]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/swapfile.c
nfs: prevent page allocator recursions with swap over NFS.
[mirror_ubuntu-zesty-kernel.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
072441e2 17#include <linux/shmem_fs.h>
1da177e4 18#include <linux/blkdev.h>
20137a49 19#include <linux/random.h>
1da177e4
LT
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
5ad64688 24#include <linux/ksm.h>
1da177e4
LT
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
fc0abb14 28#include <linux/mutex.h>
c59ede7b 29#include <linux/capability.h>
1da177e4 30#include <linux/syscalls.h>
8a9f3ccd 31#include <linux/memcontrol.h>
66d7dd51 32#include <linux/poll.h>
72788c38 33#include <linux/oom.h>
38b5faf4
DM
34#include <linux/frontswap.h>
35#include <linux/swapfile.h>
f981c595 36#include <linux/export.h>
1da177e4
LT
37
38#include <asm/pgtable.h>
39#include <asm/tlbflush.h>
40#include <linux/swapops.h>
27a7faa0 41#include <linux/page_cgroup.h>
1da177e4 42
570a335b
HD
43static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 unsigned char);
45static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 46static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 47
38b5faf4 48DEFINE_SPINLOCK(swap_lock);
7c363b8c 49static unsigned int nr_swapfiles;
b962716b 50long nr_swap_pages;
1da177e4 51long total_swap_pages;
78ecba08 52static int least_priority;
1da177e4 53
1da177e4
LT
54static const char Bad_file[] = "Bad swap file entry ";
55static const char Unused_file[] = "Unused swap file entry ";
56static const char Bad_offset[] = "Bad swap offset entry ";
57static const char Unused_offset[] = "Unused swap offset entry ";
58
38b5faf4 59struct swap_list_t swap_list = {-1, -1};
1da177e4 60
38b5faf4 61struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 62
fc0abb14 63static DEFINE_MUTEX(swapon_mutex);
1da177e4 64
66d7dd51
KS
65static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
66/* Activity counter to indicate that a swapon or swapoff has occurred */
67static atomic_t proc_poll_event = ATOMIC_INIT(0);
68
8d69aaee 69static inline unsigned char swap_count(unsigned char ent)
355cfa73 70{
570a335b 71 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
355cfa73
KH
72}
73
efa90a98 74/* returns 1 if swap entry is freed */
c9e44410
KH
75static int
76__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
77{
efa90a98 78 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
79 struct page *page;
80 int ret = 0;
81
82 page = find_get_page(&swapper_space, entry.val);
83 if (!page)
84 return 0;
85 /*
86 * This function is called from scan_swap_map() and it's called
87 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
88 * We have to use trylock for avoiding deadlock. This is a special
89 * case and you should use try_to_free_swap() with explicit lock_page()
90 * in usual operations.
91 */
92 if (trylock_page(page)) {
93 ret = try_to_free_swap(page);
94 unlock_page(page);
95 }
96 page_cache_release(page);
97 return ret;
98}
355cfa73 99
6a6ba831
HD
100/*
101 * swapon tell device that all the old swap contents can be discarded,
102 * to allow the swap device to optimize its wear-levelling.
103 */
104static int discard_swap(struct swap_info_struct *si)
105{
106 struct swap_extent *se;
9625a5f2
HD
107 sector_t start_block;
108 sector_t nr_blocks;
6a6ba831
HD
109 int err = 0;
110
9625a5f2
HD
111 /* Do not discard the swap header page! */
112 se = &si->first_swap_extent;
113 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
114 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
115 if (nr_blocks) {
116 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 117 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
118 if (err)
119 return err;
120 cond_resched();
121 }
6a6ba831 122
9625a5f2
HD
123 list_for_each_entry(se, &si->first_swap_extent.list, list) {
124 start_block = se->start_block << (PAGE_SHIFT - 9);
125 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
126
127 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 128 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
129 if (err)
130 break;
131
132 cond_resched();
133 }
134 return err; /* That will often be -EOPNOTSUPP */
135}
136
7992fde7
HD
137/*
138 * swap allocation tell device that a cluster of swap can now be discarded,
139 * to allow the swap device to optimize its wear-levelling.
140 */
141static void discard_swap_cluster(struct swap_info_struct *si,
142 pgoff_t start_page, pgoff_t nr_pages)
143{
144 struct swap_extent *se = si->curr_swap_extent;
145 int found_extent = 0;
146
147 while (nr_pages) {
148 struct list_head *lh;
149
150 if (se->start_page <= start_page &&
151 start_page < se->start_page + se->nr_pages) {
152 pgoff_t offset = start_page - se->start_page;
153 sector_t start_block = se->start_block + offset;
858a2990 154 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
155
156 if (nr_blocks > nr_pages)
157 nr_blocks = nr_pages;
158 start_page += nr_blocks;
159 nr_pages -= nr_blocks;
160
161 if (!found_extent++)
162 si->curr_swap_extent = se;
163
164 start_block <<= PAGE_SHIFT - 9;
165 nr_blocks <<= PAGE_SHIFT - 9;
166 if (blkdev_issue_discard(si->bdev, start_block,
dd3932ed 167 nr_blocks, GFP_NOIO, 0))
7992fde7
HD
168 break;
169 }
170
171 lh = se->list.next;
7992fde7
HD
172 se = list_entry(lh, struct swap_extent, list);
173 }
174}
175
176static int wait_for_discard(void *word)
177{
178 schedule();
179 return 0;
180}
181
048c27fd
HD
182#define SWAPFILE_CLUSTER 256
183#define LATENCY_LIMIT 256
184
24b8ff7c
CEB
185static unsigned long scan_swap_map(struct swap_info_struct *si,
186 unsigned char usage)
1da177e4 187{
ebebbbe9 188 unsigned long offset;
c60aa176 189 unsigned long scan_base;
7992fde7 190 unsigned long last_in_cluster = 0;
048c27fd 191 int latency_ration = LATENCY_LIMIT;
7992fde7 192 int found_free_cluster = 0;
7dfad418 193
886bb7e9 194 /*
7dfad418
HD
195 * We try to cluster swap pages by allocating them sequentially
196 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
197 * way, however, we resort to first-free allocation, starting
198 * a new cluster. This prevents us from scattering swap pages
199 * all over the entire swap partition, so that we reduce
200 * overall disk seek times between swap pages. -- sct
201 * But we do now try to find an empty cluster. -Andrea
c60aa176 202 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
203 */
204
52b7efdb 205 si->flags += SWP_SCANNING;
c60aa176 206 scan_base = offset = si->cluster_next;
ebebbbe9
HD
207
208 if (unlikely(!si->cluster_nr--)) {
209 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
210 si->cluster_nr = SWAPFILE_CLUSTER - 1;
211 goto checks;
212 }
7992fde7
HD
213 if (si->flags & SWP_DISCARDABLE) {
214 /*
215 * Start range check on racing allocations, in case
216 * they overlap the cluster we eventually decide on
217 * (we scan without swap_lock to allow preemption).
218 * It's hardly conceivable that cluster_nr could be
219 * wrapped during our scan, but don't depend on it.
220 */
221 if (si->lowest_alloc)
222 goto checks;
223 si->lowest_alloc = si->max;
224 si->highest_alloc = 0;
225 }
5d337b91 226 spin_unlock(&swap_lock);
7dfad418 227
c60aa176
HD
228 /*
229 * If seek is expensive, start searching for new cluster from
230 * start of partition, to minimize the span of allocated swap.
231 * But if seek is cheap, search from our current position, so
232 * that swap is allocated from all over the partition: if the
233 * Flash Translation Layer only remaps within limited zones,
234 * we don't want to wear out the first zone too quickly.
235 */
236 if (!(si->flags & SWP_SOLIDSTATE))
237 scan_base = offset = si->lowest_bit;
7dfad418
HD
238 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
239
240 /* Locate the first empty (unaligned) cluster */
241 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 242 if (si->swap_map[offset])
7dfad418
HD
243 last_in_cluster = offset + SWAPFILE_CLUSTER;
244 else if (offset == last_in_cluster) {
5d337b91 245 spin_lock(&swap_lock);
ebebbbe9
HD
246 offset -= SWAPFILE_CLUSTER - 1;
247 si->cluster_next = offset;
248 si->cluster_nr = SWAPFILE_CLUSTER - 1;
7992fde7 249 found_free_cluster = 1;
ebebbbe9 250 goto checks;
1da177e4 251 }
048c27fd
HD
252 if (unlikely(--latency_ration < 0)) {
253 cond_resched();
254 latency_ration = LATENCY_LIMIT;
255 }
7dfad418 256 }
ebebbbe9
HD
257
258 offset = si->lowest_bit;
c60aa176
HD
259 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
260
261 /* Locate the first empty (unaligned) cluster */
262 for (; last_in_cluster < scan_base; offset++) {
263 if (si->swap_map[offset])
264 last_in_cluster = offset + SWAPFILE_CLUSTER;
265 else if (offset == last_in_cluster) {
266 spin_lock(&swap_lock);
267 offset -= SWAPFILE_CLUSTER - 1;
268 si->cluster_next = offset;
269 si->cluster_nr = SWAPFILE_CLUSTER - 1;
270 found_free_cluster = 1;
271 goto checks;
272 }
273 if (unlikely(--latency_ration < 0)) {
274 cond_resched();
275 latency_ration = LATENCY_LIMIT;
276 }
277 }
278
279 offset = scan_base;
5d337b91 280 spin_lock(&swap_lock);
ebebbbe9 281 si->cluster_nr = SWAPFILE_CLUSTER - 1;
7992fde7 282 si->lowest_alloc = 0;
1da177e4 283 }
7dfad418 284
ebebbbe9
HD
285checks:
286 if (!(si->flags & SWP_WRITEOK))
52b7efdb 287 goto no_page;
7dfad418
HD
288 if (!si->highest_bit)
289 goto no_page;
ebebbbe9 290 if (offset > si->highest_bit)
c60aa176 291 scan_base = offset = si->lowest_bit;
c9e44410 292
b73d7fce
HD
293 /* reuse swap entry of cache-only swap if not busy. */
294 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410
KH
295 int swap_was_freed;
296 spin_unlock(&swap_lock);
297 swap_was_freed = __try_to_reclaim_swap(si, offset);
298 spin_lock(&swap_lock);
299 /* entry was freed successfully, try to use this again */
300 if (swap_was_freed)
301 goto checks;
302 goto scan; /* check next one */
303 }
304
ebebbbe9
HD
305 if (si->swap_map[offset])
306 goto scan;
307
308 if (offset == si->lowest_bit)
309 si->lowest_bit++;
310 if (offset == si->highest_bit)
311 si->highest_bit--;
312 si->inuse_pages++;
313 if (si->inuse_pages == si->pages) {
314 si->lowest_bit = si->max;
315 si->highest_bit = 0;
1da177e4 316 }
253d553b 317 si->swap_map[offset] = usage;
ebebbbe9
HD
318 si->cluster_next = offset + 1;
319 si->flags -= SWP_SCANNING;
7992fde7
HD
320
321 if (si->lowest_alloc) {
322 /*
323 * Only set when SWP_DISCARDABLE, and there's a scan
324 * for a free cluster in progress or just completed.
325 */
326 if (found_free_cluster) {
327 /*
328 * To optimize wear-levelling, discard the
329 * old data of the cluster, taking care not to
330 * discard any of its pages that have already
331 * been allocated by racing tasks (offset has
332 * already stepped over any at the beginning).
333 */
334 if (offset < si->highest_alloc &&
335 si->lowest_alloc <= last_in_cluster)
336 last_in_cluster = si->lowest_alloc - 1;
337 si->flags |= SWP_DISCARDING;
338 spin_unlock(&swap_lock);
339
340 if (offset < last_in_cluster)
341 discard_swap_cluster(si, offset,
342 last_in_cluster - offset + 1);
343
344 spin_lock(&swap_lock);
345 si->lowest_alloc = 0;
346 si->flags &= ~SWP_DISCARDING;
347
348 smp_mb(); /* wake_up_bit advises this */
349 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
350
351 } else if (si->flags & SWP_DISCARDING) {
352 /*
353 * Delay using pages allocated by racing tasks
354 * until the whole discard has been issued. We
355 * could defer that delay until swap_writepage,
356 * but it's easier to keep this self-contained.
357 */
358 spin_unlock(&swap_lock);
359 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
360 wait_for_discard, TASK_UNINTERRUPTIBLE);
361 spin_lock(&swap_lock);
362 } else {
363 /*
364 * Note pages allocated by racing tasks while
365 * scan for a free cluster is in progress, so
366 * that its final discard can exclude them.
367 */
368 if (offset < si->lowest_alloc)
369 si->lowest_alloc = offset;
370 if (offset > si->highest_alloc)
371 si->highest_alloc = offset;
372 }
373 }
ebebbbe9 374 return offset;
7dfad418 375
ebebbbe9 376scan:
5d337b91 377 spin_unlock(&swap_lock);
7dfad418 378 while (++offset <= si->highest_bit) {
52b7efdb 379 if (!si->swap_map[offset]) {
5d337b91 380 spin_lock(&swap_lock);
52b7efdb
HD
381 goto checks;
382 }
c9e44410
KH
383 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
384 spin_lock(&swap_lock);
385 goto checks;
386 }
048c27fd
HD
387 if (unlikely(--latency_ration < 0)) {
388 cond_resched();
389 latency_ration = LATENCY_LIMIT;
390 }
7dfad418 391 }
c60aa176
HD
392 offset = si->lowest_bit;
393 while (++offset < scan_base) {
394 if (!si->swap_map[offset]) {
395 spin_lock(&swap_lock);
396 goto checks;
397 }
c9e44410
KH
398 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
399 spin_lock(&swap_lock);
400 goto checks;
401 }
c60aa176
HD
402 if (unlikely(--latency_ration < 0)) {
403 cond_resched();
404 latency_ration = LATENCY_LIMIT;
405 }
406 }
5d337b91 407 spin_lock(&swap_lock);
7dfad418
HD
408
409no_page:
52b7efdb 410 si->flags -= SWP_SCANNING;
1da177e4
LT
411 return 0;
412}
413
414swp_entry_t get_swap_page(void)
415{
fb4f88dc
HD
416 struct swap_info_struct *si;
417 pgoff_t offset;
418 int type, next;
419 int wrapped = 0;
1da177e4 420
5d337b91 421 spin_lock(&swap_lock);
1da177e4 422 if (nr_swap_pages <= 0)
fb4f88dc
HD
423 goto noswap;
424 nr_swap_pages--;
425
426 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
efa90a98 427 si = swap_info[type];
fb4f88dc
HD
428 next = si->next;
429 if (next < 0 ||
efa90a98 430 (!wrapped && si->prio != swap_info[next]->prio)) {
fb4f88dc
HD
431 next = swap_list.head;
432 wrapped++;
1da177e4 433 }
fb4f88dc
HD
434
435 if (!si->highest_bit)
436 continue;
437 if (!(si->flags & SWP_WRITEOK))
438 continue;
439
440 swap_list.next = next;
355cfa73 441 /* This is called for allocating swap entry for cache */
253d553b 442 offset = scan_swap_map(si, SWAP_HAS_CACHE);
5d337b91
HD
443 if (offset) {
444 spin_unlock(&swap_lock);
fb4f88dc 445 return swp_entry(type, offset);
5d337b91 446 }
fb4f88dc 447 next = swap_list.next;
1da177e4 448 }
fb4f88dc
HD
449
450 nr_swap_pages++;
451noswap:
5d337b91 452 spin_unlock(&swap_lock);
fb4f88dc 453 return (swp_entry_t) {0};
1da177e4
LT
454}
455
910321ea
HD
456/* The only caller of this function is now susupend routine */
457swp_entry_t get_swap_page_of_type(int type)
458{
459 struct swap_info_struct *si;
460 pgoff_t offset;
461
462 spin_lock(&swap_lock);
463 si = swap_info[type];
464 if (si && (si->flags & SWP_WRITEOK)) {
465 nr_swap_pages--;
466 /* This is called for allocating swap entry, not cache */
467 offset = scan_swap_map(si, 1);
468 if (offset) {
469 spin_unlock(&swap_lock);
470 return swp_entry(type, offset);
471 }
472 nr_swap_pages++;
473 }
474 spin_unlock(&swap_lock);
475 return (swp_entry_t) {0};
476}
477
73c34b6a 478static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1da177e4 479{
73c34b6a 480 struct swap_info_struct *p;
1da177e4
LT
481 unsigned long offset, type;
482
483 if (!entry.val)
484 goto out;
485 type = swp_type(entry);
486 if (type >= nr_swapfiles)
487 goto bad_nofile;
efa90a98 488 p = swap_info[type];
1da177e4
LT
489 if (!(p->flags & SWP_USED))
490 goto bad_device;
491 offset = swp_offset(entry);
492 if (offset >= p->max)
493 goto bad_offset;
494 if (!p->swap_map[offset])
495 goto bad_free;
5d337b91 496 spin_lock(&swap_lock);
1da177e4
LT
497 return p;
498
499bad_free:
500 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
501 goto out;
502bad_offset:
503 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
504 goto out;
505bad_device:
506 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
507 goto out;
508bad_nofile:
509 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
510out:
511 return NULL;
886bb7e9 512}
1da177e4 513
8d69aaee
HD
514static unsigned char swap_entry_free(struct swap_info_struct *p,
515 swp_entry_t entry, unsigned char usage)
1da177e4 516{
253d553b 517 unsigned long offset = swp_offset(entry);
8d69aaee
HD
518 unsigned char count;
519 unsigned char has_cache;
355cfa73 520
253d553b
HD
521 count = p->swap_map[offset];
522 has_cache = count & SWAP_HAS_CACHE;
523 count &= ~SWAP_HAS_CACHE;
355cfa73 524
253d553b 525 if (usage == SWAP_HAS_CACHE) {
355cfa73 526 VM_BUG_ON(!has_cache);
253d553b 527 has_cache = 0;
aaa46865
HD
528 } else if (count == SWAP_MAP_SHMEM) {
529 /*
530 * Or we could insist on shmem.c using a special
531 * swap_shmem_free() and free_shmem_swap_and_cache()...
532 */
533 count = 0;
570a335b
HD
534 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
535 if (count == COUNT_CONTINUED) {
536 if (swap_count_continued(p, offset, count))
537 count = SWAP_MAP_MAX | COUNT_CONTINUED;
538 else
539 count = SWAP_MAP_MAX;
540 } else
541 count--;
542 }
253d553b
HD
543
544 if (!count)
545 mem_cgroup_uncharge_swap(entry);
546
547 usage = count | has_cache;
548 p->swap_map[offset] = usage;
355cfa73 549
355cfa73 550 /* free if no reference */
253d553b 551 if (!usage) {
b3a27d05 552 struct gendisk *disk = p->bdev->bd_disk;
355cfa73
KH
553 if (offset < p->lowest_bit)
554 p->lowest_bit = offset;
555 if (offset > p->highest_bit)
556 p->highest_bit = offset;
efa90a98
HD
557 if (swap_list.next >= 0 &&
558 p->prio > swap_info[swap_list.next]->prio)
559 swap_list.next = p->type;
355cfa73
KH
560 nr_swap_pages++;
561 p->inuse_pages--;
38b5faf4 562 frontswap_invalidate_page(p->type, offset);
b3a27d05
NG
563 if ((p->flags & SWP_BLKDEV) &&
564 disk->fops->swap_slot_free_notify)
565 disk->fops->swap_slot_free_notify(p->bdev, offset);
1da177e4 566 }
253d553b
HD
567
568 return usage;
1da177e4
LT
569}
570
571/*
572 * Caller has made sure that the swapdevice corresponding to entry
573 * is still around or has not been recycled.
574 */
575void swap_free(swp_entry_t entry)
576{
73c34b6a 577 struct swap_info_struct *p;
1da177e4
LT
578
579 p = swap_info_get(entry);
580 if (p) {
253d553b 581 swap_entry_free(p, entry, 1);
5d337b91 582 spin_unlock(&swap_lock);
1da177e4
LT
583 }
584}
585
cb4b86ba
KH
586/*
587 * Called after dropping swapcache to decrease refcnt to swap entries.
588 */
589void swapcache_free(swp_entry_t entry, struct page *page)
590{
355cfa73 591 struct swap_info_struct *p;
8d69aaee 592 unsigned char count;
355cfa73 593
355cfa73
KH
594 p = swap_info_get(entry);
595 if (p) {
253d553b
HD
596 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
597 if (page)
598 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
355cfa73
KH
599 spin_unlock(&swap_lock);
600 }
cb4b86ba
KH
601}
602
1da177e4 603/*
c475a8ab 604 * How many references to page are currently swapped out?
570a335b
HD
605 * This does not give an exact answer when swap count is continued,
606 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 607 */
bde05d1c 608int page_swapcount(struct page *page)
1da177e4 609{
c475a8ab
HD
610 int count = 0;
611 struct swap_info_struct *p;
1da177e4
LT
612 swp_entry_t entry;
613
4c21e2f2 614 entry.val = page_private(page);
1da177e4
LT
615 p = swap_info_get(entry);
616 if (p) {
355cfa73 617 count = swap_count(p->swap_map[swp_offset(entry)]);
5d337b91 618 spin_unlock(&swap_lock);
1da177e4 619 }
c475a8ab 620 return count;
1da177e4
LT
621}
622
623/*
7b1fe597
HD
624 * We can write to an anon page without COW if there are no other references
625 * to it. And as a side-effect, free up its swap: because the old content
626 * on disk will never be read, and seeking back there to write new content
627 * later would only waste time away from clustering.
1da177e4 628 */
7b1fe597 629int reuse_swap_page(struct page *page)
1da177e4 630{
c475a8ab
HD
631 int count;
632
51726b12 633 VM_BUG_ON(!PageLocked(page));
5ad64688
HD
634 if (unlikely(PageKsm(page)))
635 return 0;
c475a8ab 636 count = page_mapcount(page);
7b1fe597 637 if (count <= 1 && PageSwapCache(page)) {
c475a8ab 638 count += page_swapcount(page);
7b1fe597
HD
639 if (count == 1 && !PageWriteback(page)) {
640 delete_from_swap_cache(page);
641 SetPageDirty(page);
642 }
643 }
5ad64688 644 return count <= 1;
1da177e4
LT
645}
646
647/*
a2c43eed
HD
648 * If swap is getting full, or if there are no more mappings of this page,
649 * then try_to_free_swap is called to free its swap space.
1da177e4 650 */
a2c43eed 651int try_to_free_swap(struct page *page)
1da177e4 652{
51726b12 653 VM_BUG_ON(!PageLocked(page));
1da177e4
LT
654
655 if (!PageSwapCache(page))
656 return 0;
657 if (PageWriteback(page))
658 return 0;
a2c43eed 659 if (page_swapcount(page))
1da177e4
LT
660 return 0;
661
b73d7fce
HD
662 /*
663 * Once hibernation has begun to create its image of memory,
664 * there's a danger that one of the calls to try_to_free_swap()
665 * - most probably a call from __try_to_reclaim_swap() while
666 * hibernation is allocating its own swap pages for the image,
667 * but conceivably even a call from memory reclaim - will free
668 * the swap from a page which has already been recorded in the
669 * image as a clean swapcache page, and then reuse its swap for
670 * another page of the image. On waking from hibernation, the
671 * original page might be freed under memory pressure, then
672 * later read back in from swap, now with the wrong data.
673 *
f90ac398
MG
674 * Hibration suspends storage while it is writing the image
675 * to disk so check that here.
b73d7fce 676 */
f90ac398 677 if (pm_suspended_storage())
b73d7fce
HD
678 return 0;
679
a2c43eed
HD
680 delete_from_swap_cache(page);
681 SetPageDirty(page);
682 return 1;
68a22394
RR
683}
684
1da177e4
LT
685/*
686 * Free the swap entry like above, but also try to
687 * free the page cache entry if it is the last user.
688 */
2509ef26 689int free_swap_and_cache(swp_entry_t entry)
1da177e4 690{
2509ef26 691 struct swap_info_struct *p;
1da177e4
LT
692 struct page *page = NULL;
693
a7420aa5 694 if (non_swap_entry(entry))
2509ef26 695 return 1;
0697212a 696
1da177e4
LT
697 p = swap_info_get(entry);
698 if (p) {
253d553b 699 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
93fac704 700 page = find_get_page(&swapper_space, entry.val);
8413ac9d 701 if (page && !trylock_page(page)) {
93fac704
NP
702 page_cache_release(page);
703 page = NULL;
704 }
705 }
5d337b91 706 spin_unlock(&swap_lock);
1da177e4
LT
707 }
708 if (page) {
a2c43eed
HD
709 /*
710 * Not mapped elsewhere, or swap space full? Free it!
711 * Also recheck PageSwapCache now page is locked (above).
712 */
93fac704 713 if (PageSwapCache(page) && !PageWriteback(page) &&
a2c43eed 714 (!page_mapped(page) || vm_swap_full())) {
1da177e4
LT
715 delete_from_swap_cache(page);
716 SetPageDirty(page);
717 }
718 unlock_page(page);
719 page_cache_release(page);
720 }
2509ef26 721 return p != NULL;
1da177e4
LT
722}
723
b0cb1a19 724#ifdef CONFIG_HIBERNATION
f577eb30 725/*
915bae9e 726 * Find the swap type that corresponds to given device (if any).
f577eb30 727 *
915bae9e
RW
728 * @offset - number of the PAGE_SIZE-sized block of the device, starting
729 * from 0, in which the swap header is expected to be located.
730 *
731 * This is needed for the suspend to disk (aka swsusp).
f577eb30 732 */
7bf23687 733int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 734{
915bae9e 735 struct block_device *bdev = NULL;
efa90a98 736 int type;
f577eb30 737
915bae9e
RW
738 if (device)
739 bdev = bdget(device);
740
f577eb30 741 spin_lock(&swap_lock);
efa90a98
HD
742 for (type = 0; type < nr_swapfiles; type++) {
743 struct swap_info_struct *sis = swap_info[type];
f577eb30 744
915bae9e 745 if (!(sis->flags & SWP_WRITEOK))
f577eb30 746 continue;
b6b5bce3 747
915bae9e 748 if (!bdev) {
7bf23687 749 if (bdev_p)
dddac6a7 750 *bdev_p = bdgrab(sis->bdev);
7bf23687 751
6e1819d6 752 spin_unlock(&swap_lock);
efa90a98 753 return type;
6e1819d6 754 }
915bae9e 755 if (bdev == sis->bdev) {
9625a5f2 756 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 757
915bae9e 758 if (se->start_block == offset) {
7bf23687 759 if (bdev_p)
dddac6a7 760 *bdev_p = bdgrab(sis->bdev);
7bf23687 761
915bae9e
RW
762 spin_unlock(&swap_lock);
763 bdput(bdev);
efa90a98 764 return type;
915bae9e 765 }
f577eb30
RW
766 }
767 }
768 spin_unlock(&swap_lock);
915bae9e
RW
769 if (bdev)
770 bdput(bdev);
771
f577eb30
RW
772 return -ENODEV;
773}
774
73c34b6a
HD
775/*
776 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
777 * corresponding to given index in swap_info (swap type).
778 */
779sector_t swapdev_block(int type, pgoff_t offset)
780{
781 struct block_device *bdev;
782
783 if ((unsigned int)type >= nr_swapfiles)
784 return 0;
785 if (!(swap_info[type]->flags & SWP_WRITEOK))
786 return 0;
d4906e1a 787 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
788}
789
f577eb30
RW
790/*
791 * Return either the total number of swap pages of given type, or the number
792 * of free pages of that type (depending on @free)
793 *
794 * This is needed for software suspend
795 */
796unsigned int count_swap_pages(int type, int free)
797{
798 unsigned int n = 0;
799
efa90a98
HD
800 spin_lock(&swap_lock);
801 if ((unsigned int)type < nr_swapfiles) {
802 struct swap_info_struct *sis = swap_info[type];
803
804 if (sis->flags & SWP_WRITEOK) {
805 n = sis->pages;
f577eb30 806 if (free)
efa90a98 807 n -= sis->inuse_pages;
f577eb30 808 }
f577eb30 809 }
efa90a98 810 spin_unlock(&swap_lock);
f577eb30
RW
811 return n;
812}
73c34b6a 813#endif /* CONFIG_HIBERNATION */
f577eb30 814
1da177e4 815/*
72866f6f
HD
816 * No need to decide whether this PTE shares the swap entry with others,
817 * just let do_wp_page work it out if a write is requested later - to
818 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 819 */
044d66c1 820static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
821 unsigned long addr, swp_entry_t entry, struct page *page)
822{
72835c86 823 struct mem_cgroup *memcg;
044d66c1
HD
824 spinlock_t *ptl;
825 pte_t *pte;
826 int ret = 1;
827
72835c86
JW
828 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
829 GFP_KERNEL, &memcg)) {
044d66c1 830 ret = -ENOMEM;
85d9fc89
KH
831 goto out_nolock;
832 }
044d66c1
HD
833
834 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
835 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
836 if (ret > 0)
72835c86 837 mem_cgroup_cancel_charge_swapin(memcg);
044d66c1
HD
838 ret = 0;
839 goto out;
840 }
8a9f3ccd 841
b084d435 842 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 843 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
844 get_page(page);
845 set_pte_at(vma->vm_mm, addr, pte,
846 pte_mkold(mk_pte(page, vma->vm_page_prot)));
847 page_add_anon_rmap(page, vma, addr);
72835c86 848 mem_cgroup_commit_charge_swapin(page, memcg);
1da177e4
LT
849 swap_free(entry);
850 /*
851 * Move the page to the active list so it is not
852 * immediately swapped out again after swapon.
853 */
854 activate_page(page);
044d66c1
HD
855out:
856 pte_unmap_unlock(pte, ptl);
85d9fc89 857out_nolock:
044d66c1 858 return ret;
1da177e4
LT
859}
860
861static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
862 unsigned long addr, unsigned long end,
863 swp_entry_t entry, struct page *page)
864{
1da177e4 865 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 866 pte_t *pte;
8a9f3ccd 867 int ret = 0;
1da177e4 868
044d66c1
HD
869 /*
870 * We don't actually need pte lock while scanning for swp_pte: since
871 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
872 * page table while we're scanning; though it could get zapped, and on
873 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
874 * of unmatched parts which look like swp_pte, so unuse_pte must
875 * recheck under pte lock. Scanning without pte lock lets it be
876 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
877 */
878 pte = pte_offset_map(pmd, addr);
1da177e4
LT
879 do {
880 /*
881 * swapoff spends a _lot_ of time in this loop!
882 * Test inline before going to call unuse_pte.
883 */
884 if (unlikely(pte_same(*pte, swp_pte))) {
044d66c1
HD
885 pte_unmap(pte);
886 ret = unuse_pte(vma, pmd, addr, entry, page);
887 if (ret)
888 goto out;
889 pte = pte_offset_map(pmd, addr);
1da177e4
LT
890 }
891 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
892 pte_unmap(pte - 1);
893out:
8a9f3ccd 894 return ret;
1da177e4
LT
895}
896
897static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
898 unsigned long addr, unsigned long end,
899 swp_entry_t entry, struct page *page)
900{
901 pmd_t *pmd;
902 unsigned long next;
8a9f3ccd 903 int ret;
1da177e4
LT
904
905 pmd = pmd_offset(pud, addr);
906 do {
907 next = pmd_addr_end(addr, end);
1a5a9906 908 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 909 continue;
8a9f3ccd
BS
910 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
911 if (ret)
912 return ret;
1da177e4
LT
913 } while (pmd++, addr = next, addr != end);
914 return 0;
915}
916
917static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
918 unsigned long addr, unsigned long end,
919 swp_entry_t entry, struct page *page)
920{
921 pud_t *pud;
922 unsigned long next;
8a9f3ccd 923 int ret;
1da177e4
LT
924
925 pud = pud_offset(pgd, addr);
926 do {
927 next = pud_addr_end(addr, end);
928 if (pud_none_or_clear_bad(pud))
929 continue;
8a9f3ccd
BS
930 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
931 if (ret)
932 return ret;
1da177e4
LT
933 } while (pud++, addr = next, addr != end);
934 return 0;
935}
936
937static int unuse_vma(struct vm_area_struct *vma,
938 swp_entry_t entry, struct page *page)
939{
940 pgd_t *pgd;
941 unsigned long addr, end, next;
8a9f3ccd 942 int ret;
1da177e4 943
3ca7b3c5 944 if (page_anon_vma(page)) {
1da177e4
LT
945 addr = page_address_in_vma(page, vma);
946 if (addr == -EFAULT)
947 return 0;
948 else
949 end = addr + PAGE_SIZE;
950 } else {
951 addr = vma->vm_start;
952 end = vma->vm_end;
953 }
954
955 pgd = pgd_offset(vma->vm_mm, addr);
956 do {
957 next = pgd_addr_end(addr, end);
958 if (pgd_none_or_clear_bad(pgd))
959 continue;
8a9f3ccd
BS
960 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
961 if (ret)
962 return ret;
1da177e4
LT
963 } while (pgd++, addr = next, addr != end);
964 return 0;
965}
966
967static int unuse_mm(struct mm_struct *mm,
968 swp_entry_t entry, struct page *page)
969{
970 struct vm_area_struct *vma;
8a9f3ccd 971 int ret = 0;
1da177e4
LT
972
973 if (!down_read_trylock(&mm->mmap_sem)) {
974 /*
7d03431c
FLVC
975 * Activate page so shrink_inactive_list is unlikely to unmap
976 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 977 */
c475a8ab 978 activate_page(page);
1da177e4
LT
979 unlock_page(page);
980 down_read(&mm->mmap_sem);
981 lock_page(page);
982 }
1da177e4 983 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 984 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4
LT
985 break;
986 }
1da177e4 987 up_read(&mm->mmap_sem);
8a9f3ccd 988 return (ret < 0)? ret: 0;
1da177e4
LT
989}
990
991/*
38b5faf4
DM
992 * Scan swap_map (or frontswap_map if frontswap parameter is true)
993 * from current position to next entry still in use.
1da177e4
LT
994 * Recycle to start on reaching the end, returning 0 when empty.
995 */
6eb396dc 996static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 997 unsigned int prev, bool frontswap)
1da177e4 998{
6eb396dc
HD
999 unsigned int max = si->max;
1000 unsigned int i = prev;
8d69aaee 1001 unsigned char count;
1da177e4
LT
1002
1003 /*
5d337b91 1004 * No need for swap_lock here: we're just looking
1da177e4
LT
1005 * for whether an entry is in use, not modifying it; false
1006 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 1007 * allocations from this area (while holding swap_lock).
1da177e4
LT
1008 */
1009 for (;;) {
1010 if (++i >= max) {
1011 if (!prev) {
1012 i = 0;
1013 break;
1014 }
1015 /*
1016 * No entries in use at top of swap_map,
1017 * loop back to start and recheck there.
1018 */
1019 max = prev + 1;
1020 prev = 0;
1021 i = 1;
1022 }
38b5faf4
DM
1023 if (frontswap) {
1024 if (frontswap_test(si, i))
1025 break;
1026 else
1027 continue;
1028 }
1da177e4 1029 count = si->swap_map[i];
355cfa73 1030 if (count && swap_count(count) != SWAP_MAP_BAD)
1da177e4
LT
1031 break;
1032 }
1033 return i;
1034}
1035
1036/*
1037 * We completely avoid races by reading each swap page in advance,
1038 * and then search for the process using it. All the necessary
1039 * page table adjustments can then be made atomically.
38b5faf4
DM
1040 *
1041 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1042 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 1043 */
38b5faf4
DM
1044int try_to_unuse(unsigned int type, bool frontswap,
1045 unsigned long pages_to_unuse)
1da177e4 1046{
efa90a98 1047 struct swap_info_struct *si = swap_info[type];
1da177e4 1048 struct mm_struct *start_mm;
8d69aaee
HD
1049 unsigned char *swap_map;
1050 unsigned char swcount;
1da177e4
LT
1051 struct page *page;
1052 swp_entry_t entry;
6eb396dc 1053 unsigned int i = 0;
1da177e4 1054 int retval = 0;
1da177e4
LT
1055
1056 /*
1057 * When searching mms for an entry, a good strategy is to
1058 * start at the first mm we freed the previous entry from
1059 * (though actually we don't notice whether we or coincidence
1060 * freed the entry). Initialize this start_mm with a hold.
1061 *
1062 * A simpler strategy would be to start at the last mm we
1063 * freed the previous entry from; but that would take less
1064 * advantage of mmlist ordering, which clusters forked mms
1065 * together, child after parent. If we race with dup_mmap(), we
1066 * prefer to resolve parent before child, lest we miss entries
1067 * duplicated after we scanned child: using last mm would invert
570a335b 1068 * that.
1da177e4
LT
1069 */
1070 start_mm = &init_mm;
1071 atomic_inc(&init_mm.mm_users);
1072
1073 /*
1074 * Keep on scanning until all entries have gone. Usually,
1075 * one pass through swap_map is enough, but not necessarily:
1076 * there are races when an instance of an entry might be missed.
1077 */
38b5faf4 1078 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4
LT
1079 if (signal_pending(current)) {
1080 retval = -EINTR;
1081 break;
1082 }
1083
886bb7e9 1084 /*
1da177e4
LT
1085 * Get a page for the entry, using the existing swap
1086 * cache page if there is one. Otherwise, get a clean
886bb7e9 1087 * page and read the swap into it.
1da177e4
LT
1088 */
1089 swap_map = &si->swap_map[i];
1090 entry = swp_entry(type, i);
02098fea
HD
1091 page = read_swap_cache_async(entry,
1092 GFP_HIGHUSER_MOVABLE, NULL, 0);
1da177e4
LT
1093 if (!page) {
1094 /*
1095 * Either swap_duplicate() failed because entry
1096 * has been freed independently, and will not be
1097 * reused since sys_swapoff() already disabled
1098 * allocation from here, or alloc_page() failed.
1099 */
1100 if (!*swap_map)
1101 continue;
1102 retval = -ENOMEM;
1103 break;
1104 }
1105
1106 /*
1107 * Don't hold on to start_mm if it looks like exiting.
1108 */
1109 if (atomic_read(&start_mm->mm_users) == 1) {
1110 mmput(start_mm);
1111 start_mm = &init_mm;
1112 atomic_inc(&init_mm.mm_users);
1113 }
1114
1115 /*
1116 * Wait for and lock page. When do_swap_page races with
1117 * try_to_unuse, do_swap_page can handle the fault much
1118 * faster than try_to_unuse can locate the entry. This
1119 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1120 * defer to do_swap_page in such a case - in some tests,
1121 * do_swap_page and try_to_unuse repeatedly compete.
1122 */
1123 wait_on_page_locked(page);
1124 wait_on_page_writeback(page);
1125 lock_page(page);
1126 wait_on_page_writeback(page);
1127
1128 /*
1129 * Remove all references to entry.
1da177e4 1130 */
1da177e4 1131 swcount = *swap_map;
aaa46865
HD
1132 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1133 retval = shmem_unuse(entry, page);
1134 /* page has already been unlocked and released */
1135 if (retval < 0)
1136 break;
1137 continue;
1da177e4 1138 }
aaa46865
HD
1139 if (swap_count(swcount) && start_mm != &init_mm)
1140 retval = unuse_mm(start_mm, entry, page);
1141
355cfa73 1142 if (swap_count(*swap_map)) {
1da177e4
LT
1143 int set_start_mm = (*swap_map >= swcount);
1144 struct list_head *p = &start_mm->mmlist;
1145 struct mm_struct *new_start_mm = start_mm;
1146 struct mm_struct *prev_mm = start_mm;
1147 struct mm_struct *mm;
1148
1149 atomic_inc(&new_start_mm->mm_users);
1150 atomic_inc(&prev_mm->mm_users);
1151 spin_lock(&mmlist_lock);
aaa46865 1152 while (swap_count(*swap_map) && !retval &&
1da177e4
LT
1153 (p = p->next) != &start_mm->mmlist) {
1154 mm = list_entry(p, struct mm_struct, mmlist);
70af7c5c 1155 if (!atomic_inc_not_zero(&mm->mm_users))
1da177e4 1156 continue;
1da177e4
LT
1157 spin_unlock(&mmlist_lock);
1158 mmput(prev_mm);
1159 prev_mm = mm;
1160
1161 cond_resched();
1162
1163 swcount = *swap_map;
355cfa73 1164 if (!swap_count(swcount)) /* any usage ? */
1da177e4 1165 ;
aaa46865 1166 else if (mm == &init_mm)
1da177e4 1167 set_start_mm = 1;
aaa46865 1168 else
1da177e4 1169 retval = unuse_mm(mm, entry, page);
355cfa73 1170
32c5fc10 1171 if (set_start_mm && *swap_map < swcount) {
1da177e4
LT
1172 mmput(new_start_mm);
1173 atomic_inc(&mm->mm_users);
1174 new_start_mm = mm;
1175 set_start_mm = 0;
1176 }
1177 spin_lock(&mmlist_lock);
1178 }
1179 spin_unlock(&mmlist_lock);
1180 mmput(prev_mm);
1181 mmput(start_mm);
1182 start_mm = new_start_mm;
1183 }
1184 if (retval) {
1185 unlock_page(page);
1186 page_cache_release(page);
1187 break;
1188 }
1189
1da177e4
LT
1190 /*
1191 * If a reference remains (rare), we would like to leave
1192 * the page in the swap cache; but try_to_unmap could
1193 * then re-duplicate the entry once we drop page lock,
1194 * so we might loop indefinitely; also, that page could
1195 * not be swapped out to other storage meanwhile. So:
1196 * delete from cache even if there's another reference,
1197 * after ensuring that the data has been saved to disk -
1198 * since if the reference remains (rarer), it will be
1199 * read from disk into another page. Splitting into two
1200 * pages would be incorrect if swap supported "shared
1201 * private" pages, but they are handled by tmpfs files.
5ad64688
HD
1202 *
1203 * Given how unuse_vma() targets one particular offset
1204 * in an anon_vma, once the anon_vma has been determined,
1205 * this splitting happens to be just what is needed to
1206 * handle where KSM pages have been swapped out: re-reading
1207 * is unnecessarily slow, but we can fix that later on.
1da177e4 1208 */
355cfa73
KH
1209 if (swap_count(*swap_map) &&
1210 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
1211 struct writeback_control wbc = {
1212 .sync_mode = WB_SYNC_NONE,
1213 };
1214
1215 swap_writepage(page, &wbc);
1216 lock_page(page);
1217 wait_on_page_writeback(page);
1218 }
68bdc8d6
HD
1219
1220 /*
1221 * It is conceivable that a racing task removed this page from
1222 * swap cache just before we acquired the page lock at the top,
1223 * or while we dropped it in unuse_mm(). The page might even
1224 * be back in swap cache on another swap area: that we must not
1225 * delete, since it may not have been written out to swap yet.
1226 */
1227 if (PageSwapCache(page) &&
1228 likely(page_private(page) == entry.val))
2e0e26c7 1229 delete_from_swap_cache(page);
1da177e4
LT
1230
1231 /*
1232 * So we could skip searching mms once swap count went
1233 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 1234 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
1235 */
1236 SetPageDirty(page);
1237 unlock_page(page);
1238 page_cache_release(page);
1239
1240 /*
1241 * Make sure that we aren't completely killing
1242 * interactive performance.
1243 */
1244 cond_resched();
38b5faf4
DM
1245 if (frontswap && pages_to_unuse > 0) {
1246 if (!--pages_to_unuse)
1247 break;
1248 }
1da177e4
LT
1249 }
1250
1251 mmput(start_mm);
1da177e4
LT
1252 return retval;
1253}
1254
1255/*
5d337b91
HD
1256 * After a successful try_to_unuse, if no swap is now in use, we know
1257 * we can empty the mmlist. swap_lock must be held on entry and exit.
1258 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
1259 * added to the mmlist just after page_duplicate - before would be racy.
1260 */
1261static void drain_mmlist(void)
1262{
1263 struct list_head *p, *next;
efa90a98 1264 unsigned int type;
1da177e4 1265
efa90a98
HD
1266 for (type = 0; type < nr_swapfiles; type++)
1267 if (swap_info[type]->inuse_pages)
1da177e4
LT
1268 return;
1269 spin_lock(&mmlist_lock);
1270 list_for_each_safe(p, next, &init_mm.mmlist)
1271 list_del_init(p);
1272 spin_unlock(&mmlist_lock);
1273}
1274
1275/*
1276 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
1277 * corresponds to page offset for the specified swap entry.
1278 * Note that the type of this function is sector_t, but it returns page offset
1279 * into the bdev, not sector offset.
1da177e4 1280 */
d4906e1a 1281static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 1282{
f29ad6a9
HD
1283 struct swap_info_struct *sis;
1284 struct swap_extent *start_se;
1285 struct swap_extent *se;
1286 pgoff_t offset;
1287
efa90a98 1288 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
1289 *bdev = sis->bdev;
1290
1291 offset = swp_offset(entry);
1292 start_se = sis->curr_swap_extent;
1293 se = start_se;
1da177e4
LT
1294
1295 for ( ; ; ) {
1296 struct list_head *lh;
1297
1298 if (se->start_page <= offset &&
1299 offset < (se->start_page + se->nr_pages)) {
1300 return se->start_block + (offset - se->start_page);
1301 }
11d31886 1302 lh = se->list.next;
1da177e4
LT
1303 se = list_entry(lh, struct swap_extent, list);
1304 sis->curr_swap_extent = se;
1305 BUG_ON(se == start_se); /* It *must* be present */
1306 }
1307}
1308
d4906e1a
LS
1309/*
1310 * Returns the page offset into bdev for the specified page's swap entry.
1311 */
1312sector_t map_swap_page(struct page *page, struct block_device **bdev)
1313{
1314 swp_entry_t entry;
1315 entry.val = page_private(page);
1316 return map_swap_entry(entry, bdev);
1317}
1318
1da177e4
LT
1319/*
1320 * Free all of a swapdev's extent information
1321 */
1322static void destroy_swap_extents(struct swap_info_struct *sis)
1323{
9625a5f2 1324 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
1325 struct swap_extent *se;
1326
9625a5f2 1327 se = list_entry(sis->first_swap_extent.list.next,
1da177e4
LT
1328 struct swap_extent, list);
1329 list_del(&se->list);
1330 kfree(se);
1331 }
62c230bc
MG
1332
1333 if (sis->flags & SWP_FILE) {
1334 struct file *swap_file = sis->swap_file;
1335 struct address_space *mapping = swap_file->f_mapping;
1336
1337 sis->flags &= ~SWP_FILE;
1338 mapping->a_ops->swap_deactivate(swap_file);
1339 }
1da177e4
LT
1340}
1341
1342/*
1343 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 1344 * extent list. The extent list is kept sorted in page order.
1da177e4 1345 *
11d31886 1346 * This function rather assumes that it is called in ascending page order.
1da177e4 1347 */
a509bc1a 1348int
1da177e4
LT
1349add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1350 unsigned long nr_pages, sector_t start_block)
1351{
1352 struct swap_extent *se;
1353 struct swap_extent *new_se;
1354 struct list_head *lh;
1355
9625a5f2
HD
1356 if (start_page == 0) {
1357 se = &sis->first_swap_extent;
1358 sis->curr_swap_extent = se;
1359 se->start_page = 0;
1360 se->nr_pages = nr_pages;
1361 se->start_block = start_block;
1362 return 1;
1363 } else {
1364 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 1365 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
1366 BUG_ON(se->start_page + se->nr_pages != start_page);
1367 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
1368 /* Merge it */
1369 se->nr_pages += nr_pages;
1370 return 0;
1371 }
1da177e4
LT
1372 }
1373
1374 /*
1375 * No merge. Insert a new extent, preserving ordering.
1376 */
1377 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1378 if (new_se == NULL)
1379 return -ENOMEM;
1380 new_se->start_page = start_page;
1381 new_se->nr_pages = nr_pages;
1382 new_se->start_block = start_block;
1383
9625a5f2 1384 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 1385 return 1;
1da177e4
LT
1386}
1387
1388/*
1389 * A `swap extent' is a simple thing which maps a contiguous range of pages
1390 * onto a contiguous range of disk blocks. An ordered list of swap extents
1391 * is built at swapon time and is then used at swap_writepage/swap_readpage
1392 * time for locating where on disk a page belongs.
1393 *
1394 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1395 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1396 * swap files identically.
1397 *
1398 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1399 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1400 * swapfiles are handled *identically* after swapon time.
1401 *
1402 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1403 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1404 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1405 * requirements, they are simply tossed out - we will never use those blocks
1406 * for swapping.
1407 *
b0d9bcd4 1408 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
1409 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1410 * which will scribble on the fs.
1411 *
1412 * The amount of disk space which a single swap extent represents varies.
1413 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1414 * extents in the list. To avoid much list walking, we cache the previous
1415 * search location in `curr_swap_extent', and start new searches from there.
1416 * This is extremely effective. The average number of iterations in
1417 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1418 */
53092a74 1419static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 1420{
62c230bc
MG
1421 struct file *swap_file = sis->swap_file;
1422 struct address_space *mapping = swap_file->f_mapping;
1423 struct inode *inode = mapping->host;
1da177e4
LT
1424 int ret;
1425
1da177e4
LT
1426 if (S_ISBLK(inode->i_mode)) {
1427 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 1428 *span = sis->pages;
a509bc1a 1429 return ret;
1da177e4
LT
1430 }
1431
62c230bc 1432 if (mapping->a_ops->swap_activate) {
a509bc1a 1433 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
62c230bc
MG
1434 if (!ret) {
1435 sis->flags |= SWP_FILE;
1436 ret = add_swap_extent(sis, 0, sis->max, 0);
1437 *span = sis->pages;
1438 }
a509bc1a 1439 return ret;
62c230bc
MG
1440 }
1441
a509bc1a 1442 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
1443}
1444
40531542 1445static void enable_swap_info(struct swap_info_struct *p, int prio,
38b5faf4
DM
1446 unsigned char *swap_map,
1447 unsigned long *frontswap_map)
40531542
CEB
1448{
1449 int i, prev;
1450
1451 spin_lock(&swap_lock);
1452 if (prio >= 0)
1453 p->prio = prio;
1454 else
1455 p->prio = --least_priority;
1456 p->swap_map = swap_map;
38b5faf4 1457 frontswap_map_set(p, frontswap_map);
40531542
CEB
1458 p->flags |= SWP_WRITEOK;
1459 nr_swap_pages += p->pages;
1460 total_swap_pages += p->pages;
1461
1462 /* insert swap space into swap_list: */
1463 prev = -1;
1464 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1465 if (p->prio >= swap_info[i]->prio)
1466 break;
1467 prev = i;
1468 }
1469 p->next = i;
1470 if (prev < 0)
1471 swap_list.head = swap_list.next = p->type;
1472 else
1473 swap_info[prev]->next = p->type;
38b5faf4 1474 frontswap_init(p->type);
40531542
CEB
1475 spin_unlock(&swap_lock);
1476}
1477
c4ea37c2 1478SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 1479{
73c34b6a 1480 struct swap_info_struct *p = NULL;
8d69aaee 1481 unsigned char *swap_map;
1da177e4
LT
1482 struct file *swap_file, *victim;
1483 struct address_space *mapping;
1484 struct inode *inode;
73c34b6a 1485 char *pathname;
72788c38 1486 int oom_score_adj;
1da177e4
LT
1487 int i, type, prev;
1488 int err;
886bb7e9 1489
1da177e4
LT
1490 if (!capable(CAP_SYS_ADMIN))
1491 return -EPERM;
1492
191c5424
AV
1493 BUG_ON(!current->mm);
1494
1da177e4
LT
1495 pathname = getname(specialfile);
1496 err = PTR_ERR(pathname);
1497 if (IS_ERR(pathname))
1498 goto out;
1499
1500 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1501 putname(pathname);
1502 err = PTR_ERR(victim);
1503 if (IS_ERR(victim))
1504 goto out;
1505
1506 mapping = victim->f_mapping;
1507 prev = -1;
5d337b91 1508 spin_lock(&swap_lock);
efa90a98
HD
1509 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1510 p = swap_info[type];
22c6f8fd 1511 if (p->flags & SWP_WRITEOK) {
1da177e4
LT
1512 if (p->swap_file->f_mapping == mapping)
1513 break;
1514 }
1515 prev = type;
1516 }
1517 if (type < 0) {
1518 err = -EINVAL;
5d337b91 1519 spin_unlock(&swap_lock);
1da177e4
LT
1520 goto out_dput;
1521 }
191c5424 1522 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
1523 vm_unacct_memory(p->pages);
1524 else {
1525 err = -ENOMEM;
5d337b91 1526 spin_unlock(&swap_lock);
1da177e4
LT
1527 goto out_dput;
1528 }
efa90a98 1529 if (prev < 0)
1da177e4 1530 swap_list.head = p->next;
efa90a98
HD
1531 else
1532 swap_info[prev]->next = p->next;
1da177e4
LT
1533 if (type == swap_list.next) {
1534 /* just pick something that's safe... */
1535 swap_list.next = swap_list.head;
1536 }
78ecba08 1537 if (p->prio < 0) {
efa90a98
HD
1538 for (i = p->next; i >= 0; i = swap_info[i]->next)
1539 swap_info[i]->prio = p->prio--;
78ecba08
HD
1540 least_priority++;
1541 }
1da177e4
LT
1542 nr_swap_pages -= p->pages;
1543 total_swap_pages -= p->pages;
1544 p->flags &= ~SWP_WRITEOK;
5d337b91 1545 spin_unlock(&swap_lock);
fb4f88dc 1546
72788c38 1547 oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX);
38b5faf4 1548 err = try_to_unuse(type, false, 0); /* force all pages to be unused */
43362a49 1549 compare_swap_oom_score_adj(OOM_SCORE_ADJ_MAX, oom_score_adj);
1da177e4 1550
1da177e4 1551 if (err) {
40531542
CEB
1552 /*
1553 * reading p->prio and p->swap_map outside the lock is
1554 * safe here because only sys_swapon and sys_swapoff
1555 * change them, and there can be no other sys_swapon or
1556 * sys_swapoff for this swap_info_struct at this point.
1557 */
1da177e4 1558 /* re-insert swap space back into swap_list */
38b5faf4 1559 enable_swap_info(p, p->prio, p->swap_map, frontswap_map_get(p));
1da177e4
LT
1560 goto out_dput;
1561 }
52b7efdb 1562
5d337b91 1563 destroy_swap_extents(p);
570a335b
HD
1564 if (p->flags & SWP_CONTINUED)
1565 free_swap_count_continuations(p);
1566
fc0abb14 1567 mutex_lock(&swapon_mutex);
5d337b91
HD
1568 spin_lock(&swap_lock);
1569 drain_mmlist();
1570
52b7efdb 1571 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
1572 p->highest_bit = 0; /* cuts scans short */
1573 while (p->flags >= SWP_SCANNING) {
5d337b91 1574 spin_unlock(&swap_lock);
13e4b57f 1575 schedule_timeout_uninterruptible(1);
5d337b91 1576 spin_lock(&swap_lock);
52b7efdb 1577 }
52b7efdb 1578
1da177e4
LT
1579 swap_file = p->swap_file;
1580 p->swap_file = NULL;
1581 p->max = 0;
1582 swap_map = p->swap_map;
1583 p->swap_map = NULL;
1584 p->flags = 0;
38b5faf4 1585 frontswap_invalidate_area(type);
5d337b91 1586 spin_unlock(&swap_lock);
fc0abb14 1587 mutex_unlock(&swapon_mutex);
1da177e4 1588 vfree(swap_map);
38b5faf4 1589 vfree(frontswap_map_get(p));
27a7faa0
KH
1590 /* Destroy swap account informatin */
1591 swap_cgroup_swapoff(type);
1592
1da177e4
LT
1593 inode = mapping->host;
1594 if (S_ISBLK(inode->i_mode)) {
1595 struct block_device *bdev = I_BDEV(inode);
1596 set_blocksize(bdev, p->old_block_size);
e525fd89 1597 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 1598 } else {
1b1dcc1b 1599 mutex_lock(&inode->i_mutex);
1da177e4 1600 inode->i_flags &= ~S_SWAPFILE;
1b1dcc1b 1601 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1602 }
1603 filp_close(swap_file, NULL);
1604 err = 0;
66d7dd51
KS
1605 atomic_inc(&proc_poll_event);
1606 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
1607
1608out_dput:
1609 filp_close(victim, NULL);
1610out:
1611 return err;
1612}
1613
1614#ifdef CONFIG_PROC_FS
66d7dd51
KS
1615static unsigned swaps_poll(struct file *file, poll_table *wait)
1616{
f1514638 1617 struct seq_file *seq = file->private_data;
66d7dd51
KS
1618
1619 poll_wait(file, &proc_poll_wait, wait);
1620
f1514638
KS
1621 if (seq->poll_event != atomic_read(&proc_poll_event)) {
1622 seq->poll_event = atomic_read(&proc_poll_event);
66d7dd51
KS
1623 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1624 }
1625
1626 return POLLIN | POLLRDNORM;
1627}
1628
1da177e4
LT
1629/* iterator */
1630static void *swap_start(struct seq_file *swap, loff_t *pos)
1631{
efa90a98
HD
1632 struct swap_info_struct *si;
1633 int type;
1da177e4
LT
1634 loff_t l = *pos;
1635
fc0abb14 1636 mutex_lock(&swapon_mutex);
1da177e4 1637
881e4aab
SS
1638 if (!l)
1639 return SEQ_START_TOKEN;
1640
efa90a98
HD
1641 for (type = 0; type < nr_swapfiles; type++) {
1642 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1643 si = swap_info[type];
1644 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 1645 continue;
881e4aab 1646 if (!--l)
efa90a98 1647 return si;
1da177e4
LT
1648 }
1649
1650 return NULL;
1651}
1652
1653static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1654{
efa90a98
HD
1655 struct swap_info_struct *si = v;
1656 int type;
1da177e4 1657
881e4aab 1658 if (v == SEQ_START_TOKEN)
efa90a98
HD
1659 type = 0;
1660 else
1661 type = si->type + 1;
881e4aab 1662
efa90a98
HD
1663 for (; type < nr_swapfiles; type++) {
1664 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1665 si = swap_info[type];
1666 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
1667 continue;
1668 ++*pos;
efa90a98 1669 return si;
1da177e4
LT
1670 }
1671
1672 return NULL;
1673}
1674
1675static void swap_stop(struct seq_file *swap, void *v)
1676{
fc0abb14 1677 mutex_unlock(&swapon_mutex);
1da177e4
LT
1678}
1679
1680static int swap_show(struct seq_file *swap, void *v)
1681{
efa90a98 1682 struct swap_info_struct *si = v;
1da177e4
LT
1683 struct file *file;
1684 int len;
1685
efa90a98 1686 if (si == SEQ_START_TOKEN) {
881e4aab
SS
1687 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1688 return 0;
1689 }
1da177e4 1690
efa90a98 1691 file = si->swap_file;
c32c2f63 1692 len = seq_path(swap, &file->f_path, " \t\n\\");
6eb396dc 1693 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9
HD
1694 len < 40 ? 40 - len : 1, " ",
1695 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1da177e4 1696 "partition" : "file\t",
efa90a98
HD
1697 si->pages << (PAGE_SHIFT - 10),
1698 si->inuse_pages << (PAGE_SHIFT - 10),
1699 si->prio);
1da177e4
LT
1700 return 0;
1701}
1702
15ad7cdc 1703static const struct seq_operations swaps_op = {
1da177e4
LT
1704 .start = swap_start,
1705 .next = swap_next,
1706 .stop = swap_stop,
1707 .show = swap_show
1708};
1709
1710static int swaps_open(struct inode *inode, struct file *file)
1711{
f1514638 1712 struct seq_file *seq;
66d7dd51
KS
1713 int ret;
1714
66d7dd51 1715 ret = seq_open(file, &swaps_op);
f1514638 1716 if (ret)
66d7dd51 1717 return ret;
66d7dd51 1718
f1514638
KS
1719 seq = file->private_data;
1720 seq->poll_event = atomic_read(&proc_poll_event);
1721 return 0;
1da177e4
LT
1722}
1723
15ad7cdc 1724static const struct file_operations proc_swaps_operations = {
1da177e4
LT
1725 .open = swaps_open,
1726 .read = seq_read,
1727 .llseek = seq_lseek,
1728 .release = seq_release,
66d7dd51 1729 .poll = swaps_poll,
1da177e4
LT
1730};
1731
1732static int __init procswaps_init(void)
1733{
3d71f86f 1734 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
1735 return 0;
1736}
1737__initcall(procswaps_init);
1738#endif /* CONFIG_PROC_FS */
1739
1796316a
JB
1740#ifdef MAX_SWAPFILES_CHECK
1741static int __init max_swapfiles_check(void)
1742{
1743 MAX_SWAPFILES_CHECK();
1744 return 0;
1745}
1746late_initcall(max_swapfiles_check);
1747#endif
1748
53cbb243 1749static struct swap_info_struct *alloc_swap_info(void)
1da177e4 1750{
73c34b6a 1751 struct swap_info_struct *p;
1da177e4 1752 unsigned int type;
efa90a98
HD
1753
1754 p = kzalloc(sizeof(*p), GFP_KERNEL);
1755 if (!p)
53cbb243 1756 return ERR_PTR(-ENOMEM);
efa90a98 1757
5d337b91 1758 spin_lock(&swap_lock);
efa90a98
HD
1759 for (type = 0; type < nr_swapfiles; type++) {
1760 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 1761 break;
efa90a98 1762 }
0697212a 1763 if (type >= MAX_SWAPFILES) {
5d337b91 1764 spin_unlock(&swap_lock);
efa90a98 1765 kfree(p);
730c0581 1766 return ERR_PTR(-EPERM);
1da177e4 1767 }
efa90a98
HD
1768 if (type >= nr_swapfiles) {
1769 p->type = type;
1770 swap_info[type] = p;
1771 /*
1772 * Write swap_info[type] before nr_swapfiles, in case a
1773 * racing procfs swap_start() or swap_next() is reading them.
1774 * (We never shrink nr_swapfiles, we never free this entry.)
1775 */
1776 smp_wmb();
1777 nr_swapfiles++;
1778 } else {
1779 kfree(p);
1780 p = swap_info[type];
1781 /*
1782 * Do not memset this entry: a racing procfs swap_next()
1783 * would be relying on p->type to remain valid.
1784 */
1785 }
9625a5f2 1786 INIT_LIST_HEAD(&p->first_swap_extent.list);
1da177e4 1787 p->flags = SWP_USED;
1da177e4 1788 p->next = -1;
5d337b91 1789 spin_unlock(&swap_lock);
efa90a98 1790
53cbb243 1791 return p;
53cbb243
CEB
1792}
1793
4d0e1e10
CEB
1794static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
1795{
1796 int error;
1797
1798 if (S_ISBLK(inode->i_mode)) {
1799 p->bdev = bdgrab(I_BDEV(inode));
1800 error = blkdev_get(p->bdev,
1801 FMODE_READ | FMODE_WRITE | FMODE_EXCL,
1802 sys_swapon);
1803 if (error < 0) {
1804 p->bdev = NULL;
87ade72a 1805 return -EINVAL;
4d0e1e10
CEB
1806 }
1807 p->old_block_size = block_size(p->bdev);
1808 error = set_blocksize(p->bdev, PAGE_SIZE);
1809 if (error < 0)
87ade72a 1810 return error;
4d0e1e10
CEB
1811 p->flags |= SWP_BLKDEV;
1812 } else if (S_ISREG(inode->i_mode)) {
1813 p->bdev = inode->i_sb->s_bdev;
1814 mutex_lock(&inode->i_mutex);
87ade72a
CEB
1815 if (IS_SWAPFILE(inode))
1816 return -EBUSY;
1817 } else
1818 return -EINVAL;
4d0e1e10
CEB
1819
1820 return 0;
4d0e1e10
CEB
1821}
1822
ca8bd38b
CEB
1823static unsigned long read_swap_header(struct swap_info_struct *p,
1824 union swap_header *swap_header,
1825 struct inode *inode)
1826{
1827 int i;
1828 unsigned long maxpages;
1829 unsigned long swapfilepages;
1830
1831 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1832 printk(KERN_ERR "Unable to find swap-space signature\n");
38719025 1833 return 0;
ca8bd38b
CEB
1834 }
1835
1836 /* swap partition endianess hack... */
1837 if (swab32(swap_header->info.version) == 1) {
1838 swab32s(&swap_header->info.version);
1839 swab32s(&swap_header->info.last_page);
1840 swab32s(&swap_header->info.nr_badpages);
1841 for (i = 0; i < swap_header->info.nr_badpages; i++)
1842 swab32s(&swap_header->info.badpages[i]);
1843 }
1844 /* Check the swap header's sub-version */
1845 if (swap_header->info.version != 1) {
1846 printk(KERN_WARNING
1847 "Unable to handle swap header version %d\n",
1848 swap_header->info.version);
38719025 1849 return 0;
ca8bd38b
CEB
1850 }
1851
1852 p->lowest_bit = 1;
1853 p->cluster_next = 1;
1854 p->cluster_nr = 0;
1855
1856 /*
1857 * Find out how many pages are allowed for a single swap
9b15b817 1858 * device. There are two limiting factors: 1) the number
a2c16d6c
HD
1859 * of bits for the swap offset in the swp_entry_t type, and
1860 * 2) the number of bits in the swap pte as defined by the
9b15b817 1861 * different architectures. In order to find the
a2c16d6c 1862 * largest possible bit mask, a swap entry with swap type 0
ca8bd38b 1863 * and swap offset ~0UL is created, encoded to a swap pte,
a2c16d6c 1864 * decoded to a swp_entry_t again, and finally the swap
ca8bd38b
CEB
1865 * offset is extracted. This will mask all the bits from
1866 * the initial ~0UL mask that can't be encoded in either
1867 * the swp_entry_t or the architecture definition of a
9b15b817 1868 * swap pte.
ca8bd38b
CEB
1869 */
1870 maxpages = swp_offset(pte_to_swp_entry(
9b15b817 1871 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
ca8bd38b
CEB
1872 if (maxpages > swap_header->info.last_page) {
1873 maxpages = swap_header->info.last_page + 1;
1874 /* p->max is an unsigned int: don't overflow it */
1875 if ((unsigned int)maxpages == 0)
1876 maxpages = UINT_MAX;
1877 }
1878 p->highest_bit = maxpages - 1;
1879
1880 if (!maxpages)
38719025 1881 return 0;
ca8bd38b
CEB
1882 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1883 if (swapfilepages && maxpages > swapfilepages) {
1884 printk(KERN_WARNING
1885 "Swap area shorter than signature indicates\n");
38719025 1886 return 0;
ca8bd38b
CEB
1887 }
1888 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 1889 return 0;
ca8bd38b 1890 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 1891 return 0;
ca8bd38b
CEB
1892
1893 return maxpages;
ca8bd38b
CEB
1894}
1895
915d4d7b
CEB
1896static int setup_swap_map_and_extents(struct swap_info_struct *p,
1897 union swap_header *swap_header,
1898 unsigned char *swap_map,
1899 unsigned long maxpages,
1900 sector_t *span)
1901{
1902 int i;
915d4d7b
CEB
1903 unsigned int nr_good_pages;
1904 int nr_extents;
1905
1906 nr_good_pages = maxpages - 1; /* omit header page */
1907
1908 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1909 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
1910 if (page_nr == 0 || page_nr > swap_header->info.last_page)
1911 return -EINVAL;
915d4d7b
CEB
1912 if (page_nr < maxpages) {
1913 swap_map[page_nr] = SWAP_MAP_BAD;
1914 nr_good_pages--;
1915 }
1916 }
1917
1918 if (nr_good_pages) {
1919 swap_map[0] = SWAP_MAP_BAD;
1920 p->max = maxpages;
1921 p->pages = nr_good_pages;
1922 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
1923 if (nr_extents < 0)
1924 return nr_extents;
915d4d7b
CEB
1925 nr_good_pages = p->pages;
1926 }
1927 if (!nr_good_pages) {
1928 printk(KERN_WARNING "Empty swap-file\n");
bdb8e3f6 1929 return -EINVAL;
915d4d7b
CEB
1930 }
1931
1932 return nr_extents;
915d4d7b
CEB
1933}
1934
53cbb243
CEB
1935SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1936{
1937 struct swap_info_struct *p;
28b36bd7 1938 char *name;
53cbb243
CEB
1939 struct file *swap_file = NULL;
1940 struct address_space *mapping;
40531542
CEB
1941 int i;
1942 int prio;
53cbb243
CEB
1943 int error;
1944 union swap_header *swap_header;
915d4d7b 1945 int nr_extents;
53cbb243
CEB
1946 sector_t span;
1947 unsigned long maxpages;
53cbb243 1948 unsigned char *swap_map = NULL;
38b5faf4 1949 unsigned long *frontswap_map = NULL;
53cbb243
CEB
1950 struct page *page = NULL;
1951 struct inode *inode = NULL;
53cbb243 1952
d15cab97
HD
1953 if (swap_flags & ~SWAP_FLAGS_VALID)
1954 return -EINVAL;
1955
53cbb243
CEB
1956 if (!capable(CAP_SYS_ADMIN))
1957 return -EPERM;
1958
1959 p = alloc_swap_info();
2542e513
CEB
1960 if (IS_ERR(p))
1961 return PTR_ERR(p);
53cbb243 1962
1da177e4 1963 name = getname(specialfile);
1da177e4 1964 if (IS_ERR(name)) {
7de7fb6b 1965 error = PTR_ERR(name);
1da177e4 1966 name = NULL;
bd69010b 1967 goto bad_swap;
1da177e4
LT
1968 }
1969 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 1970 if (IS_ERR(swap_file)) {
7de7fb6b 1971 error = PTR_ERR(swap_file);
1da177e4 1972 swap_file = NULL;
bd69010b 1973 goto bad_swap;
1da177e4
LT
1974 }
1975
1976 p->swap_file = swap_file;
1977 mapping = swap_file->f_mapping;
1da177e4 1978
1da177e4 1979 for (i = 0; i < nr_swapfiles; i++) {
efa90a98 1980 struct swap_info_struct *q = swap_info[i];
1da177e4 1981
e8e6c2ec 1982 if (q == p || !q->swap_file)
1da177e4 1983 continue;
7de7fb6b
CEB
1984 if (mapping == q->swap_file->f_mapping) {
1985 error = -EBUSY;
1da177e4 1986 goto bad_swap;
7de7fb6b 1987 }
1da177e4
LT
1988 }
1989
2130781e
CEB
1990 inode = mapping->host;
1991 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
4d0e1e10
CEB
1992 error = claim_swapfile(p, inode);
1993 if (unlikely(error))
1da177e4 1994 goto bad_swap;
1da177e4 1995
1da177e4
LT
1996 /*
1997 * Read the swap header.
1998 */
1999 if (!mapping->a_ops->readpage) {
2000 error = -EINVAL;
2001 goto bad_swap;
2002 }
090d2b18 2003 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
2004 if (IS_ERR(page)) {
2005 error = PTR_ERR(page);
2006 goto bad_swap;
2007 }
81e33971 2008 swap_header = kmap(page);
1da177e4 2009
ca8bd38b
CEB
2010 maxpages = read_swap_header(p, swap_header, inode);
2011 if (unlikely(!maxpages)) {
1da177e4
LT
2012 error = -EINVAL;
2013 goto bad_swap;
2014 }
886bb7e9 2015
81e33971 2016 /* OK, set up the swap map and apply the bad block list */
803d0c83 2017 swap_map = vzalloc(maxpages);
81e33971
HD
2018 if (!swap_map) {
2019 error = -ENOMEM;
2020 goto bad_swap;
2021 }
1da177e4 2022
1421ef3c
CEB
2023 error = swap_cgroup_swapon(p->type, maxpages);
2024 if (error)
2025 goto bad_swap;
2026
915d4d7b
CEB
2027 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2028 maxpages, &span);
2029 if (unlikely(nr_extents < 0)) {
2030 error = nr_extents;
1da177e4
LT
2031 goto bad_swap;
2032 }
38b5faf4
DM
2033 /* frontswap enabled? set up bit-per-page map for frontswap */
2034 if (frontswap_enabled)
2035 frontswap_map = vzalloc(maxpages / sizeof(long));
1da177e4 2036
3bd0f0c7
SJ
2037 if (p->bdev) {
2038 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2039 p->flags |= SWP_SOLIDSTATE;
2040 p->cluster_next = 1 + (random32() % p->highest_bit);
2041 }
052b1987 2042 if ((swap_flags & SWAP_FLAG_DISCARD) && discard_swap(p) == 0)
3bd0f0c7 2043 p->flags |= SWP_DISCARDABLE;
20137a49 2044 }
6a6ba831 2045
fc0abb14 2046 mutex_lock(&swapon_mutex);
40531542 2047 prio = -1;
78ecba08 2048 if (swap_flags & SWAP_FLAG_PREFER)
40531542 2049 prio =
78ecba08 2050 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
38b5faf4 2051 enable_swap_info(p, prio, swap_map, frontswap_map);
c69dbfb8
CEB
2052
2053 printk(KERN_INFO "Adding %uk swap on %s. "
38b5faf4 2054 "Priority:%d extents:%d across:%lluk %s%s%s\n",
c69dbfb8
CEB
2055 p->pages<<(PAGE_SHIFT-10), name, p->prio,
2056 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2057 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4
DM
2058 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2059 (frontswap_map) ? "FS" : "");
c69dbfb8 2060
fc0abb14 2061 mutex_unlock(&swapon_mutex);
66d7dd51
KS
2062 atomic_inc(&proc_poll_event);
2063 wake_up_interruptible(&proc_poll_wait);
2064
9b01c350
CEB
2065 if (S_ISREG(inode->i_mode))
2066 inode->i_flags |= S_SWAPFILE;
1da177e4
LT
2067 error = 0;
2068 goto out;
2069bad_swap:
bd69010b 2070 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
2071 set_blocksize(p->bdev, p->old_block_size);
2072 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2073 }
4cd3bb10 2074 destroy_swap_extents(p);
e8e6c2ec 2075 swap_cgroup_swapoff(p->type);
5d337b91 2076 spin_lock(&swap_lock);
1da177e4 2077 p->swap_file = NULL;
1da177e4 2078 p->flags = 0;
5d337b91 2079 spin_unlock(&swap_lock);
1da177e4 2080 vfree(swap_map);
52c50567 2081 if (swap_file) {
2130781e 2082 if (inode && S_ISREG(inode->i_mode)) {
52c50567 2083 mutex_unlock(&inode->i_mutex);
2130781e
CEB
2084 inode = NULL;
2085 }
1da177e4 2086 filp_close(swap_file, NULL);
52c50567 2087 }
1da177e4
LT
2088out:
2089 if (page && !IS_ERR(page)) {
2090 kunmap(page);
2091 page_cache_release(page);
2092 }
2093 if (name)
2094 putname(name);
9b01c350 2095 if (inode && S_ISREG(inode->i_mode))
1b1dcc1b 2096 mutex_unlock(&inode->i_mutex);
1da177e4
LT
2097 return error;
2098}
2099
2100void si_swapinfo(struct sysinfo *val)
2101{
efa90a98 2102 unsigned int type;
1da177e4
LT
2103 unsigned long nr_to_be_unused = 0;
2104
5d337b91 2105 spin_lock(&swap_lock);
efa90a98
HD
2106 for (type = 0; type < nr_swapfiles; type++) {
2107 struct swap_info_struct *si = swap_info[type];
2108
2109 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2110 nr_to_be_unused += si->inuse_pages;
1da177e4
LT
2111 }
2112 val->freeswap = nr_swap_pages + nr_to_be_unused;
2113 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 2114 spin_unlock(&swap_lock);
1da177e4
LT
2115}
2116
2117/*
2118 * Verify that a swap entry is valid and increment its swap map count.
2119 *
355cfa73
KH
2120 * Returns error code in following case.
2121 * - success -> 0
2122 * - swp_entry is invalid -> EINVAL
2123 * - swp_entry is migration entry -> EINVAL
2124 * - swap-cache reference is requested but there is already one. -> EEXIST
2125 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 2126 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 2127 */
8d69aaee 2128static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 2129{
73c34b6a 2130 struct swap_info_struct *p;
1da177e4 2131 unsigned long offset, type;
8d69aaee
HD
2132 unsigned char count;
2133 unsigned char has_cache;
253d553b 2134 int err = -EINVAL;
1da177e4 2135
a7420aa5 2136 if (non_swap_entry(entry))
253d553b 2137 goto out;
0697212a 2138
1da177e4
LT
2139 type = swp_type(entry);
2140 if (type >= nr_swapfiles)
2141 goto bad_file;
efa90a98 2142 p = swap_info[type];
1da177e4
LT
2143 offset = swp_offset(entry);
2144
5d337b91 2145 spin_lock(&swap_lock);
355cfa73
KH
2146 if (unlikely(offset >= p->max))
2147 goto unlock_out;
2148
253d553b
HD
2149 count = p->swap_map[offset];
2150 has_cache = count & SWAP_HAS_CACHE;
2151 count &= ~SWAP_HAS_CACHE;
2152 err = 0;
355cfa73 2153
253d553b 2154 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
2155
2156 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
2157 if (!has_cache && count)
2158 has_cache = SWAP_HAS_CACHE;
2159 else if (has_cache) /* someone else added cache */
2160 err = -EEXIST;
2161 else /* no users remaining */
2162 err = -ENOENT;
355cfa73
KH
2163
2164 } else if (count || has_cache) {
253d553b 2165
570a335b
HD
2166 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2167 count += usage;
2168 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 2169 err = -EINVAL;
570a335b
HD
2170 else if (swap_count_continued(p, offset, count))
2171 count = COUNT_CONTINUED;
2172 else
2173 err = -ENOMEM;
355cfa73 2174 } else
253d553b
HD
2175 err = -ENOENT; /* unused swap entry */
2176
2177 p->swap_map[offset] = count | has_cache;
2178
355cfa73 2179unlock_out:
5d337b91 2180 spin_unlock(&swap_lock);
1da177e4 2181out:
253d553b 2182 return err;
1da177e4
LT
2183
2184bad_file:
2185 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2186 goto out;
2187}
253d553b 2188
aaa46865
HD
2189/*
2190 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2191 * (in which case its reference count is never incremented).
2192 */
2193void swap_shmem_alloc(swp_entry_t entry)
2194{
2195 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2196}
2197
355cfa73 2198/*
08259d58
HD
2199 * Increase reference count of swap entry by 1.
2200 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2201 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2202 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2203 * might occur if a page table entry has got corrupted.
355cfa73 2204 */
570a335b 2205int swap_duplicate(swp_entry_t entry)
355cfa73 2206{
570a335b
HD
2207 int err = 0;
2208
2209 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2210 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2211 return err;
355cfa73 2212}
1da177e4 2213
cb4b86ba 2214/*
355cfa73
KH
2215 * @entry: swap entry for which we allocate swap cache.
2216 *
73c34b6a 2217 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
2218 * This can return error codes. Returns 0 at success.
2219 * -EBUSY means there is a swap cache.
2220 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
2221 */
2222int swapcache_prepare(swp_entry_t entry)
2223{
253d553b 2224 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
2225}
2226
f981c595
MG
2227struct swap_info_struct *page_swap_info(struct page *page)
2228{
2229 swp_entry_t swap = { .val = page_private(page) };
2230 BUG_ON(!PageSwapCache(page));
2231 return swap_info[swp_type(swap)];
2232}
2233
2234/*
2235 * out-of-line __page_file_ methods to avoid include hell.
2236 */
2237struct address_space *__page_file_mapping(struct page *page)
2238{
2239 VM_BUG_ON(!PageSwapCache(page));
2240 return page_swap_info(page)->swap_file->f_mapping;
2241}
2242EXPORT_SYMBOL_GPL(__page_file_mapping);
2243
2244pgoff_t __page_file_index(struct page *page)
2245{
2246 swp_entry_t swap = { .val = page_private(page) };
2247 VM_BUG_ON(!PageSwapCache(page));
2248 return swp_offset(swap);
2249}
2250EXPORT_SYMBOL_GPL(__page_file_index);
2251
570a335b
HD
2252/*
2253 * add_swap_count_continuation - called when a swap count is duplicated
2254 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2255 * page of the original vmalloc'ed swap_map, to hold the continuation count
2256 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2257 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2258 *
2259 * These continuation pages are seldom referenced: the common paths all work
2260 * on the original swap_map, only referring to a continuation page when the
2261 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2262 *
2263 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2264 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2265 * can be called after dropping locks.
2266 */
2267int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2268{
2269 struct swap_info_struct *si;
2270 struct page *head;
2271 struct page *page;
2272 struct page *list_page;
2273 pgoff_t offset;
2274 unsigned char count;
2275
2276 /*
2277 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2278 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2279 */
2280 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2281
2282 si = swap_info_get(entry);
2283 if (!si) {
2284 /*
2285 * An acceptable race has occurred since the failing
2286 * __swap_duplicate(): the swap entry has been freed,
2287 * perhaps even the whole swap_map cleared for swapoff.
2288 */
2289 goto outer;
2290 }
2291
2292 offset = swp_offset(entry);
2293 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2294
2295 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2296 /*
2297 * The higher the swap count, the more likely it is that tasks
2298 * will race to add swap count continuation: we need to avoid
2299 * over-provisioning.
2300 */
2301 goto out;
2302 }
2303
2304 if (!page) {
2305 spin_unlock(&swap_lock);
2306 return -ENOMEM;
2307 }
2308
2309 /*
2310 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2311 * no architecture is using highmem pages for kernel pagetables: so it
2312 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2313 */
2314 head = vmalloc_to_page(si->swap_map + offset);
2315 offset &= ~PAGE_MASK;
2316
2317 /*
2318 * Page allocation does not initialize the page's lru field,
2319 * but it does always reset its private field.
2320 */
2321 if (!page_private(head)) {
2322 BUG_ON(count & COUNT_CONTINUED);
2323 INIT_LIST_HEAD(&head->lru);
2324 set_page_private(head, SWP_CONTINUED);
2325 si->flags |= SWP_CONTINUED;
2326 }
2327
2328 list_for_each_entry(list_page, &head->lru, lru) {
2329 unsigned char *map;
2330
2331 /*
2332 * If the previous map said no continuation, but we've found
2333 * a continuation page, free our allocation and use this one.
2334 */
2335 if (!(count & COUNT_CONTINUED))
2336 goto out;
2337
9b04c5fe 2338 map = kmap_atomic(list_page) + offset;
570a335b 2339 count = *map;
9b04c5fe 2340 kunmap_atomic(map);
570a335b
HD
2341
2342 /*
2343 * If this continuation count now has some space in it,
2344 * free our allocation and use this one.
2345 */
2346 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2347 goto out;
2348 }
2349
2350 list_add_tail(&page->lru, &head->lru);
2351 page = NULL; /* now it's attached, don't free it */
2352out:
2353 spin_unlock(&swap_lock);
2354outer:
2355 if (page)
2356 __free_page(page);
2357 return 0;
2358}
2359
2360/*
2361 * swap_count_continued - when the original swap_map count is incremented
2362 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2363 * into, carry if so, or else fail until a new continuation page is allocated;
2364 * when the original swap_map count is decremented from 0 with continuation,
2365 * borrow from the continuation and report whether it still holds more.
2366 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2367 */
2368static bool swap_count_continued(struct swap_info_struct *si,
2369 pgoff_t offset, unsigned char count)
2370{
2371 struct page *head;
2372 struct page *page;
2373 unsigned char *map;
2374
2375 head = vmalloc_to_page(si->swap_map + offset);
2376 if (page_private(head) != SWP_CONTINUED) {
2377 BUG_ON(count & COUNT_CONTINUED);
2378 return false; /* need to add count continuation */
2379 }
2380
2381 offset &= ~PAGE_MASK;
2382 page = list_entry(head->lru.next, struct page, lru);
9b04c5fe 2383 map = kmap_atomic(page) + offset;
570a335b
HD
2384
2385 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2386 goto init_map; /* jump over SWAP_CONT_MAX checks */
2387
2388 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2389 /*
2390 * Think of how you add 1 to 999
2391 */
2392 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 2393 kunmap_atomic(map);
570a335b
HD
2394 page = list_entry(page->lru.next, struct page, lru);
2395 BUG_ON(page == head);
9b04c5fe 2396 map = kmap_atomic(page) + offset;
570a335b
HD
2397 }
2398 if (*map == SWAP_CONT_MAX) {
9b04c5fe 2399 kunmap_atomic(map);
570a335b
HD
2400 page = list_entry(page->lru.next, struct page, lru);
2401 if (page == head)
2402 return false; /* add count continuation */
9b04c5fe 2403 map = kmap_atomic(page) + offset;
570a335b
HD
2404init_map: *map = 0; /* we didn't zero the page */
2405 }
2406 *map += 1;
9b04c5fe 2407 kunmap_atomic(map);
570a335b
HD
2408 page = list_entry(page->lru.prev, struct page, lru);
2409 while (page != head) {
9b04c5fe 2410 map = kmap_atomic(page) + offset;
570a335b 2411 *map = COUNT_CONTINUED;
9b04c5fe 2412 kunmap_atomic(map);
570a335b
HD
2413 page = list_entry(page->lru.prev, struct page, lru);
2414 }
2415 return true; /* incremented */
2416
2417 } else { /* decrementing */
2418 /*
2419 * Think of how you subtract 1 from 1000
2420 */
2421 BUG_ON(count != COUNT_CONTINUED);
2422 while (*map == COUNT_CONTINUED) {
9b04c5fe 2423 kunmap_atomic(map);
570a335b
HD
2424 page = list_entry(page->lru.next, struct page, lru);
2425 BUG_ON(page == head);
9b04c5fe 2426 map = kmap_atomic(page) + offset;
570a335b
HD
2427 }
2428 BUG_ON(*map == 0);
2429 *map -= 1;
2430 if (*map == 0)
2431 count = 0;
9b04c5fe 2432 kunmap_atomic(map);
570a335b
HD
2433 page = list_entry(page->lru.prev, struct page, lru);
2434 while (page != head) {
9b04c5fe 2435 map = kmap_atomic(page) + offset;
570a335b
HD
2436 *map = SWAP_CONT_MAX | count;
2437 count = COUNT_CONTINUED;
9b04c5fe 2438 kunmap_atomic(map);
570a335b
HD
2439 page = list_entry(page->lru.prev, struct page, lru);
2440 }
2441 return count == COUNT_CONTINUED;
2442 }
2443}
2444
2445/*
2446 * free_swap_count_continuations - swapoff free all the continuation pages
2447 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2448 */
2449static void free_swap_count_continuations(struct swap_info_struct *si)
2450{
2451 pgoff_t offset;
2452
2453 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2454 struct page *head;
2455 head = vmalloc_to_page(si->swap_map + offset);
2456 if (page_private(head)) {
2457 struct list_head *this, *next;
2458 list_for_each_safe(this, next, &head->lru) {
2459 struct page *page;
2460 page = list_entry(this, struct page, lru);
2461 list_del(this);
2462 __free_page(page);
2463 }
2464 }
2465 }
2466}