]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/swapfile.c
hugetlb: rename hugepage_migration_support() to ..._supported()
[mirror_ubuntu-jammy-kernel.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
072441e2 17#include <linux/shmem_fs.h>
1da177e4 18#include <linux/blkdev.h>
20137a49 19#include <linux/random.h>
1da177e4
LT
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
5ad64688 24#include <linux/ksm.h>
1da177e4
LT
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
fc0abb14 28#include <linux/mutex.h>
c59ede7b 29#include <linux/capability.h>
1da177e4 30#include <linux/syscalls.h>
8a9f3ccd 31#include <linux/memcontrol.h>
66d7dd51 32#include <linux/poll.h>
72788c38 33#include <linux/oom.h>
38b5faf4
DM
34#include <linux/frontswap.h>
35#include <linux/swapfile.h>
f981c595 36#include <linux/export.h>
1da177e4
LT
37
38#include <asm/pgtable.h>
39#include <asm/tlbflush.h>
40#include <linux/swapops.h>
27a7faa0 41#include <linux/page_cgroup.h>
1da177e4 42
570a335b
HD
43static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 unsigned char);
45static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 46static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 47
38b5faf4 48DEFINE_SPINLOCK(swap_lock);
7c363b8c 49static unsigned int nr_swapfiles;
ec8acf20
SL
50atomic_long_t nr_swap_pages;
51/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 52long total_swap_pages;
78ecba08 53static int least_priority;
1da177e4 54
1da177e4
LT
55static const char Bad_file[] = "Bad swap file entry ";
56static const char Unused_file[] = "Unused swap file entry ";
57static const char Bad_offset[] = "Bad swap offset entry ";
58static const char Unused_offset[] = "Unused swap offset entry ";
59
adfab836
DS
60/*
61 * all active swap_info_structs
62 * protected with swap_lock, and ordered by priority.
63 */
18ab4d4c
DS
64PLIST_HEAD(swap_active_head);
65
66/*
67 * all available (active, not full) swap_info_structs
68 * protected with swap_avail_lock, ordered by priority.
69 * This is used by get_swap_page() instead of swap_active_head
70 * because swap_active_head includes all swap_info_structs,
71 * but get_swap_page() doesn't need to look at full ones.
72 * This uses its own lock instead of swap_lock because when a
73 * swap_info_struct changes between not-full/full, it needs to
74 * add/remove itself to/from this list, but the swap_info_struct->lock
75 * is held and the locking order requires swap_lock to be taken
76 * before any swap_info_struct->lock.
77 */
78static PLIST_HEAD(swap_avail_head);
79static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 80
38b5faf4 81struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 82
fc0abb14 83static DEFINE_MUTEX(swapon_mutex);
1da177e4 84
66d7dd51
KS
85static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
86/* Activity counter to indicate that a swapon or swapoff has occurred */
87static atomic_t proc_poll_event = ATOMIC_INIT(0);
88
8d69aaee 89static inline unsigned char swap_count(unsigned char ent)
355cfa73 90{
570a335b 91 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
355cfa73
KH
92}
93
efa90a98 94/* returns 1 if swap entry is freed */
c9e44410
KH
95static int
96__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
97{
efa90a98 98 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
99 struct page *page;
100 int ret = 0;
101
33806f06 102 page = find_get_page(swap_address_space(entry), entry.val);
c9e44410
KH
103 if (!page)
104 return 0;
105 /*
106 * This function is called from scan_swap_map() and it's called
107 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
108 * We have to use trylock for avoiding deadlock. This is a special
109 * case and you should use try_to_free_swap() with explicit lock_page()
110 * in usual operations.
111 */
112 if (trylock_page(page)) {
113 ret = try_to_free_swap(page);
114 unlock_page(page);
115 }
116 page_cache_release(page);
117 return ret;
118}
355cfa73 119
6a6ba831
HD
120/*
121 * swapon tell device that all the old swap contents can be discarded,
122 * to allow the swap device to optimize its wear-levelling.
123 */
124static int discard_swap(struct swap_info_struct *si)
125{
126 struct swap_extent *se;
9625a5f2
HD
127 sector_t start_block;
128 sector_t nr_blocks;
6a6ba831
HD
129 int err = 0;
130
9625a5f2
HD
131 /* Do not discard the swap header page! */
132 se = &si->first_swap_extent;
133 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
134 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
135 if (nr_blocks) {
136 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 137 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
138 if (err)
139 return err;
140 cond_resched();
141 }
6a6ba831 142
9625a5f2
HD
143 list_for_each_entry(se, &si->first_swap_extent.list, list) {
144 start_block = se->start_block << (PAGE_SHIFT - 9);
145 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
146
147 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 148 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
149 if (err)
150 break;
151
152 cond_resched();
153 }
154 return err; /* That will often be -EOPNOTSUPP */
155}
156
7992fde7
HD
157/*
158 * swap allocation tell device that a cluster of swap can now be discarded,
159 * to allow the swap device to optimize its wear-levelling.
160 */
161static void discard_swap_cluster(struct swap_info_struct *si,
162 pgoff_t start_page, pgoff_t nr_pages)
163{
164 struct swap_extent *se = si->curr_swap_extent;
165 int found_extent = 0;
166
167 while (nr_pages) {
168 struct list_head *lh;
169
170 if (se->start_page <= start_page &&
171 start_page < se->start_page + se->nr_pages) {
172 pgoff_t offset = start_page - se->start_page;
173 sector_t start_block = se->start_block + offset;
858a2990 174 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
175
176 if (nr_blocks > nr_pages)
177 nr_blocks = nr_pages;
178 start_page += nr_blocks;
179 nr_pages -= nr_blocks;
180
181 if (!found_extent++)
182 si->curr_swap_extent = se;
183
184 start_block <<= PAGE_SHIFT - 9;
185 nr_blocks <<= PAGE_SHIFT - 9;
186 if (blkdev_issue_discard(si->bdev, start_block,
dd3932ed 187 nr_blocks, GFP_NOIO, 0))
7992fde7
HD
188 break;
189 }
190
191 lh = se->list.next;
7992fde7
HD
192 se = list_entry(lh, struct swap_extent, list);
193 }
194}
195
048c27fd
HD
196#define SWAPFILE_CLUSTER 256
197#define LATENCY_LIMIT 256
198
2a8f9449
SL
199static inline void cluster_set_flag(struct swap_cluster_info *info,
200 unsigned int flag)
201{
202 info->flags = flag;
203}
204
205static inline unsigned int cluster_count(struct swap_cluster_info *info)
206{
207 return info->data;
208}
209
210static inline void cluster_set_count(struct swap_cluster_info *info,
211 unsigned int c)
212{
213 info->data = c;
214}
215
216static inline void cluster_set_count_flag(struct swap_cluster_info *info,
217 unsigned int c, unsigned int f)
218{
219 info->flags = f;
220 info->data = c;
221}
222
223static inline unsigned int cluster_next(struct swap_cluster_info *info)
224{
225 return info->data;
226}
227
228static inline void cluster_set_next(struct swap_cluster_info *info,
229 unsigned int n)
230{
231 info->data = n;
232}
233
234static inline void cluster_set_next_flag(struct swap_cluster_info *info,
235 unsigned int n, unsigned int f)
236{
237 info->flags = f;
238 info->data = n;
239}
240
241static inline bool cluster_is_free(struct swap_cluster_info *info)
242{
243 return info->flags & CLUSTER_FLAG_FREE;
244}
245
246static inline bool cluster_is_null(struct swap_cluster_info *info)
247{
248 return info->flags & CLUSTER_FLAG_NEXT_NULL;
249}
250
251static inline void cluster_set_null(struct swap_cluster_info *info)
252{
253 info->flags = CLUSTER_FLAG_NEXT_NULL;
254 info->data = 0;
255}
256
815c2c54
SL
257/* Add a cluster to discard list and schedule it to do discard */
258static void swap_cluster_schedule_discard(struct swap_info_struct *si,
259 unsigned int idx)
260{
261 /*
262 * If scan_swap_map() can't find a free cluster, it will check
263 * si->swap_map directly. To make sure the discarding cluster isn't
264 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
265 * will be cleared after discard
266 */
267 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
268 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
269
270 if (cluster_is_null(&si->discard_cluster_head)) {
271 cluster_set_next_flag(&si->discard_cluster_head,
272 idx, 0);
273 cluster_set_next_flag(&si->discard_cluster_tail,
274 idx, 0);
275 } else {
276 unsigned int tail = cluster_next(&si->discard_cluster_tail);
277 cluster_set_next(&si->cluster_info[tail], idx);
278 cluster_set_next_flag(&si->discard_cluster_tail,
279 idx, 0);
280 }
281
282 schedule_work(&si->discard_work);
283}
284
285/*
286 * Doing discard actually. After a cluster discard is finished, the cluster
287 * will be added to free cluster list. caller should hold si->lock.
288*/
289static void swap_do_scheduled_discard(struct swap_info_struct *si)
290{
291 struct swap_cluster_info *info;
292 unsigned int idx;
293
294 info = si->cluster_info;
295
296 while (!cluster_is_null(&si->discard_cluster_head)) {
297 idx = cluster_next(&si->discard_cluster_head);
298
299 cluster_set_next_flag(&si->discard_cluster_head,
300 cluster_next(&info[idx]), 0);
301 if (cluster_next(&si->discard_cluster_tail) == idx) {
302 cluster_set_null(&si->discard_cluster_head);
303 cluster_set_null(&si->discard_cluster_tail);
304 }
305 spin_unlock(&si->lock);
306
307 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
308 SWAPFILE_CLUSTER);
309
310 spin_lock(&si->lock);
311 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
312 if (cluster_is_null(&si->free_cluster_head)) {
313 cluster_set_next_flag(&si->free_cluster_head,
314 idx, 0);
315 cluster_set_next_flag(&si->free_cluster_tail,
316 idx, 0);
317 } else {
318 unsigned int tail;
319
320 tail = cluster_next(&si->free_cluster_tail);
321 cluster_set_next(&info[tail], idx);
322 cluster_set_next_flag(&si->free_cluster_tail,
323 idx, 0);
324 }
325 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
326 0, SWAPFILE_CLUSTER);
327 }
328}
329
330static void swap_discard_work(struct work_struct *work)
331{
332 struct swap_info_struct *si;
333
334 si = container_of(work, struct swap_info_struct, discard_work);
335
336 spin_lock(&si->lock);
337 swap_do_scheduled_discard(si);
338 spin_unlock(&si->lock);
339}
340
2a8f9449
SL
341/*
342 * The cluster corresponding to page_nr will be used. The cluster will be
343 * removed from free cluster list and its usage counter will be increased.
344 */
345static void inc_cluster_info_page(struct swap_info_struct *p,
346 struct swap_cluster_info *cluster_info, unsigned long page_nr)
347{
348 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
349
350 if (!cluster_info)
351 return;
352 if (cluster_is_free(&cluster_info[idx])) {
353 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
354 cluster_set_next_flag(&p->free_cluster_head,
355 cluster_next(&cluster_info[idx]), 0);
356 if (cluster_next(&p->free_cluster_tail) == idx) {
357 cluster_set_null(&p->free_cluster_tail);
358 cluster_set_null(&p->free_cluster_head);
359 }
360 cluster_set_count_flag(&cluster_info[idx], 0, 0);
361 }
362
363 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
364 cluster_set_count(&cluster_info[idx],
365 cluster_count(&cluster_info[idx]) + 1);
366}
367
368/*
369 * The cluster corresponding to page_nr decreases one usage. If the usage
370 * counter becomes 0, which means no page in the cluster is in using, we can
371 * optionally discard the cluster and add it to free cluster list.
372 */
373static void dec_cluster_info_page(struct swap_info_struct *p,
374 struct swap_cluster_info *cluster_info, unsigned long page_nr)
375{
376 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
377
378 if (!cluster_info)
379 return;
380
381 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
382 cluster_set_count(&cluster_info[idx],
383 cluster_count(&cluster_info[idx]) - 1);
384
385 if (cluster_count(&cluster_info[idx]) == 0) {
815c2c54
SL
386 /*
387 * If the swap is discardable, prepare discard the cluster
388 * instead of free it immediately. The cluster will be freed
389 * after discard.
390 */
edfe23da
SL
391 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
392 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
815c2c54
SL
393 swap_cluster_schedule_discard(p, idx);
394 return;
395 }
396
2a8f9449
SL
397 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
398 if (cluster_is_null(&p->free_cluster_head)) {
399 cluster_set_next_flag(&p->free_cluster_head, idx, 0);
400 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
401 } else {
402 unsigned int tail = cluster_next(&p->free_cluster_tail);
403 cluster_set_next(&cluster_info[tail], idx);
404 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
405 }
406 }
407}
408
409/*
410 * It's possible scan_swap_map() uses a free cluster in the middle of free
411 * cluster list. Avoiding such abuse to avoid list corruption.
412 */
ebc2a1a6
SL
413static bool
414scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
415 unsigned long offset)
416{
ebc2a1a6
SL
417 struct percpu_cluster *percpu_cluster;
418 bool conflict;
419
2a8f9449 420 offset /= SWAPFILE_CLUSTER;
ebc2a1a6 421 conflict = !cluster_is_null(&si->free_cluster_head) &&
2a8f9449
SL
422 offset != cluster_next(&si->free_cluster_head) &&
423 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
424
425 if (!conflict)
426 return false;
427
428 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
429 cluster_set_null(&percpu_cluster->index);
430 return true;
431}
432
433/*
434 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
435 * might involve allocating a new cluster for current CPU too.
436 */
437static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
438 unsigned long *offset, unsigned long *scan_base)
439{
440 struct percpu_cluster *cluster;
441 bool found_free;
442 unsigned long tmp;
443
444new_cluster:
445 cluster = this_cpu_ptr(si->percpu_cluster);
446 if (cluster_is_null(&cluster->index)) {
447 if (!cluster_is_null(&si->free_cluster_head)) {
448 cluster->index = si->free_cluster_head;
449 cluster->next = cluster_next(&cluster->index) *
450 SWAPFILE_CLUSTER;
451 } else if (!cluster_is_null(&si->discard_cluster_head)) {
452 /*
453 * we don't have free cluster but have some clusters in
454 * discarding, do discard now and reclaim them
455 */
456 swap_do_scheduled_discard(si);
457 *scan_base = *offset = si->cluster_next;
458 goto new_cluster;
459 } else
460 return;
461 }
462
463 found_free = false;
464
465 /*
466 * Other CPUs can use our cluster if they can't find a free cluster,
467 * check if there is still free entry in the cluster
468 */
469 tmp = cluster->next;
470 while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
471 SWAPFILE_CLUSTER) {
472 if (!si->swap_map[tmp]) {
473 found_free = true;
474 break;
475 }
476 tmp++;
477 }
478 if (!found_free) {
479 cluster_set_null(&cluster->index);
480 goto new_cluster;
481 }
482 cluster->next = tmp + 1;
483 *offset = tmp;
484 *scan_base = tmp;
2a8f9449
SL
485}
486
24b8ff7c
CEB
487static unsigned long scan_swap_map(struct swap_info_struct *si,
488 unsigned char usage)
1da177e4 489{
ebebbbe9 490 unsigned long offset;
c60aa176 491 unsigned long scan_base;
7992fde7 492 unsigned long last_in_cluster = 0;
048c27fd 493 int latency_ration = LATENCY_LIMIT;
7dfad418 494
886bb7e9 495 /*
7dfad418
HD
496 * We try to cluster swap pages by allocating them sequentially
497 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
498 * way, however, we resort to first-free allocation, starting
499 * a new cluster. This prevents us from scattering swap pages
500 * all over the entire swap partition, so that we reduce
501 * overall disk seek times between swap pages. -- sct
502 * But we do now try to find an empty cluster. -Andrea
c60aa176 503 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
504 */
505
52b7efdb 506 si->flags += SWP_SCANNING;
c60aa176 507 scan_base = offset = si->cluster_next;
ebebbbe9 508
ebc2a1a6
SL
509 /* SSD algorithm */
510 if (si->cluster_info) {
511 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
512 goto checks;
513 }
514
ebebbbe9
HD
515 if (unlikely(!si->cluster_nr--)) {
516 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
517 si->cluster_nr = SWAPFILE_CLUSTER - 1;
518 goto checks;
519 }
2a8f9449 520
ec8acf20 521 spin_unlock(&si->lock);
7dfad418 522
c60aa176
HD
523 /*
524 * If seek is expensive, start searching for new cluster from
525 * start of partition, to minimize the span of allocated swap.
526 * But if seek is cheap, search from our current position, so
527 * that swap is allocated from all over the partition: if the
528 * Flash Translation Layer only remaps within limited zones,
529 * we don't want to wear out the first zone too quickly.
530 */
531 if (!(si->flags & SWP_SOLIDSTATE))
532 scan_base = offset = si->lowest_bit;
7dfad418
HD
533 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
534
535 /* Locate the first empty (unaligned) cluster */
536 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 537 if (si->swap_map[offset])
7dfad418
HD
538 last_in_cluster = offset + SWAPFILE_CLUSTER;
539 else if (offset == last_in_cluster) {
ec8acf20 540 spin_lock(&si->lock);
ebebbbe9
HD
541 offset -= SWAPFILE_CLUSTER - 1;
542 si->cluster_next = offset;
543 si->cluster_nr = SWAPFILE_CLUSTER - 1;
544 goto checks;
1da177e4 545 }
048c27fd
HD
546 if (unlikely(--latency_ration < 0)) {
547 cond_resched();
548 latency_ration = LATENCY_LIMIT;
549 }
7dfad418 550 }
ebebbbe9
HD
551
552 offset = si->lowest_bit;
c60aa176
HD
553 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
554
555 /* Locate the first empty (unaligned) cluster */
556 for (; last_in_cluster < scan_base; offset++) {
557 if (si->swap_map[offset])
558 last_in_cluster = offset + SWAPFILE_CLUSTER;
559 else if (offset == last_in_cluster) {
ec8acf20 560 spin_lock(&si->lock);
c60aa176
HD
561 offset -= SWAPFILE_CLUSTER - 1;
562 si->cluster_next = offset;
563 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
564 goto checks;
565 }
566 if (unlikely(--latency_ration < 0)) {
567 cond_resched();
568 latency_ration = LATENCY_LIMIT;
569 }
570 }
571
572 offset = scan_base;
ec8acf20 573 spin_lock(&si->lock);
ebebbbe9 574 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 575 }
7dfad418 576
ebebbbe9 577checks:
ebc2a1a6
SL
578 if (si->cluster_info) {
579 while (scan_swap_map_ssd_cluster_conflict(si, offset))
580 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
581 }
ebebbbe9 582 if (!(si->flags & SWP_WRITEOK))
52b7efdb 583 goto no_page;
7dfad418
HD
584 if (!si->highest_bit)
585 goto no_page;
ebebbbe9 586 if (offset > si->highest_bit)
c60aa176 587 scan_base = offset = si->lowest_bit;
c9e44410 588
b73d7fce
HD
589 /* reuse swap entry of cache-only swap if not busy. */
590 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 591 int swap_was_freed;
ec8acf20 592 spin_unlock(&si->lock);
c9e44410 593 swap_was_freed = __try_to_reclaim_swap(si, offset);
ec8acf20 594 spin_lock(&si->lock);
c9e44410
KH
595 /* entry was freed successfully, try to use this again */
596 if (swap_was_freed)
597 goto checks;
598 goto scan; /* check next one */
599 }
600
ebebbbe9
HD
601 if (si->swap_map[offset])
602 goto scan;
603
604 if (offset == si->lowest_bit)
605 si->lowest_bit++;
606 if (offset == si->highest_bit)
607 si->highest_bit--;
608 si->inuse_pages++;
609 if (si->inuse_pages == si->pages) {
610 si->lowest_bit = si->max;
611 si->highest_bit = 0;
18ab4d4c
DS
612 spin_lock(&swap_avail_lock);
613 plist_del(&si->avail_list, &swap_avail_head);
614 spin_unlock(&swap_avail_lock);
1da177e4 615 }
253d553b 616 si->swap_map[offset] = usage;
2a8f9449 617 inc_cluster_info_page(si, si->cluster_info, offset);
ebebbbe9
HD
618 si->cluster_next = offset + 1;
619 si->flags -= SWP_SCANNING;
7992fde7 620
ebebbbe9 621 return offset;
7dfad418 622
ebebbbe9 623scan:
ec8acf20 624 spin_unlock(&si->lock);
7dfad418 625 while (++offset <= si->highest_bit) {
52b7efdb 626 if (!si->swap_map[offset]) {
ec8acf20 627 spin_lock(&si->lock);
52b7efdb
HD
628 goto checks;
629 }
c9e44410 630 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 631 spin_lock(&si->lock);
c9e44410
KH
632 goto checks;
633 }
048c27fd
HD
634 if (unlikely(--latency_ration < 0)) {
635 cond_resched();
636 latency_ration = LATENCY_LIMIT;
637 }
7dfad418 638 }
c60aa176 639 offset = si->lowest_bit;
a5998061 640 while (offset < scan_base) {
c60aa176 641 if (!si->swap_map[offset]) {
ec8acf20 642 spin_lock(&si->lock);
c60aa176
HD
643 goto checks;
644 }
c9e44410 645 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 646 spin_lock(&si->lock);
c9e44410
KH
647 goto checks;
648 }
c60aa176
HD
649 if (unlikely(--latency_ration < 0)) {
650 cond_resched();
651 latency_ration = LATENCY_LIMIT;
652 }
a5998061 653 offset++;
c60aa176 654 }
ec8acf20 655 spin_lock(&si->lock);
7dfad418
HD
656
657no_page:
52b7efdb 658 si->flags -= SWP_SCANNING;
1da177e4
LT
659 return 0;
660}
661
662swp_entry_t get_swap_page(void)
663{
adfab836 664 struct swap_info_struct *si, *next;
fb4f88dc 665 pgoff_t offset;
1da177e4 666
ec8acf20 667 if (atomic_long_read(&nr_swap_pages) <= 0)
fb4f88dc 668 goto noswap;
ec8acf20 669 atomic_long_dec(&nr_swap_pages);
fb4f88dc 670
18ab4d4c
DS
671 spin_lock(&swap_avail_lock);
672
673start_over:
674 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
675 /* requeue si to after same-priority siblings */
676 plist_requeue(&si->avail_list, &swap_avail_head);
677 spin_unlock(&swap_avail_lock);
ec8acf20 678 spin_lock(&si->lock);
adfab836 679 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c
DS
680 spin_lock(&swap_avail_lock);
681 if (plist_node_empty(&si->avail_list)) {
682 spin_unlock(&si->lock);
683 goto nextsi;
684 }
685 WARN(!si->highest_bit,
686 "swap_info %d in list but !highest_bit\n",
687 si->type);
688 WARN(!(si->flags & SWP_WRITEOK),
689 "swap_info %d in list but !SWP_WRITEOK\n",
690 si->type);
691 plist_del(&si->avail_list, &swap_avail_head);
ec8acf20 692 spin_unlock(&si->lock);
18ab4d4c 693 goto nextsi;
ec8acf20 694 }
fb4f88dc 695
355cfa73 696 /* This is called for allocating swap entry for cache */
253d553b 697 offset = scan_swap_map(si, SWAP_HAS_CACHE);
ec8acf20
SL
698 spin_unlock(&si->lock);
699 if (offset)
adfab836 700 return swp_entry(si->type, offset);
18ab4d4c
DS
701 pr_debug("scan_swap_map of si %d failed to find offset\n",
702 si->type);
703 spin_lock(&swap_avail_lock);
704nextsi:
adfab836
DS
705 /*
706 * if we got here, it's likely that si was almost full before,
707 * and since scan_swap_map() can drop the si->lock, multiple
708 * callers probably all tried to get a page from the same si
18ab4d4c
DS
709 * and it filled up before we could get one; or, the si filled
710 * up between us dropping swap_avail_lock and taking si->lock.
711 * Since we dropped the swap_avail_lock, the swap_avail_head
712 * list may have been modified; so if next is still in the
713 * swap_avail_head list then try it, otherwise start over.
adfab836 714 */
18ab4d4c
DS
715 if (plist_node_empty(&next->avail_list))
716 goto start_over;
1da177e4 717 }
fb4f88dc 718
18ab4d4c
DS
719 spin_unlock(&swap_avail_lock);
720
ec8acf20 721 atomic_long_inc(&nr_swap_pages);
fb4f88dc 722noswap:
fb4f88dc 723 return (swp_entry_t) {0};
1da177e4
LT
724}
725
2de1a7e4 726/* The only caller of this function is now suspend routine */
910321ea
HD
727swp_entry_t get_swap_page_of_type(int type)
728{
729 struct swap_info_struct *si;
730 pgoff_t offset;
731
910321ea 732 si = swap_info[type];
ec8acf20 733 spin_lock(&si->lock);
910321ea 734 if (si && (si->flags & SWP_WRITEOK)) {
ec8acf20 735 atomic_long_dec(&nr_swap_pages);
910321ea
HD
736 /* This is called for allocating swap entry, not cache */
737 offset = scan_swap_map(si, 1);
738 if (offset) {
ec8acf20 739 spin_unlock(&si->lock);
910321ea
HD
740 return swp_entry(type, offset);
741 }
ec8acf20 742 atomic_long_inc(&nr_swap_pages);
910321ea 743 }
ec8acf20 744 spin_unlock(&si->lock);
910321ea
HD
745 return (swp_entry_t) {0};
746}
747
73c34b6a 748static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1da177e4 749{
73c34b6a 750 struct swap_info_struct *p;
1da177e4
LT
751 unsigned long offset, type;
752
753 if (!entry.val)
754 goto out;
755 type = swp_type(entry);
756 if (type >= nr_swapfiles)
757 goto bad_nofile;
efa90a98 758 p = swap_info[type];
1da177e4
LT
759 if (!(p->flags & SWP_USED))
760 goto bad_device;
761 offset = swp_offset(entry);
762 if (offset >= p->max)
763 goto bad_offset;
764 if (!p->swap_map[offset])
765 goto bad_free;
ec8acf20 766 spin_lock(&p->lock);
1da177e4
LT
767 return p;
768
769bad_free:
465c47fd 770 pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
1da177e4
LT
771 goto out;
772bad_offset:
465c47fd 773 pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
774 goto out;
775bad_device:
465c47fd 776 pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
777 goto out;
778bad_nofile:
465c47fd 779 pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
780out:
781 return NULL;
886bb7e9 782}
1da177e4 783
8d69aaee
HD
784static unsigned char swap_entry_free(struct swap_info_struct *p,
785 swp_entry_t entry, unsigned char usage)
1da177e4 786{
253d553b 787 unsigned long offset = swp_offset(entry);
8d69aaee
HD
788 unsigned char count;
789 unsigned char has_cache;
355cfa73 790
253d553b
HD
791 count = p->swap_map[offset];
792 has_cache = count & SWAP_HAS_CACHE;
793 count &= ~SWAP_HAS_CACHE;
355cfa73 794
253d553b 795 if (usage == SWAP_HAS_CACHE) {
355cfa73 796 VM_BUG_ON(!has_cache);
253d553b 797 has_cache = 0;
aaa46865
HD
798 } else if (count == SWAP_MAP_SHMEM) {
799 /*
800 * Or we could insist on shmem.c using a special
801 * swap_shmem_free() and free_shmem_swap_and_cache()...
802 */
803 count = 0;
570a335b
HD
804 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
805 if (count == COUNT_CONTINUED) {
806 if (swap_count_continued(p, offset, count))
807 count = SWAP_MAP_MAX | COUNT_CONTINUED;
808 else
809 count = SWAP_MAP_MAX;
810 } else
811 count--;
812 }
253d553b
HD
813
814 if (!count)
815 mem_cgroup_uncharge_swap(entry);
816
817 usage = count | has_cache;
818 p->swap_map[offset] = usage;
355cfa73 819
355cfa73 820 /* free if no reference */
253d553b 821 if (!usage) {
2a8f9449 822 dec_cluster_info_page(p, p->cluster_info, offset);
355cfa73
KH
823 if (offset < p->lowest_bit)
824 p->lowest_bit = offset;
18ab4d4c
DS
825 if (offset > p->highest_bit) {
826 bool was_full = !p->highest_bit;
355cfa73 827 p->highest_bit = offset;
18ab4d4c
DS
828 if (was_full && (p->flags & SWP_WRITEOK)) {
829 spin_lock(&swap_avail_lock);
830 WARN_ON(!plist_node_empty(&p->avail_list));
831 if (plist_node_empty(&p->avail_list))
832 plist_add(&p->avail_list,
833 &swap_avail_head);
834 spin_unlock(&swap_avail_lock);
835 }
836 }
ec8acf20 837 atomic_long_inc(&nr_swap_pages);
355cfa73 838 p->inuse_pages--;
38b5faf4 839 frontswap_invalidate_page(p->type, offset);
73744923
MG
840 if (p->flags & SWP_BLKDEV) {
841 struct gendisk *disk = p->bdev->bd_disk;
842 if (disk->fops->swap_slot_free_notify)
843 disk->fops->swap_slot_free_notify(p->bdev,
844 offset);
845 }
1da177e4 846 }
253d553b
HD
847
848 return usage;
1da177e4
LT
849}
850
851/*
2de1a7e4 852 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
853 * is still around or has not been recycled.
854 */
855void swap_free(swp_entry_t entry)
856{
73c34b6a 857 struct swap_info_struct *p;
1da177e4
LT
858
859 p = swap_info_get(entry);
860 if (p) {
253d553b 861 swap_entry_free(p, entry, 1);
ec8acf20 862 spin_unlock(&p->lock);
1da177e4
LT
863 }
864}
865
cb4b86ba
KH
866/*
867 * Called after dropping swapcache to decrease refcnt to swap entries.
868 */
869void swapcache_free(swp_entry_t entry, struct page *page)
870{
355cfa73 871 struct swap_info_struct *p;
8d69aaee 872 unsigned char count;
355cfa73 873
355cfa73
KH
874 p = swap_info_get(entry);
875 if (p) {
253d553b
HD
876 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
877 if (page)
878 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
ec8acf20 879 spin_unlock(&p->lock);
355cfa73 880 }
cb4b86ba
KH
881}
882
1da177e4 883/*
c475a8ab 884 * How many references to page are currently swapped out?
570a335b
HD
885 * This does not give an exact answer when swap count is continued,
886 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 887 */
bde05d1c 888int page_swapcount(struct page *page)
1da177e4 889{
c475a8ab
HD
890 int count = 0;
891 struct swap_info_struct *p;
1da177e4
LT
892 swp_entry_t entry;
893
4c21e2f2 894 entry.val = page_private(page);
1da177e4
LT
895 p = swap_info_get(entry);
896 if (p) {
355cfa73 897 count = swap_count(p->swap_map[swp_offset(entry)]);
ec8acf20 898 spin_unlock(&p->lock);
1da177e4 899 }
c475a8ab 900 return count;
1da177e4
LT
901}
902
903/*
7b1fe597
HD
904 * We can write to an anon page without COW if there are no other references
905 * to it. And as a side-effect, free up its swap: because the old content
906 * on disk will never be read, and seeking back there to write new content
907 * later would only waste time away from clustering.
1da177e4 908 */
7b1fe597 909int reuse_swap_page(struct page *page)
1da177e4 910{
c475a8ab
HD
911 int count;
912
309381fe 913 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688
HD
914 if (unlikely(PageKsm(page)))
915 return 0;
c475a8ab 916 count = page_mapcount(page);
7b1fe597 917 if (count <= 1 && PageSwapCache(page)) {
c475a8ab 918 count += page_swapcount(page);
7b1fe597
HD
919 if (count == 1 && !PageWriteback(page)) {
920 delete_from_swap_cache(page);
921 SetPageDirty(page);
922 }
923 }
5ad64688 924 return count <= 1;
1da177e4
LT
925}
926
927/*
a2c43eed
HD
928 * If swap is getting full, or if there are no more mappings of this page,
929 * then try_to_free_swap is called to free its swap space.
1da177e4 930 */
a2c43eed 931int try_to_free_swap(struct page *page)
1da177e4 932{
309381fe 933 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
934
935 if (!PageSwapCache(page))
936 return 0;
937 if (PageWriteback(page))
938 return 0;
a2c43eed 939 if (page_swapcount(page))
1da177e4
LT
940 return 0;
941
b73d7fce
HD
942 /*
943 * Once hibernation has begun to create its image of memory,
944 * there's a danger that one of the calls to try_to_free_swap()
945 * - most probably a call from __try_to_reclaim_swap() while
946 * hibernation is allocating its own swap pages for the image,
947 * but conceivably even a call from memory reclaim - will free
948 * the swap from a page which has already been recorded in the
949 * image as a clean swapcache page, and then reuse its swap for
950 * another page of the image. On waking from hibernation, the
951 * original page might be freed under memory pressure, then
952 * later read back in from swap, now with the wrong data.
953 *
2de1a7e4 954 * Hibernation suspends storage while it is writing the image
f90ac398 955 * to disk so check that here.
b73d7fce 956 */
f90ac398 957 if (pm_suspended_storage())
b73d7fce
HD
958 return 0;
959
a2c43eed
HD
960 delete_from_swap_cache(page);
961 SetPageDirty(page);
962 return 1;
68a22394
RR
963}
964
1da177e4
LT
965/*
966 * Free the swap entry like above, but also try to
967 * free the page cache entry if it is the last user.
968 */
2509ef26 969int free_swap_and_cache(swp_entry_t entry)
1da177e4 970{
2509ef26 971 struct swap_info_struct *p;
1da177e4
LT
972 struct page *page = NULL;
973
a7420aa5 974 if (non_swap_entry(entry))
2509ef26 975 return 1;
0697212a 976
1da177e4
LT
977 p = swap_info_get(entry);
978 if (p) {
253d553b 979 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
33806f06
SL
980 page = find_get_page(swap_address_space(entry),
981 entry.val);
8413ac9d 982 if (page && !trylock_page(page)) {
93fac704
NP
983 page_cache_release(page);
984 page = NULL;
985 }
986 }
ec8acf20 987 spin_unlock(&p->lock);
1da177e4
LT
988 }
989 if (page) {
a2c43eed
HD
990 /*
991 * Not mapped elsewhere, or swap space full? Free it!
992 * Also recheck PageSwapCache now page is locked (above).
993 */
93fac704 994 if (PageSwapCache(page) && !PageWriteback(page) &&
a2c43eed 995 (!page_mapped(page) || vm_swap_full())) {
1da177e4
LT
996 delete_from_swap_cache(page);
997 SetPageDirty(page);
998 }
999 unlock_page(page);
1000 page_cache_release(page);
1001 }
2509ef26 1002 return p != NULL;
1da177e4
LT
1003}
1004
b0cb1a19 1005#ifdef CONFIG_HIBERNATION
f577eb30 1006/*
915bae9e 1007 * Find the swap type that corresponds to given device (if any).
f577eb30 1008 *
915bae9e
RW
1009 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1010 * from 0, in which the swap header is expected to be located.
1011 *
1012 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1013 */
7bf23687 1014int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 1015{
915bae9e 1016 struct block_device *bdev = NULL;
efa90a98 1017 int type;
f577eb30 1018
915bae9e
RW
1019 if (device)
1020 bdev = bdget(device);
1021
f577eb30 1022 spin_lock(&swap_lock);
efa90a98
HD
1023 for (type = 0; type < nr_swapfiles; type++) {
1024 struct swap_info_struct *sis = swap_info[type];
f577eb30 1025
915bae9e 1026 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1027 continue;
b6b5bce3 1028
915bae9e 1029 if (!bdev) {
7bf23687 1030 if (bdev_p)
dddac6a7 1031 *bdev_p = bdgrab(sis->bdev);
7bf23687 1032
6e1819d6 1033 spin_unlock(&swap_lock);
efa90a98 1034 return type;
6e1819d6 1035 }
915bae9e 1036 if (bdev == sis->bdev) {
9625a5f2 1037 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 1038
915bae9e 1039 if (se->start_block == offset) {
7bf23687 1040 if (bdev_p)
dddac6a7 1041 *bdev_p = bdgrab(sis->bdev);
7bf23687 1042
915bae9e
RW
1043 spin_unlock(&swap_lock);
1044 bdput(bdev);
efa90a98 1045 return type;
915bae9e 1046 }
f577eb30
RW
1047 }
1048 }
1049 spin_unlock(&swap_lock);
915bae9e
RW
1050 if (bdev)
1051 bdput(bdev);
1052
f577eb30
RW
1053 return -ENODEV;
1054}
1055
73c34b6a
HD
1056/*
1057 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1058 * corresponding to given index in swap_info (swap type).
1059 */
1060sector_t swapdev_block(int type, pgoff_t offset)
1061{
1062 struct block_device *bdev;
1063
1064 if ((unsigned int)type >= nr_swapfiles)
1065 return 0;
1066 if (!(swap_info[type]->flags & SWP_WRITEOK))
1067 return 0;
d4906e1a 1068 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
1069}
1070
f577eb30
RW
1071/*
1072 * Return either the total number of swap pages of given type, or the number
1073 * of free pages of that type (depending on @free)
1074 *
1075 * This is needed for software suspend
1076 */
1077unsigned int count_swap_pages(int type, int free)
1078{
1079 unsigned int n = 0;
1080
efa90a98
HD
1081 spin_lock(&swap_lock);
1082 if ((unsigned int)type < nr_swapfiles) {
1083 struct swap_info_struct *sis = swap_info[type];
1084
ec8acf20 1085 spin_lock(&sis->lock);
efa90a98
HD
1086 if (sis->flags & SWP_WRITEOK) {
1087 n = sis->pages;
f577eb30 1088 if (free)
efa90a98 1089 n -= sis->inuse_pages;
f577eb30 1090 }
ec8acf20 1091 spin_unlock(&sis->lock);
f577eb30 1092 }
efa90a98 1093 spin_unlock(&swap_lock);
f577eb30
RW
1094 return n;
1095}
73c34b6a 1096#endif /* CONFIG_HIBERNATION */
f577eb30 1097
179ef71c
CG
1098static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
1099{
1100#ifdef CONFIG_MEM_SOFT_DIRTY
1101 /*
1102 * When pte keeps soft dirty bit the pte generated
1103 * from swap entry does not has it, still it's same
1104 * pte from logical point of view.
1105 */
1106 pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
1107 return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
1108#else
1109 return pte_same(pte, swp_pte);
1110#endif
1111}
1112
1da177e4 1113/*
72866f6f
HD
1114 * No need to decide whether this PTE shares the swap entry with others,
1115 * just let do_wp_page work it out if a write is requested later - to
1116 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1117 */
044d66c1 1118static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1119 unsigned long addr, swp_entry_t entry, struct page *page)
1120{
9e16b7fb 1121 struct page *swapcache;
72835c86 1122 struct mem_cgroup *memcg;
044d66c1
HD
1123 spinlock_t *ptl;
1124 pte_t *pte;
1125 int ret = 1;
1126
9e16b7fb
HD
1127 swapcache = page;
1128 page = ksm_might_need_to_copy(page, vma, addr);
1129 if (unlikely(!page))
1130 return -ENOMEM;
1131
72835c86
JW
1132 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
1133 GFP_KERNEL, &memcg)) {
044d66c1 1134 ret = -ENOMEM;
85d9fc89
KH
1135 goto out_nolock;
1136 }
044d66c1
HD
1137
1138 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
179ef71c 1139 if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
5d84c776 1140 mem_cgroup_cancel_charge_swapin(memcg);
044d66c1
HD
1141 ret = 0;
1142 goto out;
1143 }
8a9f3ccd 1144
b084d435 1145 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1146 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1147 get_page(page);
1148 set_pte_at(vma->vm_mm, addr, pte,
1149 pte_mkold(mk_pte(page, vma->vm_page_prot)));
9e16b7fb
HD
1150 if (page == swapcache)
1151 page_add_anon_rmap(page, vma, addr);
1152 else /* ksm created a completely new copy */
1153 page_add_new_anon_rmap(page, vma, addr);
72835c86 1154 mem_cgroup_commit_charge_swapin(page, memcg);
1da177e4
LT
1155 swap_free(entry);
1156 /*
1157 * Move the page to the active list so it is not
1158 * immediately swapped out again after swapon.
1159 */
1160 activate_page(page);
044d66c1
HD
1161out:
1162 pte_unmap_unlock(pte, ptl);
85d9fc89 1163out_nolock:
9e16b7fb
HD
1164 if (page != swapcache) {
1165 unlock_page(page);
1166 put_page(page);
1167 }
044d66c1 1168 return ret;
1da177e4
LT
1169}
1170
1171static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1172 unsigned long addr, unsigned long end,
1173 swp_entry_t entry, struct page *page)
1174{
1da177e4 1175 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 1176 pte_t *pte;
8a9f3ccd 1177 int ret = 0;
1da177e4 1178
044d66c1
HD
1179 /*
1180 * We don't actually need pte lock while scanning for swp_pte: since
1181 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1182 * page table while we're scanning; though it could get zapped, and on
1183 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1184 * of unmatched parts which look like swp_pte, so unuse_pte must
1185 * recheck under pte lock. Scanning without pte lock lets it be
2de1a7e4 1186 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
044d66c1
HD
1187 */
1188 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1189 do {
1190 /*
1191 * swapoff spends a _lot_ of time in this loop!
1192 * Test inline before going to call unuse_pte.
1193 */
179ef71c 1194 if (unlikely(maybe_same_pte(*pte, swp_pte))) {
044d66c1
HD
1195 pte_unmap(pte);
1196 ret = unuse_pte(vma, pmd, addr, entry, page);
1197 if (ret)
1198 goto out;
1199 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1200 }
1201 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
1202 pte_unmap(pte - 1);
1203out:
8a9f3ccd 1204 return ret;
1da177e4
LT
1205}
1206
1207static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1208 unsigned long addr, unsigned long end,
1209 swp_entry_t entry, struct page *page)
1210{
1211 pmd_t *pmd;
1212 unsigned long next;
8a9f3ccd 1213 int ret;
1da177e4
LT
1214
1215 pmd = pmd_offset(pud, addr);
1216 do {
1217 next = pmd_addr_end(addr, end);
1a5a9906 1218 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 1219 continue;
8a9f3ccd
BS
1220 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1221 if (ret)
1222 return ret;
1da177e4
LT
1223 } while (pmd++, addr = next, addr != end);
1224 return 0;
1225}
1226
1227static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1228 unsigned long addr, unsigned long end,
1229 swp_entry_t entry, struct page *page)
1230{
1231 pud_t *pud;
1232 unsigned long next;
8a9f3ccd 1233 int ret;
1da177e4
LT
1234
1235 pud = pud_offset(pgd, addr);
1236 do {
1237 next = pud_addr_end(addr, end);
1238 if (pud_none_or_clear_bad(pud))
1239 continue;
8a9f3ccd
BS
1240 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1241 if (ret)
1242 return ret;
1da177e4
LT
1243 } while (pud++, addr = next, addr != end);
1244 return 0;
1245}
1246
1247static int unuse_vma(struct vm_area_struct *vma,
1248 swp_entry_t entry, struct page *page)
1249{
1250 pgd_t *pgd;
1251 unsigned long addr, end, next;
8a9f3ccd 1252 int ret;
1da177e4 1253
3ca7b3c5 1254 if (page_anon_vma(page)) {
1da177e4
LT
1255 addr = page_address_in_vma(page, vma);
1256 if (addr == -EFAULT)
1257 return 0;
1258 else
1259 end = addr + PAGE_SIZE;
1260 } else {
1261 addr = vma->vm_start;
1262 end = vma->vm_end;
1263 }
1264
1265 pgd = pgd_offset(vma->vm_mm, addr);
1266 do {
1267 next = pgd_addr_end(addr, end);
1268 if (pgd_none_or_clear_bad(pgd))
1269 continue;
8a9f3ccd
BS
1270 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1271 if (ret)
1272 return ret;
1da177e4
LT
1273 } while (pgd++, addr = next, addr != end);
1274 return 0;
1275}
1276
1277static int unuse_mm(struct mm_struct *mm,
1278 swp_entry_t entry, struct page *page)
1279{
1280 struct vm_area_struct *vma;
8a9f3ccd 1281 int ret = 0;
1da177e4
LT
1282
1283 if (!down_read_trylock(&mm->mmap_sem)) {
1284 /*
7d03431c
FLVC
1285 * Activate page so shrink_inactive_list is unlikely to unmap
1286 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 1287 */
c475a8ab 1288 activate_page(page);
1da177e4
LT
1289 unlock_page(page);
1290 down_read(&mm->mmap_sem);
1291 lock_page(page);
1292 }
1da177e4 1293 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 1294 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4
LT
1295 break;
1296 }
1da177e4 1297 up_read(&mm->mmap_sem);
8a9f3ccd 1298 return (ret < 0)? ret: 0;
1da177e4
LT
1299}
1300
1301/*
38b5faf4
DM
1302 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1303 * from current position to next entry still in use.
1da177e4
LT
1304 * Recycle to start on reaching the end, returning 0 when empty.
1305 */
6eb396dc 1306static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 1307 unsigned int prev, bool frontswap)
1da177e4 1308{
6eb396dc
HD
1309 unsigned int max = si->max;
1310 unsigned int i = prev;
8d69aaee 1311 unsigned char count;
1da177e4
LT
1312
1313 /*
5d337b91 1314 * No need for swap_lock here: we're just looking
1da177e4
LT
1315 * for whether an entry is in use, not modifying it; false
1316 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 1317 * allocations from this area (while holding swap_lock).
1da177e4
LT
1318 */
1319 for (;;) {
1320 if (++i >= max) {
1321 if (!prev) {
1322 i = 0;
1323 break;
1324 }
1325 /*
1326 * No entries in use at top of swap_map,
1327 * loop back to start and recheck there.
1328 */
1329 max = prev + 1;
1330 prev = 0;
1331 i = 1;
1332 }
38b5faf4
DM
1333 if (frontswap) {
1334 if (frontswap_test(si, i))
1335 break;
1336 else
1337 continue;
1338 }
edfe23da 1339 count = ACCESS_ONCE(si->swap_map[i]);
355cfa73 1340 if (count && swap_count(count) != SWAP_MAP_BAD)
1da177e4
LT
1341 break;
1342 }
1343 return i;
1344}
1345
1346/*
1347 * We completely avoid races by reading each swap page in advance,
1348 * and then search for the process using it. All the necessary
1349 * page table adjustments can then be made atomically.
38b5faf4
DM
1350 *
1351 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1352 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 1353 */
38b5faf4
DM
1354int try_to_unuse(unsigned int type, bool frontswap,
1355 unsigned long pages_to_unuse)
1da177e4 1356{
efa90a98 1357 struct swap_info_struct *si = swap_info[type];
1da177e4 1358 struct mm_struct *start_mm;
edfe23da
SL
1359 volatile unsigned char *swap_map; /* swap_map is accessed without
1360 * locking. Mark it as volatile
1361 * to prevent compiler doing
1362 * something odd.
1363 */
8d69aaee 1364 unsigned char swcount;
1da177e4
LT
1365 struct page *page;
1366 swp_entry_t entry;
6eb396dc 1367 unsigned int i = 0;
1da177e4 1368 int retval = 0;
1da177e4
LT
1369
1370 /*
1371 * When searching mms for an entry, a good strategy is to
1372 * start at the first mm we freed the previous entry from
1373 * (though actually we don't notice whether we or coincidence
1374 * freed the entry). Initialize this start_mm with a hold.
1375 *
1376 * A simpler strategy would be to start at the last mm we
1377 * freed the previous entry from; but that would take less
1378 * advantage of mmlist ordering, which clusters forked mms
1379 * together, child after parent. If we race with dup_mmap(), we
1380 * prefer to resolve parent before child, lest we miss entries
1381 * duplicated after we scanned child: using last mm would invert
570a335b 1382 * that.
1da177e4
LT
1383 */
1384 start_mm = &init_mm;
1385 atomic_inc(&init_mm.mm_users);
1386
1387 /*
1388 * Keep on scanning until all entries have gone. Usually,
1389 * one pass through swap_map is enough, but not necessarily:
1390 * there are races when an instance of an entry might be missed.
1391 */
38b5faf4 1392 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4
LT
1393 if (signal_pending(current)) {
1394 retval = -EINTR;
1395 break;
1396 }
1397
886bb7e9 1398 /*
1da177e4
LT
1399 * Get a page for the entry, using the existing swap
1400 * cache page if there is one. Otherwise, get a clean
886bb7e9 1401 * page and read the swap into it.
1da177e4
LT
1402 */
1403 swap_map = &si->swap_map[i];
1404 entry = swp_entry(type, i);
02098fea
HD
1405 page = read_swap_cache_async(entry,
1406 GFP_HIGHUSER_MOVABLE, NULL, 0);
1da177e4
LT
1407 if (!page) {
1408 /*
1409 * Either swap_duplicate() failed because entry
1410 * has been freed independently, and will not be
1411 * reused since sys_swapoff() already disabled
1412 * allocation from here, or alloc_page() failed.
1413 */
edfe23da
SL
1414 swcount = *swap_map;
1415 /*
1416 * We don't hold lock here, so the swap entry could be
1417 * SWAP_MAP_BAD (when the cluster is discarding).
1418 * Instead of fail out, We can just skip the swap
1419 * entry because swapoff will wait for discarding
1420 * finish anyway.
1421 */
1422 if (!swcount || swcount == SWAP_MAP_BAD)
1da177e4
LT
1423 continue;
1424 retval = -ENOMEM;
1425 break;
1426 }
1427
1428 /*
1429 * Don't hold on to start_mm if it looks like exiting.
1430 */
1431 if (atomic_read(&start_mm->mm_users) == 1) {
1432 mmput(start_mm);
1433 start_mm = &init_mm;
1434 atomic_inc(&init_mm.mm_users);
1435 }
1436
1437 /*
1438 * Wait for and lock page. When do_swap_page races with
1439 * try_to_unuse, do_swap_page can handle the fault much
1440 * faster than try_to_unuse can locate the entry. This
1441 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1442 * defer to do_swap_page in such a case - in some tests,
1443 * do_swap_page and try_to_unuse repeatedly compete.
1444 */
1445 wait_on_page_locked(page);
1446 wait_on_page_writeback(page);
1447 lock_page(page);
1448 wait_on_page_writeback(page);
1449
1450 /*
1451 * Remove all references to entry.
1da177e4 1452 */
1da177e4 1453 swcount = *swap_map;
aaa46865
HD
1454 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1455 retval = shmem_unuse(entry, page);
1456 /* page has already been unlocked and released */
1457 if (retval < 0)
1458 break;
1459 continue;
1da177e4 1460 }
aaa46865
HD
1461 if (swap_count(swcount) && start_mm != &init_mm)
1462 retval = unuse_mm(start_mm, entry, page);
1463
355cfa73 1464 if (swap_count(*swap_map)) {
1da177e4
LT
1465 int set_start_mm = (*swap_map >= swcount);
1466 struct list_head *p = &start_mm->mmlist;
1467 struct mm_struct *new_start_mm = start_mm;
1468 struct mm_struct *prev_mm = start_mm;
1469 struct mm_struct *mm;
1470
1471 atomic_inc(&new_start_mm->mm_users);
1472 atomic_inc(&prev_mm->mm_users);
1473 spin_lock(&mmlist_lock);
aaa46865 1474 while (swap_count(*swap_map) && !retval &&
1da177e4
LT
1475 (p = p->next) != &start_mm->mmlist) {
1476 mm = list_entry(p, struct mm_struct, mmlist);
70af7c5c 1477 if (!atomic_inc_not_zero(&mm->mm_users))
1da177e4 1478 continue;
1da177e4
LT
1479 spin_unlock(&mmlist_lock);
1480 mmput(prev_mm);
1481 prev_mm = mm;
1482
1483 cond_resched();
1484
1485 swcount = *swap_map;
355cfa73 1486 if (!swap_count(swcount)) /* any usage ? */
1da177e4 1487 ;
aaa46865 1488 else if (mm == &init_mm)
1da177e4 1489 set_start_mm = 1;
aaa46865 1490 else
1da177e4 1491 retval = unuse_mm(mm, entry, page);
355cfa73 1492
32c5fc10 1493 if (set_start_mm && *swap_map < swcount) {
1da177e4
LT
1494 mmput(new_start_mm);
1495 atomic_inc(&mm->mm_users);
1496 new_start_mm = mm;
1497 set_start_mm = 0;
1498 }
1499 spin_lock(&mmlist_lock);
1500 }
1501 spin_unlock(&mmlist_lock);
1502 mmput(prev_mm);
1503 mmput(start_mm);
1504 start_mm = new_start_mm;
1505 }
1506 if (retval) {
1507 unlock_page(page);
1508 page_cache_release(page);
1509 break;
1510 }
1511
1da177e4
LT
1512 /*
1513 * If a reference remains (rare), we would like to leave
1514 * the page in the swap cache; but try_to_unmap could
1515 * then re-duplicate the entry once we drop page lock,
1516 * so we might loop indefinitely; also, that page could
1517 * not be swapped out to other storage meanwhile. So:
1518 * delete from cache even if there's another reference,
1519 * after ensuring that the data has been saved to disk -
1520 * since if the reference remains (rarer), it will be
1521 * read from disk into another page. Splitting into two
1522 * pages would be incorrect if swap supported "shared
1523 * private" pages, but they are handled by tmpfs files.
5ad64688
HD
1524 *
1525 * Given how unuse_vma() targets one particular offset
1526 * in an anon_vma, once the anon_vma has been determined,
1527 * this splitting happens to be just what is needed to
1528 * handle where KSM pages have been swapped out: re-reading
1529 * is unnecessarily slow, but we can fix that later on.
1da177e4 1530 */
355cfa73
KH
1531 if (swap_count(*swap_map) &&
1532 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
1533 struct writeback_control wbc = {
1534 .sync_mode = WB_SYNC_NONE,
1535 };
1536
1537 swap_writepage(page, &wbc);
1538 lock_page(page);
1539 wait_on_page_writeback(page);
1540 }
68bdc8d6
HD
1541
1542 /*
1543 * It is conceivable that a racing task removed this page from
1544 * swap cache just before we acquired the page lock at the top,
1545 * or while we dropped it in unuse_mm(). The page might even
1546 * be back in swap cache on another swap area: that we must not
1547 * delete, since it may not have been written out to swap yet.
1548 */
1549 if (PageSwapCache(page) &&
1550 likely(page_private(page) == entry.val))
2e0e26c7 1551 delete_from_swap_cache(page);
1da177e4
LT
1552
1553 /*
1554 * So we could skip searching mms once swap count went
1555 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 1556 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
1557 */
1558 SetPageDirty(page);
1559 unlock_page(page);
1560 page_cache_release(page);
1561
1562 /*
1563 * Make sure that we aren't completely killing
1564 * interactive performance.
1565 */
1566 cond_resched();
38b5faf4
DM
1567 if (frontswap && pages_to_unuse > 0) {
1568 if (!--pages_to_unuse)
1569 break;
1570 }
1da177e4
LT
1571 }
1572
1573 mmput(start_mm);
1da177e4
LT
1574 return retval;
1575}
1576
1577/*
5d337b91
HD
1578 * After a successful try_to_unuse, if no swap is now in use, we know
1579 * we can empty the mmlist. swap_lock must be held on entry and exit.
1580 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
1581 * added to the mmlist just after page_duplicate - before would be racy.
1582 */
1583static void drain_mmlist(void)
1584{
1585 struct list_head *p, *next;
efa90a98 1586 unsigned int type;
1da177e4 1587
efa90a98
HD
1588 for (type = 0; type < nr_swapfiles; type++)
1589 if (swap_info[type]->inuse_pages)
1da177e4
LT
1590 return;
1591 spin_lock(&mmlist_lock);
1592 list_for_each_safe(p, next, &init_mm.mmlist)
1593 list_del_init(p);
1594 spin_unlock(&mmlist_lock);
1595}
1596
1597/*
1598 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
1599 * corresponds to page offset for the specified swap entry.
1600 * Note that the type of this function is sector_t, but it returns page offset
1601 * into the bdev, not sector offset.
1da177e4 1602 */
d4906e1a 1603static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 1604{
f29ad6a9
HD
1605 struct swap_info_struct *sis;
1606 struct swap_extent *start_se;
1607 struct swap_extent *se;
1608 pgoff_t offset;
1609
efa90a98 1610 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
1611 *bdev = sis->bdev;
1612
1613 offset = swp_offset(entry);
1614 start_se = sis->curr_swap_extent;
1615 se = start_se;
1da177e4
LT
1616
1617 for ( ; ; ) {
1618 struct list_head *lh;
1619
1620 if (se->start_page <= offset &&
1621 offset < (se->start_page + se->nr_pages)) {
1622 return se->start_block + (offset - se->start_page);
1623 }
11d31886 1624 lh = se->list.next;
1da177e4
LT
1625 se = list_entry(lh, struct swap_extent, list);
1626 sis->curr_swap_extent = se;
1627 BUG_ON(se == start_se); /* It *must* be present */
1628 }
1629}
1630
d4906e1a
LS
1631/*
1632 * Returns the page offset into bdev for the specified page's swap entry.
1633 */
1634sector_t map_swap_page(struct page *page, struct block_device **bdev)
1635{
1636 swp_entry_t entry;
1637 entry.val = page_private(page);
1638 return map_swap_entry(entry, bdev);
1639}
1640
1da177e4
LT
1641/*
1642 * Free all of a swapdev's extent information
1643 */
1644static void destroy_swap_extents(struct swap_info_struct *sis)
1645{
9625a5f2 1646 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
1647 struct swap_extent *se;
1648
9625a5f2 1649 se = list_entry(sis->first_swap_extent.list.next,
1da177e4
LT
1650 struct swap_extent, list);
1651 list_del(&se->list);
1652 kfree(se);
1653 }
62c230bc
MG
1654
1655 if (sis->flags & SWP_FILE) {
1656 struct file *swap_file = sis->swap_file;
1657 struct address_space *mapping = swap_file->f_mapping;
1658
1659 sis->flags &= ~SWP_FILE;
1660 mapping->a_ops->swap_deactivate(swap_file);
1661 }
1da177e4
LT
1662}
1663
1664/*
1665 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 1666 * extent list. The extent list is kept sorted in page order.
1da177e4 1667 *
11d31886 1668 * This function rather assumes that it is called in ascending page order.
1da177e4 1669 */
a509bc1a 1670int
1da177e4
LT
1671add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1672 unsigned long nr_pages, sector_t start_block)
1673{
1674 struct swap_extent *se;
1675 struct swap_extent *new_se;
1676 struct list_head *lh;
1677
9625a5f2
HD
1678 if (start_page == 0) {
1679 se = &sis->first_swap_extent;
1680 sis->curr_swap_extent = se;
1681 se->start_page = 0;
1682 se->nr_pages = nr_pages;
1683 se->start_block = start_block;
1684 return 1;
1685 } else {
1686 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 1687 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
1688 BUG_ON(se->start_page + se->nr_pages != start_page);
1689 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
1690 /* Merge it */
1691 se->nr_pages += nr_pages;
1692 return 0;
1693 }
1da177e4
LT
1694 }
1695
1696 /*
1697 * No merge. Insert a new extent, preserving ordering.
1698 */
1699 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1700 if (new_se == NULL)
1701 return -ENOMEM;
1702 new_se->start_page = start_page;
1703 new_se->nr_pages = nr_pages;
1704 new_se->start_block = start_block;
1705
9625a5f2 1706 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 1707 return 1;
1da177e4
LT
1708}
1709
1710/*
1711 * A `swap extent' is a simple thing which maps a contiguous range of pages
1712 * onto a contiguous range of disk blocks. An ordered list of swap extents
1713 * is built at swapon time and is then used at swap_writepage/swap_readpage
1714 * time for locating where on disk a page belongs.
1715 *
1716 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1717 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1718 * swap files identically.
1719 *
1720 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1721 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1722 * swapfiles are handled *identically* after swapon time.
1723 *
1724 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1725 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1726 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1727 * requirements, they are simply tossed out - we will never use those blocks
1728 * for swapping.
1729 *
b0d9bcd4 1730 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
1731 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1732 * which will scribble on the fs.
1733 *
1734 * The amount of disk space which a single swap extent represents varies.
1735 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1736 * extents in the list. To avoid much list walking, we cache the previous
1737 * search location in `curr_swap_extent', and start new searches from there.
1738 * This is extremely effective. The average number of iterations in
1739 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1740 */
53092a74 1741static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 1742{
62c230bc
MG
1743 struct file *swap_file = sis->swap_file;
1744 struct address_space *mapping = swap_file->f_mapping;
1745 struct inode *inode = mapping->host;
1da177e4
LT
1746 int ret;
1747
1da177e4
LT
1748 if (S_ISBLK(inode->i_mode)) {
1749 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 1750 *span = sis->pages;
a509bc1a 1751 return ret;
1da177e4
LT
1752 }
1753
62c230bc 1754 if (mapping->a_ops->swap_activate) {
a509bc1a 1755 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
62c230bc
MG
1756 if (!ret) {
1757 sis->flags |= SWP_FILE;
1758 ret = add_swap_extent(sis, 0, sis->max, 0);
1759 *span = sis->pages;
1760 }
a509bc1a 1761 return ret;
62c230bc
MG
1762 }
1763
a509bc1a 1764 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
1765}
1766
cf0cac0a 1767static void _enable_swap_info(struct swap_info_struct *p, int prio,
2a8f9449
SL
1768 unsigned char *swap_map,
1769 struct swap_cluster_info *cluster_info)
40531542 1770{
40531542
CEB
1771 if (prio >= 0)
1772 p->prio = prio;
1773 else
1774 p->prio = --least_priority;
18ab4d4c
DS
1775 /*
1776 * the plist prio is negated because plist ordering is
1777 * low-to-high, while swap ordering is high-to-low
1778 */
1779 p->list.prio = -p->prio;
1780 p->avail_list.prio = -p->prio;
40531542 1781 p->swap_map = swap_map;
2a8f9449 1782 p->cluster_info = cluster_info;
40531542 1783 p->flags |= SWP_WRITEOK;
ec8acf20 1784 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
1785 total_swap_pages += p->pages;
1786
adfab836 1787 assert_spin_locked(&swap_lock);
adfab836 1788 /*
18ab4d4c
DS
1789 * both lists are plists, and thus priority ordered.
1790 * swap_active_head needs to be priority ordered for swapoff(),
1791 * which on removal of any swap_info_struct with an auto-assigned
1792 * (i.e. negative) priority increments the auto-assigned priority
1793 * of any lower-priority swap_info_structs.
1794 * swap_avail_head needs to be priority ordered for get_swap_page(),
1795 * which allocates swap pages from the highest available priority
1796 * swap_info_struct.
adfab836 1797 */
18ab4d4c
DS
1798 plist_add(&p->list, &swap_active_head);
1799 spin_lock(&swap_avail_lock);
1800 plist_add(&p->avail_list, &swap_avail_head);
1801 spin_unlock(&swap_avail_lock);
cf0cac0a
CEB
1802}
1803
1804static void enable_swap_info(struct swap_info_struct *p, int prio,
1805 unsigned char *swap_map,
2a8f9449 1806 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
1807 unsigned long *frontswap_map)
1808{
4f89849d 1809 frontswap_init(p->type, frontswap_map);
cf0cac0a 1810 spin_lock(&swap_lock);
ec8acf20 1811 spin_lock(&p->lock);
2a8f9449 1812 _enable_swap_info(p, prio, swap_map, cluster_info);
ec8acf20 1813 spin_unlock(&p->lock);
cf0cac0a
CEB
1814 spin_unlock(&swap_lock);
1815}
1816
1817static void reinsert_swap_info(struct swap_info_struct *p)
1818{
1819 spin_lock(&swap_lock);
ec8acf20 1820 spin_lock(&p->lock);
2a8f9449 1821 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
ec8acf20 1822 spin_unlock(&p->lock);
40531542
CEB
1823 spin_unlock(&swap_lock);
1824}
1825
c4ea37c2 1826SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 1827{
73c34b6a 1828 struct swap_info_struct *p = NULL;
8d69aaee 1829 unsigned char *swap_map;
2a8f9449 1830 struct swap_cluster_info *cluster_info;
4f89849d 1831 unsigned long *frontswap_map;
1da177e4
LT
1832 struct file *swap_file, *victim;
1833 struct address_space *mapping;
1834 struct inode *inode;
91a27b2a 1835 struct filename *pathname;
adfab836 1836 int err, found = 0;
5b808a23 1837 unsigned int old_block_size;
886bb7e9 1838
1da177e4
LT
1839 if (!capable(CAP_SYS_ADMIN))
1840 return -EPERM;
1841
191c5424
AV
1842 BUG_ON(!current->mm);
1843
1da177e4 1844 pathname = getname(specialfile);
1da177e4 1845 if (IS_ERR(pathname))
f58b59c1 1846 return PTR_ERR(pathname);
1da177e4 1847
669abf4e 1848 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
1849 err = PTR_ERR(victim);
1850 if (IS_ERR(victim))
1851 goto out;
1852
1853 mapping = victim->f_mapping;
5d337b91 1854 spin_lock(&swap_lock);
18ab4d4c 1855 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 1856 if (p->flags & SWP_WRITEOK) {
adfab836
DS
1857 if (p->swap_file->f_mapping == mapping) {
1858 found = 1;
1da177e4 1859 break;
adfab836 1860 }
1da177e4 1861 }
1da177e4 1862 }
adfab836 1863 if (!found) {
1da177e4 1864 err = -EINVAL;
5d337b91 1865 spin_unlock(&swap_lock);
1da177e4
LT
1866 goto out_dput;
1867 }
191c5424 1868 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
1869 vm_unacct_memory(p->pages);
1870 else {
1871 err = -ENOMEM;
5d337b91 1872 spin_unlock(&swap_lock);
1da177e4
LT
1873 goto out_dput;
1874 }
18ab4d4c
DS
1875 spin_lock(&swap_avail_lock);
1876 plist_del(&p->avail_list, &swap_avail_head);
1877 spin_unlock(&swap_avail_lock);
ec8acf20 1878 spin_lock(&p->lock);
78ecba08 1879 if (p->prio < 0) {
adfab836
DS
1880 struct swap_info_struct *si = p;
1881
18ab4d4c 1882 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 1883 si->prio++;
18ab4d4c
DS
1884 si->list.prio--;
1885 si->avail_list.prio--;
adfab836 1886 }
78ecba08
HD
1887 least_priority++;
1888 }
18ab4d4c 1889 plist_del(&p->list, &swap_active_head);
ec8acf20 1890 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
1891 total_swap_pages -= p->pages;
1892 p->flags &= ~SWP_WRITEOK;
ec8acf20 1893 spin_unlock(&p->lock);
5d337b91 1894 spin_unlock(&swap_lock);
fb4f88dc 1895
e1e12d2f 1896 set_current_oom_origin();
adfab836 1897 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
e1e12d2f 1898 clear_current_oom_origin();
1da177e4 1899
1da177e4
LT
1900 if (err) {
1901 /* re-insert swap space back into swap_list */
cf0cac0a 1902 reinsert_swap_info(p);
1da177e4
LT
1903 goto out_dput;
1904 }
52b7efdb 1905
815c2c54
SL
1906 flush_work(&p->discard_work);
1907
5d337b91 1908 destroy_swap_extents(p);
570a335b
HD
1909 if (p->flags & SWP_CONTINUED)
1910 free_swap_count_continuations(p);
1911
fc0abb14 1912 mutex_lock(&swapon_mutex);
5d337b91 1913 spin_lock(&swap_lock);
ec8acf20 1914 spin_lock(&p->lock);
5d337b91
HD
1915 drain_mmlist();
1916
52b7efdb 1917 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
1918 p->highest_bit = 0; /* cuts scans short */
1919 while (p->flags >= SWP_SCANNING) {
ec8acf20 1920 spin_unlock(&p->lock);
5d337b91 1921 spin_unlock(&swap_lock);
13e4b57f 1922 schedule_timeout_uninterruptible(1);
5d337b91 1923 spin_lock(&swap_lock);
ec8acf20 1924 spin_lock(&p->lock);
52b7efdb 1925 }
52b7efdb 1926
1da177e4 1927 swap_file = p->swap_file;
5b808a23 1928 old_block_size = p->old_block_size;
1da177e4
LT
1929 p->swap_file = NULL;
1930 p->max = 0;
1931 swap_map = p->swap_map;
1932 p->swap_map = NULL;
2a8f9449
SL
1933 cluster_info = p->cluster_info;
1934 p->cluster_info = NULL;
4f89849d 1935 frontswap_map = frontswap_map_get(p);
ec8acf20 1936 spin_unlock(&p->lock);
5d337b91 1937 spin_unlock(&swap_lock);
adfab836 1938 frontswap_invalidate_area(p->type);
58e97ba6 1939 frontswap_map_set(p, NULL);
fc0abb14 1940 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
1941 free_percpu(p->percpu_cluster);
1942 p->percpu_cluster = NULL;
1da177e4 1943 vfree(swap_map);
2a8f9449 1944 vfree(cluster_info);
4f89849d 1945 vfree(frontswap_map);
2de1a7e4 1946 /* Destroy swap account information */
adfab836 1947 swap_cgroup_swapoff(p->type);
27a7faa0 1948
1da177e4
LT
1949 inode = mapping->host;
1950 if (S_ISBLK(inode->i_mode)) {
1951 struct block_device *bdev = I_BDEV(inode);
5b808a23 1952 set_blocksize(bdev, old_block_size);
e525fd89 1953 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 1954 } else {
1b1dcc1b 1955 mutex_lock(&inode->i_mutex);
1da177e4 1956 inode->i_flags &= ~S_SWAPFILE;
1b1dcc1b 1957 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1958 }
1959 filp_close(swap_file, NULL);
f893ab41
WY
1960
1961 /*
1962 * Clear the SWP_USED flag after all resources are freed so that swapon
1963 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
1964 * not hold p->lock after we cleared its SWP_WRITEOK.
1965 */
1966 spin_lock(&swap_lock);
1967 p->flags = 0;
1968 spin_unlock(&swap_lock);
1969
1da177e4 1970 err = 0;
66d7dd51
KS
1971 atomic_inc(&proc_poll_event);
1972 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
1973
1974out_dput:
1975 filp_close(victim, NULL);
1976out:
f58b59c1 1977 putname(pathname);
1da177e4
LT
1978 return err;
1979}
1980
1981#ifdef CONFIG_PROC_FS
66d7dd51
KS
1982static unsigned swaps_poll(struct file *file, poll_table *wait)
1983{
f1514638 1984 struct seq_file *seq = file->private_data;
66d7dd51
KS
1985
1986 poll_wait(file, &proc_poll_wait, wait);
1987
f1514638
KS
1988 if (seq->poll_event != atomic_read(&proc_poll_event)) {
1989 seq->poll_event = atomic_read(&proc_poll_event);
66d7dd51
KS
1990 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1991 }
1992
1993 return POLLIN | POLLRDNORM;
1994}
1995
1da177e4
LT
1996/* iterator */
1997static void *swap_start(struct seq_file *swap, loff_t *pos)
1998{
efa90a98
HD
1999 struct swap_info_struct *si;
2000 int type;
1da177e4
LT
2001 loff_t l = *pos;
2002
fc0abb14 2003 mutex_lock(&swapon_mutex);
1da177e4 2004
881e4aab
SS
2005 if (!l)
2006 return SEQ_START_TOKEN;
2007
efa90a98
HD
2008 for (type = 0; type < nr_swapfiles; type++) {
2009 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2010 si = swap_info[type];
2011 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2012 continue;
881e4aab 2013 if (!--l)
efa90a98 2014 return si;
1da177e4
LT
2015 }
2016
2017 return NULL;
2018}
2019
2020static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2021{
efa90a98
HD
2022 struct swap_info_struct *si = v;
2023 int type;
1da177e4 2024
881e4aab 2025 if (v == SEQ_START_TOKEN)
efa90a98
HD
2026 type = 0;
2027 else
2028 type = si->type + 1;
881e4aab 2029
efa90a98
HD
2030 for (; type < nr_swapfiles; type++) {
2031 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2032 si = swap_info[type];
2033 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
2034 continue;
2035 ++*pos;
efa90a98 2036 return si;
1da177e4
LT
2037 }
2038
2039 return NULL;
2040}
2041
2042static void swap_stop(struct seq_file *swap, void *v)
2043{
fc0abb14 2044 mutex_unlock(&swapon_mutex);
1da177e4
LT
2045}
2046
2047static int swap_show(struct seq_file *swap, void *v)
2048{
efa90a98 2049 struct swap_info_struct *si = v;
1da177e4
LT
2050 struct file *file;
2051 int len;
2052
efa90a98 2053 if (si == SEQ_START_TOKEN) {
881e4aab
SS
2054 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2055 return 0;
2056 }
1da177e4 2057
efa90a98 2058 file = si->swap_file;
c32c2f63 2059 len = seq_path(swap, &file->f_path, " \t\n\\");
6eb396dc 2060 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9 2061 len < 40 ? 40 - len : 1, " ",
496ad9aa 2062 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2063 "partition" : "file\t",
efa90a98
HD
2064 si->pages << (PAGE_SHIFT - 10),
2065 si->inuse_pages << (PAGE_SHIFT - 10),
2066 si->prio);
1da177e4
LT
2067 return 0;
2068}
2069
15ad7cdc 2070static const struct seq_operations swaps_op = {
1da177e4
LT
2071 .start = swap_start,
2072 .next = swap_next,
2073 .stop = swap_stop,
2074 .show = swap_show
2075};
2076
2077static int swaps_open(struct inode *inode, struct file *file)
2078{
f1514638 2079 struct seq_file *seq;
66d7dd51
KS
2080 int ret;
2081
66d7dd51 2082 ret = seq_open(file, &swaps_op);
f1514638 2083 if (ret)
66d7dd51 2084 return ret;
66d7dd51 2085
f1514638
KS
2086 seq = file->private_data;
2087 seq->poll_event = atomic_read(&proc_poll_event);
2088 return 0;
1da177e4
LT
2089}
2090
15ad7cdc 2091static const struct file_operations proc_swaps_operations = {
1da177e4
LT
2092 .open = swaps_open,
2093 .read = seq_read,
2094 .llseek = seq_lseek,
2095 .release = seq_release,
66d7dd51 2096 .poll = swaps_poll,
1da177e4
LT
2097};
2098
2099static int __init procswaps_init(void)
2100{
3d71f86f 2101 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
2102 return 0;
2103}
2104__initcall(procswaps_init);
2105#endif /* CONFIG_PROC_FS */
2106
1796316a
JB
2107#ifdef MAX_SWAPFILES_CHECK
2108static int __init max_swapfiles_check(void)
2109{
2110 MAX_SWAPFILES_CHECK();
2111 return 0;
2112}
2113late_initcall(max_swapfiles_check);
2114#endif
2115
53cbb243 2116static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2117{
73c34b6a 2118 struct swap_info_struct *p;
1da177e4 2119 unsigned int type;
efa90a98
HD
2120
2121 p = kzalloc(sizeof(*p), GFP_KERNEL);
2122 if (!p)
53cbb243 2123 return ERR_PTR(-ENOMEM);
efa90a98 2124
5d337b91 2125 spin_lock(&swap_lock);
efa90a98
HD
2126 for (type = 0; type < nr_swapfiles; type++) {
2127 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2128 break;
efa90a98 2129 }
0697212a 2130 if (type >= MAX_SWAPFILES) {
5d337b91 2131 spin_unlock(&swap_lock);
efa90a98 2132 kfree(p);
730c0581 2133 return ERR_PTR(-EPERM);
1da177e4 2134 }
efa90a98
HD
2135 if (type >= nr_swapfiles) {
2136 p->type = type;
2137 swap_info[type] = p;
2138 /*
2139 * Write swap_info[type] before nr_swapfiles, in case a
2140 * racing procfs swap_start() or swap_next() is reading them.
2141 * (We never shrink nr_swapfiles, we never free this entry.)
2142 */
2143 smp_wmb();
2144 nr_swapfiles++;
2145 } else {
2146 kfree(p);
2147 p = swap_info[type];
2148 /*
2149 * Do not memset this entry: a racing procfs swap_next()
2150 * would be relying on p->type to remain valid.
2151 */
2152 }
9625a5f2 2153 INIT_LIST_HEAD(&p->first_swap_extent.list);
18ab4d4c
DS
2154 plist_node_init(&p->list, 0);
2155 plist_node_init(&p->avail_list, 0);
1da177e4 2156 p->flags = SWP_USED;
5d337b91 2157 spin_unlock(&swap_lock);
ec8acf20 2158 spin_lock_init(&p->lock);
efa90a98 2159
53cbb243 2160 return p;
53cbb243
CEB
2161}
2162
4d0e1e10
CEB
2163static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2164{
2165 int error;
2166
2167 if (S_ISBLK(inode->i_mode)) {
2168 p->bdev = bdgrab(I_BDEV(inode));
2169 error = blkdev_get(p->bdev,
2170 FMODE_READ | FMODE_WRITE | FMODE_EXCL,
2171 sys_swapon);
2172 if (error < 0) {
2173 p->bdev = NULL;
87ade72a 2174 return -EINVAL;
4d0e1e10
CEB
2175 }
2176 p->old_block_size = block_size(p->bdev);
2177 error = set_blocksize(p->bdev, PAGE_SIZE);
2178 if (error < 0)
87ade72a 2179 return error;
4d0e1e10
CEB
2180 p->flags |= SWP_BLKDEV;
2181 } else if (S_ISREG(inode->i_mode)) {
2182 p->bdev = inode->i_sb->s_bdev;
2183 mutex_lock(&inode->i_mutex);
87ade72a
CEB
2184 if (IS_SWAPFILE(inode))
2185 return -EBUSY;
2186 } else
2187 return -EINVAL;
4d0e1e10
CEB
2188
2189 return 0;
4d0e1e10
CEB
2190}
2191
ca8bd38b
CEB
2192static unsigned long read_swap_header(struct swap_info_struct *p,
2193 union swap_header *swap_header,
2194 struct inode *inode)
2195{
2196 int i;
2197 unsigned long maxpages;
2198 unsigned long swapfilepages;
d6bbbd29 2199 unsigned long last_page;
ca8bd38b
CEB
2200
2201 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2202 pr_err("Unable to find swap-space signature\n");
38719025 2203 return 0;
ca8bd38b
CEB
2204 }
2205
2206 /* swap partition endianess hack... */
2207 if (swab32(swap_header->info.version) == 1) {
2208 swab32s(&swap_header->info.version);
2209 swab32s(&swap_header->info.last_page);
2210 swab32s(&swap_header->info.nr_badpages);
2211 for (i = 0; i < swap_header->info.nr_badpages; i++)
2212 swab32s(&swap_header->info.badpages[i]);
2213 }
2214 /* Check the swap header's sub-version */
2215 if (swap_header->info.version != 1) {
465c47fd
AM
2216 pr_warn("Unable to handle swap header version %d\n",
2217 swap_header->info.version);
38719025 2218 return 0;
ca8bd38b
CEB
2219 }
2220
2221 p->lowest_bit = 1;
2222 p->cluster_next = 1;
2223 p->cluster_nr = 0;
2224
2225 /*
2226 * Find out how many pages are allowed for a single swap
9b15b817 2227 * device. There are two limiting factors: 1) the number
a2c16d6c
HD
2228 * of bits for the swap offset in the swp_entry_t type, and
2229 * 2) the number of bits in the swap pte as defined by the
9b15b817 2230 * different architectures. In order to find the
a2c16d6c 2231 * largest possible bit mask, a swap entry with swap type 0
ca8bd38b 2232 * and swap offset ~0UL is created, encoded to a swap pte,
a2c16d6c 2233 * decoded to a swp_entry_t again, and finally the swap
ca8bd38b
CEB
2234 * offset is extracted. This will mask all the bits from
2235 * the initial ~0UL mask that can't be encoded in either
2236 * the swp_entry_t or the architecture definition of a
9b15b817 2237 * swap pte.
ca8bd38b
CEB
2238 */
2239 maxpages = swp_offset(pte_to_swp_entry(
9b15b817 2240 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
d6bbbd29
RJ
2241 last_page = swap_header->info.last_page;
2242 if (last_page > maxpages) {
465c47fd 2243 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2244 maxpages << (PAGE_SHIFT - 10),
2245 last_page << (PAGE_SHIFT - 10));
2246 }
2247 if (maxpages > last_page) {
2248 maxpages = last_page + 1;
ca8bd38b
CEB
2249 /* p->max is an unsigned int: don't overflow it */
2250 if ((unsigned int)maxpages == 0)
2251 maxpages = UINT_MAX;
2252 }
2253 p->highest_bit = maxpages - 1;
2254
2255 if (!maxpages)
38719025 2256 return 0;
ca8bd38b
CEB
2257 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2258 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 2259 pr_warn("Swap area shorter than signature indicates\n");
38719025 2260 return 0;
ca8bd38b
CEB
2261 }
2262 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 2263 return 0;
ca8bd38b 2264 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 2265 return 0;
ca8bd38b
CEB
2266
2267 return maxpages;
ca8bd38b
CEB
2268}
2269
915d4d7b
CEB
2270static int setup_swap_map_and_extents(struct swap_info_struct *p,
2271 union swap_header *swap_header,
2272 unsigned char *swap_map,
2a8f9449 2273 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
2274 unsigned long maxpages,
2275 sector_t *span)
2276{
2277 int i;
915d4d7b
CEB
2278 unsigned int nr_good_pages;
2279 int nr_extents;
2a8f9449
SL
2280 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2281 unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
915d4d7b
CEB
2282
2283 nr_good_pages = maxpages - 1; /* omit header page */
2284
2a8f9449
SL
2285 cluster_set_null(&p->free_cluster_head);
2286 cluster_set_null(&p->free_cluster_tail);
815c2c54
SL
2287 cluster_set_null(&p->discard_cluster_head);
2288 cluster_set_null(&p->discard_cluster_tail);
2a8f9449 2289
915d4d7b
CEB
2290 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2291 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
2292 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2293 return -EINVAL;
915d4d7b
CEB
2294 if (page_nr < maxpages) {
2295 swap_map[page_nr] = SWAP_MAP_BAD;
2296 nr_good_pages--;
2a8f9449
SL
2297 /*
2298 * Haven't marked the cluster free yet, no list
2299 * operation involved
2300 */
2301 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
2302 }
2303 }
2304
2a8f9449
SL
2305 /* Haven't marked the cluster free yet, no list operation involved */
2306 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2307 inc_cluster_info_page(p, cluster_info, i);
2308
915d4d7b
CEB
2309 if (nr_good_pages) {
2310 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
2311 /*
2312 * Not mark the cluster free yet, no list
2313 * operation involved
2314 */
2315 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
2316 p->max = maxpages;
2317 p->pages = nr_good_pages;
2318 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
2319 if (nr_extents < 0)
2320 return nr_extents;
915d4d7b
CEB
2321 nr_good_pages = p->pages;
2322 }
2323 if (!nr_good_pages) {
465c47fd 2324 pr_warn("Empty swap-file\n");
bdb8e3f6 2325 return -EINVAL;
915d4d7b
CEB
2326 }
2327
2a8f9449
SL
2328 if (!cluster_info)
2329 return nr_extents;
2330
2331 for (i = 0; i < nr_clusters; i++) {
2332 if (!cluster_count(&cluster_info[idx])) {
2333 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2334 if (cluster_is_null(&p->free_cluster_head)) {
2335 cluster_set_next_flag(&p->free_cluster_head,
2336 idx, 0);
2337 cluster_set_next_flag(&p->free_cluster_tail,
2338 idx, 0);
2339 } else {
2340 unsigned int tail;
2341
2342 tail = cluster_next(&p->free_cluster_tail);
2343 cluster_set_next(&cluster_info[tail], idx);
2344 cluster_set_next_flag(&p->free_cluster_tail,
2345 idx, 0);
2346 }
2347 }
2348 idx++;
2349 if (idx == nr_clusters)
2350 idx = 0;
2351 }
915d4d7b 2352 return nr_extents;
915d4d7b
CEB
2353}
2354
dcf6b7dd
RA
2355/*
2356 * Helper to sys_swapon determining if a given swap
2357 * backing device queue supports DISCARD operations.
2358 */
2359static bool swap_discardable(struct swap_info_struct *si)
2360{
2361 struct request_queue *q = bdev_get_queue(si->bdev);
2362
2363 if (!q || !blk_queue_discard(q))
2364 return false;
2365
2366 return true;
2367}
2368
53cbb243
CEB
2369SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2370{
2371 struct swap_info_struct *p;
91a27b2a 2372 struct filename *name;
53cbb243
CEB
2373 struct file *swap_file = NULL;
2374 struct address_space *mapping;
40531542
CEB
2375 int i;
2376 int prio;
53cbb243
CEB
2377 int error;
2378 union swap_header *swap_header;
915d4d7b 2379 int nr_extents;
53cbb243
CEB
2380 sector_t span;
2381 unsigned long maxpages;
53cbb243 2382 unsigned char *swap_map = NULL;
2a8f9449 2383 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 2384 unsigned long *frontswap_map = NULL;
53cbb243
CEB
2385 struct page *page = NULL;
2386 struct inode *inode = NULL;
53cbb243 2387
d15cab97
HD
2388 if (swap_flags & ~SWAP_FLAGS_VALID)
2389 return -EINVAL;
2390
53cbb243
CEB
2391 if (!capable(CAP_SYS_ADMIN))
2392 return -EPERM;
2393
2394 p = alloc_swap_info();
2542e513
CEB
2395 if (IS_ERR(p))
2396 return PTR_ERR(p);
53cbb243 2397
815c2c54
SL
2398 INIT_WORK(&p->discard_work, swap_discard_work);
2399
1da177e4 2400 name = getname(specialfile);
1da177e4 2401 if (IS_ERR(name)) {
7de7fb6b 2402 error = PTR_ERR(name);
1da177e4 2403 name = NULL;
bd69010b 2404 goto bad_swap;
1da177e4 2405 }
669abf4e 2406 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 2407 if (IS_ERR(swap_file)) {
7de7fb6b 2408 error = PTR_ERR(swap_file);
1da177e4 2409 swap_file = NULL;
bd69010b 2410 goto bad_swap;
1da177e4
LT
2411 }
2412
2413 p->swap_file = swap_file;
2414 mapping = swap_file->f_mapping;
1da177e4 2415
1da177e4 2416 for (i = 0; i < nr_swapfiles; i++) {
efa90a98 2417 struct swap_info_struct *q = swap_info[i];
1da177e4 2418
e8e6c2ec 2419 if (q == p || !q->swap_file)
1da177e4 2420 continue;
7de7fb6b
CEB
2421 if (mapping == q->swap_file->f_mapping) {
2422 error = -EBUSY;
1da177e4 2423 goto bad_swap;
7de7fb6b 2424 }
1da177e4
LT
2425 }
2426
2130781e
CEB
2427 inode = mapping->host;
2428 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
4d0e1e10
CEB
2429 error = claim_swapfile(p, inode);
2430 if (unlikely(error))
1da177e4 2431 goto bad_swap;
1da177e4 2432
1da177e4
LT
2433 /*
2434 * Read the swap header.
2435 */
2436 if (!mapping->a_ops->readpage) {
2437 error = -EINVAL;
2438 goto bad_swap;
2439 }
090d2b18 2440 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
2441 if (IS_ERR(page)) {
2442 error = PTR_ERR(page);
2443 goto bad_swap;
2444 }
81e33971 2445 swap_header = kmap(page);
1da177e4 2446
ca8bd38b
CEB
2447 maxpages = read_swap_header(p, swap_header, inode);
2448 if (unlikely(!maxpages)) {
1da177e4
LT
2449 error = -EINVAL;
2450 goto bad_swap;
2451 }
886bb7e9 2452
81e33971 2453 /* OK, set up the swap map and apply the bad block list */
803d0c83 2454 swap_map = vzalloc(maxpages);
81e33971
HD
2455 if (!swap_map) {
2456 error = -ENOMEM;
2457 goto bad_swap;
2458 }
2a8f9449
SL
2459 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2460 p->flags |= SWP_SOLIDSTATE;
2461 /*
2462 * select a random position to start with to help wear leveling
2463 * SSD
2464 */
2465 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2466
2467 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2468 SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2469 if (!cluster_info) {
2470 error = -ENOMEM;
2471 goto bad_swap;
2472 }
ebc2a1a6
SL
2473 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2474 if (!p->percpu_cluster) {
2475 error = -ENOMEM;
2476 goto bad_swap;
2477 }
2478 for_each_possible_cpu(i) {
2479 struct percpu_cluster *cluster;
2480 cluster = per_cpu_ptr(p->percpu_cluster, i);
2481 cluster_set_null(&cluster->index);
2482 }
2a8f9449 2483 }
1da177e4 2484
1421ef3c
CEB
2485 error = swap_cgroup_swapon(p->type, maxpages);
2486 if (error)
2487 goto bad_swap;
2488
915d4d7b 2489 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 2490 cluster_info, maxpages, &span);
915d4d7b
CEB
2491 if (unlikely(nr_extents < 0)) {
2492 error = nr_extents;
1da177e4
LT
2493 goto bad_swap;
2494 }
38b5faf4
DM
2495 /* frontswap enabled? set up bit-per-page map for frontswap */
2496 if (frontswap_enabled)
7b57976d 2497 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
1da177e4 2498
2a8f9449
SL
2499 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2500 /*
2501 * When discard is enabled for swap with no particular
2502 * policy flagged, we set all swap discard flags here in
2503 * order to sustain backward compatibility with older
2504 * swapon(8) releases.
2505 */
2506 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2507 SWP_PAGE_DISCARD);
dcf6b7dd 2508
2a8f9449
SL
2509 /*
2510 * By flagging sys_swapon, a sysadmin can tell us to
2511 * either do single-time area discards only, or to just
2512 * perform discards for released swap page-clusters.
2513 * Now it's time to adjust the p->flags accordingly.
2514 */
2515 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2516 p->flags &= ~SWP_PAGE_DISCARD;
2517 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2518 p->flags &= ~SWP_AREA_DISCARD;
2519
2520 /* issue a swapon-time discard if it's still required */
2521 if (p->flags & SWP_AREA_DISCARD) {
2522 int err = discard_swap(p);
2523 if (unlikely(err))
2524 pr_err("swapon: discard_swap(%p): %d\n",
2525 p, err);
dcf6b7dd 2526 }
20137a49 2527 }
6a6ba831 2528
fc0abb14 2529 mutex_lock(&swapon_mutex);
40531542 2530 prio = -1;
78ecba08 2531 if (swap_flags & SWAP_FLAG_PREFER)
40531542 2532 prio =
78ecba08 2533 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 2534 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 2535
465c47fd 2536 pr_info("Adding %uk swap on %s. "
dcf6b7dd 2537 "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 2538 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
2539 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2540 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 2541 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
2542 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2543 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 2544 (frontswap_map) ? "FS" : "");
c69dbfb8 2545
fc0abb14 2546 mutex_unlock(&swapon_mutex);
66d7dd51
KS
2547 atomic_inc(&proc_poll_event);
2548 wake_up_interruptible(&proc_poll_wait);
2549
9b01c350
CEB
2550 if (S_ISREG(inode->i_mode))
2551 inode->i_flags |= S_SWAPFILE;
1da177e4
LT
2552 error = 0;
2553 goto out;
2554bad_swap:
ebc2a1a6
SL
2555 free_percpu(p->percpu_cluster);
2556 p->percpu_cluster = NULL;
bd69010b 2557 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
2558 set_blocksize(p->bdev, p->old_block_size);
2559 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2560 }
4cd3bb10 2561 destroy_swap_extents(p);
e8e6c2ec 2562 swap_cgroup_swapoff(p->type);
5d337b91 2563 spin_lock(&swap_lock);
1da177e4 2564 p->swap_file = NULL;
1da177e4 2565 p->flags = 0;
5d337b91 2566 spin_unlock(&swap_lock);
1da177e4 2567 vfree(swap_map);
2a8f9449 2568 vfree(cluster_info);
52c50567 2569 if (swap_file) {
2130781e 2570 if (inode && S_ISREG(inode->i_mode)) {
52c50567 2571 mutex_unlock(&inode->i_mutex);
2130781e
CEB
2572 inode = NULL;
2573 }
1da177e4 2574 filp_close(swap_file, NULL);
52c50567 2575 }
1da177e4
LT
2576out:
2577 if (page && !IS_ERR(page)) {
2578 kunmap(page);
2579 page_cache_release(page);
2580 }
2581 if (name)
2582 putname(name);
9b01c350 2583 if (inode && S_ISREG(inode->i_mode))
1b1dcc1b 2584 mutex_unlock(&inode->i_mutex);
1da177e4
LT
2585 return error;
2586}
2587
2588void si_swapinfo(struct sysinfo *val)
2589{
efa90a98 2590 unsigned int type;
1da177e4
LT
2591 unsigned long nr_to_be_unused = 0;
2592
5d337b91 2593 spin_lock(&swap_lock);
efa90a98
HD
2594 for (type = 0; type < nr_swapfiles; type++) {
2595 struct swap_info_struct *si = swap_info[type];
2596
2597 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2598 nr_to_be_unused += si->inuse_pages;
1da177e4 2599 }
ec8acf20 2600 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 2601 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 2602 spin_unlock(&swap_lock);
1da177e4
LT
2603}
2604
2605/*
2606 * Verify that a swap entry is valid and increment its swap map count.
2607 *
355cfa73
KH
2608 * Returns error code in following case.
2609 * - success -> 0
2610 * - swp_entry is invalid -> EINVAL
2611 * - swp_entry is migration entry -> EINVAL
2612 * - swap-cache reference is requested but there is already one. -> EEXIST
2613 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 2614 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 2615 */
8d69aaee 2616static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 2617{
73c34b6a 2618 struct swap_info_struct *p;
1da177e4 2619 unsigned long offset, type;
8d69aaee
HD
2620 unsigned char count;
2621 unsigned char has_cache;
253d553b 2622 int err = -EINVAL;
1da177e4 2623
a7420aa5 2624 if (non_swap_entry(entry))
253d553b 2625 goto out;
0697212a 2626
1da177e4
LT
2627 type = swp_type(entry);
2628 if (type >= nr_swapfiles)
2629 goto bad_file;
efa90a98 2630 p = swap_info[type];
1da177e4
LT
2631 offset = swp_offset(entry);
2632
ec8acf20 2633 spin_lock(&p->lock);
355cfa73
KH
2634 if (unlikely(offset >= p->max))
2635 goto unlock_out;
2636
253d553b 2637 count = p->swap_map[offset];
edfe23da
SL
2638
2639 /*
2640 * swapin_readahead() doesn't check if a swap entry is valid, so the
2641 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2642 */
2643 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2644 err = -ENOENT;
2645 goto unlock_out;
2646 }
2647
253d553b
HD
2648 has_cache = count & SWAP_HAS_CACHE;
2649 count &= ~SWAP_HAS_CACHE;
2650 err = 0;
355cfa73 2651
253d553b 2652 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
2653
2654 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
2655 if (!has_cache && count)
2656 has_cache = SWAP_HAS_CACHE;
2657 else if (has_cache) /* someone else added cache */
2658 err = -EEXIST;
2659 else /* no users remaining */
2660 err = -ENOENT;
355cfa73
KH
2661
2662 } else if (count || has_cache) {
253d553b 2663
570a335b
HD
2664 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2665 count += usage;
2666 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 2667 err = -EINVAL;
570a335b
HD
2668 else if (swap_count_continued(p, offset, count))
2669 count = COUNT_CONTINUED;
2670 else
2671 err = -ENOMEM;
355cfa73 2672 } else
253d553b
HD
2673 err = -ENOENT; /* unused swap entry */
2674
2675 p->swap_map[offset] = count | has_cache;
2676
355cfa73 2677unlock_out:
ec8acf20 2678 spin_unlock(&p->lock);
1da177e4 2679out:
253d553b 2680 return err;
1da177e4
LT
2681
2682bad_file:
465c47fd 2683 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
2684 goto out;
2685}
253d553b 2686
aaa46865
HD
2687/*
2688 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2689 * (in which case its reference count is never incremented).
2690 */
2691void swap_shmem_alloc(swp_entry_t entry)
2692{
2693 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2694}
2695
355cfa73 2696/*
08259d58
HD
2697 * Increase reference count of swap entry by 1.
2698 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2699 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2700 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2701 * might occur if a page table entry has got corrupted.
355cfa73 2702 */
570a335b 2703int swap_duplicate(swp_entry_t entry)
355cfa73 2704{
570a335b
HD
2705 int err = 0;
2706
2707 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2708 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2709 return err;
355cfa73 2710}
1da177e4 2711
cb4b86ba 2712/*
355cfa73
KH
2713 * @entry: swap entry for which we allocate swap cache.
2714 *
73c34b6a 2715 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
2716 * This can return error codes. Returns 0 at success.
2717 * -EBUSY means there is a swap cache.
2718 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
2719 */
2720int swapcache_prepare(swp_entry_t entry)
2721{
253d553b 2722 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
2723}
2724
f981c595
MG
2725struct swap_info_struct *page_swap_info(struct page *page)
2726{
2727 swp_entry_t swap = { .val = page_private(page) };
2728 BUG_ON(!PageSwapCache(page));
2729 return swap_info[swp_type(swap)];
2730}
2731
2732/*
2733 * out-of-line __page_file_ methods to avoid include hell.
2734 */
2735struct address_space *__page_file_mapping(struct page *page)
2736{
309381fe 2737 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
2738 return page_swap_info(page)->swap_file->f_mapping;
2739}
2740EXPORT_SYMBOL_GPL(__page_file_mapping);
2741
2742pgoff_t __page_file_index(struct page *page)
2743{
2744 swp_entry_t swap = { .val = page_private(page) };
309381fe 2745 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
2746 return swp_offset(swap);
2747}
2748EXPORT_SYMBOL_GPL(__page_file_index);
2749
570a335b
HD
2750/*
2751 * add_swap_count_continuation - called when a swap count is duplicated
2752 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2753 * page of the original vmalloc'ed swap_map, to hold the continuation count
2754 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2755 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2756 *
2757 * These continuation pages are seldom referenced: the common paths all work
2758 * on the original swap_map, only referring to a continuation page when the
2759 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2760 *
2761 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2762 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2763 * can be called after dropping locks.
2764 */
2765int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2766{
2767 struct swap_info_struct *si;
2768 struct page *head;
2769 struct page *page;
2770 struct page *list_page;
2771 pgoff_t offset;
2772 unsigned char count;
2773
2774 /*
2775 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2776 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2777 */
2778 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2779
2780 si = swap_info_get(entry);
2781 if (!si) {
2782 /*
2783 * An acceptable race has occurred since the failing
2784 * __swap_duplicate(): the swap entry has been freed,
2785 * perhaps even the whole swap_map cleared for swapoff.
2786 */
2787 goto outer;
2788 }
2789
2790 offset = swp_offset(entry);
2791 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2792
2793 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2794 /*
2795 * The higher the swap count, the more likely it is that tasks
2796 * will race to add swap count continuation: we need to avoid
2797 * over-provisioning.
2798 */
2799 goto out;
2800 }
2801
2802 if (!page) {
ec8acf20 2803 spin_unlock(&si->lock);
570a335b
HD
2804 return -ENOMEM;
2805 }
2806
2807 /*
2808 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
2809 * no architecture is using highmem pages for kernel page tables: so it
2810 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
2811 */
2812 head = vmalloc_to_page(si->swap_map + offset);
2813 offset &= ~PAGE_MASK;
2814
2815 /*
2816 * Page allocation does not initialize the page's lru field,
2817 * but it does always reset its private field.
2818 */
2819 if (!page_private(head)) {
2820 BUG_ON(count & COUNT_CONTINUED);
2821 INIT_LIST_HEAD(&head->lru);
2822 set_page_private(head, SWP_CONTINUED);
2823 si->flags |= SWP_CONTINUED;
2824 }
2825
2826 list_for_each_entry(list_page, &head->lru, lru) {
2827 unsigned char *map;
2828
2829 /*
2830 * If the previous map said no continuation, but we've found
2831 * a continuation page, free our allocation and use this one.
2832 */
2833 if (!(count & COUNT_CONTINUED))
2834 goto out;
2835
9b04c5fe 2836 map = kmap_atomic(list_page) + offset;
570a335b 2837 count = *map;
9b04c5fe 2838 kunmap_atomic(map);
570a335b
HD
2839
2840 /*
2841 * If this continuation count now has some space in it,
2842 * free our allocation and use this one.
2843 */
2844 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2845 goto out;
2846 }
2847
2848 list_add_tail(&page->lru, &head->lru);
2849 page = NULL; /* now it's attached, don't free it */
2850out:
ec8acf20 2851 spin_unlock(&si->lock);
570a335b
HD
2852outer:
2853 if (page)
2854 __free_page(page);
2855 return 0;
2856}
2857
2858/*
2859 * swap_count_continued - when the original swap_map count is incremented
2860 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2861 * into, carry if so, or else fail until a new continuation page is allocated;
2862 * when the original swap_map count is decremented from 0 with continuation,
2863 * borrow from the continuation and report whether it still holds more.
2864 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2865 */
2866static bool swap_count_continued(struct swap_info_struct *si,
2867 pgoff_t offset, unsigned char count)
2868{
2869 struct page *head;
2870 struct page *page;
2871 unsigned char *map;
2872
2873 head = vmalloc_to_page(si->swap_map + offset);
2874 if (page_private(head) != SWP_CONTINUED) {
2875 BUG_ON(count & COUNT_CONTINUED);
2876 return false; /* need to add count continuation */
2877 }
2878
2879 offset &= ~PAGE_MASK;
2880 page = list_entry(head->lru.next, struct page, lru);
9b04c5fe 2881 map = kmap_atomic(page) + offset;
570a335b
HD
2882
2883 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2884 goto init_map; /* jump over SWAP_CONT_MAX checks */
2885
2886 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2887 /*
2888 * Think of how you add 1 to 999
2889 */
2890 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 2891 kunmap_atomic(map);
570a335b
HD
2892 page = list_entry(page->lru.next, struct page, lru);
2893 BUG_ON(page == head);
9b04c5fe 2894 map = kmap_atomic(page) + offset;
570a335b
HD
2895 }
2896 if (*map == SWAP_CONT_MAX) {
9b04c5fe 2897 kunmap_atomic(map);
570a335b
HD
2898 page = list_entry(page->lru.next, struct page, lru);
2899 if (page == head)
2900 return false; /* add count continuation */
9b04c5fe 2901 map = kmap_atomic(page) + offset;
570a335b
HD
2902init_map: *map = 0; /* we didn't zero the page */
2903 }
2904 *map += 1;
9b04c5fe 2905 kunmap_atomic(map);
570a335b
HD
2906 page = list_entry(page->lru.prev, struct page, lru);
2907 while (page != head) {
9b04c5fe 2908 map = kmap_atomic(page) + offset;
570a335b 2909 *map = COUNT_CONTINUED;
9b04c5fe 2910 kunmap_atomic(map);
570a335b
HD
2911 page = list_entry(page->lru.prev, struct page, lru);
2912 }
2913 return true; /* incremented */
2914
2915 } else { /* decrementing */
2916 /*
2917 * Think of how you subtract 1 from 1000
2918 */
2919 BUG_ON(count != COUNT_CONTINUED);
2920 while (*map == COUNT_CONTINUED) {
9b04c5fe 2921 kunmap_atomic(map);
570a335b
HD
2922 page = list_entry(page->lru.next, struct page, lru);
2923 BUG_ON(page == head);
9b04c5fe 2924 map = kmap_atomic(page) + offset;
570a335b
HD
2925 }
2926 BUG_ON(*map == 0);
2927 *map -= 1;
2928 if (*map == 0)
2929 count = 0;
9b04c5fe 2930 kunmap_atomic(map);
570a335b
HD
2931 page = list_entry(page->lru.prev, struct page, lru);
2932 while (page != head) {
9b04c5fe 2933 map = kmap_atomic(page) + offset;
570a335b
HD
2934 *map = SWAP_CONT_MAX | count;
2935 count = COUNT_CONTINUED;
9b04c5fe 2936 kunmap_atomic(map);
570a335b
HD
2937 page = list_entry(page->lru.prev, struct page, lru);
2938 }
2939 return count == COUNT_CONTINUED;
2940 }
2941}
2942
2943/*
2944 * free_swap_count_continuations - swapoff free all the continuation pages
2945 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2946 */
2947static void free_swap_count_continuations(struct swap_info_struct *si)
2948{
2949 pgoff_t offset;
2950
2951 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2952 struct page *head;
2953 head = vmalloc_to_page(si->swap_map + offset);
2954 if (page_private(head)) {
2955 struct list_head *this, *next;
2956 list_for_each_safe(this, next, &head->lru) {
2957 struct page *page;
2958 page = list_entry(this, struct page, lru);
2959 list_del(this);
2960 __free_page(page);
2961 }
2962 }
2963 }
2964}