]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/swapfile.c
mm: handle zone device pages in release_pages()
[mirror_ubuntu-jammy-kernel.git] / mm / swapfile.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
1da177e4 9#include <linux/mm.h>
6e84f315 10#include <linux/sched/mm.h>
29930025 11#include <linux/sched/task.h>
1da177e4
LT
12#include <linux/hugetlb.h>
13#include <linux/mman.h>
14#include <linux/slab.h>
15#include <linux/kernel_stat.h>
16#include <linux/swap.h>
17#include <linux/vmalloc.h>
18#include <linux/pagemap.h>
19#include <linux/namei.h>
072441e2 20#include <linux/shmem_fs.h>
1da177e4 21#include <linux/blkdev.h>
20137a49 22#include <linux/random.h>
1da177e4
LT
23#include <linux/writeback.h>
24#include <linux/proc_fs.h>
25#include <linux/seq_file.h>
26#include <linux/init.h>
5ad64688 27#include <linux/ksm.h>
1da177e4
LT
28#include <linux/rmap.h>
29#include <linux/security.h>
30#include <linux/backing-dev.h>
fc0abb14 31#include <linux/mutex.h>
c59ede7b 32#include <linux/capability.h>
1da177e4 33#include <linux/syscalls.h>
8a9f3ccd 34#include <linux/memcontrol.h>
66d7dd51 35#include <linux/poll.h>
72788c38 36#include <linux/oom.h>
38b5faf4
DM
37#include <linux/frontswap.h>
38#include <linux/swapfile.h>
f981c595 39#include <linux/export.h>
67afa38e 40#include <linux/swap_slots.h>
155b5f88 41#include <linux/sort.h>
1da177e4 42
1da177e4
LT
43#include <asm/tlbflush.h>
44#include <linux/swapops.h>
5d1ea48b 45#include <linux/swap_cgroup.h>
1da177e4 46
570a335b
HD
47static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 unsigned char);
49static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 50static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 51
38b5faf4 52DEFINE_SPINLOCK(swap_lock);
7c363b8c 53static unsigned int nr_swapfiles;
ec8acf20 54atomic_long_t nr_swap_pages;
fb0fec50
CW
55/*
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
59 */
60EXPORT_SYMBOL_GPL(nr_swap_pages);
ec8acf20 61/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 62long total_swap_pages;
a2468cc9 63static int least_priority = -1;
1da177e4 64
1da177e4
LT
65static const char Bad_file[] = "Bad swap file entry ";
66static const char Unused_file[] = "Unused swap file entry ";
67static const char Bad_offset[] = "Bad swap offset entry ";
68static const char Unused_offset[] = "Unused swap offset entry ";
69
adfab836
DS
70/*
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
73 */
18ab4d4c
DS
74PLIST_HEAD(swap_active_head);
75
76/*
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
87 */
bfc6b1ca 88static struct plist_head *swap_avail_heads;
18ab4d4c 89static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 90
38b5faf4 91struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 92
fc0abb14 93static DEFINE_MUTEX(swapon_mutex);
1da177e4 94
66d7dd51
KS
95static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96/* Activity counter to indicate that a swapon or swapoff has occurred */
97static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
81a0298b
HY
99atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
c10d38cc
DJ
101static struct swap_info_struct *swap_type_to_swap_info(int type)
102{
103 if (type >= READ_ONCE(nr_swapfiles))
104 return NULL;
105
106 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */
107 return READ_ONCE(swap_info[type]);
108}
109
8d69aaee 110static inline unsigned char swap_count(unsigned char ent)
355cfa73 111{
955c97f0 112 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
355cfa73
KH
113}
114
bcd49e86
HY
115/* Reclaim the swap entry anyway if possible */
116#define TTRS_ANYWAY 0x1
117/*
118 * Reclaim the swap entry if there are no more mappings of the
119 * corresponding page
120 */
121#define TTRS_UNMAPPED 0x2
122/* Reclaim the swap entry if swap is getting full*/
123#define TTRS_FULL 0x4
124
efa90a98 125/* returns 1 if swap entry is freed */
bcd49e86
HY
126static int __try_to_reclaim_swap(struct swap_info_struct *si,
127 unsigned long offset, unsigned long flags)
c9e44410 128{
efa90a98 129 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
130 struct page *page;
131 int ret = 0;
132
bcd49e86 133 page = find_get_page(swap_address_space(entry), offset);
c9e44410
KH
134 if (!page)
135 return 0;
136 /*
bcd49e86
HY
137 * When this function is called from scan_swap_map_slots() and it's
138 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
139 * here. We have to use trylock for avoiding deadlock. This is a special
c9e44410
KH
140 * case and you should use try_to_free_swap() with explicit lock_page()
141 * in usual operations.
142 */
143 if (trylock_page(page)) {
bcd49e86
HY
144 if ((flags & TTRS_ANYWAY) ||
145 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
146 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
147 ret = try_to_free_swap(page);
c9e44410
KH
148 unlock_page(page);
149 }
09cbfeaf 150 put_page(page);
c9e44410
KH
151 return ret;
152}
355cfa73 153
4efaceb1
AL
154static inline struct swap_extent *first_se(struct swap_info_struct *sis)
155{
156 struct rb_node *rb = rb_first(&sis->swap_extent_root);
157 return rb_entry(rb, struct swap_extent, rb_node);
158}
159
160static inline struct swap_extent *next_se(struct swap_extent *se)
161{
162 struct rb_node *rb = rb_next(&se->rb_node);
163 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
164}
165
6a6ba831
HD
166/*
167 * swapon tell device that all the old swap contents can be discarded,
168 * to allow the swap device to optimize its wear-levelling.
169 */
170static int discard_swap(struct swap_info_struct *si)
171{
172 struct swap_extent *se;
9625a5f2
HD
173 sector_t start_block;
174 sector_t nr_blocks;
6a6ba831
HD
175 int err = 0;
176
9625a5f2 177 /* Do not discard the swap header page! */
4efaceb1 178 se = first_se(si);
9625a5f2
HD
179 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
180 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
181 if (nr_blocks) {
182 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 183 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
184 if (err)
185 return err;
186 cond_resched();
187 }
6a6ba831 188
4efaceb1 189 for (se = next_se(se); se; se = next_se(se)) {
9625a5f2
HD
190 start_block = se->start_block << (PAGE_SHIFT - 9);
191 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
192
193 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 194 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
195 if (err)
196 break;
197
198 cond_resched();
199 }
200 return err; /* That will often be -EOPNOTSUPP */
201}
202
4efaceb1
AL
203static struct swap_extent *
204offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
205{
206 struct swap_extent *se;
207 struct rb_node *rb;
208
209 rb = sis->swap_extent_root.rb_node;
210 while (rb) {
211 se = rb_entry(rb, struct swap_extent, rb_node);
212 if (offset < se->start_page)
213 rb = rb->rb_left;
214 else if (offset >= se->start_page + se->nr_pages)
215 rb = rb->rb_right;
216 else
217 return se;
218 }
219 /* It *must* be present */
220 BUG();
221}
222
7992fde7
HD
223/*
224 * swap allocation tell device that a cluster of swap can now be discarded,
225 * to allow the swap device to optimize its wear-levelling.
226 */
227static void discard_swap_cluster(struct swap_info_struct *si,
228 pgoff_t start_page, pgoff_t nr_pages)
229{
4efaceb1 230 struct swap_extent *se = offset_to_swap_extent(si, start_page);
7992fde7
HD
231
232 while (nr_pages) {
4efaceb1
AL
233 pgoff_t offset = start_page - se->start_page;
234 sector_t start_block = se->start_block + offset;
235 sector_t nr_blocks = se->nr_pages - offset;
236
237 if (nr_blocks > nr_pages)
238 nr_blocks = nr_pages;
239 start_page += nr_blocks;
240 nr_pages -= nr_blocks;
241
242 start_block <<= PAGE_SHIFT - 9;
243 nr_blocks <<= PAGE_SHIFT - 9;
244 if (blkdev_issue_discard(si->bdev, start_block,
245 nr_blocks, GFP_NOIO, 0))
246 break;
7992fde7 247
4efaceb1 248 se = next_se(se);
7992fde7
HD
249 }
250}
251
38d8b4e6
HY
252#ifdef CONFIG_THP_SWAP
253#define SWAPFILE_CLUSTER HPAGE_PMD_NR
a448f2d0
HY
254
255#define swap_entry_size(size) (size)
38d8b4e6 256#else
048c27fd 257#define SWAPFILE_CLUSTER 256
a448f2d0
HY
258
259/*
260 * Define swap_entry_size() as constant to let compiler to optimize
261 * out some code if !CONFIG_THP_SWAP
262 */
263#define swap_entry_size(size) 1
38d8b4e6 264#endif
048c27fd
HD
265#define LATENCY_LIMIT 256
266
2a8f9449
SL
267static inline void cluster_set_flag(struct swap_cluster_info *info,
268 unsigned int flag)
269{
270 info->flags = flag;
271}
272
273static inline unsigned int cluster_count(struct swap_cluster_info *info)
274{
275 return info->data;
276}
277
278static inline void cluster_set_count(struct swap_cluster_info *info,
279 unsigned int c)
280{
281 info->data = c;
282}
283
284static inline void cluster_set_count_flag(struct swap_cluster_info *info,
285 unsigned int c, unsigned int f)
286{
287 info->flags = f;
288 info->data = c;
289}
290
291static inline unsigned int cluster_next(struct swap_cluster_info *info)
292{
293 return info->data;
294}
295
296static inline void cluster_set_next(struct swap_cluster_info *info,
297 unsigned int n)
298{
299 info->data = n;
300}
301
302static inline void cluster_set_next_flag(struct swap_cluster_info *info,
303 unsigned int n, unsigned int f)
304{
305 info->flags = f;
306 info->data = n;
307}
308
309static inline bool cluster_is_free(struct swap_cluster_info *info)
310{
311 return info->flags & CLUSTER_FLAG_FREE;
312}
313
314static inline bool cluster_is_null(struct swap_cluster_info *info)
315{
316 return info->flags & CLUSTER_FLAG_NEXT_NULL;
317}
318
319static inline void cluster_set_null(struct swap_cluster_info *info)
320{
321 info->flags = CLUSTER_FLAG_NEXT_NULL;
322 info->data = 0;
323}
324
e0709829
HY
325static inline bool cluster_is_huge(struct swap_cluster_info *info)
326{
33ee011e
HY
327 if (IS_ENABLED(CONFIG_THP_SWAP))
328 return info->flags & CLUSTER_FLAG_HUGE;
329 return false;
e0709829
HY
330}
331
332static inline void cluster_clear_huge(struct swap_cluster_info *info)
333{
334 info->flags &= ~CLUSTER_FLAG_HUGE;
335}
336
235b6217
HY
337static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
338 unsigned long offset)
339{
340 struct swap_cluster_info *ci;
341
342 ci = si->cluster_info;
343 if (ci) {
344 ci += offset / SWAPFILE_CLUSTER;
345 spin_lock(&ci->lock);
346 }
347 return ci;
348}
349
350static inline void unlock_cluster(struct swap_cluster_info *ci)
351{
352 if (ci)
353 spin_unlock(&ci->lock);
354}
355
59d98bf3
HY
356/*
357 * Determine the locking method in use for this device. Return
358 * swap_cluster_info if SSD-style cluster-based locking is in place.
359 */
235b6217 360static inline struct swap_cluster_info *lock_cluster_or_swap_info(
59d98bf3 361 struct swap_info_struct *si, unsigned long offset)
235b6217
HY
362{
363 struct swap_cluster_info *ci;
364
59d98bf3 365 /* Try to use fine-grained SSD-style locking if available: */
235b6217 366 ci = lock_cluster(si, offset);
59d98bf3 367 /* Otherwise, fall back to traditional, coarse locking: */
235b6217
HY
368 if (!ci)
369 spin_lock(&si->lock);
370
371 return ci;
372}
373
374static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
375 struct swap_cluster_info *ci)
376{
377 if (ci)
378 unlock_cluster(ci);
379 else
380 spin_unlock(&si->lock);
381}
382
6b534915
HY
383static inline bool cluster_list_empty(struct swap_cluster_list *list)
384{
385 return cluster_is_null(&list->head);
386}
387
388static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
389{
390 return cluster_next(&list->head);
391}
392
393static void cluster_list_init(struct swap_cluster_list *list)
394{
395 cluster_set_null(&list->head);
396 cluster_set_null(&list->tail);
397}
398
399static void cluster_list_add_tail(struct swap_cluster_list *list,
400 struct swap_cluster_info *ci,
401 unsigned int idx)
402{
403 if (cluster_list_empty(list)) {
404 cluster_set_next_flag(&list->head, idx, 0);
405 cluster_set_next_flag(&list->tail, idx, 0);
406 } else {
235b6217 407 struct swap_cluster_info *ci_tail;
6b534915
HY
408 unsigned int tail = cluster_next(&list->tail);
409
235b6217
HY
410 /*
411 * Nested cluster lock, but both cluster locks are
412 * only acquired when we held swap_info_struct->lock
413 */
414 ci_tail = ci + tail;
415 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
416 cluster_set_next(ci_tail, idx);
0ef017d1 417 spin_unlock(&ci_tail->lock);
6b534915
HY
418 cluster_set_next_flag(&list->tail, idx, 0);
419 }
420}
421
422static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
423 struct swap_cluster_info *ci)
424{
425 unsigned int idx;
426
427 idx = cluster_next(&list->head);
428 if (cluster_next(&list->tail) == idx) {
429 cluster_set_null(&list->head);
430 cluster_set_null(&list->tail);
431 } else
432 cluster_set_next_flag(&list->head,
433 cluster_next(&ci[idx]), 0);
434
435 return idx;
436}
437
815c2c54
SL
438/* Add a cluster to discard list and schedule it to do discard */
439static void swap_cluster_schedule_discard(struct swap_info_struct *si,
440 unsigned int idx)
441{
442 /*
443 * If scan_swap_map() can't find a free cluster, it will check
444 * si->swap_map directly. To make sure the discarding cluster isn't
445 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
446 * will be cleared after discard
447 */
448 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
449 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
450
6b534915 451 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
815c2c54
SL
452
453 schedule_work(&si->discard_work);
454}
455
38d8b4e6
HY
456static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
457{
458 struct swap_cluster_info *ci = si->cluster_info;
459
460 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
461 cluster_list_add_tail(&si->free_clusters, ci, idx);
462}
463
815c2c54
SL
464/*
465 * Doing discard actually. After a cluster discard is finished, the cluster
466 * will be added to free cluster list. caller should hold si->lock.
467*/
468static void swap_do_scheduled_discard(struct swap_info_struct *si)
469{
235b6217 470 struct swap_cluster_info *info, *ci;
815c2c54
SL
471 unsigned int idx;
472
473 info = si->cluster_info;
474
6b534915
HY
475 while (!cluster_list_empty(&si->discard_clusters)) {
476 idx = cluster_list_del_first(&si->discard_clusters, info);
815c2c54
SL
477 spin_unlock(&si->lock);
478
479 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
480 SWAPFILE_CLUSTER);
481
482 spin_lock(&si->lock);
235b6217 483 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
38d8b4e6 484 __free_cluster(si, idx);
815c2c54
SL
485 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
486 0, SWAPFILE_CLUSTER);
235b6217 487 unlock_cluster(ci);
815c2c54
SL
488 }
489}
490
491static void swap_discard_work(struct work_struct *work)
492{
493 struct swap_info_struct *si;
494
495 si = container_of(work, struct swap_info_struct, discard_work);
496
497 spin_lock(&si->lock);
498 swap_do_scheduled_discard(si);
499 spin_unlock(&si->lock);
500}
501
38d8b4e6
HY
502static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
503{
504 struct swap_cluster_info *ci = si->cluster_info;
505
506 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
507 cluster_list_del_first(&si->free_clusters, ci);
508 cluster_set_count_flag(ci + idx, 0, 0);
509}
510
511static void free_cluster(struct swap_info_struct *si, unsigned long idx)
512{
513 struct swap_cluster_info *ci = si->cluster_info + idx;
514
515 VM_BUG_ON(cluster_count(ci) != 0);
516 /*
517 * If the swap is discardable, prepare discard the cluster
518 * instead of free it immediately. The cluster will be freed
519 * after discard.
520 */
521 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
522 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
523 swap_cluster_schedule_discard(si, idx);
524 return;
525 }
526
527 __free_cluster(si, idx);
528}
529
2a8f9449
SL
530/*
531 * The cluster corresponding to page_nr will be used. The cluster will be
532 * removed from free cluster list and its usage counter will be increased.
533 */
534static void inc_cluster_info_page(struct swap_info_struct *p,
535 struct swap_cluster_info *cluster_info, unsigned long page_nr)
536{
537 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
538
539 if (!cluster_info)
540 return;
38d8b4e6
HY
541 if (cluster_is_free(&cluster_info[idx]))
542 alloc_cluster(p, idx);
2a8f9449
SL
543
544 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
545 cluster_set_count(&cluster_info[idx],
546 cluster_count(&cluster_info[idx]) + 1);
547}
548
549/*
550 * The cluster corresponding to page_nr decreases one usage. If the usage
551 * counter becomes 0, which means no page in the cluster is in using, we can
552 * optionally discard the cluster and add it to free cluster list.
553 */
554static void dec_cluster_info_page(struct swap_info_struct *p,
555 struct swap_cluster_info *cluster_info, unsigned long page_nr)
556{
557 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
558
559 if (!cluster_info)
560 return;
561
562 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
563 cluster_set_count(&cluster_info[idx],
564 cluster_count(&cluster_info[idx]) - 1);
565
38d8b4e6
HY
566 if (cluster_count(&cluster_info[idx]) == 0)
567 free_cluster(p, idx);
2a8f9449
SL
568}
569
570/*
571 * It's possible scan_swap_map() uses a free cluster in the middle of free
572 * cluster list. Avoiding such abuse to avoid list corruption.
573 */
ebc2a1a6
SL
574static bool
575scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
576 unsigned long offset)
577{
ebc2a1a6
SL
578 struct percpu_cluster *percpu_cluster;
579 bool conflict;
580
2a8f9449 581 offset /= SWAPFILE_CLUSTER;
6b534915
HY
582 conflict = !cluster_list_empty(&si->free_clusters) &&
583 offset != cluster_list_first(&si->free_clusters) &&
2a8f9449 584 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
585
586 if (!conflict)
587 return false;
588
589 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
590 cluster_set_null(&percpu_cluster->index);
591 return true;
592}
593
594/*
595 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
596 * might involve allocating a new cluster for current CPU too.
597 */
36005bae 598static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
ebc2a1a6
SL
599 unsigned long *offset, unsigned long *scan_base)
600{
601 struct percpu_cluster *cluster;
235b6217 602 struct swap_cluster_info *ci;
235b6217 603 unsigned long tmp, max;
ebc2a1a6
SL
604
605new_cluster:
606 cluster = this_cpu_ptr(si->percpu_cluster);
607 if (cluster_is_null(&cluster->index)) {
6b534915
HY
608 if (!cluster_list_empty(&si->free_clusters)) {
609 cluster->index = si->free_clusters.head;
ebc2a1a6
SL
610 cluster->next = cluster_next(&cluster->index) *
611 SWAPFILE_CLUSTER;
6b534915 612 } else if (!cluster_list_empty(&si->discard_clusters)) {
ebc2a1a6
SL
613 /*
614 * we don't have free cluster but have some clusters in
49070588
HY
615 * discarding, do discard now and reclaim them, then
616 * reread cluster_next_cpu since we dropped si->lock
ebc2a1a6
SL
617 */
618 swap_do_scheduled_discard(si);
49070588
HY
619 *scan_base = this_cpu_read(*si->cluster_next_cpu);
620 *offset = *scan_base;
ebc2a1a6
SL
621 goto new_cluster;
622 } else
36005bae 623 return false;
ebc2a1a6
SL
624 }
625
ebc2a1a6
SL
626 /*
627 * Other CPUs can use our cluster if they can't find a free cluster,
628 * check if there is still free entry in the cluster
629 */
630 tmp = cluster->next;
235b6217
HY
631 max = min_t(unsigned long, si->max,
632 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
7b9e2de1
WY
633 if (tmp < max) {
634 ci = lock_cluster(si, tmp);
635 while (tmp < max) {
636 if (!si->swap_map[tmp])
637 break;
638 tmp++;
639 }
640 unlock_cluster(ci);
ebc2a1a6 641 }
0fd0e19e 642 if (tmp >= max) {
ebc2a1a6
SL
643 cluster_set_null(&cluster->index);
644 goto new_cluster;
645 }
646 cluster->next = tmp + 1;
647 *offset = tmp;
648 *scan_base = tmp;
fdff1deb 649 return true;
2a8f9449
SL
650}
651
a2468cc9
AL
652static void __del_from_avail_list(struct swap_info_struct *p)
653{
654 int nid;
655
656 for_each_node(nid)
657 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
658}
659
660static void del_from_avail_list(struct swap_info_struct *p)
661{
662 spin_lock(&swap_avail_lock);
663 __del_from_avail_list(p);
664 spin_unlock(&swap_avail_lock);
665}
666
38d8b4e6
HY
667static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
668 unsigned int nr_entries)
669{
670 unsigned int end = offset + nr_entries - 1;
671
672 if (offset == si->lowest_bit)
673 si->lowest_bit += nr_entries;
674 if (end == si->highest_bit)
a449bf58 675 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
38d8b4e6
HY
676 si->inuse_pages += nr_entries;
677 if (si->inuse_pages == si->pages) {
678 si->lowest_bit = si->max;
679 si->highest_bit = 0;
a2468cc9 680 del_from_avail_list(si);
38d8b4e6
HY
681 }
682}
683
a2468cc9
AL
684static void add_to_avail_list(struct swap_info_struct *p)
685{
686 int nid;
687
688 spin_lock(&swap_avail_lock);
689 for_each_node(nid) {
690 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
691 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
692 }
693 spin_unlock(&swap_avail_lock);
694}
695
38d8b4e6
HY
696static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
697 unsigned int nr_entries)
698{
3852f676 699 unsigned long begin = offset;
38d8b4e6
HY
700 unsigned long end = offset + nr_entries - 1;
701 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
702
703 if (offset < si->lowest_bit)
704 si->lowest_bit = offset;
705 if (end > si->highest_bit) {
706 bool was_full = !si->highest_bit;
707
a449bf58 708 WRITE_ONCE(si->highest_bit, end);
a2468cc9
AL
709 if (was_full && (si->flags & SWP_WRITEOK))
710 add_to_avail_list(si);
38d8b4e6
HY
711 }
712 atomic_long_add(nr_entries, &nr_swap_pages);
713 si->inuse_pages -= nr_entries;
714 if (si->flags & SWP_BLKDEV)
715 swap_slot_free_notify =
716 si->bdev->bd_disk->fops->swap_slot_free_notify;
717 else
718 swap_slot_free_notify = NULL;
719 while (offset <= end) {
8a84802e 720 arch_swap_invalidate_page(si->type, offset);
38d8b4e6
HY
721 frontswap_invalidate_page(si->type, offset);
722 if (swap_slot_free_notify)
723 swap_slot_free_notify(si->bdev, offset);
724 offset++;
725 }
3852f676 726 clear_shadow_from_swap_cache(si->type, begin, end);
38d8b4e6
HY
727}
728
49070588
HY
729static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
730{
731 unsigned long prev;
732
733 if (!(si->flags & SWP_SOLIDSTATE)) {
734 si->cluster_next = next;
735 return;
736 }
737
738 prev = this_cpu_read(*si->cluster_next_cpu);
739 /*
740 * Cross the swap address space size aligned trunk, choose
741 * another trunk randomly to avoid lock contention on swap
742 * address space if possible.
743 */
744 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
745 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
746 /* No free swap slots available */
747 if (si->highest_bit <= si->lowest_bit)
748 return;
749 next = si->lowest_bit +
750 prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
751 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
752 next = max_t(unsigned int, next, si->lowest_bit);
753 }
754 this_cpu_write(*si->cluster_next_cpu, next);
755}
756
36005bae
TC
757static int scan_swap_map_slots(struct swap_info_struct *si,
758 unsigned char usage, int nr,
759 swp_entry_t slots[])
1da177e4 760{
235b6217 761 struct swap_cluster_info *ci;
ebebbbe9 762 unsigned long offset;
c60aa176 763 unsigned long scan_base;
7992fde7 764 unsigned long last_in_cluster = 0;
048c27fd 765 int latency_ration = LATENCY_LIMIT;
36005bae 766 int n_ret = 0;
ed43af10 767 bool scanned_many = false;
36005bae 768
886bb7e9 769 /*
7dfad418
HD
770 * We try to cluster swap pages by allocating them sequentially
771 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
772 * way, however, we resort to first-free allocation, starting
773 * a new cluster. This prevents us from scattering swap pages
774 * all over the entire swap partition, so that we reduce
775 * overall disk seek times between swap pages. -- sct
776 * But we do now try to find an empty cluster. -Andrea
c60aa176 777 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
778 */
779
52b7efdb 780 si->flags += SWP_SCANNING;
49070588
HY
781 /*
782 * Use percpu scan base for SSD to reduce lock contention on
783 * cluster and swap cache. For HDD, sequential access is more
784 * important.
785 */
786 if (si->flags & SWP_SOLIDSTATE)
787 scan_base = this_cpu_read(*si->cluster_next_cpu);
788 else
789 scan_base = si->cluster_next;
790 offset = scan_base;
ebebbbe9 791
ebc2a1a6
SL
792 /* SSD algorithm */
793 if (si->cluster_info) {
bd2d18da 794 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
36005bae 795 goto scan;
f4eaf51a 796 } else if (unlikely(!si->cluster_nr--)) {
ebebbbe9
HD
797 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
798 si->cluster_nr = SWAPFILE_CLUSTER - 1;
799 goto checks;
800 }
2a8f9449 801
ec8acf20 802 spin_unlock(&si->lock);
7dfad418 803
c60aa176
HD
804 /*
805 * If seek is expensive, start searching for new cluster from
806 * start of partition, to minimize the span of allocated swap.
50088c44
CY
807 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
808 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 809 */
50088c44 810 scan_base = offset = si->lowest_bit;
7dfad418
HD
811 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
812
813 /* Locate the first empty (unaligned) cluster */
814 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 815 if (si->swap_map[offset])
7dfad418
HD
816 last_in_cluster = offset + SWAPFILE_CLUSTER;
817 else if (offset == last_in_cluster) {
ec8acf20 818 spin_lock(&si->lock);
ebebbbe9
HD
819 offset -= SWAPFILE_CLUSTER - 1;
820 si->cluster_next = offset;
821 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
822 goto checks;
823 }
824 if (unlikely(--latency_ration < 0)) {
825 cond_resched();
826 latency_ration = LATENCY_LIMIT;
827 }
828 }
829
830 offset = scan_base;
ec8acf20 831 spin_lock(&si->lock);
ebebbbe9 832 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 833 }
7dfad418 834
ebebbbe9 835checks:
ebc2a1a6 836 if (si->cluster_info) {
36005bae
TC
837 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
838 /* take a break if we already got some slots */
839 if (n_ret)
840 goto done;
841 if (!scan_swap_map_try_ssd_cluster(si, &offset,
842 &scan_base))
843 goto scan;
844 }
ebc2a1a6 845 }
ebebbbe9 846 if (!(si->flags & SWP_WRITEOK))
52b7efdb 847 goto no_page;
7dfad418
HD
848 if (!si->highest_bit)
849 goto no_page;
ebebbbe9 850 if (offset > si->highest_bit)
c60aa176 851 scan_base = offset = si->lowest_bit;
c9e44410 852
235b6217 853 ci = lock_cluster(si, offset);
b73d7fce
HD
854 /* reuse swap entry of cache-only swap if not busy. */
855 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 856 int swap_was_freed;
235b6217 857 unlock_cluster(ci);
ec8acf20 858 spin_unlock(&si->lock);
bcd49e86 859 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
ec8acf20 860 spin_lock(&si->lock);
c9e44410
KH
861 /* entry was freed successfully, try to use this again */
862 if (swap_was_freed)
863 goto checks;
864 goto scan; /* check next one */
865 }
866
235b6217
HY
867 if (si->swap_map[offset]) {
868 unlock_cluster(ci);
36005bae
TC
869 if (!n_ret)
870 goto scan;
871 else
872 goto done;
235b6217 873 }
a449bf58 874 WRITE_ONCE(si->swap_map[offset], usage);
2872bb2d
HY
875 inc_cluster_info_page(si, si->cluster_info, offset);
876 unlock_cluster(ci);
ebebbbe9 877
38d8b4e6 878 swap_range_alloc(si, offset, 1);
36005bae
TC
879 slots[n_ret++] = swp_entry(si->type, offset);
880
881 /* got enough slots or reach max slots? */
882 if ((n_ret == nr) || (offset >= si->highest_bit))
883 goto done;
884
885 /* search for next available slot */
886
887 /* time to take a break? */
888 if (unlikely(--latency_ration < 0)) {
889 if (n_ret)
890 goto done;
891 spin_unlock(&si->lock);
892 cond_resched();
893 spin_lock(&si->lock);
894 latency_ration = LATENCY_LIMIT;
895 }
896
897 /* try to get more slots in cluster */
898 if (si->cluster_info) {
899 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
900 goto checks;
f4eaf51a
WY
901 } else if (si->cluster_nr && !si->swap_map[++offset]) {
902 /* non-ssd case, still more slots in cluster? */
36005bae
TC
903 --si->cluster_nr;
904 goto checks;
905 }
7992fde7 906
ed43af10
HY
907 /*
908 * Even if there's no free clusters available (fragmented),
909 * try to scan a little more quickly with lock held unless we
910 * have scanned too many slots already.
911 */
912 if (!scanned_many) {
913 unsigned long scan_limit;
914
915 if (offset < scan_base)
916 scan_limit = scan_base;
917 else
918 scan_limit = si->highest_bit;
919 for (; offset <= scan_limit && --latency_ration > 0;
920 offset++) {
921 if (!si->swap_map[offset])
922 goto checks;
923 }
924 }
925
36005bae 926done:
49070588 927 set_cluster_next(si, offset + 1);
36005bae
TC
928 si->flags -= SWP_SCANNING;
929 return n_ret;
7dfad418 930
ebebbbe9 931scan:
ec8acf20 932 spin_unlock(&si->lock);
a449bf58
QC
933 while (++offset <= READ_ONCE(si->highest_bit)) {
934 if (data_race(!si->swap_map[offset])) {
ec8acf20 935 spin_lock(&si->lock);
52b7efdb
HD
936 goto checks;
937 }
a449bf58
QC
938 if (vm_swap_full() &&
939 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
ec8acf20 940 spin_lock(&si->lock);
c9e44410
KH
941 goto checks;
942 }
048c27fd
HD
943 if (unlikely(--latency_ration < 0)) {
944 cond_resched();
945 latency_ration = LATENCY_LIMIT;
ed43af10 946 scanned_many = true;
048c27fd 947 }
7dfad418 948 }
c60aa176 949 offset = si->lowest_bit;
a5998061 950 while (offset < scan_base) {
a449bf58 951 if (data_race(!si->swap_map[offset])) {
ec8acf20 952 spin_lock(&si->lock);
c60aa176
HD
953 goto checks;
954 }
a449bf58
QC
955 if (vm_swap_full() &&
956 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
ec8acf20 957 spin_lock(&si->lock);
c9e44410
KH
958 goto checks;
959 }
c60aa176
HD
960 if (unlikely(--latency_ration < 0)) {
961 cond_resched();
962 latency_ration = LATENCY_LIMIT;
ed43af10 963 scanned_many = true;
c60aa176 964 }
a5998061 965 offset++;
c60aa176 966 }
ec8acf20 967 spin_lock(&si->lock);
7dfad418
HD
968
969no_page:
52b7efdb 970 si->flags -= SWP_SCANNING;
36005bae 971 return n_ret;
1da177e4
LT
972}
973
38d8b4e6
HY
974static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
975{
976 unsigned long idx;
977 struct swap_cluster_info *ci;
978 unsigned long offset, i;
979 unsigned char *map;
980
fe5266d5
HY
981 /*
982 * Should not even be attempting cluster allocations when huge
983 * page swap is disabled. Warn and fail the allocation.
984 */
985 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
986 VM_WARN_ON_ONCE(1);
987 return 0;
988 }
989
38d8b4e6
HY
990 if (cluster_list_empty(&si->free_clusters))
991 return 0;
992
993 idx = cluster_list_first(&si->free_clusters);
994 offset = idx * SWAPFILE_CLUSTER;
995 ci = lock_cluster(si, offset);
996 alloc_cluster(si, idx);
e0709829 997 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
38d8b4e6
HY
998
999 map = si->swap_map + offset;
1000 for (i = 0; i < SWAPFILE_CLUSTER; i++)
1001 map[i] = SWAP_HAS_CACHE;
1002 unlock_cluster(ci);
1003 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1004 *slot = swp_entry(si->type, offset);
1005
1006 return 1;
1007}
1008
1009static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1010{
1011 unsigned long offset = idx * SWAPFILE_CLUSTER;
1012 struct swap_cluster_info *ci;
1013
1014 ci = lock_cluster(si, offset);
979aafa5 1015 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
38d8b4e6
HY
1016 cluster_set_count_flag(ci, 0, 0);
1017 free_cluster(si, idx);
1018 unlock_cluster(ci);
1019 swap_range_free(si, offset, SWAPFILE_CLUSTER);
1020}
38d8b4e6 1021
36005bae
TC
1022static unsigned long scan_swap_map(struct swap_info_struct *si,
1023 unsigned char usage)
1024{
1025 swp_entry_t entry;
1026 int n_ret;
1027
1028 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1029
1030 if (n_ret)
1031 return swp_offset(entry);
1032 else
1033 return 0;
1034
1035}
1036
5d5e8f19 1037int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1da177e4 1038{
5d5e8f19 1039 unsigned long size = swap_entry_size(entry_size);
adfab836 1040 struct swap_info_struct *si, *next;
36005bae
TC
1041 long avail_pgs;
1042 int n_ret = 0;
a2468cc9 1043 int node;
1da177e4 1044
38d8b4e6 1045 /* Only single cluster request supported */
5d5e8f19 1046 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
38d8b4e6 1047
5d5e8f19 1048 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
36005bae 1049 if (avail_pgs <= 0)
fb4f88dc 1050 goto noswap;
36005bae 1051
08d3090f 1052 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
36005bae 1053
5d5e8f19 1054 atomic_long_sub(n_goal * size, &nr_swap_pages);
fb4f88dc 1055
18ab4d4c
DS
1056 spin_lock(&swap_avail_lock);
1057
1058start_over:
a2468cc9
AL
1059 node = numa_node_id();
1060 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
18ab4d4c 1061 /* requeue si to after same-priority siblings */
a2468cc9 1062 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
18ab4d4c 1063 spin_unlock(&swap_avail_lock);
ec8acf20 1064 spin_lock(&si->lock);
adfab836 1065 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c 1066 spin_lock(&swap_avail_lock);
a2468cc9 1067 if (plist_node_empty(&si->avail_lists[node])) {
18ab4d4c
DS
1068 spin_unlock(&si->lock);
1069 goto nextsi;
1070 }
1071 WARN(!si->highest_bit,
1072 "swap_info %d in list but !highest_bit\n",
1073 si->type);
1074 WARN(!(si->flags & SWP_WRITEOK),
1075 "swap_info %d in list but !SWP_WRITEOK\n",
1076 si->type);
a2468cc9 1077 __del_from_avail_list(si);
ec8acf20 1078 spin_unlock(&si->lock);
18ab4d4c 1079 goto nextsi;
ec8acf20 1080 }
5d5e8f19 1081 if (size == SWAPFILE_CLUSTER) {
41663430 1082 if (si->flags & SWP_BLKDEV)
f0eea189
HY
1083 n_ret = swap_alloc_cluster(si, swp_entries);
1084 } else
38d8b4e6
HY
1085 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1086 n_goal, swp_entries);
ec8acf20 1087 spin_unlock(&si->lock);
5d5e8f19 1088 if (n_ret || size == SWAPFILE_CLUSTER)
36005bae 1089 goto check_out;
18ab4d4c 1090 pr_debug("scan_swap_map of si %d failed to find offset\n",
36005bae
TC
1091 si->type);
1092
18ab4d4c
DS
1093 spin_lock(&swap_avail_lock);
1094nextsi:
adfab836
DS
1095 /*
1096 * if we got here, it's likely that si was almost full before,
1097 * and since scan_swap_map() can drop the si->lock, multiple
1098 * callers probably all tried to get a page from the same si
18ab4d4c
DS
1099 * and it filled up before we could get one; or, the si filled
1100 * up between us dropping swap_avail_lock and taking si->lock.
1101 * Since we dropped the swap_avail_lock, the swap_avail_head
1102 * list may have been modified; so if next is still in the
36005bae
TC
1103 * swap_avail_head list then try it, otherwise start over
1104 * if we have not gotten any slots.
adfab836 1105 */
a2468cc9 1106 if (plist_node_empty(&next->avail_lists[node]))
18ab4d4c 1107 goto start_over;
1da177e4 1108 }
fb4f88dc 1109
18ab4d4c
DS
1110 spin_unlock(&swap_avail_lock);
1111
36005bae
TC
1112check_out:
1113 if (n_ret < n_goal)
5d5e8f19 1114 atomic_long_add((long)(n_goal - n_ret) * size,
38d8b4e6 1115 &nr_swap_pages);
fb4f88dc 1116noswap:
36005bae
TC
1117 return n_ret;
1118}
1119
2de1a7e4 1120/* The only caller of this function is now suspend routine */
910321ea
HD
1121swp_entry_t get_swap_page_of_type(int type)
1122{
c10d38cc 1123 struct swap_info_struct *si = swap_type_to_swap_info(type);
910321ea
HD
1124 pgoff_t offset;
1125
c10d38cc
DJ
1126 if (!si)
1127 goto fail;
1128
ec8acf20 1129 spin_lock(&si->lock);
c10d38cc 1130 if (si->flags & SWP_WRITEOK) {
ec8acf20 1131 atomic_long_dec(&nr_swap_pages);
910321ea
HD
1132 /* This is called for allocating swap entry, not cache */
1133 offset = scan_swap_map(si, 1);
1134 if (offset) {
ec8acf20 1135 spin_unlock(&si->lock);
910321ea
HD
1136 return swp_entry(type, offset);
1137 }
ec8acf20 1138 atomic_long_inc(&nr_swap_pages);
910321ea 1139 }
ec8acf20 1140 spin_unlock(&si->lock);
c10d38cc 1141fail:
910321ea
HD
1142 return (swp_entry_t) {0};
1143}
1144
e8c26ab6 1145static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1da177e4 1146{
73c34b6a 1147 struct swap_info_struct *p;
eb085574 1148 unsigned long offset;
1da177e4
LT
1149
1150 if (!entry.val)
1151 goto out;
eb085574 1152 p = swp_swap_info(entry);
c10d38cc 1153 if (!p)
1da177e4 1154 goto bad_nofile;
a449bf58 1155 if (data_race(!(p->flags & SWP_USED)))
1da177e4
LT
1156 goto bad_device;
1157 offset = swp_offset(entry);
1158 if (offset >= p->max)
1159 goto bad_offset;
1da177e4
LT
1160 return p;
1161
1da177e4 1162bad_offset:
6a991fc7 1163 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
1164 goto out;
1165bad_device:
6a991fc7 1166 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
1167 goto out;
1168bad_nofile:
6a991fc7 1169 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
1170out:
1171 return NULL;
886bb7e9 1172}
1da177e4 1173
e8c26ab6
TC
1174static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1175{
1176 struct swap_info_struct *p;
1177
1178 p = __swap_info_get(entry);
1179 if (!p)
1180 goto out;
a449bf58 1181 if (data_race(!p->swap_map[swp_offset(entry)]))
e8c26ab6
TC
1182 goto bad_free;
1183 return p;
1184
1185bad_free:
1186 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
e8c26ab6
TC
1187out:
1188 return NULL;
1189}
1190
235b6217
HY
1191static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1192{
1193 struct swap_info_struct *p;
1194
1195 p = _swap_info_get(entry);
1196 if (p)
1197 spin_lock(&p->lock);
1198 return p;
1199}
1200
7c00bafe
TC
1201static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1202 struct swap_info_struct *q)
1203{
1204 struct swap_info_struct *p;
1205
1206 p = _swap_info_get(entry);
1207
1208 if (p != q) {
1209 if (q != NULL)
1210 spin_unlock(&q->lock);
1211 if (p != NULL)
1212 spin_lock(&p->lock);
1213 }
1214 return p;
1215}
1216
b32d5f32
HY
1217static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1218 unsigned long offset,
1219 unsigned char usage)
1da177e4 1220{
8d69aaee
HD
1221 unsigned char count;
1222 unsigned char has_cache;
235b6217 1223
253d553b 1224 count = p->swap_map[offset];
235b6217 1225
253d553b
HD
1226 has_cache = count & SWAP_HAS_CACHE;
1227 count &= ~SWAP_HAS_CACHE;
355cfa73 1228
253d553b 1229 if (usage == SWAP_HAS_CACHE) {
355cfa73 1230 VM_BUG_ON(!has_cache);
253d553b 1231 has_cache = 0;
aaa46865
HD
1232 } else if (count == SWAP_MAP_SHMEM) {
1233 /*
1234 * Or we could insist on shmem.c using a special
1235 * swap_shmem_free() and free_shmem_swap_and_cache()...
1236 */
1237 count = 0;
570a335b
HD
1238 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1239 if (count == COUNT_CONTINUED) {
1240 if (swap_count_continued(p, offset, count))
1241 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1242 else
1243 count = SWAP_MAP_MAX;
1244 } else
1245 count--;
1246 }
253d553b 1247
253d553b 1248 usage = count | has_cache;
a449bf58
QC
1249 if (usage)
1250 WRITE_ONCE(p->swap_map[offset], usage);
1251 else
1252 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
7c00bafe 1253
b32d5f32
HY
1254 return usage;
1255}
1256
eb085574
HY
1257/*
1258 * Check whether swap entry is valid in the swap device. If so,
1259 * return pointer to swap_info_struct, and keep the swap entry valid
1260 * via preventing the swap device from being swapoff, until
1261 * put_swap_device() is called. Otherwise return NULL.
1262 *
1263 * The entirety of the RCU read critical section must come before the
1264 * return from or after the call to synchronize_rcu() in
1265 * enable_swap_info() or swapoff(). So if "si->flags & SWP_VALID" is
1266 * true, the si->map, si->cluster_info, etc. must be valid in the
1267 * critical section.
1268 *
1269 * Notice that swapoff or swapoff+swapon can still happen before the
1270 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1271 * in put_swap_device() if there isn't any other way to prevent
1272 * swapoff, such as page lock, page table lock, etc. The caller must
1273 * be prepared for that. For example, the following situation is
1274 * possible.
1275 *
1276 * CPU1 CPU2
1277 * do_swap_page()
1278 * ... swapoff+swapon
1279 * __read_swap_cache_async()
1280 * swapcache_prepare()
1281 * __swap_duplicate()
1282 * // check swap_map
1283 * // verify PTE not changed
1284 *
1285 * In __swap_duplicate(), the swap_map need to be checked before
1286 * changing partly because the specified swap entry may be for another
1287 * swap device which has been swapoff. And in do_swap_page(), after
1288 * the page is read from the swap device, the PTE is verified not
1289 * changed with the page table locked to check whether the swap device
1290 * has been swapoff or swapoff+swapon.
1291 */
1292struct swap_info_struct *get_swap_device(swp_entry_t entry)
1293{
1294 struct swap_info_struct *si;
1295 unsigned long offset;
1296
1297 if (!entry.val)
1298 goto out;
1299 si = swp_swap_info(entry);
1300 if (!si)
1301 goto bad_nofile;
1302
1303 rcu_read_lock();
a449bf58 1304 if (data_race(!(si->flags & SWP_VALID)))
eb085574
HY
1305 goto unlock_out;
1306 offset = swp_offset(entry);
1307 if (offset >= si->max)
1308 goto unlock_out;
1309
1310 return si;
1311bad_nofile:
1312 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1313out:
1314 return NULL;
1315unlock_out:
1316 rcu_read_unlock();
1317 return NULL;
1318}
1319
b32d5f32 1320static unsigned char __swap_entry_free(struct swap_info_struct *p,
33e16272 1321 swp_entry_t entry)
b32d5f32
HY
1322{
1323 struct swap_cluster_info *ci;
1324 unsigned long offset = swp_offset(entry);
33e16272 1325 unsigned char usage;
b32d5f32
HY
1326
1327 ci = lock_cluster_or_swap_info(p, offset);
33e16272 1328 usage = __swap_entry_free_locked(p, offset, 1);
7c00bafe 1329 unlock_cluster_or_swap_info(p, ci);
10e364da
HY
1330 if (!usage)
1331 free_swap_slot(entry);
7c00bafe
TC
1332
1333 return usage;
1334}
355cfa73 1335
7c00bafe
TC
1336static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1337{
1338 struct swap_cluster_info *ci;
1339 unsigned long offset = swp_offset(entry);
1340 unsigned char count;
1341
1342 ci = lock_cluster(p, offset);
1343 count = p->swap_map[offset];
1344 VM_BUG_ON(count != SWAP_HAS_CACHE);
1345 p->swap_map[offset] = 0;
1346 dec_cluster_info_page(p, p->cluster_info, offset);
235b6217
HY
1347 unlock_cluster(ci);
1348
38d8b4e6
HY
1349 mem_cgroup_uncharge_swap(entry, 1);
1350 swap_range_free(p, offset, 1);
1da177e4
LT
1351}
1352
1353/*
2de1a7e4 1354 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
1355 * is still around or has not been recycled.
1356 */
1357void swap_free(swp_entry_t entry)
1358{
73c34b6a 1359 struct swap_info_struct *p;
1da177e4 1360
235b6217 1361 p = _swap_info_get(entry);
10e364da 1362 if (p)
33e16272 1363 __swap_entry_free(p, entry);
1da177e4
LT
1364}
1365
cb4b86ba
KH
1366/*
1367 * Called after dropping swapcache to decrease refcnt to swap entries.
1368 */
a448f2d0 1369void put_swap_page(struct page *page, swp_entry_t entry)
38d8b4e6
HY
1370{
1371 unsigned long offset = swp_offset(entry);
1372 unsigned long idx = offset / SWAPFILE_CLUSTER;
1373 struct swap_cluster_info *ci;
1374 struct swap_info_struct *si;
1375 unsigned char *map;
a3aea839
HY
1376 unsigned int i, free_entries = 0;
1377 unsigned char val;
6c357848 1378 int size = swap_entry_size(thp_nr_pages(page));
fe5266d5 1379
a3aea839 1380 si = _swap_info_get(entry);
38d8b4e6
HY
1381 if (!si)
1382 return;
1383
c2343d27 1384 ci = lock_cluster_or_swap_info(si, offset);
a448f2d0 1385 if (size == SWAPFILE_CLUSTER) {
a448f2d0
HY
1386 VM_BUG_ON(!cluster_is_huge(ci));
1387 map = si->swap_map + offset;
1388 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1389 val = map[i];
1390 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1391 if (val == SWAP_HAS_CACHE)
1392 free_entries++;
1393 }
a448f2d0 1394 cluster_clear_huge(ci);
a448f2d0 1395 if (free_entries == SWAPFILE_CLUSTER) {
c2343d27 1396 unlock_cluster_or_swap_info(si, ci);
a448f2d0 1397 spin_lock(&si->lock);
a448f2d0
HY
1398 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1399 swap_free_cluster(si, idx);
1400 spin_unlock(&si->lock);
1401 return;
1402 }
1403 }
c2343d27
HY
1404 for (i = 0; i < size; i++, entry.val++) {
1405 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1406 unlock_cluster_or_swap_info(si, ci);
1407 free_swap_slot(entry);
1408 if (i == size - 1)
1409 return;
1410 lock_cluster_or_swap_info(si, offset);
a3aea839
HY
1411 }
1412 }
c2343d27 1413 unlock_cluster_or_swap_info(si, ci);
38d8b4e6 1414}
59807685 1415
fe5266d5 1416#ifdef CONFIG_THP_SWAP
59807685
HY
1417int split_swap_cluster(swp_entry_t entry)
1418{
1419 struct swap_info_struct *si;
1420 struct swap_cluster_info *ci;
1421 unsigned long offset = swp_offset(entry);
1422
1423 si = _swap_info_get(entry);
1424 if (!si)
1425 return -EBUSY;
1426 ci = lock_cluster(si, offset);
1427 cluster_clear_huge(ci);
1428 unlock_cluster(ci);
1429 return 0;
1430}
fe5266d5 1431#endif
38d8b4e6 1432
155b5f88
HY
1433static int swp_entry_cmp(const void *ent1, const void *ent2)
1434{
1435 const swp_entry_t *e1 = ent1, *e2 = ent2;
1436
1437 return (int)swp_type(*e1) - (int)swp_type(*e2);
1438}
1439
7c00bafe
TC
1440void swapcache_free_entries(swp_entry_t *entries, int n)
1441{
1442 struct swap_info_struct *p, *prev;
1443 int i;
1444
1445 if (n <= 0)
1446 return;
1447
1448 prev = NULL;
1449 p = NULL;
155b5f88
HY
1450
1451 /*
1452 * Sort swap entries by swap device, so each lock is only taken once.
1453 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1454 * so low that it isn't necessary to optimize further.
1455 */
1456 if (nr_swapfiles > 1)
1457 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
7c00bafe
TC
1458 for (i = 0; i < n; ++i) {
1459 p = swap_info_get_cont(entries[i], prev);
1460 if (p)
1461 swap_entry_free(p, entries[i]);
7c00bafe
TC
1462 prev = p;
1463 }
235b6217 1464 if (p)
7c00bafe 1465 spin_unlock(&p->lock);
cb4b86ba
KH
1466}
1467
1da177e4 1468/*
c475a8ab 1469 * How many references to page are currently swapped out?
570a335b
HD
1470 * This does not give an exact answer when swap count is continued,
1471 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 1472 */
bde05d1c 1473int page_swapcount(struct page *page)
1da177e4 1474{
c475a8ab
HD
1475 int count = 0;
1476 struct swap_info_struct *p;
235b6217 1477 struct swap_cluster_info *ci;
1da177e4 1478 swp_entry_t entry;
235b6217 1479 unsigned long offset;
1da177e4 1480
4c21e2f2 1481 entry.val = page_private(page);
235b6217 1482 p = _swap_info_get(entry);
1da177e4 1483 if (p) {
235b6217
HY
1484 offset = swp_offset(entry);
1485 ci = lock_cluster_or_swap_info(p, offset);
1486 count = swap_count(p->swap_map[offset]);
1487 unlock_cluster_or_swap_info(p, ci);
1da177e4 1488 }
c475a8ab 1489 return count;
1da177e4
LT
1490}
1491
eb085574 1492int __swap_count(swp_entry_t entry)
aa8d22a1 1493{
eb085574 1494 struct swap_info_struct *si;
aa8d22a1 1495 pgoff_t offset = swp_offset(entry);
eb085574 1496 int count = 0;
aa8d22a1 1497
eb085574
HY
1498 si = get_swap_device(entry);
1499 if (si) {
1500 count = swap_count(si->swap_map[offset]);
1501 put_swap_device(si);
1502 }
1503 return count;
aa8d22a1
MK
1504}
1505
322b8afe
HY
1506static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1507{
1508 int count = 0;
1509 pgoff_t offset = swp_offset(entry);
1510 struct swap_cluster_info *ci;
1511
1512 ci = lock_cluster_or_swap_info(si, offset);
1513 count = swap_count(si->swap_map[offset]);
1514 unlock_cluster_or_swap_info(si, ci);
1515 return count;
1516}
1517
e8c26ab6
TC
1518/*
1519 * How many references to @entry are currently swapped out?
1520 * This does not give an exact answer when swap count is continued,
1521 * but does include the high COUNT_CONTINUED flag to allow for that.
1522 */
1523int __swp_swapcount(swp_entry_t entry)
1524{
1525 int count = 0;
e8c26ab6 1526 struct swap_info_struct *si;
e8c26ab6 1527
eb085574
HY
1528 si = get_swap_device(entry);
1529 if (si) {
322b8afe 1530 count = swap_swapcount(si, entry);
eb085574
HY
1531 put_swap_device(si);
1532 }
e8c26ab6
TC
1533 return count;
1534}
1535
8334b962
MK
1536/*
1537 * How many references to @entry are currently swapped out?
1538 * This considers COUNT_CONTINUED so it returns exact answer.
1539 */
1540int swp_swapcount(swp_entry_t entry)
1541{
1542 int count, tmp_count, n;
1543 struct swap_info_struct *p;
235b6217 1544 struct swap_cluster_info *ci;
8334b962
MK
1545 struct page *page;
1546 pgoff_t offset;
1547 unsigned char *map;
1548
235b6217 1549 p = _swap_info_get(entry);
8334b962
MK
1550 if (!p)
1551 return 0;
1552
235b6217
HY
1553 offset = swp_offset(entry);
1554
1555 ci = lock_cluster_or_swap_info(p, offset);
1556
1557 count = swap_count(p->swap_map[offset]);
8334b962
MK
1558 if (!(count & COUNT_CONTINUED))
1559 goto out;
1560
1561 count &= ~COUNT_CONTINUED;
1562 n = SWAP_MAP_MAX + 1;
1563
8334b962
MK
1564 page = vmalloc_to_page(p->swap_map + offset);
1565 offset &= ~PAGE_MASK;
1566 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1567
1568 do {
a8ae4991 1569 page = list_next_entry(page, lru);
8334b962
MK
1570 map = kmap_atomic(page);
1571 tmp_count = map[offset];
1572 kunmap_atomic(map);
1573
1574 count += (tmp_count & ~COUNT_CONTINUED) * n;
1575 n *= (SWAP_CONT_MAX + 1);
1576 } while (tmp_count & COUNT_CONTINUED);
1577out:
235b6217 1578 unlock_cluster_or_swap_info(p, ci);
8334b962
MK
1579 return count;
1580}
1581
e0709829
HY
1582static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1583 swp_entry_t entry)
1584{
1585 struct swap_cluster_info *ci;
1586 unsigned char *map = si->swap_map;
1587 unsigned long roffset = swp_offset(entry);
1588 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1589 int i;
1590 bool ret = false;
1591
1592 ci = lock_cluster_or_swap_info(si, offset);
1593 if (!ci || !cluster_is_huge(ci)) {
afa4711e 1594 if (swap_count(map[roffset]))
e0709829
HY
1595 ret = true;
1596 goto unlock_out;
1597 }
1598 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
afa4711e 1599 if (swap_count(map[offset + i])) {
e0709829
HY
1600 ret = true;
1601 break;
1602 }
1603 }
1604unlock_out:
1605 unlock_cluster_or_swap_info(si, ci);
1606 return ret;
1607}
1608
1609static bool page_swapped(struct page *page)
1610{
1611 swp_entry_t entry;
1612 struct swap_info_struct *si;
1613
fe5266d5 1614 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
e0709829
HY
1615 return page_swapcount(page) != 0;
1616
1617 page = compound_head(page);
1618 entry.val = page_private(page);
1619 si = _swap_info_get(entry);
1620 if (si)
1621 return swap_page_trans_huge_swapped(si, entry);
1622 return false;
1623}
ba3c4ce6
HY
1624
1625static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1626 int *total_swapcount)
1627{
1628 int i, map_swapcount, _total_mapcount, _total_swapcount;
1629 unsigned long offset = 0;
1630 struct swap_info_struct *si;
1631 struct swap_cluster_info *ci = NULL;
1632 unsigned char *map = NULL;
1633 int mapcount, swapcount = 0;
1634
1635 /* hugetlbfs shouldn't call it */
1636 VM_BUG_ON_PAGE(PageHuge(page), page);
1637
fe5266d5
HY
1638 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1639 mapcount = page_trans_huge_mapcount(page, total_mapcount);
ba3c4ce6
HY
1640 if (PageSwapCache(page))
1641 swapcount = page_swapcount(page);
1642 if (total_swapcount)
1643 *total_swapcount = swapcount;
1644 return mapcount + swapcount;
1645 }
1646
1647 page = compound_head(page);
1648
1649 _total_mapcount = _total_swapcount = map_swapcount = 0;
1650 if (PageSwapCache(page)) {
1651 swp_entry_t entry;
1652
1653 entry.val = page_private(page);
1654 si = _swap_info_get(entry);
1655 if (si) {
1656 map = si->swap_map;
1657 offset = swp_offset(entry);
1658 }
1659 }
1660 if (map)
1661 ci = lock_cluster(si, offset);
1662 for (i = 0; i < HPAGE_PMD_NR; i++) {
1663 mapcount = atomic_read(&page[i]._mapcount) + 1;
1664 _total_mapcount += mapcount;
1665 if (map) {
1666 swapcount = swap_count(map[offset + i]);
1667 _total_swapcount += swapcount;
1668 }
1669 map_swapcount = max(map_swapcount, mapcount + swapcount);
1670 }
1671 unlock_cluster(ci);
1672 if (PageDoubleMap(page)) {
1673 map_swapcount -= 1;
1674 _total_mapcount -= HPAGE_PMD_NR;
1675 }
1676 mapcount = compound_mapcount(page);
1677 map_swapcount += mapcount;
1678 _total_mapcount += mapcount;
1679 if (total_mapcount)
1680 *total_mapcount = _total_mapcount;
1681 if (total_swapcount)
1682 *total_swapcount = _total_swapcount;
1683
1684 return map_swapcount;
1685}
e0709829 1686
1da177e4 1687/*
7b1fe597
HD
1688 * We can write to an anon page without COW if there are no other references
1689 * to it. And as a side-effect, free up its swap: because the old content
1690 * on disk will never be read, and seeking back there to write new content
1691 * later would only waste time away from clustering.
6d0a07ed 1692 *
ba3c4ce6 1693 * NOTE: total_map_swapcount should not be relied upon by the caller if
6d0a07ed
AA
1694 * reuse_swap_page() returns false, but it may be always overwritten
1695 * (see the other implementation for CONFIG_SWAP=n).
1da177e4 1696 */
ba3c4ce6 1697bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1da177e4 1698{
ba3c4ce6 1699 int count, total_mapcount, total_swapcount;
c475a8ab 1700
309381fe 1701 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688 1702 if (unlikely(PageKsm(page)))
6d0a07ed 1703 return false;
ba3c4ce6
HY
1704 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1705 &total_swapcount);
1706 if (total_map_swapcount)
1707 *total_map_swapcount = total_mapcount + total_swapcount;
1708 if (count == 1 && PageSwapCache(page) &&
1709 (likely(!PageTransCompound(page)) ||
1710 /* The remaining swap count will be freed soon */
1711 total_swapcount == page_swapcount(page))) {
f0571429 1712 if (!PageWriteback(page)) {
ba3c4ce6 1713 page = compound_head(page);
7b1fe597
HD
1714 delete_from_swap_cache(page);
1715 SetPageDirty(page);
f0571429
MK
1716 } else {
1717 swp_entry_t entry;
1718 struct swap_info_struct *p;
1719
1720 entry.val = page_private(page);
1721 p = swap_info_get(entry);
1722 if (p->flags & SWP_STABLE_WRITES) {
1723 spin_unlock(&p->lock);
1724 return false;
1725 }
1726 spin_unlock(&p->lock);
7b1fe597
HD
1727 }
1728 }
ba3c4ce6 1729
5ad64688 1730 return count <= 1;
1da177e4
LT
1731}
1732
1733/*
a2c43eed
HD
1734 * If swap is getting full, or if there are no more mappings of this page,
1735 * then try_to_free_swap is called to free its swap space.
1da177e4 1736 */
a2c43eed 1737int try_to_free_swap(struct page *page)
1da177e4 1738{
309381fe 1739 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
1740
1741 if (!PageSwapCache(page))
1742 return 0;
1743 if (PageWriteback(page))
1744 return 0;
e0709829 1745 if (page_swapped(page))
1da177e4
LT
1746 return 0;
1747
b73d7fce
HD
1748 /*
1749 * Once hibernation has begun to create its image of memory,
1750 * there's a danger that one of the calls to try_to_free_swap()
1751 * - most probably a call from __try_to_reclaim_swap() while
1752 * hibernation is allocating its own swap pages for the image,
1753 * but conceivably even a call from memory reclaim - will free
1754 * the swap from a page which has already been recorded in the
1755 * image as a clean swapcache page, and then reuse its swap for
1756 * another page of the image. On waking from hibernation, the
1757 * original page might be freed under memory pressure, then
1758 * later read back in from swap, now with the wrong data.
1759 *
2de1a7e4 1760 * Hibernation suspends storage while it is writing the image
f90ac398 1761 * to disk so check that here.
b73d7fce 1762 */
f90ac398 1763 if (pm_suspended_storage())
b73d7fce
HD
1764 return 0;
1765
e0709829 1766 page = compound_head(page);
a2c43eed
HD
1767 delete_from_swap_cache(page);
1768 SetPageDirty(page);
1769 return 1;
68a22394
RR
1770}
1771
1da177e4
LT
1772/*
1773 * Free the swap entry like above, but also try to
1774 * free the page cache entry if it is the last user.
1775 */
2509ef26 1776int free_swap_and_cache(swp_entry_t entry)
1da177e4 1777{
2509ef26 1778 struct swap_info_struct *p;
7c00bafe 1779 unsigned char count;
1da177e4 1780
a7420aa5 1781 if (non_swap_entry(entry))
2509ef26 1782 return 1;
0697212a 1783
7c00bafe 1784 p = _swap_info_get(entry);
1da177e4 1785 if (p) {
33e16272 1786 count = __swap_entry_free(p, entry);
e0709829 1787 if (count == SWAP_HAS_CACHE &&
bcd49e86
HY
1788 !swap_page_trans_huge_swapped(p, entry))
1789 __try_to_reclaim_swap(p, swp_offset(entry),
1790 TTRS_UNMAPPED | TTRS_FULL);
1da177e4 1791 }
2509ef26 1792 return p != NULL;
1da177e4
LT
1793}
1794
b0cb1a19 1795#ifdef CONFIG_HIBERNATION
f577eb30 1796/*
915bae9e 1797 * Find the swap type that corresponds to given device (if any).
f577eb30 1798 *
915bae9e
RW
1799 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1800 * from 0, in which the swap header is expected to be located.
1801 *
1802 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1803 */
21bd9005 1804int swap_type_of(dev_t device, sector_t offset)
f577eb30 1805{
efa90a98 1806 int type;
f577eb30 1807
21bd9005
CH
1808 if (!device)
1809 return -1;
915bae9e 1810
f577eb30 1811 spin_lock(&swap_lock);
efa90a98
HD
1812 for (type = 0; type < nr_swapfiles; type++) {
1813 struct swap_info_struct *sis = swap_info[type];
f577eb30 1814
915bae9e 1815 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1816 continue;
b6b5bce3 1817
21bd9005 1818 if (device == sis->bdev->bd_dev) {
4efaceb1 1819 struct swap_extent *se = first_se(sis);
915bae9e 1820
915bae9e
RW
1821 if (se->start_block == offset) {
1822 spin_unlock(&swap_lock);
efa90a98 1823 return type;
915bae9e 1824 }
f577eb30
RW
1825 }
1826 }
1827 spin_unlock(&swap_lock);
21bd9005
CH
1828 return -ENODEV;
1829}
915bae9e 1830
21bd9005
CH
1831int find_first_swap(dev_t *device)
1832{
1833 int type;
915bae9e 1834
21bd9005
CH
1835 spin_lock(&swap_lock);
1836 for (type = 0; type < nr_swapfiles; type++) {
1837 struct swap_info_struct *sis = swap_info[type];
1838
1839 if (!(sis->flags & SWP_WRITEOK))
1840 continue;
1841 *device = sis->bdev->bd_dev;
1842 spin_unlock(&swap_lock);
1843 return type;
1844 }
1845 spin_unlock(&swap_lock);
f577eb30
RW
1846 return -ENODEV;
1847}
1848
73c34b6a
HD
1849/*
1850 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1851 * corresponding to given index in swap_info (swap type).
1852 */
1853sector_t swapdev_block(int type, pgoff_t offset)
1854{
1855 struct block_device *bdev;
c10d38cc 1856 struct swap_info_struct *si = swap_type_to_swap_info(type);
73c34b6a 1857
c10d38cc 1858 if (!si || !(si->flags & SWP_WRITEOK))
73c34b6a 1859 return 0;
d4906e1a 1860 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
1861}
1862
f577eb30
RW
1863/*
1864 * Return either the total number of swap pages of given type, or the number
1865 * of free pages of that type (depending on @free)
1866 *
1867 * This is needed for software suspend
1868 */
1869unsigned int count_swap_pages(int type, int free)
1870{
1871 unsigned int n = 0;
1872
efa90a98
HD
1873 spin_lock(&swap_lock);
1874 if ((unsigned int)type < nr_swapfiles) {
1875 struct swap_info_struct *sis = swap_info[type];
1876
ec8acf20 1877 spin_lock(&sis->lock);
efa90a98
HD
1878 if (sis->flags & SWP_WRITEOK) {
1879 n = sis->pages;
f577eb30 1880 if (free)
efa90a98 1881 n -= sis->inuse_pages;
f577eb30 1882 }
ec8acf20 1883 spin_unlock(&sis->lock);
f577eb30 1884 }
efa90a98 1885 spin_unlock(&swap_lock);
f577eb30
RW
1886 return n;
1887}
73c34b6a 1888#endif /* CONFIG_HIBERNATION */
f577eb30 1889
9f8bdb3f 1890static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
179ef71c 1891{
9f8bdb3f 1892 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
179ef71c
CG
1893}
1894
1da177e4 1895/*
72866f6f
HD
1896 * No need to decide whether this PTE shares the swap entry with others,
1897 * just let do_wp_page work it out if a write is requested later - to
1898 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1899 */
044d66c1 1900static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1901 unsigned long addr, swp_entry_t entry, struct page *page)
1902{
9e16b7fb 1903 struct page *swapcache;
044d66c1
HD
1904 spinlock_t *ptl;
1905 pte_t *pte;
1906 int ret = 1;
1907
9e16b7fb
HD
1908 swapcache = page;
1909 page = ksm_might_need_to_copy(page, vma, addr);
1910 if (unlikely(!page))
1911 return -ENOMEM;
1912
044d66c1 1913 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
9f8bdb3f 1914 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
044d66c1
HD
1915 ret = 0;
1916 goto out;
1917 }
8a9f3ccd 1918
b084d435 1919 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1920 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1921 get_page(page);
1922 set_pte_at(vma->vm_mm, addr, pte,
1923 pte_mkold(mk_pte(page, vma->vm_page_prot)));
00501b53 1924 if (page == swapcache) {
be5d0a74 1925 page_add_anon_rmap(page, vma, addr, false);
00501b53 1926 } else { /* ksm created a completely new copy */
be5d0a74 1927 page_add_new_anon_rmap(page, vma, addr, false);
b518154e 1928 lru_cache_add_inactive_or_unevictable(page, vma);
00501b53 1929 }
1da177e4 1930 swap_free(entry);
044d66c1
HD
1931out:
1932 pte_unmap_unlock(pte, ptl);
9e16b7fb
HD
1933 if (page != swapcache) {
1934 unlock_page(page);
1935 put_page(page);
1936 }
044d66c1 1937 return ret;
1da177e4
LT
1938}
1939
1940static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
b56a2d8a
VRP
1941 unsigned long addr, unsigned long end,
1942 unsigned int type, bool frontswap,
1943 unsigned long *fs_pages_to_unuse)
1da177e4 1944{
b56a2d8a
VRP
1945 struct page *page;
1946 swp_entry_t entry;
705e87c0 1947 pte_t *pte;
b56a2d8a
VRP
1948 struct swap_info_struct *si;
1949 unsigned long offset;
8a9f3ccd 1950 int ret = 0;
b56a2d8a 1951 volatile unsigned char *swap_map;
1da177e4 1952
b56a2d8a 1953 si = swap_info[type];
044d66c1 1954 pte = pte_offset_map(pmd, addr);
1da177e4 1955 do {
b56a2d8a
VRP
1956 struct vm_fault vmf;
1957
1958 if (!is_swap_pte(*pte))
1959 continue;
1960
1961 entry = pte_to_swp_entry(*pte);
1962 if (swp_type(entry) != type)
1963 continue;
1964
1965 offset = swp_offset(entry);
1966 if (frontswap && !frontswap_test(si, offset))
1967 continue;
1968
1969 pte_unmap(pte);
1970 swap_map = &si->swap_map[offset];
ebc5951e
AR
1971 page = lookup_swap_cache(entry, vma, addr);
1972 if (!page) {
1973 vmf.vma = vma;
1974 vmf.address = addr;
1975 vmf.pmd = pmd;
1976 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1977 &vmf);
1978 }
b56a2d8a
VRP
1979 if (!page) {
1980 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1981 goto try_next;
1982 return -ENOMEM;
1983 }
1984
1985 lock_page(page);
1986 wait_on_page_writeback(page);
1987 ret = unuse_pte(vma, pmd, addr, entry, page);
1988 if (ret < 0) {
1989 unlock_page(page);
1990 put_page(page);
1991 goto out;
1992 }
1993
1994 try_to_free_swap(page);
1995 unlock_page(page);
1996 put_page(page);
1997
1998 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1999 ret = FRONTSWAP_PAGES_UNUSED;
2000 goto out;
1da177e4 2001 }
b56a2d8a
VRP
2002try_next:
2003 pte = pte_offset_map(pmd, addr);
1da177e4 2004 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1 2005 pte_unmap(pte - 1);
b56a2d8a
VRP
2006
2007 ret = 0;
044d66c1 2008out:
8a9f3ccd 2009 return ret;
1da177e4
LT
2010}
2011
2012static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2013 unsigned long addr, unsigned long end,
b56a2d8a
VRP
2014 unsigned int type, bool frontswap,
2015 unsigned long *fs_pages_to_unuse)
1da177e4
LT
2016{
2017 pmd_t *pmd;
2018 unsigned long next;
8a9f3ccd 2019 int ret;
1da177e4
LT
2020
2021 pmd = pmd_offset(pud, addr);
2022 do {
dc644a07 2023 cond_resched();
1da177e4 2024 next = pmd_addr_end(addr, end);
1a5a9906 2025 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 2026 continue;
b56a2d8a
VRP
2027 ret = unuse_pte_range(vma, pmd, addr, next, type,
2028 frontswap, fs_pages_to_unuse);
8a9f3ccd
BS
2029 if (ret)
2030 return ret;
1da177e4
LT
2031 } while (pmd++, addr = next, addr != end);
2032 return 0;
2033}
2034
c2febafc 2035static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 2036 unsigned long addr, unsigned long end,
b56a2d8a
VRP
2037 unsigned int type, bool frontswap,
2038 unsigned long *fs_pages_to_unuse)
1da177e4
LT
2039{
2040 pud_t *pud;
2041 unsigned long next;
8a9f3ccd 2042 int ret;
1da177e4 2043
c2febafc 2044 pud = pud_offset(p4d, addr);
1da177e4
LT
2045 do {
2046 next = pud_addr_end(addr, end);
2047 if (pud_none_or_clear_bad(pud))
2048 continue;
b56a2d8a
VRP
2049 ret = unuse_pmd_range(vma, pud, addr, next, type,
2050 frontswap, fs_pages_to_unuse);
8a9f3ccd
BS
2051 if (ret)
2052 return ret;
1da177e4
LT
2053 } while (pud++, addr = next, addr != end);
2054 return 0;
2055}
2056
c2febafc
KS
2057static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2058 unsigned long addr, unsigned long end,
b56a2d8a
VRP
2059 unsigned int type, bool frontswap,
2060 unsigned long *fs_pages_to_unuse)
c2febafc
KS
2061{
2062 p4d_t *p4d;
2063 unsigned long next;
2064 int ret;
2065
2066 p4d = p4d_offset(pgd, addr);
2067 do {
2068 next = p4d_addr_end(addr, end);
2069 if (p4d_none_or_clear_bad(p4d))
2070 continue;
b56a2d8a
VRP
2071 ret = unuse_pud_range(vma, p4d, addr, next, type,
2072 frontswap, fs_pages_to_unuse);
c2febafc
KS
2073 if (ret)
2074 return ret;
2075 } while (p4d++, addr = next, addr != end);
2076 return 0;
2077}
2078
b56a2d8a
VRP
2079static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2080 bool frontswap, unsigned long *fs_pages_to_unuse)
1da177e4
LT
2081{
2082 pgd_t *pgd;
2083 unsigned long addr, end, next;
8a9f3ccd 2084 int ret;
1da177e4 2085
b56a2d8a
VRP
2086 addr = vma->vm_start;
2087 end = vma->vm_end;
1da177e4
LT
2088
2089 pgd = pgd_offset(vma->vm_mm, addr);
2090 do {
2091 next = pgd_addr_end(addr, end);
2092 if (pgd_none_or_clear_bad(pgd))
2093 continue;
b56a2d8a
VRP
2094 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2095 frontswap, fs_pages_to_unuse);
8a9f3ccd
BS
2096 if (ret)
2097 return ret;
1da177e4
LT
2098 } while (pgd++, addr = next, addr != end);
2099 return 0;
2100}
2101
b56a2d8a
VRP
2102static int unuse_mm(struct mm_struct *mm, unsigned int type,
2103 bool frontswap, unsigned long *fs_pages_to_unuse)
1da177e4
LT
2104{
2105 struct vm_area_struct *vma;
8a9f3ccd 2106 int ret = 0;
1da177e4 2107
d8ed45c5 2108 mmap_read_lock(mm);
1da177e4 2109 for (vma = mm->mmap; vma; vma = vma->vm_next) {
b56a2d8a
VRP
2110 if (vma->anon_vma) {
2111 ret = unuse_vma(vma, type, frontswap,
2112 fs_pages_to_unuse);
2113 if (ret)
2114 break;
2115 }
dc644a07 2116 cond_resched();
1da177e4 2117 }
d8ed45c5 2118 mmap_read_unlock(mm);
b56a2d8a 2119 return ret;
1da177e4
LT
2120}
2121
2122/*
38b5faf4 2123 * Scan swap_map (or frontswap_map if frontswap parameter is true)
b56a2d8a
VRP
2124 * from current position to next entry still in use. Return 0
2125 * if there are no inuse entries after prev till end of the map.
1da177e4 2126 */
6eb396dc 2127static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 2128 unsigned int prev, bool frontswap)
1da177e4 2129{
b56a2d8a 2130 unsigned int i;
8d69aaee 2131 unsigned char count;
1da177e4
LT
2132
2133 /*
5d337b91 2134 * No need for swap_lock here: we're just looking
1da177e4
LT
2135 * for whether an entry is in use, not modifying it; false
2136 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 2137 * allocations from this area (while holding swap_lock).
1da177e4 2138 */
b56a2d8a 2139 for (i = prev + 1; i < si->max; i++) {
4db0c3c2 2140 count = READ_ONCE(si->swap_map[i]);
355cfa73 2141 if (count && swap_count(count) != SWAP_MAP_BAD)
dc644a07
HD
2142 if (!frontswap || frontswap_test(si, i))
2143 break;
2144 if ((i % LATENCY_LIMIT) == 0)
2145 cond_resched();
1da177e4 2146 }
b56a2d8a
VRP
2147
2148 if (i == si->max)
2149 i = 0;
2150
1da177e4
LT
2151 return i;
2152}
2153
2154/*
b56a2d8a 2155 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
38b5faf4 2156 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 2157 */
38b5faf4
DM
2158int try_to_unuse(unsigned int type, bool frontswap,
2159 unsigned long pages_to_unuse)
1da177e4 2160{
b56a2d8a
VRP
2161 struct mm_struct *prev_mm;
2162 struct mm_struct *mm;
2163 struct list_head *p;
2164 int retval = 0;
efa90a98 2165 struct swap_info_struct *si = swap_info[type];
1da177e4
LT
2166 struct page *page;
2167 swp_entry_t entry;
b56a2d8a 2168 unsigned int i;
1da177e4 2169
21820948 2170 if (!READ_ONCE(si->inuse_pages))
b56a2d8a 2171 return 0;
1da177e4 2172
b56a2d8a
VRP
2173 if (!frontswap)
2174 pages_to_unuse = 0;
2175
2176retry:
2177 retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2178 if (retval)
2179 goto out;
2180
2181 prev_mm = &init_mm;
2182 mmget(prev_mm);
2183
2184 spin_lock(&mmlist_lock);
2185 p = &init_mm.mmlist;
21820948 2186 while (READ_ONCE(si->inuse_pages) &&
64165b1a
HD
2187 !signal_pending(current) &&
2188 (p = p->next) != &init_mm.mmlist) {
1da177e4 2189
b56a2d8a
VRP
2190 mm = list_entry(p, struct mm_struct, mmlist);
2191 if (!mmget_not_zero(mm))
2192 continue;
2193 spin_unlock(&mmlist_lock);
2194 mmput(prev_mm);
2195 prev_mm = mm;
2196 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
1da177e4 2197
b56a2d8a
VRP
2198 if (retval) {
2199 mmput(prev_mm);
2200 goto out;
1da177e4
LT
2201 }
2202
2203 /*
b56a2d8a
VRP
2204 * Make sure that we aren't completely killing
2205 * interactive performance.
1da177e4 2206 */
b56a2d8a
VRP
2207 cond_resched();
2208 spin_lock(&mmlist_lock);
2209 }
2210 spin_unlock(&mmlist_lock);
1da177e4 2211
b56a2d8a 2212 mmput(prev_mm);
1da177e4 2213
b56a2d8a 2214 i = 0;
21820948 2215 while (READ_ONCE(si->inuse_pages) &&
64165b1a
HD
2216 !signal_pending(current) &&
2217 (i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4 2218
b56a2d8a
VRP
2219 entry = swp_entry(type, i);
2220 page = find_get_page(swap_address_space(entry), i);
2221 if (!page)
2222 continue;
68bdc8d6
HD
2223
2224 /*
2225 * It is conceivable that a racing task removed this page from
b56a2d8a
VRP
2226 * swap cache just before we acquired the page lock. The page
2227 * might even be back in swap cache on another swap area. But
2228 * that is okay, try_to_free_swap() only removes stale pages.
1da177e4 2229 */
b56a2d8a
VRP
2230 lock_page(page);
2231 wait_on_page_writeback(page);
2232 try_to_free_swap(page);
1da177e4 2233 unlock_page(page);
09cbfeaf 2234 put_page(page);
1da177e4
LT
2235
2236 /*
b56a2d8a
VRP
2237 * For frontswap, we just need to unuse pages_to_unuse, if
2238 * it was specified. Need not check frontswap again here as
2239 * we already zeroed out pages_to_unuse if not frontswap.
1da177e4 2240 */
b56a2d8a
VRP
2241 if (pages_to_unuse && --pages_to_unuse == 0)
2242 goto out;
1da177e4
LT
2243 }
2244
b56a2d8a
VRP
2245 /*
2246 * Lets check again to see if there are still swap entries in the map.
2247 * If yes, we would need to do retry the unuse logic again.
2248 * Under global memory pressure, swap entries can be reinserted back
2249 * into process space after the mmlist loop above passes over them.
dd862deb 2250 *
af53d3e9
HD
2251 * Limit the number of retries? No: when mmget_not_zero() above fails,
2252 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2253 * at its own independent pace; and even shmem_writepage() could have
2254 * been preempted after get_swap_page(), temporarily hiding that swap.
2255 * It's easy and robust (though cpu-intensive) just to keep retrying.
b56a2d8a 2256 */
21820948 2257 if (READ_ONCE(si->inuse_pages)) {
64165b1a
HD
2258 if (!signal_pending(current))
2259 goto retry;
2260 retval = -EINTR;
2261 }
b56a2d8a
VRP
2262out:
2263 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
1da177e4
LT
2264}
2265
2266/*
5d337b91
HD
2267 * After a successful try_to_unuse, if no swap is now in use, we know
2268 * we can empty the mmlist. swap_lock must be held on entry and exit.
2269 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
2270 * added to the mmlist just after page_duplicate - before would be racy.
2271 */
2272static void drain_mmlist(void)
2273{
2274 struct list_head *p, *next;
efa90a98 2275 unsigned int type;
1da177e4 2276
efa90a98
HD
2277 for (type = 0; type < nr_swapfiles; type++)
2278 if (swap_info[type]->inuse_pages)
1da177e4
LT
2279 return;
2280 spin_lock(&mmlist_lock);
2281 list_for_each_safe(p, next, &init_mm.mmlist)
2282 list_del_init(p);
2283 spin_unlock(&mmlist_lock);
2284}
2285
2286/*
2287 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
2288 * corresponds to page offset for the specified swap entry.
2289 * Note that the type of this function is sector_t, but it returns page offset
2290 * into the bdev, not sector offset.
1da177e4 2291 */
d4906e1a 2292static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 2293{
f29ad6a9 2294 struct swap_info_struct *sis;
f29ad6a9
HD
2295 struct swap_extent *se;
2296 pgoff_t offset;
2297
c10d38cc 2298 sis = swp_swap_info(entry);
f29ad6a9
HD
2299 *bdev = sis->bdev;
2300
2301 offset = swp_offset(entry);
4efaceb1
AL
2302 se = offset_to_swap_extent(sis, offset);
2303 return se->start_block + (offset - se->start_page);
1da177e4
LT
2304}
2305
d4906e1a
LS
2306/*
2307 * Returns the page offset into bdev for the specified page's swap entry.
2308 */
2309sector_t map_swap_page(struct page *page, struct block_device **bdev)
2310{
2311 swp_entry_t entry;
2312 entry.val = page_private(page);
2313 return map_swap_entry(entry, bdev);
2314}
2315
1da177e4
LT
2316/*
2317 * Free all of a swapdev's extent information
2318 */
2319static void destroy_swap_extents(struct swap_info_struct *sis)
2320{
4efaceb1
AL
2321 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2322 struct rb_node *rb = sis->swap_extent_root.rb_node;
2323 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
1da177e4 2324
4efaceb1 2325 rb_erase(rb, &sis->swap_extent_root);
1da177e4
LT
2326 kfree(se);
2327 }
62c230bc 2328
bc4ae27d 2329 if (sis->flags & SWP_ACTIVATED) {
62c230bc
MG
2330 struct file *swap_file = sis->swap_file;
2331 struct address_space *mapping = swap_file->f_mapping;
2332
bc4ae27d
OS
2333 sis->flags &= ~SWP_ACTIVATED;
2334 if (mapping->a_ops->swap_deactivate)
2335 mapping->a_ops->swap_deactivate(swap_file);
62c230bc 2336 }
1da177e4
LT
2337}
2338
2339/*
2340 * Add a block range (and the corresponding page range) into this swapdev's
4efaceb1 2341 * extent tree.
1da177e4 2342 *
11d31886 2343 * This function rather assumes that it is called in ascending page order.
1da177e4 2344 */
a509bc1a 2345int
1da177e4
LT
2346add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2347 unsigned long nr_pages, sector_t start_block)
2348{
4efaceb1 2349 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
1da177e4
LT
2350 struct swap_extent *se;
2351 struct swap_extent *new_se;
4efaceb1
AL
2352
2353 /*
2354 * place the new node at the right most since the
2355 * function is called in ascending page order.
2356 */
2357 while (*link) {
2358 parent = *link;
2359 link = &parent->rb_right;
2360 }
2361
2362 if (parent) {
2363 se = rb_entry(parent, struct swap_extent, rb_node);
11d31886
HD
2364 BUG_ON(se->start_page + se->nr_pages != start_page);
2365 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
2366 /* Merge it */
2367 se->nr_pages += nr_pages;
2368 return 0;
2369 }
1da177e4
LT
2370 }
2371
4efaceb1 2372 /* No merge, insert a new extent. */
1da177e4
LT
2373 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2374 if (new_se == NULL)
2375 return -ENOMEM;
2376 new_se->start_page = start_page;
2377 new_se->nr_pages = nr_pages;
2378 new_se->start_block = start_block;
2379
4efaceb1
AL
2380 rb_link_node(&new_se->rb_node, parent, link);
2381 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
53092a74 2382 return 1;
1da177e4 2383}
aa8aa8a3 2384EXPORT_SYMBOL_GPL(add_swap_extent);
1da177e4
LT
2385
2386/*
2387 * A `swap extent' is a simple thing which maps a contiguous range of pages
2388 * onto a contiguous range of disk blocks. An ordered list of swap extents
2389 * is built at swapon time and is then used at swap_writepage/swap_readpage
2390 * time for locating where on disk a page belongs.
2391 *
2392 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2393 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2394 * swap files identically.
2395 *
2396 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2397 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2398 * swapfiles are handled *identically* after swapon time.
2399 *
2400 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2401 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2402 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2403 * requirements, they are simply tossed out - we will never use those blocks
2404 * for swapping.
2405 *
1638045c
DW
2406 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2407 * prevents users from writing to the swap device, which will corrupt memory.
1da177e4
LT
2408 *
2409 * The amount of disk space which a single swap extent represents varies.
2410 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2411 * extents in the list. To avoid much list walking, we cache the previous
2412 * search location in `curr_swap_extent', and start new searches from there.
2413 * This is extremely effective. The average number of iterations in
2414 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2415 */
53092a74 2416static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 2417{
62c230bc
MG
2418 struct file *swap_file = sis->swap_file;
2419 struct address_space *mapping = swap_file->f_mapping;
2420 struct inode *inode = mapping->host;
1da177e4
LT
2421 int ret;
2422
1da177e4
LT
2423 if (S_ISBLK(inode->i_mode)) {
2424 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 2425 *span = sis->pages;
a509bc1a 2426 return ret;
1da177e4
LT
2427 }
2428
62c230bc 2429 if (mapping->a_ops->swap_activate) {
a509bc1a 2430 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
bc4ae27d
OS
2431 if (ret >= 0)
2432 sis->flags |= SWP_ACTIVATED;
62c230bc 2433 if (!ret) {
32646315 2434 sis->flags |= SWP_FS_OPS;
62c230bc
MG
2435 ret = add_swap_extent(sis, 0, sis->max, 0);
2436 *span = sis->pages;
2437 }
a509bc1a 2438 return ret;
62c230bc
MG
2439 }
2440
a509bc1a 2441 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
2442}
2443
a2468cc9
AL
2444static int swap_node(struct swap_info_struct *p)
2445{
2446 struct block_device *bdev;
2447
2448 if (p->bdev)
2449 bdev = p->bdev;
2450 else
2451 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2452
2453 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2454}
2455
eb085574
HY
2456static void setup_swap_info(struct swap_info_struct *p, int prio,
2457 unsigned char *swap_map,
2458 struct swap_cluster_info *cluster_info)
40531542 2459{
a2468cc9
AL
2460 int i;
2461
40531542
CEB
2462 if (prio >= 0)
2463 p->prio = prio;
2464 else
2465 p->prio = --least_priority;
18ab4d4c
DS
2466 /*
2467 * the plist prio is negated because plist ordering is
2468 * low-to-high, while swap ordering is high-to-low
2469 */
2470 p->list.prio = -p->prio;
a2468cc9
AL
2471 for_each_node(i) {
2472 if (p->prio >= 0)
2473 p->avail_lists[i].prio = -p->prio;
2474 else {
2475 if (swap_node(p) == i)
2476 p->avail_lists[i].prio = 1;
2477 else
2478 p->avail_lists[i].prio = -p->prio;
2479 }
2480 }
40531542 2481 p->swap_map = swap_map;
2a8f9449 2482 p->cluster_info = cluster_info;
eb085574
HY
2483}
2484
2485static void _enable_swap_info(struct swap_info_struct *p)
2486{
2487 p->flags |= SWP_WRITEOK | SWP_VALID;
ec8acf20 2488 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
2489 total_swap_pages += p->pages;
2490
adfab836 2491 assert_spin_locked(&swap_lock);
adfab836 2492 /*
18ab4d4c
DS
2493 * both lists are plists, and thus priority ordered.
2494 * swap_active_head needs to be priority ordered for swapoff(),
2495 * which on removal of any swap_info_struct with an auto-assigned
2496 * (i.e. negative) priority increments the auto-assigned priority
2497 * of any lower-priority swap_info_structs.
2498 * swap_avail_head needs to be priority ordered for get_swap_page(),
2499 * which allocates swap pages from the highest available priority
2500 * swap_info_struct.
adfab836 2501 */
18ab4d4c 2502 plist_add(&p->list, &swap_active_head);
a2468cc9 2503 add_to_avail_list(p);
cf0cac0a
CEB
2504}
2505
2506static void enable_swap_info(struct swap_info_struct *p, int prio,
2507 unsigned char *swap_map,
2a8f9449 2508 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
2509 unsigned long *frontswap_map)
2510{
4f89849d 2511 frontswap_init(p->type, frontswap_map);
cf0cac0a 2512 spin_lock(&swap_lock);
ec8acf20 2513 spin_lock(&p->lock);
eb085574
HY
2514 setup_swap_info(p, prio, swap_map, cluster_info);
2515 spin_unlock(&p->lock);
2516 spin_unlock(&swap_lock);
2517 /*
2518 * Guarantee swap_map, cluster_info, etc. fields are valid
2519 * between get/put_swap_device() if SWP_VALID bit is set
2520 */
2521 synchronize_rcu();
2522 spin_lock(&swap_lock);
2523 spin_lock(&p->lock);
2524 _enable_swap_info(p);
ec8acf20 2525 spin_unlock(&p->lock);
cf0cac0a
CEB
2526 spin_unlock(&swap_lock);
2527}
2528
2529static void reinsert_swap_info(struct swap_info_struct *p)
2530{
2531 spin_lock(&swap_lock);
ec8acf20 2532 spin_lock(&p->lock);
eb085574
HY
2533 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2534 _enable_swap_info(p);
ec8acf20 2535 spin_unlock(&p->lock);
40531542
CEB
2536 spin_unlock(&swap_lock);
2537}
2538
67afa38e
TC
2539bool has_usable_swap(void)
2540{
2541 bool ret = true;
2542
2543 spin_lock(&swap_lock);
2544 if (plist_head_empty(&swap_active_head))
2545 ret = false;
2546 spin_unlock(&swap_lock);
2547 return ret;
2548}
2549
c4ea37c2 2550SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 2551{
73c34b6a 2552 struct swap_info_struct *p = NULL;
8d69aaee 2553 unsigned char *swap_map;
2a8f9449 2554 struct swap_cluster_info *cluster_info;
4f89849d 2555 unsigned long *frontswap_map;
1da177e4
LT
2556 struct file *swap_file, *victim;
2557 struct address_space *mapping;
2558 struct inode *inode;
91a27b2a 2559 struct filename *pathname;
adfab836 2560 int err, found = 0;
5b808a23 2561 unsigned int old_block_size;
886bb7e9 2562
1da177e4
LT
2563 if (!capable(CAP_SYS_ADMIN))
2564 return -EPERM;
2565
191c5424
AV
2566 BUG_ON(!current->mm);
2567
1da177e4 2568 pathname = getname(specialfile);
1da177e4 2569 if (IS_ERR(pathname))
f58b59c1 2570 return PTR_ERR(pathname);
1da177e4 2571
669abf4e 2572 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
2573 err = PTR_ERR(victim);
2574 if (IS_ERR(victim))
2575 goto out;
2576
2577 mapping = victim->f_mapping;
5d337b91 2578 spin_lock(&swap_lock);
18ab4d4c 2579 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 2580 if (p->flags & SWP_WRITEOK) {
adfab836
DS
2581 if (p->swap_file->f_mapping == mapping) {
2582 found = 1;
1da177e4 2583 break;
adfab836 2584 }
1da177e4 2585 }
1da177e4 2586 }
adfab836 2587 if (!found) {
1da177e4 2588 err = -EINVAL;
5d337b91 2589 spin_unlock(&swap_lock);
1da177e4
LT
2590 goto out_dput;
2591 }
191c5424 2592 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
2593 vm_unacct_memory(p->pages);
2594 else {
2595 err = -ENOMEM;
5d337b91 2596 spin_unlock(&swap_lock);
1da177e4
LT
2597 goto out_dput;
2598 }
a2468cc9 2599 del_from_avail_list(p);
ec8acf20 2600 spin_lock(&p->lock);
78ecba08 2601 if (p->prio < 0) {
adfab836 2602 struct swap_info_struct *si = p;
a2468cc9 2603 int nid;
adfab836 2604
18ab4d4c 2605 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 2606 si->prio++;
18ab4d4c 2607 si->list.prio--;
a2468cc9
AL
2608 for_each_node(nid) {
2609 if (si->avail_lists[nid].prio != 1)
2610 si->avail_lists[nid].prio--;
2611 }
adfab836 2612 }
78ecba08
HD
2613 least_priority++;
2614 }
18ab4d4c 2615 plist_del(&p->list, &swap_active_head);
ec8acf20 2616 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
2617 total_swap_pages -= p->pages;
2618 p->flags &= ~SWP_WRITEOK;
ec8acf20 2619 spin_unlock(&p->lock);
5d337b91 2620 spin_unlock(&swap_lock);
fb4f88dc 2621
039939a6
TC
2622 disable_swap_slots_cache_lock();
2623
e1e12d2f 2624 set_current_oom_origin();
adfab836 2625 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
e1e12d2f 2626 clear_current_oom_origin();
1da177e4 2627
1da177e4
LT
2628 if (err) {
2629 /* re-insert swap space back into swap_list */
cf0cac0a 2630 reinsert_swap_info(p);
039939a6 2631 reenable_swap_slots_cache_unlock();
1da177e4
LT
2632 goto out_dput;
2633 }
52b7efdb 2634
039939a6
TC
2635 reenable_swap_slots_cache_unlock();
2636
eb085574
HY
2637 spin_lock(&swap_lock);
2638 spin_lock(&p->lock);
2639 p->flags &= ~SWP_VALID; /* mark swap device as invalid */
2640 spin_unlock(&p->lock);
2641 spin_unlock(&swap_lock);
2642 /*
2643 * wait for swap operations protected by get/put_swap_device()
2644 * to complete
2645 */
2646 synchronize_rcu();
2647
815c2c54
SL
2648 flush_work(&p->discard_work);
2649
5d337b91 2650 destroy_swap_extents(p);
570a335b
HD
2651 if (p->flags & SWP_CONTINUED)
2652 free_swap_count_continuations(p);
2653
81a0298b
HY
2654 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2655 atomic_dec(&nr_rotate_swap);
2656
fc0abb14 2657 mutex_lock(&swapon_mutex);
5d337b91 2658 spin_lock(&swap_lock);
ec8acf20 2659 spin_lock(&p->lock);
5d337b91
HD
2660 drain_mmlist();
2661
52b7efdb 2662 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
2663 p->highest_bit = 0; /* cuts scans short */
2664 while (p->flags >= SWP_SCANNING) {
ec8acf20 2665 spin_unlock(&p->lock);
5d337b91 2666 spin_unlock(&swap_lock);
13e4b57f 2667 schedule_timeout_uninterruptible(1);
5d337b91 2668 spin_lock(&swap_lock);
ec8acf20 2669 spin_lock(&p->lock);
52b7efdb 2670 }
52b7efdb 2671
1da177e4 2672 swap_file = p->swap_file;
5b808a23 2673 old_block_size = p->old_block_size;
1da177e4
LT
2674 p->swap_file = NULL;
2675 p->max = 0;
2676 swap_map = p->swap_map;
2677 p->swap_map = NULL;
2a8f9449
SL
2678 cluster_info = p->cluster_info;
2679 p->cluster_info = NULL;
4f89849d 2680 frontswap_map = frontswap_map_get(p);
ec8acf20 2681 spin_unlock(&p->lock);
5d337b91 2682 spin_unlock(&swap_lock);
8a84802e 2683 arch_swap_invalidate_area(p->type);
adfab836 2684 frontswap_invalidate_area(p->type);
58e97ba6 2685 frontswap_map_set(p, NULL);
fc0abb14 2686 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
2687 free_percpu(p->percpu_cluster);
2688 p->percpu_cluster = NULL;
49070588
HY
2689 free_percpu(p->cluster_next_cpu);
2690 p->cluster_next_cpu = NULL;
1da177e4 2691 vfree(swap_map);
54f180d3
HY
2692 kvfree(cluster_info);
2693 kvfree(frontswap_map);
2de1a7e4 2694 /* Destroy swap account information */
adfab836 2695 swap_cgroup_swapoff(p->type);
4b3ef9da 2696 exit_swap_address_space(p->type);
27a7faa0 2697
1da177e4
LT
2698 inode = mapping->host;
2699 if (S_ISBLK(inode->i_mode)) {
2700 struct block_device *bdev = I_BDEV(inode);
1638045c 2701
5b808a23 2702 set_blocksize(bdev, old_block_size);
e525fd89 2703 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2704 }
1638045c
DW
2705
2706 inode_lock(inode);
2707 inode->i_flags &= ~S_SWAPFILE;
2708 inode_unlock(inode);
1da177e4 2709 filp_close(swap_file, NULL);
f893ab41
WY
2710
2711 /*
2712 * Clear the SWP_USED flag after all resources are freed so that swapon
2713 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2714 * not hold p->lock after we cleared its SWP_WRITEOK.
2715 */
2716 spin_lock(&swap_lock);
2717 p->flags = 0;
2718 spin_unlock(&swap_lock);
2719
1da177e4 2720 err = 0;
66d7dd51
KS
2721 atomic_inc(&proc_poll_event);
2722 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
2723
2724out_dput:
2725 filp_close(victim, NULL);
2726out:
f58b59c1 2727 putname(pathname);
1da177e4
LT
2728 return err;
2729}
2730
2731#ifdef CONFIG_PROC_FS
9dd95748 2732static __poll_t swaps_poll(struct file *file, poll_table *wait)
66d7dd51 2733{
f1514638 2734 struct seq_file *seq = file->private_data;
66d7dd51
KS
2735
2736 poll_wait(file, &proc_poll_wait, wait);
2737
f1514638
KS
2738 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2739 seq->poll_event = atomic_read(&proc_poll_event);
a9a08845 2740 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
66d7dd51
KS
2741 }
2742
a9a08845 2743 return EPOLLIN | EPOLLRDNORM;
66d7dd51
KS
2744}
2745
1da177e4
LT
2746/* iterator */
2747static void *swap_start(struct seq_file *swap, loff_t *pos)
2748{
efa90a98
HD
2749 struct swap_info_struct *si;
2750 int type;
1da177e4
LT
2751 loff_t l = *pos;
2752
fc0abb14 2753 mutex_lock(&swapon_mutex);
1da177e4 2754
881e4aab
SS
2755 if (!l)
2756 return SEQ_START_TOKEN;
2757
c10d38cc 2758 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
efa90a98 2759 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2760 continue;
881e4aab 2761 if (!--l)
efa90a98 2762 return si;
1da177e4
LT
2763 }
2764
2765 return NULL;
2766}
2767
2768static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2769{
efa90a98
HD
2770 struct swap_info_struct *si = v;
2771 int type;
1da177e4 2772
881e4aab 2773 if (v == SEQ_START_TOKEN)
efa90a98
HD
2774 type = 0;
2775 else
2776 type = si->type + 1;
881e4aab 2777
10c8d69f 2778 ++(*pos);
c10d38cc 2779 for (; (si = swap_type_to_swap_info(type)); type++) {
efa90a98 2780 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2781 continue;
efa90a98 2782 return si;
1da177e4
LT
2783 }
2784
2785 return NULL;
2786}
2787
2788static void swap_stop(struct seq_file *swap, void *v)
2789{
fc0abb14 2790 mutex_unlock(&swapon_mutex);
1da177e4
LT
2791}
2792
2793static int swap_show(struct seq_file *swap, void *v)
2794{
efa90a98 2795 struct swap_info_struct *si = v;
1da177e4
LT
2796 struct file *file;
2797 int len;
6f793940 2798 unsigned int bytes, inuse;
1da177e4 2799
efa90a98 2800 if (si == SEQ_START_TOKEN) {
6f793940 2801 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
881e4aab
SS
2802 return 0;
2803 }
1da177e4 2804
6f793940
RD
2805 bytes = si->pages << (PAGE_SHIFT - 10);
2806 inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2807
efa90a98 2808 file = si->swap_file;
2726d566 2809 len = seq_file_path(swap, file, " \t\n\\");
6f793940 2810 seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
886bb7e9 2811 len < 40 ? 40 - len : 1, " ",
496ad9aa 2812 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2813 "partition" : "file\t",
6f793940
RD
2814 bytes, bytes < 10000000 ? "\t" : "",
2815 inuse, inuse < 10000000 ? "\t" : "",
efa90a98 2816 si->prio);
1da177e4
LT
2817 return 0;
2818}
2819
15ad7cdc 2820static const struct seq_operations swaps_op = {
1da177e4
LT
2821 .start = swap_start,
2822 .next = swap_next,
2823 .stop = swap_stop,
2824 .show = swap_show
2825};
2826
2827static int swaps_open(struct inode *inode, struct file *file)
2828{
f1514638 2829 struct seq_file *seq;
66d7dd51
KS
2830 int ret;
2831
66d7dd51 2832 ret = seq_open(file, &swaps_op);
f1514638 2833 if (ret)
66d7dd51 2834 return ret;
66d7dd51 2835
f1514638
KS
2836 seq = file->private_data;
2837 seq->poll_event = atomic_read(&proc_poll_event);
2838 return 0;
1da177e4
LT
2839}
2840
97a32539 2841static const struct proc_ops swaps_proc_ops = {
d919b33d 2842 .proc_flags = PROC_ENTRY_PERMANENT,
97a32539
AD
2843 .proc_open = swaps_open,
2844 .proc_read = seq_read,
2845 .proc_lseek = seq_lseek,
2846 .proc_release = seq_release,
2847 .proc_poll = swaps_poll,
1da177e4
LT
2848};
2849
2850static int __init procswaps_init(void)
2851{
97a32539 2852 proc_create("swaps", 0, NULL, &swaps_proc_ops);
1da177e4
LT
2853 return 0;
2854}
2855__initcall(procswaps_init);
2856#endif /* CONFIG_PROC_FS */
2857
1796316a
JB
2858#ifdef MAX_SWAPFILES_CHECK
2859static int __init max_swapfiles_check(void)
2860{
2861 MAX_SWAPFILES_CHECK();
2862 return 0;
2863}
2864late_initcall(max_swapfiles_check);
2865#endif
2866
53cbb243 2867static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2868{
73c34b6a 2869 struct swap_info_struct *p;
b11a76b3 2870 struct swap_info_struct *defer = NULL;
1da177e4 2871 unsigned int type;
a2468cc9 2872 int i;
efa90a98 2873
96008744 2874 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
efa90a98 2875 if (!p)
53cbb243 2876 return ERR_PTR(-ENOMEM);
efa90a98 2877
5d337b91 2878 spin_lock(&swap_lock);
efa90a98
HD
2879 for (type = 0; type < nr_swapfiles; type++) {
2880 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2881 break;
efa90a98 2882 }
0697212a 2883 if (type >= MAX_SWAPFILES) {
5d337b91 2884 spin_unlock(&swap_lock);
873d7bcf 2885 kvfree(p);
730c0581 2886 return ERR_PTR(-EPERM);
1da177e4 2887 }
efa90a98
HD
2888 if (type >= nr_swapfiles) {
2889 p->type = type;
c10d38cc 2890 WRITE_ONCE(swap_info[type], p);
efa90a98
HD
2891 /*
2892 * Write swap_info[type] before nr_swapfiles, in case a
2893 * racing procfs swap_start() or swap_next() is reading them.
2894 * (We never shrink nr_swapfiles, we never free this entry.)
2895 */
2896 smp_wmb();
c10d38cc 2897 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
efa90a98 2898 } else {
b11a76b3 2899 defer = p;
efa90a98
HD
2900 p = swap_info[type];
2901 /*
2902 * Do not memset this entry: a racing procfs swap_next()
2903 * would be relying on p->type to remain valid.
2904 */
2905 }
4efaceb1 2906 p->swap_extent_root = RB_ROOT;
18ab4d4c 2907 plist_node_init(&p->list, 0);
a2468cc9
AL
2908 for_each_node(i)
2909 plist_node_init(&p->avail_lists[i], 0);
1da177e4 2910 p->flags = SWP_USED;
5d337b91 2911 spin_unlock(&swap_lock);
b11a76b3 2912 kvfree(defer);
ec8acf20 2913 spin_lock_init(&p->lock);
2628bd6f 2914 spin_lock_init(&p->cont_lock);
efa90a98 2915
53cbb243 2916 return p;
53cbb243
CEB
2917}
2918
4d0e1e10
CEB
2919static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2920{
2921 int error;
2922
2923 if (S_ISBLK(inode->i_mode)) {
ef16e1d9 2924 p->bdev = blkdev_get_by_dev(inode->i_rdev,
6f179af8 2925 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
ef16e1d9
CH
2926 if (IS_ERR(p->bdev)) {
2927 error = PTR_ERR(p->bdev);
4d0e1e10 2928 p->bdev = NULL;
6f179af8 2929 return error;
4d0e1e10
CEB
2930 }
2931 p->old_block_size = block_size(p->bdev);
2932 error = set_blocksize(p->bdev, PAGE_SIZE);
2933 if (error < 0)
87ade72a 2934 return error;
12d2966d
NA
2935 /*
2936 * Zoned block devices contain zones that have a sequential
2937 * write only restriction. Hence zoned block devices are not
2938 * suitable for swapping. Disallow them here.
2939 */
e556f6ba 2940 if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
12d2966d 2941 return -EINVAL;
4d0e1e10
CEB
2942 p->flags |= SWP_BLKDEV;
2943 } else if (S_ISREG(inode->i_mode)) {
2944 p->bdev = inode->i_sb->s_bdev;
1638045c
DW
2945 }
2946
4d0e1e10 2947 return 0;
4d0e1e10
CEB
2948}
2949
377eeaa8
AK
2950
2951/*
2952 * Find out how many pages are allowed for a single swap device. There
2953 * are two limiting factors:
2954 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2955 * 2) the number of bits in the swap pte, as defined by the different
2956 * architectures.
2957 *
2958 * In order to find the largest possible bit mask, a swap entry with
2959 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2960 * decoded to a swp_entry_t again, and finally the swap offset is
2961 * extracted.
2962 *
2963 * This will mask all the bits from the initial ~0UL mask that can't
2964 * be encoded in either the swp_entry_t or the architecture definition
2965 * of a swap pte.
2966 */
2967unsigned long generic_max_swapfile_size(void)
2968{
2969 return swp_offset(pte_to_swp_entry(
2970 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2971}
2972
2973/* Can be overridden by an architecture for additional checks. */
2974__weak unsigned long max_swapfile_size(void)
2975{
2976 return generic_max_swapfile_size();
2977}
2978
ca8bd38b
CEB
2979static unsigned long read_swap_header(struct swap_info_struct *p,
2980 union swap_header *swap_header,
2981 struct inode *inode)
2982{
2983 int i;
2984 unsigned long maxpages;
2985 unsigned long swapfilepages;
d6bbbd29 2986 unsigned long last_page;
ca8bd38b
CEB
2987
2988 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2989 pr_err("Unable to find swap-space signature\n");
38719025 2990 return 0;
ca8bd38b
CEB
2991 }
2992
2993 /* swap partition endianess hack... */
2994 if (swab32(swap_header->info.version) == 1) {
2995 swab32s(&swap_header->info.version);
2996 swab32s(&swap_header->info.last_page);
2997 swab32s(&swap_header->info.nr_badpages);
dd111be6
JH
2998 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2999 return 0;
ca8bd38b
CEB
3000 for (i = 0; i < swap_header->info.nr_badpages; i++)
3001 swab32s(&swap_header->info.badpages[i]);
3002 }
3003 /* Check the swap header's sub-version */
3004 if (swap_header->info.version != 1) {
465c47fd
AM
3005 pr_warn("Unable to handle swap header version %d\n",
3006 swap_header->info.version);
38719025 3007 return 0;
ca8bd38b
CEB
3008 }
3009
3010 p->lowest_bit = 1;
3011 p->cluster_next = 1;
3012 p->cluster_nr = 0;
3013
377eeaa8 3014 maxpages = max_swapfile_size();
d6bbbd29 3015 last_page = swap_header->info.last_page;
a06ad633
TA
3016 if (!last_page) {
3017 pr_warn("Empty swap-file\n");
3018 return 0;
3019 }
d6bbbd29 3020 if (last_page > maxpages) {
465c47fd 3021 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
3022 maxpages << (PAGE_SHIFT - 10),
3023 last_page << (PAGE_SHIFT - 10));
3024 }
3025 if (maxpages > last_page) {
3026 maxpages = last_page + 1;
ca8bd38b
CEB
3027 /* p->max is an unsigned int: don't overflow it */
3028 if ((unsigned int)maxpages == 0)
3029 maxpages = UINT_MAX;
3030 }
3031 p->highest_bit = maxpages - 1;
3032
3033 if (!maxpages)
38719025 3034 return 0;
ca8bd38b
CEB
3035 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3036 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 3037 pr_warn("Swap area shorter than signature indicates\n");
38719025 3038 return 0;
ca8bd38b
CEB
3039 }
3040 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 3041 return 0;
ca8bd38b 3042 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 3043 return 0;
ca8bd38b
CEB
3044
3045 return maxpages;
ca8bd38b
CEB
3046}
3047
4b3ef9da 3048#define SWAP_CLUSTER_INFO_COLS \
235b6217 3049 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
4b3ef9da
HY
3050#define SWAP_CLUSTER_SPACE_COLS \
3051 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3052#define SWAP_CLUSTER_COLS \
3053 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
235b6217 3054
915d4d7b
CEB
3055static int setup_swap_map_and_extents(struct swap_info_struct *p,
3056 union swap_header *swap_header,
3057 unsigned char *swap_map,
2a8f9449 3058 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
3059 unsigned long maxpages,
3060 sector_t *span)
3061{
235b6217 3062 unsigned int j, k;
915d4d7b
CEB
3063 unsigned int nr_good_pages;
3064 int nr_extents;
2a8f9449 3065 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
235b6217
HY
3066 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3067 unsigned long i, idx;
915d4d7b
CEB
3068
3069 nr_good_pages = maxpages - 1; /* omit header page */
3070
6b534915
HY
3071 cluster_list_init(&p->free_clusters);
3072 cluster_list_init(&p->discard_clusters);
2a8f9449 3073
915d4d7b
CEB
3074 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3075 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
3076 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3077 return -EINVAL;
915d4d7b
CEB
3078 if (page_nr < maxpages) {
3079 swap_map[page_nr] = SWAP_MAP_BAD;
3080 nr_good_pages--;
2a8f9449
SL
3081 /*
3082 * Haven't marked the cluster free yet, no list
3083 * operation involved
3084 */
3085 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
3086 }
3087 }
3088
2a8f9449
SL
3089 /* Haven't marked the cluster free yet, no list operation involved */
3090 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3091 inc_cluster_info_page(p, cluster_info, i);
3092
915d4d7b
CEB
3093 if (nr_good_pages) {
3094 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
3095 /*
3096 * Not mark the cluster free yet, no list
3097 * operation involved
3098 */
3099 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
3100 p->max = maxpages;
3101 p->pages = nr_good_pages;
3102 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
3103 if (nr_extents < 0)
3104 return nr_extents;
915d4d7b
CEB
3105 nr_good_pages = p->pages;
3106 }
3107 if (!nr_good_pages) {
465c47fd 3108 pr_warn("Empty swap-file\n");
bdb8e3f6 3109 return -EINVAL;
915d4d7b
CEB
3110 }
3111
2a8f9449
SL
3112 if (!cluster_info)
3113 return nr_extents;
3114
235b6217 3115
4b3ef9da
HY
3116 /*
3117 * Reduce false cache line sharing between cluster_info and
3118 * sharing same address space.
3119 */
235b6217
HY
3120 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3121 j = (k + col) % SWAP_CLUSTER_COLS;
3122 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3123 idx = i * SWAP_CLUSTER_COLS + j;
3124 if (idx >= nr_clusters)
3125 continue;
3126 if (cluster_count(&cluster_info[idx]))
3127 continue;
2a8f9449 3128 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
6b534915
HY
3129 cluster_list_add_tail(&p->free_clusters, cluster_info,
3130 idx);
2a8f9449 3131 }
2a8f9449 3132 }
915d4d7b 3133 return nr_extents;
915d4d7b
CEB
3134}
3135
dcf6b7dd
RA
3136/*
3137 * Helper to sys_swapon determining if a given swap
3138 * backing device queue supports DISCARD operations.
3139 */
3140static bool swap_discardable(struct swap_info_struct *si)
3141{
3142 struct request_queue *q = bdev_get_queue(si->bdev);
3143
3144 if (!q || !blk_queue_discard(q))
3145 return false;
3146
3147 return true;
3148}
3149
53cbb243
CEB
3150SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3151{
3152 struct swap_info_struct *p;
91a27b2a 3153 struct filename *name;
53cbb243
CEB
3154 struct file *swap_file = NULL;
3155 struct address_space *mapping;
40531542 3156 int prio;
53cbb243
CEB
3157 int error;
3158 union swap_header *swap_header;
915d4d7b 3159 int nr_extents;
53cbb243
CEB
3160 sector_t span;
3161 unsigned long maxpages;
53cbb243 3162 unsigned char *swap_map = NULL;
2a8f9449 3163 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 3164 unsigned long *frontswap_map = NULL;
53cbb243
CEB
3165 struct page *page = NULL;
3166 struct inode *inode = NULL;
7cbf3192 3167 bool inced_nr_rotate_swap = false;
53cbb243 3168
d15cab97
HD
3169 if (swap_flags & ~SWAP_FLAGS_VALID)
3170 return -EINVAL;
3171
53cbb243
CEB
3172 if (!capable(CAP_SYS_ADMIN))
3173 return -EPERM;
3174
a2468cc9
AL
3175 if (!swap_avail_heads)
3176 return -ENOMEM;
3177
53cbb243 3178 p = alloc_swap_info();
2542e513
CEB
3179 if (IS_ERR(p))
3180 return PTR_ERR(p);
53cbb243 3181
815c2c54
SL
3182 INIT_WORK(&p->discard_work, swap_discard_work);
3183
1da177e4 3184 name = getname(specialfile);
1da177e4 3185 if (IS_ERR(name)) {
7de7fb6b 3186 error = PTR_ERR(name);
1da177e4 3187 name = NULL;
bd69010b 3188 goto bad_swap;
1da177e4 3189 }
669abf4e 3190 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 3191 if (IS_ERR(swap_file)) {
7de7fb6b 3192 error = PTR_ERR(swap_file);
1da177e4 3193 swap_file = NULL;
bd69010b 3194 goto bad_swap;
1da177e4
LT
3195 }
3196
3197 p->swap_file = swap_file;
3198 mapping = swap_file->f_mapping;
2130781e 3199 inode = mapping->host;
6f179af8 3200
4d0e1e10
CEB
3201 error = claim_swapfile(p, inode);
3202 if (unlikely(error))
1da177e4 3203 goto bad_swap;
1da177e4 3204
d795a90e
NA
3205 inode_lock(inode);
3206 if (IS_SWAPFILE(inode)) {
3207 error = -EBUSY;
3208 goto bad_swap_unlock_inode;
3209 }
3210
1da177e4
LT
3211 /*
3212 * Read the swap header.
3213 */
3214 if (!mapping->a_ops->readpage) {
3215 error = -EINVAL;
d795a90e 3216 goto bad_swap_unlock_inode;
1da177e4 3217 }
090d2b18 3218 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
3219 if (IS_ERR(page)) {
3220 error = PTR_ERR(page);
d795a90e 3221 goto bad_swap_unlock_inode;
1da177e4 3222 }
81e33971 3223 swap_header = kmap(page);
1da177e4 3224
ca8bd38b
CEB
3225 maxpages = read_swap_header(p, swap_header, inode);
3226 if (unlikely(!maxpages)) {
1da177e4 3227 error = -EINVAL;
d795a90e 3228 goto bad_swap_unlock_inode;
1da177e4 3229 }
886bb7e9 3230
81e33971 3231 /* OK, set up the swap map and apply the bad block list */
803d0c83 3232 swap_map = vzalloc(maxpages);
81e33971
HD
3233 if (!swap_map) {
3234 error = -ENOMEM;
d795a90e 3235 goto bad_swap_unlock_inode;
81e33971 3236 }
f0571429 3237
1cb039f3 3238 if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
f0571429
MK
3239 p->flags |= SWP_STABLE_WRITES;
3240
a8b456d0 3241 if (p->bdev && p->bdev->bd_disk->fops->rw_page)
539a6fea
MK
3242 p->flags |= SWP_SYNCHRONOUS_IO;
3243
2a8f9449 3244 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
6f179af8 3245 int cpu;
235b6217 3246 unsigned long ci, nr_cluster;
6f179af8 3247
2a8f9449 3248 p->flags |= SWP_SOLIDSTATE;
49070588
HY
3249 p->cluster_next_cpu = alloc_percpu(unsigned int);
3250 if (!p->cluster_next_cpu) {
3251 error = -ENOMEM;
3252 goto bad_swap_unlock_inode;
3253 }
2a8f9449
SL
3254 /*
3255 * select a random position to start with to help wear leveling
3256 * SSD
3257 */
49070588
HY
3258 for_each_possible_cpu(cpu) {
3259 per_cpu(*p->cluster_next_cpu, cpu) =
3260 1 + prandom_u32_max(p->highest_bit);
3261 }
235b6217 3262 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2a8f9449 3263
778e1cdd 3264 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
54f180d3 3265 GFP_KERNEL);
2a8f9449
SL
3266 if (!cluster_info) {
3267 error = -ENOMEM;
d795a90e 3268 goto bad_swap_unlock_inode;
2a8f9449 3269 }
235b6217
HY
3270
3271 for (ci = 0; ci < nr_cluster; ci++)
3272 spin_lock_init(&((cluster_info + ci)->lock));
3273
ebc2a1a6
SL
3274 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3275 if (!p->percpu_cluster) {
3276 error = -ENOMEM;
d795a90e 3277 goto bad_swap_unlock_inode;
ebc2a1a6 3278 }
6f179af8 3279 for_each_possible_cpu(cpu) {
ebc2a1a6 3280 struct percpu_cluster *cluster;
6f179af8 3281 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
ebc2a1a6
SL
3282 cluster_set_null(&cluster->index);
3283 }
7cbf3192 3284 } else {
81a0298b 3285 atomic_inc(&nr_rotate_swap);
7cbf3192
OS
3286 inced_nr_rotate_swap = true;
3287 }
1da177e4 3288
1421ef3c
CEB
3289 error = swap_cgroup_swapon(p->type, maxpages);
3290 if (error)
d795a90e 3291 goto bad_swap_unlock_inode;
1421ef3c 3292
915d4d7b 3293 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 3294 cluster_info, maxpages, &span);
915d4d7b
CEB
3295 if (unlikely(nr_extents < 0)) {
3296 error = nr_extents;
d795a90e 3297 goto bad_swap_unlock_inode;
1da177e4 3298 }
38b5faf4 3299 /* frontswap enabled? set up bit-per-page map for frontswap */
8ea1d2a1 3300 if (IS_ENABLED(CONFIG_FRONTSWAP))
778e1cdd
KC
3301 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3302 sizeof(long),
54f180d3 3303 GFP_KERNEL);
1da177e4 3304
2a8f9449
SL
3305 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3306 /*
3307 * When discard is enabled for swap with no particular
3308 * policy flagged, we set all swap discard flags here in
3309 * order to sustain backward compatibility with older
3310 * swapon(8) releases.
3311 */
3312 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3313 SWP_PAGE_DISCARD);
dcf6b7dd 3314
2a8f9449
SL
3315 /*
3316 * By flagging sys_swapon, a sysadmin can tell us to
3317 * either do single-time area discards only, or to just
3318 * perform discards for released swap page-clusters.
3319 * Now it's time to adjust the p->flags accordingly.
3320 */
3321 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3322 p->flags &= ~SWP_PAGE_DISCARD;
3323 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3324 p->flags &= ~SWP_AREA_DISCARD;
3325
3326 /* issue a swapon-time discard if it's still required */
3327 if (p->flags & SWP_AREA_DISCARD) {
3328 int err = discard_swap(p);
3329 if (unlikely(err))
3330 pr_err("swapon: discard_swap(%p): %d\n",
3331 p, err);
dcf6b7dd 3332 }
20137a49 3333 }
6a6ba831 3334
4b3ef9da
HY
3335 error = init_swap_address_space(p->type, maxpages);
3336 if (error)
d795a90e 3337 goto bad_swap_unlock_inode;
4b3ef9da 3338
dc617f29
DW
3339 /*
3340 * Flush any pending IO and dirty mappings before we start using this
3341 * swap device.
3342 */
3343 inode->i_flags |= S_SWAPFILE;
3344 error = inode_drain_writes(inode);
3345 if (error) {
3346 inode->i_flags &= ~S_SWAPFILE;
822bca52 3347 goto free_swap_address_space;
dc617f29
DW
3348 }
3349
fc0abb14 3350 mutex_lock(&swapon_mutex);
40531542 3351 prio = -1;
78ecba08 3352 if (swap_flags & SWAP_FLAG_PREFER)
40531542 3353 prio =
78ecba08 3354 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 3355 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 3356
756a025f 3357 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 3358 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
3359 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3360 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 3361 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
3362 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3363 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 3364 (frontswap_map) ? "FS" : "");
c69dbfb8 3365
fc0abb14 3366 mutex_unlock(&swapon_mutex);
66d7dd51
KS
3367 atomic_inc(&proc_poll_event);
3368 wake_up_interruptible(&proc_poll_wait);
3369
1da177e4
LT
3370 error = 0;
3371 goto out;
822bca52
ML
3372free_swap_address_space:
3373 exit_swap_address_space(p->type);
d795a90e
NA
3374bad_swap_unlock_inode:
3375 inode_unlock(inode);
1da177e4 3376bad_swap:
ebc2a1a6
SL
3377 free_percpu(p->percpu_cluster);
3378 p->percpu_cluster = NULL;
49070588
HY
3379 free_percpu(p->cluster_next_cpu);
3380 p->cluster_next_cpu = NULL;
bd69010b 3381 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
3382 set_blocksize(p->bdev, p->old_block_size);
3383 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 3384 }
d795a90e 3385 inode = NULL;
4cd3bb10 3386 destroy_swap_extents(p);
e8e6c2ec 3387 swap_cgroup_swapoff(p->type);
5d337b91 3388 spin_lock(&swap_lock);
1da177e4 3389 p->swap_file = NULL;
1da177e4 3390 p->flags = 0;
5d337b91 3391 spin_unlock(&swap_lock);
1da177e4 3392 vfree(swap_map);
8606a1a9 3393 kvfree(cluster_info);
b6b1fd2a 3394 kvfree(frontswap_map);
7cbf3192
OS
3395 if (inced_nr_rotate_swap)
3396 atomic_dec(&nr_rotate_swap);
d795a90e 3397 if (swap_file)
1da177e4
LT
3398 filp_close(swap_file, NULL);
3399out:
3400 if (page && !IS_ERR(page)) {
3401 kunmap(page);
09cbfeaf 3402 put_page(page);
1da177e4
LT
3403 }
3404 if (name)
3405 putname(name);
1638045c 3406 if (inode)
5955102c 3407 inode_unlock(inode);
039939a6
TC
3408 if (!error)
3409 enable_swap_slots_cache();
1da177e4
LT
3410 return error;
3411}
3412
3413void si_swapinfo(struct sysinfo *val)
3414{
efa90a98 3415 unsigned int type;
1da177e4
LT
3416 unsigned long nr_to_be_unused = 0;
3417
5d337b91 3418 spin_lock(&swap_lock);
efa90a98
HD
3419 for (type = 0; type < nr_swapfiles; type++) {
3420 struct swap_info_struct *si = swap_info[type];
3421
3422 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3423 nr_to_be_unused += si->inuse_pages;
1da177e4 3424 }
ec8acf20 3425 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 3426 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 3427 spin_unlock(&swap_lock);
1da177e4
LT
3428}
3429
3430/*
3431 * Verify that a swap entry is valid and increment its swap map count.
3432 *
355cfa73
KH
3433 * Returns error code in following case.
3434 * - success -> 0
3435 * - swp_entry is invalid -> EINVAL
3436 * - swp_entry is migration entry -> EINVAL
3437 * - swap-cache reference is requested but there is already one. -> EEXIST
3438 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 3439 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 3440 */
8d69aaee 3441static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 3442{
73c34b6a 3443 struct swap_info_struct *p;
235b6217 3444 struct swap_cluster_info *ci;
c10d38cc 3445 unsigned long offset;
8d69aaee
HD
3446 unsigned char count;
3447 unsigned char has_cache;
253d553b 3448 int err = -EINVAL;
1da177e4 3449
eb085574 3450 p = get_swap_device(entry);
c10d38cc 3451 if (!p)
235b6217
HY
3452 goto out;
3453
eb085574 3454 offset = swp_offset(entry);
235b6217 3455 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 3456
253d553b 3457 count = p->swap_map[offset];
edfe23da
SL
3458
3459 /*
3460 * swapin_readahead() doesn't check if a swap entry is valid, so the
3461 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3462 */
3463 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3464 err = -ENOENT;
3465 goto unlock_out;
3466 }
3467
253d553b
HD
3468 has_cache = count & SWAP_HAS_CACHE;
3469 count &= ~SWAP_HAS_CACHE;
3470 err = 0;
355cfa73 3471
253d553b 3472 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
3473
3474 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
3475 if (!has_cache && count)
3476 has_cache = SWAP_HAS_CACHE;
3477 else if (has_cache) /* someone else added cache */
3478 err = -EEXIST;
3479 else /* no users remaining */
3480 err = -ENOENT;
355cfa73
KH
3481
3482 } else if (count || has_cache) {
253d553b 3483
570a335b
HD
3484 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3485 count += usage;
3486 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 3487 err = -EINVAL;
570a335b
HD
3488 else if (swap_count_continued(p, offset, count))
3489 count = COUNT_CONTINUED;
3490 else
3491 err = -ENOMEM;
355cfa73 3492 } else
253d553b
HD
3493 err = -ENOENT; /* unused swap entry */
3494
a449bf58 3495 WRITE_ONCE(p->swap_map[offset], count | has_cache);
253d553b 3496
355cfa73 3497unlock_out:
235b6217 3498 unlock_cluster_or_swap_info(p, ci);
1da177e4 3499out:
eb085574
HY
3500 if (p)
3501 put_swap_device(p);
253d553b 3502 return err;
1da177e4 3503}
253d553b 3504
aaa46865
HD
3505/*
3506 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3507 * (in which case its reference count is never incremented).
3508 */
3509void swap_shmem_alloc(swp_entry_t entry)
3510{
3511 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3512}
3513
355cfa73 3514/*
08259d58
HD
3515 * Increase reference count of swap entry by 1.
3516 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3517 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3518 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3519 * might occur if a page table entry has got corrupted.
355cfa73 3520 */
570a335b 3521int swap_duplicate(swp_entry_t entry)
355cfa73 3522{
570a335b
HD
3523 int err = 0;
3524
3525 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3526 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3527 return err;
355cfa73 3528}
1da177e4 3529
cb4b86ba 3530/*
355cfa73
KH
3531 * @entry: swap entry for which we allocate swap cache.
3532 *
73c34b6a 3533 * Called when allocating swap cache for existing swap entry,
355cfa73 3534 * This can return error codes. Returns 0 at success.
3eeba135 3535 * -EEXIST means there is a swap cache.
355cfa73 3536 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
3537 */
3538int swapcache_prepare(swp_entry_t entry)
3539{
253d553b 3540 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
3541}
3542
0bcac06f
MK
3543struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3544{
c10d38cc 3545 return swap_type_to_swap_info(swp_type(entry));
0bcac06f
MK
3546}
3547
f981c595
MG
3548struct swap_info_struct *page_swap_info(struct page *page)
3549{
0bcac06f
MK
3550 swp_entry_t entry = { .val = page_private(page) };
3551 return swp_swap_info(entry);
f981c595
MG
3552}
3553
3554/*
3555 * out-of-line __page_file_ methods to avoid include hell.
3556 */
3557struct address_space *__page_file_mapping(struct page *page)
3558{
f981c595
MG
3559 return page_swap_info(page)->swap_file->f_mapping;
3560}
3561EXPORT_SYMBOL_GPL(__page_file_mapping);
3562
3563pgoff_t __page_file_index(struct page *page)
3564{
3565 swp_entry_t swap = { .val = page_private(page) };
f981c595
MG
3566 return swp_offset(swap);
3567}
3568EXPORT_SYMBOL_GPL(__page_file_index);
3569
570a335b
HD
3570/*
3571 * add_swap_count_continuation - called when a swap count is duplicated
3572 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3573 * page of the original vmalloc'ed swap_map, to hold the continuation count
3574 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3575 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3576 *
3577 * These continuation pages are seldom referenced: the common paths all work
3578 * on the original swap_map, only referring to a continuation page when the
3579 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3580 *
3581 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3582 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3583 * can be called after dropping locks.
3584 */
3585int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3586{
3587 struct swap_info_struct *si;
235b6217 3588 struct swap_cluster_info *ci;
570a335b
HD
3589 struct page *head;
3590 struct page *page;
3591 struct page *list_page;
3592 pgoff_t offset;
3593 unsigned char count;
eb085574 3594 int ret = 0;
570a335b
HD
3595
3596 /*
3597 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3598 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3599 */
3600 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3601
eb085574 3602 si = get_swap_device(entry);
570a335b
HD
3603 if (!si) {
3604 /*
3605 * An acceptable race has occurred since the failing
eb085574 3606 * __swap_duplicate(): the swap device may be swapoff
570a335b
HD
3607 */
3608 goto outer;
3609 }
eb085574 3610 spin_lock(&si->lock);
570a335b
HD
3611
3612 offset = swp_offset(entry);
235b6217
HY
3613
3614 ci = lock_cluster(si, offset);
3615
570a335b
HD
3616 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3617
3618 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3619 /*
3620 * The higher the swap count, the more likely it is that tasks
3621 * will race to add swap count continuation: we need to avoid
3622 * over-provisioning.
3623 */
3624 goto out;
3625 }
3626
3627 if (!page) {
eb085574
HY
3628 ret = -ENOMEM;
3629 goto out;
570a335b
HD
3630 }
3631
3632 /*
3633 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
3634 * no architecture is using highmem pages for kernel page tables: so it
3635 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
3636 */
3637 head = vmalloc_to_page(si->swap_map + offset);
3638 offset &= ~PAGE_MASK;
3639
2628bd6f 3640 spin_lock(&si->cont_lock);
570a335b
HD
3641 /*
3642 * Page allocation does not initialize the page's lru field,
3643 * but it does always reset its private field.
3644 */
3645 if (!page_private(head)) {
3646 BUG_ON(count & COUNT_CONTINUED);
3647 INIT_LIST_HEAD(&head->lru);
3648 set_page_private(head, SWP_CONTINUED);
3649 si->flags |= SWP_CONTINUED;
3650 }
3651
3652 list_for_each_entry(list_page, &head->lru, lru) {
3653 unsigned char *map;
3654
3655 /*
3656 * If the previous map said no continuation, but we've found
3657 * a continuation page, free our allocation and use this one.
3658 */
3659 if (!(count & COUNT_CONTINUED))
2628bd6f 3660 goto out_unlock_cont;
570a335b 3661
9b04c5fe 3662 map = kmap_atomic(list_page) + offset;
570a335b 3663 count = *map;
9b04c5fe 3664 kunmap_atomic(map);
570a335b
HD
3665
3666 /*
3667 * If this continuation count now has some space in it,
3668 * free our allocation and use this one.
3669 */
3670 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2628bd6f 3671 goto out_unlock_cont;
570a335b
HD
3672 }
3673
3674 list_add_tail(&page->lru, &head->lru);
3675 page = NULL; /* now it's attached, don't free it */
2628bd6f
HY
3676out_unlock_cont:
3677 spin_unlock(&si->cont_lock);
570a335b 3678out:
235b6217 3679 unlock_cluster(ci);
ec8acf20 3680 spin_unlock(&si->lock);
eb085574 3681 put_swap_device(si);
570a335b
HD
3682outer:
3683 if (page)
3684 __free_page(page);
eb085574 3685 return ret;
570a335b
HD
3686}
3687
3688/*
3689 * swap_count_continued - when the original swap_map count is incremented
3690 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3691 * into, carry if so, or else fail until a new continuation page is allocated;
3692 * when the original swap_map count is decremented from 0 with continuation,
3693 * borrow from the continuation and report whether it still holds more.
235b6217
HY
3694 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3695 * lock.
570a335b
HD
3696 */
3697static bool swap_count_continued(struct swap_info_struct *si,
3698 pgoff_t offset, unsigned char count)
3699{
3700 struct page *head;
3701 struct page *page;
3702 unsigned char *map;
2628bd6f 3703 bool ret;
570a335b
HD
3704
3705 head = vmalloc_to_page(si->swap_map + offset);
3706 if (page_private(head) != SWP_CONTINUED) {
3707 BUG_ON(count & COUNT_CONTINUED);
3708 return false; /* need to add count continuation */
3709 }
3710
2628bd6f 3711 spin_lock(&si->cont_lock);
570a335b 3712 offset &= ~PAGE_MASK;
213516ac 3713 page = list_next_entry(head, lru);
9b04c5fe 3714 map = kmap_atomic(page) + offset;
570a335b
HD
3715
3716 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3717 goto init_map; /* jump over SWAP_CONT_MAX checks */
3718
3719 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3720 /*
3721 * Think of how you add 1 to 999
3722 */
3723 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 3724 kunmap_atomic(map);
213516ac 3725 page = list_next_entry(page, lru);
570a335b 3726 BUG_ON(page == head);
9b04c5fe 3727 map = kmap_atomic(page) + offset;
570a335b
HD
3728 }
3729 if (*map == SWAP_CONT_MAX) {
9b04c5fe 3730 kunmap_atomic(map);
213516ac 3731 page = list_next_entry(page, lru);
2628bd6f
HY
3732 if (page == head) {
3733 ret = false; /* add count continuation */
3734 goto out;
3735 }
9b04c5fe 3736 map = kmap_atomic(page) + offset;
570a335b
HD
3737init_map: *map = 0; /* we didn't zero the page */
3738 }
3739 *map += 1;
9b04c5fe 3740 kunmap_atomic(map);
213516ac 3741 while ((page = list_prev_entry(page, lru)) != head) {
9b04c5fe 3742 map = kmap_atomic(page) + offset;
570a335b 3743 *map = COUNT_CONTINUED;
9b04c5fe 3744 kunmap_atomic(map);
570a335b 3745 }
2628bd6f 3746 ret = true; /* incremented */
570a335b
HD
3747
3748 } else { /* decrementing */
3749 /*
3750 * Think of how you subtract 1 from 1000
3751 */
3752 BUG_ON(count != COUNT_CONTINUED);
3753 while (*map == COUNT_CONTINUED) {
9b04c5fe 3754 kunmap_atomic(map);
213516ac 3755 page = list_next_entry(page, lru);
570a335b 3756 BUG_ON(page == head);
9b04c5fe 3757 map = kmap_atomic(page) + offset;
570a335b
HD
3758 }
3759 BUG_ON(*map == 0);
3760 *map -= 1;
3761 if (*map == 0)
3762 count = 0;
9b04c5fe 3763 kunmap_atomic(map);
213516ac 3764 while ((page = list_prev_entry(page, lru)) != head) {
9b04c5fe 3765 map = kmap_atomic(page) + offset;
570a335b
HD
3766 *map = SWAP_CONT_MAX | count;
3767 count = COUNT_CONTINUED;
9b04c5fe 3768 kunmap_atomic(map);
570a335b 3769 }
2628bd6f 3770 ret = count == COUNT_CONTINUED;
570a335b 3771 }
2628bd6f
HY
3772out:
3773 spin_unlock(&si->cont_lock);
3774 return ret;
570a335b
HD
3775}
3776
3777/*
3778 * free_swap_count_continuations - swapoff free all the continuation pages
3779 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3780 */
3781static void free_swap_count_continuations(struct swap_info_struct *si)
3782{
3783 pgoff_t offset;
3784
3785 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3786 struct page *head;
3787 head = vmalloc_to_page(si->swap_map + offset);
3788 if (page_private(head)) {
0d576d20
GT
3789 struct page *page, *next;
3790
3791 list_for_each_entry_safe(page, next, &head->lru, lru) {
3792 list_del(&page->lru);
570a335b
HD
3793 __free_page(page);
3794 }
3795 }
3796 }
3797}
a2468cc9 3798
2cf85583 3799#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
6caa6a07 3800void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
2cf85583
TH
3801{
3802 struct swap_info_struct *si, *next;
6caa6a07
JW
3803 int nid = page_to_nid(page);
3804
3805 if (!(gfp_mask & __GFP_IO))
2cf85583
TH
3806 return;
3807
3808 if (!blk_cgroup_congested())
3809 return;
3810
3811 /*
3812 * We've already scheduled a throttle, avoid taking the global swap
3813 * lock.
3814 */
3815 if (current->throttle_queue)
3816 return;
3817
3818 spin_lock(&swap_avail_lock);
6caa6a07
JW
3819 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3820 avail_lists[nid]) {
2cf85583 3821 if (si->bdev) {
6caa6a07 3822 blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
2cf85583
TH
3823 break;
3824 }
3825 }
3826 spin_unlock(&swap_avail_lock);
3827}
3828#endif
3829
a2468cc9
AL
3830static int __init swapfile_init(void)
3831{
3832 int nid;
3833
3834 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3835 GFP_KERNEL);
3836 if (!swap_avail_heads) {
3837 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3838 return -ENOMEM;
3839 }
3840
3841 for_each_node(nid)
3842 plist_head_init(&swap_avail_heads[nid]);
3843
3844 return 0;
3845}
3846subsys_initcall(swapfile_init);