]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/swapfile.c
[PATCH] swap: scan_swap_map drop swap_device_lock
[mirror_ubuntu-bionic-kernel.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8#include <linux/config.h>
9#include <linux/mm.h>
10#include <linux/hugetlb.h>
11#include <linux/mman.h>
12#include <linux/slab.h>
13#include <linux/kernel_stat.h>
14#include <linux/swap.h>
15#include <linux/vmalloc.h>
16#include <linux/pagemap.h>
17#include <linux/namei.h>
18#include <linux/shm.h>
19#include <linux/blkdev.h>
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
24#include <linux/module.h>
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
28#include <linux/syscalls.h>
29
30#include <asm/pgtable.h>
31#include <asm/tlbflush.h>
32#include <linux/swapops.h>
33
34DEFINE_SPINLOCK(swaplock);
35unsigned int nr_swapfiles;
36long total_swap_pages;
37static int swap_overflow;
38
39EXPORT_SYMBOL(total_swap_pages);
40
41static const char Bad_file[] = "Bad swap file entry ";
42static const char Unused_file[] = "Unused swap file entry ";
43static const char Bad_offset[] = "Bad swap offset entry ";
44static const char Unused_offset[] = "Unused swap offset entry ";
45
46struct swap_list_t swap_list = {-1, -1};
47
48struct swap_info_struct swap_info[MAX_SWAPFILES];
49
50static DECLARE_MUTEX(swapon_sem);
51
52/*
53 * We need this because the bdev->unplug_fn can sleep and we cannot
54 * hold swap_list_lock while calling the unplug_fn. And swap_list_lock
55 * cannot be turned into a semaphore.
56 */
57static DECLARE_RWSEM(swap_unplug_sem);
58
59#define SWAPFILE_CLUSTER 256
60
61void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
62{
63 swp_entry_t entry;
64
65 down_read(&swap_unplug_sem);
66 entry.val = page->private;
67 if (PageSwapCache(page)) {
68 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
69 struct backing_dev_info *bdi;
70
71 /*
72 * If the page is removed from swapcache from under us (with a
73 * racy try_to_unuse/swapoff) we need an additional reference
74 * count to avoid reading garbage from page->private above. If
75 * the WARN_ON triggers during a swapoff it maybe the race
76 * condition and it's harmless. However if it triggers without
77 * swapoff it signals a problem.
78 */
79 WARN_ON(page_count(page) <= 1);
80
81 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
ba32311e 82 blk_run_backing_dev(bdi, page);
1da177e4
LT
83 }
84 up_read(&swap_unplug_sem);
85}
86
6eb396dc 87static inline unsigned long scan_swap_map(struct swap_info_struct *si)
1da177e4 88{
7dfad418
HD
89 unsigned long offset, last_in_cluster;
90
1da177e4 91 /*
7dfad418
HD
92 * We try to cluster swap pages by allocating them sequentially
93 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
94 * way, however, we resort to first-free allocation, starting
95 * a new cluster. This prevents us from scattering swap pages
96 * all over the entire swap partition, so that we reduce
97 * overall disk seek times between swap pages. -- sct
98 * But we do now try to find an empty cluster. -Andrea
99 */
100
52b7efdb 101 si->flags += SWP_SCANNING;
7dfad418
HD
102 if (unlikely(!si->cluster_nr)) {
103 si->cluster_nr = SWAPFILE_CLUSTER - 1;
104 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
105 goto lowest;
52b7efdb 106 swap_device_unlock(si);
7dfad418
HD
107
108 offset = si->lowest_bit;
109 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
110
111 /* Locate the first empty (unaligned) cluster */
112 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 113 if (si->swap_map[offset])
7dfad418
HD
114 last_in_cluster = offset + SWAPFILE_CLUSTER;
115 else if (offset == last_in_cluster) {
52b7efdb 116 swap_device_lock(si);
7dfad418
HD
117 si->cluster_next = offset-SWAPFILE_CLUSTER-1;
118 goto cluster;
1da177e4 119 }
7dfad418 120 }
52b7efdb 121 swap_device_lock(si);
7dfad418 122 goto lowest;
1da177e4 123 }
7dfad418
HD
124
125 si->cluster_nr--;
126cluster:
127 offset = si->cluster_next;
128 if (offset > si->highest_bit)
129lowest: offset = si->lowest_bit;
52b7efdb
HD
130checks: if (!(si->flags & SWP_WRITEOK))
131 goto no_page;
7dfad418
HD
132 if (!si->highest_bit)
133 goto no_page;
134 if (!si->swap_map[offset]) {
52b7efdb 135 if (offset == si->lowest_bit)
1da177e4
LT
136 si->lowest_bit++;
137 if (offset == si->highest_bit)
138 si->highest_bit--;
7dfad418
HD
139 si->inuse_pages++;
140 if (si->inuse_pages == si->pages) {
1da177e4
LT
141 si->lowest_bit = si->max;
142 si->highest_bit = 0;
143 }
144 si->swap_map[offset] = 1;
7dfad418 145 si->cluster_next = offset + 1;
52b7efdb 146 si->flags -= SWP_SCANNING;
1da177e4
LT
147 return offset;
148 }
7dfad418 149
52b7efdb 150 swap_device_unlock(si);
7dfad418 151 while (++offset <= si->highest_bit) {
52b7efdb
HD
152 if (!si->swap_map[offset]) {
153 swap_device_lock(si);
154 goto checks;
155 }
7dfad418 156 }
52b7efdb 157 swap_device_lock(si);
7dfad418
HD
158 goto lowest;
159
160no_page:
52b7efdb 161 si->flags -= SWP_SCANNING;
1da177e4
LT
162 return 0;
163}
164
165swp_entry_t get_swap_page(void)
166{
fb4f88dc
HD
167 struct swap_info_struct *si;
168 pgoff_t offset;
169 int type, next;
170 int wrapped = 0;
1da177e4 171
1da177e4 172 swap_list_lock();
1da177e4 173 if (nr_swap_pages <= 0)
fb4f88dc
HD
174 goto noswap;
175 nr_swap_pages--;
176
177 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
178 si = swap_info + type;
179 next = si->next;
180 if (next < 0 ||
181 (!wrapped && si->prio != swap_info[next].prio)) {
182 next = swap_list.head;
183 wrapped++;
1da177e4 184 }
fb4f88dc
HD
185
186 if (!si->highest_bit)
187 continue;
188 if (!(si->flags & SWP_WRITEOK))
189 continue;
190
191 swap_list.next = next;
192 swap_device_lock(si);
193 swap_list_unlock();
194 offset = scan_swap_map(si);
195 swap_device_unlock(si);
196 if (offset)
197 return swp_entry(type, offset);
198 swap_list_lock();
199 next = swap_list.next;
1da177e4 200 }
fb4f88dc
HD
201
202 nr_swap_pages++;
203noswap:
1da177e4 204 swap_list_unlock();
fb4f88dc 205 return (swp_entry_t) {0};
1da177e4
LT
206}
207
208static struct swap_info_struct * swap_info_get(swp_entry_t entry)
209{
210 struct swap_info_struct * p;
211 unsigned long offset, type;
212
213 if (!entry.val)
214 goto out;
215 type = swp_type(entry);
216 if (type >= nr_swapfiles)
217 goto bad_nofile;
218 p = & swap_info[type];
219 if (!(p->flags & SWP_USED))
220 goto bad_device;
221 offset = swp_offset(entry);
222 if (offset >= p->max)
223 goto bad_offset;
224 if (!p->swap_map[offset])
225 goto bad_free;
226 swap_list_lock();
1da177e4
LT
227 swap_device_lock(p);
228 return p;
229
230bad_free:
231 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
232 goto out;
233bad_offset:
234 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
235 goto out;
236bad_device:
237 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
238 goto out;
239bad_nofile:
240 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
241out:
242 return NULL;
243}
244
245static void swap_info_put(struct swap_info_struct * p)
246{
247 swap_device_unlock(p);
248 swap_list_unlock();
249}
250
251static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
252{
253 int count = p->swap_map[offset];
254
255 if (count < SWAP_MAP_MAX) {
256 count--;
257 p->swap_map[offset] = count;
258 if (!count) {
259 if (offset < p->lowest_bit)
260 p->lowest_bit = offset;
261 if (offset > p->highest_bit)
262 p->highest_bit = offset;
89d09a2c
HD
263 if (p->prio > swap_info[swap_list.next].prio)
264 swap_list.next = p - swap_info;
1da177e4
LT
265 nr_swap_pages++;
266 p->inuse_pages--;
267 }
268 }
269 return count;
270}
271
272/*
273 * Caller has made sure that the swapdevice corresponding to entry
274 * is still around or has not been recycled.
275 */
276void swap_free(swp_entry_t entry)
277{
278 struct swap_info_struct * p;
279
280 p = swap_info_get(entry);
281 if (p) {
282 swap_entry_free(p, swp_offset(entry));
283 swap_info_put(p);
284 }
285}
286
287/*
c475a8ab 288 * How many references to page are currently swapped out?
1da177e4 289 */
c475a8ab 290static inline int page_swapcount(struct page *page)
1da177e4 291{
c475a8ab
HD
292 int count = 0;
293 struct swap_info_struct *p;
1da177e4
LT
294 swp_entry_t entry;
295
296 entry.val = page->private;
297 p = swap_info_get(entry);
298 if (p) {
c475a8ab
HD
299 /* Subtract the 1 for the swap cache itself */
300 count = p->swap_map[swp_offset(entry)] - 1;
1da177e4
LT
301 swap_info_put(p);
302 }
c475a8ab 303 return count;
1da177e4
LT
304}
305
306/*
307 * We can use this swap cache entry directly
308 * if there are no other references to it.
1da177e4
LT
309 */
310int can_share_swap_page(struct page *page)
311{
c475a8ab
HD
312 int count;
313
314 BUG_ON(!PageLocked(page));
315 count = page_mapcount(page);
316 if (count <= 1 && PageSwapCache(page))
317 count += page_swapcount(page);
318 return count == 1;
1da177e4
LT
319}
320
321/*
322 * Work out if there are any other processes sharing this
323 * swap cache page. Free it if you can. Return success.
324 */
325int remove_exclusive_swap_page(struct page *page)
326{
327 int retval;
328 struct swap_info_struct * p;
329 swp_entry_t entry;
330
331 BUG_ON(PagePrivate(page));
332 BUG_ON(!PageLocked(page));
333
334 if (!PageSwapCache(page))
335 return 0;
336 if (PageWriteback(page))
337 return 0;
338 if (page_count(page) != 2) /* 2: us + cache */
339 return 0;
340
341 entry.val = page->private;
342 p = swap_info_get(entry);
343 if (!p)
344 return 0;
345
346 /* Is the only swap cache user the cache itself? */
347 retval = 0;
348 if (p->swap_map[swp_offset(entry)] == 1) {
349 /* Recheck the page count with the swapcache lock held.. */
350 write_lock_irq(&swapper_space.tree_lock);
351 if ((page_count(page) == 2) && !PageWriteback(page)) {
352 __delete_from_swap_cache(page);
353 SetPageDirty(page);
354 retval = 1;
355 }
356 write_unlock_irq(&swapper_space.tree_lock);
357 }
358 swap_info_put(p);
359
360 if (retval) {
361 swap_free(entry);
362 page_cache_release(page);
363 }
364
365 return retval;
366}
367
368/*
369 * Free the swap entry like above, but also try to
370 * free the page cache entry if it is the last user.
371 */
372void free_swap_and_cache(swp_entry_t entry)
373{
374 struct swap_info_struct * p;
375 struct page *page = NULL;
376
377 p = swap_info_get(entry);
378 if (p) {
379 if (swap_entry_free(p, swp_offset(entry)) == 1)
380 page = find_trylock_page(&swapper_space, entry.val);
381 swap_info_put(p);
382 }
383 if (page) {
384 int one_user;
385
386 BUG_ON(PagePrivate(page));
387 page_cache_get(page);
388 one_user = (page_count(page) == 2);
389 /* Only cache user (+us), or swap space full? Free it! */
390 if (!PageWriteback(page) && (one_user || vm_swap_full())) {
391 delete_from_swap_cache(page);
392 SetPageDirty(page);
393 }
394 unlock_page(page);
395 page_cache_release(page);
396 }
397}
398
399/*
400 * Always set the resulting pte to be nowrite (the same as COW pages
401 * after one process has exited). We don't know just how many PTEs will
402 * share this swap entry, so be cautious and let do_wp_page work out
403 * what to do if a write is requested later.
404 *
405 * vma->vm_mm->page_table_lock is held.
406 */
407static void unuse_pte(struct vm_area_struct *vma, pte_t *pte,
408 unsigned long addr, swp_entry_t entry, struct page *page)
409{
410 inc_mm_counter(vma->vm_mm, rss);
411 get_page(page);
412 set_pte_at(vma->vm_mm, addr, pte,
413 pte_mkold(mk_pte(page, vma->vm_page_prot)));
414 page_add_anon_rmap(page, vma, addr);
415 swap_free(entry);
416 /*
417 * Move the page to the active list so it is not
418 * immediately swapped out again after swapon.
419 */
420 activate_page(page);
421}
422
423static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
424 unsigned long addr, unsigned long end,
425 swp_entry_t entry, struct page *page)
426{
427 pte_t *pte;
428 pte_t swp_pte = swp_entry_to_pte(entry);
429
430 pte = pte_offset_map(pmd, addr);
431 do {
432 /*
433 * swapoff spends a _lot_ of time in this loop!
434 * Test inline before going to call unuse_pte.
435 */
436 if (unlikely(pte_same(*pte, swp_pte))) {
437 unuse_pte(vma, pte, addr, entry, page);
438 pte_unmap(pte);
439 return 1;
440 }
441 } while (pte++, addr += PAGE_SIZE, addr != end);
442 pte_unmap(pte - 1);
443 return 0;
444}
445
446static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
447 unsigned long addr, unsigned long end,
448 swp_entry_t entry, struct page *page)
449{
450 pmd_t *pmd;
451 unsigned long next;
452
453 pmd = pmd_offset(pud, addr);
454 do {
455 next = pmd_addr_end(addr, end);
456 if (pmd_none_or_clear_bad(pmd))
457 continue;
458 if (unuse_pte_range(vma, pmd, addr, next, entry, page))
459 return 1;
460 } while (pmd++, addr = next, addr != end);
461 return 0;
462}
463
464static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
465 unsigned long addr, unsigned long end,
466 swp_entry_t entry, struct page *page)
467{
468 pud_t *pud;
469 unsigned long next;
470
471 pud = pud_offset(pgd, addr);
472 do {
473 next = pud_addr_end(addr, end);
474 if (pud_none_or_clear_bad(pud))
475 continue;
476 if (unuse_pmd_range(vma, pud, addr, next, entry, page))
477 return 1;
478 } while (pud++, addr = next, addr != end);
479 return 0;
480}
481
482static int unuse_vma(struct vm_area_struct *vma,
483 swp_entry_t entry, struct page *page)
484{
485 pgd_t *pgd;
486 unsigned long addr, end, next;
487
488 if (page->mapping) {
489 addr = page_address_in_vma(page, vma);
490 if (addr == -EFAULT)
491 return 0;
492 else
493 end = addr + PAGE_SIZE;
494 } else {
495 addr = vma->vm_start;
496 end = vma->vm_end;
497 }
498
499 pgd = pgd_offset(vma->vm_mm, addr);
500 do {
501 next = pgd_addr_end(addr, end);
502 if (pgd_none_or_clear_bad(pgd))
503 continue;
504 if (unuse_pud_range(vma, pgd, addr, next, entry, page))
505 return 1;
506 } while (pgd++, addr = next, addr != end);
507 return 0;
508}
509
510static int unuse_mm(struct mm_struct *mm,
511 swp_entry_t entry, struct page *page)
512{
513 struct vm_area_struct *vma;
514
515 if (!down_read_trylock(&mm->mmap_sem)) {
516 /*
c475a8ab
HD
517 * Activate page so shrink_cache is unlikely to unmap its
518 * ptes while lock is dropped, so swapoff can make progress.
1da177e4 519 */
c475a8ab 520 activate_page(page);
1da177e4
LT
521 unlock_page(page);
522 down_read(&mm->mmap_sem);
523 lock_page(page);
524 }
525 spin_lock(&mm->page_table_lock);
526 for (vma = mm->mmap; vma; vma = vma->vm_next) {
527 if (vma->anon_vma && unuse_vma(vma, entry, page))
528 break;
529 }
530 spin_unlock(&mm->page_table_lock);
531 up_read(&mm->mmap_sem);
532 /*
533 * Currently unuse_mm cannot fail, but leave error handling
534 * at call sites for now, since we change it from time to time.
535 */
536 return 0;
537}
538
539/*
540 * Scan swap_map from current position to next entry still in use.
541 * Recycle to start on reaching the end, returning 0 when empty.
542 */
6eb396dc
HD
543static unsigned int find_next_to_unuse(struct swap_info_struct *si,
544 unsigned int prev)
1da177e4 545{
6eb396dc
HD
546 unsigned int max = si->max;
547 unsigned int i = prev;
1da177e4
LT
548 int count;
549
550 /*
551 * No need for swap_device_lock(si) here: we're just looking
552 * for whether an entry is in use, not modifying it; false
553 * hits are okay, and sys_swapoff() has already prevented new
554 * allocations from this area (while holding swap_list_lock()).
555 */
556 for (;;) {
557 if (++i >= max) {
558 if (!prev) {
559 i = 0;
560 break;
561 }
562 /*
563 * No entries in use at top of swap_map,
564 * loop back to start and recheck there.
565 */
566 max = prev + 1;
567 prev = 0;
568 i = 1;
569 }
570 count = si->swap_map[i];
571 if (count && count != SWAP_MAP_BAD)
572 break;
573 }
574 return i;
575}
576
577/*
578 * We completely avoid races by reading each swap page in advance,
579 * and then search for the process using it. All the necessary
580 * page table adjustments can then be made atomically.
581 */
582static int try_to_unuse(unsigned int type)
583{
584 struct swap_info_struct * si = &swap_info[type];
585 struct mm_struct *start_mm;
586 unsigned short *swap_map;
587 unsigned short swcount;
588 struct page *page;
589 swp_entry_t entry;
6eb396dc 590 unsigned int i = 0;
1da177e4
LT
591 int retval = 0;
592 int reset_overflow = 0;
593 int shmem;
594
595 /*
596 * When searching mms for an entry, a good strategy is to
597 * start at the first mm we freed the previous entry from
598 * (though actually we don't notice whether we or coincidence
599 * freed the entry). Initialize this start_mm with a hold.
600 *
601 * A simpler strategy would be to start at the last mm we
602 * freed the previous entry from; but that would take less
603 * advantage of mmlist ordering, which clusters forked mms
604 * together, child after parent. If we race with dup_mmap(), we
605 * prefer to resolve parent before child, lest we miss entries
606 * duplicated after we scanned child: using last mm would invert
607 * that. Though it's only a serious concern when an overflowed
608 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
609 */
610 start_mm = &init_mm;
611 atomic_inc(&init_mm.mm_users);
612
613 /*
614 * Keep on scanning until all entries have gone. Usually,
615 * one pass through swap_map is enough, but not necessarily:
616 * there are races when an instance of an entry might be missed.
617 */
618 while ((i = find_next_to_unuse(si, i)) != 0) {
619 if (signal_pending(current)) {
620 retval = -EINTR;
621 break;
622 }
623
624 /*
625 * Get a page for the entry, using the existing swap
626 * cache page if there is one. Otherwise, get a clean
627 * page and read the swap into it.
628 */
629 swap_map = &si->swap_map[i];
630 entry = swp_entry(type, i);
631 page = read_swap_cache_async(entry, NULL, 0);
632 if (!page) {
633 /*
634 * Either swap_duplicate() failed because entry
635 * has been freed independently, and will not be
636 * reused since sys_swapoff() already disabled
637 * allocation from here, or alloc_page() failed.
638 */
639 if (!*swap_map)
640 continue;
641 retval = -ENOMEM;
642 break;
643 }
644
645 /*
646 * Don't hold on to start_mm if it looks like exiting.
647 */
648 if (atomic_read(&start_mm->mm_users) == 1) {
649 mmput(start_mm);
650 start_mm = &init_mm;
651 atomic_inc(&init_mm.mm_users);
652 }
653
654 /*
655 * Wait for and lock page. When do_swap_page races with
656 * try_to_unuse, do_swap_page can handle the fault much
657 * faster than try_to_unuse can locate the entry. This
658 * apparently redundant "wait_on_page_locked" lets try_to_unuse
659 * defer to do_swap_page in such a case - in some tests,
660 * do_swap_page and try_to_unuse repeatedly compete.
661 */
662 wait_on_page_locked(page);
663 wait_on_page_writeback(page);
664 lock_page(page);
665 wait_on_page_writeback(page);
666
667 /*
668 * Remove all references to entry.
669 * Whenever we reach init_mm, there's no address space
670 * to search, but use it as a reminder to search shmem.
671 */
672 shmem = 0;
673 swcount = *swap_map;
674 if (swcount > 1) {
675 if (start_mm == &init_mm)
676 shmem = shmem_unuse(entry, page);
677 else
678 retval = unuse_mm(start_mm, entry, page);
679 }
680 if (*swap_map > 1) {
681 int set_start_mm = (*swap_map >= swcount);
682 struct list_head *p = &start_mm->mmlist;
683 struct mm_struct *new_start_mm = start_mm;
684 struct mm_struct *prev_mm = start_mm;
685 struct mm_struct *mm;
686
687 atomic_inc(&new_start_mm->mm_users);
688 atomic_inc(&prev_mm->mm_users);
689 spin_lock(&mmlist_lock);
690 while (*swap_map > 1 && !retval &&
691 (p = p->next) != &start_mm->mmlist) {
692 mm = list_entry(p, struct mm_struct, mmlist);
693 if (atomic_inc_return(&mm->mm_users) == 1) {
694 atomic_dec(&mm->mm_users);
695 continue;
696 }
697 spin_unlock(&mmlist_lock);
698 mmput(prev_mm);
699 prev_mm = mm;
700
701 cond_resched();
702
703 swcount = *swap_map;
704 if (swcount <= 1)
705 ;
706 else if (mm == &init_mm) {
707 set_start_mm = 1;
708 shmem = shmem_unuse(entry, page);
709 } else
710 retval = unuse_mm(mm, entry, page);
711 if (set_start_mm && *swap_map < swcount) {
712 mmput(new_start_mm);
713 atomic_inc(&mm->mm_users);
714 new_start_mm = mm;
715 set_start_mm = 0;
716 }
717 spin_lock(&mmlist_lock);
718 }
719 spin_unlock(&mmlist_lock);
720 mmput(prev_mm);
721 mmput(start_mm);
722 start_mm = new_start_mm;
723 }
724 if (retval) {
725 unlock_page(page);
726 page_cache_release(page);
727 break;
728 }
729
730 /*
731 * How could swap count reach 0x7fff when the maximum
732 * pid is 0x7fff, and there's no way to repeat a swap
733 * page within an mm (except in shmem, where it's the
734 * shared object which takes the reference count)?
735 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
736 *
737 * If that's wrong, then we should worry more about
738 * exit_mmap() and do_munmap() cases described above:
739 * we might be resetting SWAP_MAP_MAX too early here.
740 * We know "Undead"s can happen, they're okay, so don't
741 * report them; but do report if we reset SWAP_MAP_MAX.
742 */
743 if (*swap_map == SWAP_MAP_MAX) {
744 swap_device_lock(si);
745 *swap_map = 1;
746 swap_device_unlock(si);
747 reset_overflow = 1;
748 }
749
750 /*
751 * If a reference remains (rare), we would like to leave
752 * the page in the swap cache; but try_to_unmap could
753 * then re-duplicate the entry once we drop page lock,
754 * so we might loop indefinitely; also, that page could
755 * not be swapped out to other storage meanwhile. So:
756 * delete from cache even if there's another reference,
757 * after ensuring that the data has been saved to disk -
758 * since if the reference remains (rarer), it will be
759 * read from disk into another page. Splitting into two
760 * pages would be incorrect if swap supported "shared
761 * private" pages, but they are handled by tmpfs files.
762 *
763 * Note shmem_unuse already deleted a swappage from
764 * the swap cache, unless the move to filepage failed:
765 * in which case it left swappage in cache, lowered its
766 * swap count to pass quickly through the loops above,
767 * and now we must reincrement count to try again later.
768 */
769 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
770 struct writeback_control wbc = {
771 .sync_mode = WB_SYNC_NONE,
772 };
773
774 swap_writepage(page, &wbc);
775 lock_page(page);
776 wait_on_page_writeback(page);
777 }
778 if (PageSwapCache(page)) {
779 if (shmem)
780 swap_duplicate(entry);
781 else
782 delete_from_swap_cache(page);
783 }
784
785 /*
786 * So we could skip searching mms once swap count went
787 * to 1, we did not mark any present ptes as dirty: must
788 * mark page dirty so shrink_list will preserve it.
789 */
790 SetPageDirty(page);
791 unlock_page(page);
792 page_cache_release(page);
793
794 /*
795 * Make sure that we aren't completely killing
796 * interactive performance.
797 */
798 cond_resched();
799 }
800
801 mmput(start_mm);
802 if (reset_overflow) {
803 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
804 swap_overflow = 0;
805 }
806 return retval;
807}
808
809/*
810 * After a successful try_to_unuse, if no swap is now in use, we know we
811 * can empty the mmlist. swap_list_lock must be held on entry and exit.
812 * Note that mmlist_lock nests inside swap_list_lock, and an mm must be
813 * added to the mmlist just after page_duplicate - before would be racy.
814 */
815static void drain_mmlist(void)
816{
817 struct list_head *p, *next;
818 unsigned int i;
819
820 for (i = 0; i < nr_swapfiles; i++)
821 if (swap_info[i].inuse_pages)
822 return;
823 spin_lock(&mmlist_lock);
824 list_for_each_safe(p, next, &init_mm.mmlist)
825 list_del_init(p);
826 spin_unlock(&mmlist_lock);
827}
828
829/*
830 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
831 * corresponds to page offset `offset'.
832 */
833sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
834{
835 struct swap_extent *se = sis->curr_swap_extent;
836 struct swap_extent *start_se = se;
837
838 for ( ; ; ) {
839 struct list_head *lh;
840
841 if (se->start_page <= offset &&
842 offset < (se->start_page + se->nr_pages)) {
843 return se->start_block + (offset - se->start_page);
844 }
11d31886 845 lh = se->list.next;
1da177e4 846 if (lh == &sis->extent_list)
11d31886 847 lh = lh->next;
1da177e4
LT
848 se = list_entry(lh, struct swap_extent, list);
849 sis->curr_swap_extent = se;
850 BUG_ON(se == start_se); /* It *must* be present */
851 }
852}
853
854/*
855 * Free all of a swapdev's extent information
856 */
857static void destroy_swap_extents(struct swap_info_struct *sis)
858{
859 while (!list_empty(&sis->extent_list)) {
860 struct swap_extent *se;
861
862 se = list_entry(sis->extent_list.next,
863 struct swap_extent, list);
864 list_del(&se->list);
865 kfree(se);
866 }
1da177e4
LT
867}
868
869/*
870 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 871 * extent list. The extent list is kept sorted in page order.
1da177e4 872 *
11d31886 873 * This function rather assumes that it is called in ascending page order.
1da177e4
LT
874 */
875static int
876add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
877 unsigned long nr_pages, sector_t start_block)
878{
879 struct swap_extent *se;
880 struct swap_extent *new_se;
881 struct list_head *lh;
882
11d31886
HD
883 lh = sis->extent_list.prev; /* The highest page extent */
884 if (lh != &sis->extent_list) {
1da177e4 885 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
886 BUG_ON(se->start_page + se->nr_pages != start_page);
887 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
888 /* Merge it */
889 se->nr_pages += nr_pages;
890 return 0;
891 }
1da177e4
LT
892 }
893
894 /*
895 * No merge. Insert a new extent, preserving ordering.
896 */
897 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
898 if (new_se == NULL)
899 return -ENOMEM;
900 new_se->start_page = start_page;
901 new_se->nr_pages = nr_pages;
902 new_se->start_block = start_block;
903
11d31886 904 list_add_tail(&new_se->list, &sis->extent_list);
53092a74 905 return 1;
1da177e4
LT
906}
907
908/*
909 * A `swap extent' is a simple thing which maps a contiguous range of pages
910 * onto a contiguous range of disk blocks. An ordered list of swap extents
911 * is built at swapon time and is then used at swap_writepage/swap_readpage
912 * time for locating where on disk a page belongs.
913 *
914 * If the swapfile is an S_ISBLK block device, a single extent is installed.
915 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
916 * swap files identically.
917 *
918 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
919 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
920 * swapfiles are handled *identically* after swapon time.
921 *
922 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
923 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
924 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
925 * requirements, they are simply tossed out - we will never use those blocks
926 * for swapping.
927 *
b0d9bcd4 928 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
929 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
930 * which will scribble on the fs.
931 *
932 * The amount of disk space which a single swap extent represents varies.
933 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
934 * extents in the list. To avoid much list walking, we cache the previous
935 * search location in `curr_swap_extent', and start new searches from there.
936 * This is extremely effective. The average number of iterations in
937 * map_swap_page() has been measured at about 0.3 per page. - akpm.
938 */
53092a74 939static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4
LT
940{
941 struct inode *inode;
942 unsigned blocks_per_page;
943 unsigned long page_no;
944 unsigned blkbits;
945 sector_t probe_block;
946 sector_t last_block;
53092a74
HD
947 sector_t lowest_block = -1;
948 sector_t highest_block = 0;
949 int nr_extents = 0;
1da177e4
LT
950 int ret;
951
952 inode = sis->swap_file->f_mapping->host;
953 if (S_ISBLK(inode->i_mode)) {
954 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 955 *span = sis->pages;
1da177e4
LT
956 goto done;
957 }
958
959 blkbits = inode->i_blkbits;
960 blocks_per_page = PAGE_SIZE >> blkbits;
961
962 /*
963 * Map all the blocks into the extent list. This code doesn't try
964 * to be very smart.
965 */
966 probe_block = 0;
967 page_no = 0;
968 last_block = i_size_read(inode) >> blkbits;
969 while ((probe_block + blocks_per_page) <= last_block &&
970 page_no < sis->max) {
971 unsigned block_in_page;
972 sector_t first_block;
973
974 first_block = bmap(inode, probe_block);
975 if (first_block == 0)
976 goto bad_bmap;
977
978 /*
979 * It must be PAGE_SIZE aligned on-disk
980 */
981 if (first_block & (blocks_per_page - 1)) {
982 probe_block++;
983 goto reprobe;
984 }
985
986 for (block_in_page = 1; block_in_page < blocks_per_page;
987 block_in_page++) {
988 sector_t block;
989
990 block = bmap(inode, probe_block + block_in_page);
991 if (block == 0)
992 goto bad_bmap;
993 if (block != first_block + block_in_page) {
994 /* Discontiguity */
995 probe_block++;
996 goto reprobe;
997 }
998 }
999
53092a74
HD
1000 first_block >>= (PAGE_SHIFT - blkbits);
1001 if (page_no) { /* exclude the header page */
1002 if (first_block < lowest_block)
1003 lowest_block = first_block;
1004 if (first_block > highest_block)
1005 highest_block = first_block;
1006 }
1007
1da177e4
LT
1008 /*
1009 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1010 */
53092a74
HD
1011 ret = add_swap_extent(sis, page_no, 1, first_block);
1012 if (ret < 0)
1da177e4 1013 goto out;
53092a74 1014 nr_extents += ret;
1da177e4
LT
1015 page_no++;
1016 probe_block += blocks_per_page;
1017reprobe:
1018 continue;
1019 }
53092a74
HD
1020 ret = nr_extents;
1021 *span = 1 + highest_block - lowest_block;
1da177e4 1022 if (page_no == 0)
e2244ec2 1023 page_no = 1; /* force Empty message */
1da177e4 1024 sis->max = page_no;
e2244ec2 1025 sis->pages = page_no - 1;
1da177e4
LT
1026 sis->highest_bit = page_no - 1;
1027done:
1028 sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1029 struct swap_extent, list);
1030 goto out;
1031bad_bmap:
1032 printk(KERN_ERR "swapon: swapfile has holes\n");
1033 ret = -EINVAL;
1034out:
1035 return ret;
1036}
1037
1038#if 0 /* We don't need this yet */
1039#include <linux/backing-dev.h>
1040int page_queue_congested(struct page *page)
1041{
1042 struct backing_dev_info *bdi;
1043
1044 BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */
1045
1046 if (PageSwapCache(page)) {
1047 swp_entry_t entry = { .val = page->private };
1048 struct swap_info_struct *sis;
1049
1050 sis = get_swap_info_struct(swp_type(entry));
1051 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1052 } else
1053 bdi = page->mapping->backing_dev_info;
1054 return bdi_write_congested(bdi);
1055}
1056#endif
1057
1058asmlinkage long sys_swapoff(const char __user * specialfile)
1059{
1060 struct swap_info_struct * p = NULL;
1061 unsigned short *swap_map;
1062 struct file *swap_file, *victim;
1063 struct address_space *mapping;
1064 struct inode *inode;
1065 char * pathname;
1066 int i, type, prev;
1067 int err;
1068
1069 if (!capable(CAP_SYS_ADMIN))
1070 return -EPERM;
1071
1072 pathname = getname(specialfile);
1073 err = PTR_ERR(pathname);
1074 if (IS_ERR(pathname))
1075 goto out;
1076
1077 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1078 putname(pathname);
1079 err = PTR_ERR(victim);
1080 if (IS_ERR(victim))
1081 goto out;
1082
1083 mapping = victim->f_mapping;
1084 prev = -1;
1085 swap_list_lock();
1086 for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1087 p = swap_info + type;
1088 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1089 if (p->swap_file->f_mapping == mapping)
1090 break;
1091 }
1092 prev = type;
1093 }
1094 if (type < 0) {
1095 err = -EINVAL;
1096 swap_list_unlock();
1097 goto out_dput;
1098 }
1099 if (!security_vm_enough_memory(p->pages))
1100 vm_unacct_memory(p->pages);
1101 else {
1102 err = -ENOMEM;
1103 swap_list_unlock();
1104 goto out_dput;
1105 }
1106 if (prev < 0) {
1107 swap_list.head = p->next;
1108 } else {
1109 swap_info[prev].next = p->next;
1110 }
1111 if (type == swap_list.next) {
1112 /* just pick something that's safe... */
1113 swap_list.next = swap_list.head;
1114 }
1115 nr_swap_pages -= p->pages;
1116 total_swap_pages -= p->pages;
fb4f88dc 1117 swap_device_lock(p);
1da177e4 1118 p->flags &= ~SWP_WRITEOK;
fb4f88dc 1119 swap_device_unlock(p);
1da177e4 1120 swap_list_unlock();
fb4f88dc 1121
1da177e4
LT
1122 current->flags |= PF_SWAPOFF;
1123 err = try_to_unuse(type);
1124 current->flags &= ~PF_SWAPOFF;
1125
1da177e4
LT
1126 if (err) {
1127 /* re-insert swap space back into swap_list */
1128 swap_list_lock();
1129 for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1130 if (p->prio >= swap_info[i].prio)
1131 break;
1132 p->next = i;
1133 if (prev < 0)
1134 swap_list.head = swap_list.next = p - swap_info;
1135 else
1136 swap_info[prev].next = p - swap_info;
1137 nr_swap_pages += p->pages;
1138 total_swap_pages += p->pages;
52b7efdb 1139 swap_device_lock(p);
1da177e4 1140 p->flags |= SWP_WRITEOK;
52b7efdb 1141 swap_device_unlock(p);
1da177e4
LT
1142 swap_list_unlock();
1143 goto out_dput;
1144 }
52b7efdb
HD
1145
1146 /* wait for any unplug function to finish */
1147 down_write(&swap_unplug_sem);
1148 up_write(&swap_unplug_sem);
1149
1150 /* wait for anyone still in scan_swap_map */
1151 swap_device_lock(p);
1152 p->highest_bit = 0; /* cuts scans short */
1153 while (p->flags >= SWP_SCANNING) {
1154 swap_device_unlock(p);
1155 set_current_state(TASK_UNINTERRUPTIBLE);
1156 schedule_timeout(1);
1157 swap_device_lock(p);
1158 }
1159 swap_device_unlock(p);
1160
4cd3bb10 1161 destroy_swap_extents(p);
1da177e4
LT
1162 down(&swapon_sem);
1163 swap_list_lock();
1164 drain_mmlist();
1165 swap_device_lock(p);
1166 swap_file = p->swap_file;
1167 p->swap_file = NULL;
1168 p->max = 0;
1169 swap_map = p->swap_map;
1170 p->swap_map = NULL;
1171 p->flags = 0;
1da177e4
LT
1172 swap_device_unlock(p);
1173 swap_list_unlock();
1174 up(&swapon_sem);
1175 vfree(swap_map);
1176 inode = mapping->host;
1177 if (S_ISBLK(inode->i_mode)) {
1178 struct block_device *bdev = I_BDEV(inode);
1179 set_blocksize(bdev, p->old_block_size);
1180 bd_release(bdev);
1181 } else {
1182 down(&inode->i_sem);
1183 inode->i_flags &= ~S_SWAPFILE;
1184 up(&inode->i_sem);
1185 }
1186 filp_close(swap_file, NULL);
1187 err = 0;
1188
1189out_dput:
1190 filp_close(victim, NULL);
1191out:
1192 return err;
1193}
1194
1195#ifdef CONFIG_PROC_FS
1196/* iterator */
1197static void *swap_start(struct seq_file *swap, loff_t *pos)
1198{
1199 struct swap_info_struct *ptr = swap_info;
1200 int i;
1201 loff_t l = *pos;
1202
1203 down(&swapon_sem);
1204
1205 for (i = 0; i < nr_swapfiles; i++, ptr++) {
1206 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1207 continue;
1208 if (!l--)
1209 return ptr;
1210 }
1211
1212 return NULL;
1213}
1214
1215static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1216{
1217 struct swap_info_struct *ptr = v;
1218 struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1219
1220 for (++ptr; ptr < endptr; ptr++) {
1221 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1222 continue;
1223 ++*pos;
1224 return ptr;
1225 }
1226
1227 return NULL;
1228}
1229
1230static void swap_stop(struct seq_file *swap, void *v)
1231{
1232 up(&swapon_sem);
1233}
1234
1235static int swap_show(struct seq_file *swap, void *v)
1236{
1237 struct swap_info_struct *ptr = v;
1238 struct file *file;
1239 int len;
1240
1241 if (v == swap_info)
1242 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1243
1244 file = ptr->swap_file;
1245 len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\");
6eb396dc 1246 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1da177e4
LT
1247 len < 40 ? 40 - len : 1, " ",
1248 S_ISBLK(file->f_dentry->d_inode->i_mode) ?
1249 "partition" : "file\t",
1250 ptr->pages << (PAGE_SHIFT - 10),
1251 ptr->inuse_pages << (PAGE_SHIFT - 10),
1252 ptr->prio);
1253 return 0;
1254}
1255
1256static struct seq_operations swaps_op = {
1257 .start = swap_start,
1258 .next = swap_next,
1259 .stop = swap_stop,
1260 .show = swap_show
1261};
1262
1263static int swaps_open(struct inode *inode, struct file *file)
1264{
1265 return seq_open(file, &swaps_op);
1266}
1267
1268static struct file_operations proc_swaps_operations = {
1269 .open = swaps_open,
1270 .read = seq_read,
1271 .llseek = seq_lseek,
1272 .release = seq_release,
1273};
1274
1275static int __init procswaps_init(void)
1276{
1277 struct proc_dir_entry *entry;
1278
1279 entry = create_proc_entry("swaps", 0, NULL);
1280 if (entry)
1281 entry->proc_fops = &proc_swaps_operations;
1282 return 0;
1283}
1284__initcall(procswaps_init);
1285#endif /* CONFIG_PROC_FS */
1286
1287/*
1288 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1289 *
1290 * The swapon system call
1291 */
1292asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1293{
1294 struct swap_info_struct * p;
1295 char *name = NULL;
1296 struct block_device *bdev = NULL;
1297 struct file *swap_file = NULL;
1298 struct address_space *mapping;
1299 unsigned int type;
1300 int i, prev;
1301 int error;
1302 static int least_priority;
1303 union swap_header *swap_header = NULL;
1304 int swap_header_version;
6eb396dc
HD
1305 unsigned int nr_good_pages = 0;
1306 int nr_extents = 0;
53092a74 1307 sector_t span;
1da177e4
LT
1308 unsigned long maxpages = 1;
1309 int swapfilesize;
1310 unsigned short *swap_map;
1311 struct page *page = NULL;
1312 struct inode *inode = NULL;
1313 int did_down = 0;
1314
1315 if (!capable(CAP_SYS_ADMIN))
1316 return -EPERM;
1317 swap_list_lock();
1318 p = swap_info;
1319 for (type = 0 ; type < nr_swapfiles ; type++,p++)
1320 if (!(p->flags & SWP_USED))
1321 break;
1322 error = -EPERM;
1323 /*
1324 * Test if adding another swap device is possible. There are
1325 * two limiting factors: 1) the number of bits for the swap
1326 * type swp_entry_t definition and 2) the number of bits for
1327 * the swap type in the swap ptes as defined by the different
1328 * architectures. To honor both limitations a swap entry
1329 * with swap offset 0 and swap type ~0UL is created, encoded
1330 * to a swap pte, decoded to a swp_entry_t again and finally
1331 * the swap type part is extracted. This will mask all bits
1332 * from the initial ~0UL that can't be encoded in either the
1333 * swp_entry_t or the architecture definition of a swap pte.
1334 */
1335 if (type > swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) {
1336 swap_list_unlock();
1337 goto out;
1338 }
1339 if (type >= nr_swapfiles)
1340 nr_swapfiles = type+1;
1341 INIT_LIST_HEAD(&p->extent_list);
1342 p->flags = SWP_USED;
1da177e4
LT
1343 p->swap_file = NULL;
1344 p->old_block_size = 0;
1345 p->swap_map = NULL;
1346 p->lowest_bit = 0;
1347 p->highest_bit = 0;
1348 p->cluster_nr = 0;
1349 p->inuse_pages = 0;
1350 spin_lock_init(&p->sdev_lock);
1351 p->next = -1;
1352 if (swap_flags & SWAP_FLAG_PREFER) {
1353 p->prio =
1354 (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1355 } else {
1356 p->prio = --least_priority;
1357 }
1358 swap_list_unlock();
1359 name = getname(specialfile);
1360 error = PTR_ERR(name);
1361 if (IS_ERR(name)) {
1362 name = NULL;
1363 goto bad_swap_2;
1364 }
1365 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1366 error = PTR_ERR(swap_file);
1367 if (IS_ERR(swap_file)) {
1368 swap_file = NULL;
1369 goto bad_swap_2;
1370 }
1371
1372 p->swap_file = swap_file;
1373 mapping = swap_file->f_mapping;
1374 inode = mapping->host;
1375
1376 error = -EBUSY;
1377 for (i = 0; i < nr_swapfiles; i++) {
1378 struct swap_info_struct *q = &swap_info[i];
1379
1380 if (i == type || !q->swap_file)
1381 continue;
1382 if (mapping == q->swap_file->f_mapping)
1383 goto bad_swap;
1384 }
1385
1386 error = -EINVAL;
1387 if (S_ISBLK(inode->i_mode)) {
1388 bdev = I_BDEV(inode);
1389 error = bd_claim(bdev, sys_swapon);
1390 if (error < 0) {
1391 bdev = NULL;
1392 goto bad_swap;
1393 }
1394 p->old_block_size = block_size(bdev);
1395 error = set_blocksize(bdev, PAGE_SIZE);
1396 if (error < 0)
1397 goto bad_swap;
1398 p->bdev = bdev;
1399 } else if (S_ISREG(inode->i_mode)) {
1400 p->bdev = inode->i_sb->s_bdev;
1401 down(&inode->i_sem);
1402 did_down = 1;
1403 if (IS_SWAPFILE(inode)) {
1404 error = -EBUSY;
1405 goto bad_swap;
1406 }
1407 } else {
1408 goto bad_swap;
1409 }
1410
1411 swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1412
1413 /*
1414 * Read the swap header.
1415 */
1416 if (!mapping->a_ops->readpage) {
1417 error = -EINVAL;
1418 goto bad_swap;
1419 }
1420 page = read_cache_page(mapping, 0,
1421 (filler_t *)mapping->a_ops->readpage, swap_file);
1422 if (IS_ERR(page)) {
1423 error = PTR_ERR(page);
1424 goto bad_swap;
1425 }
1426 wait_on_page_locked(page);
1427 if (!PageUptodate(page))
1428 goto bad_swap;
1429 kmap(page);
1430 swap_header = page_address(page);
1431
1432 if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1433 swap_header_version = 1;
1434 else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1435 swap_header_version = 2;
1436 else {
1437 printk("Unable to find swap-space signature\n");
1438 error = -EINVAL;
1439 goto bad_swap;
1440 }
1441
1442 switch (swap_header_version) {
1443 case 1:
1444 printk(KERN_ERR "version 0 swap is no longer supported. "
1445 "Use mkswap -v1 %s\n", name);
1446 error = -EINVAL;
1447 goto bad_swap;
1448 case 2:
1449 /* Check the swap header's sub-version and the size of
1450 the swap file and bad block lists */
1451 if (swap_header->info.version != 1) {
1452 printk(KERN_WARNING
1453 "Unable to handle swap header version %d\n",
1454 swap_header->info.version);
1455 error = -EINVAL;
1456 goto bad_swap;
1457 }
1458
1459 p->lowest_bit = 1;
52b7efdb
HD
1460 p->cluster_next = 1;
1461
1da177e4
LT
1462 /*
1463 * Find out how many pages are allowed for a single swap
1464 * device. There are two limiting factors: 1) the number of
1465 * bits for the swap offset in the swp_entry_t type and
1466 * 2) the number of bits in the a swap pte as defined by
1467 * the different architectures. In order to find the
1468 * largest possible bit mask a swap entry with swap type 0
1469 * and swap offset ~0UL is created, encoded to a swap pte,
1470 * decoded to a swp_entry_t again and finally the swap
1471 * offset is extracted. This will mask all the bits from
1472 * the initial ~0UL mask that can't be encoded in either
1473 * the swp_entry_t or the architecture definition of a
1474 * swap pte.
1475 */
1476 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1477 if (maxpages > swap_header->info.last_page)
1478 maxpages = swap_header->info.last_page;
1479 p->highest_bit = maxpages - 1;
1480
1481 error = -EINVAL;
e2244ec2
HD
1482 if (!maxpages)
1483 goto bad_swap;
1484 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1485 goto bad_swap;
1da177e4
LT
1486 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1487 goto bad_swap;
1488
1489 /* OK, set up the swap map and apply the bad block list */
1490 if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1491 error = -ENOMEM;
1492 goto bad_swap;
1493 }
1494
1495 error = 0;
1496 memset(p->swap_map, 0, maxpages * sizeof(short));
1497 for (i=0; i<swap_header->info.nr_badpages; i++) {
1498 int page = swap_header->info.badpages[i];
1499 if (page <= 0 || page >= swap_header->info.last_page)
1500 error = -EINVAL;
1501 else
1502 p->swap_map[page] = SWAP_MAP_BAD;
1503 }
1504 nr_good_pages = swap_header->info.last_page -
1505 swap_header->info.nr_badpages -
1506 1 /* header page */;
1507 if (error)
1508 goto bad_swap;
1509 }
e2244ec2 1510
1da177e4
LT
1511 if (swapfilesize && maxpages > swapfilesize) {
1512 printk(KERN_WARNING
1513 "Swap area shorter than signature indicates\n");
1514 error = -EINVAL;
1515 goto bad_swap;
1516 }
e2244ec2
HD
1517 if (nr_good_pages) {
1518 p->swap_map[0] = SWAP_MAP_BAD;
1519 p->max = maxpages;
1520 p->pages = nr_good_pages;
53092a74
HD
1521 nr_extents = setup_swap_extents(p, &span);
1522 if (nr_extents < 0) {
1523 error = nr_extents;
e2244ec2 1524 goto bad_swap;
53092a74 1525 }
e2244ec2
HD
1526 nr_good_pages = p->pages;
1527 }
1da177e4
LT
1528 if (!nr_good_pages) {
1529 printk(KERN_WARNING "Empty swap-file\n");
1530 error = -EINVAL;
1531 goto bad_swap;
1532 }
1da177e4
LT
1533
1534 down(&swapon_sem);
1535 swap_list_lock();
1536 swap_device_lock(p);
1537 p->flags = SWP_ACTIVE;
1538 nr_swap_pages += nr_good_pages;
1539 total_swap_pages += nr_good_pages;
53092a74 1540
6eb396dc 1541 printk(KERN_INFO "Adding %uk swap on %s. "
53092a74
HD
1542 "Priority:%d extents:%d across:%lluk\n",
1543 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1544 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1da177e4
LT
1545
1546 /* insert swap space into swap_list: */
1547 prev = -1;
1548 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1549 if (p->prio >= swap_info[i].prio) {
1550 break;
1551 }
1552 prev = i;
1553 }
1554 p->next = i;
1555 if (prev < 0) {
1556 swap_list.head = swap_list.next = p - swap_info;
1557 } else {
1558 swap_info[prev].next = p - swap_info;
1559 }
1560 swap_device_unlock(p);
1561 swap_list_unlock();
1562 up(&swapon_sem);
1563 error = 0;
1564 goto out;
1565bad_swap:
1566 if (bdev) {
1567 set_blocksize(bdev, p->old_block_size);
1568 bd_release(bdev);
1569 }
4cd3bb10 1570 destroy_swap_extents(p);
1da177e4
LT
1571bad_swap_2:
1572 swap_list_lock();
1573 swap_map = p->swap_map;
1574 p->swap_file = NULL;
1575 p->swap_map = NULL;
1576 p->flags = 0;
1577 if (!(swap_flags & SWAP_FLAG_PREFER))
1578 ++least_priority;
1579 swap_list_unlock();
1da177e4
LT
1580 vfree(swap_map);
1581 if (swap_file)
1582 filp_close(swap_file, NULL);
1583out:
1584 if (page && !IS_ERR(page)) {
1585 kunmap(page);
1586 page_cache_release(page);
1587 }
1588 if (name)
1589 putname(name);
1590 if (did_down) {
1591 if (!error)
1592 inode->i_flags |= S_SWAPFILE;
1593 up(&inode->i_sem);
1594 }
1595 return error;
1596}
1597
1598void si_swapinfo(struct sysinfo *val)
1599{
1600 unsigned int i;
1601 unsigned long nr_to_be_unused = 0;
1602
1603 swap_list_lock();
1604 for (i = 0; i < nr_swapfiles; i++) {
1605 if (!(swap_info[i].flags & SWP_USED) ||
1606 (swap_info[i].flags & SWP_WRITEOK))
1607 continue;
1608 nr_to_be_unused += swap_info[i].inuse_pages;
1609 }
1610 val->freeswap = nr_swap_pages + nr_to_be_unused;
1611 val->totalswap = total_swap_pages + nr_to_be_unused;
1612 swap_list_unlock();
1613}
1614
1615/*
1616 * Verify that a swap entry is valid and increment its swap map count.
1617 *
1618 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1619 * "permanent", but will be reclaimed by the next swapoff.
1620 */
1621int swap_duplicate(swp_entry_t entry)
1622{
1623 struct swap_info_struct * p;
1624 unsigned long offset, type;
1625 int result = 0;
1626
1627 type = swp_type(entry);
1628 if (type >= nr_swapfiles)
1629 goto bad_file;
1630 p = type + swap_info;
1631 offset = swp_offset(entry);
1632
1633 swap_device_lock(p);
1634 if (offset < p->max && p->swap_map[offset]) {
1635 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1636 p->swap_map[offset]++;
1637 result = 1;
1638 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1639 if (swap_overflow++ < 5)
1640 printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1641 p->swap_map[offset] = SWAP_MAP_MAX;
1642 result = 1;
1643 }
1644 }
1645 swap_device_unlock(p);
1646out:
1647 return result;
1648
1649bad_file:
1650 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1651 goto out;
1652}
1653
1654struct swap_info_struct *
1655get_swap_info_struct(unsigned type)
1656{
1657 return &swap_info[type];
1658}
1659
1660/*
1661 * swap_device_lock prevents swap_map being freed. Don't grab an extra
1662 * reference on the swaphandle, it doesn't matter if it becomes unused.
1663 */
1664int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1665{
1666 int ret = 0, i = 1 << page_cluster;
1667 unsigned long toff;
1668 struct swap_info_struct *swapdev = swp_type(entry) + swap_info;
1669
1670 if (!page_cluster) /* no readahead */
1671 return 0;
1672 toff = (swp_offset(entry) >> page_cluster) << page_cluster;
1673 if (!toff) /* first page is swap header */
1674 toff++, i--;
1675 *offset = toff;
1676
1677 swap_device_lock(swapdev);
1678 do {
1679 /* Don't read-ahead past the end of the swap area */
1680 if (toff >= swapdev->max)
1681 break;
1682 /* Don't read in free or bad pages */
1683 if (!swapdev->swap_map[toff])
1684 break;
1685 if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
1686 break;
1687 toff++;
1688 ret++;
1689 } while (--i);
1690 swap_device_unlock(swapdev);
1691 return ret;
1692}