]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/swapfile.c
memcontrol: move mm_cgroup to header file
[mirror_ubuntu-bionic-kernel.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
17#include <linux/shm.h>
18#include <linux/blkdev.h>
19#include <linux/writeback.h>
20#include <linux/proc_fs.h>
21#include <linux/seq_file.h>
22#include <linux/init.h>
23#include <linux/module.h>
24#include <linux/rmap.h>
25#include <linux/security.h>
26#include <linux/backing-dev.h>
fc0abb14 27#include <linux/mutex.h>
c59ede7b 28#include <linux/capability.h>
1da177e4 29#include <linux/syscalls.h>
8a9f3ccd 30#include <linux/memcontrol.h>
1da177e4
LT
31
32#include <asm/pgtable.h>
33#include <asm/tlbflush.h>
34#include <linux/swapops.h>
35
5d337b91 36DEFINE_SPINLOCK(swap_lock);
1da177e4
LT
37unsigned int nr_swapfiles;
38long total_swap_pages;
39static int swap_overflow;
40
1da177e4
LT
41static const char Bad_file[] = "Bad swap file entry ";
42static const char Unused_file[] = "Unused swap file entry ";
43static const char Bad_offset[] = "Bad swap offset entry ";
44static const char Unused_offset[] = "Unused swap offset entry ";
45
46struct swap_list_t swap_list = {-1, -1};
47
f577eb30 48static struct swap_info_struct swap_info[MAX_SWAPFILES];
1da177e4 49
fc0abb14 50static DEFINE_MUTEX(swapon_mutex);
1da177e4
LT
51
52/*
53 * We need this because the bdev->unplug_fn can sleep and we cannot
5d337b91 54 * hold swap_lock while calling the unplug_fn. And swap_lock
fc0abb14 55 * cannot be turned into a mutex.
1da177e4
LT
56 */
57static DECLARE_RWSEM(swap_unplug_sem);
58
1da177e4
LT
59void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
60{
61 swp_entry_t entry;
62
63 down_read(&swap_unplug_sem);
4c21e2f2 64 entry.val = page_private(page);
1da177e4
LT
65 if (PageSwapCache(page)) {
66 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
67 struct backing_dev_info *bdi;
68
69 /*
70 * If the page is removed from swapcache from under us (with a
71 * racy try_to_unuse/swapoff) we need an additional reference
4c21e2f2
HD
72 * count to avoid reading garbage from page_private(page) above.
73 * If the WARN_ON triggers during a swapoff it maybe the race
1da177e4
LT
74 * condition and it's harmless. However if it triggers without
75 * swapoff it signals a problem.
76 */
77 WARN_ON(page_count(page) <= 1);
78
79 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
ba32311e 80 blk_run_backing_dev(bdi, page);
1da177e4
LT
81 }
82 up_read(&swap_unplug_sem);
83}
84
048c27fd
HD
85#define SWAPFILE_CLUSTER 256
86#define LATENCY_LIMIT 256
87
6eb396dc 88static inline unsigned long scan_swap_map(struct swap_info_struct *si)
1da177e4 89{
7dfad418 90 unsigned long offset, last_in_cluster;
048c27fd 91 int latency_ration = LATENCY_LIMIT;
7dfad418 92
1da177e4 93 /*
7dfad418
HD
94 * We try to cluster swap pages by allocating them sequentially
95 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
96 * way, however, we resort to first-free allocation, starting
97 * a new cluster. This prevents us from scattering swap pages
98 * all over the entire swap partition, so that we reduce
99 * overall disk seek times between swap pages. -- sct
100 * But we do now try to find an empty cluster. -Andrea
101 */
102
52b7efdb 103 si->flags += SWP_SCANNING;
7dfad418
HD
104 if (unlikely(!si->cluster_nr)) {
105 si->cluster_nr = SWAPFILE_CLUSTER - 1;
106 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
107 goto lowest;
5d337b91 108 spin_unlock(&swap_lock);
7dfad418
HD
109
110 offset = si->lowest_bit;
111 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
112
113 /* Locate the first empty (unaligned) cluster */
114 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 115 if (si->swap_map[offset])
7dfad418
HD
116 last_in_cluster = offset + SWAPFILE_CLUSTER;
117 else if (offset == last_in_cluster) {
5d337b91 118 spin_lock(&swap_lock);
9b65ef59 119 si->cluster_next = offset-SWAPFILE_CLUSTER+1;
7dfad418 120 goto cluster;
1da177e4 121 }
048c27fd
HD
122 if (unlikely(--latency_ration < 0)) {
123 cond_resched();
124 latency_ration = LATENCY_LIMIT;
125 }
7dfad418 126 }
5d337b91 127 spin_lock(&swap_lock);
7dfad418 128 goto lowest;
1da177e4 129 }
7dfad418
HD
130
131 si->cluster_nr--;
132cluster:
133 offset = si->cluster_next;
134 if (offset > si->highest_bit)
135lowest: offset = si->lowest_bit;
52b7efdb
HD
136checks: if (!(si->flags & SWP_WRITEOK))
137 goto no_page;
7dfad418
HD
138 if (!si->highest_bit)
139 goto no_page;
140 if (!si->swap_map[offset]) {
52b7efdb 141 if (offset == si->lowest_bit)
1da177e4
LT
142 si->lowest_bit++;
143 if (offset == si->highest_bit)
144 si->highest_bit--;
7dfad418
HD
145 si->inuse_pages++;
146 if (si->inuse_pages == si->pages) {
1da177e4
LT
147 si->lowest_bit = si->max;
148 si->highest_bit = 0;
149 }
150 si->swap_map[offset] = 1;
7dfad418 151 si->cluster_next = offset + 1;
52b7efdb 152 si->flags -= SWP_SCANNING;
1da177e4
LT
153 return offset;
154 }
7dfad418 155
5d337b91 156 spin_unlock(&swap_lock);
7dfad418 157 while (++offset <= si->highest_bit) {
52b7efdb 158 if (!si->swap_map[offset]) {
5d337b91 159 spin_lock(&swap_lock);
52b7efdb
HD
160 goto checks;
161 }
048c27fd
HD
162 if (unlikely(--latency_ration < 0)) {
163 cond_resched();
164 latency_ration = LATENCY_LIMIT;
165 }
7dfad418 166 }
5d337b91 167 spin_lock(&swap_lock);
7dfad418
HD
168 goto lowest;
169
170no_page:
52b7efdb 171 si->flags -= SWP_SCANNING;
1da177e4
LT
172 return 0;
173}
174
175swp_entry_t get_swap_page(void)
176{
fb4f88dc
HD
177 struct swap_info_struct *si;
178 pgoff_t offset;
179 int type, next;
180 int wrapped = 0;
1da177e4 181
5d337b91 182 spin_lock(&swap_lock);
1da177e4 183 if (nr_swap_pages <= 0)
fb4f88dc
HD
184 goto noswap;
185 nr_swap_pages--;
186
187 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
188 si = swap_info + type;
189 next = si->next;
190 if (next < 0 ||
191 (!wrapped && si->prio != swap_info[next].prio)) {
192 next = swap_list.head;
193 wrapped++;
1da177e4 194 }
fb4f88dc
HD
195
196 if (!si->highest_bit)
197 continue;
198 if (!(si->flags & SWP_WRITEOK))
199 continue;
200
201 swap_list.next = next;
fb4f88dc 202 offset = scan_swap_map(si);
5d337b91
HD
203 if (offset) {
204 spin_unlock(&swap_lock);
fb4f88dc 205 return swp_entry(type, offset);
5d337b91 206 }
fb4f88dc 207 next = swap_list.next;
1da177e4 208 }
fb4f88dc
HD
209
210 nr_swap_pages++;
211noswap:
5d337b91 212 spin_unlock(&swap_lock);
fb4f88dc 213 return (swp_entry_t) {0};
1da177e4
LT
214}
215
3a291a20
RW
216swp_entry_t get_swap_page_of_type(int type)
217{
218 struct swap_info_struct *si;
219 pgoff_t offset;
220
221 spin_lock(&swap_lock);
222 si = swap_info + type;
223 if (si->flags & SWP_WRITEOK) {
224 nr_swap_pages--;
225 offset = scan_swap_map(si);
226 if (offset) {
227 spin_unlock(&swap_lock);
228 return swp_entry(type, offset);
229 }
230 nr_swap_pages++;
231 }
232 spin_unlock(&swap_lock);
233 return (swp_entry_t) {0};
234}
235
1da177e4
LT
236static struct swap_info_struct * swap_info_get(swp_entry_t entry)
237{
238 struct swap_info_struct * p;
239 unsigned long offset, type;
240
241 if (!entry.val)
242 goto out;
243 type = swp_type(entry);
244 if (type >= nr_swapfiles)
245 goto bad_nofile;
246 p = & swap_info[type];
247 if (!(p->flags & SWP_USED))
248 goto bad_device;
249 offset = swp_offset(entry);
250 if (offset >= p->max)
251 goto bad_offset;
252 if (!p->swap_map[offset])
253 goto bad_free;
5d337b91 254 spin_lock(&swap_lock);
1da177e4
LT
255 return p;
256
257bad_free:
258 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
259 goto out;
260bad_offset:
261 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
262 goto out;
263bad_device:
264 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
265 goto out;
266bad_nofile:
267 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
268out:
269 return NULL;
270}
271
1da177e4
LT
272static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
273{
274 int count = p->swap_map[offset];
275
276 if (count < SWAP_MAP_MAX) {
277 count--;
278 p->swap_map[offset] = count;
279 if (!count) {
280 if (offset < p->lowest_bit)
281 p->lowest_bit = offset;
282 if (offset > p->highest_bit)
283 p->highest_bit = offset;
89d09a2c
HD
284 if (p->prio > swap_info[swap_list.next].prio)
285 swap_list.next = p - swap_info;
1da177e4
LT
286 nr_swap_pages++;
287 p->inuse_pages--;
288 }
289 }
290 return count;
291}
292
293/*
294 * Caller has made sure that the swapdevice corresponding to entry
295 * is still around or has not been recycled.
296 */
297void swap_free(swp_entry_t entry)
298{
299 struct swap_info_struct * p;
300
301 p = swap_info_get(entry);
302 if (p) {
303 swap_entry_free(p, swp_offset(entry));
5d337b91 304 spin_unlock(&swap_lock);
1da177e4
LT
305 }
306}
307
308/*
c475a8ab 309 * How many references to page are currently swapped out?
1da177e4 310 */
c475a8ab 311static inline int page_swapcount(struct page *page)
1da177e4 312{
c475a8ab
HD
313 int count = 0;
314 struct swap_info_struct *p;
1da177e4
LT
315 swp_entry_t entry;
316
4c21e2f2 317 entry.val = page_private(page);
1da177e4
LT
318 p = swap_info_get(entry);
319 if (p) {
c475a8ab
HD
320 /* Subtract the 1 for the swap cache itself */
321 count = p->swap_map[swp_offset(entry)] - 1;
5d337b91 322 spin_unlock(&swap_lock);
1da177e4 323 }
c475a8ab 324 return count;
1da177e4
LT
325}
326
327/*
328 * We can use this swap cache entry directly
329 * if there are no other references to it.
1da177e4
LT
330 */
331int can_share_swap_page(struct page *page)
332{
c475a8ab
HD
333 int count;
334
335 BUG_ON(!PageLocked(page));
336 count = page_mapcount(page);
337 if (count <= 1 && PageSwapCache(page))
338 count += page_swapcount(page);
339 return count == 1;
1da177e4
LT
340}
341
342/*
343 * Work out if there are any other processes sharing this
344 * swap cache page. Free it if you can. Return success.
345 */
346int remove_exclusive_swap_page(struct page *page)
347{
348 int retval;
349 struct swap_info_struct * p;
350 swp_entry_t entry;
351
352 BUG_ON(PagePrivate(page));
353 BUG_ON(!PageLocked(page));
354
355 if (!PageSwapCache(page))
356 return 0;
357 if (PageWriteback(page))
358 return 0;
359 if (page_count(page) != 2) /* 2: us + cache */
360 return 0;
361
4c21e2f2 362 entry.val = page_private(page);
1da177e4
LT
363 p = swap_info_get(entry);
364 if (!p)
365 return 0;
366
367 /* Is the only swap cache user the cache itself? */
368 retval = 0;
369 if (p->swap_map[swp_offset(entry)] == 1) {
370 /* Recheck the page count with the swapcache lock held.. */
371 write_lock_irq(&swapper_space.tree_lock);
372 if ((page_count(page) == 2) && !PageWriteback(page)) {
373 __delete_from_swap_cache(page);
374 SetPageDirty(page);
375 retval = 1;
376 }
377 write_unlock_irq(&swapper_space.tree_lock);
378 }
5d337b91 379 spin_unlock(&swap_lock);
1da177e4
LT
380
381 if (retval) {
382 swap_free(entry);
383 page_cache_release(page);
384 }
385
386 return retval;
387}
388
389/*
390 * Free the swap entry like above, but also try to
391 * free the page cache entry if it is the last user.
392 */
393void free_swap_and_cache(swp_entry_t entry)
394{
395 struct swap_info_struct * p;
396 struct page *page = NULL;
397
0697212a
CL
398 if (is_migration_entry(entry))
399 return;
400
1da177e4
LT
401 p = swap_info_get(entry);
402 if (p) {
93fac704
NP
403 if (swap_entry_free(p, swp_offset(entry)) == 1) {
404 page = find_get_page(&swapper_space, entry.val);
405 if (page && unlikely(TestSetPageLocked(page))) {
406 page_cache_release(page);
407 page = NULL;
408 }
409 }
5d337b91 410 spin_unlock(&swap_lock);
1da177e4
LT
411 }
412 if (page) {
413 int one_user;
414
415 BUG_ON(PagePrivate(page));
1da177e4
LT
416 one_user = (page_count(page) == 2);
417 /* Only cache user (+us), or swap space full? Free it! */
93fac704
NP
418 /* Also recheck PageSwapCache after page is locked (above) */
419 if (PageSwapCache(page) && !PageWriteback(page) &&
420 (one_user || vm_swap_full())) {
1da177e4
LT
421 delete_from_swap_cache(page);
422 SetPageDirty(page);
423 }
424 unlock_page(page);
425 page_cache_release(page);
426 }
427}
428
b0cb1a19 429#ifdef CONFIG_HIBERNATION
f577eb30 430/*
915bae9e 431 * Find the swap type that corresponds to given device (if any).
f577eb30 432 *
915bae9e
RW
433 * @offset - number of the PAGE_SIZE-sized block of the device, starting
434 * from 0, in which the swap header is expected to be located.
435 *
436 * This is needed for the suspend to disk (aka swsusp).
f577eb30 437 */
7bf23687 438int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 439{
915bae9e 440 struct block_device *bdev = NULL;
f577eb30
RW
441 int i;
442
915bae9e
RW
443 if (device)
444 bdev = bdget(device);
445
f577eb30
RW
446 spin_lock(&swap_lock);
447 for (i = 0; i < nr_swapfiles; i++) {
915bae9e 448 struct swap_info_struct *sis = swap_info + i;
f577eb30 449
915bae9e 450 if (!(sis->flags & SWP_WRITEOK))
f577eb30 451 continue;
b6b5bce3 452
915bae9e 453 if (!bdev) {
7bf23687
RW
454 if (bdev_p)
455 *bdev_p = sis->bdev;
456
6e1819d6
RW
457 spin_unlock(&swap_lock);
458 return i;
459 }
915bae9e
RW
460 if (bdev == sis->bdev) {
461 struct swap_extent *se;
462
463 se = list_entry(sis->extent_list.next,
464 struct swap_extent, list);
465 if (se->start_block == offset) {
7bf23687
RW
466 if (bdev_p)
467 *bdev_p = sis->bdev;
468
915bae9e
RW
469 spin_unlock(&swap_lock);
470 bdput(bdev);
471 return i;
472 }
f577eb30
RW
473 }
474 }
475 spin_unlock(&swap_lock);
915bae9e
RW
476 if (bdev)
477 bdput(bdev);
478
f577eb30
RW
479 return -ENODEV;
480}
481
482/*
483 * Return either the total number of swap pages of given type, or the number
484 * of free pages of that type (depending on @free)
485 *
486 * This is needed for software suspend
487 */
488unsigned int count_swap_pages(int type, int free)
489{
490 unsigned int n = 0;
491
492 if (type < nr_swapfiles) {
493 spin_lock(&swap_lock);
494 if (swap_info[type].flags & SWP_WRITEOK) {
495 n = swap_info[type].pages;
496 if (free)
497 n -= swap_info[type].inuse_pages;
498 }
499 spin_unlock(&swap_lock);
500 }
501 return n;
502}
503#endif
504
1da177e4 505/*
72866f6f
HD
506 * No need to decide whether this PTE shares the swap entry with others,
507 * just let do_wp_page work it out if a write is requested later - to
508 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 509 */
8a9f3ccd 510static int unuse_pte(struct vm_area_struct *vma, pte_t *pte,
1da177e4
LT
511 unsigned long addr, swp_entry_t entry, struct page *page)
512{
e1a1cd59 513 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
8a9f3ccd
BS
514 return -ENOMEM;
515
4294621f 516 inc_mm_counter(vma->vm_mm, anon_rss);
1da177e4
LT
517 get_page(page);
518 set_pte_at(vma->vm_mm, addr, pte,
519 pte_mkold(mk_pte(page, vma->vm_page_prot)));
520 page_add_anon_rmap(page, vma, addr);
521 swap_free(entry);
522 /*
523 * Move the page to the active list so it is not
524 * immediately swapped out again after swapon.
525 */
526 activate_page(page);
8a9f3ccd 527 return 1;
1da177e4
LT
528}
529
530static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
531 unsigned long addr, unsigned long end,
532 swp_entry_t entry, struct page *page)
533{
1da177e4 534 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 535 pte_t *pte;
59bd2658 536 spinlock_t *ptl;
8a9f3ccd 537 int ret = 0;
1da177e4 538
59bd2658 539 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1da177e4
LT
540 do {
541 /*
542 * swapoff spends a _lot_ of time in this loop!
543 * Test inline before going to call unuse_pte.
544 */
545 if (unlikely(pte_same(*pte, swp_pte))) {
8a9f3ccd 546 ret = unuse_pte(vma, pte++, addr, entry, page);
59bd2658 547 break;
1da177e4
LT
548 }
549 } while (pte++, addr += PAGE_SIZE, addr != end);
59bd2658 550 pte_unmap_unlock(pte - 1, ptl);
8a9f3ccd 551 return ret;
1da177e4
LT
552}
553
554static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
555 unsigned long addr, unsigned long end,
556 swp_entry_t entry, struct page *page)
557{
558 pmd_t *pmd;
559 unsigned long next;
8a9f3ccd 560 int ret;
1da177e4
LT
561
562 pmd = pmd_offset(pud, addr);
563 do {
564 next = pmd_addr_end(addr, end);
565 if (pmd_none_or_clear_bad(pmd))
566 continue;
8a9f3ccd
BS
567 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
568 if (ret)
569 return ret;
1da177e4
LT
570 } while (pmd++, addr = next, addr != end);
571 return 0;
572}
573
574static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
575 unsigned long addr, unsigned long end,
576 swp_entry_t entry, struct page *page)
577{
578 pud_t *pud;
579 unsigned long next;
8a9f3ccd 580 int ret;
1da177e4
LT
581
582 pud = pud_offset(pgd, addr);
583 do {
584 next = pud_addr_end(addr, end);
585 if (pud_none_or_clear_bad(pud))
586 continue;
8a9f3ccd
BS
587 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
588 if (ret)
589 return ret;
1da177e4
LT
590 } while (pud++, addr = next, addr != end);
591 return 0;
592}
593
594static int unuse_vma(struct vm_area_struct *vma,
595 swp_entry_t entry, struct page *page)
596{
597 pgd_t *pgd;
598 unsigned long addr, end, next;
8a9f3ccd 599 int ret;
1da177e4
LT
600
601 if (page->mapping) {
602 addr = page_address_in_vma(page, vma);
603 if (addr == -EFAULT)
604 return 0;
605 else
606 end = addr + PAGE_SIZE;
607 } else {
608 addr = vma->vm_start;
609 end = vma->vm_end;
610 }
611
612 pgd = pgd_offset(vma->vm_mm, addr);
613 do {
614 next = pgd_addr_end(addr, end);
615 if (pgd_none_or_clear_bad(pgd))
616 continue;
8a9f3ccd
BS
617 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
618 if (ret)
619 return ret;
1da177e4
LT
620 } while (pgd++, addr = next, addr != end);
621 return 0;
622}
623
624static int unuse_mm(struct mm_struct *mm,
625 swp_entry_t entry, struct page *page)
626{
627 struct vm_area_struct *vma;
8a9f3ccd 628 int ret = 0;
1da177e4
LT
629
630 if (!down_read_trylock(&mm->mmap_sem)) {
631 /*
c475a8ab
HD
632 * Activate page so shrink_cache is unlikely to unmap its
633 * ptes while lock is dropped, so swapoff can make progress.
1da177e4 634 */
c475a8ab 635 activate_page(page);
1da177e4
LT
636 unlock_page(page);
637 down_read(&mm->mmap_sem);
638 lock_page(page);
639 }
1da177e4 640 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 641 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4
LT
642 break;
643 }
1da177e4 644 up_read(&mm->mmap_sem);
8a9f3ccd 645 return (ret < 0)? ret: 0;
1da177e4
LT
646}
647
648/*
649 * Scan swap_map from current position to next entry still in use.
650 * Recycle to start on reaching the end, returning 0 when empty.
651 */
6eb396dc
HD
652static unsigned int find_next_to_unuse(struct swap_info_struct *si,
653 unsigned int prev)
1da177e4 654{
6eb396dc
HD
655 unsigned int max = si->max;
656 unsigned int i = prev;
1da177e4
LT
657 int count;
658
659 /*
5d337b91 660 * No need for swap_lock here: we're just looking
1da177e4
LT
661 * for whether an entry is in use, not modifying it; false
662 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 663 * allocations from this area (while holding swap_lock).
1da177e4
LT
664 */
665 for (;;) {
666 if (++i >= max) {
667 if (!prev) {
668 i = 0;
669 break;
670 }
671 /*
672 * No entries in use at top of swap_map,
673 * loop back to start and recheck there.
674 */
675 max = prev + 1;
676 prev = 0;
677 i = 1;
678 }
679 count = si->swap_map[i];
680 if (count && count != SWAP_MAP_BAD)
681 break;
682 }
683 return i;
684}
685
686/*
687 * We completely avoid races by reading each swap page in advance,
688 * and then search for the process using it. All the necessary
689 * page table adjustments can then be made atomically.
690 */
691static int try_to_unuse(unsigned int type)
692{
693 struct swap_info_struct * si = &swap_info[type];
694 struct mm_struct *start_mm;
695 unsigned short *swap_map;
696 unsigned short swcount;
697 struct page *page;
698 swp_entry_t entry;
6eb396dc 699 unsigned int i = 0;
1da177e4
LT
700 int retval = 0;
701 int reset_overflow = 0;
702 int shmem;
703
704 /*
705 * When searching mms for an entry, a good strategy is to
706 * start at the first mm we freed the previous entry from
707 * (though actually we don't notice whether we or coincidence
708 * freed the entry). Initialize this start_mm with a hold.
709 *
710 * A simpler strategy would be to start at the last mm we
711 * freed the previous entry from; but that would take less
712 * advantage of mmlist ordering, which clusters forked mms
713 * together, child after parent. If we race with dup_mmap(), we
714 * prefer to resolve parent before child, lest we miss entries
715 * duplicated after we scanned child: using last mm would invert
716 * that. Though it's only a serious concern when an overflowed
717 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
718 */
719 start_mm = &init_mm;
720 atomic_inc(&init_mm.mm_users);
721
722 /*
723 * Keep on scanning until all entries have gone. Usually,
724 * one pass through swap_map is enough, but not necessarily:
725 * there are races when an instance of an entry might be missed.
726 */
727 while ((i = find_next_to_unuse(si, i)) != 0) {
728 if (signal_pending(current)) {
729 retval = -EINTR;
730 break;
731 }
732
733 /*
734 * Get a page for the entry, using the existing swap
735 * cache page if there is one. Otherwise, get a clean
736 * page and read the swap into it.
737 */
738 swap_map = &si->swap_map[i];
739 entry = swp_entry(type, i);
02098fea
HD
740 page = read_swap_cache_async(entry,
741 GFP_HIGHUSER_MOVABLE, NULL, 0);
1da177e4
LT
742 if (!page) {
743 /*
744 * Either swap_duplicate() failed because entry
745 * has been freed independently, and will not be
746 * reused since sys_swapoff() already disabled
747 * allocation from here, or alloc_page() failed.
748 */
749 if (!*swap_map)
750 continue;
751 retval = -ENOMEM;
752 break;
753 }
754
755 /*
756 * Don't hold on to start_mm if it looks like exiting.
757 */
758 if (atomic_read(&start_mm->mm_users) == 1) {
759 mmput(start_mm);
760 start_mm = &init_mm;
761 atomic_inc(&init_mm.mm_users);
762 }
763
764 /*
765 * Wait for and lock page. When do_swap_page races with
766 * try_to_unuse, do_swap_page can handle the fault much
767 * faster than try_to_unuse can locate the entry. This
768 * apparently redundant "wait_on_page_locked" lets try_to_unuse
769 * defer to do_swap_page in such a case - in some tests,
770 * do_swap_page and try_to_unuse repeatedly compete.
771 */
772 wait_on_page_locked(page);
773 wait_on_page_writeback(page);
774 lock_page(page);
775 wait_on_page_writeback(page);
776
777 /*
778 * Remove all references to entry.
779 * Whenever we reach init_mm, there's no address space
780 * to search, but use it as a reminder to search shmem.
781 */
782 shmem = 0;
783 swcount = *swap_map;
784 if (swcount > 1) {
785 if (start_mm == &init_mm)
786 shmem = shmem_unuse(entry, page);
787 else
788 retval = unuse_mm(start_mm, entry, page);
789 }
790 if (*swap_map > 1) {
791 int set_start_mm = (*swap_map >= swcount);
792 struct list_head *p = &start_mm->mmlist;
793 struct mm_struct *new_start_mm = start_mm;
794 struct mm_struct *prev_mm = start_mm;
795 struct mm_struct *mm;
796
797 atomic_inc(&new_start_mm->mm_users);
798 atomic_inc(&prev_mm->mm_users);
799 spin_lock(&mmlist_lock);
2e0e26c7 800 while (*swap_map > 1 && !retval && !shmem &&
1da177e4
LT
801 (p = p->next) != &start_mm->mmlist) {
802 mm = list_entry(p, struct mm_struct, mmlist);
70af7c5c 803 if (!atomic_inc_not_zero(&mm->mm_users))
1da177e4 804 continue;
1da177e4
LT
805 spin_unlock(&mmlist_lock);
806 mmput(prev_mm);
807 prev_mm = mm;
808
809 cond_resched();
810
811 swcount = *swap_map;
812 if (swcount <= 1)
813 ;
814 else if (mm == &init_mm) {
815 set_start_mm = 1;
816 shmem = shmem_unuse(entry, page);
817 } else
818 retval = unuse_mm(mm, entry, page);
819 if (set_start_mm && *swap_map < swcount) {
820 mmput(new_start_mm);
821 atomic_inc(&mm->mm_users);
822 new_start_mm = mm;
823 set_start_mm = 0;
824 }
825 spin_lock(&mmlist_lock);
826 }
827 spin_unlock(&mmlist_lock);
828 mmput(prev_mm);
829 mmput(start_mm);
830 start_mm = new_start_mm;
831 }
2e0e26c7
HD
832 if (shmem) {
833 /* page has already been unlocked and released */
834 if (shmem > 0)
835 continue;
836 retval = shmem;
837 break;
838 }
1da177e4
LT
839 if (retval) {
840 unlock_page(page);
841 page_cache_release(page);
842 break;
843 }
844
845 /*
846 * How could swap count reach 0x7fff when the maximum
847 * pid is 0x7fff, and there's no way to repeat a swap
848 * page within an mm (except in shmem, where it's the
849 * shared object which takes the reference count)?
850 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
851 *
852 * If that's wrong, then we should worry more about
853 * exit_mmap() and do_munmap() cases described above:
854 * we might be resetting SWAP_MAP_MAX too early here.
855 * We know "Undead"s can happen, they're okay, so don't
856 * report them; but do report if we reset SWAP_MAP_MAX.
857 */
858 if (*swap_map == SWAP_MAP_MAX) {
5d337b91 859 spin_lock(&swap_lock);
1da177e4 860 *swap_map = 1;
5d337b91 861 spin_unlock(&swap_lock);
1da177e4
LT
862 reset_overflow = 1;
863 }
864
865 /*
866 * If a reference remains (rare), we would like to leave
867 * the page in the swap cache; but try_to_unmap could
868 * then re-duplicate the entry once we drop page lock,
869 * so we might loop indefinitely; also, that page could
870 * not be swapped out to other storage meanwhile. So:
871 * delete from cache even if there's another reference,
872 * after ensuring that the data has been saved to disk -
873 * since if the reference remains (rarer), it will be
874 * read from disk into another page. Splitting into two
875 * pages would be incorrect if swap supported "shared
876 * private" pages, but they are handled by tmpfs files.
1da177e4
LT
877 */
878 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
879 struct writeback_control wbc = {
880 .sync_mode = WB_SYNC_NONE,
881 };
882
883 swap_writepage(page, &wbc);
884 lock_page(page);
885 wait_on_page_writeback(page);
886 }
2e0e26c7
HD
887 if (PageSwapCache(page))
888 delete_from_swap_cache(page);
1da177e4
LT
889
890 /*
891 * So we could skip searching mms once swap count went
892 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 893 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
894 */
895 SetPageDirty(page);
896 unlock_page(page);
897 page_cache_release(page);
898
899 /*
900 * Make sure that we aren't completely killing
901 * interactive performance.
902 */
903 cond_resched();
904 }
905
906 mmput(start_mm);
907 if (reset_overflow) {
908 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
909 swap_overflow = 0;
910 }
911 return retval;
912}
913
914/*
5d337b91
HD
915 * After a successful try_to_unuse, if no swap is now in use, we know
916 * we can empty the mmlist. swap_lock must be held on entry and exit.
917 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
918 * added to the mmlist just after page_duplicate - before would be racy.
919 */
920static void drain_mmlist(void)
921{
922 struct list_head *p, *next;
923 unsigned int i;
924
925 for (i = 0; i < nr_swapfiles; i++)
926 if (swap_info[i].inuse_pages)
927 return;
928 spin_lock(&mmlist_lock);
929 list_for_each_safe(p, next, &init_mm.mmlist)
930 list_del_init(p);
931 spin_unlock(&mmlist_lock);
932}
933
934/*
935 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
936 * corresponds to page offset `offset'.
937 */
938sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
939{
940 struct swap_extent *se = sis->curr_swap_extent;
941 struct swap_extent *start_se = se;
942
943 for ( ; ; ) {
944 struct list_head *lh;
945
946 if (se->start_page <= offset &&
947 offset < (se->start_page + se->nr_pages)) {
948 return se->start_block + (offset - se->start_page);
949 }
11d31886 950 lh = se->list.next;
1da177e4 951 if (lh == &sis->extent_list)
11d31886 952 lh = lh->next;
1da177e4
LT
953 se = list_entry(lh, struct swap_extent, list);
954 sis->curr_swap_extent = se;
955 BUG_ON(se == start_se); /* It *must* be present */
956 }
957}
958
b0cb1a19 959#ifdef CONFIG_HIBERNATION
3aef83e0
RW
960/*
961 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
962 * corresponding to given index in swap_info (swap type).
963 */
964sector_t swapdev_block(int swap_type, pgoff_t offset)
965{
966 struct swap_info_struct *sis;
967
968 if (swap_type >= nr_swapfiles)
969 return 0;
970
971 sis = swap_info + swap_type;
972 return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
973}
b0cb1a19 974#endif /* CONFIG_HIBERNATION */
3aef83e0 975
1da177e4
LT
976/*
977 * Free all of a swapdev's extent information
978 */
979static void destroy_swap_extents(struct swap_info_struct *sis)
980{
981 while (!list_empty(&sis->extent_list)) {
982 struct swap_extent *se;
983
984 se = list_entry(sis->extent_list.next,
985 struct swap_extent, list);
986 list_del(&se->list);
987 kfree(se);
988 }
1da177e4
LT
989}
990
991/*
992 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 993 * extent list. The extent list is kept sorted in page order.
1da177e4 994 *
11d31886 995 * This function rather assumes that it is called in ascending page order.
1da177e4
LT
996 */
997static int
998add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
999 unsigned long nr_pages, sector_t start_block)
1000{
1001 struct swap_extent *se;
1002 struct swap_extent *new_se;
1003 struct list_head *lh;
1004
11d31886
HD
1005 lh = sis->extent_list.prev; /* The highest page extent */
1006 if (lh != &sis->extent_list) {
1da177e4 1007 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
1008 BUG_ON(se->start_page + se->nr_pages != start_page);
1009 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
1010 /* Merge it */
1011 se->nr_pages += nr_pages;
1012 return 0;
1013 }
1da177e4
LT
1014 }
1015
1016 /*
1017 * No merge. Insert a new extent, preserving ordering.
1018 */
1019 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1020 if (new_se == NULL)
1021 return -ENOMEM;
1022 new_se->start_page = start_page;
1023 new_se->nr_pages = nr_pages;
1024 new_se->start_block = start_block;
1025
11d31886 1026 list_add_tail(&new_se->list, &sis->extent_list);
53092a74 1027 return 1;
1da177e4
LT
1028}
1029
1030/*
1031 * A `swap extent' is a simple thing which maps a contiguous range of pages
1032 * onto a contiguous range of disk blocks. An ordered list of swap extents
1033 * is built at swapon time and is then used at swap_writepage/swap_readpage
1034 * time for locating where on disk a page belongs.
1035 *
1036 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1037 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1038 * swap files identically.
1039 *
1040 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1041 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1042 * swapfiles are handled *identically* after swapon time.
1043 *
1044 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1045 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1046 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1047 * requirements, they are simply tossed out - we will never use those blocks
1048 * for swapping.
1049 *
b0d9bcd4 1050 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
1051 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1052 * which will scribble on the fs.
1053 *
1054 * The amount of disk space which a single swap extent represents varies.
1055 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1056 * extents in the list. To avoid much list walking, we cache the previous
1057 * search location in `curr_swap_extent', and start new searches from there.
1058 * This is extremely effective. The average number of iterations in
1059 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1060 */
53092a74 1061static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4
LT
1062{
1063 struct inode *inode;
1064 unsigned blocks_per_page;
1065 unsigned long page_no;
1066 unsigned blkbits;
1067 sector_t probe_block;
1068 sector_t last_block;
53092a74
HD
1069 sector_t lowest_block = -1;
1070 sector_t highest_block = 0;
1071 int nr_extents = 0;
1da177e4
LT
1072 int ret;
1073
1074 inode = sis->swap_file->f_mapping->host;
1075 if (S_ISBLK(inode->i_mode)) {
1076 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 1077 *span = sis->pages;
1da177e4
LT
1078 goto done;
1079 }
1080
1081 blkbits = inode->i_blkbits;
1082 blocks_per_page = PAGE_SIZE >> blkbits;
1083
1084 /*
1085 * Map all the blocks into the extent list. This code doesn't try
1086 * to be very smart.
1087 */
1088 probe_block = 0;
1089 page_no = 0;
1090 last_block = i_size_read(inode) >> blkbits;
1091 while ((probe_block + blocks_per_page) <= last_block &&
1092 page_no < sis->max) {
1093 unsigned block_in_page;
1094 sector_t first_block;
1095
1096 first_block = bmap(inode, probe_block);
1097 if (first_block == 0)
1098 goto bad_bmap;
1099
1100 /*
1101 * It must be PAGE_SIZE aligned on-disk
1102 */
1103 if (first_block & (blocks_per_page - 1)) {
1104 probe_block++;
1105 goto reprobe;
1106 }
1107
1108 for (block_in_page = 1; block_in_page < blocks_per_page;
1109 block_in_page++) {
1110 sector_t block;
1111
1112 block = bmap(inode, probe_block + block_in_page);
1113 if (block == 0)
1114 goto bad_bmap;
1115 if (block != first_block + block_in_page) {
1116 /* Discontiguity */
1117 probe_block++;
1118 goto reprobe;
1119 }
1120 }
1121
53092a74
HD
1122 first_block >>= (PAGE_SHIFT - blkbits);
1123 if (page_no) { /* exclude the header page */
1124 if (first_block < lowest_block)
1125 lowest_block = first_block;
1126 if (first_block > highest_block)
1127 highest_block = first_block;
1128 }
1129
1da177e4
LT
1130 /*
1131 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1132 */
53092a74
HD
1133 ret = add_swap_extent(sis, page_no, 1, first_block);
1134 if (ret < 0)
1da177e4 1135 goto out;
53092a74 1136 nr_extents += ret;
1da177e4
LT
1137 page_no++;
1138 probe_block += blocks_per_page;
1139reprobe:
1140 continue;
1141 }
53092a74
HD
1142 ret = nr_extents;
1143 *span = 1 + highest_block - lowest_block;
1da177e4 1144 if (page_no == 0)
e2244ec2 1145 page_no = 1; /* force Empty message */
1da177e4 1146 sis->max = page_no;
e2244ec2 1147 sis->pages = page_no - 1;
1da177e4
LT
1148 sis->highest_bit = page_no - 1;
1149done:
1150 sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1151 struct swap_extent, list);
1152 goto out;
1153bad_bmap:
1154 printk(KERN_ERR "swapon: swapfile has holes\n");
1155 ret = -EINVAL;
1156out:
1157 return ret;
1158}
1159
1160#if 0 /* We don't need this yet */
1161#include <linux/backing-dev.h>
1162int page_queue_congested(struct page *page)
1163{
1164 struct backing_dev_info *bdi;
1165
1166 BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */
1167
1168 if (PageSwapCache(page)) {
4c21e2f2 1169 swp_entry_t entry = { .val = page_private(page) };
1da177e4
LT
1170 struct swap_info_struct *sis;
1171
1172 sis = get_swap_info_struct(swp_type(entry));
1173 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1174 } else
1175 bdi = page->mapping->backing_dev_info;
1176 return bdi_write_congested(bdi);
1177}
1178#endif
1179
1180asmlinkage long sys_swapoff(const char __user * specialfile)
1181{
1182 struct swap_info_struct * p = NULL;
1183 unsigned short *swap_map;
1184 struct file *swap_file, *victim;
1185 struct address_space *mapping;
1186 struct inode *inode;
1187 char * pathname;
1188 int i, type, prev;
1189 int err;
1190
1191 if (!capable(CAP_SYS_ADMIN))
1192 return -EPERM;
1193
1194 pathname = getname(specialfile);
1195 err = PTR_ERR(pathname);
1196 if (IS_ERR(pathname))
1197 goto out;
1198
1199 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1200 putname(pathname);
1201 err = PTR_ERR(victim);
1202 if (IS_ERR(victim))
1203 goto out;
1204
1205 mapping = victim->f_mapping;
1206 prev = -1;
5d337b91 1207 spin_lock(&swap_lock);
1da177e4
LT
1208 for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1209 p = swap_info + type;
1210 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1211 if (p->swap_file->f_mapping == mapping)
1212 break;
1213 }
1214 prev = type;
1215 }
1216 if (type < 0) {
1217 err = -EINVAL;
5d337b91 1218 spin_unlock(&swap_lock);
1da177e4
LT
1219 goto out_dput;
1220 }
1221 if (!security_vm_enough_memory(p->pages))
1222 vm_unacct_memory(p->pages);
1223 else {
1224 err = -ENOMEM;
5d337b91 1225 spin_unlock(&swap_lock);
1da177e4
LT
1226 goto out_dput;
1227 }
1228 if (prev < 0) {
1229 swap_list.head = p->next;
1230 } else {
1231 swap_info[prev].next = p->next;
1232 }
1233 if (type == swap_list.next) {
1234 /* just pick something that's safe... */
1235 swap_list.next = swap_list.head;
1236 }
1237 nr_swap_pages -= p->pages;
1238 total_swap_pages -= p->pages;
1239 p->flags &= ~SWP_WRITEOK;
5d337b91 1240 spin_unlock(&swap_lock);
fb4f88dc 1241
1da177e4
LT
1242 current->flags |= PF_SWAPOFF;
1243 err = try_to_unuse(type);
1244 current->flags &= ~PF_SWAPOFF;
1245
1da177e4
LT
1246 if (err) {
1247 /* re-insert swap space back into swap_list */
5d337b91 1248 spin_lock(&swap_lock);
1da177e4
LT
1249 for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1250 if (p->prio >= swap_info[i].prio)
1251 break;
1252 p->next = i;
1253 if (prev < 0)
1254 swap_list.head = swap_list.next = p - swap_info;
1255 else
1256 swap_info[prev].next = p - swap_info;
1257 nr_swap_pages += p->pages;
1258 total_swap_pages += p->pages;
1259 p->flags |= SWP_WRITEOK;
5d337b91 1260 spin_unlock(&swap_lock);
1da177e4
LT
1261 goto out_dput;
1262 }
52b7efdb
HD
1263
1264 /* wait for any unplug function to finish */
1265 down_write(&swap_unplug_sem);
1266 up_write(&swap_unplug_sem);
1267
5d337b91 1268 destroy_swap_extents(p);
fc0abb14 1269 mutex_lock(&swapon_mutex);
5d337b91
HD
1270 spin_lock(&swap_lock);
1271 drain_mmlist();
1272
52b7efdb 1273 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
1274 p->highest_bit = 0; /* cuts scans short */
1275 while (p->flags >= SWP_SCANNING) {
5d337b91 1276 spin_unlock(&swap_lock);
13e4b57f 1277 schedule_timeout_uninterruptible(1);
5d337b91 1278 spin_lock(&swap_lock);
52b7efdb 1279 }
52b7efdb 1280
1da177e4
LT
1281 swap_file = p->swap_file;
1282 p->swap_file = NULL;
1283 p->max = 0;
1284 swap_map = p->swap_map;
1285 p->swap_map = NULL;
1286 p->flags = 0;
5d337b91 1287 spin_unlock(&swap_lock);
fc0abb14 1288 mutex_unlock(&swapon_mutex);
1da177e4
LT
1289 vfree(swap_map);
1290 inode = mapping->host;
1291 if (S_ISBLK(inode->i_mode)) {
1292 struct block_device *bdev = I_BDEV(inode);
1293 set_blocksize(bdev, p->old_block_size);
1294 bd_release(bdev);
1295 } else {
1b1dcc1b 1296 mutex_lock(&inode->i_mutex);
1da177e4 1297 inode->i_flags &= ~S_SWAPFILE;
1b1dcc1b 1298 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1299 }
1300 filp_close(swap_file, NULL);
1301 err = 0;
1302
1303out_dput:
1304 filp_close(victim, NULL);
1305out:
1306 return err;
1307}
1308
1309#ifdef CONFIG_PROC_FS
1310/* iterator */
1311static void *swap_start(struct seq_file *swap, loff_t *pos)
1312{
1313 struct swap_info_struct *ptr = swap_info;
1314 int i;
1315 loff_t l = *pos;
1316
fc0abb14 1317 mutex_lock(&swapon_mutex);
1da177e4 1318
881e4aab
SS
1319 if (!l)
1320 return SEQ_START_TOKEN;
1321
1da177e4
LT
1322 for (i = 0; i < nr_swapfiles; i++, ptr++) {
1323 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1324 continue;
881e4aab 1325 if (!--l)
1da177e4
LT
1326 return ptr;
1327 }
1328
1329 return NULL;
1330}
1331
1332static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1333{
881e4aab 1334 struct swap_info_struct *ptr;
1da177e4
LT
1335 struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1336
881e4aab
SS
1337 if (v == SEQ_START_TOKEN)
1338 ptr = swap_info;
1339 else {
1340 ptr = v;
1341 ptr++;
1342 }
1343
1344 for (; ptr < endptr; ptr++) {
1da177e4
LT
1345 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1346 continue;
1347 ++*pos;
1348 return ptr;
1349 }
1350
1351 return NULL;
1352}
1353
1354static void swap_stop(struct seq_file *swap, void *v)
1355{
fc0abb14 1356 mutex_unlock(&swapon_mutex);
1da177e4
LT
1357}
1358
1359static int swap_show(struct seq_file *swap, void *v)
1360{
1361 struct swap_info_struct *ptr = v;
1362 struct file *file;
1363 int len;
1364
881e4aab
SS
1365 if (ptr == SEQ_START_TOKEN) {
1366 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1367 return 0;
1368 }
1da177e4
LT
1369
1370 file = ptr->swap_file;
d3ac7f89 1371 len = seq_path(swap, file->f_path.mnt, file->f_path.dentry, " \t\n\\");
6eb396dc 1372 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1da177e4 1373 len < 40 ? 40 - len : 1, " ",
d3ac7f89 1374 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1da177e4
LT
1375 "partition" : "file\t",
1376 ptr->pages << (PAGE_SHIFT - 10),
1377 ptr->inuse_pages << (PAGE_SHIFT - 10),
1378 ptr->prio);
1379 return 0;
1380}
1381
15ad7cdc 1382static const struct seq_operations swaps_op = {
1da177e4
LT
1383 .start = swap_start,
1384 .next = swap_next,
1385 .stop = swap_stop,
1386 .show = swap_show
1387};
1388
1389static int swaps_open(struct inode *inode, struct file *file)
1390{
1391 return seq_open(file, &swaps_op);
1392}
1393
15ad7cdc 1394static const struct file_operations proc_swaps_operations = {
1da177e4
LT
1395 .open = swaps_open,
1396 .read = seq_read,
1397 .llseek = seq_lseek,
1398 .release = seq_release,
1399};
1400
1401static int __init procswaps_init(void)
1402{
1403 struct proc_dir_entry *entry;
1404
1405 entry = create_proc_entry("swaps", 0, NULL);
1406 if (entry)
1407 entry->proc_fops = &proc_swaps_operations;
1408 return 0;
1409}
1410__initcall(procswaps_init);
1411#endif /* CONFIG_PROC_FS */
1412
1413/*
1414 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1415 *
1416 * The swapon system call
1417 */
1418asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1419{
1420 struct swap_info_struct * p;
1421 char *name = NULL;
1422 struct block_device *bdev = NULL;
1423 struct file *swap_file = NULL;
1424 struct address_space *mapping;
1425 unsigned int type;
1426 int i, prev;
1427 int error;
1428 static int least_priority;
1429 union swap_header *swap_header = NULL;
1430 int swap_header_version;
6eb396dc
HD
1431 unsigned int nr_good_pages = 0;
1432 int nr_extents = 0;
53092a74 1433 sector_t span;
1da177e4
LT
1434 unsigned long maxpages = 1;
1435 int swapfilesize;
1436 unsigned short *swap_map;
1437 struct page *page = NULL;
1438 struct inode *inode = NULL;
1439 int did_down = 0;
1440
1441 if (!capable(CAP_SYS_ADMIN))
1442 return -EPERM;
5d337b91 1443 spin_lock(&swap_lock);
1da177e4
LT
1444 p = swap_info;
1445 for (type = 0 ; type < nr_swapfiles ; type++,p++)
1446 if (!(p->flags & SWP_USED))
1447 break;
1448 error = -EPERM;
0697212a 1449 if (type >= MAX_SWAPFILES) {
5d337b91 1450 spin_unlock(&swap_lock);
1da177e4
LT
1451 goto out;
1452 }
1453 if (type >= nr_swapfiles)
1454 nr_swapfiles = type+1;
1455 INIT_LIST_HEAD(&p->extent_list);
1456 p->flags = SWP_USED;
1da177e4
LT
1457 p->swap_file = NULL;
1458 p->old_block_size = 0;
1459 p->swap_map = NULL;
1460 p->lowest_bit = 0;
1461 p->highest_bit = 0;
1462 p->cluster_nr = 0;
1463 p->inuse_pages = 0;
1da177e4
LT
1464 p->next = -1;
1465 if (swap_flags & SWAP_FLAG_PREFER) {
1466 p->prio =
1467 (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1468 } else {
1469 p->prio = --least_priority;
1470 }
5d337b91 1471 spin_unlock(&swap_lock);
1da177e4
LT
1472 name = getname(specialfile);
1473 error = PTR_ERR(name);
1474 if (IS_ERR(name)) {
1475 name = NULL;
1476 goto bad_swap_2;
1477 }
1478 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1479 error = PTR_ERR(swap_file);
1480 if (IS_ERR(swap_file)) {
1481 swap_file = NULL;
1482 goto bad_swap_2;
1483 }
1484
1485 p->swap_file = swap_file;
1486 mapping = swap_file->f_mapping;
1487 inode = mapping->host;
1488
1489 error = -EBUSY;
1490 for (i = 0; i < nr_swapfiles; i++) {
1491 struct swap_info_struct *q = &swap_info[i];
1492
1493 if (i == type || !q->swap_file)
1494 continue;
1495 if (mapping == q->swap_file->f_mapping)
1496 goto bad_swap;
1497 }
1498
1499 error = -EINVAL;
1500 if (S_ISBLK(inode->i_mode)) {
1501 bdev = I_BDEV(inode);
1502 error = bd_claim(bdev, sys_swapon);
1503 if (error < 0) {
1504 bdev = NULL;
f7b3a435 1505 error = -EINVAL;
1da177e4
LT
1506 goto bad_swap;
1507 }
1508 p->old_block_size = block_size(bdev);
1509 error = set_blocksize(bdev, PAGE_SIZE);
1510 if (error < 0)
1511 goto bad_swap;
1512 p->bdev = bdev;
1513 } else if (S_ISREG(inode->i_mode)) {
1514 p->bdev = inode->i_sb->s_bdev;
1b1dcc1b 1515 mutex_lock(&inode->i_mutex);
1da177e4
LT
1516 did_down = 1;
1517 if (IS_SWAPFILE(inode)) {
1518 error = -EBUSY;
1519 goto bad_swap;
1520 }
1521 } else {
1522 goto bad_swap;
1523 }
1524
1525 swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1526
1527 /*
1528 * Read the swap header.
1529 */
1530 if (!mapping->a_ops->readpage) {
1531 error = -EINVAL;
1532 goto bad_swap;
1533 }
090d2b18 1534 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
1535 if (IS_ERR(page)) {
1536 error = PTR_ERR(page);
1537 goto bad_swap;
1538 }
1da177e4
LT
1539 kmap(page);
1540 swap_header = page_address(page);
1541
1542 if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1543 swap_header_version = 1;
1544 else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1545 swap_header_version = 2;
1546 else {
e97a3111 1547 printk(KERN_ERR "Unable to find swap-space signature\n");
1da177e4
LT
1548 error = -EINVAL;
1549 goto bad_swap;
1550 }
1551
1552 switch (swap_header_version) {
1553 case 1:
1554 printk(KERN_ERR "version 0 swap is no longer supported. "
1555 "Use mkswap -v1 %s\n", name);
1556 error = -EINVAL;
1557 goto bad_swap;
1558 case 2:
1559 /* Check the swap header's sub-version and the size of
1560 the swap file and bad block lists */
1561 if (swap_header->info.version != 1) {
1562 printk(KERN_WARNING
1563 "Unable to handle swap header version %d\n",
1564 swap_header->info.version);
1565 error = -EINVAL;
1566 goto bad_swap;
1567 }
1568
1569 p->lowest_bit = 1;
52b7efdb
HD
1570 p->cluster_next = 1;
1571
1da177e4
LT
1572 /*
1573 * Find out how many pages are allowed for a single swap
1574 * device. There are two limiting factors: 1) the number of
1575 * bits for the swap offset in the swp_entry_t type and
1576 * 2) the number of bits in the a swap pte as defined by
1577 * the different architectures. In order to find the
1578 * largest possible bit mask a swap entry with swap type 0
1579 * and swap offset ~0UL is created, encoded to a swap pte,
1580 * decoded to a swp_entry_t again and finally the swap
1581 * offset is extracted. This will mask all the bits from
1582 * the initial ~0UL mask that can't be encoded in either
1583 * the swp_entry_t or the architecture definition of a
1584 * swap pte.
1585 */
1586 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1587 if (maxpages > swap_header->info.last_page)
1588 maxpages = swap_header->info.last_page;
1589 p->highest_bit = maxpages - 1;
1590
1591 error = -EINVAL;
e2244ec2
HD
1592 if (!maxpages)
1593 goto bad_swap;
5d1854e1
ES
1594 if (swapfilesize && maxpages > swapfilesize) {
1595 printk(KERN_WARNING
1596 "Swap area shorter than signature indicates\n");
1597 goto bad_swap;
1598 }
e2244ec2
HD
1599 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1600 goto bad_swap;
1da177e4
LT
1601 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1602 goto bad_swap;
cd105df4 1603
1da177e4
LT
1604 /* OK, set up the swap map and apply the bad block list */
1605 if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1606 error = -ENOMEM;
1607 goto bad_swap;
1608 }
1609
1610 error = 0;
1611 memset(p->swap_map, 0, maxpages * sizeof(short));
cd105df4
TK
1612 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1613 int page_nr = swap_header->info.badpages[i];
1614 if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
1da177e4
LT
1615 error = -EINVAL;
1616 else
cd105df4 1617 p->swap_map[page_nr] = SWAP_MAP_BAD;
1da177e4
LT
1618 }
1619 nr_good_pages = swap_header->info.last_page -
1620 swap_header->info.nr_badpages -
1621 1 /* header page */;
cd105df4 1622 if (error)
1da177e4
LT
1623 goto bad_swap;
1624 }
e2244ec2 1625
e2244ec2
HD
1626 if (nr_good_pages) {
1627 p->swap_map[0] = SWAP_MAP_BAD;
1628 p->max = maxpages;
1629 p->pages = nr_good_pages;
53092a74
HD
1630 nr_extents = setup_swap_extents(p, &span);
1631 if (nr_extents < 0) {
1632 error = nr_extents;
e2244ec2 1633 goto bad_swap;
53092a74 1634 }
e2244ec2
HD
1635 nr_good_pages = p->pages;
1636 }
1da177e4
LT
1637 if (!nr_good_pages) {
1638 printk(KERN_WARNING "Empty swap-file\n");
1639 error = -EINVAL;
1640 goto bad_swap;
1641 }
1da177e4 1642
fc0abb14 1643 mutex_lock(&swapon_mutex);
5d337b91 1644 spin_lock(&swap_lock);
1da177e4
LT
1645 p->flags = SWP_ACTIVE;
1646 nr_swap_pages += nr_good_pages;
1647 total_swap_pages += nr_good_pages;
53092a74 1648
6eb396dc 1649 printk(KERN_INFO "Adding %uk swap on %s. "
53092a74
HD
1650 "Priority:%d extents:%d across:%lluk\n",
1651 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1652 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1da177e4
LT
1653
1654 /* insert swap space into swap_list: */
1655 prev = -1;
1656 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1657 if (p->prio >= swap_info[i].prio) {
1658 break;
1659 }
1660 prev = i;
1661 }
1662 p->next = i;
1663 if (prev < 0) {
1664 swap_list.head = swap_list.next = p - swap_info;
1665 } else {
1666 swap_info[prev].next = p - swap_info;
1667 }
5d337b91 1668 spin_unlock(&swap_lock);
fc0abb14 1669 mutex_unlock(&swapon_mutex);
1da177e4
LT
1670 error = 0;
1671 goto out;
1672bad_swap:
1673 if (bdev) {
1674 set_blocksize(bdev, p->old_block_size);
1675 bd_release(bdev);
1676 }
4cd3bb10 1677 destroy_swap_extents(p);
1da177e4 1678bad_swap_2:
5d337b91 1679 spin_lock(&swap_lock);
1da177e4
LT
1680 swap_map = p->swap_map;
1681 p->swap_file = NULL;
1682 p->swap_map = NULL;
1683 p->flags = 0;
1684 if (!(swap_flags & SWAP_FLAG_PREFER))
1685 ++least_priority;
5d337b91 1686 spin_unlock(&swap_lock);
1da177e4
LT
1687 vfree(swap_map);
1688 if (swap_file)
1689 filp_close(swap_file, NULL);
1690out:
1691 if (page && !IS_ERR(page)) {
1692 kunmap(page);
1693 page_cache_release(page);
1694 }
1695 if (name)
1696 putname(name);
1697 if (did_down) {
1698 if (!error)
1699 inode->i_flags |= S_SWAPFILE;
1b1dcc1b 1700 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1701 }
1702 return error;
1703}
1704
1705void si_swapinfo(struct sysinfo *val)
1706{
1707 unsigned int i;
1708 unsigned long nr_to_be_unused = 0;
1709
5d337b91 1710 spin_lock(&swap_lock);
1da177e4
LT
1711 for (i = 0; i < nr_swapfiles; i++) {
1712 if (!(swap_info[i].flags & SWP_USED) ||
1713 (swap_info[i].flags & SWP_WRITEOK))
1714 continue;
1715 nr_to_be_unused += swap_info[i].inuse_pages;
1716 }
1717 val->freeswap = nr_swap_pages + nr_to_be_unused;
1718 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 1719 spin_unlock(&swap_lock);
1da177e4
LT
1720}
1721
1722/*
1723 * Verify that a swap entry is valid and increment its swap map count.
1724 *
1725 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1726 * "permanent", but will be reclaimed by the next swapoff.
1727 */
1728int swap_duplicate(swp_entry_t entry)
1729{
1730 struct swap_info_struct * p;
1731 unsigned long offset, type;
1732 int result = 0;
1733
0697212a
CL
1734 if (is_migration_entry(entry))
1735 return 1;
1736
1da177e4
LT
1737 type = swp_type(entry);
1738 if (type >= nr_swapfiles)
1739 goto bad_file;
1740 p = type + swap_info;
1741 offset = swp_offset(entry);
1742
5d337b91 1743 spin_lock(&swap_lock);
1da177e4
LT
1744 if (offset < p->max && p->swap_map[offset]) {
1745 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1746 p->swap_map[offset]++;
1747 result = 1;
1748 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1749 if (swap_overflow++ < 5)
1750 printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1751 p->swap_map[offset] = SWAP_MAP_MAX;
1752 result = 1;
1753 }
1754 }
5d337b91 1755 spin_unlock(&swap_lock);
1da177e4
LT
1756out:
1757 return result;
1758
1759bad_file:
1760 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1761 goto out;
1762}
1763
1764struct swap_info_struct *
1765get_swap_info_struct(unsigned type)
1766{
1767 return &swap_info[type];
1768}
1769
1770/*
5d337b91 1771 * swap_lock prevents swap_map being freed. Don't grab an extra
1da177e4
LT
1772 * reference on the swaphandle, it doesn't matter if it becomes unused.
1773 */
1774int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1775{
8952898b 1776 struct swap_info_struct *si;
3f9e7949 1777 int our_page_cluster = page_cluster;
8952898b
HD
1778 pgoff_t target, toff;
1779 pgoff_t base, end;
1780 int nr_pages = 0;
1da177e4 1781
3f9e7949 1782 if (!our_page_cluster) /* no readahead */
1da177e4 1783 return 0;
8952898b
HD
1784
1785 si = &swap_info[swp_type(entry)];
1786 target = swp_offset(entry);
1787 base = (target >> our_page_cluster) << our_page_cluster;
1788 end = base + (1 << our_page_cluster);
1789 if (!base) /* first page is swap header */
1790 base++;
1da177e4 1791
5d337b91 1792 spin_lock(&swap_lock);
8952898b
HD
1793 if (end > si->max) /* don't go beyond end of map */
1794 end = si->max;
1795
1796 /* Count contiguous allocated slots above our target */
1797 for (toff = target; ++toff < end; nr_pages++) {
1798 /* Don't read in free or bad pages */
1799 if (!si->swap_map[toff])
1800 break;
1801 if (si->swap_map[toff] == SWAP_MAP_BAD)
1da177e4 1802 break;
8952898b
HD
1803 }
1804 /* Count contiguous allocated slots below our target */
1805 for (toff = target; --toff >= base; nr_pages++) {
1da177e4 1806 /* Don't read in free or bad pages */
8952898b 1807 if (!si->swap_map[toff])
1da177e4 1808 break;
8952898b 1809 if (si->swap_map[toff] == SWAP_MAP_BAD)
1da177e4 1810 break;
8952898b 1811 }
5d337b91 1812 spin_unlock(&swap_lock);
8952898b
HD
1813
1814 /*
1815 * Indicate starting offset, and return number of pages to get:
1816 * if only 1, say 0, since there's then no readahead to be done.
1817 */
1818 *offset = ++toff;
1819 return nr_pages? ++nr_pages: 0;
1da177e4 1820}