]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/swapfile.c
mm/swap: add cluster lock
[mirror_ubuntu-artful-kernel.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
072441e2 17#include <linux/shmem_fs.h>
1da177e4 18#include <linux/blkdev.h>
20137a49 19#include <linux/random.h>
1da177e4
LT
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
5ad64688 24#include <linux/ksm.h>
1da177e4
LT
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
fc0abb14 28#include <linux/mutex.h>
c59ede7b 29#include <linux/capability.h>
1da177e4 30#include <linux/syscalls.h>
8a9f3ccd 31#include <linux/memcontrol.h>
66d7dd51 32#include <linux/poll.h>
72788c38 33#include <linux/oom.h>
38b5faf4
DM
34#include <linux/frontswap.h>
35#include <linux/swapfile.h>
f981c595 36#include <linux/export.h>
1da177e4
LT
37
38#include <asm/pgtable.h>
39#include <asm/tlbflush.h>
40#include <linux/swapops.h>
5d1ea48b 41#include <linux/swap_cgroup.h>
1da177e4 42
570a335b
HD
43static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 unsigned char);
45static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 46static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 47
38b5faf4 48DEFINE_SPINLOCK(swap_lock);
7c363b8c 49static unsigned int nr_swapfiles;
ec8acf20 50atomic_long_t nr_swap_pages;
fb0fec50
CW
51/*
52 * Some modules use swappable objects and may try to swap them out under
53 * memory pressure (via the shrinker). Before doing so, they may wish to
54 * check to see if any swap space is available.
55 */
56EXPORT_SYMBOL_GPL(nr_swap_pages);
ec8acf20 57/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 58long total_swap_pages;
78ecba08 59static int least_priority;
1da177e4 60
1da177e4
LT
61static const char Bad_file[] = "Bad swap file entry ";
62static const char Unused_file[] = "Unused swap file entry ";
63static const char Bad_offset[] = "Bad swap offset entry ";
64static const char Unused_offset[] = "Unused swap offset entry ";
65
adfab836
DS
66/*
67 * all active swap_info_structs
68 * protected with swap_lock, and ordered by priority.
69 */
18ab4d4c
DS
70PLIST_HEAD(swap_active_head);
71
72/*
73 * all available (active, not full) swap_info_structs
74 * protected with swap_avail_lock, ordered by priority.
75 * This is used by get_swap_page() instead of swap_active_head
76 * because swap_active_head includes all swap_info_structs,
77 * but get_swap_page() doesn't need to look at full ones.
78 * This uses its own lock instead of swap_lock because when a
79 * swap_info_struct changes between not-full/full, it needs to
80 * add/remove itself to/from this list, but the swap_info_struct->lock
81 * is held and the locking order requires swap_lock to be taken
82 * before any swap_info_struct->lock.
83 */
84static PLIST_HEAD(swap_avail_head);
85static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 86
38b5faf4 87struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 88
fc0abb14 89static DEFINE_MUTEX(swapon_mutex);
1da177e4 90
66d7dd51
KS
91static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
92/* Activity counter to indicate that a swapon or swapoff has occurred */
93static atomic_t proc_poll_event = ATOMIC_INIT(0);
94
8d69aaee 95static inline unsigned char swap_count(unsigned char ent)
355cfa73 96{
570a335b 97 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
355cfa73
KH
98}
99
efa90a98 100/* returns 1 if swap entry is freed */
c9e44410
KH
101static int
102__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
103{
efa90a98 104 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
105 struct page *page;
106 int ret = 0;
107
f6ab1f7f 108 page = find_get_page(swap_address_space(entry), swp_offset(entry));
c9e44410
KH
109 if (!page)
110 return 0;
111 /*
112 * This function is called from scan_swap_map() and it's called
113 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
114 * We have to use trylock for avoiding deadlock. This is a special
115 * case and you should use try_to_free_swap() with explicit lock_page()
116 * in usual operations.
117 */
118 if (trylock_page(page)) {
119 ret = try_to_free_swap(page);
120 unlock_page(page);
121 }
09cbfeaf 122 put_page(page);
c9e44410
KH
123 return ret;
124}
355cfa73 125
6a6ba831
HD
126/*
127 * swapon tell device that all the old swap contents can be discarded,
128 * to allow the swap device to optimize its wear-levelling.
129 */
130static int discard_swap(struct swap_info_struct *si)
131{
132 struct swap_extent *se;
9625a5f2
HD
133 sector_t start_block;
134 sector_t nr_blocks;
6a6ba831
HD
135 int err = 0;
136
9625a5f2
HD
137 /* Do not discard the swap header page! */
138 se = &si->first_swap_extent;
139 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
140 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
141 if (nr_blocks) {
142 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 143 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
144 if (err)
145 return err;
146 cond_resched();
147 }
6a6ba831 148
9625a5f2
HD
149 list_for_each_entry(se, &si->first_swap_extent.list, list) {
150 start_block = se->start_block << (PAGE_SHIFT - 9);
151 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
152
153 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 154 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
155 if (err)
156 break;
157
158 cond_resched();
159 }
160 return err; /* That will often be -EOPNOTSUPP */
161}
162
7992fde7
HD
163/*
164 * swap allocation tell device that a cluster of swap can now be discarded,
165 * to allow the swap device to optimize its wear-levelling.
166 */
167static void discard_swap_cluster(struct swap_info_struct *si,
168 pgoff_t start_page, pgoff_t nr_pages)
169{
170 struct swap_extent *se = si->curr_swap_extent;
171 int found_extent = 0;
172
173 while (nr_pages) {
7992fde7
HD
174 if (se->start_page <= start_page &&
175 start_page < se->start_page + se->nr_pages) {
176 pgoff_t offset = start_page - se->start_page;
177 sector_t start_block = se->start_block + offset;
858a2990 178 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
179
180 if (nr_blocks > nr_pages)
181 nr_blocks = nr_pages;
182 start_page += nr_blocks;
183 nr_pages -= nr_blocks;
184
185 if (!found_extent++)
186 si->curr_swap_extent = se;
187
188 start_block <<= PAGE_SHIFT - 9;
189 nr_blocks <<= PAGE_SHIFT - 9;
190 if (blkdev_issue_discard(si->bdev, start_block,
dd3932ed 191 nr_blocks, GFP_NOIO, 0))
7992fde7
HD
192 break;
193 }
194
a8ae4991 195 se = list_next_entry(se, list);
7992fde7
HD
196 }
197}
198
048c27fd
HD
199#define SWAPFILE_CLUSTER 256
200#define LATENCY_LIMIT 256
201
2a8f9449
SL
202static inline void cluster_set_flag(struct swap_cluster_info *info,
203 unsigned int flag)
204{
205 info->flags = flag;
206}
207
208static inline unsigned int cluster_count(struct swap_cluster_info *info)
209{
210 return info->data;
211}
212
213static inline void cluster_set_count(struct swap_cluster_info *info,
214 unsigned int c)
215{
216 info->data = c;
217}
218
219static inline void cluster_set_count_flag(struct swap_cluster_info *info,
220 unsigned int c, unsigned int f)
221{
222 info->flags = f;
223 info->data = c;
224}
225
226static inline unsigned int cluster_next(struct swap_cluster_info *info)
227{
228 return info->data;
229}
230
231static inline void cluster_set_next(struct swap_cluster_info *info,
232 unsigned int n)
233{
234 info->data = n;
235}
236
237static inline void cluster_set_next_flag(struct swap_cluster_info *info,
238 unsigned int n, unsigned int f)
239{
240 info->flags = f;
241 info->data = n;
242}
243
244static inline bool cluster_is_free(struct swap_cluster_info *info)
245{
246 return info->flags & CLUSTER_FLAG_FREE;
247}
248
249static inline bool cluster_is_null(struct swap_cluster_info *info)
250{
251 return info->flags & CLUSTER_FLAG_NEXT_NULL;
252}
253
254static inline void cluster_set_null(struct swap_cluster_info *info)
255{
256 info->flags = CLUSTER_FLAG_NEXT_NULL;
257 info->data = 0;
258}
259
235b6217
HY
260static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
261 unsigned long offset)
262{
263 struct swap_cluster_info *ci;
264
265 ci = si->cluster_info;
266 if (ci) {
267 ci += offset / SWAPFILE_CLUSTER;
268 spin_lock(&ci->lock);
269 }
270 return ci;
271}
272
273static inline void unlock_cluster(struct swap_cluster_info *ci)
274{
275 if (ci)
276 spin_unlock(&ci->lock);
277}
278
279static inline struct swap_cluster_info *lock_cluster_or_swap_info(
280 struct swap_info_struct *si,
281 unsigned long offset)
282{
283 struct swap_cluster_info *ci;
284
285 ci = lock_cluster(si, offset);
286 if (!ci)
287 spin_lock(&si->lock);
288
289 return ci;
290}
291
292static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
293 struct swap_cluster_info *ci)
294{
295 if (ci)
296 unlock_cluster(ci);
297 else
298 spin_unlock(&si->lock);
299}
300
6b534915
HY
301static inline bool cluster_list_empty(struct swap_cluster_list *list)
302{
303 return cluster_is_null(&list->head);
304}
305
306static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
307{
308 return cluster_next(&list->head);
309}
310
311static void cluster_list_init(struct swap_cluster_list *list)
312{
313 cluster_set_null(&list->head);
314 cluster_set_null(&list->tail);
315}
316
317static void cluster_list_add_tail(struct swap_cluster_list *list,
318 struct swap_cluster_info *ci,
319 unsigned int idx)
320{
321 if (cluster_list_empty(list)) {
322 cluster_set_next_flag(&list->head, idx, 0);
323 cluster_set_next_flag(&list->tail, idx, 0);
324 } else {
235b6217 325 struct swap_cluster_info *ci_tail;
6b534915
HY
326 unsigned int tail = cluster_next(&list->tail);
327
235b6217
HY
328 /*
329 * Nested cluster lock, but both cluster locks are
330 * only acquired when we held swap_info_struct->lock
331 */
332 ci_tail = ci + tail;
333 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
334 cluster_set_next(ci_tail, idx);
335 unlock_cluster(ci_tail);
6b534915
HY
336 cluster_set_next_flag(&list->tail, idx, 0);
337 }
338}
339
340static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
341 struct swap_cluster_info *ci)
342{
343 unsigned int idx;
344
345 idx = cluster_next(&list->head);
346 if (cluster_next(&list->tail) == idx) {
347 cluster_set_null(&list->head);
348 cluster_set_null(&list->tail);
349 } else
350 cluster_set_next_flag(&list->head,
351 cluster_next(&ci[idx]), 0);
352
353 return idx;
354}
355
815c2c54
SL
356/* Add a cluster to discard list and schedule it to do discard */
357static void swap_cluster_schedule_discard(struct swap_info_struct *si,
358 unsigned int idx)
359{
360 /*
361 * If scan_swap_map() can't find a free cluster, it will check
362 * si->swap_map directly. To make sure the discarding cluster isn't
363 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
364 * will be cleared after discard
365 */
366 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
367 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
368
6b534915 369 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
815c2c54
SL
370
371 schedule_work(&si->discard_work);
372}
373
374/*
375 * Doing discard actually. After a cluster discard is finished, the cluster
376 * will be added to free cluster list. caller should hold si->lock.
377*/
378static void swap_do_scheduled_discard(struct swap_info_struct *si)
379{
235b6217 380 struct swap_cluster_info *info, *ci;
815c2c54
SL
381 unsigned int idx;
382
383 info = si->cluster_info;
384
6b534915
HY
385 while (!cluster_list_empty(&si->discard_clusters)) {
386 idx = cluster_list_del_first(&si->discard_clusters, info);
815c2c54
SL
387 spin_unlock(&si->lock);
388
389 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
390 SWAPFILE_CLUSTER);
391
392 spin_lock(&si->lock);
235b6217
HY
393 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
394 cluster_set_flag(ci, CLUSTER_FLAG_FREE);
395 unlock_cluster(ci);
6b534915 396 cluster_list_add_tail(&si->free_clusters, info, idx);
235b6217 397 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
815c2c54
SL
398 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
399 0, SWAPFILE_CLUSTER);
235b6217 400 unlock_cluster(ci);
815c2c54
SL
401 }
402}
403
404static void swap_discard_work(struct work_struct *work)
405{
406 struct swap_info_struct *si;
407
408 si = container_of(work, struct swap_info_struct, discard_work);
409
410 spin_lock(&si->lock);
411 swap_do_scheduled_discard(si);
412 spin_unlock(&si->lock);
413}
414
2a8f9449
SL
415/*
416 * The cluster corresponding to page_nr will be used. The cluster will be
417 * removed from free cluster list and its usage counter will be increased.
418 */
419static void inc_cluster_info_page(struct swap_info_struct *p,
420 struct swap_cluster_info *cluster_info, unsigned long page_nr)
421{
422 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
423
424 if (!cluster_info)
425 return;
426 if (cluster_is_free(&cluster_info[idx])) {
6b534915
HY
427 VM_BUG_ON(cluster_list_first(&p->free_clusters) != idx);
428 cluster_list_del_first(&p->free_clusters, cluster_info);
2a8f9449
SL
429 cluster_set_count_flag(&cluster_info[idx], 0, 0);
430 }
431
432 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
433 cluster_set_count(&cluster_info[idx],
434 cluster_count(&cluster_info[idx]) + 1);
435}
436
437/*
438 * The cluster corresponding to page_nr decreases one usage. If the usage
439 * counter becomes 0, which means no page in the cluster is in using, we can
440 * optionally discard the cluster and add it to free cluster list.
441 */
442static void dec_cluster_info_page(struct swap_info_struct *p,
443 struct swap_cluster_info *cluster_info, unsigned long page_nr)
444{
445 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
446
447 if (!cluster_info)
448 return;
449
450 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
451 cluster_set_count(&cluster_info[idx],
452 cluster_count(&cluster_info[idx]) - 1);
453
454 if (cluster_count(&cluster_info[idx]) == 0) {
815c2c54
SL
455 /*
456 * If the swap is discardable, prepare discard the cluster
457 * instead of free it immediately. The cluster will be freed
458 * after discard.
459 */
edfe23da
SL
460 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
461 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
815c2c54
SL
462 swap_cluster_schedule_discard(p, idx);
463 return;
464 }
465
2a8f9449 466 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
6b534915 467 cluster_list_add_tail(&p->free_clusters, cluster_info, idx);
2a8f9449
SL
468 }
469}
470
471/*
472 * It's possible scan_swap_map() uses a free cluster in the middle of free
473 * cluster list. Avoiding such abuse to avoid list corruption.
474 */
ebc2a1a6
SL
475static bool
476scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
477 unsigned long offset)
478{
ebc2a1a6
SL
479 struct percpu_cluster *percpu_cluster;
480 bool conflict;
481
2a8f9449 482 offset /= SWAPFILE_CLUSTER;
6b534915
HY
483 conflict = !cluster_list_empty(&si->free_clusters) &&
484 offset != cluster_list_first(&si->free_clusters) &&
2a8f9449 485 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
486
487 if (!conflict)
488 return false;
489
490 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
491 cluster_set_null(&percpu_cluster->index);
492 return true;
493}
494
495/*
496 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
497 * might involve allocating a new cluster for current CPU too.
498 */
499static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
500 unsigned long *offset, unsigned long *scan_base)
501{
502 struct percpu_cluster *cluster;
235b6217 503 struct swap_cluster_info *ci;
ebc2a1a6 504 bool found_free;
235b6217 505 unsigned long tmp, max;
ebc2a1a6
SL
506
507new_cluster:
508 cluster = this_cpu_ptr(si->percpu_cluster);
509 if (cluster_is_null(&cluster->index)) {
6b534915
HY
510 if (!cluster_list_empty(&si->free_clusters)) {
511 cluster->index = si->free_clusters.head;
ebc2a1a6
SL
512 cluster->next = cluster_next(&cluster->index) *
513 SWAPFILE_CLUSTER;
6b534915 514 } else if (!cluster_list_empty(&si->discard_clusters)) {
ebc2a1a6
SL
515 /*
516 * we don't have free cluster but have some clusters in
517 * discarding, do discard now and reclaim them
518 */
519 swap_do_scheduled_discard(si);
520 *scan_base = *offset = si->cluster_next;
521 goto new_cluster;
522 } else
523 return;
524 }
525
526 found_free = false;
527
528 /*
529 * Other CPUs can use our cluster if they can't find a free cluster,
530 * check if there is still free entry in the cluster
531 */
532 tmp = cluster->next;
235b6217
HY
533 max = min_t(unsigned long, si->max,
534 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
535 if (tmp >= max) {
536 cluster_set_null(&cluster->index);
537 goto new_cluster;
538 }
539 ci = lock_cluster(si, tmp);
540 while (tmp < max) {
ebc2a1a6
SL
541 if (!si->swap_map[tmp]) {
542 found_free = true;
543 break;
544 }
545 tmp++;
546 }
235b6217 547 unlock_cluster(ci);
ebc2a1a6
SL
548 if (!found_free) {
549 cluster_set_null(&cluster->index);
550 goto new_cluster;
551 }
552 cluster->next = tmp + 1;
553 *offset = tmp;
554 *scan_base = tmp;
2a8f9449
SL
555}
556
24b8ff7c
CEB
557static unsigned long scan_swap_map(struct swap_info_struct *si,
558 unsigned char usage)
1da177e4 559{
235b6217 560 struct swap_cluster_info *ci;
ebebbbe9 561 unsigned long offset;
c60aa176 562 unsigned long scan_base;
7992fde7 563 unsigned long last_in_cluster = 0;
048c27fd 564 int latency_ration = LATENCY_LIMIT;
7dfad418 565
886bb7e9 566 /*
7dfad418
HD
567 * We try to cluster swap pages by allocating them sequentially
568 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
569 * way, however, we resort to first-free allocation, starting
570 * a new cluster. This prevents us from scattering swap pages
571 * all over the entire swap partition, so that we reduce
572 * overall disk seek times between swap pages. -- sct
573 * But we do now try to find an empty cluster. -Andrea
c60aa176 574 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
575 */
576
52b7efdb 577 si->flags += SWP_SCANNING;
c60aa176 578 scan_base = offset = si->cluster_next;
ebebbbe9 579
ebc2a1a6
SL
580 /* SSD algorithm */
581 if (si->cluster_info) {
582 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
583 goto checks;
584 }
585
ebebbbe9
HD
586 if (unlikely(!si->cluster_nr--)) {
587 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
588 si->cluster_nr = SWAPFILE_CLUSTER - 1;
589 goto checks;
590 }
2a8f9449 591
ec8acf20 592 spin_unlock(&si->lock);
7dfad418 593
c60aa176
HD
594 /*
595 * If seek is expensive, start searching for new cluster from
596 * start of partition, to minimize the span of allocated swap.
50088c44
CY
597 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
598 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 599 */
50088c44 600 scan_base = offset = si->lowest_bit;
7dfad418
HD
601 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
602
603 /* Locate the first empty (unaligned) cluster */
604 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 605 if (si->swap_map[offset])
7dfad418
HD
606 last_in_cluster = offset + SWAPFILE_CLUSTER;
607 else if (offset == last_in_cluster) {
ec8acf20 608 spin_lock(&si->lock);
ebebbbe9
HD
609 offset -= SWAPFILE_CLUSTER - 1;
610 si->cluster_next = offset;
611 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
612 goto checks;
613 }
614 if (unlikely(--latency_ration < 0)) {
615 cond_resched();
616 latency_ration = LATENCY_LIMIT;
617 }
618 }
619
620 offset = scan_base;
ec8acf20 621 spin_lock(&si->lock);
ebebbbe9 622 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 623 }
7dfad418 624
ebebbbe9 625checks:
ebc2a1a6
SL
626 if (si->cluster_info) {
627 while (scan_swap_map_ssd_cluster_conflict(si, offset))
628 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
629 }
ebebbbe9 630 if (!(si->flags & SWP_WRITEOK))
52b7efdb 631 goto no_page;
7dfad418
HD
632 if (!si->highest_bit)
633 goto no_page;
ebebbbe9 634 if (offset > si->highest_bit)
c60aa176 635 scan_base = offset = si->lowest_bit;
c9e44410 636
235b6217 637 ci = lock_cluster(si, offset);
b73d7fce
HD
638 /* reuse swap entry of cache-only swap if not busy. */
639 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 640 int swap_was_freed;
235b6217 641 unlock_cluster(ci);
ec8acf20 642 spin_unlock(&si->lock);
c9e44410 643 swap_was_freed = __try_to_reclaim_swap(si, offset);
ec8acf20 644 spin_lock(&si->lock);
c9e44410
KH
645 /* entry was freed successfully, try to use this again */
646 if (swap_was_freed)
647 goto checks;
648 goto scan; /* check next one */
649 }
650
235b6217
HY
651 if (si->swap_map[offset]) {
652 unlock_cluster(ci);
ebebbbe9 653 goto scan;
235b6217 654 }
ebebbbe9
HD
655
656 if (offset == si->lowest_bit)
657 si->lowest_bit++;
658 if (offset == si->highest_bit)
659 si->highest_bit--;
660 si->inuse_pages++;
661 if (si->inuse_pages == si->pages) {
662 si->lowest_bit = si->max;
663 si->highest_bit = 0;
18ab4d4c
DS
664 spin_lock(&swap_avail_lock);
665 plist_del(&si->avail_list, &swap_avail_head);
666 spin_unlock(&swap_avail_lock);
1da177e4 667 }
253d553b 668 si->swap_map[offset] = usage;
2a8f9449 669 inc_cluster_info_page(si, si->cluster_info, offset);
235b6217 670 unlock_cluster(ci);
ebebbbe9
HD
671 si->cluster_next = offset + 1;
672 si->flags -= SWP_SCANNING;
7992fde7 673
ebebbbe9 674 return offset;
7dfad418 675
ebebbbe9 676scan:
ec8acf20 677 spin_unlock(&si->lock);
7dfad418 678 while (++offset <= si->highest_bit) {
52b7efdb 679 if (!si->swap_map[offset]) {
ec8acf20 680 spin_lock(&si->lock);
52b7efdb
HD
681 goto checks;
682 }
c9e44410 683 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 684 spin_lock(&si->lock);
c9e44410
KH
685 goto checks;
686 }
048c27fd
HD
687 if (unlikely(--latency_ration < 0)) {
688 cond_resched();
689 latency_ration = LATENCY_LIMIT;
690 }
7dfad418 691 }
c60aa176 692 offset = si->lowest_bit;
a5998061 693 while (offset < scan_base) {
c60aa176 694 if (!si->swap_map[offset]) {
ec8acf20 695 spin_lock(&si->lock);
c60aa176
HD
696 goto checks;
697 }
c9e44410 698 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 699 spin_lock(&si->lock);
c9e44410
KH
700 goto checks;
701 }
c60aa176
HD
702 if (unlikely(--latency_ration < 0)) {
703 cond_resched();
704 latency_ration = LATENCY_LIMIT;
705 }
a5998061 706 offset++;
c60aa176 707 }
ec8acf20 708 spin_lock(&si->lock);
7dfad418
HD
709
710no_page:
52b7efdb 711 si->flags -= SWP_SCANNING;
1da177e4
LT
712 return 0;
713}
714
715swp_entry_t get_swap_page(void)
716{
adfab836 717 struct swap_info_struct *si, *next;
fb4f88dc 718 pgoff_t offset;
1da177e4 719
ec8acf20 720 if (atomic_long_read(&nr_swap_pages) <= 0)
fb4f88dc 721 goto noswap;
ec8acf20 722 atomic_long_dec(&nr_swap_pages);
fb4f88dc 723
18ab4d4c
DS
724 spin_lock(&swap_avail_lock);
725
726start_over:
727 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
728 /* requeue si to after same-priority siblings */
729 plist_requeue(&si->avail_list, &swap_avail_head);
730 spin_unlock(&swap_avail_lock);
ec8acf20 731 spin_lock(&si->lock);
adfab836 732 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c
DS
733 spin_lock(&swap_avail_lock);
734 if (plist_node_empty(&si->avail_list)) {
735 spin_unlock(&si->lock);
736 goto nextsi;
737 }
738 WARN(!si->highest_bit,
739 "swap_info %d in list but !highest_bit\n",
740 si->type);
741 WARN(!(si->flags & SWP_WRITEOK),
742 "swap_info %d in list but !SWP_WRITEOK\n",
743 si->type);
744 plist_del(&si->avail_list, &swap_avail_head);
ec8acf20 745 spin_unlock(&si->lock);
18ab4d4c 746 goto nextsi;
ec8acf20 747 }
fb4f88dc 748
355cfa73 749 /* This is called for allocating swap entry for cache */
253d553b 750 offset = scan_swap_map(si, SWAP_HAS_CACHE);
ec8acf20
SL
751 spin_unlock(&si->lock);
752 if (offset)
adfab836 753 return swp_entry(si->type, offset);
18ab4d4c
DS
754 pr_debug("scan_swap_map of si %d failed to find offset\n",
755 si->type);
756 spin_lock(&swap_avail_lock);
757nextsi:
adfab836
DS
758 /*
759 * if we got here, it's likely that si was almost full before,
760 * and since scan_swap_map() can drop the si->lock, multiple
761 * callers probably all tried to get a page from the same si
18ab4d4c
DS
762 * and it filled up before we could get one; or, the si filled
763 * up between us dropping swap_avail_lock and taking si->lock.
764 * Since we dropped the swap_avail_lock, the swap_avail_head
765 * list may have been modified; so if next is still in the
766 * swap_avail_head list then try it, otherwise start over.
adfab836 767 */
18ab4d4c
DS
768 if (plist_node_empty(&next->avail_list))
769 goto start_over;
1da177e4 770 }
fb4f88dc 771
18ab4d4c
DS
772 spin_unlock(&swap_avail_lock);
773
ec8acf20 774 atomic_long_inc(&nr_swap_pages);
fb4f88dc 775noswap:
fb4f88dc 776 return (swp_entry_t) {0};
1da177e4
LT
777}
778
2de1a7e4 779/* The only caller of this function is now suspend routine */
910321ea
HD
780swp_entry_t get_swap_page_of_type(int type)
781{
782 struct swap_info_struct *si;
783 pgoff_t offset;
784
910321ea 785 si = swap_info[type];
ec8acf20 786 spin_lock(&si->lock);
910321ea 787 if (si && (si->flags & SWP_WRITEOK)) {
ec8acf20 788 atomic_long_dec(&nr_swap_pages);
910321ea
HD
789 /* This is called for allocating swap entry, not cache */
790 offset = scan_swap_map(si, 1);
791 if (offset) {
ec8acf20 792 spin_unlock(&si->lock);
910321ea
HD
793 return swp_entry(type, offset);
794 }
ec8acf20 795 atomic_long_inc(&nr_swap_pages);
910321ea 796 }
ec8acf20 797 spin_unlock(&si->lock);
910321ea
HD
798 return (swp_entry_t) {0};
799}
800
235b6217 801static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1da177e4 802{
73c34b6a 803 struct swap_info_struct *p;
1da177e4
LT
804 unsigned long offset, type;
805
806 if (!entry.val)
807 goto out;
808 type = swp_type(entry);
809 if (type >= nr_swapfiles)
810 goto bad_nofile;
efa90a98 811 p = swap_info[type];
1da177e4
LT
812 if (!(p->flags & SWP_USED))
813 goto bad_device;
814 offset = swp_offset(entry);
815 if (offset >= p->max)
816 goto bad_offset;
817 if (!p->swap_map[offset])
818 goto bad_free;
1da177e4
LT
819 return p;
820
821bad_free:
6a991fc7 822 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1da177e4
LT
823 goto out;
824bad_offset:
6a991fc7 825 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
826 goto out;
827bad_device:
6a991fc7 828 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
829 goto out;
830bad_nofile:
6a991fc7 831 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
832out:
833 return NULL;
886bb7e9 834}
1da177e4 835
235b6217
HY
836static struct swap_info_struct *swap_info_get(swp_entry_t entry)
837{
838 struct swap_info_struct *p;
839
840 p = _swap_info_get(entry);
841 if (p)
842 spin_lock(&p->lock);
843 return p;
844}
845
8d69aaee 846static unsigned char swap_entry_free(struct swap_info_struct *p,
235b6217
HY
847 swp_entry_t entry, unsigned char usage,
848 bool swap_info_locked)
1da177e4 849{
235b6217 850 struct swap_cluster_info *ci;
253d553b 851 unsigned long offset = swp_offset(entry);
8d69aaee
HD
852 unsigned char count;
853 unsigned char has_cache;
235b6217
HY
854 bool lock_swap_info = false;
855
856 if (!swap_info_locked) {
857 count = p->swap_map[offset];
858 if (!p->cluster_info || count == usage || count == SWAP_MAP_SHMEM) {
859lock_swap_info:
860 swap_info_locked = true;
861 lock_swap_info = true;
862 spin_lock(&p->lock);
863 }
864 }
865
866 ci = lock_cluster(p, offset);
355cfa73 867
253d553b 868 count = p->swap_map[offset];
235b6217
HY
869
870 if (!swap_info_locked && (count == usage || count == SWAP_MAP_SHMEM)) {
871 unlock_cluster(ci);
872 goto lock_swap_info;
873 }
874
253d553b
HD
875 has_cache = count & SWAP_HAS_CACHE;
876 count &= ~SWAP_HAS_CACHE;
355cfa73 877
253d553b 878 if (usage == SWAP_HAS_CACHE) {
355cfa73 879 VM_BUG_ON(!has_cache);
253d553b 880 has_cache = 0;
aaa46865
HD
881 } else if (count == SWAP_MAP_SHMEM) {
882 /*
883 * Or we could insist on shmem.c using a special
884 * swap_shmem_free() and free_shmem_swap_and_cache()...
885 */
886 count = 0;
570a335b
HD
887 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
888 if (count == COUNT_CONTINUED) {
889 if (swap_count_continued(p, offset, count))
890 count = SWAP_MAP_MAX | COUNT_CONTINUED;
891 else
892 count = SWAP_MAP_MAX;
893 } else
894 count--;
895 }
253d553b 896
253d553b
HD
897 usage = count | has_cache;
898 p->swap_map[offset] = usage;
355cfa73 899
235b6217
HY
900 unlock_cluster(ci);
901
355cfa73 902 /* free if no reference */
253d553b 903 if (!usage) {
235b6217 904 VM_BUG_ON(!swap_info_locked);
37e84351 905 mem_cgroup_uncharge_swap(entry);
235b6217 906 ci = lock_cluster(p, offset);
2a8f9449 907 dec_cluster_info_page(p, p->cluster_info, offset);
235b6217 908 unlock_cluster(ci);
355cfa73
KH
909 if (offset < p->lowest_bit)
910 p->lowest_bit = offset;
18ab4d4c
DS
911 if (offset > p->highest_bit) {
912 bool was_full = !p->highest_bit;
355cfa73 913 p->highest_bit = offset;
18ab4d4c
DS
914 if (was_full && (p->flags & SWP_WRITEOK)) {
915 spin_lock(&swap_avail_lock);
916 WARN_ON(!plist_node_empty(&p->avail_list));
917 if (plist_node_empty(&p->avail_list))
918 plist_add(&p->avail_list,
919 &swap_avail_head);
920 spin_unlock(&swap_avail_lock);
921 }
922 }
ec8acf20 923 atomic_long_inc(&nr_swap_pages);
355cfa73 924 p->inuse_pages--;
38b5faf4 925 frontswap_invalidate_page(p->type, offset);
73744923
MG
926 if (p->flags & SWP_BLKDEV) {
927 struct gendisk *disk = p->bdev->bd_disk;
928 if (disk->fops->swap_slot_free_notify)
929 disk->fops->swap_slot_free_notify(p->bdev,
930 offset);
931 }
1da177e4 932 }
253d553b 933
235b6217
HY
934 if (lock_swap_info)
935 spin_unlock(&p->lock);
936
253d553b 937 return usage;
1da177e4
LT
938}
939
940/*
2de1a7e4 941 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
942 * is still around or has not been recycled.
943 */
944void swap_free(swp_entry_t entry)
945{
73c34b6a 946 struct swap_info_struct *p;
1da177e4 947
235b6217
HY
948 p = _swap_info_get(entry);
949 if (p)
950 swap_entry_free(p, entry, 1, false);
1da177e4
LT
951}
952
cb4b86ba
KH
953/*
954 * Called after dropping swapcache to decrease refcnt to swap entries.
955 */
0a31bc97 956void swapcache_free(swp_entry_t entry)
cb4b86ba 957{
355cfa73
KH
958 struct swap_info_struct *p;
959
235b6217
HY
960 p = _swap_info_get(entry);
961 if (p)
962 swap_entry_free(p, entry, SWAP_HAS_CACHE, false);
cb4b86ba
KH
963}
964
1da177e4 965/*
c475a8ab 966 * How many references to page are currently swapped out?
570a335b
HD
967 * This does not give an exact answer when swap count is continued,
968 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 969 */
bde05d1c 970int page_swapcount(struct page *page)
1da177e4 971{
c475a8ab
HD
972 int count = 0;
973 struct swap_info_struct *p;
235b6217 974 struct swap_cluster_info *ci;
1da177e4 975 swp_entry_t entry;
235b6217 976 unsigned long offset;
1da177e4 977
4c21e2f2 978 entry.val = page_private(page);
235b6217 979 p = _swap_info_get(entry);
1da177e4 980 if (p) {
235b6217
HY
981 offset = swp_offset(entry);
982 ci = lock_cluster_or_swap_info(p, offset);
983 count = swap_count(p->swap_map[offset]);
984 unlock_cluster_or_swap_info(p, ci);
1da177e4 985 }
c475a8ab 986 return count;
1da177e4
LT
987}
988
8334b962
MK
989/*
990 * How many references to @entry are currently swapped out?
991 * This considers COUNT_CONTINUED so it returns exact answer.
992 */
993int swp_swapcount(swp_entry_t entry)
994{
995 int count, tmp_count, n;
996 struct swap_info_struct *p;
235b6217 997 struct swap_cluster_info *ci;
8334b962
MK
998 struct page *page;
999 pgoff_t offset;
1000 unsigned char *map;
1001
235b6217 1002 p = _swap_info_get(entry);
8334b962
MK
1003 if (!p)
1004 return 0;
1005
235b6217
HY
1006 offset = swp_offset(entry);
1007
1008 ci = lock_cluster_or_swap_info(p, offset);
1009
1010 count = swap_count(p->swap_map[offset]);
8334b962
MK
1011 if (!(count & COUNT_CONTINUED))
1012 goto out;
1013
1014 count &= ~COUNT_CONTINUED;
1015 n = SWAP_MAP_MAX + 1;
1016
8334b962
MK
1017 page = vmalloc_to_page(p->swap_map + offset);
1018 offset &= ~PAGE_MASK;
1019 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1020
1021 do {
a8ae4991 1022 page = list_next_entry(page, lru);
8334b962
MK
1023 map = kmap_atomic(page);
1024 tmp_count = map[offset];
1025 kunmap_atomic(map);
1026
1027 count += (tmp_count & ~COUNT_CONTINUED) * n;
1028 n *= (SWAP_CONT_MAX + 1);
1029 } while (tmp_count & COUNT_CONTINUED);
1030out:
235b6217 1031 unlock_cluster_or_swap_info(p, ci);
8334b962
MK
1032 return count;
1033}
1034
1da177e4 1035/*
7b1fe597
HD
1036 * We can write to an anon page without COW if there are no other references
1037 * to it. And as a side-effect, free up its swap: because the old content
1038 * on disk will never be read, and seeking back there to write new content
1039 * later would only waste time away from clustering.
6d0a07ed
AA
1040 *
1041 * NOTE: total_mapcount should not be relied upon by the caller if
1042 * reuse_swap_page() returns false, but it may be always overwritten
1043 * (see the other implementation for CONFIG_SWAP=n).
1da177e4 1044 */
6d0a07ed 1045bool reuse_swap_page(struct page *page, int *total_mapcount)
1da177e4 1046{
c475a8ab
HD
1047 int count;
1048
309381fe 1049 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688 1050 if (unlikely(PageKsm(page)))
6d0a07ed
AA
1051 return false;
1052 count = page_trans_huge_mapcount(page, total_mapcount);
7b1fe597 1053 if (count <= 1 && PageSwapCache(page)) {
c475a8ab 1054 count += page_swapcount(page);
f0571429
MK
1055 if (count != 1)
1056 goto out;
1057 if (!PageWriteback(page)) {
7b1fe597
HD
1058 delete_from_swap_cache(page);
1059 SetPageDirty(page);
f0571429
MK
1060 } else {
1061 swp_entry_t entry;
1062 struct swap_info_struct *p;
1063
1064 entry.val = page_private(page);
1065 p = swap_info_get(entry);
1066 if (p->flags & SWP_STABLE_WRITES) {
1067 spin_unlock(&p->lock);
1068 return false;
1069 }
1070 spin_unlock(&p->lock);
7b1fe597
HD
1071 }
1072 }
f0571429 1073out:
5ad64688 1074 return count <= 1;
1da177e4
LT
1075}
1076
1077/*
a2c43eed
HD
1078 * If swap is getting full, or if there are no more mappings of this page,
1079 * then try_to_free_swap is called to free its swap space.
1da177e4 1080 */
a2c43eed 1081int try_to_free_swap(struct page *page)
1da177e4 1082{
309381fe 1083 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
1084
1085 if (!PageSwapCache(page))
1086 return 0;
1087 if (PageWriteback(page))
1088 return 0;
a2c43eed 1089 if (page_swapcount(page))
1da177e4
LT
1090 return 0;
1091
b73d7fce
HD
1092 /*
1093 * Once hibernation has begun to create its image of memory,
1094 * there's a danger that one of the calls to try_to_free_swap()
1095 * - most probably a call from __try_to_reclaim_swap() while
1096 * hibernation is allocating its own swap pages for the image,
1097 * but conceivably even a call from memory reclaim - will free
1098 * the swap from a page which has already been recorded in the
1099 * image as a clean swapcache page, and then reuse its swap for
1100 * another page of the image. On waking from hibernation, the
1101 * original page might be freed under memory pressure, then
1102 * later read back in from swap, now with the wrong data.
1103 *
2de1a7e4 1104 * Hibernation suspends storage while it is writing the image
f90ac398 1105 * to disk so check that here.
b73d7fce 1106 */
f90ac398 1107 if (pm_suspended_storage())
b73d7fce
HD
1108 return 0;
1109
a2c43eed
HD
1110 delete_from_swap_cache(page);
1111 SetPageDirty(page);
1112 return 1;
68a22394
RR
1113}
1114
1da177e4
LT
1115/*
1116 * Free the swap entry like above, but also try to
1117 * free the page cache entry if it is the last user.
1118 */
2509ef26 1119int free_swap_and_cache(swp_entry_t entry)
1da177e4 1120{
2509ef26 1121 struct swap_info_struct *p;
1da177e4
LT
1122 struct page *page = NULL;
1123
a7420aa5 1124 if (non_swap_entry(entry))
2509ef26 1125 return 1;
0697212a 1126
1da177e4
LT
1127 p = swap_info_get(entry);
1128 if (p) {
235b6217 1129 if (swap_entry_free(p, entry, 1, true) == SWAP_HAS_CACHE) {
33806f06 1130 page = find_get_page(swap_address_space(entry),
f6ab1f7f 1131 swp_offset(entry));
8413ac9d 1132 if (page && !trylock_page(page)) {
09cbfeaf 1133 put_page(page);
93fac704
NP
1134 page = NULL;
1135 }
1136 }
ec8acf20 1137 spin_unlock(&p->lock);
1da177e4
LT
1138 }
1139 if (page) {
a2c43eed
HD
1140 /*
1141 * Not mapped elsewhere, or swap space full? Free it!
1142 * Also recheck PageSwapCache now page is locked (above).
1143 */
93fac704 1144 if (PageSwapCache(page) && !PageWriteback(page) &&
5ccc5aba 1145 (!page_mapped(page) || mem_cgroup_swap_full(page))) {
1da177e4
LT
1146 delete_from_swap_cache(page);
1147 SetPageDirty(page);
1148 }
1149 unlock_page(page);
09cbfeaf 1150 put_page(page);
1da177e4 1151 }
2509ef26 1152 return p != NULL;
1da177e4
LT
1153}
1154
b0cb1a19 1155#ifdef CONFIG_HIBERNATION
f577eb30 1156/*
915bae9e 1157 * Find the swap type that corresponds to given device (if any).
f577eb30 1158 *
915bae9e
RW
1159 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1160 * from 0, in which the swap header is expected to be located.
1161 *
1162 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1163 */
7bf23687 1164int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 1165{
915bae9e 1166 struct block_device *bdev = NULL;
efa90a98 1167 int type;
f577eb30 1168
915bae9e
RW
1169 if (device)
1170 bdev = bdget(device);
1171
f577eb30 1172 spin_lock(&swap_lock);
efa90a98
HD
1173 for (type = 0; type < nr_swapfiles; type++) {
1174 struct swap_info_struct *sis = swap_info[type];
f577eb30 1175
915bae9e 1176 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1177 continue;
b6b5bce3 1178
915bae9e 1179 if (!bdev) {
7bf23687 1180 if (bdev_p)
dddac6a7 1181 *bdev_p = bdgrab(sis->bdev);
7bf23687 1182
6e1819d6 1183 spin_unlock(&swap_lock);
efa90a98 1184 return type;
6e1819d6 1185 }
915bae9e 1186 if (bdev == sis->bdev) {
9625a5f2 1187 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 1188
915bae9e 1189 if (se->start_block == offset) {
7bf23687 1190 if (bdev_p)
dddac6a7 1191 *bdev_p = bdgrab(sis->bdev);
7bf23687 1192
915bae9e
RW
1193 spin_unlock(&swap_lock);
1194 bdput(bdev);
efa90a98 1195 return type;
915bae9e 1196 }
f577eb30
RW
1197 }
1198 }
1199 spin_unlock(&swap_lock);
915bae9e
RW
1200 if (bdev)
1201 bdput(bdev);
1202
f577eb30
RW
1203 return -ENODEV;
1204}
1205
73c34b6a
HD
1206/*
1207 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1208 * corresponding to given index in swap_info (swap type).
1209 */
1210sector_t swapdev_block(int type, pgoff_t offset)
1211{
1212 struct block_device *bdev;
1213
1214 if ((unsigned int)type >= nr_swapfiles)
1215 return 0;
1216 if (!(swap_info[type]->flags & SWP_WRITEOK))
1217 return 0;
d4906e1a 1218 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
1219}
1220
f577eb30
RW
1221/*
1222 * Return either the total number of swap pages of given type, or the number
1223 * of free pages of that type (depending on @free)
1224 *
1225 * This is needed for software suspend
1226 */
1227unsigned int count_swap_pages(int type, int free)
1228{
1229 unsigned int n = 0;
1230
efa90a98
HD
1231 spin_lock(&swap_lock);
1232 if ((unsigned int)type < nr_swapfiles) {
1233 struct swap_info_struct *sis = swap_info[type];
1234
ec8acf20 1235 spin_lock(&sis->lock);
efa90a98
HD
1236 if (sis->flags & SWP_WRITEOK) {
1237 n = sis->pages;
f577eb30 1238 if (free)
efa90a98 1239 n -= sis->inuse_pages;
f577eb30 1240 }
ec8acf20 1241 spin_unlock(&sis->lock);
f577eb30 1242 }
efa90a98 1243 spin_unlock(&swap_lock);
f577eb30
RW
1244 return n;
1245}
73c34b6a 1246#endif /* CONFIG_HIBERNATION */
f577eb30 1247
9f8bdb3f 1248static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
179ef71c 1249{
9f8bdb3f 1250 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
179ef71c
CG
1251}
1252
1da177e4 1253/*
72866f6f
HD
1254 * No need to decide whether this PTE shares the swap entry with others,
1255 * just let do_wp_page work it out if a write is requested later - to
1256 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1257 */
044d66c1 1258static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1259 unsigned long addr, swp_entry_t entry, struct page *page)
1260{
9e16b7fb 1261 struct page *swapcache;
72835c86 1262 struct mem_cgroup *memcg;
044d66c1
HD
1263 spinlock_t *ptl;
1264 pte_t *pte;
1265 int ret = 1;
1266
9e16b7fb
HD
1267 swapcache = page;
1268 page = ksm_might_need_to_copy(page, vma, addr);
1269 if (unlikely(!page))
1270 return -ENOMEM;
1271
f627c2f5
KS
1272 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1273 &memcg, false)) {
044d66c1 1274 ret = -ENOMEM;
85d9fc89
KH
1275 goto out_nolock;
1276 }
044d66c1
HD
1277
1278 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
9f8bdb3f 1279 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
f627c2f5 1280 mem_cgroup_cancel_charge(page, memcg, false);
044d66c1
HD
1281 ret = 0;
1282 goto out;
1283 }
8a9f3ccd 1284
b084d435 1285 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1286 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1287 get_page(page);
1288 set_pte_at(vma->vm_mm, addr, pte,
1289 pte_mkold(mk_pte(page, vma->vm_page_prot)));
00501b53 1290 if (page == swapcache) {
d281ee61 1291 page_add_anon_rmap(page, vma, addr, false);
f627c2f5 1292 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1293 } else { /* ksm created a completely new copy */
d281ee61 1294 page_add_new_anon_rmap(page, vma, addr, false);
f627c2f5 1295 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
1296 lru_cache_add_active_or_unevictable(page, vma);
1297 }
1da177e4
LT
1298 swap_free(entry);
1299 /*
1300 * Move the page to the active list so it is not
1301 * immediately swapped out again after swapon.
1302 */
1303 activate_page(page);
044d66c1
HD
1304out:
1305 pte_unmap_unlock(pte, ptl);
85d9fc89 1306out_nolock:
9e16b7fb
HD
1307 if (page != swapcache) {
1308 unlock_page(page);
1309 put_page(page);
1310 }
044d66c1 1311 return ret;
1da177e4
LT
1312}
1313
1314static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1315 unsigned long addr, unsigned long end,
1316 swp_entry_t entry, struct page *page)
1317{
1da177e4 1318 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 1319 pte_t *pte;
8a9f3ccd 1320 int ret = 0;
1da177e4 1321
044d66c1
HD
1322 /*
1323 * We don't actually need pte lock while scanning for swp_pte: since
1324 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1325 * page table while we're scanning; though it could get zapped, and on
1326 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1327 * of unmatched parts which look like swp_pte, so unuse_pte must
1328 * recheck under pte lock. Scanning without pte lock lets it be
2de1a7e4 1329 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
044d66c1
HD
1330 */
1331 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1332 do {
1333 /*
1334 * swapoff spends a _lot_ of time in this loop!
1335 * Test inline before going to call unuse_pte.
1336 */
9f8bdb3f 1337 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
044d66c1
HD
1338 pte_unmap(pte);
1339 ret = unuse_pte(vma, pmd, addr, entry, page);
1340 if (ret)
1341 goto out;
1342 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1343 }
1344 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
1345 pte_unmap(pte - 1);
1346out:
8a9f3ccd 1347 return ret;
1da177e4
LT
1348}
1349
1350static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1351 unsigned long addr, unsigned long end,
1352 swp_entry_t entry, struct page *page)
1353{
1354 pmd_t *pmd;
1355 unsigned long next;
8a9f3ccd 1356 int ret;
1da177e4
LT
1357
1358 pmd = pmd_offset(pud, addr);
1359 do {
dc644a07 1360 cond_resched();
1da177e4 1361 next = pmd_addr_end(addr, end);
1a5a9906 1362 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 1363 continue;
8a9f3ccd
BS
1364 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1365 if (ret)
1366 return ret;
1da177e4
LT
1367 } while (pmd++, addr = next, addr != end);
1368 return 0;
1369}
1370
1371static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1372 unsigned long addr, unsigned long end,
1373 swp_entry_t entry, struct page *page)
1374{
1375 pud_t *pud;
1376 unsigned long next;
8a9f3ccd 1377 int ret;
1da177e4
LT
1378
1379 pud = pud_offset(pgd, addr);
1380 do {
1381 next = pud_addr_end(addr, end);
1382 if (pud_none_or_clear_bad(pud))
1383 continue;
8a9f3ccd
BS
1384 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1385 if (ret)
1386 return ret;
1da177e4
LT
1387 } while (pud++, addr = next, addr != end);
1388 return 0;
1389}
1390
1391static int unuse_vma(struct vm_area_struct *vma,
1392 swp_entry_t entry, struct page *page)
1393{
1394 pgd_t *pgd;
1395 unsigned long addr, end, next;
8a9f3ccd 1396 int ret;
1da177e4 1397
3ca7b3c5 1398 if (page_anon_vma(page)) {
1da177e4
LT
1399 addr = page_address_in_vma(page, vma);
1400 if (addr == -EFAULT)
1401 return 0;
1402 else
1403 end = addr + PAGE_SIZE;
1404 } else {
1405 addr = vma->vm_start;
1406 end = vma->vm_end;
1407 }
1408
1409 pgd = pgd_offset(vma->vm_mm, addr);
1410 do {
1411 next = pgd_addr_end(addr, end);
1412 if (pgd_none_or_clear_bad(pgd))
1413 continue;
8a9f3ccd
BS
1414 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1415 if (ret)
1416 return ret;
1da177e4
LT
1417 } while (pgd++, addr = next, addr != end);
1418 return 0;
1419}
1420
1421static int unuse_mm(struct mm_struct *mm,
1422 swp_entry_t entry, struct page *page)
1423{
1424 struct vm_area_struct *vma;
8a9f3ccd 1425 int ret = 0;
1da177e4
LT
1426
1427 if (!down_read_trylock(&mm->mmap_sem)) {
1428 /*
7d03431c
FLVC
1429 * Activate page so shrink_inactive_list is unlikely to unmap
1430 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 1431 */
c475a8ab 1432 activate_page(page);
1da177e4
LT
1433 unlock_page(page);
1434 down_read(&mm->mmap_sem);
1435 lock_page(page);
1436 }
1da177e4 1437 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 1438 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4 1439 break;
dc644a07 1440 cond_resched();
1da177e4 1441 }
1da177e4 1442 up_read(&mm->mmap_sem);
8a9f3ccd 1443 return (ret < 0)? ret: 0;
1da177e4
LT
1444}
1445
1446/*
38b5faf4
DM
1447 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1448 * from current position to next entry still in use.
1da177e4
LT
1449 * Recycle to start on reaching the end, returning 0 when empty.
1450 */
6eb396dc 1451static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 1452 unsigned int prev, bool frontswap)
1da177e4 1453{
6eb396dc
HD
1454 unsigned int max = si->max;
1455 unsigned int i = prev;
8d69aaee 1456 unsigned char count;
1da177e4
LT
1457
1458 /*
5d337b91 1459 * No need for swap_lock here: we're just looking
1da177e4
LT
1460 * for whether an entry is in use, not modifying it; false
1461 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 1462 * allocations from this area (while holding swap_lock).
1da177e4
LT
1463 */
1464 for (;;) {
1465 if (++i >= max) {
1466 if (!prev) {
1467 i = 0;
1468 break;
1469 }
1470 /*
1471 * No entries in use at top of swap_map,
1472 * loop back to start and recheck there.
1473 */
1474 max = prev + 1;
1475 prev = 0;
1476 i = 1;
1477 }
4db0c3c2 1478 count = READ_ONCE(si->swap_map[i]);
355cfa73 1479 if (count && swap_count(count) != SWAP_MAP_BAD)
dc644a07
HD
1480 if (!frontswap || frontswap_test(si, i))
1481 break;
1482 if ((i % LATENCY_LIMIT) == 0)
1483 cond_resched();
1da177e4
LT
1484 }
1485 return i;
1486}
1487
1488/*
1489 * We completely avoid races by reading each swap page in advance,
1490 * and then search for the process using it. All the necessary
1491 * page table adjustments can then be made atomically.
38b5faf4
DM
1492 *
1493 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1494 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 1495 */
38b5faf4
DM
1496int try_to_unuse(unsigned int type, bool frontswap,
1497 unsigned long pages_to_unuse)
1da177e4 1498{
efa90a98 1499 struct swap_info_struct *si = swap_info[type];
1da177e4 1500 struct mm_struct *start_mm;
edfe23da
SL
1501 volatile unsigned char *swap_map; /* swap_map is accessed without
1502 * locking. Mark it as volatile
1503 * to prevent compiler doing
1504 * something odd.
1505 */
8d69aaee 1506 unsigned char swcount;
1da177e4
LT
1507 struct page *page;
1508 swp_entry_t entry;
6eb396dc 1509 unsigned int i = 0;
1da177e4 1510 int retval = 0;
1da177e4
LT
1511
1512 /*
1513 * When searching mms for an entry, a good strategy is to
1514 * start at the first mm we freed the previous entry from
1515 * (though actually we don't notice whether we or coincidence
1516 * freed the entry). Initialize this start_mm with a hold.
1517 *
1518 * A simpler strategy would be to start at the last mm we
1519 * freed the previous entry from; but that would take less
1520 * advantage of mmlist ordering, which clusters forked mms
1521 * together, child after parent. If we race with dup_mmap(), we
1522 * prefer to resolve parent before child, lest we miss entries
1523 * duplicated after we scanned child: using last mm would invert
570a335b 1524 * that.
1da177e4
LT
1525 */
1526 start_mm = &init_mm;
1527 atomic_inc(&init_mm.mm_users);
1528
1529 /*
1530 * Keep on scanning until all entries have gone. Usually,
1531 * one pass through swap_map is enough, but not necessarily:
1532 * there are races when an instance of an entry might be missed.
1533 */
38b5faf4 1534 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4
LT
1535 if (signal_pending(current)) {
1536 retval = -EINTR;
1537 break;
1538 }
1539
886bb7e9 1540 /*
1da177e4
LT
1541 * Get a page for the entry, using the existing swap
1542 * cache page if there is one. Otherwise, get a clean
886bb7e9 1543 * page and read the swap into it.
1da177e4
LT
1544 */
1545 swap_map = &si->swap_map[i];
1546 entry = swp_entry(type, i);
02098fea
HD
1547 page = read_swap_cache_async(entry,
1548 GFP_HIGHUSER_MOVABLE, NULL, 0);
1da177e4
LT
1549 if (!page) {
1550 /*
1551 * Either swap_duplicate() failed because entry
1552 * has been freed independently, and will not be
1553 * reused since sys_swapoff() already disabled
1554 * allocation from here, or alloc_page() failed.
1555 */
edfe23da
SL
1556 swcount = *swap_map;
1557 /*
1558 * We don't hold lock here, so the swap entry could be
1559 * SWAP_MAP_BAD (when the cluster is discarding).
1560 * Instead of fail out, We can just skip the swap
1561 * entry because swapoff will wait for discarding
1562 * finish anyway.
1563 */
1564 if (!swcount || swcount == SWAP_MAP_BAD)
1da177e4
LT
1565 continue;
1566 retval = -ENOMEM;
1567 break;
1568 }
1569
1570 /*
1571 * Don't hold on to start_mm if it looks like exiting.
1572 */
1573 if (atomic_read(&start_mm->mm_users) == 1) {
1574 mmput(start_mm);
1575 start_mm = &init_mm;
1576 atomic_inc(&init_mm.mm_users);
1577 }
1578
1579 /*
1580 * Wait for and lock page. When do_swap_page races with
1581 * try_to_unuse, do_swap_page can handle the fault much
1582 * faster than try_to_unuse can locate the entry. This
1583 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1584 * defer to do_swap_page in such a case - in some tests,
1585 * do_swap_page and try_to_unuse repeatedly compete.
1586 */
1587 wait_on_page_locked(page);
1588 wait_on_page_writeback(page);
1589 lock_page(page);
1590 wait_on_page_writeback(page);
1591
1592 /*
1593 * Remove all references to entry.
1da177e4 1594 */
1da177e4 1595 swcount = *swap_map;
aaa46865
HD
1596 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1597 retval = shmem_unuse(entry, page);
1598 /* page has already been unlocked and released */
1599 if (retval < 0)
1600 break;
1601 continue;
1da177e4 1602 }
aaa46865
HD
1603 if (swap_count(swcount) && start_mm != &init_mm)
1604 retval = unuse_mm(start_mm, entry, page);
1605
355cfa73 1606 if (swap_count(*swap_map)) {
1da177e4
LT
1607 int set_start_mm = (*swap_map >= swcount);
1608 struct list_head *p = &start_mm->mmlist;
1609 struct mm_struct *new_start_mm = start_mm;
1610 struct mm_struct *prev_mm = start_mm;
1611 struct mm_struct *mm;
1612
1613 atomic_inc(&new_start_mm->mm_users);
1614 atomic_inc(&prev_mm->mm_users);
1615 spin_lock(&mmlist_lock);
aaa46865 1616 while (swap_count(*swap_map) && !retval &&
1da177e4
LT
1617 (p = p->next) != &start_mm->mmlist) {
1618 mm = list_entry(p, struct mm_struct, mmlist);
70af7c5c 1619 if (!atomic_inc_not_zero(&mm->mm_users))
1da177e4 1620 continue;
1da177e4
LT
1621 spin_unlock(&mmlist_lock);
1622 mmput(prev_mm);
1623 prev_mm = mm;
1624
1625 cond_resched();
1626
1627 swcount = *swap_map;
355cfa73 1628 if (!swap_count(swcount)) /* any usage ? */
1da177e4 1629 ;
aaa46865 1630 else if (mm == &init_mm)
1da177e4 1631 set_start_mm = 1;
aaa46865 1632 else
1da177e4 1633 retval = unuse_mm(mm, entry, page);
355cfa73 1634
32c5fc10 1635 if (set_start_mm && *swap_map < swcount) {
1da177e4
LT
1636 mmput(new_start_mm);
1637 atomic_inc(&mm->mm_users);
1638 new_start_mm = mm;
1639 set_start_mm = 0;
1640 }
1641 spin_lock(&mmlist_lock);
1642 }
1643 spin_unlock(&mmlist_lock);
1644 mmput(prev_mm);
1645 mmput(start_mm);
1646 start_mm = new_start_mm;
1647 }
1648 if (retval) {
1649 unlock_page(page);
09cbfeaf 1650 put_page(page);
1da177e4
LT
1651 break;
1652 }
1653
1da177e4
LT
1654 /*
1655 * If a reference remains (rare), we would like to leave
1656 * the page in the swap cache; but try_to_unmap could
1657 * then re-duplicate the entry once we drop page lock,
1658 * so we might loop indefinitely; also, that page could
1659 * not be swapped out to other storage meanwhile. So:
1660 * delete from cache even if there's another reference,
1661 * after ensuring that the data has been saved to disk -
1662 * since if the reference remains (rarer), it will be
1663 * read from disk into another page. Splitting into two
1664 * pages would be incorrect if swap supported "shared
1665 * private" pages, but they are handled by tmpfs files.
5ad64688
HD
1666 *
1667 * Given how unuse_vma() targets one particular offset
1668 * in an anon_vma, once the anon_vma has been determined,
1669 * this splitting happens to be just what is needed to
1670 * handle where KSM pages have been swapped out: re-reading
1671 * is unnecessarily slow, but we can fix that later on.
1da177e4 1672 */
355cfa73
KH
1673 if (swap_count(*swap_map) &&
1674 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
1675 struct writeback_control wbc = {
1676 .sync_mode = WB_SYNC_NONE,
1677 };
1678
1679 swap_writepage(page, &wbc);
1680 lock_page(page);
1681 wait_on_page_writeback(page);
1682 }
68bdc8d6
HD
1683
1684 /*
1685 * It is conceivable that a racing task removed this page from
1686 * swap cache just before we acquired the page lock at the top,
1687 * or while we dropped it in unuse_mm(). The page might even
1688 * be back in swap cache on another swap area: that we must not
1689 * delete, since it may not have been written out to swap yet.
1690 */
1691 if (PageSwapCache(page) &&
1692 likely(page_private(page) == entry.val))
2e0e26c7 1693 delete_from_swap_cache(page);
1da177e4
LT
1694
1695 /*
1696 * So we could skip searching mms once swap count went
1697 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 1698 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
1699 */
1700 SetPageDirty(page);
1701 unlock_page(page);
09cbfeaf 1702 put_page(page);
1da177e4
LT
1703
1704 /*
1705 * Make sure that we aren't completely killing
1706 * interactive performance.
1707 */
1708 cond_resched();
38b5faf4
DM
1709 if (frontswap && pages_to_unuse > 0) {
1710 if (!--pages_to_unuse)
1711 break;
1712 }
1da177e4
LT
1713 }
1714
1715 mmput(start_mm);
1da177e4
LT
1716 return retval;
1717}
1718
1719/*
5d337b91
HD
1720 * After a successful try_to_unuse, if no swap is now in use, we know
1721 * we can empty the mmlist. swap_lock must be held on entry and exit.
1722 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
1723 * added to the mmlist just after page_duplicate - before would be racy.
1724 */
1725static void drain_mmlist(void)
1726{
1727 struct list_head *p, *next;
efa90a98 1728 unsigned int type;
1da177e4 1729
efa90a98
HD
1730 for (type = 0; type < nr_swapfiles; type++)
1731 if (swap_info[type]->inuse_pages)
1da177e4
LT
1732 return;
1733 spin_lock(&mmlist_lock);
1734 list_for_each_safe(p, next, &init_mm.mmlist)
1735 list_del_init(p);
1736 spin_unlock(&mmlist_lock);
1737}
1738
1739/*
1740 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
1741 * corresponds to page offset for the specified swap entry.
1742 * Note that the type of this function is sector_t, but it returns page offset
1743 * into the bdev, not sector offset.
1da177e4 1744 */
d4906e1a 1745static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 1746{
f29ad6a9
HD
1747 struct swap_info_struct *sis;
1748 struct swap_extent *start_se;
1749 struct swap_extent *se;
1750 pgoff_t offset;
1751
efa90a98 1752 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
1753 *bdev = sis->bdev;
1754
1755 offset = swp_offset(entry);
1756 start_se = sis->curr_swap_extent;
1757 se = start_se;
1da177e4
LT
1758
1759 for ( ; ; ) {
1da177e4
LT
1760 if (se->start_page <= offset &&
1761 offset < (se->start_page + se->nr_pages)) {
1762 return se->start_block + (offset - se->start_page);
1763 }
a8ae4991 1764 se = list_next_entry(se, list);
1da177e4
LT
1765 sis->curr_swap_extent = se;
1766 BUG_ON(se == start_se); /* It *must* be present */
1767 }
1768}
1769
d4906e1a
LS
1770/*
1771 * Returns the page offset into bdev for the specified page's swap entry.
1772 */
1773sector_t map_swap_page(struct page *page, struct block_device **bdev)
1774{
1775 swp_entry_t entry;
1776 entry.val = page_private(page);
1777 return map_swap_entry(entry, bdev);
1778}
1779
1da177e4
LT
1780/*
1781 * Free all of a swapdev's extent information
1782 */
1783static void destroy_swap_extents(struct swap_info_struct *sis)
1784{
9625a5f2 1785 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
1786 struct swap_extent *se;
1787
a8ae4991 1788 se = list_first_entry(&sis->first_swap_extent.list,
1da177e4
LT
1789 struct swap_extent, list);
1790 list_del(&se->list);
1791 kfree(se);
1792 }
62c230bc
MG
1793
1794 if (sis->flags & SWP_FILE) {
1795 struct file *swap_file = sis->swap_file;
1796 struct address_space *mapping = swap_file->f_mapping;
1797
1798 sis->flags &= ~SWP_FILE;
1799 mapping->a_ops->swap_deactivate(swap_file);
1800 }
1da177e4
LT
1801}
1802
1803/*
1804 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 1805 * extent list. The extent list is kept sorted in page order.
1da177e4 1806 *
11d31886 1807 * This function rather assumes that it is called in ascending page order.
1da177e4 1808 */
a509bc1a 1809int
1da177e4
LT
1810add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1811 unsigned long nr_pages, sector_t start_block)
1812{
1813 struct swap_extent *se;
1814 struct swap_extent *new_se;
1815 struct list_head *lh;
1816
9625a5f2
HD
1817 if (start_page == 0) {
1818 se = &sis->first_swap_extent;
1819 sis->curr_swap_extent = se;
1820 se->start_page = 0;
1821 se->nr_pages = nr_pages;
1822 se->start_block = start_block;
1823 return 1;
1824 } else {
1825 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 1826 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
1827 BUG_ON(se->start_page + se->nr_pages != start_page);
1828 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
1829 /* Merge it */
1830 se->nr_pages += nr_pages;
1831 return 0;
1832 }
1da177e4
LT
1833 }
1834
1835 /*
1836 * No merge. Insert a new extent, preserving ordering.
1837 */
1838 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1839 if (new_se == NULL)
1840 return -ENOMEM;
1841 new_se->start_page = start_page;
1842 new_se->nr_pages = nr_pages;
1843 new_se->start_block = start_block;
1844
9625a5f2 1845 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 1846 return 1;
1da177e4
LT
1847}
1848
1849/*
1850 * A `swap extent' is a simple thing which maps a contiguous range of pages
1851 * onto a contiguous range of disk blocks. An ordered list of swap extents
1852 * is built at swapon time and is then used at swap_writepage/swap_readpage
1853 * time for locating where on disk a page belongs.
1854 *
1855 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1856 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1857 * swap files identically.
1858 *
1859 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1860 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1861 * swapfiles are handled *identically* after swapon time.
1862 *
1863 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1864 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1865 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1866 * requirements, they are simply tossed out - we will never use those blocks
1867 * for swapping.
1868 *
b0d9bcd4 1869 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
1870 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1871 * which will scribble on the fs.
1872 *
1873 * The amount of disk space which a single swap extent represents varies.
1874 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1875 * extents in the list. To avoid much list walking, we cache the previous
1876 * search location in `curr_swap_extent', and start new searches from there.
1877 * This is extremely effective. The average number of iterations in
1878 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1879 */
53092a74 1880static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 1881{
62c230bc
MG
1882 struct file *swap_file = sis->swap_file;
1883 struct address_space *mapping = swap_file->f_mapping;
1884 struct inode *inode = mapping->host;
1da177e4
LT
1885 int ret;
1886
1da177e4
LT
1887 if (S_ISBLK(inode->i_mode)) {
1888 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 1889 *span = sis->pages;
a509bc1a 1890 return ret;
1da177e4
LT
1891 }
1892
62c230bc 1893 if (mapping->a_ops->swap_activate) {
a509bc1a 1894 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
62c230bc
MG
1895 if (!ret) {
1896 sis->flags |= SWP_FILE;
1897 ret = add_swap_extent(sis, 0, sis->max, 0);
1898 *span = sis->pages;
1899 }
a509bc1a 1900 return ret;
62c230bc
MG
1901 }
1902
a509bc1a 1903 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
1904}
1905
cf0cac0a 1906static void _enable_swap_info(struct swap_info_struct *p, int prio,
2a8f9449
SL
1907 unsigned char *swap_map,
1908 struct swap_cluster_info *cluster_info)
40531542 1909{
40531542
CEB
1910 if (prio >= 0)
1911 p->prio = prio;
1912 else
1913 p->prio = --least_priority;
18ab4d4c
DS
1914 /*
1915 * the plist prio is negated because plist ordering is
1916 * low-to-high, while swap ordering is high-to-low
1917 */
1918 p->list.prio = -p->prio;
1919 p->avail_list.prio = -p->prio;
40531542 1920 p->swap_map = swap_map;
2a8f9449 1921 p->cluster_info = cluster_info;
40531542 1922 p->flags |= SWP_WRITEOK;
ec8acf20 1923 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
1924 total_swap_pages += p->pages;
1925
adfab836 1926 assert_spin_locked(&swap_lock);
adfab836 1927 /*
18ab4d4c
DS
1928 * both lists are plists, and thus priority ordered.
1929 * swap_active_head needs to be priority ordered for swapoff(),
1930 * which on removal of any swap_info_struct with an auto-assigned
1931 * (i.e. negative) priority increments the auto-assigned priority
1932 * of any lower-priority swap_info_structs.
1933 * swap_avail_head needs to be priority ordered for get_swap_page(),
1934 * which allocates swap pages from the highest available priority
1935 * swap_info_struct.
adfab836 1936 */
18ab4d4c
DS
1937 plist_add(&p->list, &swap_active_head);
1938 spin_lock(&swap_avail_lock);
1939 plist_add(&p->avail_list, &swap_avail_head);
1940 spin_unlock(&swap_avail_lock);
cf0cac0a
CEB
1941}
1942
1943static void enable_swap_info(struct swap_info_struct *p, int prio,
1944 unsigned char *swap_map,
2a8f9449 1945 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
1946 unsigned long *frontswap_map)
1947{
4f89849d 1948 frontswap_init(p->type, frontswap_map);
cf0cac0a 1949 spin_lock(&swap_lock);
ec8acf20 1950 spin_lock(&p->lock);
2a8f9449 1951 _enable_swap_info(p, prio, swap_map, cluster_info);
ec8acf20 1952 spin_unlock(&p->lock);
cf0cac0a
CEB
1953 spin_unlock(&swap_lock);
1954}
1955
1956static void reinsert_swap_info(struct swap_info_struct *p)
1957{
1958 spin_lock(&swap_lock);
ec8acf20 1959 spin_lock(&p->lock);
2a8f9449 1960 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
ec8acf20 1961 spin_unlock(&p->lock);
40531542
CEB
1962 spin_unlock(&swap_lock);
1963}
1964
c4ea37c2 1965SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 1966{
73c34b6a 1967 struct swap_info_struct *p = NULL;
8d69aaee 1968 unsigned char *swap_map;
2a8f9449 1969 struct swap_cluster_info *cluster_info;
4f89849d 1970 unsigned long *frontswap_map;
1da177e4
LT
1971 struct file *swap_file, *victim;
1972 struct address_space *mapping;
1973 struct inode *inode;
91a27b2a 1974 struct filename *pathname;
adfab836 1975 int err, found = 0;
5b808a23 1976 unsigned int old_block_size;
886bb7e9 1977
1da177e4
LT
1978 if (!capable(CAP_SYS_ADMIN))
1979 return -EPERM;
1980
191c5424
AV
1981 BUG_ON(!current->mm);
1982
1da177e4 1983 pathname = getname(specialfile);
1da177e4 1984 if (IS_ERR(pathname))
f58b59c1 1985 return PTR_ERR(pathname);
1da177e4 1986
669abf4e 1987 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
1988 err = PTR_ERR(victim);
1989 if (IS_ERR(victim))
1990 goto out;
1991
1992 mapping = victim->f_mapping;
5d337b91 1993 spin_lock(&swap_lock);
18ab4d4c 1994 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 1995 if (p->flags & SWP_WRITEOK) {
adfab836
DS
1996 if (p->swap_file->f_mapping == mapping) {
1997 found = 1;
1da177e4 1998 break;
adfab836 1999 }
1da177e4 2000 }
1da177e4 2001 }
adfab836 2002 if (!found) {
1da177e4 2003 err = -EINVAL;
5d337b91 2004 spin_unlock(&swap_lock);
1da177e4
LT
2005 goto out_dput;
2006 }
191c5424 2007 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
2008 vm_unacct_memory(p->pages);
2009 else {
2010 err = -ENOMEM;
5d337b91 2011 spin_unlock(&swap_lock);
1da177e4
LT
2012 goto out_dput;
2013 }
18ab4d4c
DS
2014 spin_lock(&swap_avail_lock);
2015 plist_del(&p->avail_list, &swap_avail_head);
2016 spin_unlock(&swap_avail_lock);
ec8acf20 2017 spin_lock(&p->lock);
78ecba08 2018 if (p->prio < 0) {
adfab836
DS
2019 struct swap_info_struct *si = p;
2020
18ab4d4c 2021 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 2022 si->prio++;
18ab4d4c
DS
2023 si->list.prio--;
2024 si->avail_list.prio--;
adfab836 2025 }
78ecba08
HD
2026 least_priority++;
2027 }
18ab4d4c 2028 plist_del(&p->list, &swap_active_head);
ec8acf20 2029 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
2030 total_swap_pages -= p->pages;
2031 p->flags &= ~SWP_WRITEOK;
ec8acf20 2032 spin_unlock(&p->lock);
5d337b91 2033 spin_unlock(&swap_lock);
fb4f88dc 2034
e1e12d2f 2035 set_current_oom_origin();
adfab836 2036 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
e1e12d2f 2037 clear_current_oom_origin();
1da177e4 2038
1da177e4
LT
2039 if (err) {
2040 /* re-insert swap space back into swap_list */
cf0cac0a 2041 reinsert_swap_info(p);
1da177e4
LT
2042 goto out_dput;
2043 }
52b7efdb 2044
815c2c54
SL
2045 flush_work(&p->discard_work);
2046
5d337b91 2047 destroy_swap_extents(p);
570a335b
HD
2048 if (p->flags & SWP_CONTINUED)
2049 free_swap_count_continuations(p);
2050
fc0abb14 2051 mutex_lock(&swapon_mutex);
5d337b91 2052 spin_lock(&swap_lock);
ec8acf20 2053 spin_lock(&p->lock);
5d337b91
HD
2054 drain_mmlist();
2055
52b7efdb 2056 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
2057 p->highest_bit = 0; /* cuts scans short */
2058 while (p->flags >= SWP_SCANNING) {
ec8acf20 2059 spin_unlock(&p->lock);
5d337b91 2060 spin_unlock(&swap_lock);
13e4b57f 2061 schedule_timeout_uninterruptible(1);
5d337b91 2062 spin_lock(&swap_lock);
ec8acf20 2063 spin_lock(&p->lock);
52b7efdb 2064 }
52b7efdb 2065
1da177e4 2066 swap_file = p->swap_file;
5b808a23 2067 old_block_size = p->old_block_size;
1da177e4
LT
2068 p->swap_file = NULL;
2069 p->max = 0;
2070 swap_map = p->swap_map;
2071 p->swap_map = NULL;
2a8f9449
SL
2072 cluster_info = p->cluster_info;
2073 p->cluster_info = NULL;
4f89849d 2074 frontswap_map = frontswap_map_get(p);
ec8acf20 2075 spin_unlock(&p->lock);
5d337b91 2076 spin_unlock(&swap_lock);
adfab836 2077 frontswap_invalidate_area(p->type);
58e97ba6 2078 frontswap_map_set(p, NULL);
fc0abb14 2079 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
2080 free_percpu(p->percpu_cluster);
2081 p->percpu_cluster = NULL;
1da177e4 2082 vfree(swap_map);
2a8f9449 2083 vfree(cluster_info);
4f89849d 2084 vfree(frontswap_map);
2de1a7e4 2085 /* Destroy swap account information */
adfab836 2086 swap_cgroup_swapoff(p->type);
27a7faa0 2087
1da177e4
LT
2088 inode = mapping->host;
2089 if (S_ISBLK(inode->i_mode)) {
2090 struct block_device *bdev = I_BDEV(inode);
5b808a23 2091 set_blocksize(bdev, old_block_size);
e525fd89 2092 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2093 } else {
5955102c 2094 inode_lock(inode);
1da177e4 2095 inode->i_flags &= ~S_SWAPFILE;
5955102c 2096 inode_unlock(inode);
1da177e4
LT
2097 }
2098 filp_close(swap_file, NULL);
f893ab41
WY
2099
2100 /*
2101 * Clear the SWP_USED flag after all resources are freed so that swapon
2102 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2103 * not hold p->lock after we cleared its SWP_WRITEOK.
2104 */
2105 spin_lock(&swap_lock);
2106 p->flags = 0;
2107 spin_unlock(&swap_lock);
2108
1da177e4 2109 err = 0;
66d7dd51
KS
2110 atomic_inc(&proc_poll_event);
2111 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
2112
2113out_dput:
2114 filp_close(victim, NULL);
2115out:
f58b59c1 2116 putname(pathname);
1da177e4
LT
2117 return err;
2118}
2119
2120#ifdef CONFIG_PROC_FS
66d7dd51
KS
2121static unsigned swaps_poll(struct file *file, poll_table *wait)
2122{
f1514638 2123 struct seq_file *seq = file->private_data;
66d7dd51
KS
2124
2125 poll_wait(file, &proc_poll_wait, wait);
2126
f1514638
KS
2127 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2128 seq->poll_event = atomic_read(&proc_poll_event);
66d7dd51
KS
2129 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2130 }
2131
2132 return POLLIN | POLLRDNORM;
2133}
2134
1da177e4
LT
2135/* iterator */
2136static void *swap_start(struct seq_file *swap, loff_t *pos)
2137{
efa90a98
HD
2138 struct swap_info_struct *si;
2139 int type;
1da177e4
LT
2140 loff_t l = *pos;
2141
fc0abb14 2142 mutex_lock(&swapon_mutex);
1da177e4 2143
881e4aab
SS
2144 if (!l)
2145 return SEQ_START_TOKEN;
2146
efa90a98
HD
2147 for (type = 0; type < nr_swapfiles; type++) {
2148 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2149 si = swap_info[type];
2150 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2151 continue;
881e4aab 2152 if (!--l)
efa90a98 2153 return si;
1da177e4
LT
2154 }
2155
2156 return NULL;
2157}
2158
2159static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2160{
efa90a98
HD
2161 struct swap_info_struct *si = v;
2162 int type;
1da177e4 2163
881e4aab 2164 if (v == SEQ_START_TOKEN)
efa90a98
HD
2165 type = 0;
2166 else
2167 type = si->type + 1;
881e4aab 2168
efa90a98
HD
2169 for (; type < nr_swapfiles; type++) {
2170 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2171 si = swap_info[type];
2172 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
2173 continue;
2174 ++*pos;
efa90a98 2175 return si;
1da177e4
LT
2176 }
2177
2178 return NULL;
2179}
2180
2181static void swap_stop(struct seq_file *swap, void *v)
2182{
fc0abb14 2183 mutex_unlock(&swapon_mutex);
1da177e4
LT
2184}
2185
2186static int swap_show(struct seq_file *swap, void *v)
2187{
efa90a98 2188 struct swap_info_struct *si = v;
1da177e4
LT
2189 struct file *file;
2190 int len;
2191
efa90a98 2192 if (si == SEQ_START_TOKEN) {
881e4aab
SS
2193 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2194 return 0;
2195 }
1da177e4 2196
efa90a98 2197 file = si->swap_file;
2726d566 2198 len = seq_file_path(swap, file, " \t\n\\");
6eb396dc 2199 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9 2200 len < 40 ? 40 - len : 1, " ",
496ad9aa 2201 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2202 "partition" : "file\t",
efa90a98
HD
2203 si->pages << (PAGE_SHIFT - 10),
2204 si->inuse_pages << (PAGE_SHIFT - 10),
2205 si->prio);
1da177e4
LT
2206 return 0;
2207}
2208
15ad7cdc 2209static const struct seq_operations swaps_op = {
1da177e4
LT
2210 .start = swap_start,
2211 .next = swap_next,
2212 .stop = swap_stop,
2213 .show = swap_show
2214};
2215
2216static int swaps_open(struct inode *inode, struct file *file)
2217{
f1514638 2218 struct seq_file *seq;
66d7dd51
KS
2219 int ret;
2220
66d7dd51 2221 ret = seq_open(file, &swaps_op);
f1514638 2222 if (ret)
66d7dd51 2223 return ret;
66d7dd51 2224
f1514638
KS
2225 seq = file->private_data;
2226 seq->poll_event = atomic_read(&proc_poll_event);
2227 return 0;
1da177e4
LT
2228}
2229
15ad7cdc 2230static const struct file_operations proc_swaps_operations = {
1da177e4
LT
2231 .open = swaps_open,
2232 .read = seq_read,
2233 .llseek = seq_lseek,
2234 .release = seq_release,
66d7dd51 2235 .poll = swaps_poll,
1da177e4
LT
2236};
2237
2238static int __init procswaps_init(void)
2239{
3d71f86f 2240 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
2241 return 0;
2242}
2243__initcall(procswaps_init);
2244#endif /* CONFIG_PROC_FS */
2245
1796316a
JB
2246#ifdef MAX_SWAPFILES_CHECK
2247static int __init max_swapfiles_check(void)
2248{
2249 MAX_SWAPFILES_CHECK();
2250 return 0;
2251}
2252late_initcall(max_swapfiles_check);
2253#endif
2254
53cbb243 2255static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2256{
73c34b6a 2257 struct swap_info_struct *p;
1da177e4 2258 unsigned int type;
efa90a98
HD
2259
2260 p = kzalloc(sizeof(*p), GFP_KERNEL);
2261 if (!p)
53cbb243 2262 return ERR_PTR(-ENOMEM);
efa90a98 2263
5d337b91 2264 spin_lock(&swap_lock);
efa90a98
HD
2265 for (type = 0; type < nr_swapfiles; type++) {
2266 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2267 break;
efa90a98 2268 }
0697212a 2269 if (type >= MAX_SWAPFILES) {
5d337b91 2270 spin_unlock(&swap_lock);
efa90a98 2271 kfree(p);
730c0581 2272 return ERR_PTR(-EPERM);
1da177e4 2273 }
efa90a98
HD
2274 if (type >= nr_swapfiles) {
2275 p->type = type;
2276 swap_info[type] = p;
2277 /*
2278 * Write swap_info[type] before nr_swapfiles, in case a
2279 * racing procfs swap_start() or swap_next() is reading them.
2280 * (We never shrink nr_swapfiles, we never free this entry.)
2281 */
2282 smp_wmb();
2283 nr_swapfiles++;
2284 } else {
2285 kfree(p);
2286 p = swap_info[type];
2287 /*
2288 * Do not memset this entry: a racing procfs swap_next()
2289 * would be relying on p->type to remain valid.
2290 */
2291 }
9625a5f2 2292 INIT_LIST_HEAD(&p->first_swap_extent.list);
18ab4d4c
DS
2293 plist_node_init(&p->list, 0);
2294 plist_node_init(&p->avail_list, 0);
1da177e4 2295 p->flags = SWP_USED;
5d337b91 2296 spin_unlock(&swap_lock);
ec8acf20 2297 spin_lock_init(&p->lock);
efa90a98 2298
53cbb243 2299 return p;
53cbb243
CEB
2300}
2301
4d0e1e10
CEB
2302static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2303{
2304 int error;
2305
2306 if (S_ISBLK(inode->i_mode)) {
2307 p->bdev = bdgrab(I_BDEV(inode));
2308 error = blkdev_get(p->bdev,
6f179af8 2309 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
4d0e1e10
CEB
2310 if (error < 0) {
2311 p->bdev = NULL;
6f179af8 2312 return error;
4d0e1e10
CEB
2313 }
2314 p->old_block_size = block_size(p->bdev);
2315 error = set_blocksize(p->bdev, PAGE_SIZE);
2316 if (error < 0)
87ade72a 2317 return error;
4d0e1e10
CEB
2318 p->flags |= SWP_BLKDEV;
2319 } else if (S_ISREG(inode->i_mode)) {
2320 p->bdev = inode->i_sb->s_bdev;
5955102c 2321 inode_lock(inode);
87ade72a
CEB
2322 if (IS_SWAPFILE(inode))
2323 return -EBUSY;
2324 } else
2325 return -EINVAL;
4d0e1e10
CEB
2326
2327 return 0;
4d0e1e10
CEB
2328}
2329
ca8bd38b
CEB
2330static unsigned long read_swap_header(struct swap_info_struct *p,
2331 union swap_header *swap_header,
2332 struct inode *inode)
2333{
2334 int i;
2335 unsigned long maxpages;
2336 unsigned long swapfilepages;
d6bbbd29 2337 unsigned long last_page;
ca8bd38b
CEB
2338
2339 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2340 pr_err("Unable to find swap-space signature\n");
38719025 2341 return 0;
ca8bd38b
CEB
2342 }
2343
2344 /* swap partition endianess hack... */
2345 if (swab32(swap_header->info.version) == 1) {
2346 swab32s(&swap_header->info.version);
2347 swab32s(&swap_header->info.last_page);
2348 swab32s(&swap_header->info.nr_badpages);
dd111be6
JH
2349 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2350 return 0;
ca8bd38b
CEB
2351 for (i = 0; i < swap_header->info.nr_badpages; i++)
2352 swab32s(&swap_header->info.badpages[i]);
2353 }
2354 /* Check the swap header's sub-version */
2355 if (swap_header->info.version != 1) {
465c47fd
AM
2356 pr_warn("Unable to handle swap header version %d\n",
2357 swap_header->info.version);
38719025 2358 return 0;
ca8bd38b
CEB
2359 }
2360
2361 p->lowest_bit = 1;
2362 p->cluster_next = 1;
2363 p->cluster_nr = 0;
2364
2365 /*
2366 * Find out how many pages are allowed for a single swap
9b15b817 2367 * device. There are two limiting factors: 1) the number
a2c16d6c
HD
2368 * of bits for the swap offset in the swp_entry_t type, and
2369 * 2) the number of bits in the swap pte as defined by the
9b15b817 2370 * different architectures. In order to find the
a2c16d6c 2371 * largest possible bit mask, a swap entry with swap type 0
ca8bd38b 2372 * and swap offset ~0UL is created, encoded to a swap pte,
a2c16d6c 2373 * decoded to a swp_entry_t again, and finally the swap
ca8bd38b
CEB
2374 * offset is extracted. This will mask all the bits from
2375 * the initial ~0UL mask that can't be encoded in either
2376 * the swp_entry_t or the architecture definition of a
9b15b817 2377 * swap pte.
ca8bd38b
CEB
2378 */
2379 maxpages = swp_offset(pte_to_swp_entry(
9b15b817 2380 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
d6bbbd29
RJ
2381 last_page = swap_header->info.last_page;
2382 if (last_page > maxpages) {
465c47fd 2383 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2384 maxpages << (PAGE_SHIFT - 10),
2385 last_page << (PAGE_SHIFT - 10));
2386 }
2387 if (maxpages > last_page) {
2388 maxpages = last_page + 1;
ca8bd38b
CEB
2389 /* p->max is an unsigned int: don't overflow it */
2390 if ((unsigned int)maxpages == 0)
2391 maxpages = UINT_MAX;
2392 }
2393 p->highest_bit = maxpages - 1;
2394
2395 if (!maxpages)
38719025 2396 return 0;
ca8bd38b
CEB
2397 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2398 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 2399 pr_warn("Swap area shorter than signature indicates\n");
38719025 2400 return 0;
ca8bd38b
CEB
2401 }
2402 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 2403 return 0;
ca8bd38b 2404 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 2405 return 0;
ca8bd38b
CEB
2406
2407 return maxpages;
ca8bd38b
CEB
2408}
2409
235b6217
HY
2410#define SWAP_CLUSTER_COLS \
2411 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2412
915d4d7b
CEB
2413static int setup_swap_map_and_extents(struct swap_info_struct *p,
2414 union swap_header *swap_header,
2415 unsigned char *swap_map,
2a8f9449 2416 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
2417 unsigned long maxpages,
2418 sector_t *span)
2419{
235b6217 2420 unsigned int j, k;
915d4d7b
CEB
2421 unsigned int nr_good_pages;
2422 int nr_extents;
2a8f9449 2423 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
235b6217
HY
2424 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2425 unsigned long i, idx;
915d4d7b
CEB
2426
2427 nr_good_pages = maxpages - 1; /* omit header page */
2428
6b534915
HY
2429 cluster_list_init(&p->free_clusters);
2430 cluster_list_init(&p->discard_clusters);
2a8f9449 2431
915d4d7b
CEB
2432 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2433 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
2434 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2435 return -EINVAL;
915d4d7b
CEB
2436 if (page_nr < maxpages) {
2437 swap_map[page_nr] = SWAP_MAP_BAD;
2438 nr_good_pages--;
2a8f9449
SL
2439 /*
2440 * Haven't marked the cluster free yet, no list
2441 * operation involved
2442 */
2443 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
2444 }
2445 }
2446
2a8f9449
SL
2447 /* Haven't marked the cluster free yet, no list operation involved */
2448 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2449 inc_cluster_info_page(p, cluster_info, i);
2450
915d4d7b
CEB
2451 if (nr_good_pages) {
2452 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
2453 /*
2454 * Not mark the cluster free yet, no list
2455 * operation involved
2456 */
2457 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
2458 p->max = maxpages;
2459 p->pages = nr_good_pages;
2460 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
2461 if (nr_extents < 0)
2462 return nr_extents;
915d4d7b
CEB
2463 nr_good_pages = p->pages;
2464 }
2465 if (!nr_good_pages) {
465c47fd 2466 pr_warn("Empty swap-file\n");
bdb8e3f6 2467 return -EINVAL;
915d4d7b
CEB
2468 }
2469
2a8f9449
SL
2470 if (!cluster_info)
2471 return nr_extents;
2472
235b6217
HY
2473
2474 /* Reduce false cache line sharing between cluster_info */
2475 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2476 j = (k + col) % SWAP_CLUSTER_COLS;
2477 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2478 idx = i * SWAP_CLUSTER_COLS + j;
2479 if (idx >= nr_clusters)
2480 continue;
2481 if (cluster_count(&cluster_info[idx]))
2482 continue;
2a8f9449 2483 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
6b534915
HY
2484 cluster_list_add_tail(&p->free_clusters, cluster_info,
2485 idx);
2a8f9449 2486 }
2a8f9449 2487 }
915d4d7b 2488 return nr_extents;
915d4d7b
CEB
2489}
2490
dcf6b7dd
RA
2491/*
2492 * Helper to sys_swapon determining if a given swap
2493 * backing device queue supports DISCARD operations.
2494 */
2495static bool swap_discardable(struct swap_info_struct *si)
2496{
2497 struct request_queue *q = bdev_get_queue(si->bdev);
2498
2499 if (!q || !blk_queue_discard(q))
2500 return false;
2501
2502 return true;
2503}
2504
53cbb243
CEB
2505SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2506{
2507 struct swap_info_struct *p;
91a27b2a 2508 struct filename *name;
53cbb243
CEB
2509 struct file *swap_file = NULL;
2510 struct address_space *mapping;
40531542 2511 int prio;
53cbb243
CEB
2512 int error;
2513 union swap_header *swap_header;
915d4d7b 2514 int nr_extents;
53cbb243
CEB
2515 sector_t span;
2516 unsigned long maxpages;
53cbb243 2517 unsigned char *swap_map = NULL;
2a8f9449 2518 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 2519 unsigned long *frontswap_map = NULL;
53cbb243
CEB
2520 struct page *page = NULL;
2521 struct inode *inode = NULL;
53cbb243 2522
d15cab97
HD
2523 if (swap_flags & ~SWAP_FLAGS_VALID)
2524 return -EINVAL;
2525
53cbb243
CEB
2526 if (!capable(CAP_SYS_ADMIN))
2527 return -EPERM;
2528
2529 p = alloc_swap_info();
2542e513
CEB
2530 if (IS_ERR(p))
2531 return PTR_ERR(p);
53cbb243 2532
815c2c54
SL
2533 INIT_WORK(&p->discard_work, swap_discard_work);
2534
1da177e4 2535 name = getname(specialfile);
1da177e4 2536 if (IS_ERR(name)) {
7de7fb6b 2537 error = PTR_ERR(name);
1da177e4 2538 name = NULL;
bd69010b 2539 goto bad_swap;
1da177e4 2540 }
669abf4e 2541 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 2542 if (IS_ERR(swap_file)) {
7de7fb6b 2543 error = PTR_ERR(swap_file);
1da177e4 2544 swap_file = NULL;
bd69010b 2545 goto bad_swap;
1da177e4
LT
2546 }
2547
2548 p->swap_file = swap_file;
2549 mapping = swap_file->f_mapping;
2130781e 2550 inode = mapping->host;
6f179af8 2551
5955102c 2552 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
4d0e1e10
CEB
2553 error = claim_swapfile(p, inode);
2554 if (unlikely(error))
1da177e4 2555 goto bad_swap;
1da177e4 2556
1da177e4
LT
2557 /*
2558 * Read the swap header.
2559 */
2560 if (!mapping->a_ops->readpage) {
2561 error = -EINVAL;
2562 goto bad_swap;
2563 }
090d2b18 2564 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
2565 if (IS_ERR(page)) {
2566 error = PTR_ERR(page);
2567 goto bad_swap;
2568 }
81e33971 2569 swap_header = kmap(page);
1da177e4 2570
ca8bd38b
CEB
2571 maxpages = read_swap_header(p, swap_header, inode);
2572 if (unlikely(!maxpages)) {
1da177e4
LT
2573 error = -EINVAL;
2574 goto bad_swap;
2575 }
886bb7e9 2576
81e33971 2577 /* OK, set up the swap map and apply the bad block list */
803d0c83 2578 swap_map = vzalloc(maxpages);
81e33971
HD
2579 if (!swap_map) {
2580 error = -ENOMEM;
2581 goto bad_swap;
2582 }
f0571429
MK
2583
2584 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
2585 p->flags |= SWP_STABLE_WRITES;
2586
2a8f9449 2587 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
6f179af8 2588 int cpu;
235b6217 2589 unsigned long ci, nr_cluster;
6f179af8 2590
2a8f9449
SL
2591 p->flags |= SWP_SOLIDSTATE;
2592 /*
2593 * select a random position to start with to help wear leveling
2594 * SSD
2595 */
2596 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
235b6217 2597 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2a8f9449 2598
235b6217 2599 cluster_info = vzalloc(nr_cluster * sizeof(*cluster_info));
2a8f9449
SL
2600 if (!cluster_info) {
2601 error = -ENOMEM;
2602 goto bad_swap;
2603 }
235b6217
HY
2604
2605 for (ci = 0; ci < nr_cluster; ci++)
2606 spin_lock_init(&((cluster_info + ci)->lock));
2607
ebc2a1a6
SL
2608 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2609 if (!p->percpu_cluster) {
2610 error = -ENOMEM;
2611 goto bad_swap;
2612 }
6f179af8 2613 for_each_possible_cpu(cpu) {
ebc2a1a6 2614 struct percpu_cluster *cluster;
6f179af8 2615 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
ebc2a1a6
SL
2616 cluster_set_null(&cluster->index);
2617 }
2a8f9449 2618 }
1da177e4 2619
1421ef3c
CEB
2620 error = swap_cgroup_swapon(p->type, maxpages);
2621 if (error)
2622 goto bad_swap;
2623
915d4d7b 2624 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 2625 cluster_info, maxpages, &span);
915d4d7b
CEB
2626 if (unlikely(nr_extents < 0)) {
2627 error = nr_extents;
1da177e4
LT
2628 goto bad_swap;
2629 }
38b5faf4 2630 /* frontswap enabled? set up bit-per-page map for frontswap */
8ea1d2a1 2631 if (IS_ENABLED(CONFIG_FRONTSWAP))
7b57976d 2632 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
1da177e4 2633
2a8f9449
SL
2634 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2635 /*
2636 * When discard is enabled for swap with no particular
2637 * policy flagged, we set all swap discard flags here in
2638 * order to sustain backward compatibility with older
2639 * swapon(8) releases.
2640 */
2641 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2642 SWP_PAGE_DISCARD);
dcf6b7dd 2643
2a8f9449
SL
2644 /*
2645 * By flagging sys_swapon, a sysadmin can tell us to
2646 * either do single-time area discards only, or to just
2647 * perform discards for released swap page-clusters.
2648 * Now it's time to adjust the p->flags accordingly.
2649 */
2650 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2651 p->flags &= ~SWP_PAGE_DISCARD;
2652 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2653 p->flags &= ~SWP_AREA_DISCARD;
2654
2655 /* issue a swapon-time discard if it's still required */
2656 if (p->flags & SWP_AREA_DISCARD) {
2657 int err = discard_swap(p);
2658 if (unlikely(err))
2659 pr_err("swapon: discard_swap(%p): %d\n",
2660 p, err);
dcf6b7dd 2661 }
20137a49 2662 }
6a6ba831 2663
fc0abb14 2664 mutex_lock(&swapon_mutex);
40531542 2665 prio = -1;
78ecba08 2666 if (swap_flags & SWAP_FLAG_PREFER)
40531542 2667 prio =
78ecba08 2668 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 2669 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 2670
756a025f 2671 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 2672 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
2673 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2674 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 2675 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
2676 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2677 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 2678 (frontswap_map) ? "FS" : "");
c69dbfb8 2679
fc0abb14 2680 mutex_unlock(&swapon_mutex);
66d7dd51
KS
2681 atomic_inc(&proc_poll_event);
2682 wake_up_interruptible(&proc_poll_wait);
2683
9b01c350
CEB
2684 if (S_ISREG(inode->i_mode))
2685 inode->i_flags |= S_SWAPFILE;
1da177e4
LT
2686 error = 0;
2687 goto out;
2688bad_swap:
ebc2a1a6
SL
2689 free_percpu(p->percpu_cluster);
2690 p->percpu_cluster = NULL;
bd69010b 2691 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
2692 set_blocksize(p->bdev, p->old_block_size);
2693 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2694 }
4cd3bb10 2695 destroy_swap_extents(p);
e8e6c2ec 2696 swap_cgroup_swapoff(p->type);
5d337b91 2697 spin_lock(&swap_lock);
1da177e4 2698 p->swap_file = NULL;
1da177e4 2699 p->flags = 0;
5d337b91 2700 spin_unlock(&swap_lock);
1da177e4 2701 vfree(swap_map);
2a8f9449 2702 vfree(cluster_info);
52c50567 2703 if (swap_file) {
2130781e 2704 if (inode && S_ISREG(inode->i_mode)) {
5955102c 2705 inode_unlock(inode);
2130781e
CEB
2706 inode = NULL;
2707 }
1da177e4 2708 filp_close(swap_file, NULL);
52c50567 2709 }
1da177e4
LT
2710out:
2711 if (page && !IS_ERR(page)) {
2712 kunmap(page);
09cbfeaf 2713 put_page(page);
1da177e4
LT
2714 }
2715 if (name)
2716 putname(name);
9b01c350 2717 if (inode && S_ISREG(inode->i_mode))
5955102c 2718 inode_unlock(inode);
1da177e4
LT
2719 return error;
2720}
2721
2722void si_swapinfo(struct sysinfo *val)
2723{
efa90a98 2724 unsigned int type;
1da177e4
LT
2725 unsigned long nr_to_be_unused = 0;
2726
5d337b91 2727 spin_lock(&swap_lock);
efa90a98
HD
2728 for (type = 0; type < nr_swapfiles; type++) {
2729 struct swap_info_struct *si = swap_info[type];
2730
2731 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2732 nr_to_be_unused += si->inuse_pages;
1da177e4 2733 }
ec8acf20 2734 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 2735 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 2736 spin_unlock(&swap_lock);
1da177e4
LT
2737}
2738
2739/*
2740 * Verify that a swap entry is valid and increment its swap map count.
2741 *
355cfa73
KH
2742 * Returns error code in following case.
2743 * - success -> 0
2744 * - swp_entry is invalid -> EINVAL
2745 * - swp_entry is migration entry -> EINVAL
2746 * - swap-cache reference is requested but there is already one. -> EEXIST
2747 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 2748 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 2749 */
8d69aaee 2750static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 2751{
73c34b6a 2752 struct swap_info_struct *p;
235b6217 2753 struct swap_cluster_info *ci;
1da177e4 2754 unsigned long offset, type;
8d69aaee
HD
2755 unsigned char count;
2756 unsigned char has_cache;
253d553b 2757 int err = -EINVAL;
1da177e4 2758
a7420aa5 2759 if (non_swap_entry(entry))
253d553b 2760 goto out;
0697212a 2761
1da177e4
LT
2762 type = swp_type(entry);
2763 if (type >= nr_swapfiles)
2764 goto bad_file;
efa90a98 2765 p = swap_info[type];
1da177e4 2766 offset = swp_offset(entry);
355cfa73 2767 if (unlikely(offset >= p->max))
235b6217
HY
2768 goto out;
2769
2770 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 2771
253d553b 2772 count = p->swap_map[offset];
edfe23da
SL
2773
2774 /*
2775 * swapin_readahead() doesn't check if a swap entry is valid, so the
2776 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2777 */
2778 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2779 err = -ENOENT;
2780 goto unlock_out;
2781 }
2782
253d553b
HD
2783 has_cache = count & SWAP_HAS_CACHE;
2784 count &= ~SWAP_HAS_CACHE;
2785 err = 0;
355cfa73 2786
253d553b 2787 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
2788
2789 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
2790 if (!has_cache && count)
2791 has_cache = SWAP_HAS_CACHE;
2792 else if (has_cache) /* someone else added cache */
2793 err = -EEXIST;
2794 else /* no users remaining */
2795 err = -ENOENT;
355cfa73
KH
2796
2797 } else if (count || has_cache) {
253d553b 2798
570a335b
HD
2799 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2800 count += usage;
2801 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 2802 err = -EINVAL;
570a335b
HD
2803 else if (swap_count_continued(p, offset, count))
2804 count = COUNT_CONTINUED;
2805 else
2806 err = -ENOMEM;
355cfa73 2807 } else
253d553b
HD
2808 err = -ENOENT; /* unused swap entry */
2809
2810 p->swap_map[offset] = count | has_cache;
2811
355cfa73 2812unlock_out:
235b6217 2813 unlock_cluster_or_swap_info(p, ci);
1da177e4 2814out:
253d553b 2815 return err;
1da177e4
LT
2816
2817bad_file:
465c47fd 2818 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
2819 goto out;
2820}
253d553b 2821
aaa46865
HD
2822/*
2823 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2824 * (in which case its reference count is never incremented).
2825 */
2826void swap_shmem_alloc(swp_entry_t entry)
2827{
2828 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2829}
2830
355cfa73 2831/*
08259d58
HD
2832 * Increase reference count of swap entry by 1.
2833 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2834 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2835 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2836 * might occur if a page table entry has got corrupted.
355cfa73 2837 */
570a335b 2838int swap_duplicate(swp_entry_t entry)
355cfa73 2839{
570a335b
HD
2840 int err = 0;
2841
2842 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2843 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2844 return err;
355cfa73 2845}
1da177e4 2846
cb4b86ba 2847/*
355cfa73
KH
2848 * @entry: swap entry for which we allocate swap cache.
2849 *
73c34b6a 2850 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
2851 * This can return error codes. Returns 0 at success.
2852 * -EBUSY means there is a swap cache.
2853 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
2854 */
2855int swapcache_prepare(swp_entry_t entry)
2856{
253d553b 2857 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
2858}
2859
f981c595
MG
2860struct swap_info_struct *page_swap_info(struct page *page)
2861{
2862 swp_entry_t swap = { .val = page_private(page) };
f981c595
MG
2863 return swap_info[swp_type(swap)];
2864}
2865
2866/*
2867 * out-of-line __page_file_ methods to avoid include hell.
2868 */
2869struct address_space *__page_file_mapping(struct page *page)
2870{
309381fe 2871 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
2872 return page_swap_info(page)->swap_file->f_mapping;
2873}
2874EXPORT_SYMBOL_GPL(__page_file_mapping);
2875
2876pgoff_t __page_file_index(struct page *page)
2877{
2878 swp_entry_t swap = { .val = page_private(page) };
309381fe 2879 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
2880 return swp_offset(swap);
2881}
2882EXPORT_SYMBOL_GPL(__page_file_index);
2883
570a335b
HD
2884/*
2885 * add_swap_count_continuation - called when a swap count is duplicated
2886 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2887 * page of the original vmalloc'ed swap_map, to hold the continuation count
2888 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2889 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2890 *
2891 * These continuation pages are seldom referenced: the common paths all work
2892 * on the original swap_map, only referring to a continuation page when the
2893 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2894 *
2895 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2896 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2897 * can be called after dropping locks.
2898 */
2899int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2900{
2901 struct swap_info_struct *si;
235b6217 2902 struct swap_cluster_info *ci;
570a335b
HD
2903 struct page *head;
2904 struct page *page;
2905 struct page *list_page;
2906 pgoff_t offset;
2907 unsigned char count;
2908
2909 /*
2910 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2911 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2912 */
2913 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2914
2915 si = swap_info_get(entry);
2916 if (!si) {
2917 /*
2918 * An acceptable race has occurred since the failing
2919 * __swap_duplicate(): the swap entry has been freed,
2920 * perhaps even the whole swap_map cleared for swapoff.
2921 */
2922 goto outer;
2923 }
2924
2925 offset = swp_offset(entry);
235b6217
HY
2926
2927 ci = lock_cluster(si, offset);
2928
570a335b
HD
2929 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2930
2931 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2932 /*
2933 * The higher the swap count, the more likely it is that tasks
2934 * will race to add swap count continuation: we need to avoid
2935 * over-provisioning.
2936 */
2937 goto out;
2938 }
2939
2940 if (!page) {
235b6217 2941 unlock_cluster(ci);
ec8acf20 2942 spin_unlock(&si->lock);
570a335b
HD
2943 return -ENOMEM;
2944 }
2945
2946 /*
2947 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
2948 * no architecture is using highmem pages for kernel page tables: so it
2949 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
2950 */
2951 head = vmalloc_to_page(si->swap_map + offset);
2952 offset &= ~PAGE_MASK;
2953
2954 /*
2955 * Page allocation does not initialize the page's lru field,
2956 * but it does always reset its private field.
2957 */
2958 if (!page_private(head)) {
2959 BUG_ON(count & COUNT_CONTINUED);
2960 INIT_LIST_HEAD(&head->lru);
2961 set_page_private(head, SWP_CONTINUED);
2962 si->flags |= SWP_CONTINUED;
2963 }
2964
2965 list_for_each_entry(list_page, &head->lru, lru) {
2966 unsigned char *map;
2967
2968 /*
2969 * If the previous map said no continuation, but we've found
2970 * a continuation page, free our allocation and use this one.
2971 */
2972 if (!(count & COUNT_CONTINUED))
2973 goto out;
2974
9b04c5fe 2975 map = kmap_atomic(list_page) + offset;
570a335b 2976 count = *map;
9b04c5fe 2977 kunmap_atomic(map);
570a335b
HD
2978
2979 /*
2980 * If this continuation count now has some space in it,
2981 * free our allocation and use this one.
2982 */
2983 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2984 goto out;
2985 }
2986
2987 list_add_tail(&page->lru, &head->lru);
2988 page = NULL; /* now it's attached, don't free it */
2989out:
235b6217 2990 unlock_cluster(ci);
ec8acf20 2991 spin_unlock(&si->lock);
570a335b
HD
2992outer:
2993 if (page)
2994 __free_page(page);
2995 return 0;
2996}
2997
2998/*
2999 * swap_count_continued - when the original swap_map count is incremented
3000 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3001 * into, carry if so, or else fail until a new continuation page is allocated;
3002 * when the original swap_map count is decremented from 0 with continuation,
3003 * borrow from the continuation and report whether it still holds more.
235b6217
HY
3004 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3005 * lock.
570a335b
HD
3006 */
3007static bool swap_count_continued(struct swap_info_struct *si,
3008 pgoff_t offset, unsigned char count)
3009{
3010 struct page *head;
3011 struct page *page;
3012 unsigned char *map;
3013
3014 head = vmalloc_to_page(si->swap_map + offset);
3015 if (page_private(head) != SWP_CONTINUED) {
3016 BUG_ON(count & COUNT_CONTINUED);
3017 return false; /* need to add count continuation */
3018 }
3019
3020 offset &= ~PAGE_MASK;
3021 page = list_entry(head->lru.next, struct page, lru);
9b04c5fe 3022 map = kmap_atomic(page) + offset;
570a335b
HD
3023
3024 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3025 goto init_map; /* jump over SWAP_CONT_MAX checks */
3026
3027 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3028 /*
3029 * Think of how you add 1 to 999
3030 */
3031 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 3032 kunmap_atomic(map);
570a335b
HD
3033 page = list_entry(page->lru.next, struct page, lru);
3034 BUG_ON(page == head);
9b04c5fe 3035 map = kmap_atomic(page) + offset;
570a335b
HD
3036 }
3037 if (*map == SWAP_CONT_MAX) {
9b04c5fe 3038 kunmap_atomic(map);
570a335b
HD
3039 page = list_entry(page->lru.next, struct page, lru);
3040 if (page == head)
3041 return false; /* add count continuation */
9b04c5fe 3042 map = kmap_atomic(page) + offset;
570a335b
HD
3043init_map: *map = 0; /* we didn't zero the page */
3044 }
3045 *map += 1;
9b04c5fe 3046 kunmap_atomic(map);
570a335b
HD
3047 page = list_entry(page->lru.prev, struct page, lru);
3048 while (page != head) {
9b04c5fe 3049 map = kmap_atomic(page) + offset;
570a335b 3050 *map = COUNT_CONTINUED;
9b04c5fe 3051 kunmap_atomic(map);
570a335b
HD
3052 page = list_entry(page->lru.prev, struct page, lru);
3053 }
3054 return true; /* incremented */
3055
3056 } else { /* decrementing */
3057 /*
3058 * Think of how you subtract 1 from 1000
3059 */
3060 BUG_ON(count != COUNT_CONTINUED);
3061 while (*map == COUNT_CONTINUED) {
9b04c5fe 3062 kunmap_atomic(map);
570a335b
HD
3063 page = list_entry(page->lru.next, struct page, lru);
3064 BUG_ON(page == head);
9b04c5fe 3065 map = kmap_atomic(page) + offset;
570a335b
HD
3066 }
3067 BUG_ON(*map == 0);
3068 *map -= 1;
3069 if (*map == 0)
3070 count = 0;
9b04c5fe 3071 kunmap_atomic(map);
570a335b
HD
3072 page = list_entry(page->lru.prev, struct page, lru);
3073 while (page != head) {
9b04c5fe 3074 map = kmap_atomic(page) + offset;
570a335b
HD
3075 *map = SWAP_CONT_MAX | count;
3076 count = COUNT_CONTINUED;
9b04c5fe 3077 kunmap_atomic(map);
570a335b
HD
3078 page = list_entry(page->lru.prev, struct page, lru);
3079 }
3080 return count == COUNT_CONTINUED;
3081 }
3082}
3083
3084/*
3085 * free_swap_count_continuations - swapoff free all the continuation pages
3086 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3087 */
3088static void free_swap_count_continuations(struct swap_info_struct *si)
3089{
3090 pgoff_t offset;
3091
3092 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3093 struct page *head;
3094 head = vmalloc_to_page(si->swap_map + offset);
3095 if (page_private(head)) {
0d576d20
GT
3096 struct page *page, *next;
3097
3098 list_for_each_entry_safe(page, next, &head->lru, lru) {
3099 list_del(&page->lru);
570a335b
HD
3100 __free_page(page);
3101 }
3102 }
3103 }
3104}