516ac 3665 page = list_next_entry(page, lru);
2628bd6f
HY
3666 if (page == head) {
3667 ret = false; /* add count continuation */
3668 goto out;
3669 }
9b04c5fe 3670 map = kmap_atomic(page) + offset;
570a335b
HD
3671init_map: *map = 0; /* we didn't zero the page */
3672 }
3673 *map += 1;
9b04c5fe 3674 kunmap_atomic(map);
213516ac 3675 while ((page = list_prev_entry(page, lru)) != head) {
9b04c5fe 3676 map = kmap_atomic(page) + offset;
570a335b 3677 *map = COUNT_CONTINUED;
9b04c5fe 3678 kunmap_atomic(map);
570a335b 3679 }
2628bd6f 3680 ret = true; /* incremented */
570a335b
HD
3681
3682 } else { /* decrementing */
3683 /*
3684 * Think of how you subtract 1 from 1000
3685 */
3686 BUG_ON(count != COUNT_CONTINUED);
3687 while (*map == COUNT_CONTINUED) {
9b04c5fe 3688 kunmap_atomic(map);
213516ac 3689 page = list_next_entry(page, lru);
570a335b 3690 BUG_ON(page == head);
9b04c5fe 3691 map = kmap_atomic(page) + offset;
570a335b
HD
3692 }
3693 BUG_ON(*map == 0);
3694 *map -= 1;
3695 if (*map == 0)
3696 count = 0;
9b04c5fe 3697 kunmap_atomic(map);
213516ac 3698 while ((page = list_prev_entry(page, lru)) != head) {
9b04c5fe 3699 map = kmap_atomic(page) + offset;
570a335b
HD
3700 *map = SWAP_CONT_MAX | count;
3701 count = COUNT_CONTINUED;
9b04c5fe 3702 kunmap_atomic(map);
570a335b 3703 }
2628bd6f 3704 ret = count == COUNT_CONTINUED;
570a335b 3705 }
2628bd6f
HY
3706out:
3707 spin_unlock(&si->cont_lock);
3708 return ret;
570a335b
HD
3709}
3710
3711/*
3712 * free_swap_count_continuations - swapoff free all the continuation pages
3713 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3714 */
3715static void free_swap_count_continuations(struct swap_info_struct *si)
3716{
3717 pgoff_t offset;
3718
3719 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3720 struct page *head;
3721 head = vmalloc_to_page(si->swap_map + offset);
3722 if (page_private(head)) {
0d576d20
GT
3723 struct page *page, *next;
3724
3725 list_for_each_entry_safe(page, next, &head->lru, lru) {
3726 list_del(&page->lru);
570a335b
HD
3727 __free_page(page);
3728 }
3729 }
3730 }
3731}
a2468cc9 3732
2cf85583
TH
3733#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3734void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3735 gfp_t gfp_mask)
3736{
3737 struct swap_info_struct *si, *next;
3738 if (!(gfp_mask & __GFP_IO) || !memcg)
3739 return;
3740
3741 if (!blk_cgroup_congested())
3742 return;
3743
3744 /*
3745 * We've already scheduled a throttle, avoid taking the global swap
3746 * lock.
3747 */
3748 if (current->throttle_queue)
3749 return;
3750
3751 spin_lock(&swap_avail_lock);
3752 plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3753 avail_lists[node]) {
3754 if (si->bdev) {
3755 blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3756 true);
3757 break;
3758 }
3759 }
3760 spin_unlock(&swap_avail_lock);
3761}
3762#endif
3763
a2468cc9
AL
3764static int __init swapfile_init(void)
3765{
3766 int nid;
3767
3768 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3769 GFP_KERNEL);
3770 if (!swap_avail_heads) {
3771 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3772 return -ENOMEM;
3773 }
3774
3775 for_each_node(nid)
3776 plist_head_init(&swap_avail_heads[nid]);
3777
3778 return 0;
3779}
3780subsys_initcall(swapfile_init);