]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/swapfile.c
[PATCH] swsusp: documentation updates
[mirror_ubuntu-artful-kernel.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8#include <linux/config.h>
9#include <linux/mm.h>
10#include <linux/hugetlb.h>
11#include <linux/mman.h>
12#include <linux/slab.h>
13#include <linux/kernel_stat.h>
14#include <linux/swap.h>
15#include <linux/vmalloc.h>
16#include <linux/pagemap.h>
17#include <linux/namei.h>
18#include <linux/shm.h>
19#include <linux/blkdev.h>
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
24#include <linux/module.h>
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
fc0abb14 28#include <linux/mutex.h>
c59ede7b 29#include <linux/capability.h>
1da177e4
LT
30#include <linux/syscalls.h>
31
32#include <asm/pgtable.h>
33#include <asm/tlbflush.h>
34#include <linux/swapops.h>
35
5d337b91 36DEFINE_SPINLOCK(swap_lock);
1da177e4
LT
37unsigned int nr_swapfiles;
38long total_swap_pages;
39static int swap_overflow;
40
1da177e4
LT
41static const char Bad_file[] = "Bad swap file entry ";
42static const char Unused_file[] = "Unused swap file entry ";
43static const char Bad_offset[] = "Bad swap offset entry ";
44static const char Unused_offset[] = "Unused swap offset entry ";
45
46struct swap_list_t swap_list = {-1, -1};
47
f577eb30 48static struct swap_info_struct swap_info[MAX_SWAPFILES];
1da177e4 49
fc0abb14 50static DEFINE_MUTEX(swapon_mutex);
1da177e4
LT
51
52/*
53 * We need this because the bdev->unplug_fn can sleep and we cannot
5d337b91 54 * hold swap_lock while calling the unplug_fn. And swap_lock
fc0abb14 55 * cannot be turned into a mutex.
1da177e4
LT
56 */
57static DECLARE_RWSEM(swap_unplug_sem);
58
1da177e4
LT
59void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
60{
61 swp_entry_t entry;
62
63 down_read(&swap_unplug_sem);
4c21e2f2 64 entry.val = page_private(page);
1da177e4
LT
65 if (PageSwapCache(page)) {
66 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
67 struct backing_dev_info *bdi;
68
69 /*
70 * If the page is removed from swapcache from under us (with a
71 * racy try_to_unuse/swapoff) we need an additional reference
4c21e2f2
HD
72 * count to avoid reading garbage from page_private(page) above.
73 * If the WARN_ON triggers during a swapoff it maybe the race
1da177e4
LT
74 * condition and it's harmless. However if it triggers without
75 * swapoff it signals a problem.
76 */
77 WARN_ON(page_count(page) <= 1);
78
79 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
ba32311e 80 blk_run_backing_dev(bdi, page);
1da177e4
LT
81 }
82 up_read(&swap_unplug_sem);
83}
84
048c27fd
HD
85#define SWAPFILE_CLUSTER 256
86#define LATENCY_LIMIT 256
87
6eb396dc 88static inline unsigned long scan_swap_map(struct swap_info_struct *si)
1da177e4 89{
7dfad418 90 unsigned long offset, last_in_cluster;
048c27fd 91 int latency_ration = LATENCY_LIMIT;
7dfad418 92
1da177e4 93 /*
7dfad418
HD
94 * We try to cluster swap pages by allocating them sequentially
95 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
96 * way, however, we resort to first-free allocation, starting
97 * a new cluster. This prevents us from scattering swap pages
98 * all over the entire swap partition, so that we reduce
99 * overall disk seek times between swap pages. -- sct
100 * But we do now try to find an empty cluster. -Andrea
101 */
102
52b7efdb 103 si->flags += SWP_SCANNING;
7dfad418
HD
104 if (unlikely(!si->cluster_nr)) {
105 si->cluster_nr = SWAPFILE_CLUSTER - 1;
106 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
107 goto lowest;
5d337b91 108 spin_unlock(&swap_lock);
7dfad418
HD
109
110 offset = si->lowest_bit;
111 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
112
113 /* Locate the first empty (unaligned) cluster */
114 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 115 if (si->swap_map[offset])
7dfad418
HD
116 last_in_cluster = offset + SWAPFILE_CLUSTER;
117 else if (offset == last_in_cluster) {
5d337b91 118 spin_lock(&swap_lock);
9b65ef59 119 si->cluster_next = offset-SWAPFILE_CLUSTER+1;
7dfad418 120 goto cluster;
1da177e4 121 }
048c27fd
HD
122 if (unlikely(--latency_ration < 0)) {
123 cond_resched();
124 latency_ration = LATENCY_LIMIT;
125 }
7dfad418 126 }
5d337b91 127 spin_lock(&swap_lock);
7dfad418 128 goto lowest;
1da177e4 129 }
7dfad418
HD
130
131 si->cluster_nr--;
132cluster:
133 offset = si->cluster_next;
134 if (offset > si->highest_bit)
135lowest: offset = si->lowest_bit;
52b7efdb
HD
136checks: if (!(si->flags & SWP_WRITEOK))
137 goto no_page;
7dfad418
HD
138 if (!si->highest_bit)
139 goto no_page;
140 if (!si->swap_map[offset]) {
52b7efdb 141 if (offset == si->lowest_bit)
1da177e4
LT
142 si->lowest_bit++;
143 if (offset == si->highest_bit)
144 si->highest_bit--;
7dfad418
HD
145 si->inuse_pages++;
146 if (si->inuse_pages == si->pages) {
1da177e4
LT
147 si->lowest_bit = si->max;
148 si->highest_bit = 0;
149 }
150 si->swap_map[offset] = 1;
7dfad418 151 si->cluster_next = offset + 1;
52b7efdb 152 si->flags -= SWP_SCANNING;
1da177e4
LT
153 return offset;
154 }
7dfad418 155
5d337b91 156 spin_unlock(&swap_lock);
7dfad418 157 while (++offset <= si->highest_bit) {
52b7efdb 158 if (!si->swap_map[offset]) {
5d337b91 159 spin_lock(&swap_lock);
52b7efdb
HD
160 goto checks;
161 }
048c27fd
HD
162 if (unlikely(--latency_ration < 0)) {
163 cond_resched();
164 latency_ration = LATENCY_LIMIT;
165 }
7dfad418 166 }
5d337b91 167 spin_lock(&swap_lock);
7dfad418
HD
168 goto lowest;
169
170no_page:
52b7efdb 171 si->flags -= SWP_SCANNING;
1da177e4
LT
172 return 0;
173}
174
175swp_entry_t get_swap_page(void)
176{
fb4f88dc
HD
177 struct swap_info_struct *si;
178 pgoff_t offset;
179 int type, next;
180 int wrapped = 0;
1da177e4 181
5d337b91 182 spin_lock(&swap_lock);
1da177e4 183 if (nr_swap_pages <= 0)
fb4f88dc
HD
184 goto noswap;
185 nr_swap_pages--;
186
187 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
188 si = swap_info + type;
189 next = si->next;
190 if (next < 0 ||
191 (!wrapped && si->prio != swap_info[next].prio)) {
192 next = swap_list.head;
193 wrapped++;
1da177e4 194 }
fb4f88dc
HD
195
196 if (!si->highest_bit)
197 continue;
198 if (!(si->flags & SWP_WRITEOK))
199 continue;
200
201 swap_list.next = next;
fb4f88dc 202 offset = scan_swap_map(si);
5d337b91
HD
203 if (offset) {
204 spin_unlock(&swap_lock);
fb4f88dc 205 return swp_entry(type, offset);
5d337b91 206 }
fb4f88dc 207 next = swap_list.next;
1da177e4 208 }
fb4f88dc
HD
209
210 nr_swap_pages++;
211noswap:
5d337b91 212 spin_unlock(&swap_lock);
fb4f88dc 213 return (swp_entry_t) {0};
1da177e4
LT
214}
215
3a291a20
RW
216swp_entry_t get_swap_page_of_type(int type)
217{
218 struct swap_info_struct *si;
219 pgoff_t offset;
220
221 spin_lock(&swap_lock);
222 si = swap_info + type;
223 if (si->flags & SWP_WRITEOK) {
224 nr_swap_pages--;
225 offset = scan_swap_map(si);
226 if (offset) {
227 spin_unlock(&swap_lock);
228 return swp_entry(type, offset);
229 }
230 nr_swap_pages++;
231 }
232 spin_unlock(&swap_lock);
233 return (swp_entry_t) {0};
234}
235
1da177e4
LT
236static struct swap_info_struct * swap_info_get(swp_entry_t entry)
237{
238 struct swap_info_struct * p;
239 unsigned long offset, type;
240
241 if (!entry.val)
242 goto out;
243 type = swp_type(entry);
244 if (type >= nr_swapfiles)
245 goto bad_nofile;
246 p = & swap_info[type];
247 if (!(p->flags & SWP_USED))
248 goto bad_device;
249 offset = swp_offset(entry);
250 if (offset >= p->max)
251 goto bad_offset;
252 if (!p->swap_map[offset])
253 goto bad_free;
5d337b91 254 spin_lock(&swap_lock);
1da177e4
LT
255 return p;
256
257bad_free:
258 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
259 goto out;
260bad_offset:
261 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
262 goto out;
263bad_device:
264 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
265 goto out;
266bad_nofile:
267 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
268out:
269 return NULL;
270}
271
1da177e4
LT
272static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
273{
274 int count = p->swap_map[offset];
275
276 if (count < SWAP_MAP_MAX) {
277 count--;
278 p->swap_map[offset] = count;
279 if (!count) {
280 if (offset < p->lowest_bit)
281 p->lowest_bit = offset;
282 if (offset > p->highest_bit)
283 p->highest_bit = offset;
89d09a2c
HD
284 if (p->prio > swap_info[swap_list.next].prio)
285 swap_list.next = p - swap_info;
1da177e4
LT
286 nr_swap_pages++;
287 p->inuse_pages--;
288 }
289 }
290 return count;
291}
292
293/*
294 * Caller has made sure that the swapdevice corresponding to entry
295 * is still around or has not been recycled.
296 */
297void swap_free(swp_entry_t entry)
298{
299 struct swap_info_struct * p;
300
301 p = swap_info_get(entry);
302 if (p) {
303 swap_entry_free(p, swp_offset(entry));
5d337b91 304 spin_unlock(&swap_lock);
1da177e4
LT
305 }
306}
307
308/*
c475a8ab 309 * How many references to page are currently swapped out?
1da177e4 310 */
c475a8ab 311static inline int page_swapcount(struct page *page)
1da177e4 312{
c475a8ab
HD
313 int count = 0;
314 struct swap_info_struct *p;
1da177e4
LT
315 swp_entry_t entry;
316
4c21e2f2 317 entry.val = page_private(page);
1da177e4
LT
318 p = swap_info_get(entry);
319 if (p) {
c475a8ab
HD
320 /* Subtract the 1 for the swap cache itself */
321 count = p->swap_map[swp_offset(entry)] - 1;
5d337b91 322 spin_unlock(&swap_lock);
1da177e4 323 }
c475a8ab 324 return count;
1da177e4
LT
325}
326
327/*
328 * We can use this swap cache entry directly
329 * if there are no other references to it.
1da177e4
LT
330 */
331int can_share_swap_page(struct page *page)
332{
c475a8ab
HD
333 int count;
334
335 BUG_ON(!PageLocked(page));
336 count = page_mapcount(page);
337 if (count <= 1 && PageSwapCache(page))
338 count += page_swapcount(page);
339 return count == 1;
1da177e4
LT
340}
341
342/*
343 * Work out if there are any other processes sharing this
344 * swap cache page. Free it if you can. Return success.
345 */
346int remove_exclusive_swap_page(struct page *page)
347{
348 int retval;
349 struct swap_info_struct * p;
350 swp_entry_t entry;
351
352 BUG_ON(PagePrivate(page));
353 BUG_ON(!PageLocked(page));
354
355 if (!PageSwapCache(page))
356 return 0;
357 if (PageWriteback(page))
358 return 0;
359 if (page_count(page) != 2) /* 2: us + cache */
360 return 0;
361
4c21e2f2 362 entry.val = page_private(page);
1da177e4
LT
363 p = swap_info_get(entry);
364 if (!p)
365 return 0;
366
367 /* Is the only swap cache user the cache itself? */
368 retval = 0;
369 if (p->swap_map[swp_offset(entry)] == 1) {
370 /* Recheck the page count with the swapcache lock held.. */
371 write_lock_irq(&swapper_space.tree_lock);
372 if ((page_count(page) == 2) && !PageWriteback(page)) {
373 __delete_from_swap_cache(page);
374 SetPageDirty(page);
375 retval = 1;
376 }
377 write_unlock_irq(&swapper_space.tree_lock);
378 }
5d337b91 379 spin_unlock(&swap_lock);
1da177e4
LT
380
381 if (retval) {
382 swap_free(entry);
383 page_cache_release(page);
384 }
385
386 return retval;
387}
388
389/*
390 * Free the swap entry like above, but also try to
391 * free the page cache entry if it is the last user.
392 */
393void free_swap_and_cache(swp_entry_t entry)
394{
395 struct swap_info_struct * p;
396 struct page *page = NULL;
397
398 p = swap_info_get(entry);
399 if (p) {
400 if (swap_entry_free(p, swp_offset(entry)) == 1)
401 page = find_trylock_page(&swapper_space, entry.val);
5d337b91 402 spin_unlock(&swap_lock);
1da177e4
LT
403 }
404 if (page) {
405 int one_user;
406
407 BUG_ON(PagePrivate(page));
408 page_cache_get(page);
409 one_user = (page_count(page) == 2);
410 /* Only cache user (+us), or swap space full? Free it! */
411 if (!PageWriteback(page) && (one_user || vm_swap_full())) {
412 delete_from_swap_cache(page);
413 SetPageDirty(page);
414 }
415 unlock_page(page);
416 page_cache_release(page);
417 }
418}
419
f577eb30
RW
420#ifdef CONFIG_SOFTWARE_SUSPEND
421/*
422 * Find the swap type that corresponds to given device (if any)
423 *
424 * This is needed for software suspend and is done in such a way that inode
425 * aliasing is allowed.
426 */
427int swap_type_of(dev_t device)
428{
429 int i;
430
431 if (!device)
432 return -EINVAL;
433 spin_lock(&swap_lock);
434 for (i = 0; i < nr_swapfiles; i++) {
435 struct inode *inode;
436
437 if (!(swap_info[i].flags & SWP_WRITEOK))
438 continue;
439 inode = swap_info->swap_file->f_dentry->d_inode;
440 if (S_ISBLK(inode->i_mode) &&
441 device == MKDEV(imajor(inode), iminor(inode))) {
442 spin_unlock(&swap_lock);
443 return i;
444 }
445 }
446 spin_unlock(&swap_lock);
447 return -ENODEV;
448}
449
450/*
451 * Return either the total number of swap pages of given type, or the number
452 * of free pages of that type (depending on @free)
453 *
454 * This is needed for software suspend
455 */
456unsigned int count_swap_pages(int type, int free)
457{
458 unsigned int n = 0;
459
460 if (type < nr_swapfiles) {
461 spin_lock(&swap_lock);
462 if (swap_info[type].flags & SWP_WRITEOK) {
463 n = swap_info[type].pages;
464 if (free)
465 n -= swap_info[type].inuse_pages;
466 }
467 spin_unlock(&swap_lock);
468 }
469 return n;
470}
471#endif
472
1da177e4 473/*
72866f6f
HD
474 * No need to decide whether this PTE shares the swap entry with others,
475 * just let do_wp_page work it out if a write is requested later - to
476 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4
LT
477 */
478static void unuse_pte(struct vm_area_struct *vma, pte_t *pte,
479 unsigned long addr, swp_entry_t entry, struct page *page)
480{
4294621f 481 inc_mm_counter(vma->vm_mm, anon_rss);
1da177e4
LT
482 get_page(page);
483 set_pte_at(vma->vm_mm, addr, pte,
484 pte_mkold(mk_pte(page, vma->vm_page_prot)));
485 page_add_anon_rmap(page, vma, addr);
486 swap_free(entry);
487 /*
488 * Move the page to the active list so it is not
489 * immediately swapped out again after swapon.
490 */
491 activate_page(page);
492}
493
494static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
495 unsigned long addr, unsigned long end,
496 swp_entry_t entry, struct page *page)
497{
1da177e4 498 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0
HD
499 pte_t *pte;
500 spinlock_t *ptl;
501 int found = 0;
1da177e4 502
705e87c0 503 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1da177e4
LT
504 do {
505 /*
506 * swapoff spends a _lot_ of time in this loop!
507 * Test inline before going to call unuse_pte.
508 */
509 if (unlikely(pte_same(*pte, swp_pte))) {
705e87c0
HD
510 unuse_pte(vma, pte++, addr, entry, page);
511 found = 1;
512 break;
1da177e4
LT
513 }
514 } while (pte++, addr += PAGE_SIZE, addr != end);
705e87c0
HD
515 pte_unmap_unlock(pte - 1, ptl);
516 return found;
1da177e4
LT
517}
518
519static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
520 unsigned long addr, unsigned long end,
521 swp_entry_t entry, struct page *page)
522{
523 pmd_t *pmd;
524 unsigned long next;
525
526 pmd = pmd_offset(pud, addr);
527 do {
528 next = pmd_addr_end(addr, end);
529 if (pmd_none_or_clear_bad(pmd))
530 continue;
531 if (unuse_pte_range(vma, pmd, addr, next, entry, page))
532 return 1;
533 } while (pmd++, addr = next, addr != end);
534 return 0;
535}
536
537static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
538 unsigned long addr, unsigned long end,
539 swp_entry_t entry, struct page *page)
540{
541 pud_t *pud;
542 unsigned long next;
543
544 pud = pud_offset(pgd, addr);
545 do {
546 next = pud_addr_end(addr, end);
547 if (pud_none_or_clear_bad(pud))
548 continue;
549 if (unuse_pmd_range(vma, pud, addr, next, entry, page))
550 return 1;
551 } while (pud++, addr = next, addr != end);
552 return 0;
553}
554
555static int unuse_vma(struct vm_area_struct *vma,
556 swp_entry_t entry, struct page *page)
557{
558 pgd_t *pgd;
559 unsigned long addr, end, next;
560
561 if (page->mapping) {
562 addr = page_address_in_vma(page, vma);
563 if (addr == -EFAULT)
564 return 0;
565 else
566 end = addr + PAGE_SIZE;
567 } else {
568 addr = vma->vm_start;
569 end = vma->vm_end;
570 }
571
572 pgd = pgd_offset(vma->vm_mm, addr);
573 do {
574 next = pgd_addr_end(addr, end);
575 if (pgd_none_or_clear_bad(pgd))
576 continue;
577 if (unuse_pud_range(vma, pgd, addr, next, entry, page))
578 return 1;
579 } while (pgd++, addr = next, addr != end);
580 return 0;
581}
582
583static int unuse_mm(struct mm_struct *mm,
584 swp_entry_t entry, struct page *page)
585{
586 struct vm_area_struct *vma;
587
588 if (!down_read_trylock(&mm->mmap_sem)) {
589 /*
c475a8ab
HD
590 * Activate page so shrink_cache is unlikely to unmap its
591 * ptes while lock is dropped, so swapoff can make progress.
1da177e4 592 */
c475a8ab 593 activate_page(page);
1da177e4
LT
594 unlock_page(page);
595 down_read(&mm->mmap_sem);
596 lock_page(page);
597 }
1da177e4
LT
598 for (vma = mm->mmap; vma; vma = vma->vm_next) {
599 if (vma->anon_vma && unuse_vma(vma, entry, page))
600 break;
601 }
1da177e4
LT
602 up_read(&mm->mmap_sem);
603 /*
604 * Currently unuse_mm cannot fail, but leave error handling
605 * at call sites for now, since we change it from time to time.
606 */
607 return 0;
608}
609
a3351e52
CL
610#ifdef CONFIG_MIGRATION
611int remove_vma_swap(struct vm_area_struct *vma, struct page *page)
612{
613 swp_entry_t entry = { .val = page_private(page) };
614
615 return unuse_vma(vma, entry, page);
616}
617#endif
618
1da177e4
LT
619/*
620 * Scan swap_map from current position to next entry still in use.
621 * Recycle to start on reaching the end, returning 0 when empty.
622 */
6eb396dc
HD
623static unsigned int find_next_to_unuse(struct swap_info_struct *si,
624 unsigned int prev)
1da177e4 625{
6eb396dc
HD
626 unsigned int max = si->max;
627 unsigned int i = prev;
1da177e4
LT
628 int count;
629
630 /*
5d337b91 631 * No need for swap_lock here: we're just looking
1da177e4
LT
632 * for whether an entry is in use, not modifying it; false
633 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 634 * allocations from this area (while holding swap_lock).
1da177e4
LT
635 */
636 for (;;) {
637 if (++i >= max) {
638 if (!prev) {
639 i = 0;
640 break;
641 }
642 /*
643 * No entries in use at top of swap_map,
644 * loop back to start and recheck there.
645 */
646 max = prev + 1;
647 prev = 0;
648 i = 1;
649 }
650 count = si->swap_map[i];
651 if (count && count != SWAP_MAP_BAD)
652 break;
653 }
654 return i;
655}
656
657/*
658 * We completely avoid races by reading each swap page in advance,
659 * and then search for the process using it. All the necessary
660 * page table adjustments can then be made atomically.
661 */
662static int try_to_unuse(unsigned int type)
663{
664 struct swap_info_struct * si = &swap_info[type];
665 struct mm_struct *start_mm;
666 unsigned short *swap_map;
667 unsigned short swcount;
668 struct page *page;
669 swp_entry_t entry;
6eb396dc 670 unsigned int i = 0;
1da177e4
LT
671 int retval = 0;
672 int reset_overflow = 0;
673 int shmem;
674
675 /*
676 * When searching mms for an entry, a good strategy is to
677 * start at the first mm we freed the previous entry from
678 * (though actually we don't notice whether we or coincidence
679 * freed the entry). Initialize this start_mm with a hold.
680 *
681 * A simpler strategy would be to start at the last mm we
682 * freed the previous entry from; but that would take less
683 * advantage of mmlist ordering, which clusters forked mms
684 * together, child after parent. If we race with dup_mmap(), we
685 * prefer to resolve parent before child, lest we miss entries
686 * duplicated after we scanned child: using last mm would invert
687 * that. Though it's only a serious concern when an overflowed
688 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
689 */
690 start_mm = &init_mm;
691 atomic_inc(&init_mm.mm_users);
692
693 /*
694 * Keep on scanning until all entries have gone. Usually,
695 * one pass through swap_map is enough, but not necessarily:
696 * there are races when an instance of an entry might be missed.
697 */
698 while ((i = find_next_to_unuse(si, i)) != 0) {
699 if (signal_pending(current)) {
700 retval = -EINTR;
701 break;
702 }
703
704 /*
705 * Get a page for the entry, using the existing swap
706 * cache page if there is one. Otherwise, get a clean
707 * page and read the swap into it.
708 */
709 swap_map = &si->swap_map[i];
710 entry = swp_entry(type, i);
b16664e4 711again:
1da177e4
LT
712 page = read_swap_cache_async(entry, NULL, 0);
713 if (!page) {
714 /*
715 * Either swap_duplicate() failed because entry
716 * has been freed independently, and will not be
717 * reused since sys_swapoff() already disabled
718 * allocation from here, or alloc_page() failed.
719 */
720 if (!*swap_map)
721 continue;
722 retval = -ENOMEM;
723 break;
724 }
725
726 /*
727 * Don't hold on to start_mm if it looks like exiting.
728 */
729 if (atomic_read(&start_mm->mm_users) == 1) {
730 mmput(start_mm);
731 start_mm = &init_mm;
732 atomic_inc(&init_mm.mm_users);
733 }
734
735 /*
736 * Wait for and lock page. When do_swap_page races with
737 * try_to_unuse, do_swap_page can handle the fault much
738 * faster than try_to_unuse can locate the entry. This
739 * apparently redundant "wait_on_page_locked" lets try_to_unuse
740 * defer to do_swap_page in such a case - in some tests,
741 * do_swap_page and try_to_unuse repeatedly compete.
742 */
743 wait_on_page_locked(page);
744 wait_on_page_writeback(page);
745 lock_page(page);
b16664e4
CL
746 if (!PageSwapCache(page)) {
747 /* Page migration has occured */
748 unlock_page(page);
749 page_cache_release(page);
750 goto again;
751 }
1da177e4
LT
752 wait_on_page_writeback(page);
753
754 /*
755 * Remove all references to entry.
756 * Whenever we reach init_mm, there's no address space
757 * to search, but use it as a reminder to search shmem.
758 */
759 shmem = 0;
760 swcount = *swap_map;
761 if (swcount > 1) {
762 if (start_mm == &init_mm)
763 shmem = shmem_unuse(entry, page);
764 else
765 retval = unuse_mm(start_mm, entry, page);
766 }
767 if (*swap_map > 1) {
768 int set_start_mm = (*swap_map >= swcount);
769 struct list_head *p = &start_mm->mmlist;
770 struct mm_struct *new_start_mm = start_mm;
771 struct mm_struct *prev_mm = start_mm;
772 struct mm_struct *mm;
773
774 atomic_inc(&new_start_mm->mm_users);
775 atomic_inc(&prev_mm->mm_users);
776 spin_lock(&mmlist_lock);
777 while (*swap_map > 1 && !retval &&
778 (p = p->next) != &start_mm->mmlist) {
779 mm = list_entry(p, struct mm_struct, mmlist);
780 if (atomic_inc_return(&mm->mm_users) == 1) {
781 atomic_dec(&mm->mm_users);
782 continue;
783 }
784 spin_unlock(&mmlist_lock);
785 mmput(prev_mm);
786 prev_mm = mm;
787
788 cond_resched();
789
790 swcount = *swap_map;
791 if (swcount <= 1)
792 ;
793 else if (mm == &init_mm) {
794 set_start_mm = 1;
795 shmem = shmem_unuse(entry, page);
796 } else
797 retval = unuse_mm(mm, entry, page);
798 if (set_start_mm && *swap_map < swcount) {
799 mmput(new_start_mm);
800 atomic_inc(&mm->mm_users);
801 new_start_mm = mm;
802 set_start_mm = 0;
803 }
804 spin_lock(&mmlist_lock);
805 }
806 spin_unlock(&mmlist_lock);
807 mmput(prev_mm);
808 mmput(start_mm);
809 start_mm = new_start_mm;
810 }
811 if (retval) {
812 unlock_page(page);
813 page_cache_release(page);
814 break;
815 }
816
817 /*
818 * How could swap count reach 0x7fff when the maximum
819 * pid is 0x7fff, and there's no way to repeat a swap
820 * page within an mm (except in shmem, where it's the
821 * shared object which takes the reference count)?
822 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
823 *
824 * If that's wrong, then we should worry more about
825 * exit_mmap() and do_munmap() cases described above:
826 * we might be resetting SWAP_MAP_MAX too early here.
827 * We know "Undead"s can happen, they're okay, so don't
828 * report them; but do report if we reset SWAP_MAP_MAX.
829 */
830 if (*swap_map == SWAP_MAP_MAX) {
5d337b91 831 spin_lock(&swap_lock);
1da177e4 832 *swap_map = 1;
5d337b91 833 spin_unlock(&swap_lock);
1da177e4
LT
834 reset_overflow = 1;
835 }
836
837 /*
838 * If a reference remains (rare), we would like to leave
839 * the page in the swap cache; but try_to_unmap could
840 * then re-duplicate the entry once we drop page lock,
841 * so we might loop indefinitely; also, that page could
842 * not be swapped out to other storage meanwhile. So:
843 * delete from cache even if there's another reference,
844 * after ensuring that the data has been saved to disk -
845 * since if the reference remains (rarer), it will be
846 * read from disk into another page. Splitting into two
847 * pages would be incorrect if swap supported "shared
848 * private" pages, but they are handled by tmpfs files.
849 *
850 * Note shmem_unuse already deleted a swappage from
851 * the swap cache, unless the move to filepage failed:
852 * in which case it left swappage in cache, lowered its
853 * swap count to pass quickly through the loops above,
854 * and now we must reincrement count to try again later.
855 */
856 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
857 struct writeback_control wbc = {
858 .sync_mode = WB_SYNC_NONE,
859 };
860
861 swap_writepage(page, &wbc);
862 lock_page(page);
863 wait_on_page_writeback(page);
864 }
865 if (PageSwapCache(page)) {
866 if (shmem)
867 swap_duplicate(entry);
868 else
869 delete_from_swap_cache(page);
870 }
871
872 /*
873 * So we could skip searching mms once swap count went
874 * to 1, we did not mark any present ptes as dirty: must
875 * mark page dirty so shrink_list will preserve it.
876 */
877 SetPageDirty(page);
878 unlock_page(page);
879 page_cache_release(page);
880
881 /*
882 * Make sure that we aren't completely killing
883 * interactive performance.
884 */
885 cond_resched();
886 }
887
888 mmput(start_mm);
889 if (reset_overflow) {
890 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
891 swap_overflow = 0;
892 }
893 return retval;
894}
895
896/*
5d337b91
HD
897 * After a successful try_to_unuse, if no swap is now in use, we know
898 * we can empty the mmlist. swap_lock must be held on entry and exit.
899 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
900 * added to the mmlist just after page_duplicate - before would be racy.
901 */
902static void drain_mmlist(void)
903{
904 struct list_head *p, *next;
905 unsigned int i;
906
907 for (i = 0; i < nr_swapfiles; i++)
908 if (swap_info[i].inuse_pages)
909 return;
910 spin_lock(&mmlist_lock);
911 list_for_each_safe(p, next, &init_mm.mmlist)
912 list_del_init(p);
913 spin_unlock(&mmlist_lock);
914}
915
916/*
917 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
918 * corresponds to page offset `offset'.
919 */
920sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
921{
922 struct swap_extent *se = sis->curr_swap_extent;
923 struct swap_extent *start_se = se;
924
925 for ( ; ; ) {
926 struct list_head *lh;
927
928 if (se->start_page <= offset &&
929 offset < (se->start_page + se->nr_pages)) {
930 return se->start_block + (offset - se->start_page);
931 }
11d31886 932 lh = se->list.next;
1da177e4 933 if (lh == &sis->extent_list)
11d31886 934 lh = lh->next;
1da177e4
LT
935 se = list_entry(lh, struct swap_extent, list);
936 sis->curr_swap_extent = se;
937 BUG_ON(se == start_se); /* It *must* be present */
938 }
939}
940
941/*
942 * Free all of a swapdev's extent information
943 */
944static void destroy_swap_extents(struct swap_info_struct *sis)
945{
946 while (!list_empty(&sis->extent_list)) {
947 struct swap_extent *se;
948
949 se = list_entry(sis->extent_list.next,
950 struct swap_extent, list);
951 list_del(&se->list);
952 kfree(se);
953 }
1da177e4
LT
954}
955
956/*
957 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 958 * extent list. The extent list is kept sorted in page order.
1da177e4 959 *
11d31886 960 * This function rather assumes that it is called in ascending page order.
1da177e4
LT
961 */
962static int
963add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
964 unsigned long nr_pages, sector_t start_block)
965{
966 struct swap_extent *se;
967 struct swap_extent *new_se;
968 struct list_head *lh;
969
11d31886
HD
970 lh = sis->extent_list.prev; /* The highest page extent */
971 if (lh != &sis->extent_list) {
1da177e4 972 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
973 BUG_ON(se->start_page + se->nr_pages != start_page);
974 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
975 /* Merge it */
976 se->nr_pages += nr_pages;
977 return 0;
978 }
1da177e4
LT
979 }
980
981 /*
982 * No merge. Insert a new extent, preserving ordering.
983 */
984 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
985 if (new_se == NULL)
986 return -ENOMEM;
987 new_se->start_page = start_page;
988 new_se->nr_pages = nr_pages;
989 new_se->start_block = start_block;
990
11d31886 991 list_add_tail(&new_se->list, &sis->extent_list);
53092a74 992 return 1;
1da177e4
LT
993}
994
995/*
996 * A `swap extent' is a simple thing which maps a contiguous range of pages
997 * onto a contiguous range of disk blocks. An ordered list of swap extents
998 * is built at swapon time and is then used at swap_writepage/swap_readpage
999 * time for locating where on disk a page belongs.
1000 *
1001 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1002 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1003 * swap files identically.
1004 *
1005 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1006 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1007 * swapfiles are handled *identically* after swapon time.
1008 *
1009 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1010 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1011 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1012 * requirements, they are simply tossed out - we will never use those blocks
1013 * for swapping.
1014 *
b0d9bcd4 1015 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
1016 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1017 * which will scribble on the fs.
1018 *
1019 * The amount of disk space which a single swap extent represents varies.
1020 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1021 * extents in the list. To avoid much list walking, we cache the previous
1022 * search location in `curr_swap_extent', and start new searches from there.
1023 * This is extremely effective. The average number of iterations in
1024 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1025 */
53092a74 1026static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4
LT
1027{
1028 struct inode *inode;
1029 unsigned blocks_per_page;
1030 unsigned long page_no;
1031 unsigned blkbits;
1032 sector_t probe_block;
1033 sector_t last_block;
53092a74
HD
1034 sector_t lowest_block = -1;
1035 sector_t highest_block = 0;
1036 int nr_extents = 0;
1da177e4
LT
1037 int ret;
1038
1039 inode = sis->swap_file->f_mapping->host;
1040 if (S_ISBLK(inode->i_mode)) {
1041 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 1042 *span = sis->pages;
1da177e4
LT
1043 goto done;
1044 }
1045
1046 blkbits = inode->i_blkbits;
1047 blocks_per_page = PAGE_SIZE >> blkbits;
1048
1049 /*
1050 * Map all the blocks into the extent list. This code doesn't try
1051 * to be very smart.
1052 */
1053 probe_block = 0;
1054 page_no = 0;
1055 last_block = i_size_read(inode) >> blkbits;
1056 while ((probe_block + blocks_per_page) <= last_block &&
1057 page_no < sis->max) {
1058 unsigned block_in_page;
1059 sector_t first_block;
1060
1061 first_block = bmap(inode, probe_block);
1062 if (first_block == 0)
1063 goto bad_bmap;
1064
1065 /*
1066 * It must be PAGE_SIZE aligned on-disk
1067 */
1068 if (first_block & (blocks_per_page - 1)) {
1069 probe_block++;
1070 goto reprobe;
1071 }
1072
1073 for (block_in_page = 1; block_in_page < blocks_per_page;
1074 block_in_page++) {
1075 sector_t block;
1076
1077 block = bmap(inode, probe_block + block_in_page);
1078 if (block == 0)
1079 goto bad_bmap;
1080 if (block != first_block + block_in_page) {
1081 /* Discontiguity */
1082 probe_block++;
1083 goto reprobe;
1084 }
1085 }
1086
53092a74
HD
1087 first_block >>= (PAGE_SHIFT - blkbits);
1088 if (page_no) { /* exclude the header page */
1089 if (first_block < lowest_block)
1090 lowest_block = first_block;
1091 if (first_block > highest_block)
1092 highest_block = first_block;
1093 }
1094
1da177e4
LT
1095 /*
1096 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1097 */
53092a74
HD
1098 ret = add_swap_extent(sis, page_no, 1, first_block);
1099 if (ret < 0)
1da177e4 1100 goto out;
53092a74 1101 nr_extents += ret;
1da177e4
LT
1102 page_no++;
1103 probe_block += blocks_per_page;
1104reprobe:
1105 continue;
1106 }
53092a74
HD
1107 ret = nr_extents;
1108 *span = 1 + highest_block - lowest_block;
1da177e4 1109 if (page_no == 0)
e2244ec2 1110 page_no = 1; /* force Empty message */
1da177e4 1111 sis->max = page_no;
e2244ec2 1112 sis->pages = page_no - 1;
1da177e4
LT
1113 sis->highest_bit = page_no - 1;
1114done:
1115 sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1116 struct swap_extent, list);
1117 goto out;
1118bad_bmap:
1119 printk(KERN_ERR "swapon: swapfile has holes\n");
1120 ret = -EINVAL;
1121out:
1122 return ret;
1123}
1124
1125#if 0 /* We don't need this yet */
1126#include <linux/backing-dev.h>
1127int page_queue_congested(struct page *page)
1128{
1129 struct backing_dev_info *bdi;
1130
1131 BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */
1132
1133 if (PageSwapCache(page)) {
4c21e2f2 1134 swp_entry_t entry = { .val = page_private(page) };
1da177e4
LT
1135 struct swap_info_struct *sis;
1136
1137 sis = get_swap_info_struct(swp_type(entry));
1138 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1139 } else
1140 bdi = page->mapping->backing_dev_info;
1141 return bdi_write_congested(bdi);
1142}
1143#endif
1144
1145asmlinkage long sys_swapoff(const char __user * specialfile)
1146{
1147 struct swap_info_struct * p = NULL;
1148 unsigned short *swap_map;
1149 struct file *swap_file, *victim;
1150 struct address_space *mapping;
1151 struct inode *inode;
1152 char * pathname;
1153 int i, type, prev;
1154 int err;
1155
1156 if (!capable(CAP_SYS_ADMIN))
1157 return -EPERM;
1158
1159 pathname = getname(specialfile);
1160 err = PTR_ERR(pathname);
1161 if (IS_ERR(pathname))
1162 goto out;
1163
1164 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1165 putname(pathname);
1166 err = PTR_ERR(victim);
1167 if (IS_ERR(victim))
1168 goto out;
1169
1170 mapping = victim->f_mapping;
1171 prev = -1;
5d337b91 1172 spin_lock(&swap_lock);
1da177e4
LT
1173 for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1174 p = swap_info + type;
1175 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1176 if (p->swap_file->f_mapping == mapping)
1177 break;
1178 }
1179 prev = type;
1180 }
1181 if (type < 0) {
1182 err = -EINVAL;
5d337b91 1183 spin_unlock(&swap_lock);
1da177e4
LT
1184 goto out_dput;
1185 }
1186 if (!security_vm_enough_memory(p->pages))
1187 vm_unacct_memory(p->pages);
1188 else {
1189 err = -ENOMEM;
5d337b91 1190 spin_unlock(&swap_lock);
1da177e4
LT
1191 goto out_dput;
1192 }
1193 if (prev < 0) {
1194 swap_list.head = p->next;
1195 } else {
1196 swap_info[prev].next = p->next;
1197 }
1198 if (type == swap_list.next) {
1199 /* just pick something that's safe... */
1200 swap_list.next = swap_list.head;
1201 }
1202 nr_swap_pages -= p->pages;
1203 total_swap_pages -= p->pages;
1204 p->flags &= ~SWP_WRITEOK;
5d337b91 1205 spin_unlock(&swap_lock);
fb4f88dc 1206
1da177e4
LT
1207 current->flags |= PF_SWAPOFF;
1208 err = try_to_unuse(type);
1209 current->flags &= ~PF_SWAPOFF;
1210
1da177e4
LT
1211 if (err) {
1212 /* re-insert swap space back into swap_list */
5d337b91 1213 spin_lock(&swap_lock);
1da177e4
LT
1214 for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1215 if (p->prio >= swap_info[i].prio)
1216 break;
1217 p->next = i;
1218 if (prev < 0)
1219 swap_list.head = swap_list.next = p - swap_info;
1220 else
1221 swap_info[prev].next = p - swap_info;
1222 nr_swap_pages += p->pages;
1223 total_swap_pages += p->pages;
1224 p->flags |= SWP_WRITEOK;
5d337b91 1225 spin_unlock(&swap_lock);
1da177e4
LT
1226 goto out_dput;
1227 }
52b7efdb
HD
1228
1229 /* wait for any unplug function to finish */
1230 down_write(&swap_unplug_sem);
1231 up_write(&swap_unplug_sem);
1232
5d337b91 1233 destroy_swap_extents(p);
fc0abb14 1234 mutex_lock(&swapon_mutex);
5d337b91
HD
1235 spin_lock(&swap_lock);
1236 drain_mmlist();
1237
52b7efdb 1238 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
1239 p->highest_bit = 0; /* cuts scans short */
1240 while (p->flags >= SWP_SCANNING) {
5d337b91 1241 spin_unlock(&swap_lock);
13e4b57f 1242 schedule_timeout_uninterruptible(1);
5d337b91 1243 spin_lock(&swap_lock);
52b7efdb 1244 }
52b7efdb 1245
1da177e4
LT
1246 swap_file = p->swap_file;
1247 p->swap_file = NULL;
1248 p->max = 0;
1249 swap_map = p->swap_map;
1250 p->swap_map = NULL;
1251 p->flags = 0;
5d337b91 1252 spin_unlock(&swap_lock);
fc0abb14 1253 mutex_unlock(&swapon_mutex);
1da177e4
LT
1254 vfree(swap_map);
1255 inode = mapping->host;
1256 if (S_ISBLK(inode->i_mode)) {
1257 struct block_device *bdev = I_BDEV(inode);
1258 set_blocksize(bdev, p->old_block_size);
1259 bd_release(bdev);
1260 } else {
1b1dcc1b 1261 mutex_lock(&inode->i_mutex);
1da177e4 1262 inode->i_flags &= ~S_SWAPFILE;
1b1dcc1b 1263 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1264 }
1265 filp_close(swap_file, NULL);
1266 err = 0;
1267
1268out_dput:
1269 filp_close(victim, NULL);
1270out:
1271 return err;
1272}
1273
1274#ifdef CONFIG_PROC_FS
1275/* iterator */
1276static void *swap_start(struct seq_file *swap, loff_t *pos)
1277{
1278 struct swap_info_struct *ptr = swap_info;
1279 int i;
1280 loff_t l = *pos;
1281
fc0abb14 1282 mutex_lock(&swapon_mutex);
1da177e4
LT
1283
1284 for (i = 0; i < nr_swapfiles; i++, ptr++) {
1285 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1286 continue;
1287 if (!l--)
1288 return ptr;
1289 }
1290
1291 return NULL;
1292}
1293
1294static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1295{
1296 struct swap_info_struct *ptr = v;
1297 struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1298
1299 for (++ptr; ptr < endptr; ptr++) {
1300 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1301 continue;
1302 ++*pos;
1303 return ptr;
1304 }
1305
1306 return NULL;
1307}
1308
1309static void swap_stop(struct seq_file *swap, void *v)
1310{
fc0abb14 1311 mutex_unlock(&swapon_mutex);
1da177e4
LT
1312}
1313
1314static int swap_show(struct seq_file *swap, void *v)
1315{
1316 struct swap_info_struct *ptr = v;
1317 struct file *file;
1318 int len;
1319
1320 if (v == swap_info)
1321 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1322
1323 file = ptr->swap_file;
1324 len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\");
6eb396dc 1325 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1da177e4
LT
1326 len < 40 ? 40 - len : 1, " ",
1327 S_ISBLK(file->f_dentry->d_inode->i_mode) ?
1328 "partition" : "file\t",
1329 ptr->pages << (PAGE_SHIFT - 10),
1330 ptr->inuse_pages << (PAGE_SHIFT - 10),
1331 ptr->prio);
1332 return 0;
1333}
1334
1335static struct seq_operations swaps_op = {
1336 .start = swap_start,
1337 .next = swap_next,
1338 .stop = swap_stop,
1339 .show = swap_show
1340};
1341
1342static int swaps_open(struct inode *inode, struct file *file)
1343{
1344 return seq_open(file, &swaps_op);
1345}
1346
1347static struct file_operations proc_swaps_operations = {
1348 .open = swaps_open,
1349 .read = seq_read,
1350 .llseek = seq_lseek,
1351 .release = seq_release,
1352};
1353
1354static int __init procswaps_init(void)
1355{
1356 struct proc_dir_entry *entry;
1357
1358 entry = create_proc_entry("swaps", 0, NULL);
1359 if (entry)
1360 entry->proc_fops = &proc_swaps_operations;
1361 return 0;
1362}
1363__initcall(procswaps_init);
1364#endif /* CONFIG_PROC_FS */
1365
1366/*
1367 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1368 *
1369 * The swapon system call
1370 */
1371asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1372{
1373 struct swap_info_struct * p;
1374 char *name = NULL;
1375 struct block_device *bdev = NULL;
1376 struct file *swap_file = NULL;
1377 struct address_space *mapping;
1378 unsigned int type;
1379 int i, prev;
1380 int error;
1381 static int least_priority;
1382 union swap_header *swap_header = NULL;
1383 int swap_header_version;
6eb396dc
HD
1384 unsigned int nr_good_pages = 0;
1385 int nr_extents = 0;
53092a74 1386 sector_t span;
1da177e4
LT
1387 unsigned long maxpages = 1;
1388 int swapfilesize;
1389 unsigned short *swap_map;
1390 struct page *page = NULL;
1391 struct inode *inode = NULL;
1392 int did_down = 0;
1393
1394 if (!capable(CAP_SYS_ADMIN))
1395 return -EPERM;
5d337b91 1396 spin_lock(&swap_lock);
1da177e4
LT
1397 p = swap_info;
1398 for (type = 0 ; type < nr_swapfiles ; type++,p++)
1399 if (!(p->flags & SWP_USED))
1400 break;
1401 error = -EPERM;
1402 /*
1403 * Test if adding another swap device is possible. There are
1404 * two limiting factors: 1) the number of bits for the swap
1405 * type swp_entry_t definition and 2) the number of bits for
1406 * the swap type in the swap ptes as defined by the different
1407 * architectures. To honor both limitations a swap entry
1408 * with swap offset 0 and swap type ~0UL is created, encoded
1409 * to a swap pte, decoded to a swp_entry_t again and finally
1410 * the swap type part is extracted. This will mask all bits
1411 * from the initial ~0UL that can't be encoded in either the
1412 * swp_entry_t or the architecture definition of a swap pte.
1413 */
1414 if (type > swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) {
5d337b91 1415 spin_unlock(&swap_lock);
1da177e4
LT
1416 goto out;
1417 }
1418 if (type >= nr_swapfiles)
1419 nr_swapfiles = type+1;
1420 INIT_LIST_HEAD(&p->extent_list);
1421 p->flags = SWP_USED;
1da177e4
LT
1422 p->swap_file = NULL;
1423 p->old_block_size = 0;
1424 p->swap_map = NULL;
1425 p->lowest_bit = 0;
1426 p->highest_bit = 0;
1427 p->cluster_nr = 0;
1428 p->inuse_pages = 0;
1da177e4
LT
1429 p->next = -1;
1430 if (swap_flags & SWAP_FLAG_PREFER) {
1431 p->prio =
1432 (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1433 } else {
1434 p->prio = --least_priority;
1435 }
5d337b91 1436 spin_unlock(&swap_lock);
1da177e4
LT
1437 name = getname(specialfile);
1438 error = PTR_ERR(name);
1439 if (IS_ERR(name)) {
1440 name = NULL;
1441 goto bad_swap_2;
1442 }
1443 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1444 error = PTR_ERR(swap_file);
1445 if (IS_ERR(swap_file)) {
1446 swap_file = NULL;
1447 goto bad_swap_2;
1448 }
1449
1450 p->swap_file = swap_file;
1451 mapping = swap_file->f_mapping;
1452 inode = mapping->host;
1453
1454 error = -EBUSY;
1455 for (i = 0; i < nr_swapfiles; i++) {
1456 struct swap_info_struct *q = &swap_info[i];
1457
1458 if (i == type || !q->swap_file)
1459 continue;
1460 if (mapping == q->swap_file->f_mapping)
1461 goto bad_swap;
1462 }
1463
1464 error = -EINVAL;
1465 if (S_ISBLK(inode->i_mode)) {
1466 bdev = I_BDEV(inode);
1467 error = bd_claim(bdev, sys_swapon);
1468 if (error < 0) {
1469 bdev = NULL;
f7b3a435 1470 error = -EINVAL;
1da177e4
LT
1471 goto bad_swap;
1472 }
1473 p->old_block_size = block_size(bdev);
1474 error = set_blocksize(bdev, PAGE_SIZE);
1475 if (error < 0)
1476 goto bad_swap;
1477 p->bdev = bdev;
1478 } else if (S_ISREG(inode->i_mode)) {
1479 p->bdev = inode->i_sb->s_bdev;
1b1dcc1b 1480 mutex_lock(&inode->i_mutex);
1da177e4
LT
1481 did_down = 1;
1482 if (IS_SWAPFILE(inode)) {
1483 error = -EBUSY;
1484 goto bad_swap;
1485 }
1486 } else {
1487 goto bad_swap;
1488 }
1489
1490 swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1491
1492 /*
1493 * Read the swap header.
1494 */
1495 if (!mapping->a_ops->readpage) {
1496 error = -EINVAL;
1497 goto bad_swap;
1498 }
1499 page = read_cache_page(mapping, 0,
1500 (filler_t *)mapping->a_ops->readpage, swap_file);
1501 if (IS_ERR(page)) {
1502 error = PTR_ERR(page);
1503 goto bad_swap;
1504 }
1505 wait_on_page_locked(page);
1506 if (!PageUptodate(page))
1507 goto bad_swap;
1508 kmap(page);
1509 swap_header = page_address(page);
1510
1511 if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1512 swap_header_version = 1;
1513 else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1514 swap_header_version = 2;
1515 else {
e97a3111 1516 printk(KERN_ERR "Unable to find swap-space signature\n");
1da177e4
LT
1517 error = -EINVAL;
1518 goto bad_swap;
1519 }
1520
1521 switch (swap_header_version) {
1522 case 1:
1523 printk(KERN_ERR "version 0 swap is no longer supported. "
1524 "Use mkswap -v1 %s\n", name);
1525 error = -EINVAL;
1526 goto bad_swap;
1527 case 2:
1528 /* Check the swap header's sub-version and the size of
1529 the swap file and bad block lists */
1530 if (swap_header->info.version != 1) {
1531 printk(KERN_WARNING
1532 "Unable to handle swap header version %d\n",
1533 swap_header->info.version);
1534 error = -EINVAL;
1535 goto bad_swap;
1536 }
1537
1538 p->lowest_bit = 1;
52b7efdb
HD
1539 p->cluster_next = 1;
1540
1da177e4
LT
1541 /*
1542 * Find out how many pages are allowed for a single swap
1543 * device. There are two limiting factors: 1) the number of
1544 * bits for the swap offset in the swp_entry_t type and
1545 * 2) the number of bits in the a swap pte as defined by
1546 * the different architectures. In order to find the
1547 * largest possible bit mask a swap entry with swap type 0
1548 * and swap offset ~0UL is created, encoded to a swap pte,
1549 * decoded to a swp_entry_t again and finally the swap
1550 * offset is extracted. This will mask all the bits from
1551 * the initial ~0UL mask that can't be encoded in either
1552 * the swp_entry_t or the architecture definition of a
1553 * swap pte.
1554 */
1555 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1556 if (maxpages > swap_header->info.last_page)
1557 maxpages = swap_header->info.last_page;
1558 p->highest_bit = maxpages - 1;
1559
1560 error = -EINVAL;
e2244ec2
HD
1561 if (!maxpages)
1562 goto bad_swap;
1563 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1564 goto bad_swap;
1da177e4
LT
1565 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1566 goto bad_swap;
cd105df4 1567
1da177e4
LT
1568 /* OK, set up the swap map and apply the bad block list */
1569 if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1570 error = -ENOMEM;
1571 goto bad_swap;
1572 }
1573
1574 error = 0;
1575 memset(p->swap_map, 0, maxpages * sizeof(short));
cd105df4
TK
1576 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1577 int page_nr = swap_header->info.badpages[i];
1578 if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
1da177e4
LT
1579 error = -EINVAL;
1580 else
cd105df4 1581 p->swap_map[page_nr] = SWAP_MAP_BAD;
1da177e4
LT
1582 }
1583 nr_good_pages = swap_header->info.last_page -
1584 swap_header->info.nr_badpages -
1585 1 /* header page */;
cd105df4 1586 if (error)
1da177e4
LT
1587 goto bad_swap;
1588 }
e2244ec2 1589
1da177e4
LT
1590 if (swapfilesize && maxpages > swapfilesize) {
1591 printk(KERN_WARNING
1592 "Swap area shorter than signature indicates\n");
1593 error = -EINVAL;
1594 goto bad_swap;
1595 }
e2244ec2
HD
1596 if (nr_good_pages) {
1597 p->swap_map[0] = SWAP_MAP_BAD;
1598 p->max = maxpages;
1599 p->pages = nr_good_pages;
53092a74
HD
1600 nr_extents = setup_swap_extents(p, &span);
1601 if (nr_extents < 0) {
1602 error = nr_extents;
e2244ec2 1603 goto bad_swap;
53092a74 1604 }
e2244ec2
HD
1605 nr_good_pages = p->pages;
1606 }
1da177e4
LT
1607 if (!nr_good_pages) {
1608 printk(KERN_WARNING "Empty swap-file\n");
1609 error = -EINVAL;
1610 goto bad_swap;
1611 }
1da177e4 1612
fc0abb14 1613 mutex_lock(&swapon_mutex);
5d337b91 1614 spin_lock(&swap_lock);
1da177e4
LT
1615 p->flags = SWP_ACTIVE;
1616 nr_swap_pages += nr_good_pages;
1617 total_swap_pages += nr_good_pages;
53092a74 1618
6eb396dc 1619 printk(KERN_INFO "Adding %uk swap on %s. "
53092a74
HD
1620 "Priority:%d extents:%d across:%lluk\n",
1621 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1622 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1da177e4
LT
1623
1624 /* insert swap space into swap_list: */
1625 prev = -1;
1626 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1627 if (p->prio >= swap_info[i].prio) {
1628 break;
1629 }
1630 prev = i;
1631 }
1632 p->next = i;
1633 if (prev < 0) {
1634 swap_list.head = swap_list.next = p - swap_info;
1635 } else {
1636 swap_info[prev].next = p - swap_info;
1637 }
5d337b91 1638 spin_unlock(&swap_lock);
fc0abb14 1639 mutex_unlock(&swapon_mutex);
1da177e4
LT
1640 error = 0;
1641 goto out;
1642bad_swap:
1643 if (bdev) {
1644 set_blocksize(bdev, p->old_block_size);
1645 bd_release(bdev);
1646 }
4cd3bb10 1647 destroy_swap_extents(p);
1da177e4 1648bad_swap_2:
5d337b91 1649 spin_lock(&swap_lock);
1da177e4
LT
1650 swap_map = p->swap_map;
1651 p->swap_file = NULL;
1652 p->swap_map = NULL;
1653 p->flags = 0;
1654 if (!(swap_flags & SWAP_FLAG_PREFER))
1655 ++least_priority;
5d337b91 1656 spin_unlock(&swap_lock);
1da177e4
LT
1657 vfree(swap_map);
1658 if (swap_file)
1659 filp_close(swap_file, NULL);
1660out:
1661 if (page && !IS_ERR(page)) {
1662 kunmap(page);
1663 page_cache_release(page);
1664 }
1665 if (name)
1666 putname(name);
1667 if (did_down) {
1668 if (!error)
1669 inode->i_flags |= S_SWAPFILE;
1b1dcc1b 1670 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1671 }
1672 return error;
1673}
1674
1675void si_swapinfo(struct sysinfo *val)
1676{
1677 unsigned int i;
1678 unsigned long nr_to_be_unused = 0;
1679
5d337b91 1680 spin_lock(&swap_lock);
1da177e4
LT
1681 for (i = 0; i < nr_swapfiles; i++) {
1682 if (!(swap_info[i].flags & SWP_USED) ||
1683 (swap_info[i].flags & SWP_WRITEOK))
1684 continue;
1685 nr_to_be_unused += swap_info[i].inuse_pages;
1686 }
1687 val->freeswap = nr_swap_pages + nr_to_be_unused;
1688 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 1689 spin_unlock(&swap_lock);
1da177e4
LT
1690}
1691
1692/*
1693 * Verify that a swap entry is valid and increment its swap map count.
1694 *
1695 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1696 * "permanent", but will be reclaimed by the next swapoff.
1697 */
1698int swap_duplicate(swp_entry_t entry)
1699{
1700 struct swap_info_struct * p;
1701 unsigned long offset, type;
1702 int result = 0;
1703
1704 type = swp_type(entry);
1705 if (type >= nr_swapfiles)
1706 goto bad_file;
1707 p = type + swap_info;
1708 offset = swp_offset(entry);
1709
5d337b91 1710 spin_lock(&swap_lock);
1da177e4
LT
1711 if (offset < p->max && p->swap_map[offset]) {
1712 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1713 p->swap_map[offset]++;
1714 result = 1;
1715 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1716 if (swap_overflow++ < 5)
1717 printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1718 p->swap_map[offset] = SWAP_MAP_MAX;
1719 result = 1;
1720 }
1721 }
5d337b91 1722 spin_unlock(&swap_lock);
1da177e4
LT
1723out:
1724 return result;
1725
1726bad_file:
1727 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1728 goto out;
1729}
1730
1731struct swap_info_struct *
1732get_swap_info_struct(unsigned type)
1733{
1734 return &swap_info[type];
1735}
1736
1737/*
5d337b91 1738 * swap_lock prevents swap_map being freed. Don't grab an extra
1da177e4
LT
1739 * reference on the swaphandle, it doesn't matter if it becomes unused.
1740 */
1741int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1742{
1743 int ret = 0, i = 1 << page_cluster;
1744 unsigned long toff;
1745 struct swap_info_struct *swapdev = swp_type(entry) + swap_info;
1746
1747 if (!page_cluster) /* no readahead */
1748 return 0;
1749 toff = (swp_offset(entry) >> page_cluster) << page_cluster;
1750 if (!toff) /* first page is swap header */
1751 toff++, i--;
1752 *offset = toff;
1753
5d337b91 1754 spin_lock(&swap_lock);
1da177e4
LT
1755 do {
1756 /* Don't read-ahead past the end of the swap area */
1757 if (toff >= swapdev->max)
1758 break;
1759 /* Don't read in free or bad pages */
1760 if (!swapdev->swap_map[toff])
1761 break;
1762 if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
1763 break;
1764 toff++;
1765 ret++;
1766 } while (--i);
5d337b91 1767 spin_unlock(&swap_lock);
1da177e4
LT
1768 return ret;
1769}