]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/swapfile.c
mm/shmem: fix shmem_swapin() race with swapoff
[mirror_ubuntu-jammy-kernel.git] / mm / swapfile.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
1da177e4 9#include <linux/mm.h>
6e84f315 10#include <linux/sched/mm.h>
29930025 11#include <linux/sched/task.h>
1da177e4
LT
12#include <linux/hugetlb.h>
13#include <linux/mman.h>
14#include <linux/slab.h>
15#include <linux/kernel_stat.h>
16#include <linux/swap.h>
17#include <linux/vmalloc.h>
18#include <linux/pagemap.h>
19#include <linux/namei.h>
072441e2 20#include <linux/shmem_fs.h>
1da177e4 21#include <linux/blkdev.h>
20137a49 22#include <linux/random.h>
1da177e4
LT
23#include <linux/writeback.h>
24#include <linux/proc_fs.h>
25#include <linux/seq_file.h>
26#include <linux/init.h>
5ad64688 27#include <linux/ksm.h>
1da177e4
LT
28#include <linux/rmap.h>
29#include <linux/security.h>
30#include <linux/backing-dev.h>
fc0abb14 31#include <linux/mutex.h>
c59ede7b 32#include <linux/capability.h>
1da177e4 33#include <linux/syscalls.h>
8a9f3ccd 34#include <linux/memcontrol.h>
66d7dd51 35#include <linux/poll.h>
72788c38 36#include <linux/oom.h>
38b5faf4
DM
37#include <linux/frontswap.h>
38#include <linux/swapfile.h>
f981c595 39#include <linux/export.h>
67afa38e 40#include <linux/swap_slots.h>
155b5f88 41#include <linux/sort.h>
63d8620e 42#include <linux/completion.h>
1da177e4 43
1da177e4
LT
44#include <asm/tlbflush.h>
45#include <linux/swapops.h>
5d1ea48b 46#include <linux/swap_cgroup.h>
1da177e4 47
570a335b
HD
48static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49 unsigned char);
50static void free_swap_count_continuations(struct swap_info_struct *);
51
38b5faf4 52DEFINE_SPINLOCK(swap_lock);
7c363b8c 53static unsigned int nr_swapfiles;
ec8acf20 54atomic_long_t nr_swap_pages;
fb0fec50
CW
55/*
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
59 */
60EXPORT_SYMBOL_GPL(nr_swap_pages);
ec8acf20 61/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 62long total_swap_pages;
a2468cc9 63static int least_priority = -1;
1da177e4 64
1da177e4
LT
65static const char Bad_file[] = "Bad swap file entry ";
66static const char Unused_file[] = "Unused swap file entry ";
67static const char Bad_offset[] = "Bad swap offset entry ";
68static const char Unused_offset[] = "Unused swap offset entry ";
69
adfab836
DS
70/*
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
73 */
18ab4d4c
DS
74PLIST_HEAD(swap_active_head);
75
76/*
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
87 */
bfc6b1ca 88static struct plist_head *swap_avail_heads;
18ab4d4c 89static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 90
38b5faf4 91struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 92
fc0abb14 93static DEFINE_MUTEX(swapon_mutex);
1da177e4 94
66d7dd51
KS
95static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96/* Activity counter to indicate that a swapon or swapoff has occurred */
97static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
81a0298b
HY
99atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
c10d38cc
DJ
101static struct swap_info_struct *swap_type_to_swap_info(int type)
102{
103 if (type >= READ_ONCE(nr_swapfiles))
104 return NULL;
105
106 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */
107 return READ_ONCE(swap_info[type]);
108}
109
8d69aaee 110static inline unsigned char swap_count(unsigned char ent)
355cfa73 111{
955c97f0 112 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
355cfa73
KH
113}
114
bcd49e86
HY
115/* Reclaim the swap entry anyway if possible */
116#define TTRS_ANYWAY 0x1
117/*
118 * Reclaim the swap entry if there are no more mappings of the
119 * corresponding page
120 */
121#define TTRS_UNMAPPED 0x2
122/* Reclaim the swap entry if swap is getting full*/
123#define TTRS_FULL 0x4
124
efa90a98 125/* returns 1 if swap entry is freed */
bcd49e86
HY
126static int __try_to_reclaim_swap(struct swap_info_struct *si,
127 unsigned long offset, unsigned long flags)
c9e44410 128{
efa90a98 129 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
130 struct page *page;
131 int ret = 0;
132
bcd49e86 133 page = find_get_page(swap_address_space(entry), offset);
c9e44410
KH
134 if (!page)
135 return 0;
136 /*
bcd49e86
HY
137 * When this function is called from scan_swap_map_slots() and it's
138 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
139 * here. We have to use trylock for avoiding deadlock. This is a special
c9e44410
KH
140 * case and you should use try_to_free_swap() with explicit lock_page()
141 * in usual operations.
142 */
143 if (trylock_page(page)) {
bcd49e86
HY
144 if ((flags & TTRS_ANYWAY) ||
145 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
146 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
147 ret = try_to_free_swap(page);
c9e44410
KH
148 unlock_page(page);
149 }
09cbfeaf 150 put_page(page);
c9e44410
KH
151 return ret;
152}
355cfa73 153
4efaceb1
AL
154static inline struct swap_extent *first_se(struct swap_info_struct *sis)
155{
156 struct rb_node *rb = rb_first(&sis->swap_extent_root);
157 return rb_entry(rb, struct swap_extent, rb_node);
158}
159
160static inline struct swap_extent *next_se(struct swap_extent *se)
161{
162 struct rb_node *rb = rb_next(&se->rb_node);
163 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
164}
165
6a6ba831
HD
166/*
167 * swapon tell device that all the old swap contents can be discarded,
168 * to allow the swap device to optimize its wear-levelling.
169 */
170static int discard_swap(struct swap_info_struct *si)
171{
172 struct swap_extent *se;
9625a5f2
HD
173 sector_t start_block;
174 sector_t nr_blocks;
6a6ba831
HD
175 int err = 0;
176
9625a5f2 177 /* Do not discard the swap header page! */
4efaceb1 178 se = first_se(si);
9625a5f2
HD
179 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
180 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
181 if (nr_blocks) {
182 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 183 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
184 if (err)
185 return err;
186 cond_resched();
187 }
6a6ba831 188
4efaceb1 189 for (se = next_se(se); se; se = next_se(se)) {
9625a5f2
HD
190 start_block = se->start_block << (PAGE_SHIFT - 9);
191 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
192
193 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 194 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
195 if (err)
196 break;
197
198 cond_resched();
199 }
200 return err; /* That will often be -EOPNOTSUPP */
201}
202
4efaceb1
AL
203static struct swap_extent *
204offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
205{
206 struct swap_extent *se;
207 struct rb_node *rb;
208
209 rb = sis->swap_extent_root.rb_node;
210 while (rb) {
211 se = rb_entry(rb, struct swap_extent, rb_node);
212 if (offset < se->start_page)
213 rb = rb->rb_left;
214 else if (offset >= se->start_page + se->nr_pages)
215 rb = rb->rb_right;
216 else
217 return se;
218 }
219 /* It *must* be present */
220 BUG();
221}
222
caf6912f
JA
223sector_t swap_page_sector(struct page *page)
224{
225 struct swap_info_struct *sis = page_swap_info(page);
226 struct swap_extent *se;
227 sector_t sector;
228 pgoff_t offset;
229
230 offset = __page_file_index(page);
231 se = offset_to_swap_extent(sis, offset);
232 sector = se->start_block + (offset - se->start_page);
233 return sector << (PAGE_SHIFT - 9);
234}
235
7992fde7
HD
236/*
237 * swap allocation tell device that a cluster of swap can now be discarded,
238 * to allow the swap device to optimize its wear-levelling.
239 */
240static void discard_swap_cluster(struct swap_info_struct *si,
241 pgoff_t start_page, pgoff_t nr_pages)
242{
4efaceb1 243 struct swap_extent *se = offset_to_swap_extent(si, start_page);
7992fde7
HD
244
245 while (nr_pages) {
4efaceb1
AL
246 pgoff_t offset = start_page - se->start_page;
247 sector_t start_block = se->start_block + offset;
248 sector_t nr_blocks = se->nr_pages - offset;
249
250 if (nr_blocks > nr_pages)
251 nr_blocks = nr_pages;
252 start_page += nr_blocks;
253 nr_pages -= nr_blocks;
254
255 start_block <<= PAGE_SHIFT - 9;
256 nr_blocks <<= PAGE_SHIFT - 9;
257 if (blkdev_issue_discard(si->bdev, start_block,
258 nr_blocks, GFP_NOIO, 0))
259 break;
7992fde7 260
4efaceb1 261 se = next_se(se);
7992fde7
HD
262 }
263}
264
38d8b4e6
HY
265#ifdef CONFIG_THP_SWAP
266#define SWAPFILE_CLUSTER HPAGE_PMD_NR
a448f2d0
HY
267
268#define swap_entry_size(size) (size)
38d8b4e6 269#else
048c27fd 270#define SWAPFILE_CLUSTER 256
a448f2d0
HY
271
272/*
273 * Define swap_entry_size() as constant to let compiler to optimize
274 * out some code if !CONFIG_THP_SWAP
275 */
276#define swap_entry_size(size) 1
38d8b4e6 277#endif
048c27fd
HD
278#define LATENCY_LIMIT 256
279
2a8f9449
SL
280static inline void cluster_set_flag(struct swap_cluster_info *info,
281 unsigned int flag)
282{
283 info->flags = flag;
284}
285
286static inline unsigned int cluster_count(struct swap_cluster_info *info)
287{
288 return info->data;
289}
290
291static inline void cluster_set_count(struct swap_cluster_info *info,
292 unsigned int c)
293{
294 info->data = c;
295}
296
297static inline void cluster_set_count_flag(struct swap_cluster_info *info,
298 unsigned int c, unsigned int f)
299{
300 info->flags = f;
301 info->data = c;
302}
303
304static inline unsigned int cluster_next(struct swap_cluster_info *info)
305{
306 return info->data;
307}
308
309static inline void cluster_set_next(struct swap_cluster_info *info,
310 unsigned int n)
311{
312 info->data = n;
313}
314
315static inline void cluster_set_next_flag(struct swap_cluster_info *info,
316 unsigned int n, unsigned int f)
317{
318 info->flags = f;
319 info->data = n;
320}
321
322static inline bool cluster_is_free(struct swap_cluster_info *info)
323{
324 return info->flags & CLUSTER_FLAG_FREE;
325}
326
327static inline bool cluster_is_null(struct swap_cluster_info *info)
328{
329 return info->flags & CLUSTER_FLAG_NEXT_NULL;
330}
331
332static inline void cluster_set_null(struct swap_cluster_info *info)
333{
334 info->flags = CLUSTER_FLAG_NEXT_NULL;
335 info->data = 0;
336}
337
e0709829
HY
338static inline bool cluster_is_huge(struct swap_cluster_info *info)
339{
33ee011e
HY
340 if (IS_ENABLED(CONFIG_THP_SWAP))
341 return info->flags & CLUSTER_FLAG_HUGE;
342 return false;
e0709829
HY
343}
344
345static inline void cluster_clear_huge(struct swap_cluster_info *info)
346{
347 info->flags &= ~CLUSTER_FLAG_HUGE;
348}
349
235b6217
HY
350static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
351 unsigned long offset)
352{
353 struct swap_cluster_info *ci;
354
355 ci = si->cluster_info;
356 if (ci) {
357 ci += offset / SWAPFILE_CLUSTER;
358 spin_lock(&ci->lock);
359 }
360 return ci;
361}
362
363static inline void unlock_cluster(struct swap_cluster_info *ci)
364{
365 if (ci)
366 spin_unlock(&ci->lock);
367}
368
59d98bf3
HY
369/*
370 * Determine the locking method in use for this device. Return
371 * swap_cluster_info if SSD-style cluster-based locking is in place.
372 */
235b6217 373static inline struct swap_cluster_info *lock_cluster_or_swap_info(
59d98bf3 374 struct swap_info_struct *si, unsigned long offset)
235b6217
HY
375{
376 struct swap_cluster_info *ci;
377
59d98bf3 378 /* Try to use fine-grained SSD-style locking if available: */
235b6217 379 ci = lock_cluster(si, offset);
59d98bf3 380 /* Otherwise, fall back to traditional, coarse locking: */
235b6217
HY
381 if (!ci)
382 spin_lock(&si->lock);
383
384 return ci;
385}
386
387static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
388 struct swap_cluster_info *ci)
389{
390 if (ci)
391 unlock_cluster(ci);
392 else
393 spin_unlock(&si->lock);
394}
395
6b534915
HY
396static inline bool cluster_list_empty(struct swap_cluster_list *list)
397{
398 return cluster_is_null(&list->head);
399}
400
401static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
402{
403 return cluster_next(&list->head);
404}
405
406static void cluster_list_init(struct swap_cluster_list *list)
407{
408 cluster_set_null(&list->head);
409 cluster_set_null(&list->tail);
410}
411
412static void cluster_list_add_tail(struct swap_cluster_list *list,
413 struct swap_cluster_info *ci,
414 unsigned int idx)
415{
416 if (cluster_list_empty(list)) {
417 cluster_set_next_flag(&list->head, idx, 0);
418 cluster_set_next_flag(&list->tail, idx, 0);
419 } else {
235b6217 420 struct swap_cluster_info *ci_tail;
6b534915
HY
421 unsigned int tail = cluster_next(&list->tail);
422
235b6217
HY
423 /*
424 * Nested cluster lock, but both cluster locks are
425 * only acquired when we held swap_info_struct->lock
426 */
427 ci_tail = ci + tail;
428 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
429 cluster_set_next(ci_tail, idx);
0ef017d1 430 spin_unlock(&ci_tail->lock);
6b534915
HY
431 cluster_set_next_flag(&list->tail, idx, 0);
432 }
433}
434
435static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
436 struct swap_cluster_info *ci)
437{
438 unsigned int idx;
439
440 idx = cluster_next(&list->head);
441 if (cluster_next(&list->tail) == idx) {
442 cluster_set_null(&list->head);
443 cluster_set_null(&list->tail);
444 } else
445 cluster_set_next_flag(&list->head,
446 cluster_next(&ci[idx]), 0);
447
448 return idx;
449}
450
815c2c54
SL
451/* Add a cluster to discard list and schedule it to do discard */
452static void swap_cluster_schedule_discard(struct swap_info_struct *si,
453 unsigned int idx)
454{
455 /*
456 * If scan_swap_map() can't find a free cluster, it will check
457 * si->swap_map directly. To make sure the discarding cluster isn't
458 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
459 * will be cleared after discard
460 */
461 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
462 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
463
6b534915 464 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
815c2c54
SL
465
466 schedule_work(&si->discard_work);
467}
468
38d8b4e6
HY
469static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
470{
471 struct swap_cluster_info *ci = si->cluster_info;
472
473 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
474 cluster_list_add_tail(&si->free_clusters, ci, idx);
475}
476
815c2c54
SL
477/*
478 * Doing discard actually. After a cluster discard is finished, the cluster
479 * will be added to free cluster list. caller should hold si->lock.
480*/
481static void swap_do_scheduled_discard(struct swap_info_struct *si)
482{
235b6217 483 struct swap_cluster_info *info, *ci;
815c2c54
SL
484 unsigned int idx;
485
486 info = si->cluster_info;
487
6b534915
HY
488 while (!cluster_list_empty(&si->discard_clusters)) {
489 idx = cluster_list_del_first(&si->discard_clusters, info);
815c2c54
SL
490 spin_unlock(&si->lock);
491
492 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
493 SWAPFILE_CLUSTER);
494
495 spin_lock(&si->lock);
235b6217 496 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
38d8b4e6 497 __free_cluster(si, idx);
815c2c54
SL
498 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
499 0, SWAPFILE_CLUSTER);
235b6217 500 unlock_cluster(ci);
815c2c54
SL
501 }
502}
503
504static void swap_discard_work(struct work_struct *work)
505{
506 struct swap_info_struct *si;
507
508 si = container_of(work, struct swap_info_struct, discard_work);
509
510 spin_lock(&si->lock);
511 swap_do_scheduled_discard(si);
512 spin_unlock(&si->lock);
513}
514
63d8620e
ML
515static void swap_users_ref_free(struct percpu_ref *ref)
516{
517 struct swap_info_struct *si;
518
519 si = container_of(ref, struct swap_info_struct, users);
520 complete(&si->comp);
521}
522
38d8b4e6
HY
523static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
524{
525 struct swap_cluster_info *ci = si->cluster_info;
526
527 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
528 cluster_list_del_first(&si->free_clusters, ci);
529 cluster_set_count_flag(ci + idx, 0, 0);
530}
531
532static void free_cluster(struct swap_info_struct *si, unsigned long idx)
533{
534 struct swap_cluster_info *ci = si->cluster_info + idx;
535
536 VM_BUG_ON(cluster_count(ci) != 0);
537 /*
538 * If the swap is discardable, prepare discard the cluster
539 * instead of free it immediately. The cluster will be freed
540 * after discard.
541 */
542 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
543 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
544 swap_cluster_schedule_discard(si, idx);
545 return;
546 }
547
548 __free_cluster(si, idx);
549}
550
2a8f9449
SL
551/*
552 * The cluster corresponding to page_nr will be used. The cluster will be
553 * removed from free cluster list and its usage counter will be increased.
554 */
555static void inc_cluster_info_page(struct swap_info_struct *p,
556 struct swap_cluster_info *cluster_info, unsigned long page_nr)
557{
558 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
559
560 if (!cluster_info)
561 return;
38d8b4e6
HY
562 if (cluster_is_free(&cluster_info[idx]))
563 alloc_cluster(p, idx);
2a8f9449
SL
564
565 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
566 cluster_set_count(&cluster_info[idx],
567 cluster_count(&cluster_info[idx]) + 1);
568}
569
570/*
571 * The cluster corresponding to page_nr decreases one usage. If the usage
572 * counter becomes 0, which means no page in the cluster is in using, we can
573 * optionally discard the cluster and add it to free cluster list.
574 */
575static void dec_cluster_info_page(struct swap_info_struct *p,
576 struct swap_cluster_info *cluster_info, unsigned long page_nr)
577{
578 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
579
580 if (!cluster_info)
581 return;
582
583 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
584 cluster_set_count(&cluster_info[idx],
585 cluster_count(&cluster_info[idx]) - 1);
586
38d8b4e6
HY
587 if (cluster_count(&cluster_info[idx]) == 0)
588 free_cluster(p, idx);
2a8f9449
SL
589}
590
591/*
592 * It's possible scan_swap_map() uses a free cluster in the middle of free
593 * cluster list. Avoiding such abuse to avoid list corruption.
594 */
ebc2a1a6
SL
595static bool
596scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
597 unsigned long offset)
598{
ebc2a1a6
SL
599 struct percpu_cluster *percpu_cluster;
600 bool conflict;
601
2a8f9449 602 offset /= SWAPFILE_CLUSTER;
6b534915
HY
603 conflict = !cluster_list_empty(&si->free_clusters) &&
604 offset != cluster_list_first(&si->free_clusters) &&
2a8f9449 605 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
606
607 if (!conflict)
608 return false;
609
610 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
611 cluster_set_null(&percpu_cluster->index);
612 return true;
613}
614
615/*
616 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
617 * might involve allocating a new cluster for current CPU too.
618 */
36005bae 619static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
ebc2a1a6
SL
620 unsigned long *offset, unsigned long *scan_base)
621{
622 struct percpu_cluster *cluster;
235b6217 623 struct swap_cluster_info *ci;
235b6217 624 unsigned long tmp, max;
ebc2a1a6
SL
625
626new_cluster:
627 cluster = this_cpu_ptr(si->percpu_cluster);
628 if (cluster_is_null(&cluster->index)) {
6b534915
HY
629 if (!cluster_list_empty(&si->free_clusters)) {
630 cluster->index = si->free_clusters.head;
ebc2a1a6
SL
631 cluster->next = cluster_next(&cluster->index) *
632 SWAPFILE_CLUSTER;
6b534915 633 } else if (!cluster_list_empty(&si->discard_clusters)) {
ebc2a1a6
SL
634 /*
635 * we don't have free cluster but have some clusters in
49070588
HY
636 * discarding, do discard now and reclaim them, then
637 * reread cluster_next_cpu since we dropped si->lock
ebc2a1a6
SL
638 */
639 swap_do_scheduled_discard(si);
49070588
HY
640 *scan_base = this_cpu_read(*si->cluster_next_cpu);
641 *offset = *scan_base;
ebc2a1a6
SL
642 goto new_cluster;
643 } else
36005bae 644 return false;
ebc2a1a6
SL
645 }
646
ebc2a1a6
SL
647 /*
648 * Other CPUs can use our cluster if they can't find a free cluster,
649 * check if there is still free entry in the cluster
650 */
651 tmp = cluster->next;
235b6217
HY
652 max = min_t(unsigned long, si->max,
653 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
7b9e2de1
WY
654 if (tmp < max) {
655 ci = lock_cluster(si, tmp);
656 while (tmp < max) {
657 if (!si->swap_map[tmp])
658 break;
659 tmp++;
660 }
661 unlock_cluster(ci);
ebc2a1a6 662 }
0fd0e19e 663 if (tmp >= max) {
ebc2a1a6
SL
664 cluster_set_null(&cluster->index);
665 goto new_cluster;
666 }
667 cluster->next = tmp + 1;
668 *offset = tmp;
669 *scan_base = tmp;
fdff1deb 670 return true;
2a8f9449
SL
671}
672
a2468cc9
AL
673static void __del_from_avail_list(struct swap_info_struct *p)
674{
675 int nid;
676
677 for_each_node(nid)
678 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
679}
680
681static void del_from_avail_list(struct swap_info_struct *p)
682{
683 spin_lock(&swap_avail_lock);
684 __del_from_avail_list(p);
685 spin_unlock(&swap_avail_lock);
686}
687
38d8b4e6
HY
688static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
689 unsigned int nr_entries)
690{
691 unsigned int end = offset + nr_entries - 1;
692
693 if (offset == si->lowest_bit)
694 si->lowest_bit += nr_entries;
695 if (end == si->highest_bit)
a449bf58 696 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
38d8b4e6
HY
697 si->inuse_pages += nr_entries;
698 if (si->inuse_pages == si->pages) {
699 si->lowest_bit = si->max;
700 si->highest_bit = 0;
a2468cc9 701 del_from_avail_list(si);
38d8b4e6
HY
702 }
703}
704
a2468cc9
AL
705static void add_to_avail_list(struct swap_info_struct *p)
706{
707 int nid;
708
709 spin_lock(&swap_avail_lock);
710 for_each_node(nid) {
711 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
712 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
713 }
714 spin_unlock(&swap_avail_lock);
715}
716
38d8b4e6
HY
717static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
718 unsigned int nr_entries)
719{
3852f676 720 unsigned long begin = offset;
38d8b4e6
HY
721 unsigned long end = offset + nr_entries - 1;
722 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
723
724 if (offset < si->lowest_bit)
725 si->lowest_bit = offset;
726 if (end > si->highest_bit) {
727 bool was_full = !si->highest_bit;
728
a449bf58 729 WRITE_ONCE(si->highest_bit, end);
a2468cc9
AL
730 if (was_full && (si->flags & SWP_WRITEOK))
731 add_to_avail_list(si);
38d8b4e6
HY
732 }
733 atomic_long_add(nr_entries, &nr_swap_pages);
734 si->inuse_pages -= nr_entries;
735 if (si->flags & SWP_BLKDEV)
736 swap_slot_free_notify =
737 si->bdev->bd_disk->fops->swap_slot_free_notify;
738 else
739 swap_slot_free_notify = NULL;
740 while (offset <= end) {
8a84802e 741 arch_swap_invalidate_page(si->type, offset);
38d8b4e6
HY
742 frontswap_invalidate_page(si->type, offset);
743 if (swap_slot_free_notify)
744 swap_slot_free_notify(si->bdev, offset);
745 offset++;
746 }
3852f676 747 clear_shadow_from_swap_cache(si->type, begin, end);
38d8b4e6
HY
748}
749
49070588
HY
750static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
751{
752 unsigned long prev;
753
754 if (!(si->flags & SWP_SOLIDSTATE)) {
755 si->cluster_next = next;
756 return;
757 }
758
759 prev = this_cpu_read(*si->cluster_next_cpu);
760 /*
761 * Cross the swap address space size aligned trunk, choose
762 * another trunk randomly to avoid lock contention on swap
763 * address space if possible.
764 */
765 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
766 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
767 /* No free swap slots available */
768 if (si->highest_bit <= si->lowest_bit)
769 return;
770 next = si->lowest_bit +
771 prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
772 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
773 next = max_t(unsigned int, next, si->lowest_bit);
774 }
775 this_cpu_write(*si->cluster_next_cpu, next);
776}
777
36005bae
TC
778static int scan_swap_map_slots(struct swap_info_struct *si,
779 unsigned char usage, int nr,
780 swp_entry_t slots[])
1da177e4 781{
235b6217 782 struct swap_cluster_info *ci;
ebebbbe9 783 unsigned long offset;
c60aa176 784 unsigned long scan_base;
7992fde7 785 unsigned long last_in_cluster = 0;
048c27fd 786 int latency_ration = LATENCY_LIMIT;
36005bae 787 int n_ret = 0;
ed43af10 788 bool scanned_many = false;
36005bae 789
886bb7e9 790 /*
7dfad418
HD
791 * We try to cluster swap pages by allocating them sequentially
792 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
793 * way, however, we resort to first-free allocation, starting
794 * a new cluster. This prevents us from scattering swap pages
795 * all over the entire swap partition, so that we reduce
796 * overall disk seek times between swap pages. -- sct
797 * But we do now try to find an empty cluster. -Andrea
c60aa176 798 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
799 */
800
52b7efdb 801 si->flags += SWP_SCANNING;
49070588
HY
802 /*
803 * Use percpu scan base for SSD to reduce lock contention on
804 * cluster and swap cache. For HDD, sequential access is more
805 * important.
806 */
807 if (si->flags & SWP_SOLIDSTATE)
808 scan_base = this_cpu_read(*si->cluster_next_cpu);
809 else
810 scan_base = si->cluster_next;
811 offset = scan_base;
ebebbbe9 812
ebc2a1a6
SL
813 /* SSD algorithm */
814 if (si->cluster_info) {
bd2d18da 815 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
36005bae 816 goto scan;
f4eaf51a 817 } else if (unlikely(!si->cluster_nr--)) {
ebebbbe9
HD
818 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
819 si->cluster_nr = SWAPFILE_CLUSTER - 1;
820 goto checks;
821 }
2a8f9449 822
ec8acf20 823 spin_unlock(&si->lock);
7dfad418 824
c60aa176
HD
825 /*
826 * If seek is expensive, start searching for new cluster from
827 * start of partition, to minimize the span of allocated swap.
50088c44
CY
828 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
829 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 830 */
50088c44 831 scan_base = offset = si->lowest_bit;
7dfad418
HD
832 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
833
834 /* Locate the first empty (unaligned) cluster */
835 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 836 if (si->swap_map[offset])
7dfad418
HD
837 last_in_cluster = offset + SWAPFILE_CLUSTER;
838 else if (offset == last_in_cluster) {
ec8acf20 839 spin_lock(&si->lock);
ebebbbe9
HD
840 offset -= SWAPFILE_CLUSTER - 1;
841 si->cluster_next = offset;
842 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
843 goto checks;
844 }
845 if (unlikely(--latency_ration < 0)) {
846 cond_resched();
847 latency_ration = LATENCY_LIMIT;
848 }
849 }
850
851 offset = scan_base;
ec8acf20 852 spin_lock(&si->lock);
ebebbbe9 853 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 854 }
7dfad418 855
ebebbbe9 856checks:
ebc2a1a6 857 if (si->cluster_info) {
36005bae
TC
858 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
859 /* take a break if we already got some slots */
860 if (n_ret)
861 goto done;
862 if (!scan_swap_map_try_ssd_cluster(si, &offset,
863 &scan_base))
864 goto scan;
865 }
ebc2a1a6 866 }
ebebbbe9 867 if (!(si->flags & SWP_WRITEOK))
52b7efdb 868 goto no_page;
7dfad418
HD
869 if (!si->highest_bit)
870 goto no_page;
ebebbbe9 871 if (offset > si->highest_bit)
c60aa176 872 scan_base = offset = si->lowest_bit;
c9e44410 873
235b6217 874 ci = lock_cluster(si, offset);
b73d7fce
HD
875 /* reuse swap entry of cache-only swap if not busy. */
876 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 877 int swap_was_freed;
235b6217 878 unlock_cluster(ci);
ec8acf20 879 spin_unlock(&si->lock);
bcd49e86 880 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
ec8acf20 881 spin_lock(&si->lock);
c9e44410
KH
882 /* entry was freed successfully, try to use this again */
883 if (swap_was_freed)
884 goto checks;
885 goto scan; /* check next one */
886 }
887
235b6217
HY
888 if (si->swap_map[offset]) {
889 unlock_cluster(ci);
36005bae
TC
890 if (!n_ret)
891 goto scan;
892 else
893 goto done;
235b6217 894 }
a449bf58 895 WRITE_ONCE(si->swap_map[offset], usage);
2872bb2d
HY
896 inc_cluster_info_page(si, si->cluster_info, offset);
897 unlock_cluster(ci);
ebebbbe9 898
38d8b4e6 899 swap_range_alloc(si, offset, 1);
36005bae
TC
900 slots[n_ret++] = swp_entry(si->type, offset);
901
902 /* got enough slots or reach max slots? */
903 if ((n_ret == nr) || (offset >= si->highest_bit))
904 goto done;
905
906 /* search for next available slot */
907
908 /* time to take a break? */
909 if (unlikely(--latency_ration < 0)) {
910 if (n_ret)
911 goto done;
912 spin_unlock(&si->lock);
913 cond_resched();
914 spin_lock(&si->lock);
915 latency_ration = LATENCY_LIMIT;
916 }
917
918 /* try to get more slots in cluster */
919 if (si->cluster_info) {
920 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
921 goto checks;
f4eaf51a
WY
922 } else if (si->cluster_nr && !si->swap_map[++offset]) {
923 /* non-ssd case, still more slots in cluster? */
36005bae
TC
924 --si->cluster_nr;
925 goto checks;
926 }
7992fde7 927
ed43af10
HY
928 /*
929 * Even if there's no free clusters available (fragmented),
930 * try to scan a little more quickly with lock held unless we
931 * have scanned too many slots already.
932 */
933 if (!scanned_many) {
934 unsigned long scan_limit;
935
936 if (offset < scan_base)
937 scan_limit = scan_base;
938 else
939 scan_limit = si->highest_bit;
940 for (; offset <= scan_limit && --latency_ration > 0;
941 offset++) {
942 if (!si->swap_map[offset])
943 goto checks;
944 }
945 }
946
36005bae 947done:
49070588 948 set_cluster_next(si, offset + 1);
36005bae
TC
949 si->flags -= SWP_SCANNING;
950 return n_ret;
7dfad418 951
ebebbbe9 952scan:
ec8acf20 953 spin_unlock(&si->lock);
a449bf58
QC
954 while (++offset <= READ_ONCE(si->highest_bit)) {
955 if (data_race(!si->swap_map[offset])) {
ec8acf20 956 spin_lock(&si->lock);
52b7efdb
HD
957 goto checks;
958 }
a449bf58
QC
959 if (vm_swap_full() &&
960 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
ec8acf20 961 spin_lock(&si->lock);
c9e44410
KH
962 goto checks;
963 }
048c27fd
HD
964 if (unlikely(--latency_ration < 0)) {
965 cond_resched();
966 latency_ration = LATENCY_LIMIT;
ed43af10 967 scanned_many = true;
048c27fd 968 }
7dfad418 969 }
c60aa176 970 offset = si->lowest_bit;
a5998061 971 while (offset < scan_base) {
a449bf58 972 if (data_race(!si->swap_map[offset])) {
ec8acf20 973 spin_lock(&si->lock);
c60aa176
HD
974 goto checks;
975 }
a449bf58
QC
976 if (vm_swap_full() &&
977 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
ec8acf20 978 spin_lock(&si->lock);
c9e44410
KH
979 goto checks;
980 }
c60aa176
HD
981 if (unlikely(--latency_ration < 0)) {
982 cond_resched();
983 latency_ration = LATENCY_LIMIT;
ed43af10 984 scanned_many = true;
c60aa176 985 }
a5998061 986 offset++;
c60aa176 987 }
ec8acf20 988 spin_lock(&si->lock);
7dfad418
HD
989
990no_page:
52b7efdb 991 si->flags -= SWP_SCANNING;
36005bae 992 return n_ret;
1da177e4
LT
993}
994
38d8b4e6
HY
995static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
996{
997 unsigned long idx;
998 struct swap_cluster_info *ci;
661c7566 999 unsigned long offset;
38d8b4e6 1000
fe5266d5
HY
1001 /*
1002 * Should not even be attempting cluster allocations when huge
1003 * page swap is disabled. Warn and fail the allocation.
1004 */
1005 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1006 VM_WARN_ON_ONCE(1);
1007 return 0;
1008 }
1009
38d8b4e6
HY
1010 if (cluster_list_empty(&si->free_clusters))
1011 return 0;
1012
1013 idx = cluster_list_first(&si->free_clusters);
1014 offset = idx * SWAPFILE_CLUSTER;
1015 ci = lock_cluster(si, offset);
1016 alloc_cluster(si, idx);
e0709829 1017 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
38d8b4e6 1018
661c7566 1019 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
38d8b4e6
HY
1020 unlock_cluster(ci);
1021 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1022 *slot = swp_entry(si->type, offset);
1023
1024 return 1;
1025}
1026
1027static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1028{
1029 unsigned long offset = idx * SWAPFILE_CLUSTER;
1030 struct swap_cluster_info *ci;
1031
1032 ci = lock_cluster(si, offset);
979aafa5 1033 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
38d8b4e6
HY
1034 cluster_set_count_flag(ci, 0, 0);
1035 free_cluster(si, idx);
1036 unlock_cluster(ci);
1037 swap_range_free(si, offset, SWAPFILE_CLUSTER);
1038}
38d8b4e6 1039
36005bae
TC
1040static unsigned long scan_swap_map(struct swap_info_struct *si,
1041 unsigned char usage)
1042{
1043 swp_entry_t entry;
1044 int n_ret;
1045
1046 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1047
1048 if (n_ret)
1049 return swp_offset(entry);
1050 else
1051 return 0;
1052
1053}
1054
5d5e8f19 1055int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1da177e4 1056{
5d5e8f19 1057 unsigned long size = swap_entry_size(entry_size);
adfab836 1058 struct swap_info_struct *si, *next;
36005bae
TC
1059 long avail_pgs;
1060 int n_ret = 0;
a2468cc9 1061 int node;
1da177e4 1062
38d8b4e6 1063 /* Only single cluster request supported */
5d5e8f19 1064 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
38d8b4e6 1065
b50da6e9
ZH
1066 spin_lock(&swap_avail_lock);
1067
5d5e8f19 1068 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
b50da6e9
ZH
1069 if (avail_pgs <= 0) {
1070 spin_unlock(&swap_avail_lock);
fb4f88dc 1071 goto noswap;
b50da6e9 1072 }
36005bae 1073
08d3090f 1074 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
36005bae 1075
5d5e8f19 1076 atomic_long_sub(n_goal * size, &nr_swap_pages);
fb4f88dc 1077
18ab4d4c 1078start_over:
a2468cc9
AL
1079 node = numa_node_id();
1080 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
18ab4d4c 1081 /* requeue si to after same-priority siblings */
a2468cc9 1082 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
18ab4d4c 1083 spin_unlock(&swap_avail_lock);
ec8acf20 1084 spin_lock(&si->lock);
adfab836 1085 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c 1086 spin_lock(&swap_avail_lock);
a2468cc9 1087 if (plist_node_empty(&si->avail_lists[node])) {
18ab4d4c
DS
1088 spin_unlock(&si->lock);
1089 goto nextsi;
1090 }
1091 WARN(!si->highest_bit,
1092 "swap_info %d in list but !highest_bit\n",
1093 si->type);
1094 WARN(!(si->flags & SWP_WRITEOK),
1095 "swap_info %d in list but !SWP_WRITEOK\n",
1096 si->type);
a2468cc9 1097 __del_from_avail_list(si);
ec8acf20 1098 spin_unlock(&si->lock);
18ab4d4c 1099 goto nextsi;
ec8acf20 1100 }
5d5e8f19 1101 if (size == SWAPFILE_CLUSTER) {
41663430 1102 if (si->flags & SWP_BLKDEV)
f0eea189
HY
1103 n_ret = swap_alloc_cluster(si, swp_entries);
1104 } else
38d8b4e6
HY
1105 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1106 n_goal, swp_entries);
ec8acf20 1107 spin_unlock(&si->lock);
5d5e8f19 1108 if (n_ret || size == SWAPFILE_CLUSTER)
36005bae 1109 goto check_out;
18ab4d4c 1110 pr_debug("scan_swap_map of si %d failed to find offset\n",
36005bae
TC
1111 si->type);
1112
18ab4d4c
DS
1113 spin_lock(&swap_avail_lock);
1114nextsi:
adfab836
DS
1115 /*
1116 * if we got here, it's likely that si was almost full before,
1117 * and since scan_swap_map() can drop the si->lock, multiple
1118 * callers probably all tried to get a page from the same si
18ab4d4c
DS
1119 * and it filled up before we could get one; or, the si filled
1120 * up between us dropping swap_avail_lock and taking si->lock.
1121 * Since we dropped the swap_avail_lock, the swap_avail_head
1122 * list may have been modified; so if next is still in the
36005bae
TC
1123 * swap_avail_head list then try it, otherwise start over
1124 * if we have not gotten any slots.
adfab836 1125 */
a2468cc9 1126 if (plist_node_empty(&next->avail_lists[node]))
18ab4d4c 1127 goto start_over;
1da177e4 1128 }
fb4f88dc 1129
18ab4d4c
DS
1130 spin_unlock(&swap_avail_lock);
1131
36005bae
TC
1132check_out:
1133 if (n_ret < n_goal)
5d5e8f19 1134 atomic_long_add((long)(n_goal - n_ret) * size,
38d8b4e6 1135 &nr_swap_pages);
fb4f88dc 1136noswap:
36005bae
TC
1137 return n_ret;
1138}
1139
2de1a7e4 1140/* The only caller of this function is now suspend routine */
910321ea
HD
1141swp_entry_t get_swap_page_of_type(int type)
1142{
c10d38cc 1143 struct swap_info_struct *si = swap_type_to_swap_info(type);
910321ea
HD
1144 pgoff_t offset;
1145
c10d38cc
DJ
1146 if (!si)
1147 goto fail;
1148
ec8acf20 1149 spin_lock(&si->lock);
c10d38cc 1150 if (si->flags & SWP_WRITEOK) {
910321ea
HD
1151 /* This is called for allocating swap entry, not cache */
1152 offset = scan_swap_map(si, 1);
1153 if (offset) {
b50da6e9 1154 atomic_long_dec(&nr_swap_pages);
ec8acf20 1155 spin_unlock(&si->lock);
910321ea
HD
1156 return swp_entry(type, offset);
1157 }
910321ea 1158 }
ec8acf20 1159 spin_unlock(&si->lock);
c10d38cc 1160fail:
910321ea
HD
1161 return (swp_entry_t) {0};
1162}
1163
e8c26ab6 1164static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1da177e4 1165{
73c34b6a 1166 struct swap_info_struct *p;
eb085574 1167 unsigned long offset;
1da177e4
LT
1168
1169 if (!entry.val)
1170 goto out;
eb085574 1171 p = swp_swap_info(entry);
c10d38cc 1172 if (!p)
1da177e4 1173 goto bad_nofile;
a449bf58 1174 if (data_race(!(p->flags & SWP_USED)))
1da177e4
LT
1175 goto bad_device;
1176 offset = swp_offset(entry);
1177 if (offset >= p->max)
1178 goto bad_offset;
1da177e4
LT
1179 return p;
1180
1da177e4 1181bad_offset:
cf532faa 1182 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1da177e4
LT
1183 goto out;
1184bad_device:
cf532faa 1185 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1da177e4
LT
1186 goto out;
1187bad_nofile:
cf532faa 1188 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1da177e4
LT
1189out:
1190 return NULL;
886bb7e9 1191}
1da177e4 1192
e8c26ab6
TC
1193static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1194{
1195 struct swap_info_struct *p;
1196
1197 p = __swap_info_get(entry);
1198 if (!p)
1199 goto out;
a449bf58 1200 if (data_race(!p->swap_map[swp_offset(entry)]))
e8c26ab6
TC
1201 goto bad_free;
1202 return p;
1203
1204bad_free:
cf532faa 1205 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
e8c26ab6
TC
1206out:
1207 return NULL;
1208}
1209
235b6217
HY
1210static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1211{
1212 struct swap_info_struct *p;
1213
1214 p = _swap_info_get(entry);
1215 if (p)
1216 spin_lock(&p->lock);
1217 return p;
1218}
1219
7c00bafe
TC
1220static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1221 struct swap_info_struct *q)
1222{
1223 struct swap_info_struct *p;
1224
1225 p = _swap_info_get(entry);
1226
1227 if (p != q) {
1228 if (q != NULL)
1229 spin_unlock(&q->lock);
1230 if (p != NULL)
1231 spin_lock(&p->lock);
1232 }
1233 return p;
1234}
1235
b32d5f32
HY
1236static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1237 unsigned long offset,
1238 unsigned char usage)
1da177e4 1239{
8d69aaee
HD
1240 unsigned char count;
1241 unsigned char has_cache;
235b6217 1242
253d553b 1243 count = p->swap_map[offset];
235b6217 1244
253d553b
HD
1245 has_cache = count & SWAP_HAS_CACHE;
1246 count &= ~SWAP_HAS_CACHE;
355cfa73 1247
253d553b 1248 if (usage == SWAP_HAS_CACHE) {
355cfa73 1249 VM_BUG_ON(!has_cache);
253d553b 1250 has_cache = 0;
aaa46865
HD
1251 } else if (count == SWAP_MAP_SHMEM) {
1252 /*
1253 * Or we could insist on shmem.c using a special
1254 * swap_shmem_free() and free_shmem_swap_and_cache()...
1255 */
1256 count = 0;
570a335b
HD
1257 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1258 if (count == COUNT_CONTINUED) {
1259 if (swap_count_continued(p, offset, count))
1260 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1261 else
1262 count = SWAP_MAP_MAX;
1263 } else
1264 count--;
1265 }
253d553b 1266
253d553b 1267 usage = count | has_cache;
a449bf58
QC
1268 if (usage)
1269 WRITE_ONCE(p->swap_map[offset], usage);
1270 else
1271 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
7c00bafe 1272
b32d5f32
HY
1273 return usage;
1274}
1275
eb085574
HY
1276/*
1277 * Check whether swap entry is valid in the swap device. If so,
1278 * return pointer to swap_info_struct, and keep the swap entry valid
1279 * via preventing the swap device from being swapoff, until
1280 * put_swap_device() is called. Otherwise return NULL.
1281 *
eb085574 1282 * Notice that swapoff or swapoff+swapon can still happen before the
63d8620e
ML
1283 * percpu_ref_tryget_live() in get_swap_device() or after the
1284 * percpu_ref_put() in put_swap_device() if there isn't any other way
1285 * to prevent swapoff, such as page lock, page table lock, etc. The
1286 * caller must be prepared for that. For example, the following
1287 * situation is possible.
eb085574
HY
1288 *
1289 * CPU1 CPU2
1290 * do_swap_page()
1291 * ... swapoff+swapon
1292 * __read_swap_cache_async()
1293 * swapcache_prepare()
1294 * __swap_duplicate()
1295 * // check swap_map
1296 * // verify PTE not changed
1297 *
1298 * In __swap_duplicate(), the swap_map need to be checked before
1299 * changing partly because the specified swap entry may be for another
1300 * swap device which has been swapoff. And in do_swap_page(), after
1301 * the page is read from the swap device, the PTE is verified not
1302 * changed with the page table locked to check whether the swap device
1303 * has been swapoff or swapoff+swapon.
1304 */
1305struct swap_info_struct *get_swap_device(swp_entry_t entry)
1306{
1307 struct swap_info_struct *si;
1308 unsigned long offset;
1309
1310 if (!entry.val)
1311 goto out;
1312 si = swp_swap_info(entry);
1313 if (!si)
1314 goto bad_nofile;
63d8620e
ML
1315 if (!percpu_ref_tryget_live(&si->users))
1316 goto out;
1317 /*
1318 * Guarantee the si->users are checked before accessing other
1319 * fields of swap_info_struct.
1320 *
1321 * Paired with the spin_unlock() after setup_swap_info() in
1322 * enable_swap_info().
1323 */
1324 smp_rmb();
eb085574
HY
1325 offset = swp_offset(entry);
1326 if (offset >= si->max)
63d8620e 1327 goto put_out;
eb085574
HY
1328
1329 return si;
1330bad_nofile:
1331 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1332out:
1333 return NULL;
63d8620e
ML
1334put_out:
1335 percpu_ref_put(&si->users);
eb085574
HY
1336 return NULL;
1337}
1338
b32d5f32 1339static unsigned char __swap_entry_free(struct swap_info_struct *p,
33e16272 1340 swp_entry_t entry)
b32d5f32
HY
1341{
1342 struct swap_cluster_info *ci;
1343 unsigned long offset = swp_offset(entry);
33e16272 1344 unsigned char usage;
b32d5f32
HY
1345
1346 ci = lock_cluster_or_swap_info(p, offset);
33e16272 1347 usage = __swap_entry_free_locked(p, offset, 1);
7c00bafe 1348 unlock_cluster_or_swap_info(p, ci);
10e364da
HY
1349 if (!usage)
1350 free_swap_slot(entry);
7c00bafe
TC
1351
1352 return usage;
1353}
355cfa73 1354
7c00bafe
TC
1355static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1356{
1357 struct swap_cluster_info *ci;
1358 unsigned long offset = swp_offset(entry);
1359 unsigned char count;
1360
1361 ci = lock_cluster(p, offset);
1362 count = p->swap_map[offset];
1363 VM_BUG_ON(count != SWAP_HAS_CACHE);
1364 p->swap_map[offset] = 0;
1365 dec_cluster_info_page(p, p->cluster_info, offset);
235b6217
HY
1366 unlock_cluster(ci);
1367
38d8b4e6
HY
1368 mem_cgroup_uncharge_swap(entry, 1);
1369 swap_range_free(p, offset, 1);
1da177e4
LT
1370}
1371
1372/*
2de1a7e4 1373 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
1374 * is still around or has not been recycled.
1375 */
1376void swap_free(swp_entry_t entry)
1377{
73c34b6a 1378 struct swap_info_struct *p;
1da177e4 1379
235b6217 1380 p = _swap_info_get(entry);
10e364da 1381 if (p)
33e16272 1382 __swap_entry_free(p, entry);
1da177e4
LT
1383}
1384
cb4b86ba
KH
1385/*
1386 * Called after dropping swapcache to decrease refcnt to swap entries.
1387 */
a448f2d0 1388void put_swap_page(struct page *page, swp_entry_t entry)
38d8b4e6
HY
1389{
1390 unsigned long offset = swp_offset(entry);
1391 unsigned long idx = offset / SWAPFILE_CLUSTER;
1392 struct swap_cluster_info *ci;
1393 struct swap_info_struct *si;
1394 unsigned char *map;
a3aea839
HY
1395 unsigned int i, free_entries = 0;
1396 unsigned char val;
6c357848 1397 int size = swap_entry_size(thp_nr_pages(page));
fe5266d5 1398
a3aea839 1399 si = _swap_info_get(entry);
38d8b4e6
HY
1400 if (!si)
1401 return;
1402
c2343d27 1403 ci = lock_cluster_or_swap_info(si, offset);
a448f2d0 1404 if (size == SWAPFILE_CLUSTER) {
a448f2d0
HY
1405 VM_BUG_ON(!cluster_is_huge(ci));
1406 map = si->swap_map + offset;
1407 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1408 val = map[i];
1409 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1410 if (val == SWAP_HAS_CACHE)
1411 free_entries++;
1412 }
a448f2d0 1413 cluster_clear_huge(ci);
a448f2d0 1414 if (free_entries == SWAPFILE_CLUSTER) {
c2343d27 1415 unlock_cluster_or_swap_info(si, ci);
a448f2d0 1416 spin_lock(&si->lock);
a448f2d0
HY
1417 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1418 swap_free_cluster(si, idx);
1419 spin_unlock(&si->lock);
1420 return;
1421 }
1422 }
c2343d27
HY
1423 for (i = 0; i < size; i++, entry.val++) {
1424 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1425 unlock_cluster_or_swap_info(si, ci);
1426 free_swap_slot(entry);
1427 if (i == size - 1)
1428 return;
1429 lock_cluster_or_swap_info(si, offset);
a3aea839
HY
1430 }
1431 }
c2343d27 1432 unlock_cluster_or_swap_info(si, ci);
38d8b4e6 1433}
59807685 1434
fe5266d5 1435#ifdef CONFIG_THP_SWAP
59807685
HY
1436int split_swap_cluster(swp_entry_t entry)
1437{
1438 struct swap_info_struct *si;
1439 struct swap_cluster_info *ci;
1440 unsigned long offset = swp_offset(entry);
1441
1442 si = _swap_info_get(entry);
1443 if (!si)
1444 return -EBUSY;
1445 ci = lock_cluster(si, offset);
1446 cluster_clear_huge(ci);
1447 unlock_cluster(ci);
1448 return 0;
1449}
fe5266d5 1450#endif
38d8b4e6 1451
155b5f88
HY
1452static int swp_entry_cmp(const void *ent1, const void *ent2)
1453{
1454 const swp_entry_t *e1 = ent1, *e2 = ent2;
1455
1456 return (int)swp_type(*e1) - (int)swp_type(*e2);
1457}
1458
7c00bafe
TC
1459void swapcache_free_entries(swp_entry_t *entries, int n)
1460{
1461 struct swap_info_struct *p, *prev;
1462 int i;
1463
1464 if (n <= 0)
1465 return;
1466
1467 prev = NULL;
1468 p = NULL;
155b5f88
HY
1469
1470 /*
1471 * Sort swap entries by swap device, so each lock is only taken once.
1472 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1473 * so low that it isn't necessary to optimize further.
1474 */
1475 if (nr_swapfiles > 1)
1476 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
7c00bafe
TC
1477 for (i = 0; i < n; ++i) {
1478 p = swap_info_get_cont(entries[i], prev);
1479 if (p)
1480 swap_entry_free(p, entries[i]);
7c00bafe
TC
1481 prev = p;
1482 }
235b6217 1483 if (p)
7c00bafe 1484 spin_unlock(&p->lock);
cb4b86ba
KH
1485}
1486
1da177e4 1487/*
c475a8ab 1488 * How many references to page are currently swapped out?
570a335b
HD
1489 * This does not give an exact answer when swap count is continued,
1490 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 1491 */
bde05d1c 1492int page_swapcount(struct page *page)
1da177e4 1493{
c475a8ab
HD
1494 int count = 0;
1495 struct swap_info_struct *p;
235b6217 1496 struct swap_cluster_info *ci;
1da177e4 1497 swp_entry_t entry;
235b6217 1498 unsigned long offset;
1da177e4 1499
4c21e2f2 1500 entry.val = page_private(page);
235b6217 1501 p = _swap_info_get(entry);
1da177e4 1502 if (p) {
235b6217
HY
1503 offset = swp_offset(entry);
1504 ci = lock_cluster_or_swap_info(p, offset);
1505 count = swap_count(p->swap_map[offset]);
1506 unlock_cluster_or_swap_info(p, ci);
1da177e4 1507 }
c475a8ab 1508 return count;
1da177e4
LT
1509}
1510
eb085574 1511int __swap_count(swp_entry_t entry)
aa8d22a1 1512{
eb085574 1513 struct swap_info_struct *si;
aa8d22a1 1514 pgoff_t offset = swp_offset(entry);
eb085574 1515 int count = 0;
aa8d22a1 1516
eb085574
HY
1517 si = get_swap_device(entry);
1518 if (si) {
1519 count = swap_count(si->swap_map[offset]);
1520 put_swap_device(si);
1521 }
1522 return count;
aa8d22a1
MK
1523}
1524
322b8afe
HY
1525static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1526{
1527 int count = 0;
1528 pgoff_t offset = swp_offset(entry);
1529 struct swap_cluster_info *ci;
1530
1531 ci = lock_cluster_or_swap_info(si, offset);
1532 count = swap_count(si->swap_map[offset]);
1533 unlock_cluster_or_swap_info(si, ci);
1534 return count;
1535}
1536
e8c26ab6
TC
1537/*
1538 * How many references to @entry are currently swapped out?
1539 * This does not give an exact answer when swap count is continued,
1540 * but does include the high COUNT_CONTINUED flag to allow for that.
1541 */
1542int __swp_swapcount(swp_entry_t entry)
1543{
1544 int count = 0;
e8c26ab6 1545 struct swap_info_struct *si;
e8c26ab6 1546
eb085574
HY
1547 si = get_swap_device(entry);
1548 if (si) {
322b8afe 1549 count = swap_swapcount(si, entry);
eb085574
HY
1550 put_swap_device(si);
1551 }
e8c26ab6
TC
1552 return count;
1553}
1554
8334b962
MK
1555/*
1556 * How many references to @entry are currently swapped out?
1557 * This considers COUNT_CONTINUED so it returns exact answer.
1558 */
1559int swp_swapcount(swp_entry_t entry)
1560{
1561 int count, tmp_count, n;
1562 struct swap_info_struct *p;
235b6217 1563 struct swap_cluster_info *ci;
8334b962
MK
1564 struct page *page;
1565 pgoff_t offset;
1566 unsigned char *map;
1567
235b6217 1568 p = _swap_info_get(entry);
8334b962
MK
1569 if (!p)
1570 return 0;
1571
235b6217
HY
1572 offset = swp_offset(entry);
1573
1574 ci = lock_cluster_or_swap_info(p, offset);
1575
1576 count = swap_count(p->swap_map[offset]);
8334b962
MK
1577 if (!(count & COUNT_CONTINUED))
1578 goto out;
1579
1580 count &= ~COUNT_CONTINUED;
1581 n = SWAP_MAP_MAX + 1;
1582
8334b962
MK
1583 page = vmalloc_to_page(p->swap_map + offset);
1584 offset &= ~PAGE_MASK;
1585 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1586
1587 do {
a8ae4991 1588 page = list_next_entry(page, lru);
8334b962
MK
1589 map = kmap_atomic(page);
1590 tmp_count = map[offset];
1591 kunmap_atomic(map);
1592
1593 count += (tmp_count & ~COUNT_CONTINUED) * n;
1594 n *= (SWAP_CONT_MAX + 1);
1595 } while (tmp_count & COUNT_CONTINUED);
1596out:
235b6217 1597 unlock_cluster_or_swap_info(p, ci);
8334b962
MK
1598 return count;
1599}
1600
e0709829
HY
1601static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1602 swp_entry_t entry)
1603{
1604 struct swap_cluster_info *ci;
1605 unsigned char *map = si->swap_map;
1606 unsigned long roffset = swp_offset(entry);
1607 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1608 int i;
1609 bool ret = false;
1610
1611 ci = lock_cluster_or_swap_info(si, offset);
1612 if (!ci || !cluster_is_huge(ci)) {
afa4711e 1613 if (swap_count(map[roffset]))
e0709829
HY
1614 ret = true;
1615 goto unlock_out;
1616 }
1617 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
afa4711e 1618 if (swap_count(map[offset + i])) {
e0709829
HY
1619 ret = true;
1620 break;
1621 }
1622 }
1623unlock_out:
1624 unlock_cluster_or_swap_info(si, ci);
1625 return ret;
1626}
1627
1628static bool page_swapped(struct page *page)
1629{
1630 swp_entry_t entry;
1631 struct swap_info_struct *si;
1632
fe5266d5 1633 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
e0709829
HY
1634 return page_swapcount(page) != 0;
1635
1636 page = compound_head(page);
1637 entry.val = page_private(page);
1638 si = _swap_info_get(entry);
1639 if (si)
1640 return swap_page_trans_huge_swapped(si, entry);
1641 return false;
1642}
ba3c4ce6
HY
1643
1644static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1645 int *total_swapcount)
1646{
1647 int i, map_swapcount, _total_mapcount, _total_swapcount;
1648 unsigned long offset = 0;
1649 struct swap_info_struct *si;
1650 struct swap_cluster_info *ci = NULL;
1651 unsigned char *map = NULL;
1652 int mapcount, swapcount = 0;
1653
1654 /* hugetlbfs shouldn't call it */
1655 VM_BUG_ON_PAGE(PageHuge(page), page);
1656
fe5266d5
HY
1657 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1658 mapcount = page_trans_huge_mapcount(page, total_mapcount);
ba3c4ce6
HY
1659 if (PageSwapCache(page))
1660 swapcount = page_swapcount(page);
1661 if (total_swapcount)
1662 *total_swapcount = swapcount;
1663 return mapcount + swapcount;
1664 }
1665
1666 page = compound_head(page);
1667
1668 _total_mapcount = _total_swapcount = map_swapcount = 0;
1669 if (PageSwapCache(page)) {
1670 swp_entry_t entry;
1671
1672 entry.val = page_private(page);
1673 si = _swap_info_get(entry);
1674 if (si) {
1675 map = si->swap_map;
1676 offset = swp_offset(entry);
1677 }
1678 }
1679 if (map)
1680 ci = lock_cluster(si, offset);
1681 for (i = 0; i < HPAGE_PMD_NR; i++) {
1682 mapcount = atomic_read(&page[i]._mapcount) + 1;
1683 _total_mapcount += mapcount;
1684 if (map) {
1685 swapcount = swap_count(map[offset + i]);
1686 _total_swapcount += swapcount;
1687 }
1688 map_swapcount = max(map_swapcount, mapcount + swapcount);
1689 }
1690 unlock_cluster(ci);
1691 if (PageDoubleMap(page)) {
1692 map_swapcount -= 1;
1693 _total_mapcount -= HPAGE_PMD_NR;
1694 }
1695 mapcount = compound_mapcount(page);
1696 map_swapcount += mapcount;
1697 _total_mapcount += mapcount;
1698 if (total_mapcount)
1699 *total_mapcount = _total_mapcount;
1700 if (total_swapcount)
1701 *total_swapcount = _total_swapcount;
1702
1703 return map_swapcount;
1704}
e0709829 1705
1da177e4 1706/*
7b1fe597
HD
1707 * We can write to an anon page without COW if there are no other references
1708 * to it. And as a side-effect, free up its swap: because the old content
1709 * on disk will never be read, and seeking back there to write new content
1710 * later would only waste time away from clustering.
6d0a07ed 1711 *
ba3c4ce6 1712 * NOTE: total_map_swapcount should not be relied upon by the caller if
6d0a07ed
AA
1713 * reuse_swap_page() returns false, but it may be always overwritten
1714 * (see the other implementation for CONFIG_SWAP=n).
1da177e4 1715 */
ba3c4ce6 1716bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1da177e4 1717{
ba3c4ce6 1718 int count, total_mapcount, total_swapcount;
c475a8ab 1719
309381fe 1720 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688 1721 if (unlikely(PageKsm(page)))
6d0a07ed 1722 return false;
ba3c4ce6
HY
1723 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1724 &total_swapcount);
1725 if (total_map_swapcount)
1726 *total_map_swapcount = total_mapcount + total_swapcount;
1727 if (count == 1 && PageSwapCache(page) &&
1728 (likely(!PageTransCompound(page)) ||
1729 /* The remaining swap count will be freed soon */
1730 total_swapcount == page_swapcount(page))) {
f0571429 1731 if (!PageWriteback(page)) {
ba3c4ce6 1732 page = compound_head(page);
7b1fe597
HD
1733 delete_from_swap_cache(page);
1734 SetPageDirty(page);
f0571429
MK
1735 } else {
1736 swp_entry_t entry;
1737 struct swap_info_struct *p;
1738
1739 entry.val = page_private(page);
1740 p = swap_info_get(entry);
1741 if (p->flags & SWP_STABLE_WRITES) {
1742 spin_unlock(&p->lock);
1743 return false;
1744 }
1745 spin_unlock(&p->lock);
7b1fe597
HD
1746 }
1747 }
ba3c4ce6 1748
5ad64688 1749 return count <= 1;
1da177e4
LT
1750}
1751
1752/*
a2c43eed
HD
1753 * If swap is getting full, or if there are no more mappings of this page,
1754 * then try_to_free_swap is called to free its swap space.
1da177e4 1755 */
a2c43eed 1756int try_to_free_swap(struct page *page)
1da177e4 1757{
309381fe 1758 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
1759
1760 if (!PageSwapCache(page))
1761 return 0;
1762 if (PageWriteback(page))
1763 return 0;
e0709829 1764 if (page_swapped(page))
1da177e4
LT
1765 return 0;
1766
b73d7fce
HD
1767 /*
1768 * Once hibernation has begun to create its image of memory,
1769 * there's a danger that one of the calls to try_to_free_swap()
1770 * - most probably a call from __try_to_reclaim_swap() while
1771 * hibernation is allocating its own swap pages for the image,
1772 * but conceivably even a call from memory reclaim - will free
1773 * the swap from a page which has already been recorded in the
1774 * image as a clean swapcache page, and then reuse its swap for
1775 * another page of the image. On waking from hibernation, the
1776 * original page might be freed under memory pressure, then
1777 * later read back in from swap, now with the wrong data.
1778 *
2de1a7e4 1779 * Hibernation suspends storage while it is writing the image
f90ac398 1780 * to disk so check that here.
b73d7fce 1781 */
f90ac398 1782 if (pm_suspended_storage())
b73d7fce
HD
1783 return 0;
1784
e0709829 1785 page = compound_head(page);
a2c43eed
HD
1786 delete_from_swap_cache(page);
1787 SetPageDirty(page);
1788 return 1;
68a22394
RR
1789}
1790
1da177e4
LT
1791/*
1792 * Free the swap entry like above, but also try to
1793 * free the page cache entry if it is the last user.
1794 */
2509ef26 1795int free_swap_and_cache(swp_entry_t entry)
1da177e4 1796{
2509ef26 1797 struct swap_info_struct *p;
7c00bafe 1798 unsigned char count;
1da177e4 1799
a7420aa5 1800 if (non_swap_entry(entry))
2509ef26 1801 return 1;
0697212a 1802
7c00bafe 1803 p = _swap_info_get(entry);
1da177e4 1804 if (p) {
33e16272 1805 count = __swap_entry_free(p, entry);
e0709829 1806 if (count == SWAP_HAS_CACHE &&
bcd49e86
HY
1807 !swap_page_trans_huge_swapped(p, entry))
1808 __try_to_reclaim_swap(p, swp_offset(entry),
1809 TTRS_UNMAPPED | TTRS_FULL);
1da177e4 1810 }
2509ef26 1811 return p != NULL;
1da177e4
LT
1812}
1813
b0cb1a19 1814#ifdef CONFIG_HIBERNATION
f577eb30 1815/*
915bae9e 1816 * Find the swap type that corresponds to given device (if any).
f577eb30 1817 *
915bae9e
RW
1818 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1819 * from 0, in which the swap header is expected to be located.
1820 *
1821 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1822 */
21bd9005 1823int swap_type_of(dev_t device, sector_t offset)
f577eb30 1824{
efa90a98 1825 int type;
f577eb30 1826
21bd9005
CH
1827 if (!device)
1828 return -1;
915bae9e 1829
f577eb30 1830 spin_lock(&swap_lock);
efa90a98
HD
1831 for (type = 0; type < nr_swapfiles; type++) {
1832 struct swap_info_struct *sis = swap_info[type];
f577eb30 1833
915bae9e 1834 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1835 continue;
b6b5bce3 1836
21bd9005 1837 if (device == sis->bdev->bd_dev) {
4efaceb1 1838 struct swap_extent *se = first_se(sis);
915bae9e 1839
915bae9e
RW
1840 if (se->start_block == offset) {
1841 spin_unlock(&swap_lock);
efa90a98 1842 return type;
915bae9e 1843 }
f577eb30
RW
1844 }
1845 }
1846 spin_unlock(&swap_lock);
21bd9005
CH
1847 return -ENODEV;
1848}
915bae9e 1849
21bd9005
CH
1850int find_first_swap(dev_t *device)
1851{
1852 int type;
915bae9e 1853
21bd9005
CH
1854 spin_lock(&swap_lock);
1855 for (type = 0; type < nr_swapfiles; type++) {
1856 struct swap_info_struct *sis = swap_info[type];
1857
1858 if (!(sis->flags & SWP_WRITEOK))
1859 continue;
1860 *device = sis->bdev->bd_dev;
1861 spin_unlock(&swap_lock);
1862 return type;
1863 }
1864 spin_unlock(&swap_lock);
f577eb30
RW
1865 return -ENODEV;
1866}
1867
73c34b6a
HD
1868/*
1869 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1870 * corresponding to given index in swap_info (swap type).
1871 */
1872sector_t swapdev_block(int type, pgoff_t offset)
1873{
c10d38cc 1874 struct swap_info_struct *si = swap_type_to_swap_info(type);
f885056a 1875 struct swap_extent *se;
73c34b6a 1876
c10d38cc 1877 if (!si || !(si->flags & SWP_WRITEOK))
73c34b6a 1878 return 0;
f885056a
CH
1879 se = offset_to_swap_extent(si, offset);
1880 return se->start_block + (offset - se->start_page);
73c34b6a
HD
1881}
1882
f577eb30
RW
1883/*
1884 * Return either the total number of swap pages of given type, or the number
1885 * of free pages of that type (depending on @free)
1886 *
1887 * This is needed for software suspend
1888 */
1889unsigned int count_swap_pages(int type, int free)
1890{
1891 unsigned int n = 0;
1892
efa90a98
HD
1893 spin_lock(&swap_lock);
1894 if ((unsigned int)type < nr_swapfiles) {
1895 struct swap_info_struct *sis = swap_info[type];
1896
ec8acf20 1897 spin_lock(&sis->lock);
efa90a98
HD
1898 if (sis->flags & SWP_WRITEOK) {
1899 n = sis->pages;
f577eb30 1900 if (free)
efa90a98 1901 n -= sis->inuse_pages;
f577eb30 1902 }
ec8acf20 1903 spin_unlock(&sis->lock);
f577eb30 1904 }
efa90a98 1905 spin_unlock(&swap_lock);
f577eb30
RW
1906 return n;
1907}
73c34b6a 1908#endif /* CONFIG_HIBERNATION */
f577eb30 1909
9f8bdb3f 1910static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
179ef71c 1911{
099dd687 1912 return pte_same(pte_swp_clear_flags(pte), swp_pte);
179ef71c
CG
1913}
1914
1da177e4 1915/*
72866f6f
HD
1916 * No need to decide whether this PTE shares the swap entry with others,
1917 * just let do_wp_page work it out if a write is requested later - to
1918 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1919 */
044d66c1 1920static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1921 unsigned long addr, swp_entry_t entry, struct page *page)
1922{
9e16b7fb 1923 struct page *swapcache;
044d66c1
HD
1924 spinlock_t *ptl;
1925 pte_t *pte;
1926 int ret = 1;
1927
9e16b7fb
HD
1928 swapcache = page;
1929 page = ksm_might_need_to_copy(page, vma, addr);
1930 if (unlikely(!page))
1931 return -ENOMEM;
1932
044d66c1 1933 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
9f8bdb3f 1934 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
044d66c1
HD
1935 ret = 0;
1936 goto out;
1937 }
8a9f3ccd 1938
b084d435 1939 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1940 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1941 get_page(page);
1942 set_pte_at(vma->vm_mm, addr, pte,
1943 pte_mkold(mk_pte(page, vma->vm_page_prot)));
00501b53 1944 if (page == swapcache) {
be5d0a74 1945 page_add_anon_rmap(page, vma, addr, false);
00501b53 1946 } else { /* ksm created a completely new copy */
be5d0a74 1947 page_add_new_anon_rmap(page, vma, addr, false);
b518154e 1948 lru_cache_add_inactive_or_unevictable(page, vma);
00501b53 1949 }
1da177e4 1950 swap_free(entry);
044d66c1
HD
1951out:
1952 pte_unmap_unlock(pte, ptl);
9e16b7fb
HD
1953 if (page != swapcache) {
1954 unlock_page(page);
1955 put_page(page);
1956 }
044d66c1 1957 return ret;
1da177e4
LT
1958}
1959
1960static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
b56a2d8a
VRP
1961 unsigned long addr, unsigned long end,
1962 unsigned int type, bool frontswap,
1963 unsigned long *fs_pages_to_unuse)
1da177e4 1964{
b56a2d8a
VRP
1965 struct page *page;
1966 swp_entry_t entry;
705e87c0 1967 pte_t *pte;
b56a2d8a
VRP
1968 struct swap_info_struct *si;
1969 unsigned long offset;
8a9f3ccd 1970 int ret = 0;
b56a2d8a 1971 volatile unsigned char *swap_map;
1da177e4 1972
b56a2d8a 1973 si = swap_info[type];
044d66c1 1974 pte = pte_offset_map(pmd, addr);
1da177e4 1975 do {
b56a2d8a
VRP
1976 if (!is_swap_pte(*pte))
1977 continue;
1978
1979 entry = pte_to_swp_entry(*pte);
1980 if (swp_type(entry) != type)
1981 continue;
1982
1983 offset = swp_offset(entry);
1984 if (frontswap && !frontswap_test(si, offset))
1985 continue;
1986
1987 pte_unmap(pte);
1988 swap_map = &si->swap_map[offset];
ebc5951e
AR
1989 page = lookup_swap_cache(entry, vma, addr);
1990 if (!page) {
8c63ca5b
WD
1991 struct vm_fault vmf = {
1992 .vma = vma,
1993 .address = addr,
1994 .pmd = pmd,
1995 };
1996
ebc5951e
AR
1997 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1998 &vmf);
1999 }
b56a2d8a
VRP
2000 if (!page) {
2001 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
2002 goto try_next;
2003 return -ENOMEM;
2004 }
2005
2006 lock_page(page);
2007 wait_on_page_writeback(page);
2008 ret = unuse_pte(vma, pmd, addr, entry, page);
2009 if (ret < 0) {
2010 unlock_page(page);
2011 put_page(page);
2012 goto out;
2013 }
2014
2015 try_to_free_swap(page);
2016 unlock_page(page);
2017 put_page(page);
2018
2019 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
2020 ret = FRONTSWAP_PAGES_UNUSED;
2021 goto out;
1da177e4 2022 }
b56a2d8a
VRP
2023try_next:
2024 pte = pte_offset_map(pmd, addr);
1da177e4 2025 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1 2026 pte_unmap(pte - 1);
b56a2d8a
VRP
2027
2028 ret = 0;
044d66c1 2029out:
8a9f3ccd 2030 return ret;
1da177e4
LT
2031}
2032
2033static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2034 unsigned long addr, unsigned long end,
b56a2d8a
VRP
2035 unsigned int type, bool frontswap,
2036 unsigned long *fs_pages_to_unuse)
1da177e4
LT
2037{
2038 pmd_t *pmd;
2039 unsigned long next;
8a9f3ccd 2040 int ret;
1da177e4
LT
2041
2042 pmd = pmd_offset(pud, addr);
2043 do {
dc644a07 2044 cond_resched();
1da177e4 2045 next = pmd_addr_end(addr, end);
1a5a9906 2046 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 2047 continue;
b56a2d8a
VRP
2048 ret = unuse_pte_range(vma, pmd, addr, next, type,
2049 frontswap, fs_pages_to_unuse);
8a9f3ccd
BS
2050 if (ret)
2051 return ret;
1da177e4
LT
2052 } while (pmd++, addr = next, addr != end);
2053 return 0;
2054}
2055
c2febafc 2056static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 2057 unsigned long addr, unsigned long end,
b56a2d8a
VRP
2058 unsigned int type, bool frontswap,
2059 unsigned long *fs_pages_to_unuse)
1da177e4
LT
2060{
2061 pud_t *pud;
2062 unsigned long next;
8a9f3ccd 2063 int ret;
1da177e4 2064
c2febafc 2065 pud = pud_offset(p4d, addr);
1da177e4
LT
2066 do {
2067 next = pud_addr_end(addr, end);
2068 if (pud_none_or_clear_bad(pud))
2069 continue;
b56a2d8a
VRP
2070 ret = unuse_pmd_range(vma, pud, addr, next, type,
2071 frontswap, fs_pages_to_unuse);
8a9f3ccd
BS
2072 if (ret)
2073 return ret;
1da177e4
LT
2074 } while (pud++, addr = next, addr != end);
2075 return 0;
2076}
2077
c2febafc
KS
2078static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2079 unsigned long addr, unsigned long end,
b56a2d8a
VRP
2080 unsigned int type, bool frontswap,
2081 unsigned long *fs_pages_to_unuse)
c2febafc
KS
2082{
2083 p4d_t *p4d;
2084 unsigned long next;
2085 int ret;
2086
2087 p4d = p4d_offset(pgd, addr);
2088 do {
2089 next = p4d_addr_end(addr, end);
2090 if (p4d_none_or_clear_bad(p4d))
2091 continue;
b56a2d8a
VRP
2092 ret = unuse_pud_range(vma, p4d, addr, next, type,
2093 frontswap, fs_pages_to_unuse);
c2febafc
KS
2094 if (ret)
2095 return ret;
2096 } while (p4d++, addr = next, addr != end);
2097 return 0;
2098}
2099
b56a2d8a
VRP
2100static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2101 bool frontswap, unsigned long *fs_pages_to_unuse)
1da177e4
LT
2102{
2103 pgd_t *pgd;
2104 unsigned long addr, end, next;
8a9f3ccd 2105 int ret;
1da177e4 2106
b56a2d8a
VRP
2107 addr = vma->vm_start;
2108 end = vma->vm_end;
1da177e4
LT
2109
2110 pgd = pgd_offset(vma->vm_mm, addr);
2111 do {
2112 next = pgd_addr_end(addr, end);
2113 if (pgd_none_or_clear_bad(pgd))
2114 continue;
b56a2d8a
VRP
2115 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2116 frontswap, fs_pages_to_unuse);
8a9f3ccd
BS
2117 if (ret)
2118 return ret;
1da177e4
LT
2119 } while (pgd++, addr = next, addr != end);
2120 return 0;
2121}
2122
b56a2d8a
VRP
2123static int unuse_mm(struct mm_struct *mm, unsigned int type,
2124 bool frontswap, unsigned long *fs_pages_to_unuse)
1da177e4
LT
2125{
2126 struct vm_area_struct *vma;
8a9f3ccd 2127 int ret = 0;
1da177e4 2128
d8ed45c5 2129 mmap_read_lock(mm);
1da177e4 2130 for (vma = mm->mmap; vma; vma = vma->vm_next) {
b56a2d8a
VRP
2131 if (vma->anon_vma) {
2132 ret = unuse_vma(vma, type, frontswap,
2133 fs_pages_to_unuse);
2134 if (ret)
2135 break;
2136 }
dc644a07 2137 cond_resched();
1da177e4 2138 }
d8ed45c5 2139 mmap_read_unlock(mm);
b56a2d8a 2140 return ret;
1da177e4
LT
2141}
2142
2143/*
38b5faf4 2144 * Scan swap_map (or frontswap_map if frontswap parameter is true)
b56a2d8a
VRP
2145 * from current position to next entry still in use. Return 0
2146 * if there are no inuse entries after prev till end of the map.
1da177e4 2147 */
6eb396dc 2148static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 2149 unsigned int prev, bool frontswap)
1da177e4 2150{
b56a2d8a 2151 unsigned int i;
8d69aaee 2152 unsigned char count;
1da177e4
LT
2153
2154 /*
5d337b91 2155 * No need for swap_lock here: we're just looking
1da177e4
LT
2156 * for whether an entry is in use, not modifying it; false
2157 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 2158 * allocations from this area (while holding swap_lock).
1da177e4 2159 */
b56a2d8a 2160 for (i = prev + 1; i < si->max; i++) {
4db0c3c2 2161 count = READ_ONCE(si->swap_map[i]);
355cfa73 2162 if (count && swap_count(count) != SWAP_MAP_BAD)
dc644a07
HD
2163 if (!frontswap || frontswap_test(si, i))
2164 break;
2165 if ((i % LATENCY_LIMIT) == 0)
2166 cond_resched();
1da177e4 2167 }
b56a2d8a
VRP
2168
2169 if (i == si->max)
2170 i = 0;
2171
1da177e4
LT
2172 return i;
2173}
2174
2175/*
b56a2d8a 2176 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
38b5faf4 2177 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 2178 */
38b5faf4
DM
2179int try_to_unuse(unsigned int type, bool frontswap,
2180 unsigned long pages_to_unuse)
1da177e4 2181{
b56a2d8a
VRP
2182 struct mm_struct *prev_mm;
2183 struct mm_struct *mm;
2184 struct list_head *p;
2185 int retval = 0;
efa90a98 2186 struct swap_info_struct *si = swap_info[type];
1da177e4
LT
2187 struct page *page;
2188 swp_entry_t entry;
b56a2d8a 2189 unsigned int i;
1da177e4 2190
21820948 2191 if (!READ_ONCE(si->inuse_pages))
b56a2d8a 2192 return 0;
1da177e4 2193
b56a2d8a
VRP
2194 if (!frontswap)
2195 pages_to_unuse = 0;
2196
2197retry:
2198 retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2199 if (retval)
2200 goto out;
2201
2202 prev_mm = &init_mm;
2203 mmget(prev_mm);
2204
2205 spin_lock(&mmlist_lock);
2206 p = &init_mm.mmlist;
21820948 2207 while (READ_ONCE(si->inuse_pages) &&
64165b1a
HD
2208 !signal_pending(current) &&
2209 (p = p->next) != &init_mm.mmlist) {
1da177e4 2210
b56a2d8a
VRP
2211 mm = list_entry(p, struct mm_struct, mmlist);
2212 if (!mmget_not_zero(mm))
2213 continue;
2214 spin_unlock(&mmlist_lock);
2215 mmput(prev_mm);
2216 prev_mm = mm;
2217 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
1da177e4 2218
b56a2d8a
VRP
2219 if (retval) {
2220 mmput(prev_mm);
2221 goto out;
1da177e4
LT
2222 }
2223
2224 /*
b56a2d8a
VRP
2225 * Make sure that we aren't completely killing
2226 * interactive performance.
1da177e4 2227 */
b56a2d8a
VRP
2228 cond_resched();
2229 spin_lock(&mmlist_lock);
2230 }
2231 spin_unlock(&mmlist_lock);
1da177e4 2232
b56a2d8a 2233 mmput(prev_mm);
1da177e4 2234
b56a2d8a 2235 i = 0;
21820948 2236 while (READ_ONCE(si->inuse_pages) &&
64165b1a
HD
2237 !signal_pending(current) &&
2238 (i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4 2239
b56a2d8a
VRP
2240 entry = swp_entry(type, i);
2241 page = find_get_page(swap_address_space(entry), i);
2242 if (!page)
2243 continue;
68bdc8d6
HD
2244
2245 /*
2246 * It is conceivable that a racing task removed this page from
b56a2d8a
VRP
2247 * swap cache just before we acquired the page lock. The page
2248 * might even be back in swap cache on another swap area. But
2249 * that is okay, try_to_free_swap() only removes stale pages.
1da177e4 2250 */
b56a2d8a
VRP
2251 lock_page(page);
2252 wait_on_page_writeback(page);
2253 try_to_free_swap(page);
1da177e4 2254 unlock_page(page);
09cbfeaf 2255 put_page(page);
1da177e4
LT
2256
2257 /*
b56a2d8a
VRP
2258 * For frontswap, we just need to unuse pages_to_unuse, if
2259 * it was specified. Need not check frontswap again here as
2260 * we already zeroed out pages_to_unuse if not frontswap.
1da177e4 2261 */
b56a2d8a
VRP
2262 if (pages_to_unuse && --pages_to_unuse == 0)
2263 goto out;
1da177e4
LT
2264 }
2265
b56a2d8a
VRP
2266 /*
2267 * Lets check again to see if there are still swap entries in the map.
2268 * If yes, we would need to do retry the unuse logic again.
2269 * Under global memory pressure, swap entries can be reinserted back
2270 * into process space after the mmlist loop above passes over them.
dd862deb 2271 *
af53d3e9
HD
2272 * Limit the number of retries? No: when mmget_not_zero() above fails,
2273 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2274 * at its own independent pace; and even shmem_writepage() could have
2275 * been preempted after get_swap_page(), temporarily hiding that swap.
2276 * It's easy and robust (though cpu-intensive) just to keep retrying.
b56a2d8a 2277 */
21820948 2278 if (READ_ONCE(si->inuse_pages)) {
64165b1a
HD
2279 if (!signal_pending(current))
2280 goto retry;
2281 retval = -EINTR;
2282 }
b56a2d8a
VRP
2283out:
2284 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
1da177e4
LT
2285}
2286
2287/*
5d337b91
HD
2288 * After a successful try_to_unuse, if no swap is now in use, we know
2289 * we can empty the mmlist. swap_lock must be held on entry and exit.
2290 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
2291 * added to the mmlist just after page_duplicate - before would be racy.
2292 */
2293static void drain_mmlist(void)
2294{
2295 struct list_head *p, *next;
efa90a98 2296 unsigned int type;
1da177e4 2297
efa90a98
HD
2298 for (type = 0; type < nr_swapfiles; type++)
2299 if (swap_info[type]->inuse_pages)
1da177e4
LT
2300 return;
2301 spin_lock(&mmlist_lock);
2302 list_for_each_safe(p, next, &init_mm.mmlist)
2303 list_del_init(p);
2304 spin_unlock(&mmlist_lock);
2305}
2306
1da177e4
LT
2307/*
2308 * Free all of a swapdev's extent information
2309 */
2310static void destroy_swap_extents(struct swap_info_struct *sis)
2311{
4efaceb1
AL
2312 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2313 struct rb_node *rb = sis->swap_extent_root.rb_node;
2314 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
1da177e4 2315
4efaceb1 2316 rb_erase(rb, &sis->swap_extent_root);
1da177e4
LT
2317 kfree(se);
2318 }
62c230bc 2319
bc4ae27d 2320 if (sis->flags & SWP_ACTIVATED) {
62c230bc
MG
2321 struct file *swap_file = sis->swap_file;
2322 struct address_space *mapping = swap_file->f_mapping;
2323
bc4ae27d
OS
2324 sis->flags &= ~SWP_ACTIVATED;
2325 if (mapping->a_ops->swap_deactivate)
2326 mapping->a_ops->swap_deactivate(swap_file);
62c230bc 2327 }
1da177e4
LT
2328}
2329
2330/*
2331 * Add a block range (and the corresponding page range) into this swapdev's
4efaceb1 2332 * extent tree.
1da177e4 2333 *
11d31886 2334 * This function rather assumes that it is called in ascending page order.
1da177e4 2335 */
a509bc1a 2336int
1da177e4
LT
2337add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2338 unsigned long nr_pages, sector_t start_block)
2339{
4efaceb1 2340 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
1da177e4
LT
2341 struct swap_extent *se;
2342 struct swap_extent *new_se;
4efaceb1
AL
2343
2344 /*
2345 * place the new node at the right most since the
2346 * function is called in ascending page order.
2347 */
2348 while (*link) {
2349 parent = *link;
2350 link = &parent->rb_right;
2351 }
2352
2353 if (parent) {
2354 se = rb_entry(parent, struct swap_extent, rb_node);
11d31886
HD
2355 BUG_ON(se->start_page + se->nr_pages != start_page);
2356 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
2357 /* Merge it */
2358 se->nr_pages += nr_pages;
2359 return 0;
2360 }
1da177e4
LT
2361 }
2362
4efaceb1 2363 /* No merge, insert a new extent. */
1da177e4
LT
2364 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2365 if (new_se == NULL)
2366 return -ENOMEM;
2367 new_se->start_page = start_page;
2368 new_se->nr_pages = nr_pages;
2369 new_se->start_block = start_block;
2370
4efaceb1
AL
2371 rb_link_node(&new_se->rb_node, parent, link);
2372 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
53092a74 2373 return 1;
1da177e4 2374}
aa8aa8a3 2375EXPORT_SYMBOL_GPL(add_swap_extent);
1da177e4
LT
2376
2377/*
2378 * A `swap extent' is a simple thing which maps a contiguous range of pages
2379 * onto a contiguous range of disk blocks. An ordered list of swap extents
2380 * is built at swapon time and is then used at swap_writepage/swap_readpage
2381 * time for locating where on disk a page belongs.
2382 *
2383 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2384 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2385 * swap files identically.
2386 *
2387 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2388 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2389 * swapfiles are handled *identically* after swapon time.
2390 *
2391 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2392 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2393 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2394 * requirements, they are simply tossed out - we will never use those blocks
2395 * for swapping.
2396 *
1638045c
DW
2397 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2398 * prevents users from writing to the swap device, which will corrupt memory.
1da177e4
LT
2399 *
2400 * The amount of disk space which a single swap extent represents varies.
2401 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2402 * extents in the list. To avoid much list walking, we cache the previous
2403 * search location in `curr_swap_extent', and start new searches from there.
2404 * This is extremely effective. The average number of iterations in
2405 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2406 */
53092a74 2407static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 2408{
62c230bc
MG
2409 struct file *swap_file = sis->swap_file;
2410 struct address_space *mapping = swap_file->f_mapping;
2411 struct inode *inode = mapping->host;
1da177e4
LT
2412 int ret;
2413
1da177e4
LT
2414 if (S_ISBLK(inode->i_mode)) {
2415 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 2416 *span = sis->pages;
a509bc1a 2417 return ret;
1da177e4
LT
2418 }
2419
62c230bc 2420 if (mapping->a_ops->swap_activate) {
a509bc1a 2421 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
bc4ae27d
OS
2422 if (ret >= 0)
2423 sis->flags |= SWP_ACTIVATED;
62c230bc 2424 if (!ret) {
32646315 2425 sis->flags |= SWP_FS_OPS;
62c230bc
MG
2426 ret = add_swap_extent(sis, 0, sis->max, 0);
2427 *span = sis->pages;
2428 }
a509bc1a 2429 return ret;
62c230bc
MG
2430 }
2431
a509bc1a 2432 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
2433}
2434
a2468cc9
AL
2435static int swap_node(struct swap_info_struct *p)
2436{
2437 struct block_device *bdev;
2438
2439 if (p->bdev)
2440 bdev = p->bdev;
2441 else
2442 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2443
2444 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2445}
2446
eb085574
HY
2447static void setup_swap_info(struct swap_info_struct *p, int prio,
2448 unsigned char *swap_map,
2449 struct swap_cluster_info *cluster_info)
40531542 2450{
a2468cc9
AL
2451 int i;
2452
40531542
CEB
2453 if (prio >= 0)
2454 p->prio = prio;
2455 else
2456 p->prio = --least_priority;
18ab4d4c
DS
2457 /*
2458 * the plist prio is negated because plist ordering is
2459 * low-to-high, while swap ordering is high-to-low
2460 */
2461 p->list.prio = -p->prio;
a2468cc9
AL
2462 for_each_node(i) {
2463 if (p->prio >= 0)
2464 p->avail_lists[i].prio = -p->prio;
2465 else {
2466 if (swap_node(p) == i)
2467 p->avail_lists[i].prio = 1;
2468 else
2469 p->avail_lists[i].prio = -p->prio;
2470 }
2471 }
40531542 2472 p->swap_map = swap_map;
2a8f9449 2473 p->cluster_info = cluster_info;
eb085574
HY
2474}
2475
2476static void _enable_swap_info(struct swap_info_struct *p)
2477{
63d8620e 2478 p->flags |= SWP_WRITEOK;
ec8acf20 2479 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
2480 total_swap_pages += p->pages;
2481
adfab836 2482 assert_spin_locked(&swap_lock);
adfab836 2483 /*
18ab4d4c
DS
2484 * both lists are plists, and thus priority ordered.
2485 * swap_active_head needs to be priority ordered for swapoff(),
2486 * which on removal of any swap_info_struct with an auto-assigned
2487 * (i.e. negative) priority increments the auto-assigned priority
2488 * of any lower-priority swap_info_structs.
2489 * swap_avail_head needs to be priority ordered for get_swap_page(),
2490 * which allocates swap pages from the highest available priority
2491 * swap_info_struct.
adfab836 2492 */
18ab4d4c 2493 plist_add(&p->list, &swap_active_head);
a2468cc9 2494 add_to_avail_list(p);
cf0cac0a
CEB
2495}
2496
2497static void enable_swap_info(struct swap_info_struct *p, int prio,
2498 unsigned char *swap_map,
2a8f9449 2499 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
2500 unsigned long *frontswap_map)
2501{
4f89849d 2502 frontswap_init(p->type, frontswap_map);
cf0cac0a 2503 spin_lock(&swap_lock);
ec8acf20 2504 spin_lock(&p->lock);
eb085574
HY
2505 setup_swap_info(p, prio, swap_map, cluster_info);
2506 spin_unlock(&p->lock);
2507 spin_unlock(&swap_lock);
2508 /*
63d8620e 2509 * Finished initializing swap device, now it's safe to reference it.
eb085574 2510 */
63d8620e 2511 percpu_ref_resurrect(&p->users);
eb085574
HY
2512 spin_lock(&swap_lock);
2513 spin_lock(&p->lock);
2514 _enable_swap_info(p);
ec8acf20 2515 spin_unlock(&p->lock);
cf0cac0a
CEB
2516 spin_unlock(&swap_lock);
2517}
2518
2519static void reinsert_swap_info(struct swap_info_struct *p)
2520{
2521 spin_lock(&swap_lock);
ec8acf20 2522 spin_lock(&p->lock);
eb085574
HY
2523 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2524 _enable_swap_info(p);
ec8acf20 2525 spin_unlock(&p->lock);
40531542
CEB
2526 spin_unlock(&swap_lock);
2527}
2528
67afa38e
TC
2529bool has_usable_swap(void)
2530{
2531 bool ret = true;
2532
2533 spin_lock(&swap_lock);
2534 if (plist_head_empty(&swap_active_head))
2535 ret = false;
2536 spin_unlock(&swap_lock);
2537 return ret;
2538}
2539
c4ea37c2 2540SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 2541{
73c34b6a 2542 struct swap_info_struct *p = NULL;
8d69aaee 2543 unsigned char *swap_map;
2a8f9449 2544 struct swap_cluster_info *cluster_info;
4f89849d 2545 unsigned long *frontswap_map;
1da177e4
LT
2546 struct file *swap_file, *victim;
2547 struct address_space *mapping;
2548 struct inode *inode;
91a27b2a 2549 struct filename *pathname;
adfab836 2550 int err, found = 0;
5b808a23 2551 unsigned int old_block_size;
886bb7e9 2552
1da177e4
LT
2553 if (!capable(CAP_SYS_ADMIN))
2554 return -EPERM;
2555
191c5424
AV
2556 BUG_ON(!current->mm);
2557
1da177e4 2558 pathname = getname(specialfile);
1da177e4 2559 if (IS_ERR(pathname))
f58b59c1 2560 return PTR_ERR(pathname);
1da177e4 2561
669abf4e 2562 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
2563 err = PTR_ERR(victim);
2564 if (IS_ERR(victim))
2565 goto out;
2566
2567 mapping = victim->f_mapping;
5d337b91 2568 spin_lock(&swap_lock);
18ab4d4c 2569 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 2570 if (p->flags & SWP_WRITEOK) {
adfab836
DS
2571 if (p->swap_file->f_mapping == mapping) {
2572 found = 1;
1da177e4 2573 break;
adfab836 2574 }
1da177e4 2575 }
1da177e4 2576 }
adfab836 2577 if (!found) {
1da177e4 2578 err = -EINVAL;
5d337b91 2579 spin_unlock(&swap_lock);
1da177e4
LT
2580 goto out_dput;
2581 }
191c5424 2582 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
2583 vm_unacct_memory(p->pages);
2584 else {
2585 err = -ENOMEM;
5d337b91 2586 spin_unlock(&swap_lock);
1da177e4
LT
2587 goto out_dput;
2588 }
a2468cc9 2589 del_from_avail_list(p);
ec8acf20 2590 spin_lock(&p->lock);
78ecba08 2591 if (p->prio < 0) {
adfab836 2592 struct swap_info_struct *si = p;
a2468cc9 2593 int nid;
adfab836 2594
18ab4d4c 2595 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 2596 si->prio++;
18ab4d4c 2597 si->list.prio--;
a2468cc9
AL
2598 for_each_node(nid) {
2599 if (si->avail_lists[nid].prio != 1)
2600 si->avail_lists[nid].prio--;
2601 }
adfab836 2602 }
78ecba08
HD
2603 least_priority++;
2604 }
18ab4d4c 2605 plist_del(&p->list, &swap_active_head);
ec8acf20 2606 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
2607 total_swap_pages -= p->pages;
2608 p->flags &= ~SWP_WRITEOK;
ec8acf20 2609 spin_unlock(&p->lock);
5d337b91 2610 spin_unlock(&swap_lock);
fb4f88dc 2611
039939a6
TC
2612 disable_swap_slots_cache_lock();
2613
e1e12d2f 2614 set_current_oom_origin();
adfab836 2615 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
e1e12d2f 2616 clear_current_oom_origin();
1da177e4 2617
1da177e4
LT
2618 if (err) {
2619 /* re-insert swap space back into swap_list */
cf0cac0a 2620 reinsert_swap_info(p);
039939a6 2621 reenable_swap_slots_cache_unlock();
1da177e4
LT
2622 goto out_dput;
2623 }
52b7efdb 2624
039939a6
TC
2625 reenable_swap_slots_cache_unlock();
2626
eb085574 2627 /*
63d8620e
ML
2628 * Wait for swap operations protected by get/put_swap_device()
2629 * to complete.
2630 *
2631 * We need synchronize_rcu() here to protect the accessing to
2632 * the swap cache data structure.
eb085574 2633 */
63d8620e 2634 percpu_ref_kill(&p->users);
eb085574 2635 synchronize_rcu();
63d8620e 2636 wait_for_completion(&p->comp);
eb085574 2637
815c2c54
SL
2638 flush_work(&p->discard_work);
2639
5d337b91 2640 destroy_swap_extents(p);
570a335b
HD
2641 if (p->flags & SWP_CONTINUED)
2642 free_swap_count_continuations(p);
2643
81a0298b
HY
2644 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2645 atomic_dec(&nr_rotate_swap);
2646
fc0abb14 2647 mutex_lock(&swapon_mutex);
5d337b91 2648 spin_lock(&swap_lock);
ec8acf20 2649 spin_lock(&p->lock);
5d337b91
HD
2650 drain_mmlist();
2651
52b7efdb 2652 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
2653 p->highest_bit = 0; /* cuts scans short */
2654 while (p->flags >= SWP_SCANNING) {
ec8acf20 2655 spin_unlock(&p->lock);
5d337b91 2656 spin_unlock(&swap_lock);
13e4b57f 2657 schedule_timeout_uninterruptible(1);
5d337b91 2658 spin_lock(&swap_lock);
ec8acf20 2659 spin_lock(&p->lock);
52b7efdb 2660 }
52b7efdb 2661
1da177e4 2662 swap_file = p->swap_file;
5b808a23 2663 old_block_size = p->old_block_size;
1da177e4
LT
2664 p->swap_file = NULL;
2665 p->max = 0;
2666 swap_map = p->swap_map;
2667 p->swap_map = NULL;
2a8f9449
SL
2668 cluster_info = p->cluster_info;
2669 p->cluster_info = NULL;
4f89849d 2670 frontswap_map = frontswap_map_get(p);
ec8acf20 2671 spin_unlock(&p->lock);
5d337b91 2672 spin_unlock(&swap_lock);
8a84802e 2673 arch_swap_invalidate_area(p->type);
adfab836 2674 frontswap_invalidate_area(p->type);
58e97ba6 2675 frontswap_map_set(p, NULL);
fc0abb14 2676 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
2677 free_percpu(p->percpu_cluster);
2678 p->percpu_cluster = NULL;
49070588
HY
2679 free_percpu(p->cluster_next_cpu);
2680 p->cluster_next_cpu = NULL;
1da177e4 2681 vfree(swap_map);
54f180d3
HY
2682 kvfree(cluster_info);
2683 kvfree(frontswap_map);
2de1a7e4 2684 /* Destroy swap account information */
adfab836 2685 swap_cgroup_swapoff(p->type);
4b3ef9da 2686 exit_swap_address_space(p->type);
27a7faa0 2687
1da177e4
LT
2688 inode = mapping->host;
2689 if (S_ISBLK(inode->i_mode)) {
2690 struct block_device *bdev = I_BDEV(inode);
1638045c 2691
5b808a23 2692 set_blocksize(bdev, old_block_size);
e525fd89 2693 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2694 }
1638045c
DW
2695
2696 inode_lock(inode);
2697 inode->i_flags &= ~S_SWAPFILE;
2698 inode_unlock(inode);
1da177e4 2699 filp_close(swap_file, NULL);
f893ab41
WY
2700
2701 /*
2702 * Clear the SWP_USED flag after all resources are freed so that swapon
2703 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2704 * not hold p->lock after we cleared its SWP_WRITEOK.
2705 */
2706 spin_lock(&swap_lock);
2707 p->flags = 0;
2708 spin_unlock(&swap_lock);
2709
1da177e4 2710 err = 0;
66d7dd51
KS
2711 atomic_inc(&proc_poll_event);
2712 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
2713
2714out_dput:
2715 filp_close(victim, NULL);
2716out:
f58b59c1 2717 putname(pathname);
1da177e4
LT
2718 return err;
2719}
2720
2721#ifdef CONFIG_PROC_FS
9dd95748 2722static __poll_t swaps_poll(struct file *file, poll_table *wait)
66d7dd51 2723{
f1514638 2724 struct seq_file *seq = file->private_data;
66d7dd51
KS
2725
2726 poll_wait(file, &proc_poll_wait, wait);
2727
f1514638
KS
2728 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2729 seq->poll_event = atomic_read(&proc_poll_event);
a9a08845 2730 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
66d7dd51
KS
2731 }
2732
a9a08845 2733 return EPOLLIN | EPOLLRDNORM;
66d7dd51
KS
2734}
2735
1da177e4
LT
2736/* iterator */
2737static void *swap_start(struct seq_file *swap, loff_t *pos)
2738{
efa90a98
HD
2739 struct swap_info_struct *si;
2740 int type;
1da177e4
LT
2741 loff_t l = *pos;
2742
fc0abb14 2743 mutex_lock(&swapon_mutex);
1da177e4 2744
881e4aab
SS
2745 if (!l)
2746 return SEQ_START_TOKEN;
2747
c10d38cc 2748 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
efa90a98 2749 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2750 continue;
881e4aab 2751 if (!--l)
efa90a98 2752 return si;
1da177e4
LT
2753 }
2754
2755 return NULL;
2756}
2757
2758static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2759{
efa90a98
HD
2760 struct swap_info_struct *si = v;
2761 int type;
1da177e4 2762
881e4aab 2763 if (v == SEQ_START_TOKEN)
efa90a98
HD
2764 type = 0;
2765 else
2766 type = si->type + 1;
881e4aab 2767
10c8d69f 2768 ++(*pos);
c10d38cc 2769 for (; (si = swap_type_to_swap_info(type)); type++) {
efa90a98 2770 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2771 continue;
efa90a98 2772 return si;
1da177e4
LT
2773 }
2774
2775 return NULL;
2776}
2777
2778static void swap_stop(struct seq_file *swap, void *v)
2779{
fc0abb14 2780 mutex_unlock(&swapon_mutex);
1da177e4
LT
2781}
2782
2783static int swap_show(struct seq_file *swap, void *v)
2784{
efa90a98 2785 struct swap_info_struct *si = v;
1da177e4
LT
2786 struct file *file;
2787 int len;
6f793940 2788 unsigned int bytes, inuse;
1da177e4 2789
efa90a98 2790 if (si == SEQ_START_TOKEN) {
68d68ff6 2791 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
881e4aab
SS
2792 return 0;
2793 }
1da177e4 2794
6f793940
RD
2795 bytes = si->pages << (PAGE_SHIFT - 10);
2796 inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2797
efa90a98 2798 file = si->swap_file;
2726d566 2799 len = seq_file_path(swap, file, " \t\n\\");
6f793940 2800 seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
886bb7e9 2801 len < 40 ? 40 - len : 1, " ",
496ad9aa 2802 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2803 "partition" : "file\t",
6f793940
RD
2804 bytes, bytes < 10000000 ? "\t" : "",
2805 inuse, inuse < 10000000 ? "\t" : "",
efa90a98 2806 si->prio);
1da177e4
LT
2807 return 0;
2808}
2809
15ad7cdc 2810static const struct seq_operations swaps_op = {
1da177e4
LT
2811 .start = swap_start,
2812 .next = swap_next,
2813 .stop = swap_stop,
2814 .show = swap_show
2815};
2816
2817static int swaps_open(struct inode *inode, struct file *file)
2818{
f1514638 2819 struct seq_file *seq;
66d7dd51
KS
2820 int ret;
2821
66d7dd51 2822 ret = seq_open(file, &swaps_op);
f1514638 2823 if (ret)
66d7dd51 2824 return ret;
66d7dd51 2825
f1514638
KS
2826 seq = file->private_data;
2827 seq->poll_event = atomic_read(&proc_poll_event);
2828 return 0;
1da177e4
LT
2829}
2830
97a32539 2831static const struct proc_ops swaps_proc_ops = {
d919b33d 2832 .proc_flags = PROC_ENTRY_PERMANENT,
97a32539
AD
2833 .proc_open = swaps_open,
2834 .proc_read = seq_read,
2835 .proc_lseek = seq_lseek,
2836 .proc_release = seq_release,
2837 .proc_poll = swaps_poll,
1da177e4
LT
2838};
2839
2840static int __init procswaps_init(void)
2841{
97a32539 2842 proc_create("swaps", 0, NULL, &swaps_proc_ops);
1da177e4
LT
2843 return 0;
2844}
2845__initcall(procswaps_init);
2846#endif /* CONFIG_PROC_FS */
2847
1796316a
JB
2848#ifdef MAX_SWAPFILES_CHECK
2849static int __init max_swapfiles_check(void)
2850{
2851 MAX_SWAPFILES_CHECK();
2852 return 0;
2853}
2854late_initcall(max_swapfiles_check);
2855#endif
2856
53cbb243 2857static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2858{
73c34b6a 2859 struct swap_info_struct *p;
b11a76b3 2860 struct swap_info_struct *defer = NULL;
1da177e4 2861 unsigned int type;
a2468cc9 2862 int i;
efa90a98 2863
96008744 2864 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
efa90a98 2865 if (!p)
53cbb243 2866 return ERR_PTR(-ENOMEM);
efa90a98 2867
63d8620e
ML
2868 if (percpu_ref_init(&p->users, swap_users_ref_free,
2869 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2870 kvfree(p);
2871 return ERR_PTR(-ENOMEM);
2872 }
2873
5d337b91 2874 spin_lock(&swap_lock);
efa90a98
HD
2875 for (type = 0; type < nr_swapfiles; type++) {
2876 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2877 break;
efa90a98 2878 }
0697212a 2879 if (type >= MAX_SWAPFILES) {
5d337b91 2880 spin_unlock(&swap_lock);
63d8620e 2881 percpu_ref_exit(&p->users);
873d7bcf 2882 kvfree(p);
730c0581 2883 return ERR_PTR(-EPERM);
1da177e4 2884 }
efa90a98
HD
2885 if (type >= nr_swapfiles) {
2886 p->type = type;
c10d38cc 2887 WRITE_ONCE(swap_info[type], p);
efa90a98
HD
2888 /*
2889 * Write swap_info[type] before nr_swapfiles, in case a
2890 * racing procfs swap_start() or swap_next() is reading them.
2891 * (We never shrink nr_swapfiles, we never free this entry.)
2892 */
2893 smp_wmb();
c10d38cc 2894 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
efa90a98 2895 } else {
b11a76b3 2896 defer = p;
efa90a98
HD
2897 p = swap_info[type];
2898 /*
2899 * Do not memset this entry: a racing procfs swap_next()
2900 * would be relying on p->type to remain valid.
2901 */
2902 }
4efaceb1 2903 p->swap_extent_root = RB_ROOT;
18ab4d4c 2904 plist_node_init(&p->list, 0);
a2468cc9
AL
2905 for_each_node(i)
2906 plist_node_init(&p->avail_lists[i], 0);
1da177e4 2907 p->flags = SWP_USED;
5d337b91 2908 spin_unlock(&swap_lock);
63d8620e
ML
2909 if (defer) {
2910 percpu_ref_exit(&defer->users);
2911 kvfree(defer);
2912 }
ec8acf20 2913 spin_lock_init(&p->lock);
2628bd6f 2914 spin_lock_init(&p->cont_lock);
63d8620e 2915 init_completion(&p->comp);
efa90a98 2916
53cbb243 2917 return p;
53cbb243
CEB
2918}
2919
4d0e1e10
CEB
2920static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2921{
2922 int error;
2923
2924 if (S_ISBLK(inode->i_mode)) {
ef16e1d9 2925 p->bdev = blkdev_get_by_dev(inode->i_rdev,
6f179af8 2926 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
ef16e1d9
CH
2927 if (IS_ERR(p->bdev)) {
2928 error = PTR_ERR(p->bdev);
4d0e1e10 2929 p->bdev = NULL;
6f179af8 2930 return error;
4d0e1e10
CEB
2931 }
2932 p->old_block_size = block_size(p->bdev);
2933 error = set_blocksize(p->bdev, PAGE_SIZE);
2934 if (error < 0)
87ade72a 2935 return error;
12d2966d
NA
2936 /*
2937 * Zoned block devices contain zones that have a sequential
2938 * write only restriction. Hence zoned block devices are not
2939 * suitable for swapping. Disallow them here.
2940 */
e556f6ba 2941 if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
12d2966d 2942 return -EINVAL;
4d0e1e10
CEB
2943 p->flags |= SWP_BLKDEV;
2944 } else if (S_ISREG(inode->i_mode)) {
2945 p->bdev = inode->i_sb->s_bdev;
1638045c
DW
2946 }
2947
4d0e1e10 2948 return 0;
4d0e1e10
CEB
2949}
2950
377eeaa8
AK
2951
2952/*
2953 * Find out how many pages are allowed for a single swap device. There
2954 * are two limiting factors:
2955 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2956 * 2) the number of bits in the swap pte, as defined by the different
2957 * architectures.
2958 *
2959 * In order to find the largest possible bit mask, a swap entry with
2960 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2961 * decoded to a swp_entry_t again, and finally the swap offset is
2962 * extracted.
2963 *
2964 * This will mask all the bits from the initial ~0UL mask that can't
2965 * be encoded in either the swp_entry_t or the architecture definition
2966 * of a swap pte.
2967 */
2968unsigned long generic_max_swapfile_size(void)
2969{
2970 return swp_offset(pte_to_swp_entry(
2971 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2972}
2973
2974/* Can be overridden by an architecture for additional checks. */
2975__weak unsigned long max_swapfile_size(void)
2976{
2977 return generic_max_swapfile_size();
2978}
2979
ca8bd38b
CEB
2980static unsigned long read_swap_header(struct swap_info_struct *p,
2981 union swap_header *swap_header,
2982 struct inode *inode)
2983{
2984 int i;
2985 unsigned long maxpages;
2986 unsigned long swapfilepages;
d6bbbd29 2987 unsigned long last_page;
ca8bd38b
CEB
2988
2989 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2990 pr_err("Unable to find swap-space signature\n");
38719025 2991 return 0;
ca8bd38b
CEB
2992 }
2993
2994 /* swap partition endianess hack... */
2995 if (swab32(swap_header->info.version) == 1) {
2996 swab32s(&swap_header->info.version);
2997 swab32s(&swap_header->info.last_page);
2998 swab32s(&swap_header->info.nr_badpages);
dd111be6
JH
2999 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3000 return 0;
ca8bd38b
CEB
3001 for (i = 0; i < swap_header->info.nr_badpages; i++)
3002 swab32s(&swap_header->info.badpages[i]);
3003 }
3004 /* Check the swap header's sub-version */
3005 if (swap_header->info.version != 1) {
465c47fd
AM
3006 pr_warn("Unable to handle swap header version %d\n",
3007 swap_header->info.version);
38719025 3008 return 0;
ca8bd38b
CEB
3009 }
3010
3011 p->lowest_bit = 1;
3012 p->cluster_next = 1;
3013 p->cluster_nr = 0;
3014
377eeaa8 3015 maxpages = max_swapfile_size();
d6bbbd29 3016 last_page = swap_header->info.last_page;
a06ad633
TA
3017 if (!last_page) {
3018 pr_warn("Empty swap-file\n");
3019 return 0;
3020 }
d6bbbd29 3021 if (last_page > maxpages) {
465c47fd 3022 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
3023 maxpages << (PAGE_SHIFT - 10),
3024 last_page << (PAGE_SHIFT - 10));
3025 }
3026 if (maxpages > last_page) {
3027 maxpages = last_page + 1;
ca8bd38b
CEB
3028 /* p->max is an unsigned int: don't overflow it */
3029 if ((unsigned int)maxpages == 0)
3030 maxpages = UINT_MAX;
3031 }
3032 p->highest_bit = maxpages - 1;
3033
3034 if (!maxpages)
38719025 3035 return 0;
ca8bd38b
CEB
3036 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3037 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 3038 pr_warn("Swap area shorter than signature indicates\n");
38719025 3039 return 0;
ca8bd38b
CEB
3040 }
3041 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 3042 return 0;
ca8bd38b 3043 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 3044 return 0;
ca8bd38b
CEB
3045
3046 return maxpages;
ca8bd38b
CEB
3047}
3048
4b3ef9da 3049#define SWAP_CLUSTER_INFO_COLS \
235b6217 3050 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
4b3ef9da
HY
3051#define SWAP_CLUSTER_SPACE_COLS \
3052 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3053#define SWAP_CLUSTER_COLS \
3054 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
235b6217 3055
915d4d7b
CEB
3056static int setup_swap_map_and_extents(struct swap_info_struct *p,
3057 union swap_header *swap_header,
3058 unsigned char *swap_map,
2a8f9449 3059 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
3060 unsigned long maxpages,
3061 sector_t *span)
3062{
235b6217 3063 unsigned int j, k;
915d4d7b
CEB
3064 unsigned int nr_good_pages;
3065 int nr_extents;
2a8f9449 3066 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
235b6217
HY
3067 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3068 unsigned long i, idx;
915d4d7b
CEB
3069
3070 nr_good_pages = maxpages - 1; /* omit header page */
3071
6b534915
HY
3072 cluster_list_init(&p->free_clusters);
3073 cluster_list_init(&p->discard_clusters);
2a8f9449 3074
915d4d7b
CEB
3075 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3076 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
3077 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3078 return -EINVAL;
915d4d7b
CEB
3079 if (page_nr < maxpages) {
3080 swap_map[page_nr] = SWAP_MAP_BAD;
3081 nr_good_pages--;
2a8f9449
SL
3082 /*
3083 * Haven't marked the cluster free yet, no list
3084 * operation involved
3085 */
3086 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
3087 }
3088 }
3089
2a8f9449
SL
3090 /* Haven't marked the cluster free yet, no list operation involved */
3091 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3092 inc_cluster_info_page(p, cluster_info, i);
3093
915d4d7b
CEB
3094 if (nr_good_pages) {
3095 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
3096 /*
3097 * Not mark the cluster free yet, no list
3098 * operation involved
3099 */
3100 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
3101 p->max = maxpages;
3102 p->pages = nr_good_pages;
3103 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
3104 if (nr_extents < 0)
3105 return nr_extents;
915d4d7b
CEB
3106 nr_good_pages = p->pages;
3107 }
3108 if (!nr_good_pages) {
465c47fd 3109 pr_warn("Empty swap-file\n");
bdb8e3f6 3110 return -EINVAL;
915d4d7b
CEB
3111 }
3112
2a8f9449
SL
3113 if (!cluster_info)
3114 return nr_extents;
3115
235b6217 3116
4b3ef9da
HY
3117 /*
3118 * Reduce false cache line sharing between cluster_info and
3119 * sharing same address space.
3120 */
235b6217
HY
3121 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3122 j = (k + col) % SWAP_CLUSTER_COLS;
3123 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3124 idx = i * SWAP_CLUSTER_COLS + j;
3125 if (idx >= nr_clusters)
3126 continue;
3127 if (cluster_count(&cluster_info[idx]))
3128 continue;
2a8f9449 3129 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
6b534915
HY
3130 cluster_list_add_tail(&p->free_clusters, cluster_info,
3131 idx);
2a8f9449 3132 }
2a8f9449 3133 }
915d4d7b 3134 return nr_extents;
915d4d7b
CEB
3135}
3136
dcf6b7dd
RA
3137/*
3138 * Helper to sys_swapon determining if a given swap
3139 * backing device queue supports DISCARD operations.
3140 */
3141static bool swap_discardable(struct swap_info_struct *si)
3142{
3143 struct request_queue *q = bdev_get_queue(si->bdev);
3144
3145 if (!q || !blk_queue_discard(q))
3146 return false;
3147
3148 return true;
3149}
3150
53cbb243
CEB
3151SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3152{
3153 struct swap_info_struct *p;
91a27b2a 3154 struct filename *name;
53cbb243
CEB
3155 struct file *swap_file = NULL;
3156 struct address_space *mapping;
40531542 3157 int prio;
53cbb243
CEB
3158 int error;
3159 union swap_header *swap_header;
915d4d7b 3160 int nr_extents;
53cbb243
CEB
3161 sector_t span;
3162 unsigned long maxpages;
53cbb243 3163 unsigned char *swap_map = NULL;
2a8f9449 3164 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 3165 unsigned long *frontswap_map = NULL;
53cbb243
CEB
3166 struct page *page = NULL;
3167 struct inode *inode = NULL;
7cbf3192 3168 bool inced_nr_rotate_swap = false;
53cbb243 3169
d15cab97
HD
3170 if (swap_flags & ~SWAP_FLAGS_VALID)
3171 return -EINVAL;
3172
53cbb243
CEB
3173 if (!capable(CAP_SYS_ADMIN))
3174 return -EPERM;
3175
a2468cc9
AL
3176 if (!swap_avail_heads)
3177 return -ENOMEM;
3178
53cbb243 3179 p = alloc_swap_info();
2542e513
CEB
3180 if (IS_ERR(p))
3181 return PTR_ERR(p);
53cbb243 3182
815c2c54
SL
3183 INIT_WORK(&p->discard_work, swap_discard_work);
3184
1da177e4 3185 name = getname(specialfile);
1da177e4 3186 if (IS_ERR(name)) {
7de7fb6b 3187 error = PTR_ERR(name);
1da177e4 3188 name = NULL;
bd69010b 3189 goto bad_swap;
1da177e4 3190 }
669abf4e 3191 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 3192 if (IS_ERR(swap_file)) {
7de7fb6b 3193 error = PTR_ERR(swap_file);
1da177e4 3194 swap_file = NULL;
bd69010b 3195 goto bad_swap;
1da177e4
LT
3196 }
3197
3198 p->swap_file = swap_file;
3199 mapping = swap_file->f_mapping;
2130781e 3200 inode = mapping->host;
6f179af8 3201
4d0e1e10
CEB
3202 error = claim_swapfile(p, inode);
3203 if (unlikely(error))
1da177e4 3204 goto bad_swap;
1da177e4 3205
d795a90e
NA
3206 inode_lock(inode);
3207 if (IS_SWAPFILE(inode)) {
3208 error = -EBUSY;
3209 goto bad_swap_unlock_inode;
3210 }
3211
1da177e4
LT
3212 /*
3213 * Read the swap header.
3214 */
3215 if (!mapping->a_ops->readpage) {
3216 error = -EINVAL;
d795a90e 3217 goto bad_swap_unlock_inode;
1da177e4 3218 }
090d2b18 3219 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
3220 if (IS_ERR(page)) {
3221 error = PTR_ERR(page);
d795a90e 3222 goto bad_swap_unlock_inode;
1da177e4 3223 }
81e33971 3224 swap_header = kmap(page);
1da177e4 3225
ca8bd38b
CEB
3226 maxpages = read_swap_header(p, swap_header, inode);
3227 if (unlikely(!maxpages)) {
1da177e4 3228 error = -EINVAL;
d795a90e 3229 goto bad_swap_unlock_inode;
1da177e4 3230 }
886bb7e9 3231
81e33971 3232 /* OK, set up the swap map and apply the bad block list */
803d0c83 3233 swap_map = vzalloc(maxpages);
81e33971
HD
3234 if (!swap_map) {
3235 error = -ENOMEM;
d795a90e 3236 goto bad_swap_unlock_inode;
81e33971 3237 }
f0571429 3238
1cb039f3 3239 if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
f0571429
MK
3240 p->flags |= SWP_STABLE_WRITES;
3241
a8b456d0 3242 if (p->bdev && p->bdev->bd_disk->fops->rw_page)
539a6fea
MK
3243 p->flags |= SWP_SYNCHRONOUS_IO;
3244
2a8f9449 3245 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
6f179af8 3246 int cpu;
235b6217 3247 unsigned long ci, nr_cluster;
6f179af8 3248
2a8f9449 3249 p->flags |= SWP_SOLIDSTATE;
49070588
HY
3250 p->cluster_next_cpu = alloc_percpu(unsigned int);
3251 if (!p->cluster_next_cpu) {
3252 error = -ENOMEM;
3253 goto bad_swap_unlock_inode;
3254 }
2a8f9449
SL
3255 /*
3256 * select a random position to start with to help wear leveling
3257 * SSD
3258 */
49070588
HY
3259 for_each_possible_cpu(cpu) {
3260 per_cpu(*p->cluster_next_cpu, cpu) =
3261 1 + prandom_u32_max(p->highest_bit);
3262 }
235b6217 3263 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2a8f9449 3264
778e1cdd 3265 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
54f180d3 3266 GFP_KERNEL);
2a8f9449
SL
3267 if (!cluster_info) {
3268 error = -ENOMEM;
d795a90e 3269 goto bad_swap_unlock_inode;
2a8f9449 3270 }
235b6217
HY
3271
3272 for (ci = 0; ci < nr_cluster; ci++)
3273 spin_lock_init(&((cluster_info + ci)->lock));
3274
ebc2a1a6
SL
3275 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3276 if (!p->percpu_cluster) {
3277 error = -ENOMEM;
d795a90e 3278 goto bad_swap_unlock_inode;
ebc2a1a6 3279 }
6f179af8 3280 for_each_possible_cpu(cpu) {
ebc2a1a6 3281 struct percpu_cluster *cluster;
6f179af8 3282 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
ebc2a1a6
SL
3283 cluster_set_null(&cluster->index);
3284 }
7cbf3192 3285 } else {
81a0298b 3286 atomic_inc(&nr_rotate_swap);
7cbf3192
OS
3287 inced_nr_rotate_swap = true;
3288 }
1da177e4 3289
1421ef3c
CEB
3290 error = swap_cgroup_swapon(p->type, maxpages);
3291 if (error)
d795a90e 3292 goto bad_swap_unlock_inode;
1421ef3c 3293
915d4d7b 3294 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 3295 cluster_info, maxpages, &span);
915d4d7b
CEB
3296 if (unlikely(nr_extents < 0)) {
3297 error = nr_extents;
d795a90e 3298 goto bad_swap_unlock_inode;
1da177e4 3299 }
38b5faf4 3300 /* frontswap enabled? set up bit-per-page map for frontswap */
8ea1d2a1 3301 if (IS_ENABLED(CONFIG_FRONTSWAP))
778e1cdd
KC
3302 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3303 sizeof(long),
54f180d3 3304 GFP_KERNEL);
1da177e4 3305
68d68ff6 3306 if (p->bdev && (swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2a8f9449
SL
3307 /*
3308 * When discard is enabled for swap with no particular
3309 * policy flagged, we set all swap discard flags here in
3310 * order to sustain backward compatibility with older
3311 * swapon(8) releases.
3312 */
3313 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3314 SWP_PAGE_DISCARD);
dcf6b7dd 3315
2a8f9449
SL
3316 /*
3317 * By flagging sys_swapon, a sysadmin can tell us to
3318 * either do single-time area discards only, or to just
3319 * perform discards for released swap page-clusters.
3320 * Now it's time to adjust the p->flags accordingly.
3321 */
3322 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3323 p->flags &= ~SWP_PAGE_DISCARD;
3324 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3325 p->flags &= ~SWP_AREA_DISCARD;
3326
3327 /* issue a swapon-time discard if it's still required */
3328 if (p->flags & SWP_AREA_DISCARD) {
3329 int err = discard_swap(p);
3330 if (unlikely(err))
3331 pr_err("swapon: discard_swap(%p): %d\n",
3332 p, err);
dcf6b7dd 3333 }
20137a49 3334 }
6a6ba831 3335
4b3ef9da
HY
3336 error = init_swap_address_space(p->type, maxpages);
3337 if (error)
d795a90e 3338 goto bad_swap_unlock_inode;
4b3ef9da 3339
dc617f29
DW
3340 /*
3341 * Flush any pending IO and dirty mappings before we start using this
3342 * swap device.
3343 */
3344 inode->i_flags |= S_SWAPFILE;
3345 error = inode_drain_writes(inode);
3346 if (error) {
3347 inode->i_flags &= ~S_SWAPFILE;
822bca52 3348 goto free_swap_address_space;
dc617f29
DW
3349 }
3350
fc0abb14 3351 mutex_lock(&swapon_mutex);
40531542 3352 prio = -1;
78ecba08 3353 if (swap_flags & SWAP_FLAG_PREFER)
40531542 3354 prio =
78ecba08 3355 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 3356 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 3357
756a025f 3358 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 3359 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
3360 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3361 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 3362 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
3363 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3364 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 3365 (frontswap_map) ? "FS" : "");
c69dbfb8 3366
fc0abb14 3367 mutex_unlock(&swapon_mutex);
66d7dd51
KS
3368 atomic_inc(&proc_poll_event);
3369 wake_up_interruptible(&proc_poll_wait);
3370
1da177e4
LT
3371 error = 0;
3372 goto out;
822bca52
ML
3373free_swap_address_space:
3374 exit_swap_address_space(p->type);
d795a90e
NA
3375bad_swap_unlock_inode:
3376 inode_unlock(inode);
1da177e4 3377bad_swap:
ebc2a1a6
SL
3378 free_percpu(p->percpu_cluster);
3379 p->percpu_cluster = NULL;
49070588
HY
3380 free_percpu(p->cluster_next_cpu);
3381 p->cluster_next_cpu = NULL;
bd69010b 3382 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
3383 set_blocksize(p->bdev, p->old_block_size);
3384 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 3385 }
d795a90e 3386 inode = NULL;
4cd3bb10 3387 destroy_swap_extents(p);
e8e6c2ec 3388 swap_cgroup_swapoff(p->type);
5d337b91 3389 spin_lock(&swap_lock);
1da177e4 3390 p->swap_file = NULL;
1da177e4 3391 p->flags = 0;
5d337b91 3392 spin_unlock(&swap_lock);
1da177e4 3393 vfree(swap_map);
8606a1a9 3394 kvfree(cluster_info);
b6b1fd2a 3395 kvfree(frontswap_map);
7cbf3192
OS
3396 if (inced_nr_rotate_swap)
3397 atomic_dec(&nr_rotate_swap);
d795a90e 3398 if (swap_file)
1da177e4
LT
3399 filp_close(swap_file, NULL);
3400out:
3401 if (page && !IS_ERR(page)) {
3402 kunmap(page);
09cbfeaf 3403 put_page(page);
1da177e4
LT
3404 }
3405 if (name)
3406 putname(name);
1638045c 3407 if (inode)
5955102c 3408 inode_unlock(inode);
039939a6
TC
3409 if (!error)
3410 enable_swap_slots_cache();
1da177e4
LT
3411 return error;
3412}
3413
3414void si_swapinfo(struct sysinfo *val)
3415{
efa90a98 3416 unsigned int type;
1da177e4
LT
3417 unsigned long nr_to_be_unused = 0;
3418
5d337b91 3419 spin_lock(&swap_lock);
efa90a98
HD
3420 for (type = 0; type < nr_swapfiles; type++) {
3421 struct swap_info_struct *si = swap_info[type];
3422
3423 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3424 nr_to_be_unused += si->inuse_pages;
1da177e4 3425 }
ec8acf20 3426 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 3427 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 3428 spin_unlock(&swap_lock);
1da177e4
LT
3429}
3430
3431/*
3432 * Verify that a swap entry is valid and increment its swap map count.
3433 *
355cfa73
KH
3434 * Returns error code in following case.
3435 * - success -> 0
3436 * - swp_entry is invalid -> EINVAL
3437 * - swp_entry is migration entry -> EINVAL
3438 * - swap-cache reference is requested but there is already one. -> EEXIST
3439 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 3440 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 3441 */
8d69aaee 3442static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 3443{
73c34b6a 3444 struct swap_info_struct *p;
235b6217 3445 struct swap_cluster_info *ci;
c10d38cc 3446 unsigned long offset;
8d69aaee
HD
3447 unsigned char count;
3448 unsigned char has_cache;
9d9a0334 3449 int err;
1da177e4 3450
eb085574 3451 p = get_swap_device(entry);
c10d38cc 3452 if (!p)
9d9a0334 3453 return -EINVAL;
235b6217 3454
eb085574 3455 offset = swp_offset(entry);
235b6217 3456 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 3457
253d553b 3458 count = p->swap_map[offset];
edfe23da
SL
3459
3460 /*
3461 * swapin_readahead() doesn't check if a swap entry is valid, so the
3462 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3463 */
3464 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3465 err = -ENOENT;
3466 goto unlock_out;
3467 }
3468
253d553b
HD
3469 has_cache = count & SWAP_HAS_CACHE;
3470 count &= ~SWAP_HAS_CACHE;
3471 err = 0;
355cfa73 3472
253d553b 3473 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
3474
3475 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
3476 if (!has_cache && count)
3477 has_cache = SWAP_HAS_CACHE;
3478 else if (has_cache) /* someone else added cache */
3479 err = -EEXIST;
3480 else /* no users remaining */
3481 err = -ENOENT;
355cfa73
KH
3482
3483 } else if (count || has_cache) {
253d553b 3484
570a335b
HD
3485 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3486 count += usage;
3487 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 3488 err = -EINVAL;
570a335b
HD
3489 else if (swap_count_continued(p, offset, count))
3490 count = COUNT_CONTINUED;
3491 else
3492 err = -ENOMEM;
355cfa73 3493 } else
253d553b
HD
3494 err = -ENOENT; /* unused swap entry */
3495
a449bf58 3496 WRITE_ONCE(p->swap_map[offset], count | has_cache);
253d553b 3497
355cfa73 3498unlock_out:
235b6217 3499 unlock_cluster_or_swap_info(p, ci);
eb085574
HY
3500 if (p)
3501 put_swap_device(p);
253d553b 3502 return err;
1da177e4 3503}
253d553b 3504
aaa46865
HD
3505/*
3506 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3507 * (in which case its reference count is never incremented).
3508 */
3509void swap_shmem_alloc(swp_entry_t entry)
3510{
3511 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3512}
3513
355cfa73 3514/*
08259d58
HD
3515 * Increase reference count of swap entry by 1.
3516 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3517 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3518 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3519 * might occur if a page table entry has got corrupted.
355cfa73 3520 */
570a335b 3521int swap_duplicate(swp_entry_t entry)
355cfa73 3522{
570a335b
HD
3523 int err = 0;
3524
3525 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3526 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3527 return err;
355cfa73 3528}
1da177e4 3529
cb4b86ba 3530/*
355cfa73
KH
3531 * @entry: swap entry for which we allocate swap cache.
3532 *
73c34b6a 3533 * Called when allocating swap cache for existing swap entry,
355cfa73 3534 * This can return error codes. Returns 0 at success.
3eeba135 3535 * -EEXIST means there is a swap cache.
355cfa73 3536 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
3537 */
3538int swapcache_prepare(swp_entry_t entry)
3539{
253d553b 3540 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
3541}
3542
0bcac06f
MK
3543struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3544{
c10d38cc 3545 return swap_type_to_swap_info(swp_type(entry));
0bcac06f
MK
3546}
3547
f981c595
MG
3548struct swap_info_struct *page_swap_info(struct page *page)
3549{
0bcac06f
MK
3550 swp_entry_t entry = { .val = page_private(page) };
3551 return swp_swap_info(entry);
f981c595
MG
3552}
3553
3554/*
3555 * out-of-line __page_file_ methods to avoid include hell.
3556 */
3557struct address_space *__page_file_mapping(struct page *page)
3558{
f981c595
MG
3559 return page_swap_info(page)->swap_file->f_mapping;
3560}
3561EXPORT_SYMBOL_GPL(__page_file_mapping);
3562
3563pgoff_t __page_file_index(struct page *page)
3564{
3565 swp_entry_t swap = { .val = page_private(page) };
f981c595
MG
3566 return swp_offset(swap);
3567}
3568EXPORT_SYMBOL_GPL(__page_file_index);
3569
570a335b
HD
3570/*
3571 * add_swap_count_continuation - called when a swap count is duplicated
3572 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3573 * page of the original vmalloc'ed swap_map, to hold the continuation count
3574 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3575 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3576 *
3577 * These continuation pages are seldom referenced: the common paths all work
3578 * on the original swap_map, only referring to a continuation page when the
3579 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3580 *
3581 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3582 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3583 * can be called after dropping locks.
3584 */
3585int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3586{
3587 struct swap_info_struct *si;
235b6217 3588 struct swap_cluster_info *ci;
570a335b
HD
3589 struct page *head;
3590 struct page *page;
3591 struct page *list_page;
3592 pgoff_t offset;
3593 unsigned char count;
eb085574 3594 int ret = 0;
570a335b
HD
3595
3596 /*
3597 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3598 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3599 */
3600 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3601
eb085574 3602 si = get_swap_device(entry);
570a335b
HD
3603 if (!si) {
3604 /*
3605 * An acceptable race has occurred since the failing
eb085574 3606 * __swap_duplicate(): the swap device may be swapoff
570a335b
HD
3607 */
3608 goto outer;
3609 }
eb085574 3610 spin_lock(&si->lock);
570a335b
HD
3611
3612 offset = swp_offset(entry);
235b6217
HY
3613
3614 ci = lock_cluster(si, offset);
3615
d8aa24e0 3616 count = swap_count(si->swap_map[offset]);
570a335b
HD
3617
3618 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3619 /*
3620 * The higher the swap count, the more likely it is that tasks
3621 * will race to add swap count continuation: we need to avoid
3622 * over-provisioning.
3623 */
3624 goto out;
3625 }
3626
3627 if (!page) {
eb085574
HY
3628 ret = -ENOMEM;
3629 goto out;
570a335b
HD
3630 }
3631
3632 /*
3633 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
3634 * no architecture is using highmem pages for kernel page tables: so it
3635 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
3636 */
3637 head = vmalloc_to_page(si->swap_map + offset);
3638 offset &= ~PAGE_MASK;
3639
2628bd6f 3640 spin_lock(&si->cont_lock);
570a335b
HD
3641 /*
3642 * Page allocation does not initialize the page's lru field,
3643 * but it does always reset its private field.
3644 */
3645 if (!page_private(head)) {
3646 BUG_ON(count & COUNT_CONTINUED);
3647 INIT_LIST_HEAD(&head->lru);
3648 set_page_private(head, SWP_CONTINUED);
3649 si->flags |= SWP_CONTINUED;
3650 }
3651
3652 list_for_each_entry(list_page, &head->lru, lru) {
3653 unsigned char *map;
3654
3655 /*
3656 * If the previous map said no continuation, but we've found
3657 * a continuation page, free our allocation and use this one.
3658 */
3659 if (!(count & COUNT_CONTINUED))
2628bd6f 3660 goto out_unlock_cont;
570a335b 3661
9b04c5fe 3662 map = kmap_atomic(list_page) + offset;
570a335b 3663 count = *map;
9b04c5fe 3664 kunmap_atomic(map);
570a335b
HD
3665
3666 /*
3667 * If this continuation count now has some space in it,
3668 * free our allocation and use this one.
3669 */
3670 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2628bd6f 3671 goto out_unlock_cont;
570a335b
HD
3672 }
3673
3674 list_add_tail(&page->lru, &head->lru);
3675 page = NULL; /* now it's attached, don't free it */
2628bd6f
HY
3676out_unlock_cont:
3677 spin_unlock(&si->cont_lock);
570a335b 3678out:
235b6217 3679 unlock_cluster(ci);
ec8acf20 3680 spin_unlock(&si->lock);
eb085574 3681 put_swap_device(si);
570a335b
HD
3682outer:
3683 if (page)
3684 __free_page(page);
eb085574 3685 return ret;
570a335b
HD
3686}
3687
3688/*
3689 * swap_count_continued - when the original swap_map count is incremented
3690 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3691 * into, carry if so, or else fail until a new continuation page is allocated;
3692 * when the original swap_map count is decremented from 0 with continuation,
3693 * borrow from the continuation and report whether it still holds more.
235b6217
HY
3694 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3695 * lock.
570a335b
HD
3696 */
3697static bool swap_count_continued(struct swap_info_struct *si,
3698 pgoff_t offset, unsigned char count)
3699{
3700 struct page *head;
3701 struct page *page;
3702 unsigned char *map;
2628bd6f 3703 bool ret;
570a335b
HD
3704
3705 head = vmalloc_to_page(si->swap_map + offset);
3706 if (page_private(head) != SWP_CONTINUED) {
3707 BUG_ON(count & COUNT_CONTINUED);
3708 return false; /* need to add count continuation */
3709 }
3710
2628bd6f 3711 spin_lock(&si->cont_lock);
570a335b 3712 offset &= ~PAGE_MASK;
213516ac 3713 page = list_next_entry(head, lru);
9b04c5fe 3714 map = kmap_atomic(page) + offset;
570a335b
HD
3715
3716 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3717 goto init_map; /* jump over SWAP_CONT_MAX checks */
3718
3719 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3720 /*
3721 * Think of how you add 1 to 999
3722 */
3723 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 3724 kunmap_atomic(map);
213516ac 3725 page = list_next_entry(page, lru);
570a335b 3726 BUG_ON(page == head);
9b04c5fe 3727 map = kmap_atomic(page) + offset;
570a335b
HD
3728 }
3729 if (*map == SWAP_CONT_MAX) {
9b04c5fe 3730 kunmap_atomic(map);
213516ac 3731 page = list_next_entry(page, lru);
2628bd6f
HY
3732 if (page == head) {
3733 ret = false; /* add count continuation */
3734 goto out;
3735 }
9b04c5fe 3736 map = kmap_atomic(page) + offset;
570a335b
HD
3737init_map: *map = 0; /* we didn't zero the page */
3738 }
3739 *map += 1;
9b04c5fe 3740 kunmap_atomic(map);
213516ac 3741 while ((page = list_prev_entry(page, lru)) != head) {
9b04c5fe 3742 map = kmap_atomic(page) + offset;
570a335b 3743 *map = COUNT_CONTINUED;
9b04c5fe 3744 kunmap_atomic(map);
570a335b 3745 }
2628bd6f 3746 ret = true; /* incremented */
570a335b
HD
3747
3748 } else { /* decrementing */
3749 /*
3750 * Think of how you subtract 1 from 1000
3751 */
3752 BUG_ON(count != COUNT_CONTINUED);
3753 while (*map == COUNT_CONTINUED) {
9b04c5fe 3754 kunmap_atomic(map);
213516ac 3755 page = list_next_entry(page, lru);
570a335b 3756 BUG_ON(page == head);
9b04c5fe 3757 map = kmap_atomic(page) + offset;
570a335b
HD
3758 }
3759 BUG_ON(*map == 0);
3760 *map -= 1;
3761 if (*map == 0)
3762 count = 0;
9b04c5fe 3763 kunmap_atomic(map);
213516ac 3764 while ((page = list_prev_entry(page, lru)) != head) {
9b04c5fe 3765 map = kmap_atomic(page) + offset;
570a335b
HD
3766 *map = SWAP_CONT_MAX | count;
3767 count = COUNT_CONTINUED;
9b04c5fe 3768 kunmap_atomic(map);
570a335b 3769 }
2628bd6f 3770 ret = count == COUNT_CONTINUED;
570a335b 3771 }
2628bd6f
HY
3772out:
3773 spin_unlock(&si->cont_lock);
3774 return ret;
570a335b
HD
3775}
3776
3777/*
3778 * free_swap_count_continuations - swapoff free all the continuation pages
3779 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3780 */
3781static void free_swap_count_continuations(struct swap_info_struct *si)
3782{
3783 pgoff_t offset;
3784
3785 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3786 struct page *head;
3787 head = vmalloc_to_page(si->swap_map + offset);
3788 if (page_private(head)) {
0d576d20
GT
3789 struct page *page, *next;
3790
3791 list_for_each_entry_safe(page, next, &head->lru, lru) {
3792 list_del(&page->lru);
570a335b
HD
3793 __free_page(page);
3794 }
3795 }
3796 }
3797}
a2468cc9 3798
2cf85583 3799#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
6caa6a07 3800void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
2cf85583
TH
3801{
3802 struct swap_info_struct *si, *next;
6caa6a07
JW
3803 int nid = page_to_nid(page);
3804
3805 if (!(gfp_mask & __GFP_IO))
2cf85583
TH
3806 return;
3807
3808 if (!blk_cgroup_congested())
3809 return;
3810
3811 /*
3812 * We've already scheduled a throttle, avoid taking the global swap
3813 * lock.
3814 */
3815 if (current->throttle_queue)
3816 return;
3817
3818 spin_lock(&swap_avail_lock);
6caa6a07
JW
3819 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3820 avail_lists[nid]) {
2cf85583 3821 if (si->bdev) {
6caa6a07 3822 blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
2cf85583
TH
3823 break;
3824 }
3825 }
3826 spin_unlock(&swap_avail_lock);
3827}
3828#endif
3829
a2468cc9
AL
3830static int __init swapfile_init(void)
3831{
3832 int nid;
3833
3834 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3835 GFP_KERNEL);
3836 if (!swap_avail_heads) {
3837 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3838 return -ENOMEM;
3839 }
3840
3841 for_each_node(nid)
3842 plist_head_init(&swap_avail_heads[nid]);
3843
3844 return 0;
3845}
3846subsys_initcall(swapfile_init);