]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/swapfile.c
swap: reduce lock contention on swap cache from swap slots allocation
[mirror_ubuntu-hirsute-kernel.git] / mm / swapfile.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
1da177e4 9#include <linux/mm.h>
6e84f315 10#include <linux/sched/mm.h>
29930025 11#include <linux/sched/task.h>
1da177e4
LT
12#include <linux/hugetlb.h>
13#include <linux/mman.h>
14#include <linux/slab.h>
15#include <linux/kernel_stat.h>
16#include <linux/swap.h>
17#include <linux/vmalloc.h>
18#include <linux/pagemap.h>
19#include <linux/namei.h>
072441e2 20#include <linux/shmem_fs.h>
1da177e4 21#include <linux/blkdev.h>
20137a49 22#include <linux/random.h>
1da177e4
LT
23#include <linux/writeback.h>
24#include <linux/proc_fs.h>
25#include <linux/seq_file.h>
26#include <linux/init.h>
5ad64688 27#include <linux/ksm.h>
1da177e4
LT
28#include <linux/rmap.h>
29#include <linux/security.h>
30#include <linux/backing-dev.h>
fc0abb14 31#include <linux/mutex.h>
c59ede7b 32#include <linux/capability.h>
1da177e4 33#include <linux/syscalls.h>
8a9f3ccd 34#include <linux/memcontrol.h>
66d7dd51 35#include <linux/poll.h>
72788c38 36#include <linux/oom.h>
38b5faf4
DM
37#include <linux/frontswap.h>
38#include <linux/swapfile.h>
f981c595 39#include <linux/export.h>
67afa38e 40#include <linux/swap_slots.h>
155b5f88 41#include <linux/sort.h>
1da177e4
LT
42
43#include <asm/pgtable.h>
44#include <asm/tlbflush.h>
45#include <linux/swapops.h>
5d1ea48b 46#include <linux/swap_cgroup.h>
1da177e4 47
570a335b
HD
48static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49 unsigned char);
50static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 51static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 52
38b5faf4 53DEFINE_SPINLOCK(swap_lock);
7c363b8c 54static unsigned int nr_swapfiles;
ec8acf20 55atomic_long_t nr_swap_pages;
fb0fec50
CW
56/*
57 * Some modules use swappable objects and may try to swap them out under
58 * memory pressure (via the shrinker). Before doing so, they may wish to
59 * check to see if any swap space is available.
60 */
61EXPORT_SYMBOL_GPL(nr_swap_pages);
ec8acf20 62/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 63long total_swap_pages;
a2468cc9 64static int least_priority = -1;
1da177e4 65
1da177e4
LT
66static const char Bad_file[] = "Bad swap file entry ";
67static const char Unused_file[] = "Unused swap file entry ";
68static const char Bad_offset[] = "Bad swap offset entry ";
69static const char Unused_offset[] = "Unused swap offset entry ";
70
adfab836
DS
71/*
72 * all active swap_info_structs
73 * protected with swap_lock, and ordered by priority.
74 */
18ab4d4c
DS
75PLIST_HEAD(swap_active_head);
76
77/*
78 * all available (active, not full) swap_info_structs
79 * protected with swap_avail_lock, ordered by priority.
80 * This is used by get_swap_page() instead of swap_active_head
81 * because swap_active_head includes all swap_info_structs,
82 * but get_swap_page() doesn't need to look at full ones.
83 * This uses its own lock instead of swap_lock because when a
84 * swap_info_struct changes between not-full/full, it needs to
85 * add/remove itself to/from this list, but the swap_info_struct->lock
86 * is held and the locking order requires swap_lock to be taken
87 * before any swap_info_struct->lock.
88 */
bfc6b1ca 89static struct plist_head *swap_avail_heads;
18ab4d4c 90static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 91
38b5faf4 92struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 93
fc0abb14 94static DEFINE_MUTEX(swapon_mutex);
1da177e4 95
66d7dd51
KS
96static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
97/* Activity counter to indicate that a swapon or swapoff has occurred */
98static atomic_t proc_poll_event = ATOMIC_INIT(0);
99
81a0298b
HY
100atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101
c10d38cc
DJ
102static struct swap_info_struct *swap_type_to_swap_info(int type)
103{
104 if (type >= READ_ONCE(nr_swapfiles))
105 return NULL;
106
107 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */
108 return READ_ONCE(swap_info[type]);
109}
110
8d69aaee 111static inline unsigned char swap_count(unsigned char ent)
355cfa73 112{
955c97f0 113 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
355cfa73
KH
114}
115
bcd49e86
HY
116/* Reclaim the swap entry anyway if possible */
117#define TTRS_ANYWAY 0x1
118/*
119 * Reclaim the swap entry if there are no more mappings of the
120 * corresponding page
121 */
122#define TTRS_UNMAPPED 0x2
123/* Reclaim the swap entry if swap is getting full*/
124#define TTRS_FULL 0x4
125
efa90a98 126/* returns 1 if swap entry is freed */
bcd49e86
HY
127static int __try_to_reclaim_swap(struct swap_info_struct *si,
128 unsigned long offset, unsigned long flags)
c9e44410 129{
efa90a98 130 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
131 struct page *page;
132 int ret = 0;
133
bcd49e86 134 page = find_get_page(swap_address_space(entry), offset);
c9e44410
KH
135 if (!page)
136 return 0;
137 /*
bcd49e86
HY
138 * When this function is called from scan_swap_map_slots() and it's
139 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
140 * here. We have to use trylock for avoiding deadlock. This is a special
c9e44410
KH
141 * case and you should use try_to_free_swap() with explicit lock_page()
142 * in usual operations.
143 */
144 if (trylock_page(page)) {
bcd49e86
HY
145 if ((flags & TTRS_ANYWAY) ||
146 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
147 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
148 ret = try_to_free_swap(page);
c9e44410
KH
149 unlock_page(page);
150 }
09cbfeaf 151 put_page(page);
c9e44410
KH
152 return ret;
153}
355cfa73 154
4efaceb1
AL
155static inline struct swap_extent *first_se(struct swap_info_struct *sis)
156{
157 struct rb_node *rb = rb_first(&sis->swap_extent_root);
158 return rb_entry(rb, struct swap_extent, rb_node);
159}
160
161static inline struct swap_extent *next_se(struct swap_extent *se)
162{
163 struct rb_node *rb = rb_next(&se->rb_node);
164 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
165}
166
6a6ba831
HD
167/*
168 * swapon tell device that all the old swap contents can be discarded,
169 * to allow the swap device to optimize its wear-levelling.
170 */
171static int discard_swap(struct swap_info_struct *si)
172{
173 struct swap_extent *se;
9625a5f2
HD
174 sector_t start_block;
175 sector_t nr_blocks;
6a6ba831
HD
176 int err = 0;
177
9625a5f2 178 /* Do not discard the swap header page! */
4efaceb1 179 se = first_se(si);
9625a5f2
HD
180 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
181 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
182 if (nr_blocks) {
183 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 184 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
185 if (err)
186 return err;
187 cond_resched();
188 }
6a6ba831 189
4efaceb1 190 for (se = next_se(se); se; se = next_se(se)) {
9625a5f2
HD
191 start_block = se->start_block << (PAGE_SHIFT - 9);
192 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
193
194 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 195 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
196 if (err)
197 break;
198
199 cond_resched();
200 }
201 return err; /* That will often be -EOPNOTSUPP */
202}
203
4efaceb1
AL
204static struct swap_extent *
205offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
206{
207 struct swap_extent *se;
208 struct rb_node *rb;
209
210 rb = sis->swap_extent_root.rb_node;
211 while (rb) {
212 se = rb_entry(rb, struct swap_extent, rb_node);
213 if (offset < se->start_page)
214 rb = rb->rb_left;
215 else if (offset >= se->start_page + se->nr_pages)
216 rb = rb->rb_right;
217 else
218 return se;
219 }
220 /* It *must* be present */
221 BUG();
222}
223
7992fde7
HD
224/*
225 * swap allocation tell device that a cluster of swap can now be discarded,
226 * to allow the swap device to optimize its wear-levelling.
227 */
228static void discard_swap_cluster(struct swap_info_struct *si,
229 pgoff_t start_page, pgoff_t nr_pages)
230{
4efaceb1 231 struct swap_extent *se = offset_to_swap_extent(si, start_page);
7992fde7
HD
232
233 while (nr_pages) {
4efaceb1
AL
234 pgoff_t offset = start_page - se->start_page;
235 sector_t start_block = se->start_block + offset;
236 sector_t nr_blocks = se->nr_pages - offset;
237
238 if (nr_blocks > nr_pages)
239 nr_blocks = nr_pages;
240 start_page += nr_blocks;
241 nr_pages -= nr_blocks;
242
243 start_block <<= PAGE_SHIFT - 9;
244 nr_blocks <<= PAGE_SHIFT - 9;
245 if (blkdev_issue_discard(si->bdev, start_block,
246 nr_blocks, GFP_NOIO, 0))
247 break;
7992fde7 248
4efaceb1 249 se = next_se(se);
7992fde7
HD
250 }
251}
252
38d8b4e6
HY
253#ifdef CONFIG_THP_SWAP
254#define SWAPFILE_CLUSTER HPAGE_PMD_NR
a448f2d0
HY
255
256#define swap_entry_size(size) (size)
38d8b4e6 257#else
048c27fd 258#define SWAPFILE_CLUSTER 256
a448f2d0
HY
259
260/*
261 * Define swap_entry_size() as constant to let compiler to optimize
262 * out some code if !CONFIG_THP_SWAP
263 */
264#define swap_entry_size(size) 1
38d8b4e6 265#endif
048c27fd
HD
266#define LATENCY_LIMIT 256
267
2a8f9449
SL
268static inline void cluster_set_flag(struct swap_cluster_info *info,
269 unsigned int flag)
270{
271 info->flags = flag;
272}
273
274static inline unsigned int cluster_count(struct swap_cluster_info *info)
275{
276 return info->data;
277}
278
279static inline void cluster_set_count(struct swap_cluster_info *info,
280 unsigned int c)
281{
282 info->data = c;
283}
284
285static inline void cluster_set_count_flag(struct swap_cluster_info *info,
286 unsigned int c, unsigned int f)
287{
288 info->flags = f;
289 info->data = c;
290}
291
292static inline unsigned int cluster_next(struct swap_cluster_info *info)
293{
294 return info->data;
295}
296
297static inline void cluster_set_next(struct swap_cluster_info *info,
298 unsigned int n)
299{
300 info->data = n;
301}
302
303static inline void cluster_set_next_flag(struct swap_cluster_info *info,
304 unsigned int n, unsigned int f)
305{
306 info->flags = f;
307 info->data = n;
308}
309
310static inline bool cluster_is_free(struct swap_cluster_info *info)
311{
312 return info->flags & CLUSTER_FLAG_FREE;
313}
314
315static inline bool cluster_is_null(struct swap_cluster_info *info)
316{
317 return info->flags & CLUSTER_FLAG_NEXT_NULL;
318}
319
320static inline void cluster_set_null(struct swap_cluster_info *info)
321{
322 info->flags = CLUSTER_FLAG_NEXT_NULL;
323 info->data = 0;
324}
325
e0709829
HY
326static inline bool cluster_is_huge(struct swap_cluster_info *info)
327{
33ee011e
HY
328 if (IS_ENABLED(CONFIG_THP_SWAP))
329 return info->flags & CLUSTER_FLAG_HUGE;
330 return false;
e0709829
HY
331}
332
333static inline void cluster_clear_huge(struct swap_cluster_info *info)
334{
335 info->flags &= ~CLUSTER_FLAG_HUGE;
336}
337
235b6217
HY
338static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
339 unsigned long offset)
340{
341 struct swap_cluster_info *ci;
342
343 ci = si->cluster_info;
344 if (ci) {
345 ci += offset / SWAPFILE_CLUSTER;
346 spin_lock(&ci->lock);
347 }
348 return ci;
349}
350
351static inline void unlock_cluster(struct swap_cluster_info *ci)
352{
353 if (ci)
354 spin_unlock(&ci->lock);
355}
356
59d98bf3
HY
357/*
358 * Determine the locking method in use for this device. Return
359 * swap_cluster_info if SSD-style cluster-based locking is in place.
360 */
235b6217 361static inline struct swap_cluster_info *lock_cluster_or_swap_info(
59d98bf3 362 struct swap_info_struct *si, unsigned long offset)
235b6217
HY
363{
364 struct swap_cluster_info *ci;
365
59d98bf3 366 /* Try to use fine-grained SSD-style locking if available: */
235b6217 367 ci = lock_cluster(si, offset);
59d98bf3 368 /* Otherwise, fall back to traditional, coarse locking: */
235b6217
HY
369 if (!ci)
370 spin_lock(&si->lock);
371
372 return ci;
373}
374
375static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
376 struct swap_cluster_info *ci)
377{
378 if (ci)
379 unlock_cluster(ci);
380 else
381 spin_unlock(&si->lock);
382}
383
6b534915
HY
384static inline bool cluster_list_empty(struct swap_cluster_list *list)
385{
386 return cluster_is_null(&list->head);
387}
388
389static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
390{
391 return cluster_next(&list->head);
392}
393
394static void cluster_list_init(struct swap_cluster_list *list)
395{
396 cluster_set_null(&list->head);
397 cluster_set_null(&list->tail);
398}
399
400static void cluster_list_add_tail(struct swap_cluster_list *list,
401 struct swap_cluster_info *ci,
402 unsigned int idx)
403{
404 if (cluster_list_empty(list)) {
405 cluster_set_next_flag(&list->head, idx, 0);
406 cluster_set_next_flag(&list->tail, idx, 0);
407 } else {
235b6217 408 struct swap_cluster_info *ci_tail;
6b534915
HY
409 unsigned int tail = cluster_next(&list->tail);
410
235b6217
HY
411 /*
412 * Nested cluster lock, but both cluster locks are
413 * only acquired when we held swap_info_struct->lock
414 */
415 ci_tail = ci + tail;
416 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
417 cluster_set_next(ci_tail, idx);
0ef017d1 418 spin_unlock(&ci_tail->lock);
6b534915
HY
419 cluster_set_next_flag(&list->tail, idx, 0);
420 }
421}
422
423static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
424 struct swap_cluster_info *ci)
425{
426 unsigned int idx;
427
428 idx = cluster_next(&list->head);
429 if (cluster_next(&list->tail) == idx) {
430 cluster_set_null(&list->head);
431 cluster_set_null(&list->tail);
432 } else
433 cluster_set_next_flag(&list->head,
434 cluster_next(&ci[idx]), 0);
435
436 return idx;
437}
438
815c2c54
SL
439/* Add a cluster to discard list and schedule it to do discard */
440static void swap_cluster_schedule_discard(struct swap_info_struct *si,
441 unsigned int idx)
442{
443 /*
444 * If scan_swap_map() can't find a free cluster, it will check
445 * si->swap_map directly. To make sure the discarding cluster isn't
446 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
447 * will be cleared after discard
448 */
449 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
450 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
451
6b534915 452 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
815c2c54
SL
453
454 schedule_work(&si->discard_work);
455}
456
38d8b4e6
HY
457static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
458{
459 struct swap_cluster_info *ci = si->cluster_info;
460
461 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
462 cluster_list_add_tail(&si->free_clusters, ci, idx);
463}
464
815c2c54
SL
465/*
466 * Doing discard actually. After a cluster discard is finished, the cluster
467 * will be added to free cluster list. caller should hold si->lock.
468*/
469static void swap_do_scheduled_discard(struct swap_info_struct *si)
470{
235b6217 471 struct swap_cluster_info *info, *ci;
815c2c54
SL
472 unsigned int idx;
473
474 info = si->cluster_info;
475
6b534915
HY
476 while (!cluster_list_empty(&si->discard_clusters)) {
477 idx = cluster_list_del_first(&si->discard_clusters, info);
815c2c54
SL
478 spin_unlock(&si->lock);
479
480 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
481 SWAPFILE_CLUSTER);
482
483 spin_lock(&si->lock);
235b6217 484 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
38d8b4e6 485 __free_cluster(si, idx);
815c2c54
SL
486 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
487 0, SWAPFILE_CLUSTER);
235b6217 488 unlock_cluster(ci);
815c2c54
SL
489 }
490}
491
492static void swap_discard_work(struct work_struct *work)
493{
494 struct swap_info_struct *si;
495
496 si = container_of(work, struct swap_info_struct, discard_work);
497
498 spin_lock(&si->lock);
499 swap_do_scheduled_discard(si);
500 spin_unlock(&si->lock);
501}
502
38d8b4e6
HY
503static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
504{
505 struct swap_cluster_info *ci = si->cluster_info;
506
507 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
508 cluster_list_del_first(&si->free_clusters, ci);
509 cluster_set_count_flag(ci + idx, 0, 0);
510}
511
512static void free_cluster(struct swap_info_struct *si, unsigned long idx)
513{
514 struct swap_cluster_info *ci = si->cluster_info + idx;
515
516 VM_BUG_ON(cluster_count(ci) != 0);
517 /*
518 * If the swap is discardable, prepare discard the cluster
519 * instead of free it immediately. The cluster will be freed
520 * after discard.
521 */
522 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
523 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
524 swap_cluster_schedule_discard(si, idx);
525 return;
526 }
527
528 __free_cluster(si, idx);
529}
530
2a8f9449
SL
531/*
532 * The cluster corresponding to page_nr will be used. The cluster will be
533 * removed from free cluster list and its usage counter will be increased.
534 */
535static void inc_cluster_info_page(struct swap_info_struct *p,
536 struct swap_cluster_info *cluster_info, unsigned long page_nr)
537{
538 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
539
540 if (!cluster_info)
541 return;
38d8b4e6
HY
542 if (cluster_is_free(&cluster_info[idx]))
543 alloc_cluster(p, idx);
2a8f9449
SL
544
545 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
546 cluster_set_count(&cluster_info[idx],
547 cluster_count(&cluster_info[idx]) + 1);
548}
549
550/*
551 * The cluster corresponding to page_nr decreases one usage. If the usage
552 * counter becomes 0, which means no page in the cluster is in using, we can
553 * optionally discard the cluster and add it to free cluster list.
554 */
555static void dec_cluster_info_page(struct swap_info_struct *p,
556 struct swap_cluster_info *cluster_info, unsigned long page_nr)
557{
558 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
559
560 if (!cluster_info)
561 return;
562
563 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
564 cluster_set_count(&cluster_info[idx],
565 cluster_count(&cluster_info[idx]) - 1);
566
38d8b4e6
HY
567 if (cluster_count(&cluster_info[idx]) == 0)
568 free_cluster(p, idx);
2a8f9449
SL
569}
570
571/*
572 * It's possible scan_swap_map() uses a free cluster in the middle of free
573 * cluster list. Avoiding such abuse to avoid list corruption.
574 */
ebc2a1a6
SL
575static bool
576scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
577 unsigned long offset)
578{
ebc2a1a6
SL
579 struct percpu_cluster *percpu_cluster;
580 bool conflict;
581
2a8f9449 582 offset /= SWAPFILE_CLUSTER;
6b534915
HY
583 conflict = !cluster_list_empty(&si->free_clusters) &&
584 offset != cluster_list_first(&si->free_clusters) &&
2a8f9449 585 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
586
587 if (!conflict)
588 return false;
589
590 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
591 cluster_set_null(&percpu_cluster->index);
592 return true;
593}
594
595/*
596 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
597 * might involve allocating a new cluster for current CPU too.
598 */
36005bae 599static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
ebc2a1a6
SL
600 unsigned long *offset, unsigned long *scan_base)
601{
602 struct percpu_cluster *cluster;
235b6217 603 struct swap_cluster_info *ci;
235b6217 604 unsigned long tmp, max;
ebc2a1a6
SL
605
606new_cluster:
607 cluster = this_cpu_ptr(si->percpu_cluster);
608 if (cluster_is_null(&cluster->index)) {
6b534915
HY
609 if (!cluster_list_empty(&si->free_clusters)) {
610 cluster->index = si->free_clusters.head;
ebc2a1a6
SL
611 cluster->next = cluster_next(&cluster->index) *
612 SWAPFILE_CLUSTER;
6b534915 613 } else if (!cluster_list_empty(&si->discard_clusters)) {
ebc2a1a6
SL
614 /*
615 * we don't have free cluster but have some clusters in
49070588
HY
616 * discarding, do discard now and reclaim them, then
617 * reread cluster_next_cpu since we dropped si->lock
ebc2a1a6
SL
618 */
619 swap_do_scheduled_discard(si);
49070588
HY
620 *scan_base = this_cpu_read(*si->cluster_next_cpu);
621 *offset = *scan_base;
ebc2a1a6
SL
622 goto new_cluster;
623 } else
36005bae 624 return false;
ebc2a1a6
SL
625 }
626
ebc2a1a6
SL
627 /*
628 * Other CPUs can use our cluster if they can't find a free cluster,
629 * check if there is still free entry in the cluster
630 */
631 tmp = cluster->next;
235b6217
HY
632 max = min_t(unsigned long, si->max,
633 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
7b9e2de1
WY
634 if (tmp < max) {
635 ci = lock_cluster(si, tmp);
636 while (tmp < max) {
637 if (!si->swap_map[tmp])
638 break;
639 tmp++;
640 }
641 unlock_cluster(ci);
ebc2a1a6 642 }
0fd0e19e 643 if (tmp >= max) {
ebc2a1a6
SL
644 cluster_set_null(&cluster->index);
645 goto new_cluster;
646 }
647 cluster->next = tmp + 1;
648 *offset = tmp;
649 *scan_base = tmp;
fdff1deb 650 return true;
2a8f9449
SL
651}
652
a2468cc9
AL
653static void __del_from_avail_list(struct swap_info_struct *p)
654{
655 int nid;
656
657 for_each_node(nid)
658 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
659}
660
661static void del_from_avail_list(struct swap_info_struct *p)
662{
663 spin_lock(&swap_avail_lock);
664 __del_from_avail_list(p);
665 spin_unlock(&swap_avail_lock);
666}
667
38d8b4e6
HY
668static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
669 unsigned int nr_entries)
670{
671 unsigned int end = offset + nr_entries - 1;
672
673 if (offset == si->lowest_bit)
674 si->lowest_bit += nr_entries;
675 if (end == si->highest_bit)
676 si->highest_bit -= nr_entries;
677 si->inuse_pages += nr_entries;
678 if (si->inuse_pages == si->pages) {
679 si->lowest_bit = si->max;
680 si->highest_bit = 0;
a2468cc9 681 del_from_avail_list(si);
38d8b4e6
HY
682 }
683}
684
a2468cc9
AL
685static void add_to_avail_list(struct swap_info_struct *p)
686{
687 int nid;
688
689 spin_lock(&swap_avail_lock);
690 for_each_node(nid) {
691 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
692 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
693 }
694 spin_unlock(&swap_avail_lock);
695}
696
38d8b4e6
HY
697static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
698 unsigned int nr_entries)
699{
700 unsigned long end = offset + nr_entries - 1;
701 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
702
703 if (offset < si->lowest_bit)
704 si->lowest_bit = offset;
705 if (end > si->highest_bit) {
706 bool was_full = !si->highest_bit;
707
708 si->highest_bit = end;
a2468cc9
AL
709 if (was_full && (si->flags & SWP_WRITEOK))
710 add_to_avail_list(si);
38d8b4e6
HY
711 }
712 atomic_long_add(nr_entries, &nr_swap_pages);
713 si->inuse_pages -= nr_entries;
714 if (si->flags & SWP_BLKDEV)
715 swap_slot_free_notify =
716 si->bdev->bd_disk->fops->swap_slot_free_notify;
717 else
718 swap_slot_free_notify = NULL;
719 while (offset <= end) {
720 frontswap_invalidate_page(si->type, offset);
721 if (swap_slot_free_notify)
722 swap_slot_free_notify(si->bdev, offset);
723 offset++;
724 }
725}
726
49070588
HY
727static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
728{
729 unsigned long prev;
730
731 if (!(si->flags & SWP_SOLIDSTATE)) {
732 si->cluster_next = next;
733 return;
734 }
735
736 prev = this_cpu_read(*si->cluster_next_cpu);
737 /*
738 * Cross the swap address space size aligned trunk, choose
739 * another trunk randomly to avoid lock contention on swap
740 * address space if possible.
741 */
742 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
743 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
744 /* No free swap slots available */
745 if (si->highest_bit <= si->lowest_bit)
746 return;
747 next = si->lowest_bit +
748 prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
749 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
750 next = max_t(unsigned int, next, si->lowest_bit);
751 }
752 this_cpu_write(*si->cluster_next_cpu, next);
753}
754
36005bae
TC
755static int scan_swap_map_slots(struct swap_info_struct *si,
756 unsigned char usage, int nr,
757 swp_entry_t slots[])
1da177e4 758{
235b6217 759 struct swap_cluster_info *ci;
ebebbbe9 760 unsigned long offset;
c60aa176 761 unsigned long scan_base;
7992fde7 762 unsigned long last_in_cluster = 0;
048c27fd 763 int latency_ration = LATENCY_LIMIT;
36005bae 764 int n_ret = 0;
ed43af10 765 bool scanned_many = false;
36005bae 766
886bb7e9 767 /*
7dfad418
HD
768 * We try to cluster swap pages by allocating them sequentially
769 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
770 * way, however, we resort to first-free allocation, starting
771 * a new cluster. This prevents us from scattering swap pages
772 * all over the entire swap partition, so that we reduce
773 * overall disk seek times between swap pages. -- sct
774 * But we do now try to find an empty cluster. -Andrea
c60aa176 775 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
776 */
777
52b7efdb 778 si->flags += SWP_SCANNING;
49070588
HY
779 /*
780 * Use percpu scan base for SSD to reduce lock contention on
781 * cluster and swap cache. For HDD, sequential access is more
782 * important.
783 */
784 if (si->flags & SWP_SOLIDSTATE)
785 scan_base = this_cpu_read(*si->cluster_next_cpu);
786 else
787 scan_base = si->cluster_next;
788 offset = scan_base;
ebebbbe9 789
ebc2a1a6
SL
790 /* SSD algorithm */
791 if (si->cluster_info) {
bd2d18da 792 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
36005bae 793 goto scan;
f4eaf51a 794 } else if (unlikely(!si->cluster_nr--)) {
ebebbbe9
HD
795 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
796 si->cluster_nr = SWAPFILE_CLUSTER - 1;
797 goto checks;
798 }
2a8f9449 799
ec8acf20 800 spin_unlock(&si->lock);
7dfad418 801
c60aa176
HD
802 /*
803 * If seek is expensive, start searching for new cluster from
804 * start of partition, to minimize the span of allocated swap.
50088c44
CY
805 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
806 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 807 */
50088c44 808 scan_base = offset = si->lowest_bit;
7dfad418
HD
809 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
810
811 /* Locate the first empty (unaligned) cluster */
812 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 813 if (si->swap_map[offset])
7dfad418
HD
814 last_in_cluster = offset + SWAPFILE_CLUSTER;
815 else if (offset == last_in_cluster) {
ec8acf20 816 spin_lock(&si->lock);
ebebbbe9
HD
817 offset -= SWAPFILE_CLUSTER - 1;
818 si->cluster_next = offset;
819 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
820 goto checks;
821 }
822 if (unlikely(--latency_ration < 0)) {
823 cond_resched();
824 latency_ration = LATENCY_LIMIT;
825 }
826 }
827
828 offset = scan_base;
ec8acf20 829 spin_lock(&si->lock);
ebebbbe9 830 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 831 }
7dfad418 832
ebebbbe9 833checks:
ebc2a1a6 834 if (si->cluster_info) {
36005bae
TC
835 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
836 /* take a break if we already got some slots */
837 if (n_ret)
838 goto done;
839 if (!scan_swap_map_try_ssd_cluster(si, &offset,
840 &scan_base))
841 goto scan;
842 }
ebc2a1a6 843 }
ebebbbe9 844 if (!(si->flags & SWP_WRITEOK))
52b7efdb 845 goto no_page;
7dfad418
HD
846 if (!si->highest_bit)
847 goto no_page;
ebebbbe9 848 if (offset > si->highest_bit)
c60aa176 849 scan_base = offset = si->lowest_bit;
c9e44410 850
235b6217 851 ci = lock_cluster(si, offset);
b73d7fce
HD
852 /* reuse swap entry of cache-only swap if not busy. */
853 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 854 int swap_was_freed;
235b6217 855 unlock_cluster(ci);
ec8acf20 856 spin_unlock(&si->lock);
bcd49e86 857 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
ec8acf20 858 spin_lock(&si->lock);
c9e44410
KH
859 /* entry was freed successfully, try to use this again */
860 if (swap_was_freed)
861 goto checks;
862 goto scan; /* check next one */
863 }
864
235b6217
HY
865 if (si->swap_map[offset]) {
866 unlock_cluster(ci);
36005bae
TC
867 if (!n_ret)
868 goto scan;
869 else
870 goto done;
235b6217 871 }
2872bb2d
HY
872 si->swap_map[offset] = usage;
873 inc_cluster_info_page(si, si->cluster_info, offset);
874 unlock_cluster(ci);
ebebbbe9 875
38d8b4e6 876 swap_range_alloc(si, offset, 1);
36005bae
TC
877 slots[n_ret++] = swp_entry(si->type, offset);
878
879 /* got enough slots or reach max slots? */
880 if ((n_ret == nr) || (offset >= si->highest_bit))
881 goto done;
882
883 /* search for next available slot */
884
885 /* time to take a break? */
886 if (unlikely(--latency_ration < 0)) {
887 if (n_ret)
888 goto done;
889 spin_unlock(&si->lock);
890 cond_resched();
891 spin_lock(&si->lock);
892 latency_ration = LATENCY_LIMIT;
893 }
894
895 /* try to get more slots in cluster */
896 if (si->cluster_info) {
897 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
898 goto checks;
f4eaf51a
WY
899 } else if (si->cluster_nr && !si->swap_map[++offset]) {
900 /* non-ssd case, still more slots in cluster? */
36005bae
TC
901 --si->cluster_nr;
902 goto checks;
903 }
7992fde7 904
ed43af10
HY
905 /*
906 * Even if there's no free clusters available (fragmented),
907 * try to scan a little more quickly with lock held unless we
908 * have scanned too many slots already.
909 */
910 if (!scanned_many) {
911 unsigned long scan_limit;
912
913 if (offset < scan_base)
914 scan_limit = scan_base;
915 else
916 scan_limit = si->highest_bit;
917 for (; offset <= scan_limit && --latency_ration > 0;
918 offset++) {
919 if (!si->swap_map[offset])
920 goto checks;
921 }
922 }
923
36005bae 924done:
49070588 925 set_cluster_next(si, offset + 1);
36005bae
TC
926 si->flags -= SWP_SCANNING;
927 return n_ret;
7dfad418 928
ebebbbe9 929scan:
ec8acf20 930 spin_unlock(&si->lock);
7dfad418 931 while (++offset <= si->highest_bit) {
52b7efdb 932 if (!si->swap_map[offset]) {
ec8acf20 933 spin_lock(&si->lock);
52b7efdb
HD
934 goto checks;
935 }
c9e44410 936 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 937 spin_lock(&si->lock);
c9e44410
KH
938 goto checks;
939 }
048c27fd
HD
940 if (unlikely(--latency_ration < 0)) {
941 cond_resched();
942 latency_ration = LATENCY_LIMIT;
ed43af10 943 scanned_many = true;
048c27fd 944 }
7dfad418 945 }
c60aa176 946 offset = si->lowest_bit;
a5998061 947 while (offset < scan_base) {
c60aa176 948 if (!si->swap_map[offset]) {
ec8acf20 949 spin_lock(&si->lock);
c60aa176
HD
950 goto checks;
951 }
c9e44410 952 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 953 spin_lock(&si->lock);
c9e44410
KH
954 goto checks;
955 }
c60aa176
HD
956 if (unlikely(--latency_ration < 0)) {
957 cond_resched();
958 latency_ration = LATENCY_LIMIT;
ed43af10 959 scanned_many = true;
c60aa176 960 }
a5998061 961 offset++;
c60aa176 962 }
ec8acf20 963 spin_lock(&si->lock);
7dfad418
HD
964
965no_page:
52b7efdb 966 si->flags -= SWP_SCANNING;
36005bae 967 return n_ret;
1da177e4
LT
968}
969
38d8b4e6
HY
970static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
971{
972 unsigned long idx;
973 struct swap_cluster_info *ci;
974 unsigned long offset, i;
975 unsigned char *map;
976
fe5266d5
HY
977 /*
978 * Should not even be attempting cluster allocations when huge
979 * page swap is disabled. Warn and fail the allocation.
980 */
981 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
982 VM_WARN_ON_ONCE(1);
983 return 0;
984 }
985
38d8b4e6
HY
986 if (cluster_list_empty(&si->free_clusters))
987 return 0;
988
989 idx = cluster_list_first(&si->free_clusters);
990 offset = idx * SWAPFILE_CLUSTER;
991 ci = lock_cluster(si, offset);
992 alloc_cluster(si, idx);
e0709829 993 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
38d8b4e6
HY
994
995 map = si->swap_map + offset;
996 for (i = 0; i < SWAPFILE_CLUSTER; i++)
997 map[i] = SWAP_HAS_CACHE;
998 unlock_cluster(ci);
999 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1000 *slot = swp_entry(si->type, offset);
1001
1002 return 1;
1003}
1004
1005static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1006{
1007 unsigned long offset = idx * SWAPFILE_CLUSTER;
1008 struct swap_cluster_info *ci;
1009
1010 ci = lock_cluster(si, offset);
979aafa5 1011 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
38d8b4e6
HY
1012 cluster_set_count_flag(ci, 0, 0);
1013 free_cluster(si, idx);
1014 unlock_cluster(ci);
1015 swap_range_free(si, offset, SWAPFILE_CLUSTER);
1016}
38d8b4e6 1017
36005bae
TC
1018static unsigned long scan_swap_map(struct swap_info_struct *si,
1019 unsigned char usage)
1020{
1021 swp_entry_t entry;
1022 int n_ret;
1023
1024 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1025
1026 if (n_ret)
1027 return swp_offset(entry);
1028 else
1029 return 0;
1030
1031}
1032
5d5e8f19 1033int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1da177e4 1034{
5d5e8f19 1035 unsigned long size = swap_entry_size(entry_size);
adfab836 1036 struct swap_info_struct *si, *next;
36005bae
TC
1037 long avail_pgs;
1038 int n_ret = 0;
a2468cc9 1039 int node;
1da177e4 1040
38d8b4e6 1041 /* Only single cluster request supported */
5d5e8f19 1042 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
38d8b4e6 1043
5d5e8f19 1044 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
36005bae 1045 if (avail_pgs <= 0)
fb4f88dc 1046 goto noswap;
36005bae 1047
08d3090f 1048 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
36005bae 1049
5d5e8f19 1050 atomic_long_sub(n_goal * size, &nr_swap_pages);
fb4f88dc 1051
18ab4d4c
DS
1052 spin_lock(&swap_avail_lock);
1053
1054start_over:
a2468cc9
AL
1055 node = numa_node_id();
1056 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
18ab4d4c 1057 /* requeue si to after same-priority siblings */
a2468cc9 1058 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
18ab4d4c 1059 spin_unlock(&swap_avail_lock);
ec8acf20 1060 spin_lock(&si->lock);
adfab836 1061 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c 1062 spin_lock(&swap_avail_lock);
a2468cc9 1063 if (plist_node_empty(&si->avail_lists[node])) {
18ab4d4c
DS
1064 spin_unlock(&si->lock);
1065 goto nextsi;
1066 }
1067 WARN(!si->highest_bit,
1068 "swap_info %d in list but !highest_bit\n",
1069 si->type);
1070 WARN(!(si->flags & SWP_WRITEOK),
1071 "swap_info %d in list but !SWP_WRITEOK\n",
1072 si->type);
a2468cc9 1073 __del_from_avail_list(si);
ec8acf20 1074 spin_unlock(&si->lock);
18ab4d4c 1075 goto nextsi;
ec8acf20 1076 }
5d5e8f19 1077 if (size == SWAPFILE_CLUSTER) {
bc4ae27d 1078 if (!(si->flags & SWP_FS))
f0eea189
HY
1079 n_ret = swap_alloc_cluster(si, swp_entries);
1080 } else
38d8b4e6
HY
1081 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1082 n_goal, swp_entries);
ec8acf20 1083 spin_unlock(&si->lock);
5d5e8f19 1084 if (n_ret || size == SWAPFILE_CLUSTER)
36005bae 1085 goto check_out;
18ab4d4c 1086 pr_debug("scan_swap_map of si %d failed to find offset\n",
36005bae
TC
1087 si->type);
1088
18ab4d4c
DS
1089 spin_lock(&swap_avail_lock);
1090nextsi:
adfab836
DS
1091 /*
1092 * if we got here, it's likely that si was almost full before,
1093 * and since scan_swap_map() can drop the si->lock, multiple
1094 * callers probably all tried to get a page from the same si
18ab4d4c
DS
1095 * and it filled up before we could get one; or, the si filled
1096 * up between us dropping swap_avail_lock and taking si->lock.
1097 * Since we dropped the swap_avail_lock, the swap_avail_head
1098 * list may have been modified; so if next is still in the
36005bae
TC
1099 * swap_avail_head list then try it, otherwise start over
1100 * if we have not gotten any slots.
adfab836 1101 */
a2468cc9 1102 if (plist_node_empty(&next->avail_lists[node]))
18ab4d4c 1103 goto start_over;
1da177e4 1104 }
fb4f88dc 1105
18ab4d4c
DS
1106 spin_unlock(&swap_avail_lock);
1107
36005bae
TC
1108check_out:
1109 if (n_ret < n_goal)
5d5e8f19 1110 atomic_long_add((long)(n_goal - n_ret) * size,
38d8b4e6 1111 &nr_swap_pages);
fb4f88dc 1112noswap:
36005bae
TC
1113 return n_ret;
1114}
1115
2de1a7e4 1116/* The only caller of this function is now suspend routine */
910321ea
HD
1117swp_entry_t get_swap_page_of_type(int type)
1118{
c10d38cc 1119 struct swap_info_struct *si = swap_type_to_swap_info(type);
910321ea
HD
1120 pgoff_t offset;
1121
c10d38cc
DJ
1122 if (!si)
1123 goto fail;
1124
ec8acf20 1125 spin_lock(&si->lock);
c10d38cc 1126 if (si->flags & SWP_WRITEOK) {
ec8acf20 1127 atomic_long_dec(&nr_swap_pages);
910321ea
HD
1128 /* This is called for allocating swap entry, not cache */
1129 offset = scan_swap_map(si, 1);
1130 if (offset) {
ec8acf20 1131 spin_unlock(&si->lock);
910321ea
HD
1132 return swp_entry(type, offset);
1133 }
ec8acf20 1134 atomic_long_inc(&nr_swap_pages);
910321ea 1135 }
ec8acf20 1136 spin_unlock(&si->lock);
c10d38cc 1137fail:
910321ea
HD
1138 return (swp_entry_t) {0};
1139}
1140
e8c26ab6 1141static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1da177e4 1142{
73c34b6a 1143 struct swap_info_struct *p;
eb085574 1144 unsigned long offset;
1da177e4
LT
1145
1146 if (!entry.val)
1147 goto out;
eb085574 1148 p = swp_swap_info(entry);
c10d38cc 1149 if (!p)
1da177e4 1150 goto bad_nofile;
1da177e4
LT
1151 if (!(p->flags & SWP_USED))
1152 goto bad_device;
1153 offset = swp_offset(entry);
1154 if (offset >= p->max)
1155 goto bad_offset;
1da177e4
LT
1156 return p;
1157
1da177e4 1158bad_offset:
6a991fc7 1159 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
1160 goto out;
1161bad_device:
6a991fc7 1162 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
1163 goto out;
1164bad_nofile:
6a991fc7 1165 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
1166out:
1167 return NULL;
886bb7e9 1168}
1da177e4 1169
e8c26ab6
TC
1170static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1171{
1172 struct swap_info_struct *p;
1173
1174 p = __swap_info_get(entry);
1175 if (!p)
1176 goto out;
1177 if (!p->swap_map[swp_offset(entry)])
1178 goto bad_free;
1179 return p;
1180
1181bad_free:
1182 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1183 goto out;
1184out:
1185 return NULL;
1186}
1187
235b6217
HY
1188static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1189{
1190 struct swap_info_struct *p;
1191
1192 p = _swap_info_get(entry);
1193 if (p)
1194 spin_lock(&p->lock);
1195 return p;
1196}
1197
7c00bafe
TC
1198static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1199 struct swap_info_struct *q)
1200{
1201 struct swap_info_struct *p;
1202
1203 p = _swap_info_get(entry);
1204
1205 if (p != q) {
1206 if (q != NULL)
1207 spin_unlock(&q->lock);
1208 if (p != NULL)
1209 spin_lock(&p->lock);
1210 }
1211 return p;
1212}
1213
b32d5f32
HY
1214static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1215 unsigned long offset,
1216 unsigned char usage)
1da177e4 1217{
8d69aaee
HD
1218 unsigned char count;
1219 unsigned char has_cache;
235b6217 1220
253d553b 1221 count = p->swap_map[offset];
235b6217 1222
253d553b
HD
1223 has_cache = count & SWAP_HAS_CACHE;
1224 count &= ~SWAP_HAS_CACHE;
355cfa73 1225
253d553b 1226 if (usage == SWAP_HAS_CACHE) {
355cfa73 1227 VM_BUG_ON(!has_cache);
253d553b 1228 has_cache = 0;
aaa46865
HD
1229 } else if (count == SWAP_MAP_SHMEM) {
1230 /*
1231 * Or we could insist on shmem.c using a special
1232 * swap_shmem_free() and free_shmem_swap_and_cache()...
1233 */
1234 count = 0;
570a335b
HD
1235 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1236 if (count == COUNT_CONTINUED) {
1237 if (swap_count_continued(p, offset, count))
1238 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1239 else
1240 count = SWAP_MAP_MAX;
1241 } else
1242 count--;
1243 }
253d553b 1244
253d553b 1245 usage = count | has_cache;
7c00bafe
TC
1246 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1247
b32d5f32
HY
1248 return usage;
1249}
1250
eb085574
HY
1251/*
1252 * Check whether swap entry is valid in the swap device. If so,
1253 * return pointer to swap_info_struct, and keep the swap entry valid
1254 * via preventing the swap device from being swapoff, until
1255 * put_swap_device() is called. Otherwise return NULL.
1256 *
1257 * The entirety of the RCU read critical section must come before the
1258 * return from or after the call to synchronize_rcu() in
1259 * enable_swap_info() or swapoff(). So if "si->flags & SWP_VALID" is
1260 * true, the si->map, si->cluster_info, etc. must be valid in the
1261 * critical section.
1262 *
1263 * Notice that swapoff or swapoff+swapon can still happen before the
1264 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1265 * in put_swap_device() if there isn't any other way to prevent
1266 * swapoff, such as page lock, page table lock, etc. The caller must
1267 * be prepared for that. For example, the following situation is
1268 * possible.
1269 *
1270 * CPU1 CPU2
1271 * do_swap_page()
1272 * ... swapoff+swapon
1273 * __read_swap_cache_async()
1274 * swapcache_prepare()
1275 * __swap_duplicate()
1276 * // check swap_map
1277 * // verify PTE not changed
1278 *
1279 * In __swap_duplicate(), the swap_map need to be checked before
1280 * changing partly because the specified swap entry may be for another
1281 * swap device which has been swapoff. And in do_swap_page(), after
1282 * the page is read from the swap device, the PTE is verified not
1283 * changed with the page table locked to check whether the swap device
1284 * has been swapoff or swapoff+swapon.
1285 */
1286struct swap_info_struct *get_swap_device(swp_entry_t entry)
1287{
1288 struct swap_info_struct *si;
1289 unsigned long offset;
1290
1291 if (!entry.val)
1292 goto out;
1293 si = swp_swap_info(entry);
1294 if (!si)
1295 goto bad_nofile;
1296
1297 rcu_read_lock();
1298 if (!(si->flags & SWP_VALID))
1299 goto unlock_out;
1300 offset = swp_offset(entry);
1301 if (offset >= si->max)
1302 goto unlock_out;
1303
1304 return si;
1305bad_nofile:
1306 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1307out:
1308 return NULL;
1309unlock_out:
1310 rcu_read_unlock();
1311 return NULL;
1312}
1313
b32d5f32 1314static unsigned char __swap_entry_free(struct swap_info_struct *p,
33e16272 1315 swp_entry_t entry)
b32d5f32
HY
1316{
1317 struct swap_cluster_info *ci;
1318 unsigned long offset = swp_offset(entry);
33e16272 1319 unsigned char usage;
b32d5f32
HY
1320
1321 ci = lock_cluster_or_swap_info(p, offset);
33e16272 1322 usage = __swap_entry_free_locked(p, offset, 1);
7c00bafe 1323 unlock_cluster_or_swap_info(p, ci);
10e364da
HY
1324 if (!usage)
1325 free_swap_slot(entry);
7c00bafe
TC
1326
1327 return usage;
1328}
355cfa73 1329
7c00bafe
TC
1330static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1331{
1332 struct swap_cluster_info *ci;
1333 unsigned long offset = swp_offset(entry);
1334 unsigned char count;
1335
1336 ci = lock_cluster(p, offset);
1337 count = p->swap_map[offset];
1338 VM_BUG_ON(count != SWAP_HAS_CACHE);
1339 p->swap_map[offset] = 0;
1340 dec_cluster_info_page(p, p->cluster_info, offset);
235b6217
HY
1341 unlock_cluster(ci);
1342
38d8b4e6
HY
1343 mem_cgroup_uncharge_swap(entry, 1);
1344 swap_range_free(p, offset, 1);
1da177e4
LT
1345}
1346
1347/*
2de1a7e4 1348 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
1349 * is still around or has not been recycled.
1350 */
1351void swap_free(swp_entry_t entry)
1352{
73c34b6a 1353 struct swap_info_struct *p;
1da177e4 1354
235b6217 1355 p = _swap_info_get(entry);
10e364da 1356 if (p)
33e16272 1357 __swap_entry_free(p, entry);
1da177e4
LT
1358}
1359
cb4b86ba
KH
1360/*
1361 * Called after dropping swapcache to decrease refcnt to swap entries.
1362 */
a448f2d0 1363void put_swap_page(struct page *page, swp_entry_t entry)
38d8b4e6
HY
1364{
1365 unsigned long offset = swp_offset(entry);
1366 unsigned long idx = offset / SWAPFILE_CLUSTER;
1367 struct swap_cluster_info *ci;
1368 struct swap_info_struct *si;
1369 unsigned char *map;
a3aea839
HY
1370 unsigned int i, free_entries = 0;
1371 unsigned char val;
a448f2d0 1372 int size = swap_entry_size(hpage_nr_pages(page));
fe5266d5 1373
a3aea839 1374 si = _swap_info_get(entry);
38d8b4e6
HY
1375 if (!si)
1376 return;
1377
c2343d27 1378 ci = lock_cluster_or_swap_info(si, offset);
a448f2d0 1379 if (size == SWAPFILE_CLUSTER) {
a448f2d0
HY
1380 VM_BUG_ON(!cluster_is_huge(ci));
1381 map = si->swap_map + offset;
1382 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1383 val = map[i];
1384 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1385 if (val == SWAP_HAS_CACHE)
1386 free_entries++;
1387 }
a448f2d0 1388 cluster_clear_huge(ci);
a448f2d0 1389 if (free_entries == SWAPFILE_CLUSTER) {
c2343d27 1390 unlock_cluster_or_swap_info(si, ci);
a448f2d0 1391 spin_lock(&si->lock);
a448f2d0
HY
1392 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1393 swap_free_cluster(si, idx);
1394 spin_unlock(&si->lock);
1395 return;
1396 }
1397 }
c2343d27
HY
1398 for (i = 0; i < size; i++, entry.val++) {
1399 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1400 unlock_cluster_or_swap_info(si, ci);
1401 free_swap_slot(entry);
1402 if (i == size - 1)
1403 return;
1404 lock_cluster_or_swap_info(si, offset);
a3aea839
HY
1405 }
1406 }
c2343d27 1407 unlock_cluster_or_swap_info(si, ci);
38d8b4e6 1408}
59807685 1409
fe5266d5 1410#ifdef CONFIG_THP_SWAP
59807685
HY
1411int split_swap_cluster(swp_entry_t entry)
1412{
1413 struct swap_info_struct *si;
1414 struct swap_cluster_info *ci;
1415 unsigned long offset = swp_offset(entry);
1416
1417 si = _swap_info_get(entry);
1418 if (!si)
1419 return -EBUSY;
1420 ci = lock_cluster(si, offset);
1421 cluster_clear_huge(ci);
1422 unlock_cluster(ci);
1423 return 0;
1424}
fe5266d5 1425#endif
38d8b4e6 1426
155b5f88
HY
1427static int swp_entry_cmp(const void *ent1, const void *ent2)
1428{
1429 const swp_entry_t *e1 = ent1, *e2 = ent2;
1430
1431 return (int)swp_type(*e1) - (int)swp_type(*e2);
1432}
1433
7c00bafe
TC
1434void swapcache_free_entries(swp_entry_t *entries, int n)
1435{
1436 struct swap_info_struct *p, *prev;
1437 int i;
1438
1439 if (n <= 0)
1440 return;
1441
1442 prev = NULL;
1443 p = NULL;
155b5f88
HY
1444
1445 /*
1446 * Sort swap entries by swap device, so each lock is only taken once.
1447 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1448 * so low that it isn't necessary to optimize further.
1449 */
1450 if (nr_swapfiles > 1)
1451 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
7c00bafe
TC
1452 for (i = 0; i < n; ++i) {
1453 p = swap_info_get_cont(entries[i], prev);
1454 if (p)
1455 swap_entry_free(p, entries[i]);
7c00bafe
TC
1456 prev = p;
1457 }
235b6217 1458 if (p)
7c00bafe 1459 spin_unlock(&p->lock);
cb4b86ba
KH
1460}
1461
1da177e4 1462/*
c475a8ab 1463 * How many references to page are currently swapped out?
570a335b
HD
1464 * This does not give an exact answer when swap count is continued,
1465 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 1466 */
bde05d1c 1467int page_swapcount(struct page *page)
1da177e4 1468{
c475a8ab
HD
1469 int count = 0;
1470 struct swap_info_struct *p;
235b6217 1471 struct swap_cluster_info *ci;
1da177e4 1472 swp_entry_t entry;
235b6217 1473 unsigned long offset;
1da177e4 1474
4c21e2f2 1475 entry.val = page_private(page);
235b6217 1476 p = _swap_info_get(entry);
1da177e4 1477 if (p) {
235b6217
HY
1478 offset = swp_offset(entry);
1479 ci = lock_cluster_or_swap_info(p, offset);
1480 count = swap_count(p->swap_map[offset]);
1481 unlock_cluster_or_swap_info(p, ci);
1da177e4 1482 }
c475a8ab 1483 return count;
1da177e4
LT
1484}
1485
eb085574 1486int __swap_count(swp_entry_t entry)
aa8d22a1 1487{
eb085574 1488 struct swap_info_struct *si;
aa8d22a1 1489 pgoff_t offset = swp_offset(entry);
eb085574 1490 int count = 0;
aa8d22a1 1491
eb085574
HY
1492 si = get_swap_device(entry);
1493 if (si) {
1494 count = swap_count(si->swap_map[offset]);
1495 put_swap_device(si);
1496 }
1497 return count;
aa8d22a1
MK
1498}
1499
322b8afe
HY
1500static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1501{
1502 int count = 0;
1503 pgoff_t offset = swp_offset(entry);
1504 struct swap_cluster_info *ci;
1505
1506 ci = lock_cluster_or_swap_info(si, offset);
1507 count = swap_count(si->swap_map[offset]);
1508 unlock_cluster_or_swap_info(si, ci);
1509 return count;
1510}
1511
e8c26ab6
TC
1512/*
1513 * How many references to @entry are currently swapped out?
1514 * This does not give an exact answer when swap count is continued,
1515 * but does include the high COUNT_CONTINUED flag to allow for that.
1516 */
1517int __swp_swapcount(swp_entry_t entry)
1518{
1519 int count = 0;
e8c26ab6 1520 struct swap_info_struct *si;
e8c26ab6 1521
eb085574
HY
1522 si = get_swap_device(entry);
1523 if (si) {
322b8afe 1524 count = swap_swapcount(si, entry);
eb085574
HY
1525 put_swap_device(si);
1526 }
e8c26ab6
TC
1527 return count;
1528}
1529
8334b962
MK
1530/*
1531 * How many references to @entry are currently swapped out?
1532 * This considers COUNT_CONTINUED so it returns exact answer.
1533 */
1534int swp_swapcount(swp_entry_t entry)
1535{
1536 int count, tmp_count, n;
1537 struct swap_info_struct *p;
235b6217 1538 struct swap_cluster_info *ci;
8334b962
MK
1539 struct page *page;
1540 pgoff_t offset;
1541 unsigned char *map;
1542
235b6217 1543 p = _swap_info_get(entry);
8334b962
MK
1544 if (!p)
1545 return 0;
1546
235b6217
HY
1547 offset = swp_offset(entry);
1548
1549 ci = lock_cluster_or_swap_info(p, offset);
1550
1551 count = swap_count(p->swap_map[offset]);
8334b962
MK
1552 if (!(count & COUNT_CONTINUED))
1553 goto out;
1554
1555 count &= ~COUNT_CONTINUED;
1556 n = SWAP_MAP_MAX + 1;
1557
8334b962
MK
1558 page = vmalloc_to_page(p->swap_map + offset);
1559 offset &= ~PAGE_MASK;
1560 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1561
1562 do {
a8ae4991 1563 page = list_next_entry(page, lru);
8334b962
MK
1564 map = kmap_atomic(page);
1565 tmp_count = map[offset];
1566 kunmap_atomic(map);
1567
1568 count += (tmp_count & ~COUNT_CONTINUED) * n;
1569 n *= (SWAP_CONT_MAX + 1);
1570 } while (tmp_count & COUNT_CONTINUED);
1571out:
235b6217 1572 unlock_cluster_or_swap_info(p, ci);
8334b962
MK
1573 return count;
1574}
1575
e0709829
HY
1576static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1577 swp_entry_t entry)
1578{
1579 struct swap_cluster_info *ci;
1580 unsigned char *map = si->swap_map;
1581 unsigned long roffset = swp_offset(entry);
1582 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1583 int i;
1584 bool ret = false;
1585
1586 ci = lock_cluster_or_swap_info(si, offset);
1587 if (!ci || !cluster_is_huge(ci)) {
afa4711e 1588 if (swap_count(map[roffset]))
e0709829
HY
1589 ret = true;
1590 goto unlock_out;
1591 }
1592 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
afa4711e 1593 if (swap_count(map[offset + i])) {
e0709829
HY
1594 ret = true;
1595 break;
1596 }
1597 }
1598unlock_out:
1599 unlock_cluster_or_swap_info(si, ci);
1600 return ret;
1601}
1602
1603static bool page_swapped(struct page *page)
1604{
1605 swp_entry_t entry;
1606 struct swap_info_struct *si;
1607
fe5266d5 1608 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
e0709829
HY
1609 return page_swapcount(page) != 0;
1610
1611 page = compound_head(page);
1612 entry.val = page_private(page);
1613 si = _swap_info_get(entry);
1614 if (si)
1615 return swap_page_trans_huge_swapped(si, entry);
1616 return false;
1617}
ba3c4ce6
HY
1618
1619static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1620 int *total_swapcount)
1621{
1622 int i, map_swapcount, _total_mapcount, _total_swapcount;
1623 unsigned long offset = 0;
1624 struct swap_info_struct *si;
1625 struct swap_cluster_info *ci = NULL;
1626 unsigned char *map = NULL;
1627 int mapcount, swapcount = 0;
1628
1629 /* hugetlbfs shouldn't call it */
1630 VM_BUG_ON_PAGE(PageHuge(page), page);
1631
fe5266d5
HY
1632 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1633 mapcount = page_trans_huge_mapcount(page, total_mapcount);
ba3c4ce6
HY
1634 if (PageSwapCache(page))
1635 swapcount = page_swapcount(page);
1636 if (total_swapcount)
1637 *total_swapcount = swapcount;
1638 return mapcount + swapcount;
1639 }
1640
1641 page = compound_head(page);
1642
1643 _total_mapcount = _total_swapcount = map_swapcount = 0;
1644 if (PageSwapCache(page)) {
1645 swp_entry_t entry;
1646
1647 entry.val = page_private(page);
1648 si = _swap_info_get(entry);
1649 if (si) {
1650 map = si->swap_map;
1651 offset = swp_offset(entry);
1652 }
1653 }
1654 if (map)
1655 ci = lock_cluster(si, offset);
1656 for (i = 0; i < HPAGE_PMD_NR; i++) {
1657 mapcount = atomic_read(&page[i]._mapcount) + 1;
1658 _total_mapcount += mapcount;
1659 if (map) {
1660 swapcount = swap_count(map[offset + i]);
1661 _total_swapcount += swapcount;
1662 }
1663 map_swapcount = max(map_swapcount, mapcount + swapcount);
1664 }
1665 unlock_cluster(ci);
1666 if (PageDoubleMap(page)) {
1667 map_swapcount -= 1;
1668 _total_mapcount -= HPAGE_PMD_NR;
1669 }
1670 mapcount = compound_mapcount(page);
1671 map_swapcount += mapcount;
1672 _total_mapcount += mapcount;
1673 if (total_mapcount)
1674 *total_mapcount = _total_mapcount;
1675 if (total_swapcount)
1676 *total_swapcount = _total_swapcount;
1677
1678 return map_swapcount;
1679}
e0709829 1680
1da177e4 1681/*
7b1fe597
HD
1682 * We can write to an anon page without COW if there are no other references
1683 * to it. And as a side-effect, free up its swap: because the old content
1684 * on disk will never be read, and seeking back there to write new content
1685 * later would only waste time away from clustering.
6d0a07ed 1686 *
ba3c4ce6 1687 * NOTE: total_map_swapcount should not be relied upon by the caller if
6d0a07ed
AA
1688 * reuse_swap_page() returns false, but it may be always overwritten
1689 * (see the other implementation for CONFIG_SWAP=n).
1da177e4 1690 */
ba3c4ce6 1691bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1da177e4 1692{
ba3c4ce6 1693 int count, total_mapcount, total_swapcount;
c475a8ab 1694
309381fe 1695 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688 1696 if (unlikely(PageKsm(page)))
6d0a07ed 1697 return false;
ba3c4ce6
HY
1698 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1699 &total_swapcount);
1700 if (total_map_swapcount)
1701 *total_map_swapcount = total_mapcount + total_swapcount;
1702 if (count == 1 && PageSwapCache(page) &&
1703 (likely(!PageTransCompound(page)) ||
1704 /* The remaining swap count will be freed soon */
1705 total_swapcount == page_swapcount(page))) {
f0571429 1706 if (!PageWriteback(page)) {
ba3c4ce6 1707 page = compound_head(page);
7b1fe597
HD
1708 delete_from_swap_cache(page);
1709 SetPageDirty(page);
f0571429
MK
1710 } else {
1711 swp_entry_t entry;
1712 struct swap_info_struct *p;
1713
1714 entry.val = page_private(page);
1715 p = swap_info_get(entry);
1716 if (p->flags & SWP_STABLE_WRITES) {
1717 spin_unlock(&p->lock);
1718 return false;
1719 }
1720 spin_unlock(&p->lock);
7b1fe597
HD
1721 }
1722 }
ba3c4ce6 1723
5ad64688 1724 return count <= 1;
1da177e4
LT
1725}
1726
1727/*
a2c43eed
HD
1728 * If swap is getting full, or if there are no more mappings of this page,
1729 * then try_to_free_swap is called to free its swap space.
1da177e4 1730 */
a2c43eed 1731int try_to_free_swap(struct page *page)
1da177e4 1732{
309381fe 1733 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
1734
1735 if (!PageSwapCache(page))
1736 return 0;
1737 if (PageWriteback(page))
1738 return 0;
e0709829 1739 if (page_swapped(page))
1da177e4
LT
1740 return 0;
1741
b73d7fce
HD
1742 /*
1743 * Once hibernation has begun to create its image of memory,
1744 * there's a danger that one of the calls to try_to_free_swap()
1745 * - most probably a call from __try_to_reclaim_swap() while
1746 * hibernation is allocating its own swap pages for the image,
1747 * but conceivably even a call from memory reclaim - will free
1748 * the swap from a page which has already been recorded in the
1749 * image as a clean swapcache page, and then reuse its swap for
1750 * another page of the image. On waking from hibernation, the
1751 * original page might be freed under memory pressure, then
1752 * later read back in from swap, now with the wrong data.
1753 *
2de1a7e4 1754 * Hibernation suspends storage while it is writing the image
f90ac398 1755 * to disk so check that here.
b73d7fce 1756 */
f90ac398 1757 if (pm_suspended_storage())
b73d7fce
HD
1758 return 0;
1759
e0709829 1760 page = compound_head(page);
a2c43eed
HD
1761 delete_from_swap_cache(page);
1762 SetPageDirty(page);
1763 return 1;
68a22394
RR
1764}
1765
1da177e4
LT
1766/*
1767 * Free the swap entry like above, but also try to
1768 * free the page cache entry if it is the last user.
1769 */
2509ef26 1770int free_swap_and_cache(swp_entry_t entry)
1da177e4 1771{
2509ef26 1772 struct swap_info_struct *p;
7c00bafe 1773 unsigned char count;
1da177e4 1774
a7420aa5 1775 if (non_swap_entry(entry))
2509ef26 1776 return 1;
0697212a 1777
7c00bafe 1778 p = _swap_info_get(entry);
1da177e4 1779 if (p) {
33e16272 1780 count = __swap_entry_free(p, entry);
e0709829 1781 if (count == SWAP_HAS_CACHE &&
bcd49e86
HY
1782 !swap_page_trans_huge_swapped(p, entry))
1783 __try_to_reclaim_swap(p, swp_offset(entry),
1784 TTRS_UNMAPPED | TTRS_FULL);
1da177e4 1785 }
2509ef26 1786 return p != NULL;
1da177e4
LT
1787}
1788
b0cb1a19 1789#ifdef CONFIG_HIBERNATION
f577eb30 1790/*
915bae9e 1791 * Find the swap type that corresponds to given device (if any).
f577eb30 1792 *
915bae9e
RW
1793 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1794 * from 0, in which the swap header is expected to be located.
1795 *
1796 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1797 */
7bf23687 1798int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 1799{
915bae9e 1800 struct block_device *bdev = NULL;
efa90a98 1801 int type;
f577eb30 1802
915bae9e
RW
1803 if (device)
1804 bdev = bdget(device);
1805
f577eb30 1806 spin_lock(&swap_lock);
efa90a98
HD
1807 for (type = 0; type < nr_swapfiles; type++) {
1808 struct swap_info_struct *sis = swap_info[type];
f577eb30 1809
915bae9e 1810 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1811 continue;
b6b5bce3 1812
915bae9e 1813 if (!bdev) {
7bf23687 1814 if (bdev_p)
dddac6a7 1815 *bdev_p = bdgrab(sis->bdev);
7bf23687 1816
6e1819d6 1817 spin_unlock(&swap_lock);
efa90a98 1818 return type;
6e1819d6 1819 }
915bae9e 1820 if (bdev == sis->bdev) {
4efaceb1 1821 struct swap_extent *se = first_se(sis);
915bae9e 1822
915bae9e 1823 if (se->start_block == offset) {
7bf23687 1824 if (bdev_p)
dddac6a7 1825 *bdev_p = bdgrab(sis->bdev);
7bf23687 1826
915bae9e
RW
1827 spin_unlock(&swap_lock);
1828 bdput(bdev);
efa90a98 1829 return type;
915bae9e 1830 }
f577eb30
RW
1831 }
1832 }
1833 spin_unlock(&swap_lock);
915bae9e
RW
1834 if (bdev)
1835 bdput(bdev);
1836
f577eb30
RW
1837 return -ENODEV;
1838}
1839
73c34b6a
HD
1840/*
1841 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1842 * corresponding to given index in swap_info (swap type).
1843 */
1844sector_t swapdev_block(int type, pgoff_t offset)
1845{
1846 struct block_device *bdev;
c10d38cc 1847 struct swap_info_struct *si = swap_type_to_swap_info(type);
73c34b6a 1848
c10d38cc 1849 if (!si || !(si->flags & SWP_WRITEOK))
73c34b6a 1850 return 0;
d4906e1a 1851 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
1852}
1853
f577eb30
RW
1854/*
1855 * Return either the total number of swap pages of given type, or the number
1856 * of free pages of that type (depending on @free)
1857 *
1858 * This is needed for software suspend
1859 */
1860unsigned int count_swap_pages(int type, int free)
1861{
1862 unsigned int n = 0;
1863
efa90a98
HD
1864 spin_lock(&swap_lock);
1865 if ((unsigned int)type < nr_swapfiles) {
1866 struct swap_info_struct *sis = swap_info[type];
1867
ec8acf20 1868 spin_lock(&sis->lock);
efa90a98
HD
1869 if (sis->flags & SWP_WRITEOK) {
1870 n = sis->pages;
f577eb30 1871 if (free)
efa90a98 1872 n -= sis->inuse_pages;
f577eb30 1873 }
ec8acf20 1874 spin_unlock(&sis->lock);
f577eb30 1875 }
efa90a98 1876 spin_unlock(&swap_lock);
f577eb30
RW
1877 return n;
1878}
73c34b6a 1879#endif /* CONFIG_HIBERNATION */
f577eb30 1880
9f8bdb3f 1881static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
179ef71c 1882{
9f8bdb3f 1883 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
179ef71c
CG
1884}
1885
1da177e4 1886/*
72866f6f
HD
1887 * No need to decide whether this PTE shares the swap entry with others,
1888 * just let do_wp_page work it out if a write is requested later - to
1889 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1890 */
044d66c1 1891static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1892 unsigned long addr, swp_entry_t entry, struct page *page)
1893{
9e16b7fb 1894 struct page *swapcache;
72835c86 1895 struct mem_cgroup *memcg;
044d66c1
HD
1896 spinlock_t *ptl;
1897 pte_t *pte;
1898 int ret = 1;
1899
9e16b7fb
HD
1900 swapcache = page;
1901 page = ksm_might_need_to_copy(page, vma, addr);
1902 if (unlikely(!page))
1903 return -ENOMEM;
1904
f627c2f5
KS
1905 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1906 &memcg, false)) {
044d66c1 1907 ret = -ENOMEM;
85d9fc89
KH
1908 goto out_nolock;
1909 }
044d66c1
HD
1910
1911 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
9f8bdb3f 1912 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
f627c2f5 1913 mem_cgroup_cancel_charge(page, memcg, false);
044d66c1
HD
1914 ret = 0;
1915 goto out;
1916 }
8a9f3ccd 1917
b084d435 1918 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1919 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1920 get_page(page);
1921 set_pte_at(vma->vm_mm, addr, pte,
1922 pte_mkold(mk_pte(page, vma->vm_page_prot)));
00501b53 1923 if (page == swapcache) {
d281ee61 1924 page_add_anon_rmap(page, vma, addr, false);
f627c2f5 1925 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1926 } else { /* ksm created a completely new copy */
d281ee61 1927 page_add_new_anon_rmap(page, vma, addr, false);
f627c2f5 1928 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
1929 lru_cache_add_active_or_unevictable(page, vma);
1930 }
1da177e4
LT
1931 swap_free(entry);
1932 /*
1933 * Move the page to the active list so it is not
1934 * immediately swapped out again after swapon.
1935 */
1936 activate_page(page);
044d66c1
HD
1937out:
1938 pte_unmap_unlock(pte, ptl);
85d9fc89 1939out_nolock:
9e16b7fb
HD
1940 if (page != swapcache) {
1941 unlock_page(page);
1942 put_page(page);
1943 }
044d66c1 1944 return ret;
1da177e4
LT
1945}
1946
1947static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
b56a2d8a
VRP
1948 unsigned long addr, unsigned long end,
1949 unsigned int type, bool frontswap,
1950 unsigned long *fs_pages_to_unuse)
1da177e4 1951{
b56a2d8a
VRP
1952 struct page *page;
1953 swp_entry_t entry;
705e87c0 1954 pte_t *pte;
b56a2d8a
VRP
1955 struct swap_info_struct *si;
1956 unsigned long offset;
8a9f3ccd 1957 int ret = 0;
b56a2d8a 1958 volatile unsigned char *swap_map;
1da177e4 1959
b56a2d8a 1960 si = swap_info[type];
044d66c1 1961 pte = pte_offset_map(pmd, addr);
1da177e4 1962 do {
b56a2d8a
VRP
1963 struct vm_fault vmf;
1964
1965 if (!is_swap_pte(*pte))
1966 continue;
1967
1968 entry = pte_to_swp_entry(*pte);
1969 if (swp_type(entry) != type)
1970 continue;
1971
1972 offset = swp_offset(entry);
1973 if (frontswap && !frontswap_test(si, offset))
1974 continue;
1975
1976 pte_unmap(pte);
1977 swap_map = &si->swap_map[offset];
ebc5951e
AR
1978 page = lookup_swap_cache(entry, vma, addr);
1979 if (!page) {
1980 vmf.vma = vma;
1981 vmf.address = addr;
1982 vmf.pmd = pmd;
1983 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1984 &vmf);
1985 }
b56a2d8a
VRP
1986 if (!page) {
1987 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1988 goto try_next;
1989 return -ENOMEM;
1990 }
1991
1992 lock_page(page);
1993 wait_on_page_writeback(page);
1994 ret = unuse_pte(vma, pmd, addr, entry, page);
1995 if (ret < 0) {
1996 unlock_page(page);
1997 put_page(page);
1998 goto out;
1999 }
2000
2001 try_to_free_swap(page);
2002 unlock_page(page);
2003 put_page(page);
2004
2005 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
2006 ret = FRONTSWAP_PAGES_UNUSED;
2007 goto out;
1da177e4 2008 }
b56a2d8a
VRP
2009try_next:
2010 pte = pte_offset_map(pmd, addr);
1da177e4 2011 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1 2012 pte_unmap(pte - 1);
b56a2d8a
VRP
2013
2014 ret = 0;
044d66c1 2015out:
8a9f3ccd 2016 return ret;
1da177e4
LT
2017}
2018
2019static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2020 unsigned long addr, unsigned long end,
b56a2d8a
VRP
2021 unsigned int type, bool frontswap,
2022 unsigned long *fs_pages_to_unuse)
1da177e4
LT
2023{
2024 pmd_t *pmd;
2025 unsigned long next;
8a9f3ccd 2026 int ret;
1da177e4
LT
2027
2028 pmd = pmd_offset(pud, addr);
2029 do {
dc644a07 2030 cond_resched();
1da177e4 2031 next = pmd_addr_end(addr, end);
1a5a9906 2032 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 2033 continue;
b56a2d8a
VRP
2034 ret = unuse_pte_range(vma, pmd, addr, next, type,
2035 frontswap, fs_pages_to_unuse);
8a9f3ccd
BS
2036 if (ret)
2037 return ret;
1da177e4
LT
2038 } while (pmd++, addr = next, addr != end);
2039 return 0;
2040}
2041
c2febafc 2042static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 2043 unsigned long addr, unsigned long end,
b56a2d8a
VRP
2044 unsigned int type, bool frontswap,
2045 unsigned long *fs_pages_to_unuse)
1da177e4
LT
2046{
2047 pud_t *pud;
2048 unsigned long next;
8a9f3ccd 2049 int ret;
1da177e4 2050
c2febafc 2051 pud = pud_offset(p4d, addr);
1da177e4
LT
2052 do {
2053 next = pud_addr_end(addr, end);
2054 if (pud_none_or_clear_bad(pud))
2055 continue;
b56a2d8a
VRP
2056 ret = unuse_pmd_range(vma, pud, addr, next, type,
2057 frontswap, fs_pages_to_unuse);
8a9f3ccd
BS
2058 if (ret)
2059 return ret;
1da177e4
LT
2060 } while (pud++, addr = next, addr != end);
2061 return 0;
2062}
2063
c2febafc
KS
2064static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2065 unsigned long addr, unsigned long end,
b56a2d8a
VRP
2066 unsigned int type, bool frontswap,
2067 unsigned long *fs_pages_to_unuse)
c2febafc
KS
2068{
2069 p4d_t *p4d;
2070 unsigned long next;
2071 int ret;
2072
2073 p4d = p4d_offset(pgd, addr);
2074 do {
2075 next = p4d_addr_end(addr, end);
2076 if (p4d_none_or_clear_bad(p4d))
2077 continue;
b56a2d8a
VRP
2078 ret = unuse_pud_range(vma, p4d, addr, next, type,
2079 frontswap, fs_pages_to_unuse);
c2febafc
KS
2080 if (ret)
2081 return ret;
2082 } while (p4d++, addr = next, addr != end);
2083 return 0;
2084}
2085
b56a2d8a
VRP
2086static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2087 bool frontswap, unsigned long *fs_pages_to_unuse)
1da177e4
LT
2088{
2089 pgd_t *pgd;
2090 unsigned long addr, end, next;
8a9f3ccd 2091 int ret;
1da177e4 2092
b56a2d8a
VRP
2093 addr = vma->vm_start;
2094 end = vma->vm_end;
1da177e4
LT
2095
2096 pgd = pgd_offset(vma->vm_mm, addr);
2097 do {
2098 next = pgd_addr_end(addr, end);
2099 if (pgd_none_or_clear_bad(pgd))
2100 continue;
b56a2d8a
VRP
2101 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2102 frontswap, fs_pages_to_unuse);
8a9f3ccd
BS
2103 if (ret)
2104 return ret;
1da177e4
LT
2105 } while (pgd++, addr = next, addr != end);
2106 return 0;
2107}
2108
b56a2d8a
VRP
2109static int unuse_mm(struct mm_struct *mm, unsigned int type,
2110 bool frontswap, unsigned long *fs_pages_to_unuse)
1da177e4
LT
2111{
2112 struct vm_area_struct *vma;
8a9f3ccd 2113 int ret = 0;
1da177e4 2114
b56a2d8a 2115 down_read(&mm->mmap_sem);
1da177e4 2116 for (vma = mm->mmap; vma; vma = vma->vm_next) {
b56a2d8a
VRP
2117 if (vma->anon_vma) {
2118 ret = unuse_vma(vma, type, frontswap,
2119 fs_pages_to_unuse);
2120 if (ret)
2121 break;
2122 }
dc644a07 2123 cond_resched();
1da177e4 2124 }
1da177e4 2125 up_read(&mm->mmap_sem);
b56a2d8a 2126 return ret;
1da177e4
LT
2127}
2128
2129/*
38b5faf4 2130 * Scan swap_map (or frontswap_map if frontswap parameter is true)
b56a2d8a
VRP
2131 * from current position to next entry still in use. Return 0
2132 * if there are no inuse entries after prev till end of the map.
1da177e4 2133 */
6eb396dc 2134static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 2135 unsigned int prev, bool frontswap)
1da177e4 2136{
b56a2d8a 2137 unsigned int i;
8d69aaee 2138 unsigned char count;
1da177e4
LT
2139
2140 /*
5d337b91 2141 * No need for swap_lock here: we're just looking
1da177e4
LT
2142 * for whether an entry is in use, not modifying it; false
2143 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 2144 * allocations from this area (while holding swap_lock).
1da177e4 2145 */
b56a2d8a 2146 for (i = prev + 1; i < si->max; i++) {
4db0c3c2 2147 count = READ_ONCE(si->swap_map[i]);
355cfa73 2148 if (count && swap_count(count) != SWAP_MAP_BAD)
dc644a07
HD
2149 if (!frontswap || frontswap_test(si, i))
2150 break;
2151 if ((i % LATENCY_LIMIT) == 0)
2152 cond_resched();
1da177e4 2153 }
b56a2d8a
VRP
2154
2155 if (i == si->max)
2156 i = 0;
2157
1da177e4
LT
2158 return i;
2159}
2160
2161/*
b56a2d8a 2162 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
38b5faf4 2163 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 2164 */
38b5faf4
DM
2165int try_to_unuse(unsigned int type, bool frontswap,
2166 unsigned long pages_to_unuse)
1da177e4 2167{
b56a2d8a
VRP
2168 struct mm_struct *prev_mm;
2169 struct mm_struct *mm;
2170 struct list_head *p;
2171 int retval = 0;
efa90a98 2172 struct swap_info_struct *si = swap_info[type];
1da177e4
LT
2173 struct page *page;
2174 swp_entry_t entry;
b56a2d8a 2175 unsigned int i;
1da177e4 2176
21820948 2177 if (!READ_ONCE(si->inuse_pages))
b56a2d8a 2178 return 0;
1da177e4 2179
b56a2d8a
VRP
2180 if (!frontswap)
2181 pages_to_unuse = 0;
2182
2183retry:
2184 retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2185 if (retval)
2186 goto out;
2187
2188 prev_mm = &init_mm;
2189 mmget(prev_mm);
2190
2191 spin_lock(&mmlist_lock);
2192 p = &init_mm.mmlist;
21820948 2193 while (READ_ONCE(si->inuse_pages) &&
64165b1a
HD
2194 !signal_pending(current) &&
2195 (p = p->next) != &init_mm.mmlist) {
1da177e4 2196
b56a2d8a
VRP
2197 mm = list_entry(p, struct mm_struct, mmlist);
2198 if (!mmget_not_zero(mm))
2199 continue;
2200 spin_unlock(&mmlist_lock);
2201 mmput(prev_mm);
2202 prev_mm = mm;
2203 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
1da177e4 2204
b56a2d8a
VRP
2205 if (retval) {
2206 mmput(prev_mm);
2207 goto out;
1da177e4
LT
2208 }
2209
2210 /*
b56a2d8a
VRP
2211 * Make sure that we aren't completely killing
2212 * interactive performance.
1da177e4 2213 */
b56a2d8a
VRP
2214 cond_resched();
2215 spin_lock(&mmlist_lock);
2216 }
2217 spin_unlock(&mmlist_lock);
1da177e4 2218
b56a2d8a 2219 mmput(prev_mm);
1da177e4 2220
b56a2d8a 2221 i = 0;
21820948 2222 while (READ_ONCE(si->inuse_pages) &&
64165b1a
HD
2223 !signal_pending(current) &&
2224 (i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4 2225
b56a2d8a
VRP
2226 entry = swp_entry(type, i);
2227 page = find_get_page(swap_address_space(entry), i);
2228 if (!page)
2229 continue;
68bdc8d6
HD
2230
2231 /*
2232 * It is conceivable that a racing task removed this page from
b56a2d8a
VRP
2233 * swap cache just before we acquired the page lock. The page
2234 * might even be back in swap cache on another swap area. But
2235 * that is okay, try_to_free_swap() only removes stale pages.
1da177e4 2236 */
b56a2d8a
VRP
2237 lock_page(page);
2238 wait_on_page_writeback(page);
2239 try_to_free_swap(page);
1da177e4 2240 unlock_page(page);
09cbfeaf 2241 put_page(page);
1da177e4
LT
2242
2243 /*
b56a2d8a
VRP
2244 * For frontswap, we just need to unuse pages_to_unuse, if
2245 * it was specified. Need not check frontswap again here as
2246 * we already zeroed out pages_to_unuse if not frontswap.
1da177e4 2247 */
b56a2d8a
VRP
2248 if (pages_to_unuse && --pages_to_unuse == 0)
2249 goto out;
1da177e4
LT
2250 }
2251
b56a2d8a
VRP
2252 /*
2253 * Lets check again to see if there are still swap entries in the map.
2254 * If yes, we would need to do retry the unuse logic again.
2255 * Under global memory pressure, swap entries can be reinserted back
2256 * into process space after the mmlist loop above passes over them.
dd862deb 2257 *
af53d3e9
HD
2258 * Limit the number of retries? No: when mmget_not_zero() above fails,
2259 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2260 * at its own independent pace; and even shmem_writepage() could have
2261 * been preempted after get_swap_page(), temporarily hiding that swap.
2262 * It's easy and robust (though cpu-intensive) just to keep retrying.
b56a2d8a 2263 */
21820948 2264 if (READ_ONCE(si->inuse_pages)) {
64165b1a
HD
2265 if (!signal_pending(current))
2266 goto retry;
2267 retval = -EINTR;
2268 }
b56a2d8a
VRP
2269out:
2270 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
1da177e4
LT
2271}
2272
2273/*
5d337b91
HD
2274 * After a successful try_to_unuse, if no swap is now in use, we know
2275 * we can empty the mmlist. swap_lock must be held on entry and exit.
2276 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
2277 * added to the mmlist just after page_duplicate - before would be racy.
2278 */
2279static void drain_mmlist(void)
2280{
2281 struct list_head *p, *next;
efa90a98 2282 unsigned int type;
1da177e4 2283
efa90a98
HD
2284 for (type = 0; type < nr_swapfiles; type++)
2285 if (swap_info[type]->inuse_pages)
1da177e4
LT
2286 return;
2287 spin_lock(&mmlist_lock);
2288 list_for_each_safe(p, next, &init_mm.mmlist)
2289 list_del_init(p);
2290 spin_unlock(&mmlist_lock);
2291}
2292
2293/*
2294 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
2295 * corresponds to page offset for the specified swap entry.
2296 * Note that the type of this function is sector_t, but it returns page offset
2297 * into the bdev, not sector offset.
1da177e4 2298 */
d4906e1a 2299static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 2300{
f29ad6a9 2301 struct swap_info_struct *sis;
f29ad6a9
HD
2302 struct swap_extent *se;
2303 pgoff_t offset;
2304
c10d38cc 2305 sis = swp_swap_info(entry);
f29ad6a9
HD
2306 *bdev = sis->bdev;
2307
2308 offset = swp_offset(entry);
4efaceb1
AL
2309 se = offset_to_swap_extent(sis, offset);
2310 return se->start_block + (offset - se->start_page);
1da177e4
LT
2311}
2312
d4906e1a
LS
2313/*
2314 * Returns the page offset into bdev for the specified page's swap entry.
2315 */
2316sector_t map_swap_page(struct page *page, struct block_device **bdev)
2317{
2318 swp_entry_t entry;
2319 entry.val = page_private(page);
2320 return map_swap_entry(entry, bdev);
2321}
2322
1da177e4
LT
2323/*
2324 * Free all of a swapdev's extent information
2325 */
2326static void destroy_swap_extents(struct swap_info_struct *sis)
2327{
4efaceb1
AL
2328 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2329 struct rb_node *rb = sis->swap_extent_root.rb_node;
2330 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
1da177e4 2331
4efaceb1 2332 rb_erase(rb, &sis->swap_extent_root);
1da177e4
LT
2333 kfree(se);
2334 }
62c230bc 2335
bc4ae27d 2336 if (sis->flags & SWP_ACTIVATED) {
62c230bc
MG
2337 struct file *swap_file = sis->swap_file;
2338 struct address_space *mapping = swap_file->f_mapping;
2339
bc4ae27d
OS
2340 sis->flags &= ~SWP_ACTIVATED;
2341 if (mapping->a_ops->swap_deactivate)
2342 mapping->a_ops->swap_deactivate(swap_file);
62c230bc 2343 }
1da177e4
LT
2344}
2345
2346/*
2347 * Add a block range (and the corresponding page range) into this swapdev's
4efaceb1 2348 * extent tree.
1da177e4 2349 *
11d31886 2350 * This function rather assumes that it is called in ascending page order.
1da177e4 2351 */
a509bc1a 2352int
1da177e4
LT
2353add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2354 unsigned long nr_pages, sector_t start_block)
2355{
4efaceb1 2356 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
1da177e4
LT
2357 struct swap_extent *se;
2358 struct swap_extent *new_se;
4efaceb1
AL
2359
2360 /*
2361 * place the new node at the right most since the
2362 * function is called in ascending page order.
2363 */
2364 while (*link) {
2365 parent = *link;
2366 link = &parent->rb_right;
2367 }
2368
2369 if (parent) {
2370 se = rb_entry(parent, struct swap_extent, rb_node);
11d31886
HD
2371 BUG_ON(se->start_page + se->nr_pages != start_page);
2372 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
2373 /* Merge it */
2374 se->nr_pages += nr_pages;
2375 return 0;
2376 }
1da177e4
LT
2377 }
2378
4efaceb1 2379 /* No merge, insert a new extent. */
1da177e4
LT
2380 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2381 if (new_se == NULL)
2382 return -ENOMEM;
2383 new_se->start_page = start_page;
2384 new_se->nr_pages = nr_pages;
2385 new_se->start_block = start_block;
2386
4efaceb1
AL
2387 rb_link_node(&new_se->rb_node, parent, link);
2388 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
53092a74 2389 return 1;
1da177e4 2390}
aa8aa8a3 2391EXPORT_SYMBOL_GPL(add_swap_extent);
1da177e4
LT
2392
2393/*
2394 * A `swap extent' is a simple thing which maps a contiguous range of pages
2395 * onto a contiguous range of disk blocks. An ordered list of swap extents
2396 * is built at swapon time and is then used at swap_writepage/swap_readpage
2397 * time for locating where on disk a page belongs.
2398 *
2399 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2400 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2401 * swap files identically.
2402 *
2403 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2404 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2405 * swapfiles are handled *identically* after swapon time.
2406 *
2407 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2408 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2409 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2410 * requirements, they are simply tossed out - we will never use those blocks
2411 * for swapping.
2412 *
1638045c
DW
2413 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2414 * prevents users from writing to the swap device, which will corrupt memory.
1da177e4
LT
2415 *
2416 * The amount of disk space which a single swap extent represents varies.
2417 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2418 * extents in the list. To avoid much list walking, we cache the previous
2419 * search location in `curr_swap_extent', and start new searches from there.
2420 * This is extremely effective. The average number of iterations in
2421 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2422 */
53092a74 2423static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 2424{
62c230bc
MG
2425 struct file *swap_file = sis->swap_file;
2426 struct address_space *mapping = swap_file->f_mapping;
2427 struct inode *inode = mapping->host;
1da177e4
LT
2428 int ret;
2429
1da177e4
LT
2430 if (S_ISBLK(inode->i_mode)) {
2431 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 2432 *span = sis->pages;
a509bc1a 2433 return ret;
1da177e4
LT
2434 }
2435
62c230bc 2436 if (mapping->a_ops->swap_activate) {
a509bc1a 2437 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
bc4ae27d
OS
2438 if (ret >= 0)
2439 sis->flags |= SWP_ACTIVATED;
62c230bc 2440 if (!ret) {
bc4ae27d 2441 sis->flags |= SWP_FS;
62c230bc
MG
2442 ret = add_swap_extent(sis, 0, sis->max, 0);
2443 *span = sis->pages;
2444 }
a509bc1a 2445 return ret;
62c230bc
MG
2446 }
2447
a509bc1a 2448 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
2449}
2450
a2468cc9
AL
2451static int swap_node(struct swap_info_struct *p)
2452{
2453 struct block_device *bdev;
2454
2455 if (p->bdev)
2456 bdev = p->bdev;
2457 else
2458 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2459
2460 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2461}
2462
eb085574
HY
2463static void setup_swap_info(struct swap_info_struct *p, int prio,
2464 unsigned char *swap_map,
2465 struct swap_cluster_info *cluster_info)
40531542 2466{
a2468cc9
AL
2467 int i;
2468
40531542
CEB
2469 if (prio >= 0)
2470 p->prio = prio;
2471 else
2472 p->prio = --least_priority;
18ab4d4c
DS
2473 /*
2474 * the plist prio is negated because plist ordering is
2475 * low-to-high, while swap ordering is high-to-low
2476 */
2477 p->list.prio = -p->prio;
a2468cc9
AL
2478 for_each_node(i) {
2479 if (p->prio >= 0)
2480 p->avail_lists[i].prio = -p->prio;
2481 else {
2482 if (swap_node(p) == i)
2483 p->avail_lists[i].prio = 1;
2484 else
2485 p->avail_lists[i].prio = -p->prio;
2486 }
2487 }
40531542 2488 p->swap_map = swap_map;
2a8f9449 2489 p->cluster_info = cluster_info;
eb085574
HY
2490}
2491
2492static void _enable_swap_info(struct swap_info_struct *p)
2493{
2494 p->flags |= SWP_WRITEOK | SWP_VALID;
ec8acf20 2495 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
2496 total_swap_pages += p->pages;
2497
adfab836 2498 assert_spin_locked(&swap_lock);
adfab836 2499 /*
18ab4d4c
DS
2500 * both lists are plists, and thus priority ordered.
2501 * swap_active_head needs to be priority ordered for swapoff(),
2502 * which on removal of any swap_info_struct with an auto-assigned
2503 * (i.e. negative) priority increments the auto-assigned priority
2504 * of any lower-priority swap_info_structs.
2505 * swap_avail_head needs to be priority ordered for get_swap_page(),
2506 * which allocates swap pages from the highest available priority
2507 * swap_info_struct.
adfab836 2508 */
18ab4d4c 2509 plist_add(&p->list, &swap_active_head);
a2468cc9 2510 add_to_avail_list(p);
cf0cac0a
CEB
2511}
2512
2513static void enable_swap_info(struct swap_info_struct *p, int prio,
2514 unsigned char *swap_map,
2a8f9449 2515 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
2516 unsigned long *frontswap_map)
2517{
4f89849d 2518 frontswap_init(p->type, frontswap_map);
cf0cac0a 2519 spin_lock(&swap_lock);
ec8acf20 2520 spin_lock(&p->lock);
eb085574
HY
2521 setup_swap_info(p, prio, swap_map, cluster_info);
2522 spin_unlock(&p->lock);
2523 spin_unlock(&swap_lock);
2524 /*
2525 * Guarantee swap_map, cluster_info, etc. fields are valid
2526 * between get/put_swap_device() if SWP_VALID bit is set
2527 */
2528 synchronize_rcu();
2529 spin_lock(&swap_lock);
2530 spin_lock(&p->lock);
2531 _enable_swap_info(p);
ec8acf20 2532 spin_unlock(&p->lock);
cf0cac0a
CEB
2533 spin_unlock(&swap_lock);
2534}
2535
2536static void reinsert_swap_info(struct swap_info_struct *p)
2537{
2538 spin_lock(&swap_lock);
ec8acf20 2539 spin_lock(&p->lock);
eb085574
HY
2540 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2541 _enable_swap_info(p);
ec8acf20 2542 spin_unlock(&p->lock);
40531542
CEB
2543 spin_unlock(&swap_lock);
2544}
2545
67afa38e
TC
2546bool has_usable_swap(void)
2547{
2548 bool ret = true;
2549
2550 spin_lock(&swap_lock);
2551 if (plist_head_empty(&swap_active_head))
2552 ret = false;
2553 spin_unlock(&swap_lock);
2554 return ret;
2555}
2556
c4ea37c2 2557SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 2558{
73c34b6a 2559 struct swap_info_struct *p = NULL;
8d69aaee 2560 unsigned char *swap_map;
2a8f9449 2561 struct swap_cluster_info *cluster_info;
4f89849d 2562 unsigned long *frontswap_map;
1da177e4
LT
2563 struct file *swap_file, *victim;
2564 struct address_space *mapping;
2565 struct inode *inode;
91a27b2a 2566 struct filename *pathname;
adfab836 2567 int err, found = 0;
5b808a23 2568 unsigned int old_block_size;
886bb7e9 2569
1da177e4
LT
2570 if (!capable(CAP_SYS_ADMIN))
2571 return -EPERM;
2572
191c5424
AV
2573 BUG_ON(!current->mm);
2574
1da177e4 2575 pathname = getname(specialfile);
1da177e4 2576 if (IS_ERR(pathname))
f58b59c1 2577 return PTR_ERR(pathname);
1da177e4 2578
669abf4e 2579 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
2580 err = PTR_ERR(victim);
2581 if (IS_ERR(victim))
2582 goto out;
2583
2584 mapping = victim->f_mapping;
5d337b91 2585 spin_lock(&swap_lock);
18ab4d4c 2586 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 2587 if (p->flags & SWP_WRITEOK) {
adfab836
DS
2588 if (p->swap_file->f_mapping == mapping) {
2589 found = 1;
1da177e4 2590 break;
adfab836 2591 }
1da177e4 2592 }
1da177e4 2593 }
adfab836 2594 if (!found) {
1da177e4 2595 err = -EINVAL;
5d337b91 2596 spin_unlock(&swap_lock);
1da177e4
LT
2597 goto out_dput;
2598 }
191c5424 2599 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
2600 vm_unacct_memory(p->pages);
2601 else {
2602 err = -ENOMEM;
5d337b91 2603 spin_unlock(&swap_lock);
1da177e4
LT
2604 goto out_dput;
2605 }
a2468cc9 2606 del_from_avail_list(p);
ec8acf20 2607 spin_lock(&p->lock);
78ecba08 2608 if (p->prio < 0) {
adfab836 2609 struct swap_info_struct *si = p;
a2468cc9 2610 int nid;
adfab836 2611
18ab4d4c 2612 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 2613 si->prio++;
18ab4d4c 2614 si->list.prio--;
a2468cc9
AL
2615 for_each_node(nid) {
2616 if (si->avail_lists[nid].prio != 1)
2617 si->avail_lists[nid].prio--;
2618 }
adfab836 2619 }
78ecba08
HD
2620 least_priority++;
2621 }
18ab4d4c 2622 plist_del(&p->list, &swap_active_head);
ec8acf20 2623 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
2624 total_swap_pages -= p->pages;
2625 p->flags &= ~SWP_WRITEOK;
ec8acf20 2626 spin_unlock(&p->lock);
5d337b91 2627 spin_unlock(&swap_lock);
fb4f88dc 2628
039939a6
TC
2629 disable_swap_slots_cache_lock();
2630
e1e12d2f 2631 set_current_oom_origin();
adfab836 2632 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
e1e12d2f 2633 clear_current_oom_origin();
1da177e4 2634
1da177e4
LT
2635 if (err) {
2636 /* re-insert swap space back into swap_list */
cf0cac0a 2637 reinsert_swap_info(p);
039939a6 2638 reenable_swap_slots_cache_unlock();
1da177e4
LT
2639 goto out_dput;
2640 }
52b7efdb 2641
039939a6
TC
2642 reenable_swap_slots_cache_unlock();
2643
eb085574
HY
2644 spin_lock(&swap_lock);
2645 spin_lock(&p->lock);
2646 p->flags &= ~SWP_VALID; /* mark swap device as invalid */
2647 spin_unlock(&p->lock);
2648 spin_unlock(&swap_lock);
2649 /*
2650 * wait for swap operations protected by get/put_swap_device()
2651 * to complete
2652 */
2653 synchronize_rcu();
2654
815c2c54
SL
2655 flush_work(&p->discard_work);
2656
5d337b91 2657 destroy_swap_extents(p);
570a335b
HD
2658 if (p->flags & SWP_CONTINUED)
2659 free_swap_count_continuations(p);
2660
81a0298b
HY
2661 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2662 atomic_dec(&nr_rotate_swap);
2663
fc0abb14 2664 mutex_lock(&swapon_mutex);
5d337b91 2665 spin_lock(&swap_lock);
ec8acf20 2666 spin_lock(&p->lock);
5d337b91
HD
2667 drain_mmlist();
2668
52b7efdb 2669 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
2670 p->highest_bit = 0; /* cuts scans short */
2671 while (p->flags >= SWP_SCANNING) {
ec8acf20 2672 spin_unlock(&p->lock);
5d337b91 2673 spin_unlock(&swap_lock);
13e4b57f 2674 schedule_timeout_uninterruptible(1);
5d337b91 2675 spin_lock(&swap_lock);
ec8acf20 2676 spin_lock(&p->lock);
52b7efdb 2677 }
52b7efdb 2678
1da177e4 2679 swap_file = p->swap_file;
5b808a23 2680 old_block_size = p->old_block_size;
1da177e4
LT
2681 p->swap_file = NULL;
2682 p->max = 0;
2683 swap_map = p->swap_map;
2684 p->swap_map = NULL;
2a8f9449
SL
2685 cluster_info = p->cluster_info;
2686 p->cluster_info = NULL;
4f89849d 2687 frontswap_map = frontswap_map_get(p);
ec8acf20 2688 spin_unlock(&p->lock);
5d337b91 2689 spin_unlock(&swap_lock);
adfab836 2690 frontswap_invalidate_area(p->type);
58e97ba6 2691 frontswap_map_set(p, NULL);
fc0abb14 2692 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
2693 free_percpu(p->percpu_cluster);
2694 p->percpu_cluster = NULL;
49070588
HY
2695 free_percpu(p->cluster_next_cpu);
2696 p->cluster_next_cpu = NULL;
1da177e4 2697 vfree(swap_map);
54f180d3
HY
2698 kvfree(cluster_info);
2699 kvfree(frontswap_map);
2de1a7e4 2700 /* Destroy swap account information */
adfab836 2701 swap_cgroup_swapoff(p->type);
4b3ef9da 2702 exit_swap_address_space(p->type);
27a7faa0 2703
1da177e4
LT
2704 inode = mapping->host;
2705 if (S_ISBLK(inode->i_mode)) {
2706 struct block_device *bdev = I_BDEV(inode);
1638045c 2707
5b808a23 2708 set_blocksize(bdev, old_block_size);
e525fd89 2709 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2710 }
1638045c
DW
2711
2712 inode_lock(inode);
2713 inode->i_flags &= ~S_SWAPFILE;
2714 inode_unlock(inode);
1da177e4 2715 filp_close(swap_file, NULL);
f893ab41
WY
2716
2717 /*
2718 * Clear the SWP_USED flag after all resources are freed so that swapon
2719 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2720 * not hold p->lock after we cleared its SWP_WRITEOK.
2721 */
2722 spin_lock(&swap_lock);
2723 p->flags = 0;
2724 spin_unlock(&swap_lock);
2725
1da177e4 2726 err = 0;
66d7dd51
KS
2727 atomic_inc(&proc_poll_event);
2728 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
2729
2730out_dput:
2731 filp_close(victim, NULL);
2732out:
f58b59c1 2733 putname(pathname);
1da177e4
LT
2734 return err;
2735}
2736
2737#ifdef CONFIG_PROC_FS
9dd95748 2738static __poll_t swaps_poll(struct file *file, poll_table *wait)
66d7dd51 2739{
f1514638 2740 struct seq_file *seq = file->private_data;
66d7dd51
KS
2741
2742 poll_wait(file, &proc_poll_wait, wait);
2743
f1514638
KS
2744 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2745 seq->poll_event = atomic_read(&proc_poll_event);
a9a08845 2746 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
66d7dd51
KS
2747 }
2748
a9a08845 2749 return EPOLLIN | EPOLLRDNORM;
66d7dd51
KS
2750}
2751
1da177e4
LT
2752/* iterator */
2753static void *swap_start(struct seq_file *swap, loff_t *pos)
2754{
efa90a98
HD
2755 struct swap_info_struct *si;
2756 int type;
1da177e4
LT
2757 loff_t l = *pos;
2758
fc0abb14 2759 mutex_lock(&swapon_mutex);
1da177e4 2760
881e4aab
SS
2761 if (!l)
2762 return SEQ_START_TOKEN;
2763
c10d38cc 2764 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
efa90a98 2765 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2766 continue;
881e4aab 2767 if (!--l)
efa90a98 2768 return si;
1da177e4
LT
2769 }
2770
2771 return NULL;
2772}
2773
2774static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2775{
efa90a98
HD
2776 struct swap_info_struct *si = v;
2777 int type;
1da177e4 2778
881e4aab 2779 if (v == SEQ_START_TOKEN)
efa90a98
HD
2780 type = 0;
2781 else
2782 type = si->type + 1;
881e4aab 2783
10c8d69f 2784 ++(*pos);
c10d38cc 2785 for (; (si = swap_type_to_swap_info(type)); type++) {
efa90a98 2786 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2787 continue;
efa90a98 2788 return si;
1da177e4
LT
2789 }
2790
2791 return NULL;
2792}
2793
2794static void swap_stop(struct seq_file *swap, void *v)
2795{
fc0abb14 2796 mutex_unlock(&swapon_mutex);
1da177e4
LT
2797}
2798
2799static int swap_show(struct seq_file *swap, void *v)
2800{
efa90a98 2801 struct swap_info_struct *si = v;
1da177e4
LT
2802 struct file *file;
2803 int len;
2804
efa90a98 2805 if (si == SEQ_START_TOKEN) {
881e4aab
SS
2806 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2807 return 0;
2808 }
1da177e4 2809
efa90a98 2810 file = si->swap_file;
2726d566 2811 len = seq_file_path(swap, file, " \t\n\\");
6eb396dc 2812 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9 2813 len < 40 ? 40 - len : 1, " ",
496ad9aa 2814 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2815 "partition" : "file\t",
efa90a98
HD
2816 si->pages << (PAGE_SHIFT - 10),
2817 si->inuse_pages << (PAGE_SHIFT - 10),
2818 si->prio);
1da177e4
LT
2819 return 0;
2820}
2821
15ad7cdc 2822static const struct seq_operations swaps_op = {
1da177e4
LT
2823 .start = swap_start,
2824 .next = swap_next,
2825 .stop = swap_stop,
2826 .show = swap_show
2827};
2828
2829static int swaps_open(struct inode *inode, struct file *file)
2830{
f1514638 2831 struct seq_file *seq;
66d7dd51
KS
2832 int ret;
2833
66d7dd51 2834 ret = seq_open(file, &swaps_op);
f1514638 2835 if (ret)
66d7dd51 2836 return ret;
66d7dd51 2837
f1514638
KS
2838 seq = file->private_data;
2839 seq->poll_event = atomic_read(&proc_poll_event);
2840 return 0;
1da177e4
LT
2841}
2842
97a32539 2843static const struct proc_ops swaps_proc_ops = {
d919b33d 2844 .proc_flags = PROC_ENTRY_PERMANENT,
97a32539
AD
2845 .proc_open = swaps_open,
2846 .proc_read = seq_read,
2847 .proc_lseek = seq_lseek,
2848 .proc_release = seq_release,
2849 .proc_poll = swaps_poll,
1da177e4
LT
2850};
2851
2852static int __init procswaps_init(void)
2853{
97a32539 2854 proc_create("swaps", 0, NULL, &swaps_proc_ops);
1da177e4
LT
2855 return 0;
2856}
2857__initcall(procswaps_init);
2858#endif /* CONFIG_PROC_FS */
2859
1796316a
JB
2860#ifdef MAX_SWAPFILES_CHECK
2861static int __init max_swapfiles_check(void)
2862{
2863 MAX_SWAPFILES_CHECK();
2864 return 0;
2865}
2866late_initcall(max_swapfiles_check);
2867#endif
2868
53cbb243 2869static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2870{
73c34b6a 2871 struct swap_info_struct *p;
1da177e4 2872 unsigned int type;
a2468cc9 2873 int i;
efa90a98 2874
96008744 2875 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
efa90a98 2876 if (!p)
53cbb243 2877 return ERR_PTR(-ENOMEM);
efa90a98 2878
5d337b91 2879 spin_lock(&swap_lock);
efa90a98
HD
2880 for (type = 0; type < nr_swapfiles; type++) {
2881 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2882 break;
efa90a98 2883 }
0697212a 2884 if (type >= MAX_SWAPFILES) {
5d337b91 2885 spin_unlock(&swap_lock);
873d7bcf 2886 kvfree(p);
730c0581 2887 return ERR_PTR(-EPERM);
1da177e4 2888 }
efa90a98
HD
2889 if (type >= nr_swapfiles) {
2890 p->type = type;
c10d38cc 2891 WRITE_ONCE(swap_info[type], p);
efa90a98
HD
2892 /*
2893 * Write swap_info[type] before nr_swapfiles, in case a
2894 * racing procfs swap_start() or swap_next() is reading them.
2895 * (We never shrink nr_swapfiles, we never free this entry.)
2896 */
2897 smp_wmb();
c10d38cc 2898 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
efa90a98 2899 } else {
873d7bcf 2900 kvfree(p);
efa90a98
HD
2901 p = swap_info[type];
2902 /*
2903 * Do not memset this entry: a racing procfs swap_next()
2904 * would be relying on p->type to remain valid.
2905 */
2906 }
4efaceb1 2907 p->swap_extent_root = RB_ROOT;
18ab4d4c 2908 plist_node_init(&p->list, 0);
a2468cc9
AL
2909 for_each_node(i)
2910 plist_node_init(&p->avail_lists[i], 0);
1da177e4 2911 p->flags = SWP_USED;
5d337b91 2912 spin_unlock(&swap_lock);
ec8acf20 2913 spin_lock_init(&p->lock);
2628bd6f 2914 spin_lock_init(&p->cont_lock);
efa90a98 2915
53cbb243 2916 return p;
53cbb243
CEB
2917}
2918
4d0e1e10
CEB
2919static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2920{
2921 int error;
2922
2923 if (S_ISBLK(inode->i_mode)) {
2924 p->bdev = bdgrab(I_BDEV(inode));
2925 error = blkdev_get(p->bdev,
6f179af8 2926 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
4d0e1e10
CEB
2927 if (error < 0) {
2928 p->bdev = NULL;
6f179af8 2929 return error;
4d0e1e10
CEB
2930 }
2931 p->old_block_size = block_size(p->bdev);
2932 error = set_blocksize(p->bdev, PAGE_SIZE);
2933 if (error < 0)
87ade72a 2934 return error;
12d2966d
NA
2935 /*
2936 * Zoned block devices contain zones that have a sequential
2937 * write only restriction. Hence zoned block devices are not
2938 * suitable for swapping. Disallow them here.
2939 */
2940 if (blk_queue_is_zoned(p->bdev->bd_queue))
2941 return -EINVAL;
4d0e1e10
CEB
2942 p->flags |= SWP_BLKDEV;
2943 } else if (S_ISREG(inode->i_mode)) {
2944 p->bdev = inode->i_sb->s_bdev;
1638045c
DW
2945 }
2946
4d0e1e10 2947 return 0;
4d0e1e10
CEB
2948}
2949
377eeaa8
AK
2950
2951/*
2952 * Find out how many pages are allowed for a single swap device. There
2953 * are two limiting factors:
2954 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2955 * 2) the number of bits in the swap pte, as defined by the different
2956 * architectures.
2957 *
2958 * In order to find the largest possible bit mask, a swap entry with
2959 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2960 * decoded to a swp_entry_t again, and finally the swap offset is
2961 * extracted.
2962 *
2963 * This will mask all the bits from the initial ~0UL mask that can't
2964 * be encoded in either the swp_entry_t or the architecture definition
2965 * of a swap pte.
2966 */
2967unsigned long generic_max_swapfile_size(void)
2968{
2969 return swp_offset(pte_to_swp_entry(
2970 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2971}
2972
2973/* Can be overridden by an architecture for additional checks. */
2974__weak unsigned long max_swapfile_size(void)
2975{
2976 return generic_max_swapfile_size();
2977}
2978
ca8bd38b
CEB
2979static unsigned long read_swap_header(struct swap_info_struct *p,
2980 union swap_header *swap_header,
2981 struct inode *inode)
2982{
2983 int i;
2984 unsigned long maxpages;
2985 unsigned long swapfilepages;
d6bbbd29 2986 unsigned long last_page;
ca8bd38b
CEB
2987
2988 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2989 pr_err("Unable to find swap-space signature\n");
38719025 2990 return 0;
ca8bd38b
CEB
2991 }
2992
2993 /* swap partition endianess hack... */
2994 if (swab32(swap_header->info.version) == 1) {
2995 swab32s(&swap_header->info.version);
2996 swab32s(&swap_header->info.last_page);
2997 swab32s(&swap_header->info.nr_badpages);
dd111be6
JH
2998 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2999 return 0;
ca8bd38b
CEB
3000 for (i = 0; i < swap_header->info.nr_badpages; i++)
3001 swab32s(&swap_header->info.badpages[i]);
3002 }
3003 /* Check the swap header's sub-version */
3004 if (swap_header->info.version != 1) {
465c47fd
AM
3005 pr_warn("Unable to handle swap header version %d\n",
3006 swap_header->info.version);
38719025 3007 return 0;
ca8bd38b
CEB
3008 }
3009
3010 p->lowest_bit = 1;
3011 p->cluster_next = 1;
3012 p->cluster_nr = 0;
3013
377eeaa8 3014 maxpages = max_swapfile_size();
d6bbbd29 3015 last_page = swap_header->info.last_page;
a06ad633
TA
3016 if (!last_page) {
3017 pr_warn("Empty swap-file\n");
3018 return 0;
3019 }
d6bbbd29 3020 if (last_page > maxpages) {
465c47fd 3021 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
3022 maxpages << (PAGE_SHIFT - 10),
3023 last_page << (PAGE_SHIFT - 10));
3024 }
3025 if (maxpages > last_page) {
3026 maxpages = last_page + 1;
ca8bd38b
CEB
3027 /* p->max is an unsigned int: don't overflow it */
3028 if ((unsigned int)maxpages == 0)
3029 maxpages = UINT_MAX;
3030 }
3031 p->highest_bit = maxpages - 1;
3032
3033 if (!maxpages)
38719025 3034 return 0;
ca8bd38b
CEB
3035 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3036 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 3037 pr_warn("Swap area shorter than signature indicates\n");
38719025 3038 return 0;
ca8bd38b
CEB
3039 }
3040 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 3041 return 0;
ca8bd38b 3042 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 3043 return 0;
ca8bd38b
CEB
3044
3045 return maxpages;
ca8bd38b
CEB
3046}
3047
4b3ef9da 3048#define SWAP_CLUSTER_INFO_COLS \
235b6217 3049 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
4b3ef9da
HY
3050#define SWAP_CLUSTER_SPACE_COLS \
3051 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3052#define SWAP_CLUSTER_COLS \
3053 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
235b6217 3054
915d4d7b
CEB
3055static int setup_swap_map_and_extents(struct swap_info_struct *p,
3056 union swap_header *swap_header,
3057 unsigned char *swap_map,
2a8f9449 3058 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
3059 unsigned long maxpages,
3060 sector_t *span)
3061{
235b6217 3062 unsigned int j, k;
915d4d7b
CEB
3063 unsigned int nr_good_pages;
3064 int nr_extents;
2a8f9449 3065 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
235b6217
HY
3066 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3067 unsigned long i, idx;
915d4d7b
CEB
3068
3069 nr_good_pages = maxpages - 1; /* omit header page */
3070
6b534915
HY
3071 cluster_list_init(&p->free_clusters);
3072 cluster_list_init(&p->discard_clusters);
2a8f9449 3073
915d4d7b
CEB
3074 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3075 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
3076 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3077 return -EINVAL;
915d4d7b
CEB
3078 if (page_nr < maxpages) {
3079 swap_map[page_nr] = SWAP_MAP_BAD;
3080 nr_good_pages--;
2a8f9449
SL
3081 /*
3082 * Haven't marked the cluster free yet, no list
3083 * operation involved
3084 */
3085 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
3086 }
3087 }
3088
2a8f9449
SL
3089 /* Haven't marked the cluster free yet, no list operation involved */
3090 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3091 inc_cluster_info_page(p, cluster_info, i);
3092
915d4d7b
CEB
3093 if (nr_good_pages) {
3094 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
3095 /*
3096 * Not mark the cluster free yet, no list
3097 * operation involved
3098 */
3099 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
3100 p->max = maxpages;
3101 p->pages = nr_good_pages;
3102 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
3103 if (nr_extents < 0)
3104 return nr_extents;
915d4d7b
CEB
3105 nr_good_pages = p->pages;
3106 }
3107 if (!nr_good_pages) {
465c47fd 3108 pr_warn("Empty swap-file\n");
bdb8e3f6 3109 return -EINVAL;
915d4d7b
CEB
3110 }
3111
2a8f9449
SL
3112 if (!cluster_info)
3113 return nr_extents;
3114
235b6217 3115
4b3ef9da
HY
3116 /*
3117 * Reduce false cache line sharing between cluster_info and
3118 * sharing same address space.
3119 */
235b6217
HY
3120 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3121 j = (k + col) % SWAP_CLUSTER_COLS;
3122 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3123 idx = i * SWAP_CLUSTER_COLS + j;
3124 if (idx >= nr_clusters)
3125 continue;
3126 if (cluster_count(&cluster_info[idx]))
3127 continue;
2a8f9449 3128 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
6b534915
HY
3129 cluster_list_add_tail(&p->free_clusters, cluster_info,
3130 idx);
2a8f9449 3131 }
2a8f9449 3132 }
915d4d7b 3133 return nr_extents;
915d4d7b
CEB
3134}
3135
dcf6b7dd
RA
3136/*
3137 * Helper to sys_swapon determining if a given swap
3138 * backing device queue supports DISCARD operations.
3139 */
3140static bool swap_discardable(struct swap_info_struct *si)
3141{
3142 struct request_queue *q = bdev_get_queue(si->bdev);
3143
3144 if (!q || !blk_queue_discard(q))
3145 return false;
3146
3147 return true;
3148}
3149
53cbb243
CEB
3150SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3151{
3152 struct swap_info_struct *p;
91a27b2a 3153 struct filename *name;
53cbb243
CEB
3154 struct file *swap_file = NULL;
3155 struct address_space *mapping;
40531542 3156 int prio;
53cbb243
CEB
3157 int error;
3158 union swap_header *swap_header;
915d4d7b 3159 int nr_extents;
53cbb243
CEB
3160 sector_t span;
3161 unsigned long maxpages;
53cbb243 3162 unsigned char *swap_map = NULL;
2a8f9449 3163 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 3164 unsigned long *frontswap_map = NULL;
53cbb243
CEB
3165 struct page *page = NULL;
3166 struct inode *inode = NULL;
7cbf3192 3167 bool inced_nr_rotate_swap = false;
53cbb243 3168
d15cab97
HD
3169 if (swap_flags & ~SWAP_FLAGS_VALID)
3170 return -EINVAL;
3171
53cbb243
CEB
3172 if (!capable(CAP_SYS_ADMIN))
3173 return -EPERM;
3174
a2468cc9
AL
3175 if (!swap_avail_heads)
3176 return -ENOMEM;
3177
53cbb243 3178 p = alloc_swap_info();
2542e513
CEB
3179 if (IS_ERR(p))
3180 return PTR_ERR(p);
53cbb243 3181
815c2c54
SL
3182 INIT_WORK(&p->discard_work, swap_discard_work);
3183
1da177e4 3184 name = getname(specialfile);
1da177e4 3185 if (IS_ERR(name)) {
7de7fb6b 3186 error = PTR_ERR(name);
1da177e4 3187 name = NULL;
bd69010b 3188 goto bad_swap;
1da177e4 3189 }
669abf4e 3190 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 3191 if (IS_ERR(swap_file)) {
7de7fb6b 3192 error = PTR_ERR(swap_file);
1da177e4 3193 swap_file = NULL;
bd69010b 3194 goto bad_swap;
1da177e4
LT
3195 }
3196
3197 p->swap_file = swap_file;
3198 mapping = swap_file->f_mapping;
2130781e 3199 inode = mapping->host;
6f179af8 3200
4d0e1e10
CEB
3201 error = claim_swapfile(p, inode);
3202 if (unlikely(error))
1da177e4 3203 goto bad_swap;
1da177e4 3204
d795a90e
NA
3205 inode_lock(inode);
3206 if (IS_SWAPFILE(inode)) {
3207 error = -EBUSY;
3208 goto bad_swap_unlock_inode;
3209 }
3210
1da177e4
LT
3211 /*
3212 * Read the swap header.
3213 */
3214 if (!mapping->a_ops->readpage) {
3215 error = -EINVAL;
d795a90e 3216 goto bad_swap_unlock_inode;
1da177e4 3217 }
090d2b18 3218 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
3219 if (IS_ERR(page)) {
3220 error = PTR_ERR(page);
d795a90e 3221 goto bad_swap_unlock_inode;
1da177e4 3222 }
81e33971 3223 swap_header = kmap(page);
1da177e4 3224
ca8bd38b
CEB
3225 maxpages = read_swap_header(p, swap_header, inode);
3226 if (unlikely(!maxpages)) {
1da177e4 3227 error = -EINVAL;
d795a90e 3228 goto bad_swap_unlock_inode;
1da177e4 3229 }
886bb7e9 3230
81e33971 3231 /* OK, set up the swap map and apply the bad block list */
803d0c83 3232 swap_map = vzalloc(maxpages);
81e33971
HD
3233 if (!swap_map) {
3234 error = -ENOMEM;
d795a90e 3235 goto bad_swap_unlock_inode;
81e33971 3236 }
f0571429
MK
3237
3238 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3239 p->flags |= SWP_STABLE_WRITES;
3240
539a6fea
MK
3241 if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3242 p->flags |= SWP_SYNCHRONOUS_IO;
3243
2a8f9449 3244 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
6f179af8 3245 int cpu;
235b6217 3246 unsigned long ci, nr_cluster;
6f179af8 3247
2a8f9449 3248 p->flags |= SWP_SOLIDSTATE;
49070588
HY
3249 p->cluster_next_cpu = alloc_percpu(unsigned int);
3250 if (!p->cluster_next_cpu) {
3251 error = -ENOMEM;
3252 goto bad_swap_unlock_inode;
3253 }
2a8f9449
SL
3254 /*
3255 * select a random position to start with to help wear leveling
3256 * SSD
3257 */
49070588
HY
3258 for_each_possible_cpu(cpu) {
3259 per_cpu(*p->cluster_next_cpu, cpu) =
3260 1 + prandom_u32_max(p->highest_bit);
3261 }
235b6217 3262 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2a8f9449 3263
778e1cdd 3264 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
54f180d3 3265 GFP_KERNEL);
2a8f9449
SL
3266 if (!cluster_info) {
3267 error = -ENOMEM;
d795a90e 3268 goto bad_swap_unlock_inode;
2a8f9449 3269 }
235b6217
HY
3270
3271 for (ci = 0; ci < nr_cluster; ci++)
3272 spin_lock_init(&((cluster_info + ci)->lock));
3273
ebc2a1a6
SL
3274 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3275 if (!p->percpu_cluster) {
3276 error = -ENOMEM;
d795a90e 3277 goto bad_swap_unlock_inode;
ebc2a1a6 3278 }
6f179af8 3279 for_each_possible_cpu(cpu) {
ebc2a1a6 3280 struct percpu_cluster *cluster;
6f179af8 3281 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
ebc2a1a6
SL
3282 cluster_set_null(&cluster->index);
3283 }
7cbf3192 3284 } else {
81a0298b 3285 atomic_inc(&nr_rotate_swap);
7cbf3192
OS
3286 inced_nr_rotate_swap = true;
3287 }
1da177e4 3288
1421ef3c
CEB
3289 error = swap_cgroup_swapon(p->type, maxpages);
3290 if (error)
d795a90e 3291 goto bad_swap_unlock_inode;
1421ef3c 3292
915d4d7b 3293 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 3294 cluster_info, maxpages, &span);
915d4d7b
CEB
3295 if (unlikely(nr_extents < 0)) {
3296 error = nr_extents;
d795a90e 3297 goto bad_swap_unlock_inode;
1da177e4 3298 }
38b5faf4 3299 /* frontswap enabled? set up bit-per-page map for frontswap */
8ea1d2a1 3300 if (IS_ENABLED(CONFIG_FRONTSWAP))
778e1cdd
KC
3301 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3302 sizeof(long),
54f180d3 3303 GFP_KERNEL);
1da177e4 3304
2a8f9449
SL
3305 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3306 /*
3307 * When discard is enabled for swap with no particular
3308 * policy flagged, we set all swap discard flags here in
3309 * order to sustain backward compatibility with older
3310 * swapon(8) releases.
3311 */
3312 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3313 SWP_PAGE_DISCARD);
dcf6b7dd 3314
2a8f9449
SL
3315 /*
3316 * By flagging sys_swapon, a sysadmin can tell us to
3317 * either do single-time area discards only, or to just
3318 * perform discards for released swap page-clusters.
3319 * Now it's time to adjust the p->flags accordingly.
3320 */
3321 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3322 p->flags &= ~SWP_PAGE_DISCARD;
3323 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3324 p->flags &= ~SWP_AREA_DISCARD;
3325
3326 /* issue a swapon-time discard if it's still required */
3327 if (p->flags & SWP_AREA_DISCARD) {
3328 int err = discard_swap(p);
3329 if (unlikely(err))
3330 pr_err("swapon: discard_swap(%p): %d\n",
3331 p, err);
dcf6b7dd 3332 }
20137a49 3333 }
6a6ba831 3334
4b3ef9da
HY
3335 error = init_swap_address_space(p->type, maxpages);
3336 if (error)
d795a90e 3337 goto bad_swap_unlock_inode;
4b3ef9da 3338
dc617f29
DW
3339 /*
3340 * Flush any pending IO and dirty mappings before we start using this
3341 * swap device.
3342 */
3343 inode->i_flags |= S_SWAPFILE;
3344 error = inode_drain_writes(inode);
3345 if (error) {
3346 inode->i_flags &= ~S_SWAPFILE;
d795a90e 3347 goto bad_swap_unlock_inode;
dc617f29
DW
3348 }
3349
fc0abb14 3350 mutex_lock(&swapon_mutex);
40531542 3351 prio = -1;
78ecba08 3352 if (swap_flags & SWAP_FLAG_PREFER)
40531542 3353 prio =
78ecba08 3354 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 3355 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 3356
756a025f 3357 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 3358 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
3359 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3360 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 3361 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
3362 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3363 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 3364 (frontswap_map) ? "FS" : "");
c69dbfb8 3365
fc0abb14 3366 mutex_unlock(&swapon_mutex);
66d7dd51
KS
3367 atomic_inc(&proc_poll_event);
3368 wake_up_interruptible(&proc_poll_wait);
3369
1da177e4
LT
3370 error = 0;
3371 goto out;
d795a90e
NA
3372bad_swap_unlock_inode:
3373 inode_unlock(inode);
1da177e4 3374bad_swap:
ebc2a1a6
SL
3375 free_percpu(p->percpu_cluster);
3376 p->percpu_cluster = NULL;
49070588
HY
3377 free_percpu(p->cluster_next_cpu);
3378 p->cluster_next_cpu = NULL;
bd69010b 3379 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
3380 set_blocksize(p->bdev, p->old_block_size);
3381 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 3382 }
d795a90e 3383 inode = NULL;
4cd3bb10 3384 destroy_swap_extents(p);
e8e6c2ec 3385 swap_cgroup_swapoff(p->type);
5d337b91 3386 spin_lock(&swap_lock);
1da177e4 3387 p->swap_file = NULL;
1da177e4 3388 p->flags = 0;
5d337b91 3389 spin_unlock(&swap_lock);
1da177e4 3390 vfree(swap_map);
8606a1a9 3391 kvfree(cluster_info);
b6b1fd2a 3392 kvfree(frontswap_map);
7cbf3192
OS
3393 if (inced_nr_rotate_swap)
3394 atomic_dec(&nr_rotate_swap);
d795a90e 3395 if (swap_file)
1da177e4
LT
3396 filp_close(swap_file, NULL);
3397out:
3398 if (page && !IS_ERR(page)) {
3399 kunmap(page);
09cbfeaf 3400 put_page(page);
1da177e4
LT
3401 }
3402 if (name)
3403 putname(name);
1638045c 3404 if (inode)
5955102c 3405 inode_unlock(inode);
039939a6
TC
3406 if (!error)
3407 enable_swap_slots_cache();
1da177e4
LT
3408 return error;
3409}
3410
3411void si_swapinfo(struct sysinfo *val)
3412{
efa90a98 3413 unsigned int type;
1da177e4
LT
3414 unsigned long nr_to_be_unused = 0;
3415
5d337b91 3416 spin_lock(&swap_lock);
efa90a98
HD
3417 for (type = 0; type < nr_swapfiles; type++) {
3418 struct swap_info_struct *si = swap_info[type];
3419
3420 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3421 nr_to_be_unused += si->inuse_pages;
1da177e4 3422 }
ec8acf20 3423 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 3424 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 3425 spin_unlock(&swap_lock);
1da177e4
LT
3426}
3427
3428/*
3429 * Verify that a swap entry is valid and increment its swap map count.
3430 *
355cfa73
KH
3431 * Returns error code in following case.
3432 * - success -> 0
3433 * - swp_entry is invalid -> EINVAL
3434 * - swp_entry is migration entry -> EINVAL
3435 * - swap-cache reference is requested but there is already one. -> EEXIST
3436 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 3437 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 3438 */
8d69aaee 3439static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 3440{
73c34b6a 3441 struct swap_info_struct *p;
235b6217 3442 struct swap_cluster_info *ci;
c10d38cc 3443 unsigned long offset;
8d69aaee
HD
3444 unsigned char count;
3445 unsigned char has_cache;
253d553b 3446 int err = -EINVAL;
1da177e4 3447
eb085574 3448 p = get_swap_device(entry);
c10d38cc 3449 if (!p)
235b6217
HY
3450 goto out;
3451
eb085574 3452 offset = swp_offset(entry);
235b6217 3453 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 3454
253d553b 3455 count = p->swap_map[offset];
edfe23da
SL
3456
3457 /*
3458 * swapin_readahead() doesn't check if a swap entry is valid, so the
3459 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3460 */
3461 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3462 err = -ENOENT;
3463 goto unlock_out;
3464 }
3465
253d553b
HD
3466 has_cache = count & SWAP_HAS_CACHE;
3467 count &= ~SWAP_HAS_CACHE;
3468 err = 0;
355cfa73 3469
253d553b 3470 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
3471
3472 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
3473 if (!has_cache && count)
3474 has_cache = SWAP_HAS_CACHE;
3475 else if (has_cache) /* someone else added cache */
3476 err = -EEXIST;
3477 else /* no users remaining */
3478 err = -ENOENT;
355cfa73
KH
3479
3480 } else if (count || has_cache) {
253d553b 3481
570a335b
HD
3482 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3483 count += usage;
3484 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 3485 err = -EINVAL;
570a335b
HD
3486 else if (swap_count_continued(p, offset, count))
3487 count = COUNT_CONTINUED;
3488 else
3489 err = -ENOMEM;
355cfa73 3490 } else
253d553b
HD
3491 err = -ENOENT; /* unused swap entry */
3492
3493 p->swap_map[offset] = count | has_cache;
3494
355cfa73 3495unlock_out:
235b6217 3496 unlock_cluster_or_swap_info(p, ci);
1da177e4 3497out:
eb085574
HY
3498 if (p)
3499 put_swap_device(p);
253d553b 3500 return err;
1da177e4 3501}
253d553b 3502
aaa46865
HD
3503/*
3504 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3505 * (in which case its reference count is never incremented).
3506 */
3507void swap_shmem_alloc(swp_entry_t entry)
3508{
3509 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3510}
3511
355cfa73 3512/*
08259d58
HD
3513 * Increase reference count of swap entry by 1.
3514 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3515 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3516 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3517 * might occur if a page table entry has got corrupted.
355cfa73 3518 */
570a335b 3519int swap_duplicate(swp_entry_t entry)
355cfa73 3520{
570a335b
HD
3521 int err = 0;
3522
3523 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3524 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3525 return err;
355cfa73 3526}
1da177e4 3527
cb4b86ba 3528/*
355cfa73
KH
3529 * @entry: swap entry for which we allocate swap cache.
3530 *
73c34b6a 3531 * Called when allocating swap cache for existing swap entry,
355cfa73 3532 * This can return error codes. Returns 0 at success.
3eeba135 3533 * -EEXIST means there is a swap cache.
355cfa73 3534 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
3535 */
3536int swapcache_prepare(swp_entry_t entry)
3537{
253d553b 3538 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
3539}
3540
0bcac06f
MK
3541struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3542{
c10d38cc 3543 return swap_type_to_swap_info(swp_type(entry));
0bcac06f
MK
3544}
3545
f981c595
MG
3546struct swap_info_struct *page_swap_info(struct page *page)
3547{
0bcac06f
MK
3548 swp_entry_t entry = { .val = page_private(page) };
3549 return swp_swap_info(entry);
f981c595
MG
3550}
3551
3552/*
3553 * out-of-line __page_file_ methods to avoid include hell.
3554 */
3555struct address_space *__page_file_mapping(struct page *page)
3556{
f981c595
MG
3557 return page_swap_info(page)->swap_file->f_mapping;
3558}
3559EXPORT_SYMBOL_GPL(__page_file_mapping);
3560
3561pgoff_t __page_file_index(struct page *page)
3562{
3563 swp_entry_t swap = { .val = page_private(page) };
f981c595
MG
3564 return swp_offset(swap);
3565}
3566EXPORT_SYMBOL_GPL(__page_file_index);
3567
570a335b
HD
3568/*
3569 * add_swap_count_continuation - called when a swap count is duplicated
3570 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3571 * page of the original vmalloc'ed swap_map, to hold the continuation count
3572 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3573 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3574 *
3575 * These continuation pages are seldom referenced: the common paths all work
3576 * on the original swap_map, only referring to a continuation page when the
3577 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3578 *
3579 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3580 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3581 * can be called after dropping locks.
3582 */
3583int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3584{
3585 struct swap_info_struct *si;
235b6217 3586 struct swap_cluster_info *ci;
570a335b
HD
3587 struct page *head;
3588 struct page *page;
3589 struct page *list_page;
3590 pgoff_t offset;
3591 unsigned char count;
eb085574 3592 int ret = 0;
570a335b
HD
3593
3594 /*
3595 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3596 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3597 */
3598 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3599
eb085574 3600 si = get_swap_device(entry);
570a335b
HD
3601 if (!si) {
3602 /*
3603 * An acceptable race has occurred since the failing
eb085574 3604 * __swap_duplicate(): the swap device may be swapoff
570a335b
HD
3605 */
3606 goto outer;
3607 }
eb085574 3608 spin_lock(&si->lock);
570a335b
HD
3609
3610 offset = swp_offset(entry);
235b6217
HY
3611
3612 ci = lock_cluster(si, offset);
3613
570a335b
HD
3614 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3615
3616 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3617 /*
3618 * The higher the swap count, the more likely it is that tasks
3619 * will race to add swap count continuation: we need to avoid
3620 * over-provisioning.
3621 */
3622 goto out;
3623 }
3624
3625 if (!page) {
eb085574
HY
3626 ret = -ENOMEM;
3627 goto out;
570a335b
HD
3628 }
3629
3630 /*
3631 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
3632 * no architecture is using highmem pages for kernel page tables: so it
3633 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
3634 */
3635 head = vmalloc_to_page(si->swap_map + offset);
3636 offset &= ~PAGE_MASK;
3637
2628bd6f 3638 spin_lock(&si->cont_lock);
570a335b
HD
3639 /*
3640 * Page allocation does not initialize the page's lru field,
3641 * but it does always reset its private field.
3642 */
3643 if (!page_private(head)) {
3644 BUG_ON(count & COUNT_CONTINUED);
3645 INIT_LIST_HEAD(&head->lru);
3646 set_page_private(head, SWP_CONTINUED);
3647 si->flags |= SWP_CONTINUED;
3648 }
3649
3650 list_for_each_entry(list_page, &head->lru, lru) {
3651 unsigned char *map;
3652
3653 /*
3654 * If the previous map said no continuation, but we've found
3655 * a continuation page, free our allocation and use this one.
3656 */
3657 if (!(count & COUNT_CONTINUED))
2628bd6f 3658 goto out_unlock_cont;
570a335b 3659
9b04c5fe 3660 map = kmap_atomic(list_page) + offset;
570a335b 3661 count = *map;
9b04c5fe 3662 kunmap_atomic(map);
570a335b
HD
3663
3664 /*
3665 * If this continuation count now has some space in it,
3666 * free our allocation and use this one.
3667 */
3668 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2628bd6f 3669 goto out_unlock_cont;
570a335b
HD
3670 }
3671
3672 list_add_tail(&page->lru, &head->lru);
3673 page = NULL; /* now it's attached, don't free it */
2628bd6f
HY
3674out_unlock_cont:
3675 spin_unlock(&si->cont_lock);
570a335b 3676out:
235b6217 3677 unlock_cluster(ci);
ec8acf20 3678 spin_unlock(&si->lock);
eb085574 3679 put_swap_device(si);
570a335b
HD
3680outer:
3681 if (page)
3682 __free_page(page);
eb085574 3683 return ret;
570a335b
HD
3684}
3685
3686/*
3687 * swap_count_continued - when the original swap_map count is incremented
3688 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3689 * into, carry if so, or else fail until a new continuation page is allocated;
3690 * when the original swap_map count is decremented from 0 with continuation,
3691 * borrow from the continuation and report whether it still holds more.
235b6217
HY
3692 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3693 * lock.
570a335b
HD
3694 */
3695static bool swap_count_continued(struct swap_info_struct *si,
3696 pgoff_t offset, unsigned char count)
3697{
3698 struct page *head;
3699 struct page *page;
3700 unsigned char *map;
2628bd6f 3701 bool ret;
570a335b
HD
3702
3703 head = vmalloc_to_page(si->swap_map + offset);
3704 if (page_private(head) != SWP_CONTINUED) {
3705 BUG_ON(count & COUNT_CONTINUED);
3706 return false; /* need to add count continuation */
3707 }
3708
2628bd6f 3709 spin_lock(&si->cont_lock);
570a335b 3710 offset &= ~PAGE_MASK;
213516ac 3711 page = list_next_entry(head, lru);
9b04c5fe 3712 map = kmap_atomic(page) + offset;
570a335b
HD
3713
3714 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3715 goto init_map; /* jump over SWAP_CONT_MAX checks */
3716
3717 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3718 /*
3719 * Think of how you add 1 to 999
3720 */
3721 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 3722 kunmap_atomic(map);
213516ac 3723 page = list_next_entry(page, lru);
570a335b 3724 BUG_ON(page == head);
9b04c5fe 3725 map = kmap_atomic(page) + offset;
570a335b
HD
3726 }
3727 if (*map == SWAP_CONT_MAX) {
9b04c5fe 3728 kunmap_atomic(map);
213516ac 3729 page = list_next_entry(page, lru);
2628bd6f
HY
3730 if (page == head) {
3731 ret = false; /* add count continuation */
3732 goto out;
3733 }
9b04c5fe 3734 map = kmap_atomic(page) + offset;
570a335b
HD
3735init_map: *map = 0; /* we didn't zero the page */
3736 }
3737 *map += 1;
9b04c5fe 3738 kunmap_atomic(map);
213516ac 3739 while ((page = list_prev_entry(page, lru)) != head) {
9b04c5fe 3740 map = kmap_atomic(page) + offset;
570a335b 3741 *map = COUNT_CONTINUED;
9b04c5fe 3742 kunmap_atomic(map);
570a335b 3743 }
2628bd6f 3744 ret = true; /* incremented */
570a335b
HD
3745
3746 } else { /* decrementing */
3747 /*
3748 * Think of how you subtract 1 from 1000
3749 */
3750 BUG_ON(count != COUNT_CONTINUED);
3751 while (*map == COUNT_CONTINUED) {
9b04c5fe 3752 kunmap_atomic(map);
213516ac 3753 page = list_next_entry(page, lru);
570a335b 3754 BUG_ON(page == head);
9b04c5fe 3755 map = kmap_atomic(page) + offset;
570a335b
HD
3756 }
3757 BUG_ON(*map == 0);
3758 *map -= 1;
3759 if (*map == 0)
3760 count = 0;
9b04c5fe 3761 kunmap_atomic(map);
213516ac 3762 while ((page = list_prev_entry(page, lru)) != head) {
9b04c5fe 3763 map = kmap_atomic(page) + offset;
570a335b
HD
3764 *map = SWAP_CONT_MAX | count;
3765 count = COUNT_CONTINUED;
9b04c5fe 3766 kunmap_atomic(map);
570a335b 3767 }
2628bd6f 3768 ret = count == COUNT_CONTINUED;
570a335b 3769 }
2628bd6f
HY
3770out:
3771 spin_unlock(&si->cont_lock);
3772 return ret;
570a335b
HD
3773}
3774
3775/*
3776 * free_swap_count_continuations - swapoff free all the continuation pages
3777 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3778 */
3779static void free_swap_count_continuations(struct swap_info_struct *si)
3780{
3781 pgoff_t offset;
3782
3783 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3784 struct page *head;
3785 head = vmalloc_to_page(si->swap_map + offset);
3786 if (page_private(head)) {
0d576d20
GT
3787 struct page *page, *next;
3788
3789 list_for_each_entry_safe(page, next, &head->lru, lru) {
3790 list_del(&page->lru);
570a335b
HD
3791 __free_page(page);
3792 }
3793 }
3794 }
3795}
a2468cc9 3796
2cf85583
TH
3797#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3798void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3799 gfp_t gfp_mask)
3800{
3801 struct swap_info_struct *si, *next;
3802 if (!(gfp_mask & __GFP_IO) || !memcg)
3803 return;
3804
3805 if (!blk_cgroup_congested())
3806 return;
3807
3808 /*
3809 * We've already scheduled a throttle, avoid taking the global swap
3810 * lock.
3811 */
3812 if (current->throttle_queue)
3813 return;
3814
3815 spin_lock(&swap_avail_lock);
3816 plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3817 avail_lists[node]) {
3818 if (si->bdev) {
3819 blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3820 true);
3821 break;
3822 }
3823 }
3824 spin_unlock(&swap_avail_lock);
3825}
3826#endif
3827
a2468cc9
AL
3828static int __init swapfile_init(void)
3829{
3830 int nid;
3831
3832 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3833 GFP_KERNEL);
3834 if (!swap_avail_heads) {
3835 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3836 return -ENOMEM;
3837 }
3838
3839 for_each_node(nid)
3840 plist_head_init(&swap_avail_heads[nid]);
3841
3842 return 0;
3843}
3844subsys_initcall(swapfile_init);