]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/swapfile.c
swap: change block allocation algorithm for SSD
[mirror_ubuntu-artful-kernel.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
072441e2 17#include <linux/shmem_fs.h>
1da177e4 18#include <linux/blkdev.h>
20137a49 19#include <linux/random.h>
1da177e4
LT
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
5ad64688 24#include <linux/ksm.h>
1da177e4
LT
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
fc0abb14 28#include <linux/mutex.h>
c59ede7b 29#include <linux/capability.h>
1da177e4 30#include <linux/syscalls.h>
8a9f3ccd 31#include <linux/memcontrol.h>
66d7dd51 32#include <linux/poll.h>
72788c38 33#include <linux/oom.h>
38b5faf4
DM
34#include <linux/frontswap.h>
35#include <linux/swapfile.h>
f981c595 36#include <linux/export.h>
1da177e4
LT
37
38#include <asm/pgtable.h>
39#include <asm/tlbflush.h>
40#include <linux/swapops.h>
27a7faa0 41#include <linux/page_cgroup.h>
1da177e4 42
570a335b
HD
43static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 unsigned char);
45static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 46static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 47
38b5faf4 48DEFINE_SPINLOCK(swap_lock);
7c363b8c 49static unsigned int nr_swapfiles;
ec8acf20
SL
50atomic_long_t nr_swap_pages;
51/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 52long total_swap_pages;
78ecba08 53static int least_priority;
ec8acf20 54static atomic_t highest_priority_index = ATOMIC_INIT(-1);
1da177e4 55
1da177e4
LT
56static const char Bad_file[] = "Bad swap file entry ";
57static const char Unused_file[] = "Unused swap file entry ";
58static const char Bad_offset[] = "Bad swap offset entry ";
59static const char Unused_offset[] = "Unused swap offset entry ";
60
38b5faf4 61struct swap_list_t swap_list = {-1, -1};
1da177e4 62
38b5faf4 63struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 64
fc0abb14 65static DEFINE_MUTEX(swapon_mutex);
1da177e4 66
66d7dd51
KS
67static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
68/* Activity counter to indicate that a swapon or swapoff has occurred */
69static atomic_t proc_poll_event = ATOMIC_INIT(0);
70
8d69aaee 71static inline unsigned char swap_count(unsigned char ent)
355cfa73 72{
570a335b 73 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
355cfa73
KH
74}
75
efa90a98 76/* returns 1 if swap entry is freed */
c9e44410
KH
77static int
78__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
79{
efa90a98 80 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
81 struct page *page;
82 int ret = 0;
83
33806f06 84 page = find_get_page(swap_address_space(entry), entry.val);
c9e44410
KH
85 if (!page)
86 return 0;
87 /*
88 * This function is called from scan_swap_map() and it's called
89 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
90 * We have to use trylock for avoiding deadlock. This is a special
91 * case and you should use try_to_free_swap() with explicit lock_page()
92 * in usual operations.
93 */
94 if (trylock_page(page)) {
95 ret = try_to_free_swap(page);
96 unlock_page(page);
97 }
98 page_cache_release(page);
99 return ret;
100}
355cfa73 101
6a6ba831
HD
102/*
103 * swapon tell device that all the old swap contents can be discarded,
104 * to allow the swap device to optimize its wear-levelling.
105 */
106static int discard_swap(struct swap_info_struct *si)
107{
108 struct swap_extent *se;
9625a5f2
HD
109 sector_t start_block;
110 sector_t nr_blocks;
6a6ba831
HD
111 int err = 0;
112
9625a5f2
HD
113 /* Do not discard the swap header page! */
114 se = &si->first_swap_extent;
115 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
116 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
117 if (nr_blocks) {
118 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 119 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
120 if (err)
121 return err;
122 cond_resched();
123 }
6a6ba831 124
9625a5f2
HD
125 list_for_each_entry(se, &si->first_swap_extent.list, list) {
126 start_block = se->start_block << (PAGE_SHIFT - 9);
127 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
128
129 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 130 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
131 if (err)
132 break;
133
134 cond_resched();
135 }
136 return err; /* That will often be -EOPNOTSUPP */
137}
138
7992fde7
HD
139/*
140 * swap allocation tell device that a cluster of swap can now be discarded,
141 * to allow the swap device to optimize its wear-levelling.
142 */
143static void discard_swap_cluster(struct swap_info_struct *si,
144 pgoff_t start_page, pgoff_t nr_pages)
145{
146 struct swap_extent *se = si->curr_swap_extent;
147 int found_extent = 0;
148
149 while (nr_pages) {
150 struct list_head *lh;
151
152 if (se->start_page <= start_page &&
153 start_page < se->start_page + se->nr_pages) {
154 pgoff_t offset = start_page - se->start_page;
155 sector_t start_block = se->start_block + offset;
858a2990 156 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
157
158 if (nr_blocks > nr_pages)
159 nr_blocks = nr_pages;
160 start_page += nr_blocks;
161 nr_pages -= nr_blocks;
162
163 if (!found_extent++)
164 si->curr_swap_extent = se;
165
166 start_block <<= PAGE_SHIFT - 9;
167 nr_blocks <<= PAGE_SHIFT - 9;
168 if (blkdev_issue_discard(si->bdev, start_block,
dd3932ed 169 nr_blocks, GFP_NOIO, 0))
7992fde7
HD
170 break;
171 }
172
173 lh = se->list.next;
7992fde7
HD
174 se = list_entry(lh, struct swap_extent, list);
175 }
176}
177
178static int wait_for_discard(void *word)
179{
180 schedule();
181 return 0;
182}
183
048c27fd
HD
184#define SWAPFILE_CLUSTER 256
185#define LATENCY_LIMIT 256
186
2a8f9449
SL
187static inline void cluster_set_flag(struct swap_cluster_info *info,
188 unsigned int flag)
189{
190 info->flags = flag;
191}
192
193static inline unsigned int cluster_count(struct swap_cluster_info *info)
194{
195 return info->data;
196}
197
198static inline void cluster_set_count(struct swap_cluster_info *info,
199 unsigned int c)
200{
201 info->data = c;
202}
203
204static inline void cluster_set_count_flag(struct swap_cluster_info *info,
205 unsigned int c, unsigned int f)
206{
207 info->flags = f;
208 info->data = c;
209}
210
211static inline unsigned int cluster_next(struct swap_cluster_info *info)
212{
213 return info->data;
214}
215
216static inline void cluster_set_next(struct swap_cluster_info *info,
217 unsigned int n)
218{
219 info->data = n;
220}
221
222static inline void cluster_set_next_flag(struct swap_cluster_info *info,
223 unsigned int n, unsigned int f)
224{
225 info->flags = f;
226 info->data = n;
227}
228
229static inline bool cluster_is_free(struct swap_cluster_info *info)
230{
231 return info->flags & CLUSTER_FLAG_FREE;
232}
233
234static inline bool cluster_is_null(struct swap_cluster_info *info)
235{
236 return info->flags & CLUSTER_FLAG_NEXT_NULL;
237}
238
239static inline void cluster_set_null(struct swap_cluster_info *info)
240{
241 info->flags = CLUSTER_FLAG_NEXT_NULL;
242 info->data = 0;
243}
244
245/*
246 * The cluster corresponding to page_nr will be used. The cluster will be
247 * removed from free cluster list and its usage counter will be increased.
248 */
249static void inc_cluster_info_page(struct swap_info_struct *p,
250 struct swap_cluster_info *cluster_info, unsigned long page_nr)
251{
252 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
253
254 if (!cluster_info)
255 return;
256 if (cluster_is_free(&cluster_info[idx])) {
257 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
258 cluster_set_next_flag(&p->free_cluster_head,
259 cluster_next(&cluster_info[idx]), 0);
260 if (cluster_next(&p->free_cluster_tail) == idx) {
261 cluster_set_null(&p->free_cluster_tail);
262 cluster_set_null(&p->free_cluster_head);
263 }
264 cluster_set_count_flag(&cluster_info[idx], 0, 0);
265 }
266
267 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
268 cluster_set_count(&cluster_info[idx],
269 cluster_count(&cluster_info[idx]) + 1);
270}
271
272/*
273 * The cluster corresponding to page_nr decreases one usage. If the usage
274 * counter becomes 0, which means no page in the cluster is in using, we can
275 * optionally discard the cluster and add it to free cluster list.
276 */
277static void dec_cluster_info_page(struct swap_info_struct *p,
278 struct swap_cluster_info *cluster_info, unsigned long page_nr)
279{
280 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
281
282 if (!cluster_info)
283 return;
284
285 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
286 cluster_set_count(&cluster_info[idx],
287 cluster_count(&cluster_info[idx]) - 1);
288
289 if (cluster_count(&cluster_info[idx]) == 0) {
290 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
291 if (cluster_is_null(&p->free_cluster_head)) {
292 cluster_set_next_flag(&p->free_cluster_head, idx, 0);
293 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
294 } else {
295 unsigned int tail = cluster_next(&p->free_cluster_tail);
296 cluster_set_next(&cluster_info[tail], idx);
297 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
298 }
299 }
300}
301
302/*
303 * It's possible scan_swap_map() uses a free cluster in the middle of free
304 * cluster list. Avoiding such abuse to avoid list corruption.
305 */
306static inline bool scan_swap_map_recheck_cluster(struct swap_info_struct *si,
307 unsigned long offset)
308{
309 offset /= SWAPFILE_CLUSTER;
310 return !cluster_is_null(&si->free_cluster_head) &&
311 offset != cluster_next(&si->free_cluster_head) &&
312 cluster_is_free(&si->cluster_info[offset]);
313}
314
24b8ff7c
CEB
315static unsigned long scan_swap_map(struct swap_info_struct *si,
316 unsigned char usage)
1da177e4 317{
ebebbbe9 318 unsigned long offset;
c60aa176 319 unsigned long scan_base;
7992fde7 320 unsigned long last_in_cluster = 0;
048c27fd 321 int latency_ration = LATENCY_LIMIT;
7992fde7 322 int found_free_cluster = 0;
7dfad418 323
886bb7e9 324 /*
7dfad418
HD
325 * We try to cluster swap pages by allocating them sequentially
326 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
327 * way, however, we resort to first-free allocation, starting
328 * a new cluster. This prevents us from scattering swap pages
329 * all over the entire swap partition, so that we reduce
330 * overall disk seek times between swap pages. -- sct
331 * But we do now try to find an empty cluster. -Andrea
c60aa176 332 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
333 */
334
52b7efdb 335 si->flags += SWP_SCANNING;
c60aa176 336 scan_base = offset = si->cluster_next;
ebebbbe9
HD
337
338 if (unlikely(!si->cluster_nr--)) {
339 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
340 si->cluster_nr = SWAPFILE_CLUSTER - 1;
341 goto checks;
342 }
dcf6b7dd 343 if (si->flags & SWP_PAGE_DISCARD) {
7992fde7
HD
344 /*
345 * Start range check on racing allocations, in case
346 * they overlap the cluster we eventually decide on
347 * (we scan without swap_lock to allow preemption).
348 * It's hardly conceivable that cluster_nr could be
349 * wrapped during our scan, but don't depend on it.
350 */
351 if (si->lowest_alloc)
352 goto checks;
353 si->lowest_alloc = si->max;
354 si->highest_alloc = 0;
355 }
2a8f9449
SL
356check_cluster:
357 if (!cluster_is_null(&si->free_cluster_head)) {
358 offset = cluster_next(&si->free_cluster_head) *
359 SWAPFILE_CLUSTER;
360 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
361 si->cluster_next = offset;
362 si->cluster_nr = SWAPFILE_CLUSTER - 1;
363 found_free_cluster = 1;
364 goto checks;
365 } else if (si->cluster_info) {
366 /*
367 * Checking free cluster is fast enough, we can do the
368 * check every time
369 */
370 si->cluster_nr = 0;
371 si->lowest_alloc = 0;
372 goto checks;
373 }
374
ec8acf20 375 spin_unlock(&si->lock);
7dfad418 376
c60aa176
HD
377 /*
378 * If seek is expensive, start searching for new cluster from
379 * start of partition, to minimize the span of allocated swap.
380 * But if seek is cheap, search from our current position, so
381 * that swap is allocated from all over the partition: if the
382 * Flash Translation Layer only remaps within limited zones,
383 * we don't want to wear out the first zone too quickly.
384 */
385 if (!(si->flags & SWP_SOLIDSTATE))
386 scan_base = offset = si->lowest_bit;
7dfad418
HD
387 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
388
389 /* Locate the first empty (unaligned) cluster */
390 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 391 if (si->swap_map[offset])
7dfad418
HD
392 last_in_cluster = offset + SWAPFILE_CLUSTER;
393 else if (offset == last_in_cluster) {
ec8acf20 394 spin_lock(&si->lock);
ebebbbe9
HD
395 offset -= SWAPFILE_CLUSTER - 1;
396 si->cluster_next = offset;
397 si->cluster_nr = SWAPFILE_CLUSTER - 1;
7992fde7 398 found_free_cluster = 1;
ebebbbe9 399 goto checks;
1da177e4 400 }
048c27fd
HD
401 if (unlikely(--latency_ration < 0)) {
402 cond_resched();
403 latency_ration = LATENCY_LIMIT;
404 }
7dfad418 405 }
ebebbbe9
HD
406
407 offset = si->lowest_bit;
c60aa176
HD
408 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
409
410 /* Locate the first empty (unaligned) cluster */
411 for (; last_in_cluster < scan_base; offset++) {
412 if (si->swap_map[offset])
413 last_in_cluster = offset + SWAPFILE_CLUSTER;
414 else if (offset == last_in_cluster) {
ec8acf20 415 spin_lock(&si->lock);
c60aa176
HD
416 offset -= SWAPFILE_CLUSTER - 1;
417 si->cluster_next = offset;
418 si->cluster_nr = SWAPFILE_CLUSTER - 1;
419 found_free_cluster = 1;
420 goto checks;
421 }
422 if (unlikely(--latency_ration < 0)) {
423 cond_resched();
424 latency_ration = LATENCY_LIMIT;
425 }
426 }
427
428 offset = scan_base;
ec8acf20 429 spin_lock(&si->lock);
ebebbbe9 430 si->cluster_nr = SWAPFILE_CLUSTER - 1;
7992fde7 431 si->lowest_alloc = 0;
1da177e4 432 }
7dfad418 433
ebebbbe9 434checks:
2a8f9449
SL
435 if (scan_swap_map_recheck_cluster(si, offset))
436 goto check_cluster;
ebebbbe9 437 if (!(si->flags & SWP_WRITEOK))
52b7efdb 438 goto no_page;
7dfad418
HD
439 if (!si->highest_bit)
440 goto no_page;
ebebbbe9 441 if (offset > si->highest_bit)
c60aa176 442 scan_base = offset = si->lowest_bit;
c9e44410 443
b73d7fce
HD
444 /* reuse swap entry of cache-only swap if not busy. */
445 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 446 int swap_was_freed;
ec8acf20 447 spin_unlock(&si->lock);
c9e44410 448 swap_was_freed = __try_to_reclaim_swap(si, offset);
ec8acf20 449 spin_lock(&si->lock);
c9e44410
KH
450 /* entry was freed successfully, try to use this again */
451 if (swap_was_freed)
452 goto checks;
453 goto scan; /* check next one */
454 }
455
ebebbbe9
HD
456 if (si->swap_map[offset])
457 goto scan;
458
459 if (offset == si->lowest_bit)
460 si->lowest_bit++;
461 if (offset == si->highest_bit)
462 si->highest_bit--;
463 si->inuse_pages++;
464 if (si->inuse_pages == si->pages) {
465 si->lowest_bit = si->max;
466 si->highest_bit = 0;
1da177e4 467 }
253d553b 468 si->swap_map[offset] = usage;
2a8f9449 469 inc_cluster_info_page(si, si->cluster_info, offset);
ebebbbe9
HD
470 si->cluster_next = offset + 1;
471 si->flags -= SWP_SCANNING;
7992fde7
HD
472
473 if (si->lowest_alloc) {
474 /*
dcf6b7dd 475 * Only set when SWP_PAGE_DISCARD, and there's a scan
7992fde7
HD
476 * for a free cluster in progress or just completed.
477 */
478 if (found_free_cluster) {
479 /*
480 * To optimize wear-levelling, discard the
481 * old data of the cluster, taking care not to
482 * discard any of its pages that have already
483 * been allocated by racing tasks (offset has
484 * already stepped over any at the beginning).
485 */
486 if (offset < si->highest_alloc &&
487 si->lowest_alloc <= last_in_cluster)
488 last_in_cluster = si->lowest_alloc - 1;
489 si->flags |= SWP_DISCARDING;
ec8acf20 490 spin_unlock(&si->lock);
7992fde7
HD
491
492 if (offset < last_in_cluster)
493 discard_swap_cluster(si, offset,
494 last_in_cluster - offset + 1);
495
ec8acf20 496 spin_lock(&si->lock);
7992fde7
HD
497 si->lowest_alloc = 0;
498 si->flags &= ~SWP_DISCARDING;
499
500 smp_mb(); /* wake_up_bit advises this */
501 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
502
503 } else if (si->flags & SWP_DISCARDING) {
504 /*
505 * Delay using pages allocated by racing tasks
506 * until the whole discard has been issued. We
507 * could defer that delay until swap_writepage,
508 * but it's easier to keep this self-contained.
509 */
ec8acf20 510 spin_unlock(&si->lock);
7992fde7
HD
511 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
512 wait_for_discard, TASK_UNINTERRUPTIBLE);
ec8acf20 513 spin_lock(&si->lock);
7992fde7
HD
514 } else {
515 /*
516 * Note pages allocated by racing tasks while
517 * scan for a free cluster is in progress, so
518 * that its final discard can exclude them.
519 */
520 if (offset < si->lowest_alloc)
521 si->lowest_alloc = offset;
522 if (offset > si->highest_alloc)
523 si->highest_alloc = offset;
524 }
525 }
ebebbbe9 526 return offset;
7dfad418 527
ebebbbe9 528scan:
ec8acf20 529 spin_unlock(&si->lock);
7dfad418 530 while (++offset <= si->highest_bit) {
52b7efdb 531 if (!si->swap_map[offset]) {
ec8acf20 532 spin_lock(&si->lock);
52b7efdb
HD
533 goto checks;
534 }
c9e44410 535 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 536 spin_lock(&si->lock);
c9e44410
KH
537 goto checks;
538 }
048c27fd
HD
539 if (unlikely(--latency_ration < 0)) {
540 cond_resched();
541 latency_ration = LATENCY_LIMIT;
542 }
7dfad418 543 }
c60aa176
HD
544 offset = si->lowest_bit;
545 while (++offset < scan_base) {
546 if (!si->swap_map[offset]) {
ec8acf20 547 spin_lock(&si->lock);
c60aa176
HD
548 goto checks;
549 }
c9e44410 550 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 551 spin_lock(&si->lock);
c9e44410
KH
552 goto checks;
553 }
c60aa176
HD
554 if (unlikely(--latency_ration < 0)) {
555 cond_resched();
556 latency_ration = LATENCY_LIMIT;
557 }
558 }
ec8acf20 559 spin_lock(&si->lock);
7dfad418
HD
560
561no_page:
52b7efdb 562 si->flags -= SWP_SCANNING;
1da177e4
LT
563 return 0;
564}
565
566swp_entry_t get_swap_page(void)
567{
fb4f88dc
HD
568 struct swap_info_struct *si;
569 pgoff_t offset;
570 int type, next;
571 int wrapped = 0;
ec8acf20 572 int hp_index;
1da177e4 573
5d337b91 574 spin_lock(&swap_lock);
ec8acf20 575 if (atomic_long_read(&nr_swap_pages) <= 0)
fb4f88dc 576 goto noswap;
ec8acf20 577 atomic_long_dec(&nr_swap_pages);
fb4f88dc
HD
578
579 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
ec8acf20
SL
580 hp_index = atomic_xchg(&highest_priority_index, -1);
581 /*
582 * highest_priority_index records current highest priority swap
583 * type which just frees swap entries. If its priority is
584 * higher than that of swap_list.next swap type, we use it. It
585 * isn't protected by swap_lock, so it can be an invalid value
586 * if the corresponding swap type is swapoff. We double check
587 * the flags here. It's even possible the swap type is swapoff
588 * and swapon again and its priority is changed. In such rare
589 * case, low prority swap type might be used, but eventually
590 * high priority swap will be used after several rounds of
591 * swap.
592 */
593 if (hp_index != -1 && hp_index != type &&
594 swap_info[type]->prio < swap_info[hp_index]->prio &&
595 (swap_info[hp_index]->flags & SWP_WRITEOK)) {
596 type = hp_index;
597 swap_list.next = type;
598 }
599
efa90a98 600 si = swap_info[type];
fb4f88dc
HD
601 next = si->next;
602 if (next < 0 ||
efa90a98 603 (!wrapped && si->prio != swap_info[next]->prio)) {
fb4f88dc
HD
604 next = swap_list.head;
605 wrapped++;
1da177e4 606 }
fb4f88dc 607
ec8acf20
SL
608 spin_lock(&si->lock);
609 if (!si->highest_bit) {
610 spin_unlock(&si->lock);
fb4f88dc 611 continue;
ec8acf20
SL
612 }
613 if (!(si->flags & SWP_WRITEOK)) {
614 spin_unlock(&si->lock);
fb4f88dc 615 continue;
ec8acf20 616 }
fb4f88dc
HD
617
618 swap_list.next = next;
ec8acf20
SL
619
620 spin_unlock(&swap_lock);
355cfa73 621 /* This is called for allocating swap entry for cache */
253d553b 622 offset = scan_swap_map(si, SWAP_HAS_CACHE);
ec8acf20
SL
623 spin_unlock(&si->lock);
624 if (offset)
fb4f88dc 625 return swp_entry(type, offset);
ec8acf20 626 spin_lock(&swap_lock);
fb4f88dc 627 next = swap_list.next;
1da177e4 628 }
fb4f88dc 629
ec8acf20 630 atomic_long_inc(&nr_swap_pages);
fb4f88dc 631noswap:
5d337b91 632 spin_unlock(&swap_lock);
fb4f88dc 633 return (swp_entry_t) {0};
1da177e4
LT
634}
635
910321ea
HD
636/* The only caller of this function is now susupend routine */
637swp_entry_t get_swap_page_of_type(int type)
638{
639 struct swap_info_struct *si;
640 pgoff_t offset;
641
910321ea 642 si = swap_info[type];
ec8acf20 643 spin_lock(&si->lock);
910321ea 644 if (si && (si->flags & SWP_WRITEOK)) {
ec8acf20 645 atomic_long_dec(&nr_swap_pages);
910321ea
HD
646 /* This is called for allocating swap entry, not cache */
647 offset = scan_swap_map(si, 1);
648 if (offset) {
ec8acf20 649 spin_unlock(&si->lock);
910321ea
HD
650 return swp_entry(type, offset);
651 }
ec8acf20 652 atomic_long_inc(&nr_swap_pages);
910321ea 653 }
ec8acf20 654 spin_unlock(&si->lock);
910321ea
HD
655 return (swp_entry_t) {0};
656}
657
73c34b6a 658static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1da177e4 659{
73c34b6a 660 struct swap_info_struct *p;
1da177e4
LT
661 unsigned long offset, type;
662
663 if (!entry.val)
664 goto out;
665 type = swp_type(entry);
666 if (type >= nr_swapfiles)
667 goto bad_nofile;
efa90a98 668 p = swap_info[type];
1da177e4
LT
669 if (!(p->flags & SWP_USED))
670 goto bad_device;
671 offset = swp_offset(entry);
672 if (offset >= p->max)
673 goto bad_offset;
674 if (!p->swap_map[offset])
675 goto bad_free;
ec8acf20 676 spin_lock(&p->lock);
1da177e4
LT
677 return p;
678
679bad_free:
465c47fd 680 pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
1da177e4
LT
681 goto out;
682bad_offset:
465c47fd 683 pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
684 goto out;
685bad_device:
465c47fd 686 pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
687 goto out;
688bad_nofile:
465c47fd 689 pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
690out:
691 return NULL;
886bb7e9 692}
1da177e4 693
ec8acf20
SL
694/*
695 * This swap type frees swap entry, check if it is the highest priority swap
696 * type which just frees swap entry. get_swap_page() uses
697 * highest_priority_index to search highest priority swap type. The
698 * swap_info_struct.lock can't protect us if there are multiple swap types
699 * active, so we use atomic_cmpxchg.
700 */
701static void set_highest_priority_index(int type)
702{
703 int old_hp_index, new_hp_index;
704
705 do {
706 old_hp_index = atomic_read(&highest_priority_index);
707 if (old_hp_index != -1 &&
708 swap_info[old_hp_index]->prio >= swap_info[type]->prio)
709 break;
710 new_hp_index = type;
711 } while (atomic_cmpxchg(&highest_priority_index,
712 old_hp_index, new_hp_index) != old_hp_index);
713}
714
8d69aaee
HD
715static unsigned char swap_entry_free(struct swap_info_struct *p,
716 swp_entry_t entry, unsigned char usage)
1da177e4 717{
253d553b 718 unsigned long offset = swp_offset(entry);
8d69aaee
HD
719 unsigned char count;
720 unsigned char has_cache;
355cfa73 721
253d553b
HD
722 count = p->swap_map[offset];
723 has_cache = count & SWAP_HAS_CACHE;
724 count &= ~SWAP_HAS_CACHE;
355cfa73 725
253d553b 726 if (usage == SWAP_HAS_CACHE) {
355cfa73 727 VM_BUG_ON(!has_cache);
253d553b 728 has_cache = 0;
aaa46865
HD
729 } else if (count == SWAP_MAP_SHMEM) {
730 /*
731 * Or we could insist on shmem.c using a special
732 * swap_shmem_free() and free_shmem_swap_and_cache()...
733 */
734 count = 0;
570a335b
HD
735 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
736 if (count == COUNT_CONTINUED) {
737 if (swap_count_continued(p, offset, count))
738 count = SWAP_MAP_MAX | COUNT_CONTINUED;
739 else
740 count = SWAP_MAP_MAX;
741 } else
742 count--;
743 }
253d553b
HD
744
745 if (!count)
746 mem_cgroup_uncharge_swap(entry);
747
748 usage = count | has_cache;
749 p->swap_map[offset] = usage;
355cfa73 750
355cfa73 751 /* free if no reference */
253d553b 752 if (!usage) {
2a8f9449 753 dec_cluster_info_page(p, p->cluster_info, offset);
355cfa73
KH
754 if (offset < p->lowest_bit)
755 p->lowest_bit = offset;
756 if (offset > p->highest_bit)
757 p->highest_bit = offset;
ec8acf20
SL
758 set_highest_priority_index(p->type);
759 atomic_long_inc(&nr_swap_pages);
355cfa73 760 p->inuse_pages--;
38b5faf4 761 frontswap_invalidate_page(p->type, offset);
73744923
MG
762 if (p->flags & SWP_BLKDEV) {
763 struct gendisk *disk = p->bdev->bd_disk;
764 if (disk->fops->swap_slot_free_notify)
765 disk->fops->swap_slot_free_notify(p->bdev,
766 offset);
767 }
1da177e4 768 }
253d553b
HD
769
770 return usage;
1da177e4
LT
771}
772
773/*
774 * Caller has made sure that the swapdevice corresponding to entry
775 * is still around or has not been recycled.
776 */
777void swap_free(swp_entry_t entry)
778{
73c34b6a 779 struct swap_info_struct *p;
1da177e4
LT
780
781 p = swap_info_get(entry);
782 if (p) {
253d553b 783 swap_entry_free(p, entry, 1);
ec8acf20 784 spin_unlock(&p->lock);
1da177e4
LT
785 }
786}
787
cb4b86ba
KH
788/*
789 * Called after dropping swapcache to decrease refcnt to swap entries.
790 */
791void swapcache_free(swp_entry_t entry, struct page *page)
792{
355cfa73 793 struct swap_info_struct *p;
8d69aaee 794 unsigned char count;
355cfa73 795
355cfa73
KH
796 p = swap_info_get(entry);
797 if (p) {
253d553b
HD
798 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
799 if (page)
800 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
ec8acf20 801 spin_unlock(&p->lock);
355cfa73 802 }
cb4b86ba
KH
803}
804
1da177e4 805/*
c475a8ab 806 * How many references to page are currently swapped out?
570a335b
HD
807 * This does not give an exact answer when swap count is continued,
808 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 809 */
bde05d1c 810int page_swapcount(struct page *page)
1da177e4 811{
c475a8ab
HD
812 int count = 0;
813 struct swap_info_struct *p;
1da177e4
LT
814 swp_entry_t entry;
815
4c21e2f2 816 entry.val = page_private(page);
1da177e4
LT
817 p = swap_info_get(entry);
818 if (p) {
355cfa73 819 count = swap_count(p->swap_map[swp_offset(entry)]);
ec8acf20 820 spin_unlock(&p->lock);
1da177e4 821 }
c475a8ab 822 return count;
1da177e4
LT
823}
824
825/*
7b1fe597
HD
826 * We can write to an anon page without COW if there are no other references
827 * to it. And as a side-effect, free up its swap: because the old content
828 * on disk will never be read, and seeking back there to write new content
829 * later would only waste time away from clustering.
1da177e4 830 */
7b1fe597 831int reuse_swap_page(struct page *page)
1da177e4 832{
c475a8ab
HD
833 int count;
834
51726b12 835 VM_BUG_ON(!PageLocked(page));
5ad64688
HD
836 if (unlikely(PageKsm(page)))
837 return 0;
c475a8ab 838 count = page_mapcount(page);
7b1fe597 839 if (count <= 1 && PageSwapCache(page)) {
c475a8ab 840 count += page_swapcount(page);
7b1fe597
HD
841 if (count == 1 && !PageWriteback(page)) {
842 delete_from_swap_cache(page);
843 SetPageDirty(page);
844 }
845 }
5ad64688 846 return count <= 1;
1da177e4
LT
847}
848
849/*
a2c43eed
HD
850 * If swap is getting full, or if there are no more mappings of this page,
851 * then try_to_free_swap is called to free its swap space.
1da177e4 852 */
a2c43eed 853int try_to_free_swap(struct page *page)
1da177e4 854{
51726b12 855 VM_BUG_ON(!PageLocked(page));
1da177e4
LT
856
857 if (!PageSwapCache(page))
858 return 0;
859 if (PageWriteback(page))
860 return 0;
a2c43eed 861 if (page_swapcount(page))
1da177e4
LT
862 return 0;
863
b73d7fce
HD
864 /*
865 * Once hibernation has begun to create its image of memory,
866 * there's a danger that one of the calls to try_to_free_swap()
867 * - most probably a call from __try_to_reclaim_swap() while
868 * hibernation is allocating its own swap pages for the image,
869 * but conceivably even a call from memory reclaim - will free
870 * the swap from a page which has already been recorded in the
871 * image as a clean swapcache page, and then reuse its swap for
872 * another page of the image. On waking from hibernation, the
873 * original page might be freed under memory pressure, then
874 * later read back in from swap, now with the wrong data.
875 *
f90ac398
MG
876 * Hibration suspends storage while it is writing the image
877 * to disk so check that here.
b73d7fce 878 */
f90ac398 879 if (pm_suspended_storage())
b73d7fce
HD
880 return 0;
881
a2c43eed
HD
882 delete_from_swap_cache(page);
883 SetPageDirty(page);
884 return 1;
68a22394
RR
885}
886
1da177e4
LT
887/*
888 * Free the swap entry like above, but also try to
889 * free the page cache entry if it is the last user.
890 */
2509ef26 891int free_swap_and_cache(swp_entry_t entry)
1da177e4 892{
2509ef26 893 struct swap_info_struct *p;
1da177e4
LT
894 struct page *page = NULL;
895
a7420aa5 896 if (non_swap_entry(entry))
2509ef26 897 return 1;
0697212a 898
1da177e4
LT
899 p = swap_info_get(entry);
900 if (p) {
253d553b 901 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
33806f06
SL
902 page = find_get_page(swap_address_space(entry),
903 entry.val);
8413ac9d 904 if (page && !trylock_page(page)) {
93fac704
NP
905 page_cache_release(page);
906 page = NULL;
907 }
908 }
ec8acf20 909 spin_unlock(&p->lock);
1da177e4
LT
910 }
911 if (page) {
a2c43eed
HD
912 /*
913 * Not mapped elsewhere, or swap space full? Free it!
914 * Also recheck PageSwapCache now page is locked (above).
915 */
93fac704 916 if (PageSwapCache(page) && !PageWriteback(page) &&
a2c43eed 917 (!page_mapped(page) || vm_swap_full())) {
1da177e4
LT
918 delete_from_swap_cache(page);
919 SetPageDirty(page);
920 }
921 unlock_page(page);
922 page_cache_release(page);
923 }
2509ef26 924 return p != NULL;
1da177e4
LT
925}
926
b0cb1a19 927#ifdef CONFIG_HIBERNATION
f577eb30 928/*
915bae9e 929 * Find the swap type that corresponds to given device (if any).
f577eb30 930 *
915bae9e
RW
931 * @offset - number of the PAGE_SIZE-sized block of the device, starting
932 * from 0, in which the swap header is expected to be located.
933 *
934 * This is needed for the suspend to disk (aka swsusp).
f577eb30 935 */
7bf23687 936int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 937{
915bae9e 938 struct block_device *bdev = NULL;
efa90a98 939 int type;
f577eb30 940
915bae9e
RW
941 if (device)
942 bdev = bdget(device);
943
f577eb30 944 spin_lock(&swap_lock);
efa90a98
HD
945 for (type = 0; type < nr_swapfiles; type++) {
946 struct swap_info_struct *sis = swap_info[type];
f577eb30 947
915bae9e 948 if (!(sis->flags & SWP_WRITEOK))
f577eb30 949 continue;
b6b5bce3 950
915bae9e 951 if (!bdev) {
7bf23687 952 if (bdev_p)
dddac6a7 953 *bdev_p = bdgrab(sis->bdev);
7bf23687 954
6e1819d6 955 spin_unlock(&swap_lock);
efa90a98 956 return type;
6e1819d6 957 }
915bae9e 958 if (bdev == sis->bdev) {
9625a5f2 959 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 960
915bae9e 961 if (se->start_block == offset) {
7bf23687 962 if (bdev_p)
dddac6a7 963 *bdev_p = bdgrab(sis->bdev);
7bf23687 964
915bae9e
RW
965 spin_unlock(&swap_lock);
966 bdput(bdev);
efa90a98 967 return type;
915bae9e 968 }
f577eb30
RW
969 }
970 }
971 spin_unlock(&swap_lock);
915bae9e
RW
972 if (bdev)
973 bdput(bdev);
974
f577eb30
RW
975 return -ENODEV;
976}
977
73c34b6a
HD
978/*
979 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
980 * corresponding to given index in swap_info (swap type).
981 */
982sector_t swapdev_block(int type, pgoff_t offset)
983{
984 struct block_device *bdev;
985
986 if ((unsigned int)type >= nr_swapfiles)
987 return 0;
988 if (!(swap_info[type]->flags & SWP_WRITEOK))
989 return 0;
d4906e1a 990 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
991}
992
f577eb30
RW
993/*
994 * Return either the total number of swap pages of given type, or the number
995 * of free pages of that type (depending on @free)
996 *
997 * This is needed for software suspend
998 */
999unsigned int count_swap_pages(int type, int free)
1000{
1001 unsigned int n = 0;
1002
efa90a98
HD
1003 spin_lock(&swap_lock);
1004 if ((unsigned int)type < nr_swapfiles) {
1005 struct swap_info_struct *sis = swap_info[type];
1006
ec8acf20 1007 spin_lock(&sis->lock);
efa90a98
HD
1008 if (sis->flags & SWP_WRITEOK) {
1009 n = sis->pages;
f577eb30 1010 if (free)
efa90a98 1011 n -= sis->inuse_pages;
f577eb30 1012 }
ec8acf20 1013 spin_unlock(&sis->lock);
f577eb30 1014 }
efa90a98 1015 spin_unlock(&swap_lock);
f577eb30
RW
1016 return n;
1017}
73c34b6a 1018#endif /* CONFIG_HIBERNATION */
f577eb30 1019
179ef71c
CG
1020static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
1021{
1022#ifdef CONFIG_MEM_SOFT_DIRTY
1023 /*
1024 * When pte keeps soft dirty bit the pte generated
1025 * from swap entry does not has it, still it's same
1026 * pte from logical point of view.
1027 */
1028 pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
1029 return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
1030#else
1031 return pte_same(pte, swp_pte);
1032#endif
1033}
1034
1da177e4 1035/*
72866f6f
HD
1036 * No need to decide whether this PTE shares the swap entry with others,
1037 * just let do_wp_page work it out if a write is requested later - to
1038 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1039 */
044d66c1 1040static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1041 unsigned long addr, swp_entry_t entry, struct page *page)
1042{
9e16b7fb 1043 struct page *swapcache;
72835c86 1044 struct mem_cgroup *memcg;
044d66c1
HD
1045 spinlock_t *ptl;
1046 pte_t *pte;
1047 int ret = 1;
1048
9e16b7fb
HD
1049 swapcache = page;
1050 page = ksm_might_need_to_copy(page, vma, addr);
1051 if (unlikely(!page))
1052 return -ENOMEM;
1053
72835c86
JW
1054 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
1055 GFP_KERNEL, &memcg)) {
044d66c1 1056 ret = -ENOMEM;
85d9fc89
KH
1057 goto out_nolock;
1058 }
044d66c1
HD
1059
1060 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
179ef71c 1061 if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
5d84c776 1062 mem_cgroup_cancel_charge_swapin(memcg);
044d66c1
HD
1063 ret = 0;
1064 goto out;
1065 }
8a9f3ccd 1066
b084d435 1067 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1068 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1069 get_page(page);
1070 set_pte_at(vma->vm_mm, addr, pte,
1071 pte_mkold(mk_pte(page, vma->vm_page_prot)));
9e16b7fb
HD
1072 if (page == swapcache)
1073 page_add_anon_rmap(page, vma, addr);
1074 else /* ksm created a completely new copy */
1075 page_add_new_anon_rmap(page, vma, addr);
72835c86 1076 mem_cgroup_commit_charge_swapin(page, memcg);
1da177e4
LT
1077 swap_free(entry);
1078 /*
1079 * Move the page to the active list so it is not
1080 * immediately swapped out again after swapon.
1081 */
1082 activate_page(page);
044d66c1
HD
1083out:
1084 pte_unmap_unlock(pte, ptl);
85d9fc89 1085out_nolock:
9e16b7fb
HD
1086 if (page != swapcache) {
1087 unlock_page(page);
1088 put_page(page);
1089 }
044d66c1 1090 return ret;
1da177e4
LT
1091}
1092
1093static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1094 unsigned long addr, unsigned long end,
1095 swp_entry_t entry, struct page *page)
1096{
1da177e4 1097 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 1098 pte_t *pte;
8a9f3ccd 1099 int ret = 0;
1da177e4 1100
044d66c1
HD
1101 /*
1102 * We don't actually need pte lock while scanning for swp_pte: since
1103 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1104 * page table while we're scanning; though it could get zapped, and on
1105 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1106 * of unmatched parts which look like swp_pte, so unuse_pte must
1107 * recheck under pte lock. Scanning without pte lock lets it be
1108 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1109 */
1110 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1111 do {
1112 /*
1113 * swapoff spends a _lot_ of time in this loop!
1114 * Test inline before going to call unuse_pte.
1115 */
179ef71c 1116 if (unlikely(maybe_same_pte(*pte, swp_pte))) {
044d66c1
HD
1117 pte_unmap(pte);
1118 ret = unuse_pte(vma, pmd, addr, entry, page);
1119 if (ret)
1120 goto out;
1121 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1122 }
1123 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
1124 pte_unmap(pte - 1);
1125out:
8a9f3ccd 1126 return ret;
1da177e4
LT
1127}
1128
1129static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1130 unsigned long addr, unsigned long end,
1131 swp_entry_t entry, struct page *page)
1132{
1133 pmd_t *pmd;
1134 unsigned long next;
8a9f3ccd 1135 int ret;
1da177e4
LT
1136
1137 pmd = pmd_offset(pud, addr);
1138 do {
1139 next = pmd_addr_end(addr, end);
1a5a9906 1140 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 1141 continue;
8a9f3ccd
BS
1142 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1143 if (ret)
1144 return ret;
1da177e4
LT
1145 } while (pmd++, addr = next, addr != end);
1146 return 0;
1147}
1148
1149static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1150 unsigned long addr, unsigned long end,
1151 swp_entry_t entry, struct page *page)
1152{
1153 pud_t *pud;
1154 unsigned long next;
8a9f3ccd 1155 int ret;
1da177e4
LT
1156
1157 pud = pud_offset(pgd, addr);
1158 do {
1159 next = pud_addr_end(addr, end);
1160 if (pud_none_or_clear_bad(pud))
1161 continue;
8a9f3ccd
BS
1162 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1163 if (ret)
1164 return ret;
1da177e4
LT
1165 } while (pud++, addr = next, addr != end);
1166 return 0;
1167}
1168
1169static int unuse_vma(struct vm_area_struct *vma,
1170 swp_entry_t entry, struct page *page)
1171{
1172 pgd_t *pgd;
1173 unsigned long addr, end, next;
8a9f3ccd 1174 int ret;
1da177e4 1175
3ca7b3c5 1176 if (page_anon_vma(page)) {
1da177e4
LT
1177 addr = page_address_in_vma(page, vma);
1178 if (addr == -EFAULT)
1179 return 0;
1180 else
1181 end = addr + PAGE_SIZE;
1182 } else {
1183 addr = vma->vm_start;
1184 end = vma->vm_end;
1185 }
1186
1187 pgd = pgd_offset(vma->vm_mm, addr);
1188 do {
1189 next = pgd_addr_end(addr, end);
1190 if (pgd_none_or_clear_bad(pgd))
1191 continue;
8a9f3ccd
BS
1192 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1193 if (ret)
1194 return ret;
1da177e4
LT
1195 } while (pgd++, addr = next, addr != end);
1196 return 0;
1197}
1198
1199static int unuse_mm(struct mm_struct *mm,
1200 swp_entry_t entry, struct page *page)
1201{
1202 struct vm_area_struct *vma;
8a9f3ccd 1203 int ret = 0;
1da177e4
LT
1204
1205 if (!down_read_trylock(&mm->mmap_sem)) {
1206 /*
7d03431c
FLVC
1207 * Activate page so shrink_inactive_list is unlikely to unmap
1208 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 1209 */
c475a8ab 1210 activate_page(page);
1da177e4
LT
1211 unlock_page(page);
1212 down_read(&mm->mmap_sem);
1213 lock_page(page);
1214 }
1da177e4 1215 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 1216 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4
LT
1217 break;
1218 }
1da177e4 1219 up_read(&mm->mmap_sem);
8a9f3ccd 1220 return (ret < 0)? ret: 0;
1da177e4
LT
1221}
1222
1223/*
38b5faf4
DM
1224 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1225 * from current position to next entry still in use.
1da177e4
LT
1226 * Recycle to start on reaching the end, returning 0 when empty.
1227 */
6eb396dc 1228static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 1229 unsigned int prev, bool frontswap)
1da177e4 1230{
6eb396dc
HD
1231 unsigned int max = si->max;
1232 unsigned int i = prev;
8d69aaee 1233 unsigned char count;
1da177e4
LT
1234
1235 /*
5d337b91 1236 * No need for swap_lock here: we're just looking
1da177e4
LT
1237 * for whether an entry is in use, not modifying it; false
1238 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 1239 * allocations from this area (while holding swap_lock).
1da177e4
LT
1240 */
1241 for (;;) {
1242 if (++i >= max) {
1243 if (!prev) {
1244 i = 0;
1245 break;
1246 }
1247 /*
1248 * No entries in use at top of swap_map,
1249 * loop back to start and recheck there.
1250 */
1251 max = prev + 1;
1252 prev = 0;
1253 i = 1;
1254 }
38b5faf4
DM
1255 if (frontswap) {
1256 if (frontswap_test(si, i))
1257 break;
1258 else
1259 continue;
1260 }
1da177e4 1261 count = si->swap_map[i];
355cfa73 1262 if (count && swap_count(count) != SWAP_MAP_BAD)
1da177e4
LT
1263 break;
1264 }
1265 return i;
1266}
1267
1268/*
1269 * We completely avoid races by reading each swap page in advance,
1270 * and then search for the process using it. All the necessary
1271 * page table adjustments can then be made atomically.
38b5faf4
DM
1272 *
1273 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1274 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 1275 */
38b5faf4
DM
1276int try_to_unuse(unsigned int type, bool frontswap,
1277 unsigned long pages_to_unuse)
1da177e4 1278{
efa90a98 1279 struct swap_info_struct *si = swap_info[type];
1da177e4 1280 struct mm_struct *start_mm;
8d69aaee
HD
1281 unsigned char *swap_map;
1282 unsigned char swcount;
1da177e4
LT
1283 struct page *page;
1284 swp_entry_t entry;
6eb396dc 1285 unsigned int i = 0;
1da177e4 1286 int retval = 0;
1da177e4
LT
1287
1288 /*
1289 * When searching mms for an entry, a good strategy is to
1290 * start at the first mm we freed the previous entry from
1291 * (though actually we don't notice whether we or coincidence
1292 * freed the entry). Initialize this start_mm with a hold.
1293 *
1294 * A simpler strategy would be to start at the last mm we
1295 * freed the previous entry from; but that would take less
1296 * advantage of mmlist ordering, which clusters forked mms
1297 * together, child after parent. If we race with dup_mmap(), we
1298 * prefer to resolve parent before child, lest we miss entries
1299 * duplicated after we scanned child: using last mm would invert
570a335b 1300 * that.
1da177e4
LT
1301 */
1302 start_mm = &init_mm;
1303 atomic_inc(&init_mm.mm_users);
1304
1305 /*
1306 * Keep on scanning until all entries have gone. Usually,
1307 * one pass through swap_map is enough, but not necessarily:
1308 * there are races when an instance of an entry might be missed.
1309 */
38b5faf4 1310 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4
LT
1311 if (signal_pending(current)) {
1312 retval = -EINTR;
1313 break;
1314 }
1315
886bb7e9 1316 /*
1da177e4
LT
1317 * Get a page for the entry, using the existing swap
1318 * cache page if there is one. Otherwise, get a clean
886bb7e9 1319 * page and read the swap into it.
1da177e4
LT
1320 */
1321 swap_map = &si->swap_map[i];
1322 entry = swp_entry(type, i);
02098fea
HD
1323 page = read_swap_cache_async(entry,
1324 GFP_HIGHUSER_MOVABLE, NULL, 0);
1da177e4
LT
1325 if (!page) {
1326 /*
1327 * Either swap_duplicate() failed because entry
1328 * has been freed independently, and will not be
1329 * reused since sys_swapoff() already disabled
1330 * allocation from here, or alloc_page() failed.
1331 */
1332 if (!*swap_map)
1333 continue;
1334 retval = -ENOMEM;
1335 break;
1336 }
1337
1338 /*
1339 * Don't hold on to start_mm if it looks like exiting.
1340 */
1341 if (atomic_read(&start_mm->mm_users) == 1) {
1342 mmput(start_mm);
1343 start_mm = &init_mm;
1344 atomic_inc(&init_mm.mm_users);
1345 }
1346
1347 /*
1348 * Wait for and lock page. When do_swap_page races with
1349 * try_to_unuse, do_swap_page can handle the fault much
1350 * faster than try_to_unuse can locate the entry. This
1351 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1352 * defer to do_swap_page in such a case - in some tests,
1353 * do_swap_page and try_to_unuse repeatedly compete.
1354 */
1355 wait_on_page_locked(page);
1356 wait_on_page_writeback(page);
1357 lock_page(page);
1358 wait_on_page_writeback(page);
1359
1360 /*
1361 * Remove all references to entry.
1da177e4 1362 */
1da177e4 1363 swcount = *swap_map;
aaa46865
HD
1364 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1365 retval = shmem_unuse(entry, page);
1366 /* page has already been unlocked and released */
1367 if (retval < 0)
1368 break;
1369 continue;
1da177e4 1370 }
aaa46865
HD
1371 if (swap_count(swcount) && start_mm != &init_mm)
1372 retval = unuse_mm(start_mm, entry, page);
1373
355cfa73 1374 if (swap_count(*swap_map)) {
1da177e4
LT
1375 int set_start_mm = (*swap_map >= swcount);
1376 struct list_head *p = &start_mm->mmlist;
1377 struct mm_struct *new_start_mm = start_mm;
1378 struct mm_struct *prev_mm = start_mm;
1379 struct mm_struct *mm;
1380
1381 atomic_inc(&new_start_mm->mm_users);
1382 atomic_inc(&prev_mm->mm_users);
1383 spin_lock(&mmlist_lock);
aaa46865 1384 while (swap_count(*swap_map) && !retval &&
1da177e4
LT
1385 (p = p->next) != &start_mm->mmlist) {
1386 mm = list_entry(p, struct mm_struct, mmlist);
70af7c5c 1387 if (!atomic_inc_not_zero(&mm->mm_users))
1da177e4 1388 continue;
1da177e4
LT
1389 spin_unlock(&mmlist_lock);
1390 mmput(prev_mm);
1391 prev_mm = mm;
1392
1393 cond_resched();
1394
1395 swcount = *swap_map;
355cfa73 1396 if (!swap_count(swcount)) /* any usage ? */
1da177e4 1397 ;
aaa46865 1398 else if (mm == &init_mm)
1da177e4 1399 set_start_mm = 1;
aaa46865 1400 else
1da177e4 1401 retval = unuse_mm(mm, entry, page);
355cfa73 1402
32c5fc10 1403 if (set_start_mm && *swap_map < swcount) {
1da177e4
LT
1404 mmput(new_start_mm);
1405 atomic_inc(&mm->mm_users);
1406 new_start_mm = mm;
1407 set_start_mm = 0;
1408 }
1409 spin_lock(&mmlist_lock);
1410 }
1411 spin_unlock(&mmlist_lock);
1412 mmput(prev_mm);
1413 mmput(start_mm);
1414 start_mm = new_start_mm;
1415 }
1416 if (retval) {
1417 unlock_page(page);
1418 page_cache_release(page);
1419 break;
1420 }
1421
1da177e4
LT
1422 /*
1423 * If a reference remains (rare), we would like to leave
1424 * the page in the swap cache; but try_to_unmap could
1425 * then re-duplicate the entry once we drop page lock,
1426 * so we might loop indefinitely; also, that page could
1427 * not be swapped out to other storage meanwhile. So:
1428 * delete from cache even if there's another reference,
1429 * after ensuring that the data has been saved to disk -
1430 * since if the reference remains (rarer), it will be
1431 * read from disk into another page. Splitting into two
1432 * pages would be incorrect if swap supported "shared
1433 * private" pages, but they are handled by tmpfs files.
5ad64688
HD
1434 *
1435 * Given how unuse_vma() targets one particular offset
1436 * in an anon_vma, once the anon_vma has been determined,
1437 * this splitting happens to be just what is needed to
1438 * handle where KSM pages have been swapped out: re-reading
1439 * is unnecessarily slow, but we can fix that later on.
1da177e4 1440 */
355cfa73
KH
1441 if (swap_count(*swap_map) &&
1442 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
1443 struct writeback_control wbc = {
1444 .sync_mode = WB_SYNC_NONE,
1445 };
1446
1447 swap_writepage(page, &wbc);
1448 lock_page(page);
1449 wait_on_page_writeback(page);
1450 }
68bdc8d6
HD
1451
1452 /*
1453 * It is conceivable that a racing task removed this page from
1454 * swap cache just before we acquired the page lock at the top,
1455 * or while we dropped it in unuse_mm(). The page might even
1456 * be back in swap cache on another swap area: that we must not
1457 * delete, since it may not have been written out to swap yet.
1458 */
1459 if (PageSwapCache(page) &&
1460 likely(page_private(page) == entry.val))
2e0e26c7 1461 delete_from_swap_cache(page);
1da177e4
LT
1462
1463 /*
1464 * So we could skip searching mms once swap count went
1465 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 1466 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
1467 */
1468 SetPageDirty(page);
1469 unlock_page(page);
1470 page_cache_release(page);
1471
1472 /*
1473 * Make sure that we aren't completely killing
1474 * interactive performance.
1475 */
1476 cond_resched();
38b5faf4
DM
1477 if (frontswap && pages_to_unuse > 0) {
1478 if (!--pages_to_unuse)
1479 break;
1480 }
1da177e4
LT
1481 }
1482
1483 mmput(start_mm);
1da177e4
LT
1484 return retval;
1485}
1486
1487/*
5d337b91
HD
1488 * After a successful try_to_unuse, if no swap is now in use, we know
1489 * we can empty the mmlist. swap_lock must be held on entry and exit.
1490 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
1491 * added to the mmlist just after page_duplicate - before would be racy.
1492 */
1493static void drain_mmlist(void)
1494{
1495 struct list_head *p, *next;
efa90a98 1496 unsigned int type;
1da177e4 1497
efa90a98
HD
1498 for (type = 0; type < nr_swapfiles; type++)
1499 if (swap_info[type]->inuse_pages)
1da177e4
LT
1500 return;
1501 spin_lock(&mmlist_lock);
1502 list_for_each_safe(p, next, &init_mm.mmlist)
1503 list_del_init(p);
1504 spin_unlock(&mmlist_lock);
1505}
1506
1507/*
1508 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
1509 * corresponds to page offset for the specified swap entry.
1510 * Note that the type of this function is sector_t, but it returns page offset
1511 * into the bdev, not sector offset.
1da177e4 1512 */
d4906e1a 1513static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 1514{
f29ad6a9
HD
1515 struct swap_info_struct *sis;
1516 struct swap_extent *start_se;
1517 struct swap_extent *se;
1518 pgoff_t offset;
1519
efa90a98 1520 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
1521 *bdev = sis->bdev;
1522
1523 offset = swp_offset(entry);
1524 start_se = sis->curr_swap_extent;
1525 se = start_se;
1da177e4
LT
1526
1527 for ( ; ; ) {
1528 struct list_head *lh;
1529
1530 if (se->start_page <= offset &&
1531 offset < (se->start_page + se->nr_pages)) {
1532 return se->start_block + (offset - se->start_page);
1533 }
11d31886 1534 lh = se->list.next;
1da177e4
LT
1535 se = list_entry(lh, struct swap_extent, list);
1536 sis->curr_swap_extent = se;
1537 BUG_ON(se == start_se); /* It *must* be present */
1538 }
1539}
1540
d4906e1a
LS
1541/*
1542 * Returns the page offset into bdev for the specified page's swap entry.
1543 */
1544sector_t map_swap_page(struct page *page, struct block_device **bdev)
1545{
1546 swp_entry_t entry;
1547 entry.val = page_private(page);
1548 return map_swap_entry(entry, bdev);
1549}
1550
1da177e4
LT
1551/*
1552 * Free all of a swapdev's extent information
1553 */
1554static void destroy_swap_extents(struct swap_info_struct *sis)
1555{
9625a5f2 1556 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
1557 struct swap_extent *se;
1558
9625a5f2 1559 se = list_entry(sis->first_swap_extent.list.next,
1da177e4
LT
1560 struct swap_extent, list);
1561 list_del(&se->list);
1562 kfree(se);
1563 }
62c230bc
MG
1564
1565 if (sis->flags & SWP_FILE) {
1566 struct file *swap_file = sis->swap_file;
1567 struct address_space *mapping = swap_file->f_mapping;
1568
1569 sis->flags &= ~SWP_FILE;
1570 mapping->a_ops->swap_deactivate(swap_file);
1571 }
1da177e4
LT
1572}
1573
1574/*
1575 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 1576 * extent list. The extent list is kept sorted in page order.
1da177e4 1577 *
11d31886 1578 * This function rather assumes that it is called in ascending page order.
1da177e4 1579 */
a509bc1a 1580int
1da177e4
LT
1581add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1582 unsigned long nr_pages, sector_t start_block)
1583{
1584 struct swap_extent *se;
1585 struct swap_extent *new_se;
1586 struct list_head *lh;
1587
9625a5f2
HD
1588 if (start_page == 0) {
1589 se = &sis->first_swap_extent;
1590 sis->curr_swap_extent = se;
1591 se->start_page = 0;
1592 se->nr_pages = nr_pages;
1593 se->start_block = start_block;
1594 return 1;
1595 } else {
1596 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 1597 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
1598 BUG_ON(se->start_page + se->nr_pages != start_page);
1599 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
1600 /* Merge it */
1601 se->nr_pages += nr_pages;
1602 return 0;
1603 }
1da177e4
LT
1604 }
1605
1606 /*
1607 * No merge. Insert a new extent, preserving ordering.
1608 */
1609 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1610 if (new_se == NULL)
1611 return -ENOMEM;
1612 new_se->start_page = start_page;
1613 new_se->nr_pages = nr_pages;
1614 new_se->start_block = start_block;
1615
9625a5f2 1616 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 1617 return 1;
1da177e4
LT
1618}
1619
1620/*
1621 * A `swap extent' is a simple thing which maps a contiguous range of pages
1622 * onto a contiguous range of disk blocks. An ordered list of swap extents
1623 * is built at swapon time and is then used at swap_writepage/swap_readpage
1624 * time for locating where on disk a page belongs.
1625 *
1626 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1627 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1628 * swap files identically.
1629 *
1630 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1631 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1632 * swapfiles are handled *identically* after swapon time.
1633 *
1634 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1635 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1636 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1637 * requirements, they are simply tossed out - we will never use those blocks
1638 * for swapping.
1639 *
b0d9bcd4 1640 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
1641 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1642 * which will scribble on the fs.
1643 *
1644 * The amount of disk space which a single swap extent represents varies.
1645 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1646 * extents in the list. To avoid much list walking, we cache the previous
1647 * search location in `curr_swap_extent', and start new searches from there.
1648 * This is extremely effective. The average number of iterations in
1649 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1650 */
53092a74 1651static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 1652{
62c230bc
MG
1653 struct file *swap_file = sis->swap_file;
1654 struct address_space *mapping = swap_file->f_mapping;
1655 struct inode *inode = mapping->host;
1da177e4
LT
1656 int ret;
1657
1da177e4
LT
1658 if (S_ISBLK(inode->i_mode)) {
1659 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 1660 *span = sis->pages;
a509bc1a 1661 return ret;
1da177e4
LT
1662 }
1663
62c230bc 1664 if (mapping->a_ops->swap_activate) {
a509bc1a 1665 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
62c230bc
MG
1666 if (!ret) {
1667 sis->flags |= SWP_FILE;
1668 ret = add_swap_extent(sis, 0, sis->max, 0);
1669 *span = sis->pages;
1670 }
a509bc1a 1671 return ret;
62c230bc
MG
1672 }
1673
a509bc1a 1674 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
1675}
1676
cf0cac0a 1677static void _enable_swap_info(struct swap_info_struct *p, int prio,
2a8f9449
SL
1678 unsigned char *swap_map,
1679 struct swap_cluster_info *cluster_info)
40531542
CEB
1680{
1681 int i, prev;
1682
40531542
CEB
1683 if (prio >= 0)
1684 p->prio = prio;
1685 else
1686 p->prio = --least_priority;
1687 p->swap_map = swap_map;
2a8f9449 1688 p->cluster_info = cluster_info;
40531542 1689 p->flags |= SWP_WRITEOK;
ec8acf20 1690 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
1691 total_swap_pages += p->pages;
1692
1693 /* insert swap space into swap_list: */
1694 prev = -1;
1695 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1696 if (p->prio >= swap_info[i]->prio)
1697 break;
1698 prev = i;
1699 }
1700 p->next = i;
1701 if (prev < 0)
1702 swap_list.head = swap_list.next = p->type;
1703 else
1704 swap_info[prev]->next = p->type;
cf0cac0a
CEB
1705}
1706
1707static void enable_swap_info(struct swap_info_struct *p, int prio,
1708 unsigned char *swap_map,
2a8f9449 1709 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
1710 unsigned long *frontswap_map)
1711{
4f89849d 1712 frontswap_init(p->type, frontswap_map);
cf0cac0a 1713 spin_lock(&swap_lock);
ec8acf20 1714 spin_lock(&p->lock);
2a8f9449 1715 _enable_swap_info(p, prio, swap_map, cluster_info);
ec8acf20 1716 spin_unlock(&p->lock);
cf0cac0a
CEB
1717 spin_unlock(&swap_lock);
1718}
1719
1720static void reinsert_swap_info(struct swap_info_struct *p)
1721{
1722 spin_lock(&swap_lock);
ec8acf20 1723 spin_lock(&p->lock);
2a8f9449 1724 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
ec8acf20 1725 spin_unlock(&p->lock);
40531542
CEB
1726 spin_unlock(&swap_lock);
1727}
1728
c4ea37c2 1729SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 1730{
73c34b6a 1731 struct swap_info_struct *p = NULL;
8d69aaee 1732 unsigned char *swap_map;
2a8f9449 1733 struct swap_cluster_info *cluster_info;
4f89849d 1734 unsigned long *frontswap_map;
1da177e4
LT
1735 struct file *swap_file, *victim;
1736 struct address_space *mapping;
1737 struct inode *inode;
91a27b2a 1738 struct filename *pathname;
1da177e4
LT
1739 int i, type, prev;
1740 int err;
886bb7e9 1741
1da177e4
LT
1742 if (!capable(CAP_SYS_ADMIN))
1743 return -EPERM;
1744
191c5424
AV
1745 BUG_ON(!current->mm);
1746
1da177e4 1747 pathname = getname(specialfile);
1da177e4 1748 if (IS_ERR(pathname))
f58b59c1 1749 return PTR_ERR(pathname);
1da177e4 1750
669abf4e 1751 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
1752 err = PTR_ERR(victim);
1753 if (IS_ERR(victim))
1754 goto out;
1755
1756 mapping = victim->f_mapping;
1757 prev = -1;
5d337b91 1758 spin_lock(&swap_lock);
efa90a98
HD
1759 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1760 p = swap_info[type];
22c6f8fd 1761 if (p->flags & SWP_WRITEOK) {
1da177e4
LT
1762 if (p->swap_file->f_mapping == mapping)
1763 break;
1764 }
1765 prev = type;
1766 }
1767 if (type < 0) {
1768 err = -EINVAL;
5d337b91 1769 spin_unlock(&swap_lock);
1da177e4
LT
1770 goto out_dput;
1771 }
191c5424 1772 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
1773 vm_unacct_memory(p->pages);
1774 else {
1775 err = -ENOMEM;
5d337b91 1776 spin_unlock(&swap_lock);
1da177e4
LT
1777 goto out_dput;
1778 }
efa90a98 1779 if (prev < 0)
1da177e4 1780 swap_list.head = p->next;
efa90a98
HD
1781 else
1782 swap_info[prev]->next = p->next;
1da177e4
LT
1783 if (type == swap_list.next) {
1784 /* just pick something that's safe... */
1785 swap_list.next = swap_list.head;
1786 }
ec8acf20 1787 spin_lock(&p->lock);
78ecba08 1788 if (p->prio < 0) {
efa90a98
HD
1789 for (i = p->next; i >= 0; i = swap_info[i]->next)
1790 swap_info[i]->prio = p->prio--;
78ecba08
HD
1791 least_priority++;
1792 }
ec8acf20 1793 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
1794 total_swap_pages -= p->pages;
1795 p->flags &= ~SWP_WRITEOK;
ec8acf20 1796 spin_unlock(&p->lock);
5d337b91 1797 spin_unlock(&swap_lock);
fb4f88dc 1798
e1e12d2f 1799 set_current_oom_origin();
38b5faf4 1800 err = try_to_unuse(type, false, 0); /* force all pages to be unused */
e1e12d2f 1801 clear_current_oom_origin();
1da177e4 1802
1da177e4
LT
1803 if (err) {
1804 /* re-insert swap space back into swap_list */
cf0cac0a 1805 reinsert_swap_info(p);
1da177e4
LT
1806 goto out_dput;
1807 }
52b7efdb 1808
5d337b91 1809 destroy_swap_extents(p);
570a335b
HD
1810 if (p->flags & SWP_CONTINUED)
1811 free_swap_count_continuations(p);
1812
fc0abb14 1813 mutex_lock(&swapon_mutex);
5d337b91 1814 spin_lock(&swap_lock);
ec8acf20 1815 spin_lock(&p->lock);
5d337b91
HD
1816 drain_mmlist();
1817
52b7efdb 1818 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
1819 p->highest_bit = 0; /* cuts scans short */
1820 while (p->flags >= SWP_SCANNING) {
ec8acf20 1821 spin_unlock(&p->lock);
5d337b91 1822 spin_unlock(&swap_lock);
13e4b57f 1823 schedule_timeout_uninterruptible(1);
5d337b91 1824 spin_lock(&swap_lock);
ec8acf20 1825 spin_lock(&p->lock);
52b7efdb 1826 }
52b7efdb 1827
1da177e4
LT
1828 swap_file = p->swap_file;
1829 p->swap_file = NULL;
1830 p->max = 0;
1831 swap_map = p->swap_map;
1832 p->swap_map = NULL;
2a8f9449
SL
1833 cluster_info = p->cluster_info;
1834 p->cluster_info = NULL;
1da177e4 1835 p->flags = 0;
4f89849d
MK
1836 frontswap_map = frontswap_map_get(p);
1837 frontswap_map_set(p, NULL);
ec8acf20 1838 spin_unlock(&p->lock);
5d337b91 1839 spin_unlock(&swap_lock);
4f89849d 1840 frontswap_invalidate_area(type);
fc0abb14 1841 mutex_unlock(&swapon_mutex);
1da177e4 1842 vfree(swap_map);
2a8f9449 1843 vfree(cluster_info);
4f89849d 1844 vfree(frontswap_map);
27a7faa0
KH
1845 /* Destroy swap account informatin */
1846 swap_cgroup_swapoff(type);
1847
1da177e4
LT
1848 inode = mapping->host;
1849 if (S_ISBLK(inode->i_mode)) {
1850 struct block_device *bdev = I_BDEV(inode);
1851 set_blocksize(bdev, p->old_block_size);
e525fd89 1852 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 1853 } else {
1b1dcc1b 1854 mutex_lock(&inode->i_mutex);
1da177e4 1855 inode->i_flags &= ~S_SWAPFILE;
1b1dcc1b 1856 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1857 }
1858 filp_close(swap_file, NULL);
1859 err = 0;
66d7dd51
KS
1860 atomic_inc(&proc_poll_event);
1861 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
1862
1863out_dput:
1864 filp_close(victim, NULL);
1865out:
f58b59c1 1866 putname(pathname);
1da177e4
LT
1867 return err;
1868}
1869
1870#ifdef CONFIG_PROC_FS
66d7dd51
KS
1871static unsigned swaps_poll(struct file *file, poll_table *wait)
1872{
f1514638 1873 struct seq_file *seq = file->private_data;
66d7dd51
KS
1874
1875 poll_wait(file, &proc_poll_wait, wait);
1876
f1514638
KS
1877 if (seq->poll_event != atomic_read(&proc_poll_event)) {
1878 seq->poll_event = atomic_read(&proc_poll_event);
66d7dd51
KS
1879 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1880 }
1881
1882 return POLLIN | POLLRDNORM;
1883}
1884
1da177e4
LT
1885/* iterator */
1886static void *swap_start(struct seq_file *swap, loff_t *pos)
1887{
efa90a98
HD
1888 struct swap_info_struct *si;
1889 int type;
1da177e4
LT
1890 loff_t l = *pos;
1891
fc0abb14 1892 mutex_lock(&swapon_mutex);
1da177e4 1893
881e4aab
SS
1894 if (!l)
1895 return SEQ_START_TOKEN;
1896
efa90a98
HD
1897 for (type = 0; type < nr_swapfiles; type++) {
1898 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1899 si = swap_info[type];
1900 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 1901 continue;
881e4aab 1902 if (!--l)
efa90a98 1903 return si;
1da177e4
LT
1904 }
1905
1906 return NULL;
1907}
1908
1909static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1910{
efa90a98
HD
1911 struct swap_info_struct *si = v;
1912 int type;
1da177e4 1913
881e4aab 1914 if (v == SEQ_START_TOKEN)
efa90a98
HD
1915 type = 0;
1916 else
1917 type = si->type + 1;
881e4aab 1918
efa90a98
HD
1919 for (; type < nr_swapfiles; type++) {
1920 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1921 si = swap_info[type];
1922 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
1923 continue;
1924 ++*pos;
efa90a98 1925 return si;
1da177e4
LT
1926 }
1927
1928 return NULL;
1929}
1930
1931static void swap_stop(struct seq_file *swap, void *v)
1932{
fc0abb14 1933 mutex_unlock(&swapon_mutex);
1da177e4
LT
1934}
1935
1936static int swap_show(struct seq_file *swap, void *v)
1937{
efa90a98 1938 struct swap_info_struct *si = v;
1da177e4
LT
1939 struct file *file;
1940 int len;
1941
efa90a98 1942 if (si == SEQ_START_TOKEN) {
881e4aab
SS
1943 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1944 return 0;
1945 }
1da177e4 1946
efa90a98 1947 file = si->swap_file;
c32c2f63 1948 len = seq_path(swap, &file->f_path, " \t\n\\");
6eb396dc 1949 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9 1950 len < 40 ? 40 - len : 1, " ",
496ad9aa 1951 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 1952 "partition" : "file\t",
efa90a98
HD
1953 si->pages << (PAGE_SHIFT - 10),
1954 si->inuse_pages << (PAGE_SHIFT - 10),
1955 si->prio);
1da177e4
LT
1956 return 0;
1957}
1958
15ad7cdc 1959static const struct seq_operations swaps_op = {
1da177e4
LT
1960 .start = swap_start,
1961 .next = swap_next,
1962 .stop = swap_stop,
1963 .show = swap_show
1964};
1965
1966static int swaps_open(struct inode *inode, struct file *file)
1967{
f1514638 1968 struct seq_file *seq;
66d7dd51
KS
1969 int ret;
1970
66d7dd51 1971 ret = seq_open(file, &swaps_op);
f1514638 1972 if (ret)
66d7dd51 1973 return ret;
66d7dd51 1974
f1514638
KS
1975 seq = file->private_data;
1976 seq->poll_event = atomic_read(&proc_poll_event);
1977 return 0;
1da177e4
LT
1978}
1979
15ad7cdc 1980static const struct file_operations proc_swaps_operations = {
1da177e4
LT
1981 .open = swaps_open,
1982 .read = seq_read,
1983 .llseek = seq_lseek,
1984 .release = seq_release,
66d7dd51 1985 .poll = swaps_poll,
1da177e4
LT
1986};
1987
1988static int __init procswaps_init(void)
1989{
3d71f86f 1990 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
1991 return 0;
1992}
1993__initcall(procswaps_init);
1994#endif /* CONFIG_PROC_FS */
1995
1796316a
JB
1996#ifdef MAX_SWAPFILES_CHECK
1997static int __init max_swapfiles_check(void)
1998{
1999 MAX_SWAPFILES_CHECK();
2000 return 0;
2001}
2002late_initcall(max_swapfiles_check);
2003#endif
2004
53cbb243 2005static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2006{
73c34b6a 2007 struct swap_info_struct *p;
1da177e4 2008 unsigned int type;
efa90a98
HD
2009
2010 p = kzalloc(sizeof(*p), GFP_KERNEL);
2011 if (!p)
53cbb243 2012 return ERR_PTR(-ENOMEM);
efa90a98 2013
5d337b91 2014 spin_lock(&swap_lock);
efa90a98
HD
2015 for (type = 0; type < nr_swapfiles; type++) {
2016 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2017 break;
efa90a98 2018 }
0697212a 2019 if (type >= MAX_SWAPFILES) {
5d337b91 2020 spin_unlock(&swap_lock);
efa90a98 2021 kfree(p);
730c0581 2022 return ERR_PTR(-EPERM);
1da177e4 2023 }
efa90a98
HD
2024 if (type >= nr_swapfiles) {
2025 p->type = type;
2026 swap_info[type] = p;
2027 /*
2028 * Write swap_info[type] before nr_swapfiles, in case a
2029 * racing procfs swap_start() or swap_next() is reading them.
2030 * (We never shrink nr_swapfiles, we never free this entry.)
2031 */
2032 smp_wmb();
2033 nr_swapfiles++;
2034 } else {
2035 kfree(p);
2036 p = swap_info[type];
2037 /*
2038 * Do not memset this entry: a racing procfs swap_next()
2039 * would be relying on p->type to remain valid.
2040 */
2041 }
9625a5f2 2042 INIT_LIST_HEAD(&p->first_swap_extent.list);
1da177e4 2043 p->flags = SWP_USED;
1da177e4 2044 p->next = -1;
5d337b91 2045 spin_unlock(&swap_lock);
ec8acf20 2046 spin_lock_init(&p->lock);
efa90a98 2047
53cbb243 2048 return p;
53cbb243
CEB
2049}
2050
4d0e1e10
CEB
2051static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2052{
2053 int error;
2054
2055 if (S_ISBLK(inode->i_mode)) {
2056 p->bdev = bdgrab(I_BDEV(inode));
2057 error = blkdev_get(p->bdev,
2058 FMODE_READ | FMODE_WRITE | FMODE_EXCL,
2059 sys_swapon);
2060 if (error < 0) {
2061 p->bdev = NULL;
87ade72a 2062 return -EINVAL;
4d0e1e10
CEB
2063 }
2064 p->old_block_size = block_size(p->bdev);
2065 error = set_blocksize(p->bdev, PAGE_SIZE);
2066 if (error < 0)
87ade72a 2067 return error;
4d0e1e10
CEB
2068 p->flags |= SWP_BLKDEV;
2069 } else if (S_ISREG(inode->i_mode)) {
2070 p->bdev = inode->i_sb->s_bdev;
2071 mutex_lock(&inode->i_mutex);
87ade72a
CEB
2072 if (IS_SWAPFILE(inode))
2073 return -EBUSY;
2074 } else
2075 return -EINVAL;
4d0e1e10
CEB
2076
2077 return 0;
4d0e1e10
CEB
2078}
2079
ca8bd38b
CEB
2080static unsigned long read_swap_header(struct swap_info_struct *p,
2081 union swap_header *swap_header,
2082 struct inode *inode)
2083{
2084 int i;
2085 unsigned long maxpages;
2086 unsigned long swapfilepages;
d6bbbd29 2087 unsigned long last_page;
ca8bd38b
CEB
2088
2089 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2090 pr_err("Unable to find swap-space signature\n");
38719025 2091 return 0;
ca8bd38b
CEB
2092 }
2093
2094 /* swap partition endianess hack... */
2095 if (swab32(swap_header->info.version) == 1) {
2096 swab32s(&swap_header->info.version);
2097 swab32s(&swap_header->info.last_page);
2098 swab32s(&swap_header->info.nr_badpages);
2099 for (i = 0; i < swap_header->info.nr_badpages; i++)
2100 swab32s(&swap_header->info.badpages[i]);
2101 }
2102 /* Check the swap header's sub-version */
2103 if (swap_header->info.version != 1) {
465c47fd
AM
2104 pr_warn("Unable to handle swap header version %d\n",
2105 swap_header->info.version);
38719025 2106 return 0;
ca8bd38b
CEB
2107 }
2108
2109 p->lowest_bit = 1;
2110 p->cluster_next = 1;
2111 p->cluster_nr = 0;
2112
2113 /*
2114 * Find out how many pages are allowed for a single swap
9b15b817 2115 * device. There are two limiting factors: 1) the number
a2c16d6c
HD
2116 * of bits for the swap offset in the swp_entry_t type, and
2117 * 2) the number of bits in the swap pte as defined by the
9b15b817 2118 * different architectures. In order to find the
a2c16d6c 2119 * largest possible bit mask, a swap entry with swap type 0
ca8bd38b 2120 * and swap offset ~0UL is created, encoded to a swap pte,
a2c16d6c 2121 * decoded to a swp_entry_t again, and finally the swap
ca8bd38b
CEB
2122 * offset is extracted. This will mask all the bits from
2123 * the initial ~0UL mask that can't be encoded in either
2124 * the swp_entry_t or the architecture definition of a
9b15b817 2125 * swap pte.
ca8bd38b
CEB
2126 */
2127 maxpages = swp_offset(pte_to_swp_entry(
9b15b817 2128 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
d6bbbd29
RJ
2129 last_page = swap_header->info.last_page;
2130 if (last_page > maxpages) {
465c47fd 2131 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2132 maxpages << (PAGE_SHIFT - 10),
2133 last_page << (PAGE_SHIFT - 10));
2134 }
2135 if (maxpages > last_page) {
2136 maxpages = last_page + 1;
ca8bd38b
CEB
2137 /* p->max is an unsigned int: don't overflow it */
2138 if ((unsigned int)maxpages == 0)
2139 maxpages = UINT_MAX;
2140 }
2141 p->highest_bit = maxpages - 1;
2142
2143 if (!maxpages)
38719025 2144 return 0;
ca8bd38b
CEB
2145 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2146 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 2147 pr_warn("Swap area shorter than signature indicates\n");
38719025 2148 return 0;
ca8bd38b
CEB
2149 }
2150 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 2151 return 0;
ca8bd38b 2152 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 2153 return 0;
ca8bd38b
CEB
2154
2155 return maxpages;
ca8bd38b
CEB
2156}
2157
915d4d7b
CEB
2158static int setup_swap_map_and_extents(struct swap_info_struct *p,
2159 union swap_header *swap_header,
2160 unsigned char *swap_map,
2a8f9449 2161 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
2162 unsigned long maxpages,
2163 sector_t *span)
2164{
2165 int i;
915d4d7b
CEB
2166 unsigned int nr_good_pages;
2167 int nr_extents;
2a8f9449
SL
2168 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2169 unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
915d4d7b
CEB
2170
2171 nr_good_pages = maxpages - 1; /* omit header page */
2172
2a8f9449
SL
2173 cluster_set_null(&p->free_cluster_head);
2174 cluster_set_null(&p->free_cluster_tail);
2175
915d4d7b
CEB
2176 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2177 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
2178 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2179 return -EINVAL;
915d4d7b
CEB
2180 if (page_nr < maxpages) {
2181 swap_map[page_nr] = SWAP_MAP_BAD;
2182 nr_good_pages--;
2a8f9449
SL
2183 /*
2184 * Haven't marked the cluster free yet, no list
2185 * operation involved
2186 */
2187 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
2188 }
2189 }
2190
2a8f9449
SL
2191 /* Haven't marked the cluster free yet, no list operation involved */
2192 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2193 inc_cluster_info_page(p, cluster_info, i);
2194
915d4d7b
CEB
2195 if (nr_good_pages) {
2196 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
2197 /*
2198 * Not mark the cluster free yet, no list
2199 * operation involved
2200 */
2201 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
2202 p->max = maxpages;
2203 p->pages = nr_good_pages;
2204 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
2205 if (nr_extents < 0)
2206 return nr_extents;
915d4d7b
CEB
2207 nr_good_pages = p->pages;
2208 }
2209 if (!nr_good_pages) {
465c47fd 2210 pr_warn("Empty swap-file\n");
bdb8e3f6 2211 return -EINVAL;
915d4d7b
CEB
2212 }
2213
2a8f9449
SL
2214 if (!cluster_info)
2215 return nr_extents;
2216
2217 for (i = 0; i < nr_clusters; i++) {
2218 if (!cluster_count(&cluster_info[idx])) {
2219 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2220 if (cluster_is_null(&p->free_cluster_head)) {
2221 cluster_set_next_flag(&p->free_cluster_head,
2222 idx, 0);
2223 cluster_set_next_flag(&p->free_cluster_tail,
2224 idx, 0);
2225 } else {
2226 unsigned int tail;
2227
2228 tail = cluster_next(&p->free_cluster_tail);
2229 cluster_set_next(&cluster_info[tail], idx);
2230 cluster_set_next_flag(&p->free_cluster_tail,
2231 idx, 0);
2232 }
2233 }
2234 idx++;
2235 if (idx == nr_clusters)
2236 idx = 0;
2237 }
915d4d7b 2238 return nr_extents;
915d4d7b
CEB
2239}
2240
dcf6b7dd
RA
2241/*
2242 * Helper to sys_swapon determining if a given swap
2243 * backing device queue supports DISCARD operations.
2244 */
2245static bool swap_discardable(struct swap_info_struct *si)
2246{
2247 struct request_queue *q = bdev_get_queue(si->bdev);
2248
2249 if (!q || !blk_queue_discard(q))
2250 return false;
2251
2252 return true;
2253}
2254
53cbb243
CEB
2255SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2256{
2257 struct swap_info_struct *p;
91a27b2a 2258 struct filename *name;
53cbb243
CEB
2259 struct file *swap_file = NULL;
2260 struct address_space *mapping;
40531542
CEB
2261 int i;
2262 int prio;
53cbb243
CEB
2263 int error;
2264 union swap_header *swap_header;
915d4d7b 2265 int nr_extents;
53cbb243
CEB
2266 sector_t span;
2267 unsigned long maxpages;
53cbb243 2268 unsigned char *swap_map = NULL;
2a8f9449 2269 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 2270 unsigned long *frontswap_map = NULL;
53cbb243
CEB
2271 struct page *page = NULL;
2272 struct inode *inode = NULL;
53cbb243 2273
d15cab97
HD
2274 if (swap_flags & ~SWAP_FLAGS_VALID)
2275 return -EINVAL;
2276
53cbb243
CEB
2277 if (!capable(CAP_SYS_ADMIN))
2278 return -EPERM;
2279
2280 p = alloc_swap_info();
2542e513
CEB
2281 if (IS_ERR(p))
2282 return PTR_ERR(p);
53cbb243 2283
1da177e4 2284 name = getname(specialfile);
1da177e4 2285 if (IS_ERR(name)) {
7de7fb6b 2286 error = PTR_ERR(name);
1da177e4 2287 name = NULL;
bd69010b 2288 goto bad_swap;
1da177e4 2289 }
669abf4e 2290 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 2291 if (IS_ERR(swap_file)) {
7de7fb6b 2292 error = PTR_ERR(swap_file);
1da177e4 2293 swap_file = NULL;
bd69010b 2294 goto bad_swap;
1da177e4
LT
2295 }
2296
2297 p->swap_file = swap_file;
2298 mapping = swap_file->f_mapping;
1da177e4 2299
1da177e4 2300 for (i = 0; i < nr_swapfiles; i++) {
efa90a98 2301 struct swap_info_struct *q = swap_info[i];
1da177e4 2302
e8e6c2ec 2303 if (q == p || !q->swap_file)
1da177e4 2304 continue;
7de7fb6b
CEB
2305 if (mapping == q->swap_file->f_mapping) {
2306 error = -EBUSY;
1da177e4 2307 goto bad_swap;
7de7fb6b 2308 }
1da177e4
LT
2309 }
2310
2130781e
CEB
2311 inode = mapping->host;
2312 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
4d0e1e10
CEB
2313 error = claim_swapfile(p, inode);
2314 if (unlikely(error))
1da177e4 2315 goto bad_swap;
1da177e4 2316
1da177e4
LT
2317 /*
2318 * Read the swap header.
2319 */
2320 if (!mapping->a_ops->readpage) {
2321 error = -EINVAL;
2322 goto bad_swap;
2323 }
090d2b18 2324 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
2325 if (IS_ERR(page)) {
2326 error = PTR_ERR(page);
2327 goto bad_swap;
2328 }
81e33971 2329 swap_header = kmap(page);
1da177e4 2330
ca8bd38b
CEB
2331 maxpages = read_swap_header(p, swap_header, inode);
2332 if (unlikely(!maxpages)) {
1da177e4
LT
2333 error = -EINVAL;
2334 goto bad_swap;
2335 }
886bb7e9 2336
81e33971 2337 /* OK, set up the swap map and apply the bad block list */
803d0c83 2338 swap_map = vzalloc(maxpages);
81e33971
HD
2339 if (!swap_map) {
2340 error = -ENOMEM;
2341 goto bad_swap;
2342 }
2a8f9449
SL
2343 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2344 p->flags |= SWP_SOLIDSTATE;
2345 /*
2346 * select a random position to start with to help wear leveling
2347 * SSD
2348 */
2349 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2350
2351 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2352 SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2353 if (!cluster_info) {
2354 error = -ENOMEM;
2355 goto bad_swap;
2356 }
2357 }
1da177e4 2358
1421ef3c
CEB
2359 error = swap_cgroup_swapon(p->type, maxpages);
2360 if (error)
2361 goto bad_swap;
2362
915d4d7b 2363 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 2364 cluster_info, maxpages, &span);
915d4d7b
CEB
2365 if (unlikely(nr_extents < 0)) {
2366 error = nr_extents;
1da177e4
LT
2367 goto bad_swap;
2368 }
38b5faf4
DM
2369 /* frontswap enabled? set up bit-per-page map for frontswap */
2370 if (frontswap_enabled)
7b57976d 2371 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
1da177e4 2372
2a8f9449
SL
2373 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2374 /*
2375 * When discard is enabled for swap with no particular
2376 * policy flagged, we set all swap discard flags here in
2377 * order to sustain backward compatibility with older
2378 * swapon(8) releases.
2379 */
2380 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2381 SWP_PAGE_DISCARD);
dcf6b7dd 2382
2a8f9449
SL
2383 /*
2384 * By flagging sys_swapon, a sysadmin can tell us to
2385 * either do single-time area discards only, or to just
2386 * perform discards for released swap page-clusters.
2387 * Now it's time to adjust the p->flags accordingly.
2388 */
2389 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2390 p->flags &= ~SWP_PAGE_DISCARD;
2391 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2392 p->flags &= ~SWP_AREA_DISCARD;
2393
2394 /* issue a swapon-time discard if it's still required */
2395 if (p->flags & SWP_AREA_DISCARD) {
2396 int err = discard_swap(p);
2397 if (unlikely(err))
2398 pr_err("swapon: discard_swap(%p): %d\n",
2399 p, err);
dcf6b7dd 2400 }
20137a49 2401 }
6a6ba831 2402
fc0abb14 2403 mutex_lock(&swapon_mutex);
40531542 2404 prio = -1;
78ecba08 2405 if (swap_flags & SWAP_FLAG_PREFER)
40531542 2406 prio =
78ecba08 2407 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 2408 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 2409
465c47fd 2410 pr_info("Adding %uk swap on %s. "
dcf6b7dd 2411 "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 2412 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
2413 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2414 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 2415 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
2416 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2417 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 2418 (frontswap_map) ? "FS" : "");
c69dbfb8 2419
fc0abb14 2420 mutex_unlock(&swapon_mutex);
66d7dd51
KS
2421 atomic_inc(&proc_poll_event);
2422 wake_up_interruptible(&proc_poll_wait);
2423
9b01c350
CEB
2424 if (S_ISREG(inode->i_mode))
2425 inode->i_flags |= S_SWAPFILE;
1da177e4
LT
2426 error = 0;
2427 goto out;
2428bad_swap:
bd69010b 2429 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
2430 set_blocksize(p->bdev, p->old_block_size);
2431 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2432 }
4cd3bb10 2433 destroy_swap_extents(p);
e8e6c2ec 2434 swap_cgroup_swapoff(p->type);
5d337b91 2435 spin_lock(&swap_lock);
1da177e4 2436 p->swap_file = NULL;
1da177e4 2437 p->flags = 0;
5d337b91 2438 spin_unlock(&swap_lock);
1da177e4 2439 vfree(swap_map);
2a8f9449 2440 vfree(cluster_info);
52c50567 2441 if (swap_file) {
2130781e 2442 if (inode && S_ISREG(inode->i_mode)) {
52c50567 2443 mutex_unlock(&inode->i_mutex);
2130781e
CEB
2444 inode = NULL;
2445 }
1da177e4 2446 filp_close(swap_file, NULL);
52c50567 2447 }
1da177e4
LT
2448out:
2449 if (page && !IS_ERR(page)) {
2450 kunmap(page);
2451 page_cache_release(page);
2452 }
2453 if (name)
2454 putname(name);
9b01c350 2455 if (inode && S_ISREG(inode->i_mode))
1b1dcc1b 2456 mutex_unlock(&inode->i_mutex);
1da177e4
LT
2457 return error;
2458}
2459
2460void si_swapinfo(struct sysinfo *val)
2461{
efa90a98 2462 unsigned int type;
1da177e4
LT
2463 unsigned long nr_to_be_unused = 0;
2464
5d337b91 2465 spin_lock(&swap_lock);
efa90a98
HD
2466 for (type = 0; type < nr_swapfiles; type++) {
2467 struct swap_info_struct *si = swap_info[type];
2468
2469 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2470 nr_to_be_unused += si->inuse_pages;
1da177e4 2471 }
ec8acf20 2472 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 2473 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 2474 spin_unlock(&swap_lock);
1da177e4
LT
2475}
2476
2477/*
2478 * Verify that a swap entry is valid and increment its swap map count.
2479 *
355cfa73
KH
2480 * Returns error code in following case.
2481 * - success -> 0
2482 * - swp_entry is invalid -> EINVAL
2483 * - swp_entry is migration entry -> EINVAL
2484 * - swap-cache reference is requested but there is already one. -> EEXIST
2485 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 2486 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 2487 */
8d69aaee 2488static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 2489{
73c34b6a 2490 struct swap_info_struct *p;
1da177e4 2491 unsigned long offset, type;
8d69aaee
HD
2492 unsigned char count;
2493 unsigned char has_cache;
253d553b 2494 int err = -EINVAL;
1da177e4 2495
a7420aa5 2496 if (non_swap_entry(entry))
253d553b 2497 goto out;
0697212a 2498
1da177e4
LT
2499 type = swp_type(entry);
2500 if (type >= nr_swapfiles)
2501 goto bad_file;
efa90a98 2502 p = swap_info[type];
1da177e4
LT
2503 offset = swp_offset(entry);
2504
ec8acf20 2505 spin_lock(&p->lock);
355cfa73
KH
2506 if (unlikely(offset >= p->max))
2507 goto unlock_out;
2508
253d553b
HD
2509 count = p->swap_map[offset];
2510 has_cache = count & SWAP_HAS_CACHE;
2511 count &= ~SWAP_HAS_CACHE;
2512 err = 0;
355cfa73 2513
253d553b 2514 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
2515
2516 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
2517 if (!has_cache && count)
2518 has_cache = SWAP_HAS_CACHE;
2519 else if (has_cache) /* someone else added cache */
2520 err = -EEXIST;
2521 else /* no users remaining */
2522 err = -ENOENT;
355cfa73
KH
2523
2524 } else if (count || has_cache) {
253d553b 2525
570a335b
HD
2526 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2527 count += usage;
2528 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 2529 err = -EINVAL;
570a335b
HD
2530 else if (swap_count_continued(p, offset, count))
2531 count = COUNT_CONTINUED;
2532 else
2533 err = -ENOMEM;
355cfa73 2534 } else
253d553b
HD
2535 err = -ENOENT; /* unused swap entry */
2536
2537 p->swap_map[offset] = count | has_cache;
2538
355cfa73 2539unlock_out:
ec8acf20 2540 spin_unlock(&p->lock);
1da177e4 2541out:
253d553b 2542 return err;
1da177e4
LT
2543
2544bad_file:
465c47fd 2545 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
2546 goto out;
2547}
253d553b 2548
aaa46865
HD
2549/*
2550 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2551 * (in which case its reference count is never incremented).
2552 */
2553void swap_shmem_alloc(swp_entry_t entry)
2554{
2555 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2556}
2557
355cfa73 2558/*
08259d58
HD
2559 * Increase reference count of swap entry by 1.
2560 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2561 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2562 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2563 * might occur if a page table entry has got corrupted.
355cfa73 2564 */
570a335b 2565int swap_duplicate(swp_entry_t entry)
355cfa73 2566{
570a335b
HD
2567 int err = 0;
2568
2569 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2570 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2571 return err;
355cfa73 2572}
1da177e4 2573
cb4b86ba 2574/*
355cfa73
KH
2575 * @entry: swap entry for which we allocate swap cache.
2576 *
73c34b6a 2577 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
2578 * This can return error codes. Returns 0 at success.
2579 * -EBUSY means there is a swap cache.
2580 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
2581 */
2582int swapcache_prepare(swp_entry_t entry)
2583{
253d553b 2584 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
2585}
2586
f981c595
MG
2587struct swap_info_struct *page_swap_info(struct page *page)
2588{
2589 swp_entry_t swap = { .val = page_private(page) };
2590 BUG_ON(!PageSwapCache(page));
2591 return swap_info[swp_type(swap)];
2592}
2593
2594/*
2595 * out-of-line __page_file_ methods to avoid include hell.
2596 */
2597struct address_space *__page_file_mapping(struct page *page)
2598{
2599 VM_BUG_ON(!PageSwapCache(page));
2600 return page_swap_info(page)->swap_file->f_mapping;
2601}
2602EXPORT_SYMBOL_GPL(__page_file_mapping);
2603
2604pgoff_t __page_file_index(struct page *page)
2605{
2606 swp_entry_t swap = { .val = page_private(page) };
2607 VM_BUG_ON(!PageSwapCache(page));
2608 return swp_offset(swap);
2609}
2610EXPORT_SYMBOL_GPL(__page_file_index);
2611
570a335b
HD
2612/*
2613 * add_swap_count_continuation - called when a swap count is duplicated
2614 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2615 * page of the original vmalloc'ed swap_map, to hold the continuation count
2616 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2617 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2618 *
2619 * These continuation pages are seldom referenced: the common paths all work
2620 * on the original swap_map, only referring to a continuation page when the
2621 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2622 *
2623 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2624 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2625 * can be called after dropping locks.
2626 */
2627int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2628{
2629 struct swap_info_struct *si;
2630 struct page *head;
2631 struct page *page;
2632 struct page *list_page;
2633 pgoff_t offset;
2634 unsigned char count;
2635
2636 /*
2637 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2638 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2639 */
2640 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2641
2642 si = swap_info_get(entry);
2643 if (!si) {
2644 /*
2645 * An acceptable race has occurred since the failing
2646 * __swap_duplicate(): the swap entry has been freed,
2647 * perhaps even the whole swap_map cleared for swapoff.
2648 */
2649 goto outer;
2650 }
2651
2652 offset = swp_offset(entry);
2653 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2654
2655 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2656 /*
2657 * The higher the swap count, the more likely it is that tasks
2658 * will race to add swap count continuation: we need to avoid
2659 * over-provisioning.
2660 */
2661 goto out;
2662 }
2663
2664 if (!page) {
ec8acf20 2665 spin_unlock(&si->lock);
570a335b
HD
2666 return -ENOMEM;
2667 }
2668
2669 /*
2670 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2671 * no architecture is using highmem pages for kernel pagetables: so it
2672 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2673 */
2674 head = vmalloc_to_page(si->swap_map + offset);
2675 offset &= ~PAGE_MASK;
2676
2677 /*
2678 * Page allocation does not initialize the page's lru field,
2679 * but it does always reset its private field.
2680 */
2681 if (!page_private(head)) {
2682 BUG_ON(count & COUNT_CONTINUED);
2683 INIT_LIST_HEAD(&head->lru);
2684 set_page_private(head, SWP_CONTINUED);
2685 si->flags |= SWP_CONTINUED;
2686 }
2687
2688 list_for_each_entry(list_page, &head->lru, lru) {
2689 unsigned char *map;
2690
2691 /*
2692 * If the previous map said no continuation, but we've found
2693 * a continuation page, free our allocation and use this one.
2694 */
2695 if (!(count & COUNT_CONTINUED))
2696 goto out;
2697
9b04c5fe 2698 map = kmap_atomic(list_page) + offset;
570a335b 2699 count = *map;
9b04c5fe 2700 kunmap_atomic(map);
570a335b
HD
2701
2702 /*
2703 * If this continuation count now has some space in it,
2704 * free our allocation and use this one.
2705 */
2706 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2707 goto out;
2708 }
2709
2710 list_add_tail(&page->lru, &head->lru);
2711 page = NULL; /* now it's attached, don't free it */
2712out:
ec8acf20 2713 spin_unlock(&si->lock);
570a335b
HD
2714outer:
2715 if (page)
2716 __free_page(page);
2717 return 0;
2718}
2719
2720/*
2721 * swap_count_continued - when the original swap_map count is incremented
2722 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2723 * into, carry if so, or else fail until a new continuation page is allocated;
2724 * when the original swap_map count is decremented from 0 with continuation,
2725 * borrow from the continuation and report whether it still holds more.
2726 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2727 */
2728static bool swap_count_continued(struct swap_info_struct *si,
2729 pgoff_t offset, unsigned char count)
2730{
2731 struct page *head;
2732 struct page *page;
2733 unsigned char *map;
2734
2735 head = vmalloc_to_page(si->swap_map + offset);
2736 if (page_private(head) != SWP_CONTINUED) {
2737 BUG_ON(count & COUNT_CONTINUED);
2738 return false; /* need to add count continuation */
2739 }
2740
2741 offset &= ~PAGE_MASK;
2742 page = list_entry(head->lru.next, struct page, lru);
9b04c5fe 2743 map = kmap_atomic(page) + offset;
570a335b
HD
2744
2745 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2746 goto init_map; /* jump over SWAP_CONT_MAX checks */
2747
2748 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2749 /*
2750 * Think of how you add 1 to 999
2751 */
2752 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 2753 kunmap_atomic(map);
570a335b
HD
2754 page = list_entry(page->lru.next, struct page, lru);
2755 BUG_ON(page == head);
9b04c5fe 2756 map = kmap_atomic(page) + offset;
570a335b
HD
2757 }
2758 if (*map == SWAP_CONT_MAX) {
9b04c5fe 2759 kunmap_atomic(map);
570a335b
HD
2760 page = list_entry(page->lru.next, struct page, lru);
2761 if (page == head)
2762 return false; /* add count continuation */
9b04c5fe 2763 map = kmap_atomic(page) + offset;
570a335b
HD
2764init_map: *map = 0; /* we didn't zero the page */
2765 }
2766 *map += 1;
9b04c5fe 2767 kunmap_atomic(map);
570a335b
HD
2768 page = list_entry(page->lru.prev, struct page, lru);
2769 while (page != head) {
9b04c5fe 2770 map = kmap_atomic(page) + offset;
570a335b 2771 *map = COUNT_CONTINUED;
9b04c5fe 2772 kunmap_atomic(map);
570a335b
HD
2773 page = list_entry(page->lru.prev, struct page, lru);
2774 }
2775 return true; /* incremented */
2776
2777 } else { /* decrementing */
2778 /*
2779 * Think of how you subtract 1 from 1000
2780 */
2781 BUG_ON(count != COUNT_CONTINUED);
2782 while (*map == COUNT_CONTINUED) {
9b04c5fe 2783 kunmap_atomic(map);
570a335b
HD
2784 page = list_entry(page->lru.next, struct page, lru);
2785 BUG_ON(page == head);
9b04c5fe 2786 map = kmap_atomic(page) + offset;
570a335b
HD
2787 }
2788 BUG_ON(*map == 0);
2789 *map -= 1;
2790 if (*map == 0)
2791 count = 0;
9b04c5fe 2792 kunmap_atomic(map);
570a335b
HD
2793 page = list_entry(page->lru.prev, struct page, lru);
2794 while (page != head) {
9b04c5fe 2795 map = kmap_atomic(page) + offset;
570a335b
HD
2796 *map = SWAP_CONT_MAX | count;
2797 count = COUNT_CONTINUED;
9b04c5fe 2798 kunmap_atomic(map);
570a335b
HD
2799 page = list_entry(page->lru.prev, struct page, lru);
2800 }
2801 return count == COUNT_CONTINUED;
2802 }
2803}
2804
2805/*
2806 * free_swap_count_continuations - swapoff free all the continuation pages
2807 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2808 */
2809static void free_swap_count_continuations(struct swap_info_struct *si)
2810{
2811 pgoff_t offset;
2812
2813 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2814 struct page *head;
2815 head = vmalloc_to_page(si->swap_map + offset);
2816 if (page_private(head)) {
2817 struct list_head *this, *next;
2818 list_for_each_safe(this, next, &head->lru) {
2819 struct page *page;
2820 page = list_entry(this, struct page, lru);
2821 list_del(this);
2822 __free_page(page);
2823 }
2824 }
2825 }
2826}