]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/swapfile.c
swap_info: SWAP_HAS_CACHE cleanups
[mirror_ubuntu-artful-kernel.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
17#include <linux/shm.h>
18#include <linux/blkdev.h>
20137a49 19#include <linux/random.h>
1da177e4
LT
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
24#include <linux/module.h>
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
fc0abb14 28#include <linux/mutex.h>
c59ede7b 29#include <linux/capability.h>
1da177e4 30#include <linux/syscalls.h>
8a9f3ccd 31#include <linux/memcontrol.h>
1da177e4
LT
32
33#include <asm/pgtable.h>
34#include <asm/tlbflush.h>
35#include <linux/swapops.h>
27a7faa0 36#include <linux/page_cgroup.h>
1da177e4 37
7c363b8c
AB
38static DEFINE_SPINLOCK(swap_lock);
39static unsigned int nr_swapfiles;
b962716b 40long nr_swap_pages;
1da177e4
LT
41long total_swap_pages;
42static int swap_overflow;
78ecba08 43static int least_priority;
1da177e4 44
1da177e4
LT
45static const char Bad_file[] = "Bad swap file entry ";
46static const char Unused_file[] = "Unused swap file entry ";
47static const char Bad_offset[] = "Bad swap offset entry ";
48static const char Unused_offset[] = "Unused swap offset entry ";
49
7c363b8c 50static struct swap_list_t swap_list = {-1, -1};
1da177e4 51
efa90a98 52static struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 53
fc0abb14 54static DEFINE_MUTEX(swapon_mutex);
1da177e4 55
355cfa73
KH
56static inline int swap_count(unsigned short ent)
57{
253d553b 58 return ent & ~SWAP_HAS_CACHE;
355cfa73
KH
59}
60
efa90a98 61/* returns 1 if swap entry is freed */
c9e44410
KH
62static int
63__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
64{
efa90a98 65 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
66 struct page *page;
67 int ret = 0;
68
69 page = find_get_page(&swapper_space, entry.val);
70 if (!page)
71 return 0;
72 /*
73 * This function is called from scan_swap_map() and it's called
74 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
75 * We have to use trylock for avoiding deadlock. This is a special
76 * case and you should use try_to_free_swap() with explicit lock_page()
77 * in usual operations.
78 */
79 if (trylock_page(page)) {
80 ret = try_to_free_swap(page);
81 unlock_page(page);
82 }
83 page_cache_release(page);
84 return ret;
85}
355cfa73 86
1da177e4
LT
87/*
88 * We need this because the bdev->unplug_fn can sleep and we cannot
5d337b91 89 * hold swap_lock while calling the unplug_fn. And swap_lock
fc0abb14 90 * cannot be turned into a mutex.
1da177e4
LT
91 */
92static DECLARE_RWSEM(swap_unplug_sem);
93
1da177e4
LT
94void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
95{
96 swp_entry_t entry;
97
98 down_read(&swap_unplug_sem);
4c21e2f2 99 entry.val = page_private(page);
1da177e4 100 if (PageSwapCache(page)) {
efa90a98 101 struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
1da177e4
LT
102 struct backing_dev_info *bdi;
103
104 /*
105 * If the page is removed from swapcache from under us (with a
106 * racy try_to_unuse/swapoff) we need an additional reference
4c21e2f2
HD
107 * count to avoid reading garbage from page_private(page) above.
108 * If the WARN_ON triggers during a swapoff it maybe the race
1da177e4
LT
109 * condition and it's harmless. However if it triggers without
110 * swapoff it signals a problem.
111 */
112 WARN_ON(page_count(page) <= 1);
113
114 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
ba32311e 115 blk_run_backing_dev(bdi, page);
1da177e4
LT
116 }
117 up_read(&swap_unplug_sem);
118}
119
6a6ba831
HD
120/*
121 * swapon tell device that all the old swap contents can be discarded,
122 * to allow the swap device to optimize its wear-levelling.
123 */
124static int discard_swap(struct swap_info_struct *si)
125{
126 struct swap_extent *se;
9625a5f2
HD
127 sector_t start_block;
128 sector_t nr_blocks;
6a6ba831
HD
129 int err = 0;
130
9625a5f2
HD
131 /* Do not discard the swap header page! */
132 se = &si->first_swap_extent;
133 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
134 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
135 if (nr_blocks) {
136 err = blkdev_issue_discard(si->bdev, start_block,
137 nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
138 if (err)
139 return err;
140 cond_resched();
141 }
6a6ba831 142
9625a5f2
HD
143 list_for_each_entry(se, &si->first_swap_extent.list, list) {
144 start_block = se->start_block << (PAGE_SHIFT - 9);
145 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
146
147 err = blkdev_issue_discard(si->bdev, start_block,
9625a5f2 148 nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
6a6ba831
HD
149 if (err)
150 break;
151
152 cond_resched();
153 }
154 return err; /* That will often be -EOPNOTSUPP */
155}
156
7992fde7
HD
157/*
158 * swap allocation tell device that a cluster of swap can now be discarded,
159 * to allow the swap device to optimize its wear-levelling.
160 */
161static void discard_swap_cluster(struct swap_info_struct *si,
162 pgoff_t start_page, pgoff_t nr_pages)
163{
164 struct swap_extent *se = si->curr_swap_extent;
165 int found_extent = 0;
166
167 while (nr_pages) {
168 struct list_head *lh;
169
170 if (se->start_page <= start_page &&
171 start_page < se->start_page + se->nr_pages) {
172 pgoff_t offset = start_page - se->start_page;
173 sector_t start_block = se->start_block + offset;
858a2990 174 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
175
176 if (nr_blocks > nr_pages)
177 nr_blocks = nr_pages;
178 start_page += nr_blocks;
179 nr_pages -= nr_blocks;
180
181 if (!found_extent++)
182 si->curr_swap_extent = se;
183
184 start_block <<= PAGE_SHIFT - 9;
185 nr_blocks <<= PAGE_SHIFT - 9;
186 if (blkdev_issue_discard(si->bdev, start_block,
9625a5f2 187 nr_blocks, GFP_NOIO, DISCARD_FL_BARRIER))
7992fde7
HD
188 break;
189 }
190
191 lh = se->list.next;
7992fde7
HD
192 se = list_entry(lh, struct swap_extent, list);
193 }
194}
195
196static int wait_for_discard(void *word)
197{
198 schedule();
199 return 0;
200}
201
048c27fd
HD
202#define SWAPFILE_CLUSTER 256
203#define LATENCY_LIMIT 256
204
355cfa73 205static inline unsigned long scan_swap_map(struct swap_info_struct *si,
253d553b 206 unsigned short usage)
1da177e4 207{
ebebbbe9 208 unsigned long offset;
c60aa176 209 unsigned long scan_base;
7992fde7 210 unsigned long last_in_cluster = 0;
048c27fd 211 int latency_ration = LATENCY_LIMIT;
7992fde7 212 int found_free_cluster = 0;
7dfad418 213
886bb7e9 214 /*
7dfad418
HD
215 * We try to cluster swap pages by allocating them sequentially
216 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
217 * way, however, we resort to first-free allocation, starting
218 * a new cluster. This prevents us from scattering swap pages
219 * all over the entire swap partition, so that we reduce
220 * overall disk seek times between swap pages. -- sct
221 * But we do now try to find an empty cluster. -Andrea
c60aa176 222 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
223 */
224
52b7efdb 225 si->flags += SWP_SCANNING;
c60aa176 226 scan_base = offset = si->cluster_next;
ebebbbe9
HD
227
228 if (unlikely(!si->cluster_nr--)) {
229 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
230 si->cluster_nr = SWAPFILE_CLUSTER - 1;
231 goto checks;
232 }
7992fde7
HD
233 if (si->flags & SWP_DISCARDABLE) {
234 /*
235 * Start range check on racing allocations, in case
236 * they overlap the cluster we eventually decide on
237 * (we scan without swap_lock to allow preemption).
238 * It's hardly conceivable that cluster_nr could be
239 * wrapped during our scan, but don't depend on it.
240 */
241 if (si->lowest_alloc)
242 goto checks;
243 si->lowest_alloc = si->max;
244 si->highest_alloc = 0;
245 }
5d337b91 246 spin_unlock(&swap_lock);
7dfad418 247
c60aa176
HD
248 /*
249 * If seek is expensive, start searching for new cluster from
250 * start of partition, to minimize the span of allocated swap.
251 * But if seek is cheap, search from our current position, so
252 * that swap is allocated from all over the partition: if the
253 * Flash Translation Layer only remaps within limited zones,
254 * we don't want to wear out the first zone too quickly.
255 */
256 if (!(si->flags & SWP_SOLIDSTATE))
257 scan_base = offset = si->lowest_bit;
7dfad418
HD
258 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
259
260 /* Locate the first empty (unaligned) cluster */
261 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 262 if (si->swap_map[offset])
7dfad418
HD
263 last_in_cluster = offset + SWAPFILE_CLUSTER;
264 else if (offset == last_in_cluster) {
5d337b91 265 spin_lock(&swap_lock);
ebebbbe9
HD
266 offset -= SWAPFILE_CLUSTER - 1;
267 si->cluster_next = offset;
268 si->cluster_nr = SWAPFILE_CLUSTER - 1;
7992fde7 269 found_free_cluster = 1;
ebebbbe9 270 goto checks;
1da177e4 271 }
048c27fd
HD
272 if (unlikely(--latency_ration < 0)) {
273 cond_resched();
274 latency_ration = LATENCY_LIMIT;
275 }
7dfad418 276 }
ebebbbe9
HD
277
278 offset = si->lowest_bit;
c60aa176
HD
279 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
280
281 /* Locate the first empty (unaligned) cluster */
282 for (; last_in_cluster < scan_base; offset++) {
283 if (si->swap_map[offset])
284 last_in_cluster = offset + SWAPFILE_CLUSTER;
285 else if (offset == last_in_cluster) {
286 spin_lock(&swap_lock);
287 offset -= SWAPFILE_CLUSTER - 1;
288 si->cluster_next = offset;
289 si->cluster_nr = SWAPFILE_CLUSTER - 1;
290 found_free_cluster = 1;
291 goto checks;
292 }
293 if (unlikely(--latency_ration < 0)) {
294 cond_resched();
295 latency_ration = LATENCY_LIMIT;
296 }
297 }
298
299 offset = scan_base;
5d337b91 300 spin_lock(&swap_lock);
ebebbbe9 301 si->cluster_nr = SWAPFILE_CLUSTER - 1;
7992fde7 302 si->lowest_alloc = 0;
1da177e4 303 }
7dfad418 304
ebebbbe9
HD
305checks:
306 if (!(si->flags & SWP_WRITEOK))
52b7efdb 307 goto no_page;
7dfad418
HD
308 if (!si->highest_bit)
309 goto no_page;
ebebbbe9 310 if (offset > si->highest_bit)
c60aa176 311 scan_base = offset = si->lowest_bit;
c9e44410
KH
312
313 /* reuse swap entry of cache-only swap if not busy. */
314 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
315 int swap_was_freed;
316 spin_unlock(&swap_lock);
317 swap_was_freed = __try_to_reclaim_swap(si, offset);
318 spin_lock(&swap_lock);
319 /* entry was freed successfully, try to use this again */
320 if (swap_was_freed)
321 goto checks;
322 goto scan; /* check next one */
323 }
324
ebebbbe9
HD
325 if (si->swap_map[offset])
326 goto scan;
327
328 if (offset == si->lowest_bit)
329 si->lowest_bit++;
330 if (offset == si->highest_bit)
331 si->highest_bit--;
332 si->inuse_pages++;
333 if (si->inuse_pages == si->pages) {
334 si->lowest_bit = si->max;
335 si->highest_bit = 0;
1da177e4 336 }
253d553b 337 si->swap_map[offset] = usage;
ebebbbe9
HD
338 si->cluster_next = offset + 1;
339 si->flags -= SWP_SCANNING;
7992fde7
HD
340
341 if (si->lowest_alloc) {
342 /*
343 * Only set when SWP_DISCARDABLE, and there's a scan
344 * for a free cluster in progress or just completed.
345 */
346 if (found_free_cluster) {
347 /*
348 * To optimize wear-levelling, discard the
349 * old data of the cluster, taking care not to
350 * discard any of its pages that have already
351 * been allocated by racing tasks (offset has
352 * already stepped over any at the beginning).
353 */
354 if (offset < si->highest_alloc &&
355 si->lowest_alloc <= last_in_cluster)
356 last_in_cluster = si->lowest_alloc - 1;
357 si->flags |= SWP_DISCARDING;
358 spin_unlock(&swap_lock);
359
360 if (offset < last_in_cluster)
361 discard_swap_cluster(si, offset,
362 last_in_cluster - offset + 1);
363
364 spin_lock(&swap_lock);
365 si->lowest_alloc = 0;
366 si->flags &= ~SWP_DISCARDING;
367
368 smp_mb(); /* wake_up_bit advises this */
369 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
370
371 } else if (si->flags & SWP_DISCARDING) {
372 /*
373 * Delay using pages allocated by racing tasks
374 * until the whole discard has been issued. We
375 * could defer that delay until swap_writepage,
376 * but it's easier to keep this self-contained.
377 */
378 spin_unlock(&swap_lock);
379 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
380 wait_for_discard, TASK_UNINTERRUPTIBLE);
381 spin_lock(&swap_lock);
382 } else {
383 /*
384 * Note pages allocated by racing tasks while
385 * scan for a free cluster is in progress, so
386 * that its final discard can exclude them.
387 */
388 if (offset < si->lowest_alloc)
389 si->lowest_alloc = offset;
390 if (offset > si->highest_alloc)
391 si->highest_alloc = offset;
392 }
393 }
ebebbbe9 394 return offset;
7dfad418 395
ebebbbe9 396scan:
5d337b91 397 spin_unlock(&swap_lock);
7dfad418 398 while (++offset <= si->highest_bit) {
52b7efdb 399 if (!si->swap_map[offset]) {
5d337b91 400 spin_lock(&swap_lock);
52b7efdb
HD
401 goto checks;
402 }
c9e44410
KH
403 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
404 spin_lock(&swap_lock);
405 goto checks;
406 }
048c27fd
HD
407 if (unlikely(--latency_ration < 0)) {
408 cond_resched();
409 latency_ration = LATENCY_LIMIT;
410 }
7dfad418 411 }
c60aa176
HD
412 offset = si->lowest_bit;
413 while (++offset < scan_base) {
414 if (!si->swap_map[offset]) {
415 spin_lock(&swap_lock);
416 goto checks;
417 }
c9e44410
KH
418 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
419 spin_lock(&swap_lock);
420 goto checks;
421 }
c60aa176
HD
422 if (unlikely(--latency_ration < 0)) {
423 cond_resched();
424 latency_ration = LATENCY_LIMIT;
425 }
426 }
5d337b91 427 spin_lock(&swap_lock);
7dfad418
HD
428
429no_page:
52b7efdb 430 si->flags -= SWP_SCANNING;
1da177e4
LT
431 return 0;
432}
433
434swp_entry_t get_swap_page(void)
435{
fb4f88dc
HD
436 struct swap_info_struct *si;
437 pgoff_t offset;
438 int type, next;
439 int wrapped = 0;
1da177e4 440
5d337b91 441 spin_lock(&swap_lock);
1da177e4 442 if (nr_swap_pages <= 0)
fb4f88dc
HD
443 goto noswap;
444 nr_swap_pages--;
445
446 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
efa90a98 447 si = swap_info[type];
fb4f88dc
HD
448 next = si->next;
449 if (next < 0 ||
efa90a98 450 (!wrapped && si->prio != swap_info[next]->prio)) {
fb4f88dc
HD
451 next = swap_list.head;
452 wrapped++;
1da177e4 453 }
fb4f88dc
HD
454
455 if (!si->highest_bit)
456 continue;
457 if (!(si->flags & SWP_WRITEOK))
458 continue;
459
460 swap_list.next = next;
355cfa73 461 /* This is called for allocating swap entry for cache */
253d553b 462 offset = scan_swap_map(si, SWAP_HAS_CACHE);
5d337b91
HD
463 if (offset) {
464 spin_unlock(&swap_lock);
fb4f88dc 465 return swp_entry(type, offset);
5d337b91 466 }
fb4f88dc 467 next = swap_list.next;
1da177e4 468 }
fb4f88dc
HD
469
470 nr_swap_pages++;
471noswap:
5d337b91 472 spin_unlock(&swap_lock);
fb4f88dc 473 return (swp_entry_t) {0};
1da177e4
LT
474}
475
355cfa73 476/* The only caller of this function is now susupend routine */
3a291a20
RW
477swp_entry_t get_swap_page_of_type(int type)
478{
479 struct swap_info_struct *si;
480 pgoff_t offset;
481
482 spin_lock(&swap_lock);
efa90a98
HD
483 si = swap_info[type];
484 if (si && (si->flags & SWP_WRITEOK)) {
3a291a20 485 nr_swap_pages--;
355cfa73 486 /* This is called for allocating swap entry, not cache */
253d553b 487 offset = scan_swap_map(si, 1);
3a291a20
RW
488 if (offset) {
489 spin_unlock(&swap_lock);
490 return swp_entry(type, offset);
491 }
492 nr_swap_pages++;
493 }
494 spin_unlock(&swap_lock);
495 return (swp_entry_t) {0};
496}
497
73c34b6a 498static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1da177e4 499{
73c34b6a 500 struct swap_info_struct *p;
1da177e4
LT
501 unsigned long offset, type;
502
503 if (!entry.val)
504 goto out;
505 type = swp_type(entry);
506 if (type >= nr_swapfiles)
507 goto bad_nofile;
efa90a98 508 p = swap_info[type];
1da177e4
LT
509 if (!(p->flags & SWP_USED))
510 goto bad_device;
511 offset = swp_offset(entry);
512 if (offset >= p->max)
513 goto bad_offset;
514 if (!p->swap_map[offset])
515 goto bad_free;
5d337b91 516 spin_lock(&swap_lock);
1da177e4
LT
517 return p;
518
519bad_free:
520 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
521 goto out;
522bad_offset:
523 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
524 goto out;
525bad_device:
526 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
527 goto out;
528bad_nofile:
529 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
530out:
531 return NULL;
886bb7e9 532}
1da177e4 533
253d553b
HD
534static unsigned short swap_entry_free(struct swap_info_struct *p,
535 swp_entry_t entry, unsigned short usage)
1da177e4 536{
253d553b
HD
537 unsigned long offset = swp_offset(entry);
538 unsigned short count;
539 unsigned short has_cache;
355cfa73 540
253d553b
HD
541 count = p->swap_map[offset];
542 has_cache = count & SWAP_HAS_CACHE;
543 count &= ~SWAP_HAS_CACHE;
355cfa73 544
253d553b 545 if (usage == SWAP_HAS_CACHE) {
355cfa73 546 VM_BUG_ON(!has_cache);
253d553b
HD
547 has_cache = 0;
548 } else if (count < SWAP_MAP_MAX)
549 count--;
550
551 if (!count)
552 mem_cgroup_uncharge_swap(entry);
553
554 usage = count | has_cache;
555 p->swap_map[offset] = usage;
355cfa73 556
355cfa73 557 /* free if no reference */
253d553b 558 if (!usage) {
355cfa73
KH
559 if (offset < p->lowest_bit)
560 p->lowest_bit = offset;
561 if (offset > p->highest_bit)
562 p->highest_bit = offset;
efa90a98
HD
563 if (swap_list.next >= 0 &&
564 p->prio > swap_info[swap_list.next]->prio)
565 swap_list.next = p->type;
355cfa73
KH
566 nr_swap_pages++;
567 p->inuse_pages--;
1da177e4 568 }
253d553b
HD
569
570 return usage;
1da177e4
LT
571}
572
573/*
574 * Caller has made sure that the swapdevice corresponding to entry
575 * is still around or has not been recycled.
576 */
577void swap_free(swp_entry_t entry)
578{
73c34b6a 579 struct swap_info_struct *p;
1da177e4
LT
580
581 p = swap_info_get(entry);
582 if (p) {
253d553b 583 swap_entry_free(p, entry, 1);
5d337b91 584 spin_unlock(&swap_lock);
1da177e4
LT
585 }
586}
587
cb4b86ba
KH
588/*
589 * Called after dropping swapcache to decrease refcnt to swap entries.
590 */
591void swapcache_free(swp_entry_t entry, struct page *page)
592{
355cfa73 593 struct swap_info_struct *p;
253d553b 594 unsigned short count;
355cfa73 595
355cfa73
KH
596 p = swap_info_get(entry);
597 if (p) {
253d553b
HD
598 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
599 if (page)
600 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
355cfa73
KH
601 spin_unlock(&swap_lock);
602 }
cb4b86ba
KH
603}
604
1da177e4 605/*
c475a8ab 606 * How many references to page are currently swapped out?
1da177e4 607 */
c475a8ab 608static inline int page_swapcount(struct page *page)
1da177e4 609{
c475a8ab
HD
610 int count = 0;
611 struct swap_info_struct *p;
1da177e4
LT
612 swp_entry_t entry;
613
4c21e2f2 614 entry.val = page_private(page);
1da177e4
LT
615 p = swap_info_get(entry);
616 if (p) {
355cfa73 617 count = swap_count(p->swap_map[swp_offset(entry)]);
5d337b91 618 spin_unlock(&swap_lock);
1da177e4 619 }
c475a8ab 620 return count;
1da177e4
LT
621}
622
623/*
7b1fe597
HD
624 * We can write to an anon page without COW if there are no other references
625 * to it. And as a side-effect, free up its swap: because the old content
626 * on disk will never be read, and seeking back there to write new content
627 * later would only waste time away from clustering.
1da177e4 628 */
7b1fe597 629int reuse_swap_page(struct page *page)
1da177e4 630{
c475a8ab
HD
631 int count;
632
51726b12 633 VM_BUG_ON(!PageLocked(page));
c475a8ab 634 count = page_mapcount(page);
7b1fe597 635 if (count <= 1 && PageSwapCache(page)) {
c475a8ab 636 count += page_swapcount(page);
7b1fe597
HD
637 if (count == 1 && !PageWriteback(page)) {
638 delete_from_swap_cache(page);
639 SetPageDirty(page);
640 }
641 }
c475a8ab 642 return count == 1;
1da177e4
LT
643}
644
645/*
a2c43eed
HD
646 * If swap is getting full, or if there are no more mappings of this page,
647 * then try_to_free_swap is called to free its swap space.
1da177e4 648 */
a2c43eed 649int try_to_free_swap(struct page *page)
1da177e4 650{
51726b12 651 VM_BUG_ON(!PageLocked(page));
1da177e4
LT
652
653 if (!PageSwapCache(page))
654 return 0;
655 if (PageWriteback(page))
656 return 0;
a2c43eed 657 if (page_swapcount(page))
1da177e4
LT
658 return 0;
659
a2c43eed
HD
660 delete_from_swap_cache(page);
661 SetPageDirty(page);
662 return 1;
68a22394
RR
663}
664
1da177e4
LT
665/*
666 * Free the swap entry like above, but also try to
667 * free the page cache entry if it is the last user.
668 */
2509ef26 669int free_swap_and_cache(swp_entry_t entry)
1da177e4 670{
2509ef26 671 struct swap_info_struct *p;
1da177e4
LT
672 struct page *page = NULL;
673
a7420aa5 674 if (non_swap_entry(entry))
2509ef26 675 return 1;
0697212a 676
1da177e4
LT
677 p = swap_info_get(entry);
678 if (p) {
253d553b 679 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
93fac704 680 page = find_get_page(&swapper_space, entry.val);
8413ac9d 681 if (page && !trylock_page(page)) {
93fac704
NP
682 page_cache_release(page);
683 page = NULL;
684 }
685 }
5d337b91 686 spin_unlock(&swap_lock);
1da177e4
LT
687 }
688 if (page) {
a2c43eed
HD
689 /*
690 * Not mapped elsewhere, or swap space full? Free it!
691 * Also recheck PageSwapCache now page is locked (above).
692 */
93fac704 693 if (PageSwapCache(page) && !PageWriteback(page) &&
a2c43eed 694 (!page_mapped(page) || vm_swap_full())) {
1da177e4
LT
695 delete_from_swap_cache(page);
696 SetPageDirty(page);
697 }
698 unlock_page(page);
699 page_cache_release(page);
700 }
2509ef26 701 return p != NULL;
1da177e4
LT
702}
703
b0cb1a19 704#ifdef CONFIG_HIBERNATION
f577eb30 705/*
915bae9e 706 * Find the swap type that corresponds to given device (if any).
f577eb30 707 *
915bae9e
RW
708 * @offset - number of the PAGE_SIZE-sized block of the device, starting
709 * from 0, in which the swap header is expected to be located.
710 *
711 * This is needed for the suspend to disk (aka swsusp).
f577eb30 712 */
7bf23687 713int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 714{
915bae9e 715 struct block_device *bdev = NULL;
efa90a98 716 int type;
f577eb30 717
915bae9e
RW
718 if (device)
719 bdev = bdget(device);
720
f577eb30 721 spin_lock(&swap_lock);
efa90a98
HD
722 for (type = 0; type < nr_swapfiles; type++) {
723 struct swap_info_struct *sis = swap_info[type];
f577eb30 724
915bae9e 725 if (!(sis->flags & SWP_WRITEOK))
f577eb30 726 continue;
b6b5bce3 727
915bae9e 728 if (!bdev) {
7bf23687 729 if (bdev_p)
dddac6a7 730 *bdev_p = bdgrab(sis->bdev);
7bf23687 731
6e1819d6 732 spin_unlock(&swap_lock);
efa90a98 733 return type;
6e1819d6 734 }
915bae9e 735 if (bdev == sis->bdev) {
9625a5f2 736 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 737
915bae9e 738 if (se->start_block == offset) {
7bf23687 739 if (bdev_p)
dddac6a7 740 *bdev_p = bdgrab(sis->bdev);
7bf23687 741
915bae9e
RW
742 spin_unlock(&swap_lock);
743 bdput(bdev);
efa90a98 744 return type;
915bae9e 745 }
f577eb30
RW
746 }
747 }
748 spin_unlock(&swap_lock);
915bae9e
RW
749 if (bdev)
750 bdput(bdev);
751
f577eb30
RW
752 return -ENODEV;
753}
754
73c34b6a
HD
755/*
756 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
757 * corresponding to given index in swap_info (swap type).
758 */
759sector_t swapdev_block(int type, pgoff_t offset)
760{
761 struct block_device *bdev;
762
763 if ((unsigned int)type >= nr_swapfiles)
764 return 0;
765 if (!(swap_info[type]->flags & SWP_WRITEOK))
766 return 0;
767 return map_swap_page(swp_entry(type, offset), &bdev);
768}
769
f577eb30
RW
770/*
771 * Return either the total number of swap pages of given type, or the number
772 * of free pages of that type (depending on @free)
773 *
774 * This is needed for software suspend
775 */
776unsigned int count_swap_pages(int type, int free)
777{
778 unsigned int n = 0;
779
efa90a98
HD
780 spin_lock(&swap_lock);
781 if ((unsigned int)type < nr_swapfiles) {
782 struct swap_info_struct *sis = swap_info[type];
783
784 if (sis->flags & SWP_WRITEOK) {
785 n = sis->pages;
f577eb30 786 if (free)
efa90a98 787 n -= sis->inuse_pages;
f577eb30 788 }
f577eb30 789 }
efa90a98 790 spin_unlock(&swap_lock);
f577eb30
RW
791 return n;
792}
73c34b6a 793#endif /* CONFIG_HIBERNATION */
f577eb30 794
1da177e4 795/*
72866f6f
HD
796 * No need to decide whether this PTE shares the swap entry with others,
797 * just let do_wp_page work it out if a write is requested later - to
798 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 799 */
044d66c1 800static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
801 unsigned long addr, swp_entry_t entry, struct page *page)
802{
7a81b88c 803 struct mem_cgroup *ptr = NULL;
044d66c1
HD
804 spinlock_t *ptl;
805 pte_t *pte;
806 int ret = 1;
807
85d9fc89 808 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
044d66c1 809 ret = -ENOMEM;
85d9fc89
KH
810 goto out_nolock;
811 }
044d66c1
HD
812
813 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
814 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
815 if (ret > 0)
7a81b88c 816 mem_cgroup_cancel_charge_swapin(ptr);
044d66c1
HD
817 ret = 0;
818 goto out;
819 }
8a9f3ccd 820
4294621f 821 inc_mm_counter(vma->vm_mm, anon_rss);
1da177e4
LT
822 get_page(page);
823 set_pte_at(vma->vm_mm, addr, pte,
824 pte_mkold(mk_pte(page, vma->vm_page_prot)));
825 page_add_anon_rmap(page, vma, addr);
7a81b88c 826 mem_cgroup_commit_charge_swapin(page, ptr);
1da177e4
LT
827 swap_free(entry);
828 /*
829 * Move the page to the active list so it is not
830 * immediately swapped out again after swapon.
831 */
832 activate_page(page);
044d66c1
HD
833out:
834 pte_unmap_unlock(pte, ptl);
85d9fc89 835out_nolock:
044d66c1 836 return ret;
1da177e4
LT
837}
838
839static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
840 unsigned long addr, unsigned long end,
841 swp_entry_t entry, struct page *page)
842{
1da177e4 843 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 844 pte_t *pte;
8a9f3ccd 845 int ret = 0;
1da177e4 846
044d66c1
HD
847 /*
848 * We don't actually need pte lock while scanning for swp_pte: since
849 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
850 * page table while we're scanning; though it could get zapped, and on
851 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
852 * of unmatched parts which look like swp_pte, so unuse_pte must
853 * recheck under pte lock. Scanning without pte lock lets it be
854 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
855 */
856 pte = pte_offset_map(pmd, addr);
1da177e4
LT
857 do {
858 /*
859 * swapoff spends a _lot_ of time in this loop!
860 * Test inline before going to call unuse_pte.
861 */
862 if (unlikely(pte_same(*pte, swp_pte))) {
044d66c1
HD
863 pte_unmap(pte);
864 ret = unuse_pte(vma, pmd, addr, entry, page);
865 if (ret)
866 goto out;
867 pte = pte_offset_map(pmd, addr);
1da177e4
LT
868 }
869 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
870 pte_unmap(pte - 1);
871out:
8a9f3ccd 872 return ret;
1da177e4
LT
873}
874
875static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
876 unsigned long addr, unsigned long end,
877 swp_entry_t entry, struct page *page)
878{
879 pmd_t *pmd;
880 unsigned long next;
8a9f3ccd 881 int ret;
1da177e4
LT
882
883 pmd = pmd_offset(pud, addr);
884 do {
885 next = pmd_addr_end(addr, end);
886 if (pmd_none_or_clear_bad(pmd))
887 continue;
8a9f3ccd
BS
888 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
889 if (ret)
890 return ret;
1da177e4
LT
891 } while (pmd++, addr = next, addr != end);
892 return 0;
893}
894
895static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
896 unsigned long addr, unsigned long end,
897 swp_entry_t entry, struct page *page)
898{
899 pud_t *pud;
900 unsigned long next;
8a9f3ccd 901 int ret;
1da177e4
LT
902
903 pud = pud_offset(pgd, addr);
904 do {
905 next = pud_addr_end(addr, end);
906 if (pud_none_or_clear_bad(pud))
907 continue;
8a9f3ccd
BS
908 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
909 if (ret)
910 return ret;
1da177e4
LT
911 } while (pud++, addr = next, addr != end);
912 return 0;
913}
914
915static int unuse_vma(struct vm_area_struct *vma,
916 swp_entry_t entry, struct page *page)
917{
918 pgd_t *pgd;
919 unsigned long addr, end, next;
8a9f3ccd 920 int ret;
1da177e4
LT
921
922 if (page->mapping) {
923 addr = page_address_in_vma(page, vma);
924 if (addr == -EFAULT)
925 return 0;
926 else
927 end = addr + PAGE_SIZE;
928 } else {
929 addr = vma->vm_start;
930 end = vma->vm_end;
931 }
932
933 pgd = pgd_offset(vma->vm_mm, addr);
934 do {
935 next = pgd_addr_end(addr, end);
936 if (pgd_none_or_clear_bad(pgd))
937 continue;
8a9f3ccd
BS
938 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
939 if (ret)
940 return ret;
1da177e4
LT
941 } while (pgd++, addr = next, addr != end);
942 return 0;
943}
944
945static int unuse_mm(struct mm_struct *mm,
946 swp_entry_t entry, struct page *page)
947{
948 struct vm_area_struct *vma;
8a9f3ccd 949 int ret = 0;
1da177e4
LT
950
951 if (!down_read_trylock(&mm->mmap_sem)) {
952 /*
7d03431c
FLVC
953 * Activate page so shrink_inactive_list is unlikely to unmap
954 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 955 */
c475a8ab 956 activate_page(page);
1da177e4
LT
957 unlock_page(page);
958 down_read(&mm->mmap_sem);
959 lock_page(page);
960 }
1da177e4 961 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 962 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4
LT
963 break;
964 }
1da177e4 965 up_read(&mm->mmap_sem);
8a9f3ccd 966 return (ret < 0)? ret: 0;
1da177e4
LT
967}
968
969/*
970 * Scan swap_map from current position to next entry still in use.
971 * Recycle to start on reaching the end, returning 0 when empty.
972 */
6eb396dc
HD
973static unsigned int find_next_to_unuse(struct swap_info_struct *si,
974 unsigned int prev)
1da177e4 975{
6eb396dc
HD
976 unsigned int max = si->max;
977 unsigned int i = prev;
1da177e4
LT
978 int count;
979
980 /*
5d337b91 981 * No need for swap_lock here: we're just looking
1da177e4
LT
982 * for whether an entry is in use, not modifying it; false
983 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 984 * allocations from this area (while holding swap_lock).
1da177e4
LT
985 */
986 for (;;) {
987 if (++i >= max) {
988 if (!prev) {
989 i = 0;
990 break;
991 }
992 /*
993 * No entries in use at top of swap_map,
994 * loop back to start and recheck there.
995 */
996 max = prev + 1;
997 prev = 0;
998 i = 1;
999 }
1000 count = si->swap_map[i];
355cfa73 1001 if (count && swap_count(count) != SWAP_MAP_BAD)
1da177e4
LT
1002 break;
1003 }
1004 return i;
1005}
1006
1007/*
1008 * We completely avoid races by reading each swap page in advance,
1009 * and then search for the process using it. All the necessary
1010 * page table adjustments can then be made atomically.
1011 */
1012static int try_to_unuse(unsigned int type)
1013{
efa90a98 1014 struct swap_info_struct *si = swap_info[type];
1da177e4
LT
1015 struct mm_struct *start_mm;
1016 unsigned short *swap_map;
1017 unsigned short swcount;
1018 struct page *page;
1019 swp_entry_t entry;
6eb396dc 1020 unsigned int i = 0;
1da177e4
LT
1021 int retval = 0;
1022 int reset_overflow = 0;
1023 int shmem;
1024
1025 /*
1026 * When searching mms for an entry, a good strategy is to
1027 * start at the first mm we freed the previous entry from
1028 * (though actually we don't notice whether we or coincidence
1029 * freed the entry). Initialize this start_mm with a hold.
1030 *
1031 * A simpler strategy would be to start at the last mm we
1032 * freed the previous entry from; but that would take less
1033 * advantage of mmlist ordering, which clusters forked mms
1034 * together, child after parent. If we race with dup_mmap(), we
1035 * prefer to resolve parent before child, lest we miss entries
1036 * duplicated after we scanned child: using last mm would invert
1037 * that. Though it's only a serious concern when an overflowed
1038 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
1039 */
1040 start_mm = &init_mm;
1041 atomic_inc(&init_mm.mm_users);
1042
1043 /*
1044 * Keep on scanning until all entries have gone. Usually,
1045 * one pass through swap_map is enough, but not necessarily:
1046 * there are races when an instance of an entry might be missed.
1047 */
1048 while ((i = find_next_to_unuse(si, i)) != 0) {
1049 if (signal_pending(current)) {
1050 retval = -EINTR;
1051 break;
1052 }
1053
886bb7e9 1054 /*
1da177e4
LT
1055 * Get a page for the entry, using the existing swap
1056 * cache page if there is one. Otherwise, get a clean
886bb7e9 1057 * page and read the swap into it.
1da177e4
LT
1058 */
1059 swap_map = &si->swap_map[i];
1060 entry = swp_entry(type, i);
02098fea
HD
1061 page = read_swap_cache_async(entry,
1062 GFP_HIGHUSER_MOVABLE, NULL, 0);
1da177e4
LT
1063 if (!page) {
1064 /*
1065 * Either swap_duplicate() failed because entry
1066 * has been freed independently, and will not be
1067 * reused since sys_swapoff() already disabled
1068 * allocation from here, or alloc_page() failed.
1069 */
1070 if (!*swap_map)
1071 continue;
1072 retval = -ENOMEM;
1073 break;
1074 }
1075
1076 /*
1077 * Don't hold on to start_mm if it looks like exiting.
1078 */
1079 if (atomic_read(&start_mm->mm_users) == 1) {
1080 mmput(start_mm);
1081 start_mm = &init_mm;
1082 atomic_inc(&init_mm.mm_users);
1083 }
1084
1085 /*
1086 * Wait for and lock page. When do_swap_page races with
1087 * try_to_unuse, do_swap_page can handle the fault much
1088 * faster than try_to_unuse can locate the entry. This
1089 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1090 * defer to do_swap_page in such a case - in some tests,
1091 * do_swap_page and try_to_unuse repeatedly compete.
1092 */
1093 wait_on_page_locked(page);
1094 wait_on_page_writeback(page);
1095 lock_page(page);
1096 wait_on_page_writeback(page);
1097
1098 /*
1099 * Remove all references to entry.
1100 * Whenever we reach init_mm, there's no address space
1101 * to search, but use it as a reminder to search shmem.
1102 */
1103 shmem = 0;
1104 swcount = *swap_map;
355cfa73 1105 if (swap_count(swcount)) {
1da177e4
LT
1106 if (start_mm == &init_mm)
1107 shmem = shmem_unuse(entry, page);
1108 else
1109 retval = unuse_mm(start_mm, entry, page);
1110 }
355cfa73 1111 if (swap_count(*swap_map)) {
1da177e4
LT
1112 int set_start_mm = (*swap_map >= swcount);
1113 struct list_head *p = &start_mm->mmlist;
1114 struct mm_struct *new_start_mm = start_mm;
1115 struct mm_struct *prev_mm = start_mm;
1116 struct mm_struct *mm;
1117
1118 atomic_inc(&new_start_mm->mm_users);
1119 atomic_inc(&prev_mm->mm_users);
1120 spin_lock(&mmlist_lock);
355cfa73 1121 while (swap_count(*swap_map) && !retval && !shmem &&
1da177e4
LT
1122 (p = p->next) != &start_mm->mmlist) {
1123 mm = list_entry(p, struct mm_struct, mmlist);
70af7c5c 1124 if (!atomic_inc_not_zero(&mm->mm_users))
1da177e4 1125 continue;
1da177e4
LT
1126 spin_unlock(&mmlist_lock);
1127 mmput(prev_mm);
1128 prev_mm = mm;
1129
1130 cond_resched();
1131
1132 swcount = *swap_map;
355cfa73 1133 if (!swap_count(swcount)) /* any usage ? */
1da177e4
LT
1134 ;
1135 else if (mm == &init_mm) {
1136 set_start_mm = 1;
1137 shmem = shmem_unuse(entry, page);
1138 } else
1139 retval = unuse_mm(mm, entry, page);
355cfa73 1140
32c5fc10 1141 if (set_start_mm && *swap_map < swcount) {
1da177e4
LT
1142 mmput(new_start_mm);
1143 atomic_inc(&mm->mm_users);
1144 new_start_mm = mm;
1145 set_start_mm = 0;
1146 }
1147 spin_lock(&mmlist_lock);
1148 }
1149 spin_unlock(&mmlist_lock);
1150 mmput(prev_mm);
1151 mmput(start_mm);
1152 start_mm = new_start_mm;
1153 }
2e0e26c7
HD
1154 if (shmem) {
1155 /* page has already been unlocked and released */
1156 if (shmem > 0)
1157 continue;
1158 retval = shmem;
1159 break;
1160 }
1da177e4
LT
1161 if (retval) {
1162 unlock_page(page);
1163 page_cache_release(page);
1164 break;
1165 }
1166
1167 /*
355cfa73
KH
1168 * How could swap count reach 0x7ffe ?
1169 * There's no way to repeat a swap page within an mm
1170 * (except in shmem, where it's the shared object which takes
1171 * the reference count)?
1172 * We believe SWAP_MAP_MAX cannot occur.(if occur, unsigned
1173 * short is too small....)
1da177e4
LT
1174 * If that's wrong, then we should worry more about
1175 * exit_mmap() and do_munmap() cases described above:
1176 * we might be resetting SWAP_MAP_MAX too early here.
1177 * We know "Undead"s can happen, they're okay, so don't
1178 * report them; but do report if we reset SWAP_MAP_MAX.
1179 */
355cfa73
KH
1180 /* We might release the lock_page() in unuse_mm(). */
1181 if (!PageSwapCache(page) || page_private(page) != entry.val)
1182 goto retry;
1183
1184 if (swap_count(*swap_map) == SWAP_MAP_MAX) {
5d337b91 1185 spin_lock(&swap_lock);
253d553b 1186 *swap_map = SWAP_HAS_CACHE;
5d337b91 1187 spin_unlock(&swap_lock);
1da177e4
LT
1188 reset_overflow = 1;
1189 }
1190
1191 /*
1192 * If a reference remains (rare), we would like to leave
1193 * the page in the swap cache; but try_to_unmap could
1194 * then re-duplicate the entry once we drop page lock,
1195 * so we might loop indefinitely; also, that page could
1196 * not be swapped out to other storage meanwhile. So:
1197 * delete from cache even if there's another reference,
1198 * after ensuring that the data has been saved to disk -
1199 * since if the reference remains (rarer), it will be
1200 * read from disk into another page. Splitting into two
1201 * pages would be incorrect if swap supported "shared
1202 * private" pages, but they are handled by tmpfs files.
1da177e4 1203 */
355cfa73
KH
1204 if (swap_count(*swap_map) &&
1205 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
1206 struct writeback_control wbc = {
1207 .sync_mode = WB_SYNC_NONE,
1208 };
1209
1210 swap_writepage(page, &wbc);
1211 lock_page(page);
1212 wait_on_page_writeback(page);
1213 }
68bdc8d6
HD
1214
1215 /*
1216 * It is conceivable that a racing task removed this page from
1217 * swap cache just before we acquired the page lock at the top,
1218 * or while we dropped it in unuse_mm(). The page might even
1219 * be back in swap cache on another swap area: that we must not
1220 * delete, since it may not have been written out to swap yet.
1221 */
1222 if (PageSwapCache(page) &&
1223 likely(page_private(page) == entry.val))
2e0e26c7 1224 delete_from_swap_cache(page);
1da177e4
LT
1225
1226 /*
1227 * So we could skip searching mms once swap count went
1228 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 1229 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
1230 */
1231 SetPageDirty(page);
355cfa73 1232retry:
1da177e4
LT
1233 unlock_page(page);
1234 page_cache_release(page);
1235
1236 /*
1237 * Make sure that we aren't completely killing
1238 * interactive performance.
1239 */
1240 cond_resched();
1241 }
1242
1243 mmput(start_mm);
1244 if (reset_overflow) {
1245 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
1246 swap_overflow = 0;
1247 }
1248 return retval;
1249}
1250
1251/*
5d337b91
HD
1252 * After a successful try_to_unuse, if no swap is now in use, we know
1253 * we can empty the mmlist. swap_lock must be held on entry and exit.
1254 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
1255 * added to the mmlist just after page_duplicate - before would be racy.
1256 */
1257static void drain_mmlist(void)
1258{
1259 struct list_head *p, *next;
efa90a98 1260 unsigned int type;
1da177e4 1261
efa90a98
HD
1262 for (type = 0; type < nr_swapfiles; type++)
1263 if (swap_info[type]->inuse_pages)
1da177e4
LT
1264 return;
1265 spin_lock(&mmlist_lock);
1266 list_for_each_safe(p, next, &init_mm.mmlist)
1267 list_del_init(p);
1268 spin_unlock(&mmlist_lock);
1269}
1270
1271/*
1272 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
f29ad6a9
HD
1273 * corresponds to page offset `offset'. Note that the type of this function
1274 * is sector_t, but it returns page offset into the bdev, not sector offset.
1da177e4 1275 */
f29ad6a9 1276sector_t map_swap_page(swp_entry_t entry, struct block_device **bdev)
1da177e4 1277{
f29ad6a9
HD
1278 struct swap_info_struct *sis;
1279 struct swap_extent *start_se;
1280 struct swap_extent *se;
1281 pgoff_t offset;
1282
efa90a98 1283 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
1284 *bdev = sis->bdev;
1285
1286 offset = swp_offset(entry);
1287 start_se = sis->curr_swap_extent;
1288 se = start_se;
1da177e4
LT
1289
1290 for ( ; ; ) {
1291 struct list_head *lh;
1292
1293 if (se->start_page <= offset &&
1294 offset < (se->start_page + se->nr_pages)) {
1295 return se->start_block + (offset - se->start_page);
1296 }
11d31886 1297 lh = se->list.next;
1da177e4
LT
1298 se = list_entry(lh, struct swap_extent, list);
1299 sis->curr_swap_extent = se;
1300 BUG_ON(se == start_se); /* It *must* be present */
1301 }
1302}
1303
1304/*
1305 * Free all of a swapdev's extent information
1306 */
1307static void destroy_swap_extents(struct swap_info_struct *sis)
1308{
9625a5f2 1309 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
1310 struct swap_extent *se;
1311
9625a5f2 1312 se = list_entry(sis->first_swap_extent.list.next,
1da177e4
LT
1313 struct swap_extent, list);
1314 list_del(&se->list);
1315 kfree(se);
1316 }
1da177e4
LT
1317}
1318
1319/*
1320 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 1321 * extent list. The extent list is kept sorted in page order.
1da177e4 1322 *
11d31886 1323 * This function rather assumes that it is called in ascending page order.
1da177e4
LT
1324 */
1325static int
1326add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1327 unsigned long nr_pages, sector_t start_block)
1328{
1329 struct swap_extent *se;
1330 struct swap_extent *new_se;
1331 struct list_head *lh;
1332
9625a5f2
HD
1333 if (start_page == 0) {
1334 se = &sis->first_swap_extent;
1335 sis->curr_swap_extent = se;
1336 se->start_page = 0;
1337 se->nr_pages = nr_pages;
1338 se->start_block = start_block;
1339 return 1;
1340 } else {
1341 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 1342 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
1343 BUG_ON(se->start_page + se->nr_pages != start_page);
1344 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
1345 /* Merge it */
1346 se->nr_pages += nr_pages;
1347 return 0;
1348 }
1da177e4
LT
1349 }
1350
1351 /*
1352 * No merge. Insert a new extent, preserving ordering.
1353 */
1354 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1355 if (new_se == NULL)
1356 return -ENOMEM;
1357 new_se->start_page = start_page;
1358 new_se->nr_pages = nr_pages;
1359 new_se->start_block = start_block;
1360
9625a5f2 1361 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 1362 return 1;
1da177e4
LT
1363}
1364
1365/*
1366 * A `swap extent' is a simple thing which maps a contiguous range of pages
1367 * onto a contiguous range of disk blocks. An ordered list of swap extents
1368 * is built at swapon time and is then used at swap_writepage/swap_readpage
1369 * time for locating where on disk a page belongs.
1370 *
1371 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1372 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1373 * swap files identically.
1374 *
1375 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1376 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1377 * swapfiles are handled *identically* after swapon time.
1378 *
1379 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1380 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1381 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1382 * requirements, they are simply tossed out - we will never use those blocks
1383 * for swapping.
1384 *
b0d9bcd4 1385 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
1386 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1387 * which will scribble on the fs.
1388 *
1389 * The amount of disk space which a single swap extent represents varies.
1390 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1391 * extents in the list. To avoid much list walking, we cache the previous
1392 * search location in `curr_swap_extent', and start new searches from there.
1393 * This is extremely effective. The average number of iterations in
1394 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1395 */
53092a74 1396static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4
LT
1397{
1398 struct inode *inode;
1399 unsigned blocks_per_page;
1400 unsigned long page_no;
1401 unsigned blkbits;
1402 sector_t probe_block;
1403 sector_t last_block;
53092a74
HD
1404 sector_t lowest_block = -1;
1405 sector_t highest_block = 0;
1406 int nr_extents = 0;
1da177e4
LT
1407 int ret;
1408
1409 inode = sis->swap_file->f_mapping->host;
1410 if (S_ISBLK(inode->i_mode)) {
1411 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 1412 *span = sis->pages;
9625a5f2 1413 goto out;
1da177e4
LT
1414 }
1415
1416 blkbits = inode->i_blkbits;
1417 blocks_per_page = PAGE_SIZE >> blkbits;
1418
1419 /*
1420 * Map all the blocks into the extent list. This code doesn't try
1421 * to be very smart.
1422 */
1423 probe_block = 0;
1424 page_no = 0;
1425 last_block = i_size_read(inode) >> blkbits;
1426 while ((probe_block + blocks_per_page) <= last_block &&
1427 page_no < sis->max) {
1428 unsigned block_in_page;
1429 sector_t first_block;
1430
1431 first_block = bmap(inode, probe_block);
1432 if (first_block == 0)
1433 goto bad_bmap;
1434
1435 /*
1436 * It must be PAGE_SIZE aligned on-disk
1437 */
1438 if (first_block & (blocks_per_page - 1)) {
1439 probe_block++;
1440 goto reprobe;
1441 }
1442
1443 for (block_in_page = 1; block_in_page < blocks_per_page;
1444 block_in_page++) {
1445 sector_t block;
1446
1447 block = bmap(inode, probe_block + block_in_page);
1448 if (block == 0)
1449 goto bad_bmap;
1450 if (block != first_block + block_in_page) {
1451 /* Discontiguity */
1452 probe_block++;
1453 goto reprobe;
1454 }
1455 }
1456
53092a74
HD
1457 first_block >>= (PAGE_SHIFT - blkbits);
1458 if (page_no) { /* exclude the header page */
1459 if (first_block < lowest_block)
1460 lowest_block = first_block;
1461 if (first_block > highest_block)
1462 highest_block = first_block;
1463 }
1464
1da177e4
LT
1465 /*
1466 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1467 */
53092a74
HD
1468 ret = add_swap_extent(sis, page_no, 1, first_block);
1469 if (ret < 0)
1da177e4 1470 goto out;
53092a74 1471 nr_extents += ret;
1da177e4
LT
1472 page_no++;
1473 probe_block += blocks_per_page;
1474reprobe:
1475 continue;
1476 }
53092a74
HD
1477 ret = nr_extents;
1478 *span = 1 + highest_block - lowest_block;
1da177e4 1479 if (page_no == 0)
e2244ec2 1480 page_no = 1; /* force Empty message */
1da177e4 1481 sis->max = page_no;
e2244ec2 1482 sis->pages = page_no - 1;
1da177e4 1483 sis->highest_bit = page_no - 1;
9625a5f2
HD
1484out:
1485 return ret;
1da177e4
LT
1486bad_bmap:
1487 printk(KERN_ERR "swapon: swapfile has holes\n");
1488 ret = -EINVAL;
9625a5f2 1489 goto out;
1da177e4
LT
1490}
1491
c4ea37c2 1492SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 1493{
73c34b6a 1494 struct swap_info_struct *p = NULL;
1da177e4
LT
1495 unsigned short *swap_map;
1496 struct file *swap_file, *victim;
1497 struct address_space *mapping;
1498 struct inode *inode;
73c34b6a 1499 char *pathname;
1da177e4
LT
1500 int i, type, prev;
1501 int err;
886bb7e9 1502
1da177e4
LT
1503 if (!capable(CAP_SYS_ADMIN))
1504 return -EPERM;
1505
1506 pathname = getname(specialfile);
1507 err = PTR_ERR(pathname);
1508 if (IS_ERR(pathname))
1509 goto out;
1510
1511 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1512 putname(pathname);
1513 err = PTR_ERR(victim);
1514 if (IS_ERR(victim))
1515 goto out;
1516
1517 mapping = victim->f_mapping;
1518 prev = -1;
5d337b91 1519 spin_lock(&swap_lock);
efa90a98
HD
1520 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1521 p = swap_info[type];
22c6f8fd 1522 if (p->flags & SWP_WRITEOK) {
1da177e4
LT
1523 if (p->swap_file->f_mapping == mapping)
1524 break;
1525 }
1526 prev = type;
1527 }
1528 if (type < 0) {
1529 err = -EINVAL;
5d337b91 1530 spin_unlock(&swap_lock);
1da177e4
LT
1531 goto out_dput;
1532 }
1533 if (!security_vm_enough_memory(p->pages))
1534 vm_unacct_memory(p->pages);
1535 else {
1536 err = -ENOMEM;
5d337b91 1537 spin_unlock(&swap_lock);
1da177e4
LT
1538 goto out_dput;
1539 }
efa90a98 1540 if (prev < 0)
1da177e4 1541 swap_list.head = p->next;
efa90a98
HD
1542 else
1543 swap_info[prev]->next = p->next;
1da177e4
LT
1544 if (type == swap_list.next) {
1545 /* just pick something that's safe... */
1546 swap_list.next = swap_list.head;
1547 }
78ecba08 1548 if (p->prio < 0) {
efa90a98
HD
1549 for (i = p->next; i >= 0; i = swap_info[i]->next)
1550 swap_info[i]->prio = p->prio--;
78ecba08
HD
1551 least_priority++;
1552 }
1da177e4
LT
1553 nr_swap_pages -= p->pages;
1554 total_swap_pages -= p->pages;
1555 p->flags &= ~SWP_WRITEOK;
5d337b91 1556 spin_unlock(&swap_lock);
fb4f88dc 1557
35451bee 1558 current->flags |= PF_OOM_ORIGIN;
1da177e4 1559 err = try_to_unuse(type);
35451bee 1560 current->flags &= ~PF_OOM_ORIGIN;
1da177e4 1561
1da177e4
LT
1562 if (err) {
1563 /* re-insert swap space back into swap_list */
5d337b91 1564 spin_lock(&swap_lock);
78ecba08
HD
1565 if (p->prio < 0)
1566 p->prio = --least_priority;
1567 prev = -1;
efa90a98
HD
1568 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1569 if (p->prio >= swap_info[i]->prio)
1da177e4 1570 break;
78ecba08
HD
1571 prev = i;
1572 }
1da177e4
LT
1573 p->next = i;
1574 if (prev < 0)
efa90a98 1575 swap_list.head = swap_list.next = type;
1da177e4 1576 else
efa90a98 1577 swap_info[prev]->next = type;
1da177e4
LT
1578 nr_swap_pages += p->pages;
1579 total_swap_pages += p->pages;
1580 p->flags |= SWP_WRITEOK;
5d337b91 1581 spin_unlock(&swap_lock);
1da177e4
LT
1582 goto out_dput;
1583 }
52b7efdb
HD
1584
1585 /* wait for any unplug function to finish */
1586 down_write(&swap_unplug_sem);
1587 up_write(&swap_unplug_sem);
1588
5d337b91 1589 destroy_swap_extents(p);
fc0abb14 1590 mutex_lock(&swapon_mutex);
5d337b91
HD
1591 spin_lock(&swap_lock);
1592 drain_mmlist();
1593
52b7efdb 1594 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
1595 p->highest_bit = 0; /* cuts scans short */
1596 while (p->flags >= SWP_SCANNING) {
5d337b91 1597 spin_unlock(&swap_lock);
13e4b57f 1598 schedule_timeout_uninterruptible(1);
5d337b91 1599 spin_lock(&swap_lock);
52b7efdb 1600 }
52b7efdb 1601
1da177e4
LT
1602 swap_file = p->swap_file;
1603 p->swap_file = NULL;
1604 p->max = 0;
1605 swap_map = p->swap_map;
1606 p->swap_map = NULL;
1607 p->flags = 0;
5d337b91 1608 spin_unlock(&swap_lock);
fc0abb14 1609 mutex_unlock(&swapon_mutex);
1da177e4 1610 vfree(swap_map);
27a7faa0
KH
1611 /* Destroy swap account informatin */
1612 swap_cgroup_swapoff(type);
1613
1da177e4
LT
1614 inode = mapping->host;
1615 if (S_ISBLK(inode->i_mode)) {
1616 struct block_device *bdev = I_BDEV(inode);
1617 set_blocksize(bdev, p->old_block_size);
1618 bd_release(bdev);
1619 } else {
1b1dcc1b 1620 mutex_lock(&inode->i_mutex);
1da177e4 1621 inode->i_flags &= ~S_SWAPFILE;
1b1dcc1b 1622 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1623 }
1624 filp_close(swap_file, NULL);
1625 err = 0;
1626
1627out_dput:
1628 filp_close(victim, NULL);
1629out:
1630 return err;
1631}
1632
1633#ifdef CONFIG_PROC_FS
1634/* iterator */
1635static void *swap_start(struct seq_file *swap, loff_t *pos)
1636{
efa90a98
HD
1637 struct swap_info_struct *si;
1638 int type;
1da177e4
LT
1639 loff_t l = *pos;
1640
fc0abb14 1641 mutex_lock(&swapon_mutex);
1da177e4 1642
881e4aab
SS
1643 if (!l)
1644 return SEQ_START_TOKEN;
1645
efa90a98
HD
1646 for (type = 0; type < nr_swapfiles; type++) {
1647 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1648 si = swap_info[type];
1649 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 1650 continue;
881e4aab 1651 if (!--l)
efa90a98 1652 return si;
1da177e4
LT
1653 }
1654
1655 return NULL;
1656}
1657
1658static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1659{
efa90a98
HD
1660 struct swap_info_struct *si = v;
1661 int type;
1da177e4 1662
881e4aab 1663 if (v == SEQ_START_TOKEN)
efa90a98
HD
1664 type = 0;
1665 else
1666 type = si->type + 1;
881e4aab 1667
efa90a98
HD
1668 for (; type < nr_swapfiles; type++) {
1669 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1670 si = swap_info[type];
1671 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
1672 continue;
1673 ++*pos;
efa90a98 1674 return si;
1da177e4
LT
1675 }
1676
1677 return NULL;
1678}
1679
1680static void swap_stop(struct seq_file *swap, void *v)
1681{
fc0abb14 1682 mutex_unlock(&swapon_mutex);
1da177e4
LT
1683}
1684
1685static int swap_show(struct seq_file *swap, void *v)
1686{
efa90a98 1687 struct swap_info_struct *si = v;
1da177e4
LT
1688 struct file *file;
1689 int len;
1690
efa90a98 1691 if (si == SEQ_START_TOKEN) {
881e4aab
SS
1692 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1693 return 0;
1694 }
1da177e4 1695
efa90a98 1696 file = si->swap_file;
c32c2f63 1697 len = seq_path(swap, &file->f_path, " \t\n\\");
6eb396dc 1698 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9
HD
1699 len < 40 ? 40 - len : 1, " ",
1700 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1da177e4 1701 "partition" : "file\t",
efa90a98
HD
1702 si->pages << (PAGE_SHIFT - 10),
1703 si->inuse_pages << (PAGE_SHIFT - 10),
1704 si->prio);
1da177e4
LT
1705 return 0;
1706}
1707
15ad7cdc 1708static const struct seq_operations swaps_op = {
1da177e4
LT
1709 .start = swap_start,
1710 .next = swap_next,
1711 .stop = swap_stop,
1712 .show = swap_show
1713};
1714
1715static int swaps_open(struct inode *inode, struct file *file)
1716{
1717 return seq_open(file, &swaps_op);
1718}
1719
15ad7cdc 1720static const struct file_operations proc_swaps_operations = {
1da177e4
LT
1721 .open = swaps_open,
1722 .read = seq_read,
1723 .llseek = seq_lseek,
1724 .release = seq_release,
1725};
1726
1727static int __init procswaps_init(void)
1728{
3d71f86f 1729 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
1730 return 0;
1731}
1732__initcall(procswaps_init);
1733#endif /* CONFIG_PROC_FS */
1734
1796316a
JB
1735#ifdef MAX_SWAPFILES_CHECK
1736static int __init max_swapfiles_check(void)
1737{
1738 MAX_SWAPFILES_CHECK();
1739 return 0;
1740}
1741late_initcall(max_swapfiles_check);
1742#endif
1743
1da177e4
LT
1744/*
1745 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1746 *
1747 * The swapon system call
1748 */
c4ea37c2 1749SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1da177e4 1750{
73c34b6a 1751 struct swap_info_struct *p;
1da177e4
LT
1752 char *name = NULL;
1753 struct block_device *bdev = NULL;
1754 struct file *swap_file = NULL;
1755 struct address_space *mapping;
1756 unsigned int type;
1757 int i, prev;
1758 int error;
1da177e4 1759 union swap_header *swap_header = NULL;
6eb396dc
HD
1760 unsigned int nr_good_pages = 0;
1761 int nr_extents = 0;
53092a74 1762 sector_t span;
1da177e4 1763 unsigned long maxpages = 1;
73fd8748 1764 unsigned long swapfilepages;
78ecba08 1765 unsigned short *swap_map = NULL;
1da177e4
LT
1766 struct page *page = NULL;
1767 struct inode *inode = NULL;
1768 int did_down = 0;
1769
1770 if (!capable(CAP_SYS_ADMIN))
1771 return -EPERM;
efa90a98
HD
1772
1773 p = kzalloc(sizeof(*p), GFP_KERNEL);
1774 if (!p)
1775 return -ENOMEM;
1776
5d337b91 1777 spin_lock(&swap_lock);
efa90a98
HD
1778 for (type = 0; type < nr_swapfiles; type++) {
1779 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 1780 break;
efa90a98 1781 }
1da177e4 1782 error = -EPERM;
0697212a 1783 if (type >= MAX_SWAPFILES) {
5d337b91 1784 spin_unlock(&swap_lock);
efa90a98 1785 kfree(p);
1da177e4
LT
1786 goto out;
1787 }
efa90a98
HD
1788 if (type >= nr_swapfiles) {
1789 p->type = type;
1790 swap_info[type] = p;
1791 /*
1792 * Write swap_info[type] before nr_swapfiles, in case a
1793 * racing procfs swap_start() or swap_next() is reading them.
1794 * (We never shrink nr_swapfiles, we never free this entry.)
1795 */
1796 smp_wmb();
1797 nr_swapfiles++;
1798 } else {
1799 kfree(p);
1800 p = swap_info[type];
1801 /*
1802 * Do not memset this entry: a racing procfs swap_next()
1803 * would be relying on p->type to remain valid.
1804 */
1805 }
9625a5f2 1806 INIT_LIST_HEAD(&p->first_swap_extent.list);
1da177e4 1807 p->flags = SWP_USED;
1da177e4 1808 p->next = -1;
5d337b91 1809 spin_unlock(&swap_lock);
efa90a98 1810
1da177e4
LT
1811 name = getname(specialfile);
1812 error = PTR_ERR(name);
1813 if (IS_ERR(name)) {
1814 name = NULL;
1815 goto bad_swap_2;
1816 }
1817 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1818 error = PTR_ERR(swap_file);
1819 if (IS_ERR(swap_file)) {
1820 swap_file = NULL;
1821 goto bad_swap_2;
1822 }
1823
1824 p->swap_file = swap_file;
1825 mapping = swap_file->f_mapping;
1826 inode = mapping->host;
1827
1828 error = -EBUSY;
1829 for (i = 0; i < nr_swapfiles; i++) {
efa90a98 1830 struct swap_info_struct *q = swap_info[i];
1da177e4
LT
1831
1832 if (i == type || !q->swap_file)
1833 continue;
1834 if (mapping == q->swap_file->f_mapping)
1835 goto bad_swap;
1836 }
1837
1838 error = -EINVAL;
1839 if (S_ISBLK(inode->i_mode)) {
1840 bdev = I_BDEV(inode);
1841 error = bd_claim(bdev, sys_swapon);
1842 if (error < 0) {
1843 bdev = NULL;
f7b3a435 1844 error = -EINVAL;
1da177e4
LT
1845 goto bad_swap;
1846 }
1847 p->old_block_size = block_size(bdev);
1848 error = set_blocksize(bdev, PAGE_SIZE);
1849 if (error < 0)
1850 goto bad_swap;
1851 p->bdev = bdev;
1852 } else if (S_ISREG(inode->i_mode)) {
1853 p->bdev = inode->i_sb->s_bdev;
1b1dcc1b 1854 mutex_lock(&inode->i_mutex);
1da177e4
LT
1855 did_down = 1;
1856 if (IS_SWAPFILE(inode)) {
1857 error = -EBUSY;
1858 goto bad_swap;
1859 }
1860 } else {
1861 goto bad_swap;
1862 }
1863
73fd8748 1864 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1da177e4
LT
1865
1866 /*
1867 * Read the swap header.
1868 */
1869 if (!mapping->a_ops->readpage) {
1870 error = -EINVAL;
1871 goto bad_swap;
1872 }
090d2b18 1873 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
1874 if (IS_ERR(page)) {
1875 error = PTR_ERR(page);
1876 goto bad_swap;
1877 }
81e33971 1878 swap_header = kmap(page);
1da177e4 1879
81e33971 1880 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
e97a3111 1881 printk(KERN_ERR "Unable to find swap-space signature\n");
1da177e4
LT
1882 error = -EINVAL;
1883 goto bad_swap;
1884 }
886bb7e9 1885
81e33971
HD
1886 /* swap partition endianess hack... */
1887 if (swab32(swap_header->info.version) == 1) {
1888 swab32s(&swap_header->info.version);
1889 swab32s(&swap_header->info.last_page);
1890 swab32s(&swap_header->info.nr_badpages);
1891 for (i = 0; i < swap_header->info.nr_badpages; i++)
1892 swab32s(&swap_header->info.badpages[i]);
1893 }
1894 /* Check the swap header's sub-version */
1895 if (swap_header->info.version != 1) {
1896 printk(KERN_WARNING
1897 "Unable to handle swap header version %d\n",
1898 swap_header->info.version);
1da177e4
LT
1899 error = -EINVAL;
1900 goto bad_swap;
81e33971 1901 }
1da177e4 1902
81e33971
HD
1903 p->lowest_bit = 1;
1904 p->cluster_next = 1;
efa90a98 1905 p->cluster_nr = 0;
52b7efdb 1906
81e33971
HD
1907 /*
1908 * Find out how many pages are allowed for a single swap
1909 * device. There are two limiting factors: 1) the number of
1910 * bits for the swap offset in the swp_entry_t type and
1911 * 2) the number of bits in the a swap pte as defined by
1912 * the different architectures. In order to find the
1913 * largest possible bit mask a swap entry with swap type 0
1914 * and swap offset ~0UL is created, encoded to a swap pte,
1915 * decoded to a swp_entry_t again and finally the swap
1916 * offset is extracted. This will mask all the bits from
1917 * the initial ~0UL mask that can't be encoded in either
1918 * the swp_entry_t or the architecture definition of a
1919 * swap pte.
1920 */
1921 maxpages = swp_offset(pte_to_swp_entry(
1922 swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
1923 if (maxpages > swap_header->info.last_page)
1924 maxpages = swap_header->info.last_page;
1925 p->highest_bit = maxpages - 1;
1da177e4 1926
81e33971
HD
1927 error = -EINVAL;
1928 if (!maxpages)
1929 goto bad_swap;
1930 if (swapfilepages && maxpages > swapfilepages) {
1931 printk(KERN_WARNING
1932 "Swap area shorter than signature indicates\n");
1933 goto bad_swap;
1934 }
1935 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1936 goto bad_swap;
1937 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1938 goto bad_swap;
cd105df4 1939
81e33971
HD
1940 /* OK, set up the swap map and apply the bad block list */
1941 swap_map = vmalloc(maxpages * sizeof(short));
1942 if (!swap_map) {
1943 error = -ENOMEM;
1944 goto bad_swap;
1945 }
1da177e4 1946
81e33971
HD
1947 memset(swap_map, 0, maxpages * sizeof(short));
1948 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1949 int page_nr = swap_header->info.badpages[i];
1950 if (page_nr <= 0 || page_nr >= swap_header->info.last_page) {
1951 error = -EINVAL;
1da177e4 1952 goto bad_swap;
81e33971
HD
1953 }
1954 swap_map[page_nr] = SWAP_MAP_BAD;
1da177e4 1955 }
27a7faa0
KH
1956
1957 error = swap_cgroup_swapon(type, maxpages);
1958 if (error)
1959 goto bad_swap;
1960
81e33971
HD
1961 nr_good_pages = swap_header->info.last_page -
1962 swap_header->info.nr_badpages -
1963 1 /* header page */;
e2244ec2 1964
e2244ec2 1965 if (nr_good_pages) {
78ecba08 1966 swap_map[0] = SWAP_MAP_BAD;
e2244ec2
HD
1967 p->max = maxpages;
1968 p->pages = nr_good_pages;
53092a74
HD
1969 nr_extents = setup_swap_extents(p, &span);
1970 if (nr_extents < 0) {
1971 error = nr_extents;
e2244ec2 1972 goto bad_swap;
53092a74 1973 }
e2244ec2
HD
1974 nr_good_pages = p->pages;
1975 }
1da177e4
LT
1976 if (!nr_good_pages) {
1977 printk(KERN_WARNING "Empty swap-file\n");
1978 error = -EINVAL;
1979 goto bad_swap;
1980 }
1da177e4 1981
3bd0f0c7
SJ
1982 if (p->bdev) {
1983 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
1984 p->flags |= SWP_SOLIDSTATE;
1985 p->cluster_next = 1 + (random32() % p->highest_bit);
1986 }
1987 if (discard_swap(p) == 0)
1988 p->flags |= SWP_DISCARDABLE;
20137a49 1989 }
6a6ba831 1990
fc0abb14 1991 mutex_lock(&swapon_mutex);
5d337b91 1992 spin_lock(&swap_lock);
78ecba08
HD
1993 if (swap_flags & SWAP_FLAG_PREFER)
1994 p->prio =
1995 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
1996 else
1997 p->prio = --least_priority;
1998 p->swap_map = swap_map;
22c6f8fd 1999 p->flags |= SWP_WRITEOK;
1da177e4
LT
2000 nr_swap_pages += nr_good_pages;
2001 total_swap_pages += nr_good_pages;
53092a74 2002
6eb396dc 2003 printk(KERN_INFO "Adding %uk swap on %s. "
20137a49 2004 "Priority:%d extents:%d across:%lluk %s%s\n",
53092a74 2005 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
6a6ba831 2006 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
20137a49
HD
2007 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2008 (p->flags & SWP_DISCARDABLE) ? "D" : "");
1da177e4
LT
2009
2010 /* insert swap space into swap_list: */
2011 prev = -1;
efa90a98
HD
2012 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
2013 if (p->prio >= swap_info[i]->prio)
1da177e4 2014 break;
1da177e4
LT
2015 prev = i;
2016 }
2017 p->next = i;
efa90a98
HD
2018 if (prev < 0)
2019 swap_list.head = swap_list.next = type;
2020 else
2021 swap_info[prev]->next = type;
5d337b91 2022 spin_unlock(&swap_lock);
fc0abb14 2023 mutex_unlock(&swapon_mutex);
1da177e4
LT
2024 error = 0;
2025 goto out;
2026bad_swap:
2027 if (bdev) {
2028 set_blocksize(bdev, p->old_block_size);
2029 bd_release(bdev);
2030 }
4cd3bb10 2031 destroy_swap_extents(p);
27a7faa0 2032 swap_cgroup_swapoff(type);
1da177e4 2033bad_swap_2:
5d337b91 2034 spin_lock(&swap_lock);
1da177e4 2035 p->swap_file = NULL;
1da177e4 2036 p->flags = 0;
5d337b91 2037 spin_unlock(&swap_lock);
1da177e4
LT
2038 vfree(swap_map);
2039 if (swap_file)
2040 filp_close(swap_file, NULL);
2041out:
2042 if (page && !IS_ERR(page)) {
2043 kunmap(page);
2044 page_cache_release(page);
2045 }
2046 if (name)
2047 putname(name);
2048 if (did_down) {
2049 if (!error)
2050 inode->i_flags |= S_SWAPFILE;
1b1dcc1b 2051 mutex_unlock(&inode->i_mutex);
1da177e4
LT
2052 }
2053 return error;
2054}
2055
2056void si_swapinfo(struct sysinfo *val)
2057{
efa90a98 2058 unsigned int type;
1da177e4
LT
2059 unsigned long nr_to_be_unused = 0;
2060
5d337b91 2061 spin_lock(&swap_lock);
efa90a98
HD
2062 for (type = 0; type < nr_swapfiles; type++) {
2063 struct swap_info_struct *si = swap_info[type];
2064
2065 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2066 nr_to_be_unused += si->inuse_pages;
1da177e4
LT
2067 }
2068 val->freeswap = nr_swap_pages + nr_to_be_unused;
2069 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 2070 spin_unlock(&swap_lock);
1da177e4
LT
2071}
2072
2073/*
2074 * Verify that a swap entry is valid and increment its swap map count.
2075 *
2076 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
2077 * "permanent", but will be reclaimed by the next swapoff.
355cfa73
KH
2078 * Returns error code in following case.
2079 * - success -> 0
2080 * - swp_entry is invalid -> EINVAL
2081 * - swp_entry is migration entry -> EINVAL
2082 * - swap-cache reference is requested but there is already one. -> EEXIST
2083 * - swap-cache reference is requested but the entry is not used. -> ENOENT
1da177e4 2084 */
253d553b 2085static int __swap_duplicate(swp_entry_t entry, unsigned short usage)
1da177e4 2086{
73c34b6a 2087 struct swap_info_struct *p;
1da177e4 2088 unsigned long offset, type;
253d553b
HD
2089 unsigned short count;
2090 unsigned short has_cache;
2091 int err = -EINVAL;
1da177e4 2092
a7420aa5 2093 if (non_swap_entry(entry))
253d553b 2094 goto out;
0697212a 2095
1da177e4
LT
2096 type = swp_type(entry);
2097 if (type >= nr_swapfiles)
2098 goto bad_file;
efa90a98 2099 p = swap_info[type];
1da177e4
LT
2100 offset = swp_offset(entry);
2101
5d337b91 2102 spin_lock(&swap_lock);
355cfa73
KH
2103 if (unlikely(offset >= p->max))
2104 goto unlock_out;
2105
253d553b
HD
2106 count = p->swap_map[offset];
2107 has_cache = count & SWAP_HAS_CACHE;
2108 count &= ~SWAP_HAS_CACHE;
2109 err = 0;
355cfa73 2110
253d553b 2111 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
2112
2113 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
2114 if (!has_cache && count)
2115 has_cache = SWAP_HAS_CACHE;
2116 else if (has_cache) /* someone else added cache */
2117 err = -EEXIST;
2118 else /* no users remaining */
2119 err = -ENOENT;
355cfa73
KH
2120
2121 } else if (count || has_cache) {
253d553b
HD
2122
2123 if (count < SWAP_MAP_MAX - 1)
2124 count++;
2125 else if (count <= SWAP_MAP_MAX) {
1da177e4 2126 if (swap_overflow++ < 5)
355cfa73
KH
2127 printk(KERN_WARNING
2128 "swap_dup: swap entry overflow\n");
253d553b
HD
2129 count = SWAP_MAP_MAX;
2130 } else
2131 err = -EINVAL;
355cfa73 2132 } else
253d553b
HD
2133 err = -ENOENT; /* unused swap entry */
2134
2135 p->swap_map[offset] = count | has_cache;
2136
355cfa73 2137unlock_out:
5d337b91 2138 spin_unlock(&swap_lock);
1da177e4 2139out:
253d553b 2140 return err;
1da177e4
LT
2141
2142bad_file:
2143 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2144 goto out;
2145}
253d553b 2146
355cfa73
KH
2147/*
2148 * increase reference count of swap entry by 1.
2149 */
2150void swap_duplicate(swp_entry_t entry)
2151{
253d553b 2152 __swap_duplicate(entry, 1);
355cfa73 2153}
1da177e4 2154
cb4b86ba 2155/*
355cfa73
KH
2156 * @entry: swap entry for which we allocate swap cache.
2157 *
73c34b6a 2158 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
2159 * This can return error codes. Returns 0 at success.
2160 * -EBUSY means there is a swap cache.
2161 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
2162 */
2163int swapcache_prepare(swp_entry_t entry)
2164{
253d553b 2165 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
2166}
2167
1da177e4 2168/*
5d337b91 2169 * swap_lock prevents swap_map being freed. Don't grab an extra
1da177e4
LT
2170 * reference on the swaphandle, it doesn't matter if it becomes unused.
2171 */
2172int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2173{
8952898b 2174 struct swap_info_struct *si;
3f9e7949 2175 int our_page_cluster = page_cluster;
8952898b
HD
2176 pgoff_t target, toff;
2177 pgoff_t base, end;
2178 int nr_pages = 0;
1da177e4 2179
3f9e7949 2180 if (!our_page_cluster) /* no readahead */
1da177e4 2181 return 0;
8952898b 2182
efa90a98 2183 si = swap_info[swp_type(entry)];
8952898b
HD
2184 target = swp_offset(entry);
2185 base = (target >> our_page_cluster) << our_page_cluster;
2186 end = base + (1 << our_page_cluster);
2187 if (!base) /* first page is swap header */
2188 base++;
1da177e4 2189
5d337b91 2190 spin_lock(&swap_lock);
8952898b
HD
2191 if (end > si->max) /* don't go beyond end of map */
2192 end = si->max;
2193
2194 /* Count contiguous allocated slots above our target */
2195 for (toff = target; ++toff < end; nr_pages++) {
2196 /* Don't read in free or bad pages */
2197 if (!si->swap_map[toff])
2198 break;
355cfa73 2199 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
1da177e4 2200 break;
8952898b
HD
2201 }
2202 /* Count contiguous allocated slots below our target */
2203 for (toff = target; --toff >= base; nr_pages++) {
1da177e4 2204 /* Don't read in free or bad pages */
8952898b 2205 if (!si->swap_map[toff])
1da177e4 2206 break;
355cfa73 2207 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
1da177e4 2208 break;
8952898b 2209 }
5d337b91 2210 spin_unlock(&swap_lock);
8952898b
HD
2211
2212 /*
2213 * Indicate starting offset, and return number of pages to get:
2214 * if only 1, say 0, since there's then no readahead to be done.
2215 */
2216 *offset = ++toff;
2217 return nr_pages? ++nr_pages: 0;
1da177e4 2218}