]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/swapfile.c
mm: swap: add comments to lock_cluster_or_swap_info()
[mirror_ubuntu-jammy-kernel.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4 8#include <linux/mm.h>
6e84f315 9#include <linux/sched/mm.h>
29930025 10#include <linux/sched/task.h>
1da177e4
LT
11#include <linux/hugetlb.h>
12#include <linux/mman.h>
13#include <linux/slab.h>
14#include <linux/kernel_stat.h>
15#include <linux/swap.h>
16#include <linux/vmalloc.h>
17#include <linux/pagemap.h>
18#include <linux/namei.h>
072441e2 19#include <linux/shmem_fs.h>
1da177e4 20#include <linux/blkdev.h>
20137a49 21#include <linux/random.h>
1da177e4
LT
22#include <linux/writeback.h>
23#include <linux/proc_fs.h>
24#include <linux/seq_file.h>
25#include <linux/init.h>
5ad64688 26#include <linux/ksm.h>
1da177e4
LT
27#include <linux/rmap.h>
28#include <linux/security.h>
29#include <linux/backing-dev.h>
fc0abb14 30#include <linux/mutex.h>
c59ede7b 31#include <linux/capability.h>
1da177e4 32#include <linux/syscalls.h>
8a9f3ccd 33#include <linux/memcontrol.h>
66d7dd51 34#include <linux/poll.h>
72788c38 35#include <linux/oom.h>
38b5faf4
DM
36#include <linux/frontswap.h>
37#include <linux/swapfile.h>
f981c595 38#include <linux/export.h>
67afa38e 39#include <linux/swap_slots.h>
155b5f88 40#include <linux/sort.h>
1da177e4
LT
41
42#include <asm/pgtable.h>
43#include <asm/tlbflush.h>
44#include <linux/swapops.h>
5d1ea48b 45#include <linux/swap_cgroup.h>
1da177e4 46
570a335b
HD
47static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 unsigned char);
49static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 50static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 51
38b5faf4 52DEFINE_SPINLOCK(swap_lock);
7c363b8c 53static unsigned int nr_swapfiles;
ec8acf20 54atomic_long_t nr_swap_pages;
fb0fec50
CW
55/*
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
59 */
60EXPORT_SYMBOL_GPL(nr_swap_pages);
ec8acf20 61/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 62long total_swap_pages;
a2468cc9 63static int least_priority = -1;
1da177e4 64
1da177e4
LT
65static const char Bad_file[] = "Bad swap file entry ";
66static const char Unused_file[] = "Unused swap file entry ";
67static const char Bad_offset[] = "Bad swap offset entry ";
68static const char Unused_offset[] = "Unused swap offset entry ";
69
adfab836
DS
70/*
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
73 */
18ab4d4c
DS
74PLIST_HEAD(swap_active_head);
75
76/*
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
87 */
bfc6b1ca 88static struct plist_head *swap_avail_heads;
18ab4d4c 89static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 90
38b5faf4 91struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 92
fc0abb14 93static DEFINE_MUTEX(swapon_mutex);
1da177e4 94
66d7dd51
KS
95static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96/* Activity counter to indicate that a swapon or swapoff has occurred */
97static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
81a0298b
HY
99atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
8d69aaee 101static inline unsigned char swap_count(unsigned char ent)
355cfa73 102{
955c97f0 103 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
355cfa73
KH
104}
105
efa90a98 106/* returns 1 if swap entry is freed */
c9e44410
KH
107static int
108__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
109{
efa90a98 110 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
111 struct page *page;
112 int ret = 0;
113
f6ab1f7f 114 page = find_get_page(swap_address_space(entry), swp_offset(entry));
c9e44410
KH
115 if (!page)
116 return 0;
117 /*
118 * This function is called from scan_swap_map() and it's called
119 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
120 * We have to use trylock for avoiding deadlock. This is a special
121 * case and you should use try_to_free_swap() with explicit lock_page()
122 * in usual operations.
123 */
124 if (trylock_page(page)) {
125 ret = try_to_free_swap(page);
126 unlock_page(page);
127 }
09cbfeaf 128 put_page(page);
c9e44410
KH
129 return ret;
130}
355cfa73 131
6a6ba831
HD
132/*
133 * swapon tell device that all the old swap contents can be discarded,
134 * to allow the swap device to optimize its wear-levelling.
135 */
136static int discard_swap(struct swap_info_struct *si)
137{
138 struct swap_extent *se;
9625a5f2
HD
139 sector_t start_block;
140 sector_t nr_blocks;
6a6ba831
HD
141 int err = 0;
142
9625a5f2
HD
143 /* Do not discard the swap header page! */
144 se = &si->first_swap_extent;
145 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
146 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
147 if (nr_blocks) {
148 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 149 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
150 if (err)
151 return err;
152 cond_resched();
153 }
6a6ba831 154
9625a5f2
HD
155 list_for_each_entry(se, &si->first_swap_extent.list, list) {
156 start_block = se->start_block << (PAGE_SHIFT - 9);
157 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
158
159 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 160 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
161 if (err)
162 break;
163
164 cond_resched();
165 }
166 return err; /* That will often be -EOPNOTSUPP */
167}
168
7992fde7
HD
169/*
170 * swap allocation tell device that a cluster of swap can now be discarded,
171 * to allow the swap device to optimize its wear-levelling.
172 */
173static void discard_swap_cluster(struct swap_info_struct *si,
174 pgoff_t start_page, pgoff_t nr_pages)
175{
176 struct swap_extent *se = si->curr_swap_extent;
177 int found_extent = 0;
178
179 while (nr_pages) {
7992fde7
HD
180 if (se->start_page <= start_page &&
181 start_page < se->start_page + se->nr_pages) {
182 pgoff_t offset = start_page - se->start_page;
183 sector_t start_block = se->start_block + offset;
858a2990 184 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
185
186 if (nr_blocks > nr_pages)
187 nr_blocks = nr_pages;
188 start_page += nr_blocks;
189 nr_pages -= nr_blocks;
190
191 if (!found_extent++)
192 si->curr_swap_extent = se;
193
194 start_block <<= PAGE_SHIFT - 9;
195 nr_blocks <<= PAGE_SHIFT - 9;
196 if (blkdev_issue_discard(si->bdev, start_block,
dd3932ed 197 nr_blocks, GFP_NOIO, 0))
7992fde7
HD
198 break;
199 }
200
a8ae4991 201 se = list_next_entry(se, list);
7992fde7
HD
202 }
203}
204
38d8b4e6
HY
205#ifdef CONFIG_THP_SWAP
206#define SWAPFILE_CLUSTER HPAGE_PMD_NR
207#else
048c27fd 208#define SWAPFILE_CLUSTER 256
38d8b4e6 209#endif
048c27fd
HD
210#define LATENCY_LIMIT 256
211
2a8f9449
SL
212static inline void cluster_set_flag(struct swap_cluster_info *info,
213 unsigned int flag)
214{
215 info->flags = flag;
216}
217
218static inline unsigned int cluster_count(struct swap_cluster_info *info)
219{
220 return info->data;
221}
222
223static inline void cluster_set_count(struct swap_cluster_info *info,
224 unsigned int c)
225{
226 info->data = c;
227}
228
229static inline void cluster_set_count_flag(struct swap_cluster_info *info,
230 unsigned int c, unsigned int f)
231{
232 info->flags = f;
233 info->data = c;
234}
235
236static inline unsigned int cluster_next(struct swap_cluster_info *info)
237{
238 return info->data;
239}
240
241static inline void cluster_set_next(struct swap_cluster_info *info,
242 unsigned int n)
243{
244 info->data = n;
245}
246
247static inline void cluster_set_next_flag(struct swap_cluster_info *info,
248 unsigned int n, unsigned int f)
249{
250 info->flags = f;
251 info->data = n;
252}
253
254static inline bool cluster_is_free(struct swap_cluster_info *info)
255{
256 return info->flags & CLUSTER_FLAG_FREE;
257}
258
259static inline bool cluster_is_null(struct swap_cluster_info *info)
260{
261 return info->flags & CLUSTER_FLAG_NEXT_NULL;
262}
263
264static inline void cluster_set_null(struct swap_cluster_info *info)
265{
266 info->flags = CLUSTER_FLAG_NEXT_NULL;
267 info->data = 0;
268}
269
e0709829
HY
270static inline bool cluster_is_huge(struct swap_cluster_info *info)
271{
272 return info->flags & CLUSTER_FLAG_HUGE;
273}
274
275static inline void cluster_clear_huge(struct swap_cluster_info *info)
276{
277 info->flags &= ~CLUSTER_FLAG_HUGE;
278}
279
235b6217
HY
280static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
281 unsigned long offset)
282{
283 struct swap_cluster_info *ci;
284
285 ci = si->cluster_info;
286 if (ci) {
287 ci += offset / SWAPFILE_CLUSTER;
288 spin_lock(&ci->lock);
289 }
290 return ci;
291}
292
293static inline void unlock_cluster(struct swap_cluster_info *ci)
294{
295 if (ci)
296 spin_unlock(&ci->lock);
297}
298
59d98bf3
HY
299/*
300 * Determine the locking method in use for this device. Return
301 * swap_cluster_info if SSD-style cluster-based locking is in place.
302 */
235b6217 303static inline struct swap_cluster_info *lock_cluster_or_swap_info(
59d98bf3 304 struct swap_info_struct *si, unsigned long offset)
235b6217
HY
305{
306 struct swap_cluster_info *ci;
307
59d98bf3 308 /* Try to use fine-grained SSD-style locking if available: */
235b6217 309 ci = lock_cluster(si, offset);
59d98bf3 310 /* Otherwise, fall back to traditional, coarse locking: */
235b6217
HY
311 if (!ci)
312 spin_lock(&si->lock);
313
314 return ci;
315}
316
317static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
318 struct swap_cluster_info *ci)
319{
320 if (ci)
321 unlock_cluster(ci);
322 else
323 spin_unlock(&si->lock);
324}
325
6b534915
HY
326static inline bool cluster_list_empty(struct swap_cluster_list *list)
327{
328 return cluster_is_null(&list->head);
329}
330
331static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
332{
333 return cluster_next(&list->head);
334}
335
336static void cluster_list_init(struct swap_cluster_list *list)
337{
338 cluster_set_null(&list->head);
339 cluster_set_null(&list->tail);
340}
341
342static void cluster_list_add_tail(struct swap_cluster_list *list,
343 struct swap_cluster_info *ci,
344 unsigned int idx)
345{
346 if (cluster_list_empty(list)) {
347 cluster_set_next_flag(&list->head, idx, 0);
348 cluster_set_next_flag(&list->tail, idx, 0);
349 } else {
235b6217 350 struct swap_cluster_info *ci_tail;
6b534915
HY
351 unsigned int tail = cluster_next(&list->tail);
352
235b6217
HY
353 /*
354 * Nested cluster lock, but both cluster locks are
355 * only acquired when we held swap_info_struct->lock
356 */
357 ci_tail = ci + tail;
358 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
359 cluster_set_next(ci_tail, idx);
0ef017d1 360 spin_unlock(&ci_tail->lock);
6b534915
HY
361 cluster_set_next_flag(&list->tail, idx, 0);
362 }
363}
364
365static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
366 struct swap_cluster_info *ci)
367{
368 unsigned int idx;
369
370 idx = cluster_next(&list->head);
371 if (cluster_next(&list->tail) == idx) {
372 cluster_set_null(&list->head);
373 cluster_set_null(&list->tail);
374 } else
375 cluster_set_next_flag(&list->head,
376 cluster_next(&ci[idx]), 0);
377
378 return idx;
379}
380
815c2c54
SL
381/* Add a cluster to discard list and schedule it to do discard */
382static void swap_cluster_schedule_discard(struct swap_info_struct *si,
383 unsigned int idx)
384{
385 /*
386 * If scan_swap_map() can't find a free cluster, it will check
387 * si->swap_map directly. To make sure the discarding cluster isn't
388 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
389 * will be cleared after discard
390 */
391 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
392 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
393
6b534915 394 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
815c2c54
SL
395
396 schedule_work(&si->discard_work);
397}
398
38d8b4e6
HY
399static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
400{
401 struct swap_cluster_info *ci = si->cluster_info;
402
403 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
404 cluster_list_add_tail(&si->free_clusters, ci, idx);
405}
406
815c2c54
SL
407/*
408 * Doing discard actually. After a cluster discard is finished, the cluster
409 * will be added to free cluster list. caller should hold si->lock.
410*/
411static void swap_do_scheduled_discard(struct swap_info_struct *si)
412{
235b6217 413 struct swap_cluster_info *info, *ci;
815c2c54
SL
414 unsigned int idx;
415
416 info = si->cluster_info;
417
6b534915
HY
418 while (!cluster_list_empty(&si->discard_clusters)) {
419 idx = cluster_list_del_first(&si->discard_clusters, info);
815c2c54
SL
420 spin_unlock(&si->lock);
421
422 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
423 SWAPFILE_CLUSTER);
424
425 spin_lock(&si->lock);
235b6217 426 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
38d8b4e6 427 __free_cluster(si, idx);
815c2c54
SL
428 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
429 0, SWAPFILE_CLUSTER);
235b6217 430 unlock_cluster(ci);
815c2c54
SL
431 }
432}
433
434static void swap_discard_work(struct work_struct *work)
435{
436 struct swap_info_struct *si;
437
438 si = container_of(work, struct swap_info_struct, discard_work);
439
440 spin_lock(&si->lock);
441 swap_do_scheduled_discard(si);
442 spin_unlock(&si->lock);
443}
444
38d8b4e6
HY
445static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
446{
447 struct swap_cluster_info *ci = si->cluster_info;
448
449 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
450 cluster_list_del_first(&si->free_clusters, ci);
451 cluster_set_count_flag(ci + idx, 0, 0);
452}
453
454static void free_cluster(struct swap_info_struct *si, unsigned long idx)
455{
456 struct swap_cluster_info *ci = si->cluster_info + idx;
457
458 VM_BUG_ON(cluster_count(ci) != 0);
459 /*
460 * If the swap is discardable, prepare discard the cluster
461 * instead of free it immediately. The cluster will be freed
462 * after discard.
463 */
464 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
465 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
466 swap_cluster_schedule_discard(si, idx);
467 return;
468 }
469
470 __free_cluster(si, idx);
471}
472
2a8f9449
SL
473/*
474 * The cluster corresponding to page_nr will be used. The cluster will be
475 * removed from free cluster list and its usage counter will be increased.
476 */
477static void inc_cluster_info_page(struct swap_info_struct *p,
478 struct swap_cluster_info *cluster_info, unsigned long page_nr)
479{
480 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
481
482 if (!cluster_info)
483 return;
38d8b4e6
HY
484 if (cluster_is_free(&cluster_info[idx]))
485 alloc_cluster(p, idx);
2a8f9449
SL
486
487 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
488 cluster_set_count(&cluster_info[idx],
489 cluster_count(&cluster_info[idx]) + 1);
490}
491
492/*
493 * The cluster corresponding to page_nr decreases one usage. If the usage
494 * counter becomes 0, which means no page in the cluster is in using, we can
495 * optionally discard the cluster and add it to free cluster list.
496 */
497static void dec_cluster_info_page(struct swap_info_struct *p,
498 struct swap_cluster_info *cluster_info, unsigned long page_nr)
499{
500 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
501
502 if (!cluster_info)
503 return;
504
505 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
506 cluster_set_count(&cluster_info[idx],
507 cluster_count(&cluster_info[idx]) - 1);
508
38d8b4e6
HY
509 if (cluster_count(&cluster_info[idx]) == 0)
510 free_cluster(p, idx);
2a8f9449
SL
511}
512
513/*
514 * It's possible scan_swap_map() uses a free cluster in the middle of free
515 * cluster list. Avoiding such abuse to avoid list corruption.
516 */
ebc2a1a6
SL
517static bool
518scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
519 unsigned long offset)
520{
ebc2a1a6
SL
521 struct percpu_cluster *percpu_cluster;
522 bool conflict;
523
2a8f9449 524 offset /= SWAPFILE_CLUSTER;
6b534915
HY
525 conflict = !cluster_list_empty(&si->free_clusters) &&
526 offset != cluster_list_first(&si->free_clusters) &&
2a8f9449 527 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
528
529 if (!conflict)
530 return false;
531
532 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
533 cluster_set_null(&percpu_cluster->index);
534 return true;
535}
536
537/*
538 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
539 * might involve allocating a new cluster for current CPU too.
540 */
36005bae 541static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
ebc2a1a6
SL
542 unsigned long *offset, unsigned long *scan_base)
543{
544 struct percpu_cluster *cluster;
235b6217 545 struct swap_cluster_info *ci;
ebc2a1a6 546 bool found_free;
235b6217 547 unsigned long tmp, max;
ebc2a1a6
SL
548
549new_cluster:
550 cluster = this_cpu_ptr(si->percpu_cluster);
551 if (cluster_is_null(&cluster->index)) {
6b534915
HY
552 if (!cluster_list_empty(&si->free_clusters)) {
553 cluster->index = si->free_clusters.head;
ebc2a1a6
SL
554 cluster->next = cluster_next(&cluster->index) *
555 SWAPFILE_CLUSTER;
6b534915 556 } else if (!cluster_list_empty(&si->discard_clusters)) {
ebc2a1a6
SL
557 /*
558 * we don't have free cluster but have some clusters in
559 * discarding, do discard now and reclaim them
560 */
561 swap_do_scheduled_discard(si);
562 *scan_base = *offset = si->cluster_next;
563 goto new_cluster;
564 } else
36005bae 565 return false;
ebc2a1a6
SL
566 }
567
568 found_free = false;
569
570 /*
571 * Other CPUs can use our cluster if they can't find a free cluster,
572 * check if there is still free entry in the cluster
573 */
574 tmp = cluster->next;
235b6217
HY
575 max = min_t(unsigned long, si->max,
576 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
577 if (tmp >= max) {
578 cluster_set_null(&cluster->index);
579 goto new_cluster;
580 }
581 ci = lock_cluster(si, tmp);
582 while (tmp < max) {
ebc2a1a6
SL
583 if (!si->swap_map[tmp]) {
584 found_free = true;
585 break;
586 }
587 tmp++;
588 }
235b6217 589 unlock_cluster(ci);
ebc2a1a6
SL
590 if (!found_free) {
591 cluster_set_null(&cluster->index);
592 goto new_cluster;
593 }
594 cluster->next = tmp + 1;
595 *offset = tmp;
596 *scan_base = tmp;
36005bae 597 return found_free;
2a8f9449
SL
598}
599
a2468cc9
AL
600static void __del_from_avail_list(struct swap_info_struct *p)
601{
602 int nid;
603
604 for_each_node(nid)
605 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
606}
607
608static void del_from_avail_list(struct swap_info_struct *p)
609{
610 spin_lock(&swap_avail_lock);
611 __del_from_avail_list(p);
612 spin_unlock(&swap_avail_lock);
613}
614
38d8b4e6
HY
615static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
616 unsigned int nr_entries)
617{
618 unsigned int end = offset + nr_entries - 1;
619
620 if (offset == si->lowest_bit)
621 si->lowest_bit += nr_entries;
622 if (end == si->highest_bit)
623 si->highest_bit -= nr_entries;
624 si->inuse_pages += nr_entries;
625 if (si->inuse_pages == si->pages) {
626 si->lowest_bit = si->max;
627 si->highest_bit = 0;
a2468cc9 628 del_from_avail_list(si);
38d8b4e6
HY
629 }
630}
631
a2468cc9
AL
632static void add_to_avail_list(struct swap_info_struct *p)
633{
634 int nid;
635
636 spin_lock(&swap_avail_lock);
637 for_each_node(nid) {
638 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
639 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
640 }
641 spin_unlock(&swap_avail_lock);
642}
643
38d8b4e6
HY
644static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
645 unsigned int nr_entries)
646{
647 unsigned long end = offset + nr_entries - 1;
648 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
649
650 if (offset < si->lowest_bit)
651 si->lowest_bit = offset;
652 if (end > si->highest_bit) {
653 bool was_full = !si->highest_bit;
654
655 si->highest_bit = end;
a2468cc9
AL
656 if (was_full && (si->flags & SWP_WRITEOK))
657 add_to_avail_list(si);
38d8b4e6
HY
658 }
659 atomic_long_add(nr_entries, &nr_swap_pages);
660 si->inuse_pages -= nr_entries;
661 if (si->flags & SWP_BLKDEV)
662 swap_slot_free_notify =
663 si->bdev->bd_disk->fops->swap_slot_free_notify;
664 else
665 swap_slot_free_notify = NULL;
666 while (offset <= end) {
667 frontswap_invalidate_page(si->type, offset);
668 if (swap_slot_free_notify)
669 swap_slot_free_notify(si->bdev, offset);
670 offset++;
671 }
672}
673
36005bae
TC
674static int scan_swap_map_slots(struct swap_info_struct *si,
675 unsigned char usage, int nr,
676 swp_entry_t slots[])
1da177e4 677{
235b6217 678 struct swap_cluster_info *ci;
ebebbbe9 679 unsigned long offset;
c60aa176 680 unsigned long scan_base;
7992fde7 681 unsigned long last_in_cluster = 0;
048c27fd 682 int latency_ration = LATENCY_LIMIT;
36005bae
TC
683 int n_ret = 0;
684
685 if (nr > SWAP_BATCH)
686 nr = SWAP_BATCH;
7dfad418 687
886bb7e9 688 /*
7dfad418
HD
689 * We try to cluster swap pages by allocating them sequentially
690 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
691 * way, however, we resort to first-free allocation, starting
692 * a new cluster. This prevents us from scattering swap pages
693 * all over the entire swap partition, so that we reduce
694 * overall disk seek times between swap pages. -- sct
695 * But we do now try to find an empty cluster. -Andrea
c60aa176 696 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
697 */
698
52b7efdb 699 si->flags += SWP_SCANNING;
c60aa176 700 scan_base = offset = si->cluster_next;
ebebbbe9 701
ebc2a1a6
SL
702 /* SSD algorithm */
703 if (si->cluster_info) {
36005bae
TC
704 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
705 goto checks;
706 else
707 goto scan;
ebc2a1a6
SL
708 }
709
ebebbbe9
HD
710 if (unlikely(!si->cluster_nr--)) {
711 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
712 si->cluster_nr = SWAPFILE_CLUSTER - 1;
713 goto checks;
714 }
2a8f9449 715
ec8acf20 716 spin_unlock(&si->lock);
7dfad418 717
c60aa176
HD
718 /*
719 * If seek is expensive, start searching for new cluster from
720 * start of partition, to minimize the span of allocated swap.
50088c44
CY
721 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
722 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 723 */
50088c44 724 scan_base = offset = si->lowest_bit;
7dfad418
HD
725 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
726
727 /* Locate the first empty (unaligned) cluster */
728 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 729 if (si->swap_map[offset])
7dfad418
HD
730 last_in_cluster = offset + SWAPFILE_CLUSTER;
731 else if (offset == last_in_cluster) {
ec8acf20 732 spin_lock(&si->lock);
ebebbbe9
HD
733 offset -= SWAPFILE_CLUSTER - 1;
734 si->cluster_next = offset;
735 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
736 goto checks;
737 }
738 if (unlikely(--latency_ration < 0)) {
739 cond_resched();
740 latency_ration = LATENCY_LIMIT;
741 }
742 }
743
744 offset = scan_base;
ec8acf20 745 spin_lock(&si->lock);
ebebbbe9 746 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 747 }
7dfad418 748
ebebbbe9 749checks:
ebc2a1a6 750 if (si->cluster_info) {
36005bae
TC
751 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
752 /* take a break if we already got some slots */
753 if (n_ret)
754 goto done;
755 if (!scan_swap_map_try_ssd_cluster(si, &offset,
756 &scan_base))
757 goto scan;
758 }
ebc2a1a6 759 }
ebebbbe9 760 if (!(si->flags & SWP_WRITEOK))
52b7efdb 761 goto no_page;
7dfad418
HD
762 if (!si->highest_bit)
763 goto no_page;
ebebbbe9 764 if (offset > si->highest_bit)
c60aa176 765 scan_base = offset = si->lowest_bit;
c9e44410 766
235b6217 767 ci = lock_cluster(si, offset);
b73d7fce
HD
768 /* reuse swap entry of cache-only swap if not busy. */
769 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 770 int swap_was_freed;
235b6217 771 unlock_cluster(ci);
ec8acf20 772 spin_unlock(&si->lock);
c9e44410 773 swap_was_freed = __try_to_reclaim_swap(si, offset);
ec8acf20 774 spin_lock(&si->lock);
c9e44410
KH
775 /* entry was freed successfully, try to use this again */
776 if (swap_was_freed)
777 goto checks;
778 goto scan; /* check next one */
779 }
780
235b6217
HY
781 if (si->swap_map[offset]) {
782 unlock_cluster(ci);
36005bae
TC
783 if (!n_ret)
784 goto scan;
785 else
786 goto done;
235b6217 787 }
2872bb2d
HY
788 si->swap_map[offset] = usage;
789 inc_cluster_info_page(si, si->cluster_info, offset);
790 unlock_cluster(ci);
ebebbbe9 791
38d8b4e6 792 swap_range_alloc(si, offset, 1);
ebebbbe9 793 si->cluster_next = offset + 1;
36005bae
TC
794 slots[n_ret++] = swp_entry(si->type, offset);
795
796 /* got enough slots or reach max slots? */
797 if ((n_ret == nr) || (offset >= si->highest_bit))
798 goto done;
799
800 /* search for next available slot */
801
802 /* time to take a break? */
803 if (unlikely(--latency_ration < 0)) {
804 if (n_ret)
805 goto done;
806 spin_unlock(&si->lock);
807 cond_resched();
808 spin_lock(&si->lock);
809 latency_ration = LATENCY_LIMIT;
810 }
811
812 /* try to get more slots in cluster */
813 if (si->cluster_info) {
814 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
815 goto checks;
816 else
817 goto done;
818 }
819 /* non-ssd case */
820 ++offset;
821
822 /* non-ssd case, still more slots in cluster? */
823 if (si->cluster_nr && !si->swap_map[offset]) {
824 --si->cluster_nr;
825 goto checks;
826 }
7992fde7 827
36005bae
TC
828done:
829 si->flags -= SWP_SCANNING;
830 return n_ret;
7dfad418 831
ebebbbe9 832scan:
ec8acf20 833 spin_unlock(&si->lock);
7dfad418 834 while (++offset <= si->highest_bit) {
52b7efdb 835 if (!si->swap_map[offset]) {
ec8acf20 836 spin_lock(&si->lock);
52b7efdb
HD
837 goto checks;
838 }
c9e44410 839 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 840 spin_lock(&si->lock);
c9e44410
KH
841 goto checks;
842 }
048c27fd
HD
843 if (unlikely(--latency_ration < 0)) {
844 cond_resched();
845 latency_ration = LATENCY_LIMIT;
846 }
7dfad418 847 }
c60aa176 848 offset = si->lowest_bit;
a5998061 849 while (offset < scan_base) {
c60aa176 850 if (!si->swap_map[offset]) {
ec8acf20 851 spin_lock(&si->lock);
c60aa176
HD
852 goto checks;
853 }
c9e44410 854 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 855 spin_lock(&si->lock);
c9e44410
KH
856 goto checks;
857 }
c60aa176
HD
858 if (unlikely(--latency_ration < 0)) {
859 cond_resched();
860 latency_ration = LATENCY_LIMIT;
861 }
a5998061 862 offset++;
c60aa176 863 }
ec8acf20 864 spin_lock(&si->lock);
7dfad418
HD
865
866no_page:
52b7efdb 867 si->flags -= SWP_SCANNING;
36005bae 868 return n_ret;
1da177e4
LT
869}
870
38d8b4e6
HY
871#ifdef CONFIG_THP_SWAP
872static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
873{
874 unsigned long idx;
875 struct swap_cluster_info *ci;
876 unsigned long offset, i;
877 unsigned char *map;
878
879 if (cluster_list_empty(&si->free_clusters))
880 return 0;
881
882 idx = cluster_list_first(&si->free_clusters);
883 offset = idx * SWAPFILE_CLUSTER;
884 ci = lock_cluster(si, offset);
885 alloc_cluster(si, idx);
e0709829 886 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
38d8b4e6
HY
887
888 map = si->swap_map + offset;
889 for (i = 0; i < SWAPFILE_CLUSTER; i++)
890 map[i] = SWAP_HAS_CACHE;
891 unlock_cluster(ci);
892 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
893 *slot = swp_entry(si->type, offset);
894
895 return 1;
896}
897
898static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
899{
900 unsigned long offset = idx * SWAPFILE_CLUSTER;
901 struct swap_cluster_info *ci;
902
903 ci = lock_cluster(si, offset);
904 cluster_set_count_flag(ci, 0, 0);
905 free_cluster(si, idx);
906 unlock_cluster(ci);
907 swap_range_free(si, offset, SWAPFILE_CLUSTER);
908}
909#else
910static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
911{
912 VM_WARN_ON_ONCE(1);
913 return 0;
914}
915#endif /* CONFIG_THP_SWAP */
916
36005bae
TC
917static unsigned long scan_swap_map(struct swap_info_struct *si,
918 unsigned char usage)
919{
920 swp_entry_t entry;
921 int n_ret;
922
923 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
924
925 if (n_ret)
926 return swp_offset(entry);
927 else
928 return 0;
929
930}
931
38d8b4e6 932int get_swap_pages(int n_goal, bool cluster, swp_entry_t swp_entries[])
1da177e4 933{
38d8b4e6 934 unsigned long nr_pages = cluster ? SWAPFILE_CLUSTER : 1;
adfab836 935 struct swap_info_struct *si, *next;
36005bae
TC
936 long avail_pgs;
937 int n_ret = 0;
a2468cc9 938 int node;
1da177e4 939
38d8b4e6
HY
940 /* Only single cluster request supported */
941 WARN_ON_ONCE(n_goal > 1 && cluster);
942
943 avail_pgs = atomic_long_read(&nr_swap_pages) / nr_pages;
36005bae 944 if (avail_pgs <= 0)
fb4f88dc 945 goto noswap;
36005bae
TC
946
947 if (n_goal > SWAP_BATCH)
948 n_goal = SWAP_BATCH;
949
950 if (n_goal > avail_pgs)
951 n_goal = avail_pgs;
952
38d8b4e6 953 atomic_long_sub(n_goal * nr_pages, &nr_swap_pages);
fb4f88dc 954
18ab4d4c
DS
955 spin_lock(&swap_avail_lock);
956
957start_over:
a2468cc9
AL
958 node = numa_node_id();
959 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
18ab4d4c 960 /* requeue si to after same-priority siblings */
a2468cc9 961 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
18ab4d4c 962 spin_unlock(&swap_avail_lock);
ec8acf20 963 spin_lock(&si->lock);
adfab836 964 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c 965 spin_lock(&swap_avail_lock);
a2468cc9 966 if (plist_node_empty(&si->avail_lists[node])) {
18ab4d4c
DS
967 spin_unlock(&si->lock);
968 goto nextsi;
969 }
970 WARN(!si->highest_bit,
971 "swap_info %d in list but !highest_bit\n",
972 si->type);
973 WARN(!(si->flags & SWP_WRITEOK),
974 "swap_info %d in list but !SWP_WRITEOK\n",
975 si->type);
a2468cc9 976 __del_from_avail_list(si);
ec8acf20 977 spin_unlock(&si->lock);
18ab4d4c 978 goto nextsi;
ec8acf20 979 }
f0eea189
HY
980 if (cluster) {
981 if (!(si->flags & SWP_FILE))
982 n_ret = swap_alloc_cluster(si, swp_entries);
983 } else
38d8b4e6
HY
984 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
985 n_goal, swp_entries);
ec8acf20 986 spin_unlock(&si->lock);
38d8b4e6 987 if (n_ret || cluster)
36005bae 988 goto check_out;
18ab4d4c 989 pr_debug("scan_swap_map of si %d failed to find offset\n",
36005bae
TC
990 si->type);
991
18ab4d4c
DS
992 spin_lock(&swap_avail_lock);
993nextsi:
adfab836
DS
994 /*
995 * if we got here, it's likely that si was almost full before,
996 * and since scan_swap_map() can drop the si->lock, multiple
997 * callers probably all tried to get a page from the same si
18ab4d4c
DS
998 * and it filled up before we could get one; or, the si filled
999 * up between us dropping swap_avail_lock and taking si->lock.
1000 * Since we dropped the swap_avail_lock, the swap_avail_head
1001 * list may have been modified; so if next is still in the
36005bae
TC
1002 * swap_avail_head list then try it, otherwise start over
1003 * if we have not gotten any slots.
adfab836 1004 */
a2468cc9 1005 if (plist_node_empty(&next->avail_lists[node]))
18ab4d4c 1006 goto start_over;
1da177e4 1007 }
fb4f88dc 1008
18ab4d4c
DS
1009 spin_unlock(&swap_avail_lock);
1010
36005bae
TC
1011check_out:
1012 if (n_ret < n_goal)
38d8b4e6
HY
1013 atomic_long_add((long)(n_goal - n_ret) * nr_pages,
1014 &nr_swap_pages);
fb4f88dc 1015noswap:
36005bae
TC
1016 return n_ret;
1017}
1018
2de1a7e4 1019/* The only caller of this function is now suspend routine */
910321ea
HD
1020swp_entry_t get_swap_page_of_type(int type)
1021{
1022 struct swap_info_struct *si;
1023 pgoff_t offset;
1024
910321ea 1025 si = swap_info[type];
ec8acf20 1026 spin_lock(&si->lock);
910321ea 1027 if (si && (si->flags & SWP_WRITEOK)) {
ec8acf20 1028 atomic_long_dec(&nr_swap_pages);
910321ea
HD
1029 /* This is called for allocating swap entry, not cache */
1030 offset = scan_swap_map(si, 1);
1031 if (offset) {
ec8acf20 1032 spin_unlock(&si->lock);
910321ea
HD
1033 return swp_entry(type, offset);
1034 }
ec8acf20 1035 atomic_long_inc(&nr_swap_pages);
910321ea 1036 }
ec8acf20 1037 spin_unlock(&si->lock);
910321ea
HD
1038 return (swp_entry_t) {0};
1039}
1040
e8c26ab6 1041static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1da177e4 1042{
73c34b6a 1043 struct swap_info_struct *p;
1da177e4
LT
1044 unsigned long offset, type;
1045
1046 if (!entry.val)
1047 goto out;
1048 type = swp_type(entry);
1049 if (type >= nr_swapfiles)
1050 goto bad_nofile;
efa90a98 1051 p = swap_info[type];
1da177e4
LT
1052 if (!(p->flags & SWP_USED))
1053 goto bad_device;
1054 offset = swp_offset(entry);
1055 if (offset >= p->max)
1056 goto bad_offset;
1da177e4
LT
1057 return p;
1058
1da177e4 1059bad_offset:
6a991fc7 1060 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
1061 goto out;
1062bad_device:
6a991fc7 1063 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
1064 goto out;
1065bad_nofile:
6a991fc7 1066 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
1067out:
1068 return NULL;
886bb7e9 1069}
1da177e4 1070
e8c26ab6
TC
1071static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1072{
1073 struct swap_info_struct *p;
1074
1075 p = __swap_info_get(entry);
1076 if (!p)
1077 goto out;
1078 if (!p->swap_map[swp_offset(entry)])
1079 goto bad_free;
1080 return p;
1081
1082bad_free:
1083 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1084 goto out;
1085out:
1086 return NULL;
1087}
1088
235b6217
HY
1089static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1090{
1091 struct swap_info_struct *p;
1092
1093 p = _swap_info_get(entry);
1094 if (p)
1095 spin_lock(&p->lock);
1096 return p;
1097}
1098
7c00bafe
TC
1099static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1100 struct swap_info_struct *q)
1101{
1102 struct swap_info_struct *p;
1103
1104 p = _swap_info_get(entry);
1105
1106 if (p != q) {
1107 if (q != NULL)
1108 spin_unlock(&q->lock);
1109 if (p != NULL)
1110 spin_lock(&p->lock);
1111 }
1112 return p;
1113}
1114
1115static unsigned char __swap_entry_free(struct swap_info_struct *p,
1116 swp_entry_t entry, unsigned char usage)
1da177e4 1117{
235b6217 1118 struct swap_cluster_info *ci;
253d553b 1119 unsigned long offset = swp_offset(entry);
8d69aaee
HD
1120 unsigned char count;
1121 unsigned char has_cache;
235b6217 1122
7c00bafe 1123 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 1124
253d553b 1125 count = p->swap_map[offset];
235b6217 1126
253d553b
HD
1127 has_cache = count & SWAP_HAS_CACHE;
1128 count &= ~SWAP_HAS_CACHE;
355cfa73 1129
253d553b 1130 if (usage == SWAP_HAS_CACHE) {
355cfa73 1131 VM_BUG_ON(!has_cache);
253d553b 1132 has_cache = 0;
aaa46865
HD
1133 } else if (count == SWAP_MAP_SHMEM) {
1134 /*
1135 * Or we could insist on shmem.c using a special
1136 * swap_shmem_free() and free_shmem_swap_and_cache()...
1137 */
1138 count = 0;
570a335b
HD
1139 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1140 if (count == COUNT_CONTINUED) {
1141 if (swap_count_continued(p, offset, count))
1142 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1143 else
1144 count = SWAP_MAP_MAX;
1145 } else
1146 count--;
1147 }
253d553b 1148
253d553b 1149 usage = count | has_cache;
7c00bafe
TC
1150 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1151
1152 unlock_cluster_or_swap_info(p, ci);
1153
1154 return usage;
1155}
355cfa73 1156
7c00bafe
TC
1157static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1158{
1159 struct swap_cluster_info *ci;
1160 unsigned long offset = swp_offset(entry);
1161 unsigned char count;
1162
1163 ci = lock_cluster(p, offset);
1164 count = p->swap_map[offset];
1165 VM_BUG_ON(count != SWAP_HAS_CACHE);
1166 p->swap_map[offset] = 0;
1167 dec_cluster_info_page(p, p->cluster_info, offset);
235b6217
HY
1168 unlock_cluster(ci);
1169
38d8b4e6
HY
1170 mem_cgroup_uncharge_swap(entry, 1);
1171 swap_range_free(p, offset, 1);
1da177e4
LT
1172}
1173
1174/*
2de1a7e4 1175 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
1176 * is still around or has not been recycled.
1177 */
1178void swap_free(swp_entry_t entry)
1179{
73c34b6a 1180 struct swap_info_struct *p;
1da177e4 1181
235b6217 1182 p = _swap_info_get(entry);
7c00bafe
TC
1183 if (p) {
1184 if (!__swap_entry_free(p, entry, 1))
67afa38e 1185 free_swap_slot(entry);
7c00bafe 1186 }
1da177e4
LT
1187}
1188
cb4b86ba
KH
1189/*
1190 * Called after dropping swapcache to decrease refcnt to swap entries.
1191 */
75f6d6d2 1192static void swapcache_free(swp_entry_t entry)
cb4b86ba 1193{
355cfa73
KH
1194 struct swap_info_struct *p;
1195
235b6217 1196 p = _swap_info_get(entry);
7c00bafe
TC
1197 if (p) {
1198 if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
67afa38e 1199 free_swap_slot(entry);
7c00bafe
TC
1200 }
1201}
1202
38d8b4e6 1203#ifdef CONFIG_THP_SWAP
75f6d6d2 1204static void swapcache_free_cluster(swp_entry_t entry)
38d8b4e6
HY
1205{
1206 unsigned long offset = swp_offset(entry);
1207 unsigned long idx = offset / SWAPFILE_CLUSTER;
1208 struct swap_cluster_info *ci;
1209 struct swap_info_struct *si;
1210 unsigned char *map;
a3aea839
HY
1211 unsigned int i, free_entries = 0;
1212 unsigned char val;
38d8b4e6 1213
a3aea839 1214 si = _swap_info_get(entry);
38d8b4e6
HY
1215 if (!si)
1216 return;
1217
1218 ci = lock_cluster(si, offset);
e0709829 1219 VM_BUG_ON(!cluster_is_huge(ci));
38d8b4e6
HY
1220 map = si->swap_map + offset;
1221 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
a3aea839
HY
1222 val = map[i];
1223 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1224 if (val == SWAP_HAS_CACHE)
1225 free_entries++;
1226 }
1227 if (!free_entries) {
1228 for (i = 0; i < SWAPFILE_CLUSTER; i++)
1229 map[i] &= ~SWAP_HAS_CACHE;
38d8b4e6 1230 }
e0709829 1231 cluster_clear_huge(ci);
38d8b4e6 1232 unlock_cluster(ci);
a3aea839
HY
1233 if (free_entries == SWAPFILE_CLUSTER) {
1234 spin_lock(&si->lock);
1235 ci = lock_cluster(si, offset);
1236 memset(map, 0, SWAPFILE_CLUSTER);
1237 unlock_cluster(ci);
1238 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1239 swap_free_cluster(si, idx);
1240 spin_unlock(&si->lock);
1241 } else if (free_entries) {
1242 for (i = 0; i < SWAPFILE_CLUSTER; i++, entry.val++) {
1243 if (!__swap_entry_free(si, entry, SWAP_HAS_CACHE))
1244 free_swap_slot(entry);
1245 }
1246 }
38d8b4e6 1247}
59807685
HY
1248
1249int split_swap_cluster(swp_entry_t entry)
1250{
1251 struct swap_info_struct *si;
1252 struct swap_cluster_info *ci;
1253 unsigned long offset = swp_offset(entry);
1254
1255 si = _swap_info_get(entry);
1256 if (!si)
1257 return -EBUSY;
1258 ci = lock_cluster(si, offset);
1259 cluster_clear_huge(ci);
1260 unlock_cluster(ci);
1261 return 0;
1262}
75f6d6d2
MK
1263#else
1264static inline void swapcache_free_cluster(swp_entry_t entry)
1265{
1266}
38d8b4e6
HY
1267#endif /* CONFIG_THP_SWAP */
1268
75f6d6d2
MK
1269void put_swap_page(struct page *page, swp_entry_t entry)
1270{
1271 if (!PageTransHuge(page))
1272 swapcache_free(entry);
1273 else
1274 swapcache_free_cluster(entry);
1275}
1276
155b5f88
HY
1277static int swp_entry_cmp(const void *ent1, const void *ent2)
1278{
1279 const swp_entry_t *e1 = ent1, *e2 = ent2;
1280
1281 return (int)swp_type(*e1) - (int)swp_type(*e2);
1282}
1283
7c00bafe
TC
1284void swapcache_free_entries(swp_entry_t *entries, int n)
1285{
1286 struct swap_info_struct *p, *prev;
1287 int i;
1288
1289 if (n <= 0)
1290 return;
1291
1292 prev = NULL;
1293 p = NULL;
155b5f88
HY
1294
1295 /*
1296 * Sort swap entries by swap device, so each lock is only taken once.
1297 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1298 * so low that it isn't necessary to optimize further.
1299 */
1300 if (nr_swapfiles > 1)
1301 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
7c00bafe
TC
1302 for (i = 0; i < n; ++i) {
1303 p = swap_info_get_cont(entries[i], prev);
1304 if (p)
1305 swap_entry_free(p, entries[i]);
7c00bafe
TC
1306 prev = p;
1307 }
235b6217 1308 if (p)
7c00bafe 1309 spin_unlock(&p->lock);
cb4b86ba
KH
1310}
1311
1da177e4 1312/*
c475a8ab 1313 * How many references to page are currently swapped out?
570a335b
HD
1314 * This does not give an exact answer when swap count is continued,
1315 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 1316 */
bde05d1c 1317int page_swapcount(struct page *page)
1da177e4 1318{
c475a8ab
HD
1319 int count = 0;
1320 struct swap_info_struct *p;
235b6217 1321 struct swap_cluster_info *ci;
1da177e4 1322 swp_entry_t entry;
235b6217 1323 unsigned long offset;
1da177e4 1324
4c21e2f2 1325 entry.val = page_private(page);
235b6217 1326 p = _swap_info_get(entry);
1da177e4 1327 if (p) {
235b6217
HY
1328 offset = swp_offset(entry);
1329 ci = lock_cluster_or_swap_info(p, offset);
1330 count = swap_count(p->swap_map[offset]);
1331 unlock_cluster_or_swap_info(p, ci);
1da177e4 1332 }
c475a8ab 1333 return count;
1da177e4
LT
1334}
1335
aa8d22a1
MK
1336int __swap_count(struct swap_info_struct *si, swp_entry_t entry)
1337{
1338 pgoff_t offset = swp_offset(entry);
1339
1340 return swap_count(si->swap_map[offset]);
1341}
1342
322b8afe
HY
1343static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1344{
1345 int count = 0;
1346 pgoff_t offset = swp_offset(entry);
1347 struct swap_cluster_info *ci;
1348
1349 ci = lock_cluster_or_swap_info(si, offset);
1350 count = swap_count(si->swap_map[offset]);
1351 unlock_cluster_or_swap_info(si, ci);
1352 return count;
1353}
1354
e8c26ab6
TC
1355/*
1356 * How many references to @entry are currently swapped out?
1357 * This does not give an exact answer when swap count is continued,
1358 * but does include the high COUNT_CONTINUED flag to allow for that.
1359 */
1360int __swp_swapcount(swp_entry_t entry)
1361{
1362 int count = 0;
e8c26ab6 1363 struct swap_info_struct *si;
e8c26ab6
TC
1364
1365 si = __swap_info_get(entry);
322b8afe
HY
1366 if (si)
1367 count = swap_swapcount(si, entry);
e8c26ab6
TC
1368 return count;
1369}
1370
8334b962
MK
1371/*
1372 * How many references to @entry are currently swapped out?
1373 * This considers COUNT_CONTINUED so it returns exact answer.
1374 */
1375int swp_swapcount(swp_entry_t entry)
1376{
1377 int count, tmp_count, n;
1378 struct swap_info_struct *p;
235b6217 1379 struct swap_cluster_info *ci;
8334b962
MK
1380 struct page *page;
1381 pgoff_t offset;
1382 unsigned char *map;
1383
235b6217 1384 p = _swap_info_get(entry);
8334b962
MK
1385 if (!p)
1386 return 0;
1387
235b6217
HY
1388 offset = swp_offset(entry);
1389
1390 ci = lock_cluster_or_swap_info(p, offset);
1391
1392 count = swap_count(p->swap_map[offset]);
8334b962
MK
1393 if (!(count & COUNT_CONTINUED))
1394 goto out;
1395
1396 count &= ~COUNT_CONTINUED;
1397 n = SWAP_MAP_MAX + 1;
1398
8334b962
MK
1399 page = vmalloc_to_page(p->swap_map + offset);
1400 offset &= ~PAGE_MASK;
1401 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1402
1403 do {
a8ae4991 1404 page = list_next_entry(page, lru);
8334b962
MK
1405 map = kmap_atomic(page);
1406 tmp_count = map[offset];
1407 kunmap_atomic(map);
1408
1409 count += (tmp_count & ~COUNT_CONTINUED) * n;
1410 n *= (SWAP_CONT_MAX + 1);
1411 } while (tmp_count & COUNT_CONTINUED);
1412out:
235b6217 1413 unlock_cluster_or_swap_info(p, ci);
8334b962
MK
1414 return count;
1415}
1416
e0709829
HY
1417#ifdef CONFIG_THP_SWAP
1418static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1419 swp_entry_t entry)
1420{
1421 struct swap_cluster_info *ci;
1422 unsigned char *map = si->swap_map;
1423 unsigned long roffset = swp_offset(entry);
1424 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1425 int i;
1426 bool ret = false;
1427
1428 ci = lock_cluster_or_swap_info(si, offset);
1429 if (!ci || !cluster_is_huge(ci)) {
1430 if (map[roffset] != SWAP_HAS_CACHE)
1431 ret = true;
1432 goto unlock_out;
1433 }
1434 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1435 if (map[offset + i] != SWAP_HAS_CACHE) {
1436 ret = true;
1437 break;
1438 }
1439 }
1440unlock_out:
1441 unlock_cluster_or_swap_info(si, ci);
1442 return ret;
1443}
1444
1445static bool page_swapped(struct page *page)
1446{
1447 swp_entry_t entry;
1448 struct swap_info_struct *si;
1449
1450 if (likely(!PageTransCompound(page)))
1451 return page_swapcount(page) != 0;
1452
1453 page = compound_head(page);
1454 entry.val = page_private(page);
1455 si = _swap_info_get(entry);
1456 if (si)
1457 return swap_page_trans_huge_swapped(si, entry);
1458 return false;
1459}
ba3c4ce6
HY
1460
1461static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1462 int *total_swapcount)
1463{
1464 int i, map_swapcount, _total_mapcount, _total_swapcount;
1465 unsigned long offset = 0;
1466 struct swap_info_struct *si;
1467 struct swap_cluster_info *ci = NULL;
1468 unsigned char *map = NULL;
1469 int mapcount, swapcount = 0;
1470
1471 /* hugetlbfs shouldn't call it */
1472 VM_BUG_ON_PAGE(PageHuge(page), page);
1473
1474 if (likely(!PageTransCompound(page))) {
1475 mapcount = atomic_read(&page->_mapcount) + 1;
1476 if (total_mapcount)
1477 *total_mapcount = mapcount;
1478 if (PageSwapCache(page))
1479 swapcount = page_swapcount(page);
1480 if (total_swapcount)
1481 *total_swapcount = swapcount;
1482 return mapcount + swapcount;
1483 }
1484
1485 page = compound_head(page);
1486
1487 _total_mapcount = _total_swapcount = map_swapcount = 0;
1488 if (PageSwapCache(page)) {
1489 swp_entry_t entry;
1490
1491 entry.val = page_private(page);
1492 si = _swap_info_get(entry);
1493 if (si) {
1494 map = si->swap_map;
1495 offset = swp_offset(entry);
1496 }
1497 }
1498 if (map)
1499 ci = lock_cluster(si, offset);
1500 for (i = 0; i < HPAGE_PMD_NR; i++) {
1501 mapcount = atomic_read(&page[i]._mapcount) + 1;
1502 _total_mapcount += mapcount;
1503 if (map) {
1504 swapcount = swap_count(map[offset + i]);
1505 _total_swapcount += swapcount;
1506 }
1507 map_swapcount = max(map_swapcount, mapcount + swapcount);
1508 }
1509 unlock_cluster(ci);
1510 if (PageDoubleMap(page)) {
1511 map_swapcount -= 1;
1512 _total_mapcount -= HPAGE_PMD_NR;
1513 }
1514 mapcount = compound_mapcount(page);
1515 map_swapcount += mapcount;
1516 _total_mapcount += mapcount;
1517 if (total_mapcount)
1518 *total_mapcount = _total_mapcount;
1519 if (total_swapcount)
1520 *total_swapcount = _total_swapcount;
1521
1522 return map_swapcount;
1523}
e0709829
HY
1524#else
1525#define swap_page_trans_huge_swapped(si, entry) swap_swapcount(si, entry)
1526#define page_swapped(page) (page_swapcount(page) != 0)
ba3c4ce6
HY
1527
1528static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1529 int *total_swapcount)
1530{
1531 int mapcount, swapcount = 0;
1532
1533 /* hugetlbfs shouldn't call it */
1534 VM_BUG_ON_PAGE(PageHuge(page), page);
1535
1536 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1537 if (PageSwapCache(page))
1538 swapcount = page_swapcount(page);
1539 if (total_swapcount)
1540 *total_swapcount = swapcount;
1541 return mapcount + swapcount;
1542}
e0709829
HY
1543#endif
1544
1da177e4 1545/*
7b1fe597
HD
1546 * We can write to an anon page without COW if there are no other references
1547 * to it. And as a side-effect, free up its swap: because the old content
1548 * on disk will never be read, and seeking back there to write new content
1549 * later would only waste time away from clustering.
6d0a07ed 1550 *
ba3c4ce6 1551 * NOTE: total_map_swapcount should not be relied upon by the caller if
6d0a07ed
AA
1552 * reuse_swap_page() returns false, but it may be always overwritten
1553 * (see the other implementation for CONFIG_SWAP=n).
1da177e4 1554 */
ba3c4ce6 1555bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1da177e4 1556{
ba3c4ce6 1557 int count, total_mapcount, total_swapcount;
c475a8ab 1558
309381fe 1559 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688 1560 if (unlikely(PageKsm(page)))
6d0a07ed 1561 return false;
ba3c4ce6
HY
1562 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1563 &total_swapcount);
1564 if (total_map_swapcount)
1565 *total_map_swapcount = total_mapcount + total_swapcount;
1566 if (count == 1 && PageSwapCache(page) &&
1567 (likely(!PageTransCompound(page)) ||
1568 /* The remaining swap count will be freed soon */
1569 total_swapcount == page_swapcount(page))) {
f0571429 1570 if (!PageWriteback(page)) {
ba3c4ce6 1571 page = compound_head(page);
7b1fe597
HD
1572 delete_from_swap_cache(page);
1573 SetPageDirty(page);
f0571429
MK
1574 } else {
1575 swp_entry_t entry;
1576 struct swap_info_struct *p;
1577
1578 entry.val = page_private(page);
1579 p = swap_info_get(entry);
1580 if (p->flags & SWP_STABLE_WRITES) {
1581 spin_unlock(&p->lock);
1582 return false;
1583 }
1584 spin_unlock(&p->lock);
7b1fe597
HD
1585 }
1586 }
ba3c4ce6 1587
5ad64688 1588 return count <= 1;
1da177e4
LT
1589}
1590
1591/*
a2c43eed
HD
1592 * If swap is getting full, or if there are no more mappings of this page,
1593 * then try_to_free_swap is called to free its swap space.
1da177e4 1594 */
a2c43eed 1595int try_to_free_swap(struct page *page)
1da177e4 1596{
309381fe 1597 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
1598
1599 if (!PageSwapCache(page))
1600 return 0;
1601 if (PageWriteback(page))
1602 return 0;
e0709829 1603 if (page_swapped(page))
1da177e4
LT
1604 return 0;
1605
b73d7fce
HD
1606 /*
1607 * Once hibernation has begun to create its image of memory,
1608 * there's a danger that one of the calls to try_to_free_swap()
1609 * - most probably a call from __try_to_reclaim_swap() while
1610 * hibernation is allocating its own swap pages for the image,
1611 * but conceivably even a call from memory reclaim - will free
1612 * the swap from a page which has already been recorded in the
1613 * image as a clean swapcache page, and then reuse its swap for
1614 * another page of the image. On waking from hibernation, the
1615 * original page might be freed under memory pressure, then
1616 * later read back in from swap, now with the wrong data.
1617 *
2de1a7e4 1618 * Hibernation suspends storage while it is writing the image
f90ac398 1619 * to disk so check that here.
b73d7fce 1620 */
f90ac398 1621 if (pm_suspended_storage())
b73d7fce
HD
1622 return 0;
1623
e0709829 1624 page = compound_head(page);
a2c43eed
HD
1625 delete_from_swap_cache(page);
1626 SetPageDirty(page);
1627 return 1;
68a22394
RR
1628}
1629
1da177e4
LT
1630/*
1631 * Free the swap entry like above, but also try to
1632 * free the page cache entry if it is the last user.
1633 */
2509ef26 1634int free_swap_and_cache(swp_entry_t entry)
1da177e4 1635{
2509ef26 1636 struct swap_info_struct *p;
1da177e4 1637 struct page *page = NULL;
7c00bafe 1638 unsigned char count;
1da177e4 1639
a7420aa5 1640 if (non_swap_entry(entry))
2509ef26 1641 return 1;
0697212a 1642
7c00bafe 1643 p = _swap_info_get(entry);
1da177e4 1644 if (p) {
7c00bafe 1645 count = __swap_entry_free(p, entry, 1);
e0709829
HY
1646 if (count == SWAP_HAS_CACHE &&
1647 !swap_page_trans_huge_swapped(p, entry)) {
33806f06 1648 page = find_get_page(swap_address_space(entry),
f6ab1f7f 1649 swp_offset(entry));
8413ac9d 1650 if (page && !trylock_page(page)) {
09cbfeaf 1651 put_page(page);
93fac704
NP
1652 page = NULL;
1653 }
7c00bafe 1654 } else if (!count)
67afa38e 1655 free_swap_slot(entry);
1da177e4
LT
1656 }
1657 if (page) {
a2c43eed
HD
1658 /*
1659 * Not mapped elsewhere, or swap space full? Free it!
1660 * Also recheck PageSwapCache now page is locked (above).
1661 */
93fac704 1662 if (PageSwapCache(page) && !PageWriteback(page) &&
322b8afe 1663 (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
e0709829
HY
1664 !swap_page_trans_huge_swapped(p, entry)) {
1665 page = compound_head(page);
1da177e4
LT
1666 delete_from_swap_cache(page);
1667 SetPageDirty(page);
1668 }
1669 unlock_page(page);
09cbfeaf 1670 put_page(page);
1da177e4 1671 }
2509ef26 1672 return p != NULL;
1da177e4
LT
1673}
1674
b0cb1a19 1675#ifdef CONFIG_HIBERNATION
f577eb30 1676/*
915bae9e 1677 * Find the swap type that corresponds to given device (if any).
f577eb30 1678 *
915bae9e
RW
1679 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1680 * from 0, in which the swap header is expected to be located.
1681 *
1682 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1683 */
7bf23687 1684int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 1685{
915bae9e 1686 struct block_device *bdev = NULL;
efa90a98 1687 int type;
f577eb30 1688
915bae9e
RW
1689 if (device)
1690 bdev = bdget(device);
1691
f577eb30 1692 spin_lock(&swap_lock);
efa90a98
HD
1693 for (type = 0; type < nr_swapfiles; type++) {
1694 struct swap_info_struct *sis = swap_info[type];
f577eb30 1695
915bae9e 1696 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1697 continue;
b6b5bce3 1698
915bae9e 1699 if (!bdev) {
7bf23687 1700 if (bdev_p)
dddac6a7 1701 *bdev_p = bdgrab(sis->bdev);
7bf23687 1702
6e1819d6 1703 spin_unlock(&swap_lock);
efa90a98 1704 return type;
6e1819d6 1705 }
915bae9e 1706 if (bdev == sis->bdev) {
9625a5f2 1707 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 1708
915bae9e 1709 if (se->start_block == offset) {
7bf23687 1710 if (bdev_p)
dddac6a7 1711 *bdev_p = bdgrab(sis->bdev);
7bf23687 1712
915bae9e
RW
1713 spin_unlock(&swap_lock);
1714 bdput(bdev);
efa90a98 1715 return type;
915bae9e 1716 }
f577eb30
RW
1717 }
1718 }
1719 spin_unlock(&swap_lock);
915bae9e
RW
1720 if (bdev)
1721 bdput(bdev);
1722
f577eb30
RW
1723 return -ENODEV;
1724}
1725
73c34b6a
HD
1726/*
1727 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1728 * corresponding to given index in swap_info (swap type).
1729 */
1730sector_t swapdev_block(int type, pgoff_t offset)
1731{
1732 struct block_device *bdev;
1733
1734 if ((unsigned int)type >= nr_swapfiles)
1735 return 0;
1736 if (!(swap_info[type]->flags & SWP_WRITEOK))
1737 return 0;
d4906e1a 1738 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
1739}
1740
f577eb30
RW
1741/*
1742 * Return either the total number of swap pages of given type, or the number
1743 * of free pages of that type (depending on @free)
1744 *
1745 * This is needed for software suspend
1746 */
1747unsigned int count_swap_pages(int type, int free)
1748{
1749 unsigned int n = 0;
1750
efa90a98
HD
1751 spin_lock(&swap_lock);
1752 if ((unsigned int)type < nr_swapfiles) {
1753 struct swap_info_struct *sis = swap_info[type];
1754
ec8acf20 1755 spin_lock(&sis->lock);
efa90a98
HD
1756 if (sis->flags & SWP_WRITEOK) {
1757 n = sis->pages;
f577eb30 1758 if (free)
efa90a98 1759 n -= sis->inuse_pages;
f577eb30 1760 }
ec8acf20 1761 spin_unlock(&sis->lock);
f577eb30 1762 }
efa90a98 1763 spin_unlock(&swap_lock);
f577eb30
RW
1764 return n;
1765}
73c34b6a 1766#endif /* CONFIG_HIBERNATION */
f577eb30 1767
9f8bdb3f 1768static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
179ef71c 1769{
9f8bdb3f 1770 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
179ef71c
CG
1771}
1772
1da177e4 1773/*
72866f6f
HD
1774 * No need to decide whether this PTE shares the swap entry with others,
1775 * just let do_wp_page work it out if a write is requested later - to
1776 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1777 */
044d66c1 1778static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1779 unsigned long addr, swp_entry_t entry, struct page *page)
1780{
9e16b7fb 1781 struct page *swapcache;
72835c86 1782 struct mem_cgroup *memcg;
044d66c1
HD
1783 spinlock_t *ptl;
1784 pte_t *pte;
1785 int ret = 1;
1786
9e16b7fb
HD
1787 swapcache = page;
1788 page = ksm_might_need_to_copy(page, vma, addr);
1789 if (unlikely(!page))
1790 return -ENOMEM;
1791
f627c2f5
KS
1792 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1793 &memcg, false)) {
044d66c1 1794 ret = -ENOMEM;
85d9fc89
KH
1795 goto out_nolock;
1796 }
044d66c1
HD
1797
1798 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
9f8bdb3f 1799 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
f627c2f5 1800 mem_cgroup_cancel_charge(page, memcg, false);
044d66c1
HD
1801 ret = 0;
1802 goto out;
1803 }
8a9f3ccd 1804
b084d435 1805 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1806 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1807 get_page(page);
1808 set_pte_at(vma->vm_mm, addr, pte,
1809 pte_mkold(mk_pte(page, vma->vm_page_prot)));
00501b53 1810 if (page == swapcache) {
d281ee61 1811 page_add_anon_rmap(page, vma, addr, false);
f627c2f5 1812 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1813 } else { /* ksm created a completely new copy */
d281ee61 1814 page_add_new_anon_rmap(page, vma, addr, false);
f627c2f5 1815 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
1816 lru_cache_add_active_or_unevictable(page, vma);
1817 }
1da177e4
LT
1818 swap_free(entry);
1819 /*
1820 * Move the page to the active list so it is not
1821 * immediately swapped out again after swapon.
1822 */
1823 activate_page(page);
044d66c1
HD
1824out:
1825 pte_unmap_unlock(pte, ptl);
85d9fc89 1826out_nolock:
9e16b7fb
HD
1827 if (page != swapcache) {
1828 unlock_page(page);
1829 put_page(page);
1830 }
044d66c1 1831 return ret;
1da177e4
LT
1832}
1833
1834static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1835 unsigned long addr, unsigned long end,
1836 swp_entry_t entry, struct page *page)
1837{
1da177e4 1838 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 1839 pte_t *pte;
8a9f3ccd 1840 int ret = 0;
1da177e4 1841
044d66c1
HD
1842 /*
1843 * We don't actually need pte lock while scanning for swp_pte: since
1844 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1845 * page table while we're scanning; though it could get zapped, and on
1846 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1847 * of unmatched parts which look like swp_pte, so unuse_pte must
1848 * recheck under pte lock. Scanning without pte lock lets it be
2de1a7e4 1849 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
044d66c1
HD
1850 */
1851 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1852 do {
1853 /*
1854 * swapoff spends a _lot_ of time in this loop!
1855 * Test inline before going to call unuse_pte.
1856 */
9f8bdb3f 1857 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
044d66c1
HD
1858 pte_unmap(pte);
1859 ret = unuse_pte(vma, pmd, addr, entry, page);
1860 if (ret)
1861 goto out;
1862 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1863 }
1864 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
1865 pte_unmap(pte - 1);
1866out:
8a9f3ccd 1867 return ret;
1da177e4
LT
1868}
1869
1870static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1871 unsigned long addr, unsigned long end,
1872 swp_entry_t entry, struct page *page)
1873{
1874 pmd_t *pmd;
1875 unsigned long next;
8a9f3ccd 1876 int ret;
1da177e4
LT
1877
1878 pmd = pmd_offset(pud, addr);
1879 do {
dc644a07 1880 cond_resched();
1da177e4 1881 next = pmd_addr_end(addr, end);
1a5a9906 1882 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 1883 continue;
8a9f3ccd
BS
1884 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1885 if (ret)
1886 return ret;
1da177e4
LT
1887 } while (pmd++, addr = next, addr != end);
1888 return 0;
1889}
1890
c2febafc 1891static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1da177e4
LT
1892 unsigned long addr, unsigned long end,
1893 swp_entry_t entry, struct page *page)
1894{
1895 pud_t *pud;
1896 unsigned long next;
8a9f3ccd 1897 int ret;
1da177e4 1898
c2febafc 1899 pud = pud_offset(p4d, addr);
1da177e4
LT
1900 do {
1901 next = pud_addr_end(addr, end);
1902 if (pud_none_or_clear_bad(pud))
1903 continue;
8a9f3ccd
BS
1904 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1905 if (ret)
1906 return ret;
1da177e4
LT
1907 } while (pud++, addr = next, addr != end);
1908 return 0;
1909}
1910
c2febafc
KS
1911static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1912 unsigned long addr, unsigned long end,
1913 swp_entry_t entry, struct page *page)
1914{
1915 p4d_t *p4d;
1916 unsigned long next;
1917 int ret;
1918
1919 p4d = p4d_offset(pgd, addr);
1920 do {
1921 next = p4d_addr_end(addr, end);
1922 if (p4d_none_or_clear_bad(p4d))
1923 continue;
1924 ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1925 if (ret)
1926 return ret;
1927 } while (p4d++, addr = next, addr != end);
1928 return 0;
1929}
1930
1da177e4
LT
1931static int unuse_vma(struct vm_area_struct *vma,
1932 swp_entry_t entry, struct page *page)
1933{
1934 pgd_t *pgd;
1935 unsigned long addr, end, next;
8a9f3ccd 1936 int ret;
1da177e4 1937
3ca7b3c5 1938 if (page_anon_vma(page)) {
1da177e4
LT
1939 addr = page_address_in_vma(page, vma);
1940 if (addr == -EFAULT)
1941 return 0;
1942 else
1943 end = addr + PAGE_SIZE;
1944 } else {
1945 addr = vma->vm_start;
1946 end = vma->vm_end;
1947 }
1948
1949 pgd = pgd_offset(vma->vm_mm, addr);
1950 do {
1951 next = pgd_addr_end(addr, end);
1952 if (pgd_none_or_clear_bad(pgd))
1953 continue;
c2febafc 1954 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
8a9f3ccd
BS
1955 if (ret)
1956 return ret;
1da177e4
LT
1957 } while (pgd++, addr = next, addr != end);
1958 return 0;
1959}
1960
1961static int unuse_mm(struct mm_struct *mm,
1962 swp_entry_t entry, struct page *page)
1963{
1964 struct vm_area_struct *vma;
8a9f3ccd 1965 int ret = 0;
1da177e4
LT
1966
1967 if (!down_read_trylock(&mm->mmap_sem)) {
1968 /*
7d03431c
FLVC
1969 * Activate page so shrink_inactive_list is unlikely to unmap
1970 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 1971 */
c475a8ab 1972 activate_page(page);
1da177e4
LT
1973 unlock_page(page);
1974 down_read(&mm->mmap_sem);
1975 lock_page(page);
1976 }
1da177e4 1977 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 1978 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4 1979 break;
dc644a07 1980 cond_resched();
1da177e4 1981 }
1da177e4 1982 up_read(&mm->mmap_sem);
8a9f3ccd 1983 return (ret < 0)? ret: 0;
1da177e4
LT
1984}
1985
1986/*
38b5faf4
DM
1987 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1988 * from current position to next entry still in use.
1da177e4
LT
1989 * Recycle to start on reaching the end, returning 0 when empty.
1990 */
6eb396dc 1991static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 1992 unsigned int prev, bool frontswap)
1da177e4 1993{
6eb396dc
HD
1994 unsigned int max = si->max;
1995 unsigned int i = prev;
8d69aaee 1996 unsigned char count;
1da177e4
LT
1997
1998 /*
5d337b91 1999 * No need for swap_lock here: we're just looking
1da177e4
LT
2000 * for whether an entry is in use, not modifying it; false
2001 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 2002 * allocations from this area (while holding swap_lock).
1da177e4
LT
2003 */
2004 for (;;) {
2005 if (++i >= max) {
2006 if (!prev) {
2007 i = 0;
2008 break;
2009 }
2010 /*
2011 * No entries in use at top of swap_map,
2012 * loop back to start and recheck there.
2013 */
2014 max = prev + 1;
2015 prev = 0;
2016 i = 1;
2017 }
4db0c3c2 2018 count = READ_ONCE(si->swap_map[i]);
355cfa73 2019 if (count && swap_count(count) != SWAP_MAP_BAD)
dc644a07
HD
2020 if (!frontswap || frontswap_test(si, i))
2021 break;
2022 if ((i % LATENCY_LIMIT) == 0)
2023 cond_resched();
1da177e4
LT
2024 }
2025 return i;
2026}
2027
2028/*
2029 * We completely avoid races by reading each swap page in advance,
2030 * and then search for the process using it. All the necessary
2031 * page table adjustments can then be made atomically.
38b5faf4
DM
2032 *
2033 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
2034 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 2035 */
38b5faf4
DM
2036int try_to_unuse(unsigned int type, bool frontswap,
2037 unsigned long pages_to_unuse)
1da177e4 2038{
efa90a98 2039 struct swap_info_struct *si = swap_info[type];
1da177e4 2040 struct mm_struct *start_mm;
edfe23da
SL
2041 volatile unsigned char *swap_map; /* swap_map is accessed without
2042 * locking. Mark it as volatile
2043 * to prevent compiler doing
2044 * something odd.
2045 */
8d69aaee 2046 unsigned char swcount;
1da177e4
LT
2047 struct page *page;
2048 swp_entry_t entry;
6eb396dc 2049 unsigned int i = 0;
1da177e4 2050 int retval = 0;
1da177e4
LT
2051
2052 /*
2053 * When searching mms for an entry, a good strategy is to
2054 * start at the first mm we freed the previous entry from
2055 * (though actually we don't notice whether we or coincidence
2056 * freed the entry). Initialize this start_mm with a hold.
2057 *
2058 * A simpler strategy would be to start at the last mm we
2059 * freed the previous entry from; but that would take less
2060 * advantage of mmlist ordering, which clusters forked mms
2061 * together, child after parent. If we race with dup_mmap(), we
2062 * prefer to resolve parent before child, lest we miss entries
2063 * duplicated after we scanned child: using last mm would invert
570a335b 2064 * that.
1da177e4
LT
2065 */
2066 start_mm = &init_mm;
3fce371b 2067 mmget(&init_mm);
1da177e4
LT
2068
2069 /*
2070 * Keep on scanning until all entries have gone. Usually,
2071 * one pass through swap_map is enough, but not necessarily:
2072 * there are races when an instance of an entry might be missed.
2073 */
38b5faf4 2074 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4
LT
2075 if (signal_pending(current)) {
2076 retval = -EINTR;
2077 break;
2078 }
2079
886bb7e9 2080 /*
1da177e4
LT
2081 * Get a page for the entry, using the existing swap
2082 * cache page if there is one. Otherwise, get a clean
886bb7e9 2083 * page and read the swap into it.
1da177e4
LT
2084 */
2085 swap_map = &si->swap_map[i];
2086 entry = swp_entry(type, i);
02098fea 2087 page = read_swap_cache_async(entry,
23955622 2088 GFP_HIGHUSER_MOVABLE, NULL, 0, false);
1da177e4
LT
2089 if (!page) {
2090 /*
2091 * Either swap_duplicate() failed because entry
2092 * has been freed independently, and will not be
2093 * reused since sys_swapoff() already disabled
2094 * allocation from here, or alloc_page() failed.
2095 */
edfe23da
SL
2096 swcount = *swap_map;
2097 /*
2098 * We don't hold lock here, so the swap entry could be
2099 * SWAP_MAP_BAD (when the cluster is discarding).
2100 * Instead of fail out, We can just skip the swap
2101 * entry because swapoff will wait for discarding
2102 * finish anyway.
2103 */
2104 if (!swcount || swcount == SWAP_MAP_BAD)
1da177e4
LT
2105 continue;
2106 retval = -ENOMEM;
2107 break;
2108 }
2109
2110 /*
2111 * Don't hold on to start_mm if it looks like exiting.
2112 */
2113 if (atomic_read(&start_mm->mm_users) == 1) {
2114 mmput(start_mm);
2115 start_mm = &init_mm;
3fce371b 2116 mmget(&init_mm);
1da177e4
LT
2117 }
2118
2119 /*
2120 * Wait for and lock page. When do_swap_page races with
2121 * try_to_unuse, do_swap_page can handle the fault much
2122 * faster than try_to_unuse can locate the entry. This
2123 * apparently redundant "wait_on_page_locked" lets try_to_unuse
2124 * defer to do_swap_page in such a case - in some tests,
2125 * do_swap_page and try_to_unuse repeatedly compete.
2126 */
2127 wait_on_page_locked(page);
2128 wait_on_page_writeback(page);
2129 lock_page(page);
2130 wait_on_page_writeback(page);
2131
2132 /*
2133 * Remove all references to entry.
1da177e4 2134 */
1da177e4 2135 swcount = *swap_map;
aaa46865
HD
2136 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
2137 retval = shmem_unuse(entry, page);
2138 /* page has already been unlocked and released */
2139 if (retval < 0)
2140 break;
2141 continue;
1da177e4 2142 }
aaa46865
HD
2143 if (swap_count(swcount) && start_mm != &init_mm)
2144 retval = unuse_mm(start_mm, entry, page);
2145
355cfa73 2146 if (swap_count(*swap_map)) {
1da177e4
LT
2147 int set_start_mm = (*swap_map >= swcount);
2148 struct list_head *p = &start_mm->mmlist;
2149 struct mm_struct *new_start_mm = start_mm;
2150 struct mm_struct *prev_mm = start_mm;
2151 struct mm_struct *mm;
2152
3fce371b
VN
2153 mmget(new_start_mm);
2154 mmget(prev_mm);
1da177e4 2155 spin_lock(&mmlist_lock);
aaa46865 2156 while (swap_count(*swap_map) && !retval &&
1da177e4
LT
2157 (p = p->next) != &start_mm->mmlist) {
2158 mm = list_entry(p, struct mm_struct, mmlist);
388f7934 2159 if (!mmget_not_zero(mm))
1da177e4 2160 continue;
1da177e4
LT
2161 spin_unlock(&mmlist_lock);
2162 mmput(prev_mm);
2163 prev_mm = mm;
2164
2165 cond_resched();
2166
2167 swcount = *swap_map;
355cfa73 2168 if (!swap_count(swcount)) /* any usage ? */
1da177e4 2169 ;
aaa46865 2170 else if (mm == &init_mm)
1da177e4 2171 set_start_mm = 1;
aaa46865 2172 else
1da177e4 2173 retval = unuse_mm(mm, entry, page);
355cfa73 2174
32c5fc10 2175 if (set_start_mm && *swap_map < swcount) {
1da177e4 2176 mmput(new_start_mm);
3fce371b 2177 mmget(mm);
1da177e4
LT
2178 new_start_mm = mm;
2179 set_start_mm = 0;
2180 }
2181 spin_lock(&mmlist_lock);
2182 }
2183 spin_unlock(&mmlist_lock);
2184 mmput(prev_mm);
2185 mmput(start_mm);
2186 start_mm = new_start_mm;
2187 }
2188 if (retval) {
2189 unlock_page(page);
09cbfeaf 2190 put_page(page);
1da177e4
LT
2191 break;
2192 }
2193
1da177e4
LT
2194 /*
2195 * If a reference remains (rare), we would like to leave
2196 * the page in the swap cache; but try_to_unmap could
2197 * then re-duplicate the entry once we drop page lock,
2198 * so we might loop indefinitely; also, that page could
2199 * not be swapped out to other storage meanwhile. So:
2200 * delete from cache even if there's another reference,
2201 * after ensuring that the data has been saved to disk -
2202 * since if the reference remains (rarer), it will be
2203 * read from disk into another page. Splitting into two
2204 * pages would be incorrect if swap supported "shared
2205 * private" pages, but they are handled by tmpfs files.
5ad64688
HD
2206 *
2207 * Given how unuse_vma() targets one particular offset
2208 * in an anon_vma, once the anon_vma has been determined,
2209 * this splitting happens to be just what is needed to
2210 * handle where KSM pages have been swapped out: re-reading
2211 * is unnecessarily slow, but we can fix that later on.
1da177e4 2212 */
355cfa73
KH
2213 if (swap_count(*swap_map) &&
2214 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
2215 struct writeback_control wbc = {
2216 .sync_mode = WB_SYNC_NONE,
2217 };
2218
e0709829 2219 swap_writepage(compound_head(page), &wbc);
1da177e4
LT
2220 lock_page(page);
2221 wait_on_page_writeback(page);
2222 }
68bdc8d6
HD
2223
2224 /*
2225 * It is conceivable that a racing task removed this page from
2226 * swap cache just before we acquired the page lock at the top,
2227 * or while we dropped it in unuse_mm(). The page might even
2228 * be back in swap cache on another swap area: that we must not
2229 * delete, since it may not have been written out to swap yet.
2230 */
2231 if (PageSwapCache(page) &&
e0709829
HY
2232 likely(page_private(page) == entry.val) &&
2233 !page_swapped(page))
2234 delete_from_swap_cache(compound_head(page));
1da177e4
LT
2235
2236 /*
2237 * So we could skip searching mms once swap count went
2238 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 2239 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
2240 */
2241 SetPageDirty(page);
2242 unlock_page(page);
09cbfeaf 2243 put_page(page);
1da177e4
LT
2244
2245 /*
2246 * Make sure that we aren't completely killing
2247 * interactive performance.
2248 */
2249 cond_resched();
38b5faf4
DM
2250 if (frontswap && pages_to_unuse > 0) {
2251 if (!--pages_to_unuse)
2252 break;
2253 }
1da177e4
LT
2254 }
2255
2256 mmput(start_mm);
1da177e4
LT
2257 return retval;
2258}
2259
2260/*
5d337b91
HD
2261 * After a successful try_to_unuse, if no swap is now in use, we know
2262 * we can empty the mmlist. swap_lock must be held on entry and exit.
2263 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
2264 * added to the mmlist just after page_duplicate - before would be racy.
2265 */
2266static void drain_mmlist(void)
2267{
2268 struct list_head *p, *next;
efa90a98 2269 unsigned int type;
1da177e4 2270
efa90a98
HD
2271 for (type = 0; type < nr_swapfiles; type++)
2272 if (swap_info[type]->inuse_pages)
1da177e4
LT
2273 return;
2274 spin_lock(&mmlist_lock);
2275 list_for_each_safe(p, next, &init_mm.mmlist)
2276 list_del_init(p);
2277 spin_unlock(&mmlist_lock);
2278}
2279
2280/*
2281 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
2282 * corresponds to page offset for the specified swap entry.
2283 * Note that the type of this function is sector_t, but it returns page offset
2284 * into the bdev, not sector offset.
1da177e4 2285 */
d4906e1a 2286static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 2287{
f29ad6a9
HD
2288 struct swap_info_struct *sis;
2289 struct swap_extent *start_se;
2290 struct swap_extent *se;
2291 pgoff_t offset;
2292
efa90a98 2293 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
2294 *bdev = sis->bdev;
2295
2296 offset = swp_offset(entry);
2297 start_se = sis->curr_swap_extent;
2298 se = start_se;
1da177e4
LT
2299
2300 for ( ; ; ) {
1da177e4
LT
2301 if (se->start_page <= offset &&
2302 offset < (se->start_page + se->nr_pages)) {
2303 return se->start_block + (offset - se->start_page);
2304 }
a8ae4991 2305 se = list_next_entry(se, list);
1da177e4
LT
2306 sis->curr_swap_extent = se;
2307 BUG_ON(se == start_se); /* It *must* be present */
2308 }
2309}
2310
d4906e1a
LS
2311/*
2312 * Returns the page offset into bdev for the specified page's swap entry.
2313 */
2314sector_t map_swap_page(struct page *page, struct block_device **bdev)
2315{
2316 swp_entry_t entry;
2317 entry.val = page_private(page);
2318 return map_swap_entry(entry, bdev);
2319}
2320
1da177e4
LT
2321/*
2322 * Free all of a swapdev's extent information
2323 */
2324static void destroy_swap_extents(struct swap_info_struct *sis)
2325{
9625a5f2 2326 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
2327 struct swap_extent *se;
2328
a8ae4991 2329 se = list_first_entry(&sis->first_swap_extent.list,
1da177e4
LT
2330 struct swap_extent, list);
2331 list_del(&se->list);
2332 kfree(se);
2333 }
62c230bc
MG
2334
2335 if (sis->flags & SWP_FILE) {
2336 struct file *swap_file = sis->swap_file;
2337 struct address_space *mapping = swap_file->f_mapping;
2338
2339 sis->flags &= ~SWP_FILE;
2340 mapping->a_ops->swap_deactivate(swap_file);
2341 }
1da177e4
LT
2342}
2343
2344/*
2345 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 2346 * extent list. The extent list is kept sorted in page order.
1da177e4 2347 *
11d31886 2348 * This function rather assumes that it is called in ascending page order.
1da177e4 2349 */
a509bc1a 2350int
1da177e4
LT
2351add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2352 unsigned long nr_pages, sector_t start_block)
2353{
2354 struct swap_extent *se;
2355 struct swap_extent *new_se;
2356 struct list_head *lh;
2357
9625a5f2
HD
2358 if (start_page == 0) {
2359 se = &sis->first_swap_extent;
2360 sis->curr_swap_extent = se;
2361 se->start_page = 0;
2362 se->nr_pages = nr_pages;
2363 se->start_block = start_block;
2364 return 1;
2365 } else {
2366 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 2367 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
2368 BUG_ON(se->start_page + se->nr_pages != start_page);
2369 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
2370 /* Merge it */
2371 se->nr_pages += nr_pages;
2372 return 0;
2373 }
1da177e4
LT
2374 }
2375
2376 /*
2377 * No merge. Insert a new extent, preserving ordering.
2378 */
2379 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2380 if (new_se == NULL)
2381 return -ENOMEM;
2382 new_se->start_page = start_page;
2383 new_se->nr_pages = nr_pages;
2384 new_se->start_block = start_block;
2385
9625a5f2 2386 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 2387 return 1;
1da177e4
LT
2388}
2389
2390/*
2391 * A `swap extent' is a simple thing which maps a contiguous range of pages
2392 * onto a contiguous range of disk blocks. An ordered list of swap extents
2393 * is built at swapon time and is then used at swap_writepage/swap_readpage
2394 * time for locating where on disk a page belongs.
2395 *
2396 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2397 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2398 * swap files identically.
2399 *
2400 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2401 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2402 * swapfiles are handled *identically* after swapon time.
2403 *
2404 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2405 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2406 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2407 * requirements, they are simply tossed out - we will never use those blocks
2408 * for swapping.
2409 *
b0d9bcd4 2410 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
2411 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2412 * which will scribble on the fs.
2413 *
2414 * The amount of disk space which a single swap extent represents varies.
2415 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2416 * extents in the list. To avoid much list walking, we cache the previous
2417 * search location in `curr_swap_extent', and start new searches from there.
2418 * This is extremely effective. The average number of iterations in
2419 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2420 */
53092a74 2421static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 2422{
62c230bc
MG
2423 struct file *swap_file = sis->swap_file;
2424 struct address_space *mapping = swap_file->f_mapping;
2425 struct inode *inode = mapping->host;
1da177e4
LT
2426 int ret;
2427
1da177e4
LT
2428 if (S_ISBLK(inode->i_mode)) {
2429 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 2430 *span = sis->pages;
a509bc1a 2431 return ret;
1da177e4
LT
2432 }
2433
62c230bc 2434 if (mapping->a_ops->swap_activate) {
a509bc1a 2435 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
62c230bc
MG
2436 if (!ret) {
2437 sis->flags |= SWP_FILE;
2438 ret = add_swap_extent(sis, 0, sis->max, 0);
2439 *span = sis->pages;
2440 }
a509bc1a 2441 return ret;
62c230bc
MG
2442 }
2443
a509bc1a 2444 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
2445}
2446
a2468cc9
AL
2447static int swap_node(struct swap_info_struct *p)
2448{
2449 struct block_device *bdev;
2450
2451 if (p->bdev)
2452 bdev = p->bdev;
2453 else
2454 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2455
2456 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2457}
2458
cf0cac0a 2459static void _enable_swap_info(struct swap_info_struct *p, int prio,
2a8f9449
SL
2460 unsigned char *swap_map,
2461 struct swap_cluster_info *cluster_info)
40531542 2462{
a2468cc9
AL
2463 int i;
2464
40531542
CEB
2465 if (prio >= 0)
2466 p->prio = prio;
2467 else
2468 p->prio = --least_priority;
18ab4d4c
DS
2469 /*
2470 * the plist prio is negated because plist ordering is
2471 * low-to-high, while swap ordering is high-to-low
2472 */
2473 p->list.prio = -p->prio;
a2468cc9
AL
2474 for_each_node(i) {
2475 if (p->prio >= 0)
2476 p->avail_lists[i].prio = -p->prio;
2477 else {
2478 if (swap_node(p) == i)
2479 p->avail_lists[i].prio = 1;
2480 else
2481 p->avail_lists[i].prio = -p->prio;
2482 }
2483 }
40531542 2484 p->swap_map = swap_map;
2a8f9449 2485 p->cluster_info = cluster_info;
40531542 2486 p->flags |= SWP_WRITEOK;
ec8acf20 2487 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
2488 total_swap_pages += p->pages;
2489
adfab836 2490 assert_spin_locked(&swap_lock);
adfab836 2491 /*
18ab4d4c
DS
2492 * both lists are plists, and thus priority ordered.
2493 * swap_active_head needs to be priority ordered for swapoff(),
2494 * which on removal of any swap_info_struct with an auto-assigned
2495 * (i.e. negative) priority increments the auto-assigned priority
2496 * of any lower-priority swap_info_structs.
2497 * swap_avail_head needs to be priority ordered for get_swap_page(),
2498 * which allocates swap pages from the highest available priority
2499 * swap_info_struct.
adfab836 2500 */
18ab4d4c 2501 plist_add(&p->list, &swap_active_head);
a2468cc9 2502 add_to_avail_list(p);
cf0cac0a
CEB
2503}
2504
2505static void enable_swap_info(struct swap_info_struct *p, int prio,
2506 unsigned char *swap_map,
2a8f9449 2507 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
2508 unsigned long *frontswap_map)
2509{
4f89849d 2510 frontswap_init(p->type, frontswap_map);
cf0cac0a 2511 spin_lock(&swap_lock);
ec8acf20 2512 spin_lock(&p->lock);
2a8f9449 2513 _enable_swap_info(p, prio, swap_map, cluster_info);
ec8acf20 2514 spin_unlock(&p->lock);
cf0cac0a
CEB
2515 spin_unlock(&swap_lock);
2516}
2517
2518static void reinsert_swap_info(struct swap_info_struct *p)
2519{
2520 spin_lock(&swap_lock);
ec8acf20 2521 spin_lock(&p->lock);
2a8f9449 2522 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
ec8acf20 2523 spin_unlock(&p->lock);
40531542
CEB
2524 spin_unlock(&swap_lock);
2525}
2526
67afa38e
TC
2527bool has_usable_swap(void)
2528{
2529 bool ret = true;
2530
2531 spin_lock(&swap_lock);
2532 if (plist_head_empty(&swap_active_head))
2533 ret = false;
2534 spin_unlock(&swap_lock);
2535 return ret;
2536}
2537
c4ea37c2 2538SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 2539{
73c34b6a 2540 struct swap_info_struct *p = NULL;
8d69aaee 2541 unsigned char *swap_map;
2a8f9449 2542 struct swap_cluster_info *cluster_info;
4f89849d 2543 unsigned long *frontswap_map;
1da177e4
LT
2544 struct file *swap_file, *victim;
2545 struct address_space *mapping;
2546 struct inode *inode;
91a27b2a 2547 struct filename *pathname;
adfab836 2548 int err, found = 0;
5b808a23 2549 unsigned int old_block_size;
886bb7e9 2550
1da177e4
LT
2551 if (!capable(CAP_SYS_ADMIN))
2552 return -EPERM;
2553
191c5424
AV
2554 BUG_ON(!current->mm);
2555
1da177e4 2556 pathname = getname(specialfile);
1da177e4 2557 if (IS_ERR(pathname))
f58b59c1 2558 return PTR_ERR(pathname);
1da177e4 2559
669abf4e 2560 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
2561 err = PTR_ERR(victim);
2562 if (IS_ERR(victim))
2563 goto out;
2564
2565 mapping = victim->f_mapping;
5d337b91 2566 spin_lock(&swap_lock);
18ab4d4c 2567 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 2568 if (p->flags & SWP_WRITEOK) {
adfab836
DS
2569 if (p->swap_file->f_mapping == mapping) {
2570 found = 1;
1da177e4 2571 break;
adfab836 2572 }
1da177e4 2573 }
1da177e4 2574 }
adfab836 2575 if (!found) {
1da177e4 2576 err = -EINVAL;
5d337b91 2577 spin_unlock(&swap_lock);
1da177e4
LT
2578 goto out_dput;
2579 }
191c5424 2580 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
2581 vm_unacct_memory(p->pages);
2582 else {
2583 err = -ENOMEM;
5d337b91 2584 spin_unlock(&swap_lock);
1da177e4
LT
2585 goto out_dput;
2586 }
a2468cc9 2587 del_from_avail_list(p);
ec8acf20 2588 spin_lock(&p->lock);
78ecba08 2589 if (p->prio < 0) {
adfab836 2590 struct swap_info_struct *si = p;
a2468cc9 2591 int nid;
adfab836 2592
18ab4d4c 2593 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 2594 si->prio++;
18ab4d4c 2595 si->list.prio--;
a2468cc9
AL
2596 for_each_node(nid) {
2597 if (si->avail_lists[nid].prio != 1)
2598 si->avail_lists[nid].prio--;
2599 }
adfab836 2600 }
78ecba08
HD
2601 least_priority++;
2602 }
18ab4d4c 2603 plist_del(&p->list, &swap_active_head);
ec8acf20 2604 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
2605 total_swap_pages -= p->pages;
2606 p->flags &= ~SWP_WRITEOK;
ec8acf20 2607 spin_unlock(&p->lock);
5d337b91 2608 spin_unlock(&swap_lock);
fb4f88dc 2609
039939a6
TC
2610 disable_swap_slots_cache_lock();
2611
e1e12d2f 2612 set_current_oom_origin();
adfab836 2613 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
e1e12d2f 2614 clear_current_oom_origin();
1da177e4 2615
1da177e4
LT
2616 if (err) {
2617 /* re-insert swap space back into swap_list */
cf0cac0a 2618 reinsert_swap_info(p);
039939a6 2619 reenable_swap_slots_cache_unlock();
1da177e4
LT
2620 goto out_dput;
2621 }
52b7efdb 2622
039939a6
TC
2623 reenable_swap_slots_cache_unlock();
2624
815c2c54
SL
2625 flush_work(&p->discard_work);
2626
5d337b91 2627 destroy_swap_extents(p);
570a335b
HD
2628 if (p->flags & SWP_CONTINUED)
2629 free_swap_count_continuations(p);
2630
81a0298b
HY
2631 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2632 atomic_dec(&nr_rotate_swap);
2633
fc0abb14 2634 mutex_lock(&swapon_mutex);
5d337b91 2635 spin_lock(&swap_lock);
ec8acf20 2636 spin_lock(&p->lock);
5d337b91
HD
2637 drain_mmlist();
2638
52b7efdb 2639 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
2640 p->highest_bit = 0; /* cuts scans short */
2641 while (p->flags >= SWP_SCANNING) {
ec8acf20 2642 spin_unlock(&p->lock);
5d337b91 2643 spin_unlock(&swap_lock);
13e4b57f 2644 schedule_timeout_uninterruptible(1);
5d337b91 2645 spin_lock(&swap_lock);
ec8acf20 2646 spin_lock(&p->lock);
52b7efdb 2647 }
52b7efdb 2648
1da177e4 2649 swap_file = p->swap_file;
5b808a23 2650 old_block_size = p->old_block_size;
1da177e4
LT
2651 p->swap_file = NULL;
2652 p->max = 0;
2653 swap_map = p->swap_map;
2654 p->swap_map = NULL;
2a8f9449
SL
2655 cluster_info = p->cluster_info;
2656 p->cluster_info = NULL;
4f89849d 2657 frontswap_map = frontswap_map_get(p);
ec8acf20 2658 spin_unlock(&p->lock);
5d337b91 2659 spin_unlock(&swap_lock);
adfab836 2660 frontswap_invalidate_area(p->type);
58e97ba6 2661 frontswap_map_set(p, NULL);
fc0abb14 2662 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
2663 free_percpu(p->percpu_cluster);
2664 p->percpu_cluster = NULL;
1da177e4 2665 vfree(swap_map);
54f180d3
HY
2666 kvfree(cluster_info);
2667 kvfree(frontswap_map);
2de1a7e4 2668 /* Destroy swap account information */
adfab836 2669 swap_cgroup_swapoff(p->type);
4b3ef9da 2670 exit_swap_address_space(p->type);
27a7faa0 2671
1da177e4
LT
2672 inode = mapping->host;
2673 if (S_ISBLK(inode->i_mode)) {
2674 struct block_device *bdev = I_BDEV(inode);
5b808a23 2675 set_blocksize(bdev, old_block_size);
e525fd89 2676 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2677 } else {
5955102c 2678 inode_lock(inode);
1da177e4 2679 inode->i_flags &= ~S_SWAPFILE;
5955102c 2680 inode_unlock(inode);
1da177e4
LT
2681 }
2682 filp_close(swap_file, NULL);
f893ab41
WY
2683
2684 /*
2685 * Clear the SWP_USED flag after all resources are freed so that swapon
2686 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2687 * not hold p->lock after we cleared its SWP_WRITEOK.
2688 */
2689 spin_lock(&swap_lock);
2690 p->flags = 0;
2691 spin_unlock(&swap_lock);
2692
1da177e4 2693 err = 0;
66d7dd51
KS
2694 atomic_inc(&proc_poll_event);
2695 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
2696
2697out_dput:
2698 filp_close(victim, NULL);
2699out:
f58b59c1 2700 putname(pathname);
1da177e4
LT
2701 return err;
2702}
2703
2704#ifdef CONFIG_PROC_FS
9dd95748 2705static __poll_t swaps_poll(struct file *file, poll_table *wait)
66d7dd51 2706{
f1514638 2707 struct seq_file *seq = file->private_data;
66d7dd51
KS
2708
2709 poll_wait(file, &proc_poll_wait, wait);
2710
f1514638
KS
2711 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2712 seq->poll_event = atomic_read(&proc_poll_event);
a9a08845 2713 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
66d7dd51
KS
2714 }
2715
a9a08845 2716 return EPOLLIN | EPOLLRDNORM;
66d7dd51
KS
2717}
2718
1da177e4
LT
2719/* iterator */
2720static void *swap_start(struct seq_file *swap, loff_t *pos)
2721{
efa90a98
HD
2722 struct swap_info_struct *si;
2723 int type;
1da177e4
LT
2724 loff_t l = *pos;
2725
fc0abb14 2726 mutex_lock(&swapon_mutex);
1da177e4 2727
881e4aab
SS
2728 if (!l)
2729 return SEQ_START_TOKEN;
2730
efa90a98
HD
2731 for (type = 0; type < nr_swapfiles; type++) {
2732 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2733 si = swap_info[type];
2734 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2735 continue;
881e4aab 2736 if (!--l)
efa90a98 2737 return si;
1da177e4
LT
2738 }
2739
2740 return NULL;
2741}
2742
2743static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2744{
efa90a98
HD
2745 struct swap_info_struct *si = v;
2746 int type;
1da177e4 2747
881e4aab 2748 if (v == SEQ_START_TOKEN)
efa90a98
HD
2749 type = 0;
2750 else
2751 type = si->type + 1;
881e4aab 2752
efa90a98
HD
2753 for (; type < nr_swapfiles; type++) {
2754 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2755 si = swap_info[type];
2756 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
2757 continue;
2758 ++*pos;
efa90a98 2759 return si;
1da177e4
LT
2760 }
2761
2762 return NULL;
2763}
2764
2765static void swap_stop(struct seq_file *swap, void *v)
2766{
fc0abb14 2767 mutex_unlock(&swapon_mutex);
1da177e4
LT
2768}
2769
2770static int swap_show(struct seq_file *swap, void *v)
2771{
efa90a98 2772 struct swap_info_struct *si = v;
1da177e4
LT
2773 struct file *file;
2774 int len;
2775
efa90a98 2776 if (si == SEQ_START_TOKEN) {
881e4aab
SS
2777 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2778 return 0;
2779 }
1da177e4 2780
efa90a98 2781 file = si->swap_file;
2726d566 2782 len = seq_file_path(swap, file, " \t\n\\");
6eb396dc 2783 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9 2784 len < 40 ? 40 - len : 1, " ",
496ad9aa 2785 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2786 "partition" : "file\t",
efa90a98
HD
2787 si->pages << (PAGE_SHIFT - 10),
2788 si->inuse_pages << (PAGE_SHIFT - 10),
2789 si->prio);
1da177e4
LT
2790 return 0;
2791}
2792
15ad7cdc 2793static const struct seq_operations swaps_op = {
1da177e4
LT
2794 .start = swap_start,
2795 .next = swap_next,
2796 .stop = swap_stop,
2797 .show = swap_show
2798};
2799
2800static int swaps_open(struct inode *inode, struct file *file)
2801{
f1514638 2802 struct seq_file *seq;
66d7dd51
KS
2803 int ret;
2804
66d7dd51 2805 ret = seq_open(file, &swaps_op);
f1514638 2806 if (ret)
66d7dd51 2807 return ret;
66d7dd51 2808
f1514638
KS
2809 seq = file->private_data;
2810 seq->poll_event = atomic_read(&proc_poll_event);
2811 return 0;
1da177e4
LT
2812}
2813
15ad7cdc 2814static const struct file_operations proc_swaps_operations = {
1da177e4
LT
2815 .open = swaps_open,
2816 .read = seq_read,
2817 .llseek = seq_lseek,
2818 .release = seq_release,
66d7dd51 2819 .poll = swaps_poll,
1da177e4
LT
2820};
2821
2822static int __init procswaps_init(void)
2823{
3d71f86f 2824 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
2825 return 0;
2826}
2827__initcall(procswaps_init);
2828#endif /* CONFIG_PROC_FS */
2829
1796316a
JB
2830#ifdef MAX_SWAPFILES_CHECK
2831static int __init max_swapfiles_check(void)
2832{
2833 MAX_SWAPFILES_CHECK();
2834 return 0;
2835}
2836late_initcall(max_swapfiles_check);
2837#endif
2838
53cbb243 2839static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2840{
73c34b6a 2841 struct swap_info_struct *p;
1da177e4 2842 unsigned int type;
a2468cc9 2843 int i;
efa90a98
HD
2844
2845 p = kzalloc(sizeof(*p), GFP_KERNEL);
2846 if (!p)
53cbb243 2847 return ERR_PTR(-ENOMEM);
efa90a98 2848
5d337b91 2849 spin_lock(&swap_lock);
efa90a98
HD
2850 for (type = 0; type < nr_swapfiles; type++) {
2851 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2852 break;
efa90a98 2853 }
0697212a 2854 if (type >= MAX_SWAPFILES) {
5d337b91 2855 spin_unlock(&swap_lock);
efa90a98 2856 kfree(p);
730c0581 2857 return ERR_PTR(-EPERM);
1da177e4 2858 }
efa90a98
HD
2859 if (type >= nr_swapfiles) {
2860 p->type = type;
2861 swap_info[type] = p;
2862 /*
2863 * Write swap_info[type] before nr_swapfiles, in case a
2864 * racing procfs swap_start() or swap_next() is reading them.
2865 * (We never shrink nr_swapfiles, we never free this entry.)
2866 */
2867 smp_wmb();
2868 nr_swapfiles++;
2869 } else {
2870 kfree(p);
2871 p = swap_info[type];
2872 /*
2873 * Do not memset this entry: a racing procfs swap_next()
2874 * would be relying on p->type to remain valid.
2875 */
2876 }
9625a5f2 2877 INIT_LIST_HEAD(&p->first_swap_extent.list);
18ab4d4c 2878 plist_node_init(&p->list, 0);
a2468cc9
AL
2879 for_each_node(i)
2880 plist_node_init(&p->avail_lists[i], 0);
1da177e4 2881 p->flags = SWP_USED;
5d337b91 2882 spin_unlock(&swap_lock);
ec8acf20 2883 spin_lock_init(&p->lock);
2628bd6f 2884 spin_lock_init(&p->cont_lock);
efa90a98 2885
53cbb243 2886 return p;
53cbb243
CEB
2887}
2888
4d0e1e10
CEB
2889static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2890{
2891 int error;
2892
2893 if (S_ISBLK(inode->i_mode)) {
2894 p->bdev = bdgrab(I_BDEV(inode));
2895 error = blkdev_get(p->bdev,
6f179af8 2896 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
4d0e1e10
CEB
2897 if (error < 0) {
2898 p->bdev = NULL;
6f179af8 2899 return error;
4d0e1e10
CEB
2900 }
2901 p->old_block_size = block_size(p->bdev);
2902 error = set_blocksize(p->bdev, PAGE_SIZE);
2903 if (error < 0)
87ade72a 2904 return error;
4d0e1e10
CEB
2905 p->flags |= SWP_BLKDEV;
2906 } else if (S_ISREG(inode->i_mode)) {
2907 p->bdev = inode->i_sb->s_bdev;
5955102c 2908 inode_lock(inode);
87ade72a
CEB
2909 if (IS_SWAPFILE(inode))
2910 return -EBUSY;
2911 } else
2912 return -EINVAL;
4d0e1e10
CEB
2913
2914 return 0;
4d0e1e10
CEB
2915}
2916
377eeaa8
AK
2917
2918/*
2919 * Find out how many pages are allowed for a single swap device. There
2920 * are two limiting factors:
2921 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2922 * 2) the number of bits in the swap pte, as defined by the different
2923 * architectures.
2924 *
2925 * In order to find the largest possible bit mask, a swap entry with
2926 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2927 * decoded to a swp_entry_t again, and finally the swap offset is
2928 * extracted.
2929 *
2930 * This will mask all the bits from the initial ~0UL mask that can't
2931 * be encoded in either the swp_entry_t or the architecture definition
2932 * of a swap pte.
2933 */
2934unsigned long generic_max_swapfile_size(void)
2935{
2936 return swp_offset(pte_to_swp_entry(
2937 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2938}
2939
2940/* Can be overridden by an architecture for additional checks. */
2941__weak unsigned long max_swapfile_size(void)
2942{
2943 return generic_max_swapfile_size();
2944}
2945
ca8bd38b
CEB
2946static unsigned long read_swap_header(struct swap_info_struct *p,
2947 union swap_header *swap_header,
2948 struct inode *inode)
2949{
2950 int i;
2951 unsigned long maxpages;
2952 unsigned long swapfilepages;
d6bbbd29 2953 unsigned long last_page;
ca8bd38b
CEB
2954
2955 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2956 pr_err("Unable to find swap-space signature\n");
38719025 2957 return 0;
ca8bd38b
CEB
2958 }
2959
2960 /* swap partition endianess hack... */
2961 if (swab32(swap_header->info.version) == 1) {
2962 swab32s(&swap_header->info.version);
2963 swab32s(&swap_header->info.last_page);
2964 swab32s(&swap_header->info.nr_badpages);
dd111be6
JH
2965 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2966 return 0;
ca8bd38b
CEB
2967 for (i = 0; i < swap_header->info.nr_badpages; i++)
2968 swab32s(&swap_header->info.badpages[i]);
2969 }
2970 /* Check the swap header's sub-version */
2971 if (swap_header->info.version != 1) {
465c47fd
AM
2972 pr_warn("Unable to handle swap header version %d\n",
2973 swap_header->info.version);
38719025 2974 return 0;
ca8bd38b
CEB
2975 }
2976
2977 p->lowest_bit = 1;
2978 p->cluster_next = 1;
2979 p->cluster_nr = 0;
2980
377eeaa8 2981 maxpages = max_swapfile_size();
d6bbbd29 2982 last_page = swap_header->info.last_page;
a06ad633
TA
2983 if (!last_page) {
2984 pr_warn("Empty swap-file\n");
2985 return 0;
2986 }
d6bbbd29 2987 if (last_page > maxpages) {
465c47fd 2988 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2989 maxpages << (PAGE_SHIFT - 10),
2990 last_page << (PAGE_SHIFT - 10));
2991 }
2992 if (maxpages > last_page) {
2993 maxpages = last_page + 1;
ca8bd38b
CEB
2994 /* p->max is an unsigned int: don't overflow it */
2995 if ((unsigned int)maxpages == 0)
2996 maxpages = UINT_MAX;
2997 }
2998 p->highest_bit = maxpages - 1;
2999
3000 if (!maxpages)
38719025 3001 return 0;
ca8bd38b
CEB
3002 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3003 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 3004 pr_warn("Swap area shorter than signature indicates\n");
38719025 3005 return 0;
ca8bd38b
CEB
3006 }
3007 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 3008 return 0;
ca8bd38b 3009 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 3010 return 0;
ca8bd38b
CEB
3011
3012 return maxpages;
ca8bd38b
CEB
3013}
3014
4b3ef9da 3015#define SWAP_CLUSTER_INFO_COLS \
235b6217 3016 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
4b3ef9da
HY
3017#define SWAP_CLUSTER_SPACE_COLS \
3018 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3019#define SWAP_CLUSTER_COLS \
3020 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
235b6217 3021
915d4d7b
CEB
3022static int setup_swap_map_and_extents(struct swap_info_struct *p,
3023 union swap_header *swap_header,
3024 unsigned char *swap_map,
2a8f9449 3025 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
3026 unsigned long maxpages,
3027 sector_t *span)
3028{
235b6217 3029 unsigned int j, k;
915d4d7b
CEB
3030 unsigned int nr_good_pages;
3031 int nr_extents;
2a8f9449 3032 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
235b6217
HY
3033 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3034 unsigned long i, idx;
915d4d7b
CEB
3035
3036 nr_good_pages = maxpages - 1; /* omit header page */
3037
6b534915
HY
3038 cluster_list_init(&p->free_clusters);
3039 cluster_list_init(&p->discard_clusters);
2a8f9449 3040
915d4d7b
CEB
3041 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3042 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
3043 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3044 return -EINVAL;
915d4d7b
CEB
3045 if (page_nr < maxpages) {
3046 swap_map[page_nr] = SWAP_MAP_BAD;
3047 nr_good_pages--;
2a8f9449
SL
3048 /*
3049 * Haven't marked the cluster free yet, no list
3050 * operation involved
3051 */
3052 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
3053 }
3054 }
3055
2a8f9449
SL
3056 /* Haven't marked the cluster free yet, no list operation involved */
3057 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3058 inc_cluster_info_page(p, cluster_info, i);
3059
915d4d7b
CEB
3060 if (nr_good_pages) {
3061 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
3062 /*
3063 * Not mark the cluster free yet, no list
3064 * operation involved
3065 */
3066 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
3067 p->max = maxpages;
3068 p->pages = nr_good_pages;
3069 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
3070 if (nr_extents < 0)
3071 return nr_extents;
915d4d7b
CEB
3072 nr_good_pages = p->pages;
3073 }
3074 if (!nr_good_pages) {
465c47fd 3075 pr_warn("Empty swap-file\n");
bdb8e3f6 3076 return -EINVAL;
915d4d7b
CEB
3077 }
3078
2a8f9449
SL
3079 if (!cluster_info)
3080 return nr_extents;
3081
235b6217 3082
4b3ef9da
HY
3083 /*
3084 * Reduce false cache line sharing between cluster_info and
3085 * sharing same address space.
3086 */
235b6217
HY
3087 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3088 j = (k + col) % SWAP_CLUSTER_COLS;
3089 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3090 idx = i * SWAP_CLUSTER_COLS + j;
3091 if (idx >= nr_clusters)
3092 continue;
3093 if (cluster_count(&cluster_info[idx]))
3094 continue;
2a8f9449 3095 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
6b534915
HY
3096 cluster_list_add_tail(&p->free_clusters, cluster_info,
3097 idx);
2a8f9449 3098 }
2a8f9449 3099 }
915d4d7b 3100 return nr_extents;
915d4d7b
CEB
3101}
3102
dcf6b7dd
RA
3103/*
3104 * Helper to sys_swapon determining if a given swap
3105 * backing device queue supports DISCARD operations.
3106 */
3107static bool swap_discardable(struct swap_info_struct *si)
3108{
3109 struct request_queue *q = bdev_get_queue(si->bdev);
3110
3111 if (!q || !blk_queue_discard(q))
3112 return false;
3113
3114 return true;
3115}
3116
53cbb243
CEB
3117SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3118{
3119 struct swap_info_struct *p;
91a27b2a 3120 struct filename *name;
53cbb243
CEB
3121 struct file *swap_file = NULL;
3122 struct address_space *mapping;
40531542 3123 int prio;
53cbb243
CEB
3124 int error;
3125 union swap_header *swap_header;
915d4d7b 3126 int nr_extents;
53cbb243
CEB
3127 sector_t span;
3128 unsigned long maxpages;
53cbb243 3129 unsigned char *swap_map = NULL;
2a8f9449 3130 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 3131 unsigned long *frontswap_map = NULL;
53cbb243
CEB
3132 struct page *page = NULL;
3133 struct inode *inode = NULL;
7cbf3192 3134 bool inced_nr_rotate_swap = false;
53cbb243 3135
d15cab97
HD
3136 if (swap_flags & ~SWAP_FLAGS_VALID)
3137 return -EINVAL;
3138
53cbb243
CEB
3139 if (!capable(CAP_SYS_ADMIN))
3140 return -EPERM;
3141
a2468cc9
AL
3142 if (!swap_avail_heads)
3143 return -ENOMEM;
3144
53cbb243 3145 p = alloc_swap_info();
2542e513
CEB
3146 if (IS_ERR(p))
3147 return PTR_ERR(p);
53cbb243 3148
815c2c54
SL
3149 INIT_WORK(&p->discard_work, swap_discard_work);
3150
1da177e4 3151 name = getname(specialfile);
1da177e4 3152 if (IS_ERR(name)) {
7de7fb6b 3153 error = PTR_ERR(name);
1da177e4 3154 name = NULL;
bd69010b 3155 goto bad_swap;
1da177e4 3156 }
669abf4e 3157 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 3158 if (IS_ERR(swap_file)) {
7de7fb6b 3159 error = PTR_ERR(swap_file);
1da177e4 3160 swap_file = NULL;
bd69010b 3161 goto bad_swap;
1da177e4
LT
3162 }
3163
3164 p->swap_file = swap_file;
3165 mapping = swap_file->f_mapping;
2130781e 3166 inode = mapping->host;
6f179af8 3167
5955102c 3168 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
4d0e1e10
CEB
3169 error = claim_swapfile(p, inode);
3170 if (unlikely(error))
1da177e4 3171 goto bad_swap;
1da177e4 3172
1da177e4
LT
3173 /*
3174 * Read the swap header.
3175 */
3176 if (!mapping->a_ops->readpage) {
3177 error = -EINVAL;
3178 goto bad_swap;
3179 }
090d2b18 3180 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
3181 if (IS_ERR(page)) {
3182 error = PTR_ERR(page);
3183 goto bad_swap;
3184 }
81e33971 3185 swap_header = kmap(page);
1da177e4 3186
ca8bd38b
CEB
3187 maxpages = read_swap_header(p, swap_header, inode);
3188 if (unlikely(!maxpages)) {
1da177e4
LT
3189 error = -EINVAL;
3190 goto bad_swap;
3191 }
886bb7e9 3192
81e33971 3193 /* OK, set up the swap map and apply the bad block list */
803d0c83 3194 swap_map = vzalloc(maxpages);
81e33971
HD
3195 if (!swap_map) {
3196 error = -ENOMEM;
3197 goto bad_swap;
3198 }
f0571429
MK
3199
3200 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3201 p->flags |= SWP_STABLE_WRITES;
3202
539a6fea
MK
3203 if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3204 p->flags |= SWP_SYNCHRONOUS_IO;
3205
2a8f9449 3206 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
6f179af8 3207 int cpu;
235b6217 3208 unsigned long ci, nr_cluster;
6f179af8 3209
2a8f9449
SL
3210 p->flags |= SWP_SOLIDSTATE;
3211 /*
3212 * select a random position to start with to help wear leveling
3213 * SSD
3214 */
3215 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
235b6217 3216 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2a8f9449 3217
778e1cdd 3218 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
54f180d3 3219 GFP_KERNEL);
2a8f9449
SL
3220 if (!cluster_info) {
3221 error = -ENOMEM;
3222 goto bad_swap;
3223 }
235b6217
HY
3224
3225 for (ci = 0; ci < nr_cluster; ci++)
3226 spin_lock_init(&((cluster_info + ci)->lock));
3227
ebc2a1a6
SL
3228 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3229 if (!p->percpu_cluster) {
3230 error = -ENOMEM;
3231 goto bad_swap;
3232 }
6f179af8 3233 for_each_possible_cpu(cpu) {
ebc2a1a6 3234 struct percpu_cluster *cluster;
6f179af8 3235 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
ebc2a1a6
SL
3236 cluster_set_null(&cluster->index);
3237 }
7cbf3192 3238 } else {
81a0298b 3239 atomic_inc(&nr_rotate_swap);
7cbf3192
OS
3240 inced_nr_rotate_swap = true;
3241 }
1da177e4 3242
1421ef3c
CEB
3243 error = swap_cgroup_swapon(p->type, maxpages);
3244 if (error)
3245 goto bad_swap;
3246
915d4d7b 3247 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 3248 cluster_info, maxpages, &span);
915d4d7b
CEB
3249 if (unlikely(nr_extents < 0)) {
3250 error = nr_extents;
1da177e4
LT
3251 goto bad_swap;
3252 }
38b5faf4 3253 /* frontswap enabled? set up bit-per-page map for frontswap */
8ea1d2a1 3254 if (IS_ENABLED(CONFIG_FRONTSWAP))
778e1cdd
KC
3255 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3256 sizeof(long),
54f180d3 3257 GFP_KERNEL);
1da177e4 3258
2a8f9449
SL
3259 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3260 /*
3261 * When discard is enabled for swap with no particular
3262 * policy flagged, we set all swap discard flags here in
3263 * order to sustain backward compatibility with older
3264 * swapon(8) releases.
3265 */
3266 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3267 SWP_PAGE_DISCARD);
dcf6b7dd 3268
2a8f9449
SL
3269 /*
3270 * By flagging sys_swapon, a sysadmin can tell us to
3271 * either do single-time area discards only, or to just
3272 * perform discards for released swap page-clusters.
3273 * Now it's time to adjust the p->flags accordingly.
3274 */
3275 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3276 p->flags &= ~SWP_PAGE_DISCARD;
3277 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3278 p->flags &= ~SWP_AREA_DISCARD;
3279
3280 /* issue a swapon-time discard if it's still required */
3281 if (p->flags & SWP_AREA_DISCARD) {
3282 int err = discard_swap(p);
3283 if (unlikely(err))
3284 pr_err("swapon: discard_swap(%p): %d\n",
3285 p, err);
dcf6b7dd 3286 }
20137a49 3287 }
6a6ba831 3288
4b3ef9da
HY
3289 error = init_swap_address_space(p->type, maxpages);
3290 if (error)
3291 goto bad_swap;
3292
fc0abb14 3293 mutex_lock(&swapon_mutex);
40531542 3294 prio = -1;
78ecba08 3295 if (swap_flags & SWAP_FLAG_PREFER)
40531542 3296 prio =
78ecba08 3297 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 3298 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 3299
756a025f 3300 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 3301 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
3302 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3303 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 3304 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
3305 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3306 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 3307 (frontswap_map) ? "FS" : "");
c69dbfb8 3308
fc0abb14 3309 mutex_unlock(&swapon_mutex);
66d7dd51
KS
3310 atomic_inc(&proc_poll_event);
3311 wake_up_interruptible(&proc_poll_wait);
3312
9b01c350
CEB
3313 if (S_ISREG(inode->i_mode))
3314 inode->i_flags |= S_SWAPFILE;
1da177e4
LT
3315 error = 0;
3316 goto out;
3317bad_swap:
ebc2a1a6
SL
3318 free_percpu(p->percpu_cluster);
3319 p->percpu_cluster = NULL;
bd69010b 3320 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
3321 set_blocksize(p->bdev, p->old_block_size);
3322 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 3323 }
4cd3bb10 3324 destroy_swap_extents(p);
e8e6c2ec 3325 swap_cgroup_swapoff(p->type);
5d337b91 3326 spin_lock(&swap_lock);
1da177e4 3327 p->swap_file = NULL;
1da177e4 3328 p->flags = 0;
5d337b91 3329 spin_unlock(&swap_lock);
1da177e4 3330 vfree(swap_map);
8606a1a9 3331 kvfree(cluster_info);
b6b1fd2a 3332 kvfree(frontswap_map);
7cbf3192
OS
3333 if (inced_nr_rotate_swap)
3334 atomic_dec(&nr_rotate_swap);
52c50567 3335 if (swap_file) {
2130781e 3336 if (inode && S_ISREG(inode->i_mode)) {
5955102c 3337 inode_unlock(inode);
2130781e
CEB
3338 inode = NULL;
3339 }
1da177e4 3340 filp_close(swap_file, NULL);
52c50567 3341 }
1da177e4
LT
3342out:
3343 if (page && !IS_ERR(page)) {
3344 kunmap(page);
09cbfeaf 3345 put_page(page);
1da177e4
LT
3346 }
3347 if (name)
3348 putname(name);
9b01c350 3349 if (inode && S_ISREG(inode->i_mode))
5955102c 3350 inode_unlock(inode);
039939a6
TC
3351 if (!error)
3352 enable_swap_slots_cache();
1da177e4
LT
3353 return error;
3354}
3355
3356void si_swapinfo(struct sysinfo *val)
3357{
efa90a98 3358 unsigned int type;
1da177e4
LT
3359 unsigned long nr_to_be_unused = 0;
3360
5d337b91 3361 spin_lock(&swap_lock);
efa90a98
HD
3362 for (type = 0; type < nr_swapfiles; type++) {
3363 struct swap_info_struct *si = swap_info[type];
3364
3365 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3366 nr_to_be_unused += si->inuse_pages;
1da177e4 3367 }
ec8acf20 3368 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 3369 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 3370 spin_unlock(&swap_lock);
1da177e4
LT
3371}
3372
3373/*
3374 * Verify that a swap entry is valid and increment its swap map count.
3375 *
355cfa73
KH
3376 * Returns error code in following case.
3377 * - success -> 0
3378 * - swp_entry is invalid -> EINVAL
3379 * - swp_entry is migration entry -> EINVAL
3380 * - swap-cache reference is requested but there is already one. -> EEXIST
3381 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 3382 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 3383 */
8d69aaee 3384static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 3385{
73c34b6a 3386 struct swap_info_struct *p;
235b6217 3387 struct swap_cluster_info *ci;
1da177e4 3388 unsigned long offset, type;
8d69aaee
HD
3389 unsigned char count;
3390 unsigned char has_cache;
253d553b 3391 int err = -EINVAL;
1da177e4 3392
a7420aa5 3393 if (non_swap_entry(entry))
253d553b 3394 goto out;
0697212a 3395
1da177e4
LT
3396 type = swp_type(entry);
3397 if (type >= nr_swapfiles)
3398 goto bad_file;
efa90a98 3399 p = swap_info[type];
1da177e4 3400 offset = swp_offset(entry);
355cfa73 3401 if (unlikely(offset >= p->max))
235b6217
HY
3402 goto out;
3403
3404 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 3405
253d553b 3406 count = p->swap_map[offset];
edfe23da
SL
3407
3408 /*
3409 * swapin_readahead() doesn't check if a swap entry is valid, so the
3410 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3411 */
3412 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3413 err = -ENOENT;
3414 goto unlock_out;
3415 }
3416
253d553b
HD
3417 has_cache = count & SWAP_HAS_CACHE;
3418 count &= ~SWAP_HAS_CACHE;
3419 err = 0;
355cfa73 3420
253d553b 3421 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
3422
3423 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
3424 if (!has_cache && count)
3425 has_cache = SWAP_HAS_CACHE;
3426 else if (has_cache) /* someone else added cache */
3427 err = -EEXIST;
3428 else /* no users remaining */
3429 err = -ENOENT;
355cfa73
KH
3430
3431 } else if (count || has_cache) {
253d553b 3432
570a335b
HD
3433 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3434 count += usage;
3435 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 3436 err = -EINVAL;
570a335b
HD
3437 else if (swap_count_continued(p, offset, count))
3438 count = COUNT_CONTINUED;
3439 else
3440 err = -ENOMEM;
355cfa73 3441 } else
253d553b
HD
3442 err = -ENOENT; /* unused swap entry */
3443
3444 p->swap_map[offset] = count | has_cache;
3445
355cfa73 3446unlock_out:
235b6217 3447 unlock_cluster_or_swap_info(p, ci);
1da177e4 3448out:
253d553b 3449 return err;
1da177e4
LT
3450
3451bad_file:
465c47fd 3452 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
3453 goto out;
3454}
253d553b 3455
aaa46865
HD
3456/*
3457 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3458 * (in which case its reference count is never incremented).
3459 */
3460void swap_shmem_alloc(swp_entry_t entry)
3461{
3462 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3463}
3464
355cfa73 3465/*
08259d58
HD
3466 * Increase reference count of swap entry by 1.
3467 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3468 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3469 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3470 * might occur if a page table entry has got corrupted.
355cfa73 3471 */
570a335b 3472int swap_duplicate(swp_entry_t entry)
355cfa73 3473{
570a335b
HD
3474 int err = 0;
3475
3476 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3477 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3478 return err;
355cfa73 3479}
1da177e4 3480
cb4b86ba 3481/*
355cfa73
KH
3482 * @entry: swap entry for which we allocate swap cache.
3483 *
73c34b6a 3484 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
3485 * This can return error codes. Returns 0 at success.
3486 * -EBUSY means there is a swap cache.
3487 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
3488 */
3489int swapcache_prepare(swp_entry_t entry)
3490{
253d553b 3491 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
3492}
3493
0bcac06f
MK
3494struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3495{
3496 return swap_info[swp_type(entry)];
3497}
3498
f981c595
MG
3499struct swap_info_struct *page_swap_info(struct page *page)
3500{
0bcac06f
MK
3501 swp_entry_t entry = { .val = page_private(page) };
3502 return swp_swap_info(entry);
f981c595
MG
3503}
3504
3505/*
3506 * out-of-line __page_file_ methods to avoid include hell.
3507 */
3508struct address_space *__page_file_mapping(struct page *page)
3509{
f981c595
MG
3510 return page_swap_info(page)->swap_file->f_mapping;
3511}
3512EXPORT_SYMBOL_GPL(__page_file_mapping);
3513
3514pgoff_t __page_file_index(struct page *page)
3515{
3516 swp_entry_t swap = { .val = page_private(page) };
f981c595
MG
3517 return swp_offset(swap);
3518}
3519EXPORT_SYMBOL_GPL(__page_file_index);
3520
570a335b
HD
3521/*
3522 * add_swap_count_continuation - called when a swap count is duplicated
3523 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3524 * page of the original vmalloc'ed swap_map, to hold the continuation count
3525 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3526 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3527 *
3528 * These continuation pages are seldom referenced: the common paths all work
3529 * on the original swap_map, only referring to a continuation page when the
3530 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3531 *
3532 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3533 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3534 * can be called after dropping locks.
3535 */
3536int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3537{
3538 struct swap_info_struct *si;
235b6217 3539 struct swap_cluster_info *ci;
570a335b
HD
3540 struct page *head;
3541 struct page *page;
3542 struct page *list_page;
3543 pgoff_t offset;
3544 unsigned char count;
3545
3546 /*
3547 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3548 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3549 */
3550 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3551
3552 si = swap_info_get(entry);
3553 if (!si) {
3554 /*
3555 * An acceptable race has occurred since the failing
3556 * __swap_duplicate(): the swap entry has been freed,
3557 * perhaps even the whole swap_map cleared for swapoff.
3558 */
3559 goto outer;
3560 }
3561
3562 offset = swp_offset(entry);
235b6217
HY
3563
3564 ci = lock_cluster(si, offset);
3565
570a335b
HD
3566 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3567
3568 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3569 /*
3570 * The higher the swap count, the more likely it is that tasks
3571 * will race to add swap count continuation: we need to avoid
3572 * over-provisioning.
3573 */
3574 goto out;
3575 }
3576
3577 if (!page) {
235b6217 3578 unlock_cluster(ci);
ec8acf20 3579 spin_unlock(&si->lock);
570a335b
HD
3580 return -ENOMEM;
3581 }
3582
3583 /*
3584 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
3585 * no architecture is using highmem pages for kernel page tables: so it
3586 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
3587 */
3588 head = vmalloc_to_page(si->swap_map + offset);
3589 offset &= ~PAGE_MASK;
3590
2628bd6f 3591 spin_lock(&si->cont_lock);
570a335b
HD
3592 /*
3593 * Page allocation does not initialize the page's lru field,
3594 * but it does always reset its private field.
3595 */
3596 if (!page_private(head)) {
3597 BUG_ON(count & COUNT_CONTINUED);
3598 INIT_LIST_HEAD(&head->lru);
3599 set_page_private(head, SWP_CONTINUED);
3600 si->flags |= SWP_CONTINUED;
3601 }
3602
3603 list_for_each_entry(list_page, &head->lru, lru) {
3604 unsigned char *map;
3605
3606 /*
3607 * If the previous map said no continuation, but we've found
3608 * a continuation page, free our allocation and use this one.
3609 */
3610 if (!(count & COUNT_CONTINUED))
2628bd6f 3611 goto out_unlock_cont;
570a335b 3612
9b04c5fe 3613 map = kmap_atomic(list_page) + offset;
570a335b 3614 count = *map;
9b04c5fe 3615 kunmap_atomic(map);
570a335b
HD
3616
3617 /*
3618 * If this continuation count now has some space in it,
3619 * free our allocation and use this one.
3620 */
3621 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2628bd6f 3622 goto out_unlock_cont;
570a335b
HD
3623 }
3624
3625 list_add_tail(&page->lru, &head->lru);
3626 page = NULL; /* now it's attached, don't free it */
2628bd6f
HY
3627out_unlock_cont:
3628 spin_unlock(&si->cont_lock);
570a335b 3629out:
235b6217 3630 unlock_cluster(ci);
ec8acf20 3631 spin_unlock(&si->lock);
570a335b
HD
3632outer:
3633 if (page)
3634 __free_page(page);
3635 return 0;
3636}
3637
3638/*
3639 * swap_count_continued - when the original swap_map count is incremented
3640 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3641 * into, carry if so, or else fail until a new continuation page is allocated;
3642 * when the original swap_map count is decremented from 0 with continuation,
3643 * borrow from the continuation and report whether it still holds more.
235b6217
HY
3644 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3645 * lock.
570a335b
HD
3646 */
3647static bool swap_count_continued(struct swap_info_struct *si,
3648 pgoff_t offset, unsigned char count)
3649{
3650 struct page *head;
3651 struct page *page;
3652 unsigned char *map;
2628bd6f 3653 bool ret;
570a335b
HD
3654
3655 head = vmalloc_to_page(si->swap_map + offset);
3656 if (page_private(head) != SWP_CONTINUED) {
3657 BUG_ON(count & COUNT_CONTINUED);
3658 return false; /* need to add count continuation */
3659 }
3660
2628bd6f 3661 spin_lock(&si->cont_lock);
570a335b
HD
3662 offset &= ~PAGE_MASK;
3663 page = list_entry(head->lru.next, struct page, lru);
9b04c5fe 3664 map = kmap_atomic(page) + offset;
570a335b
HD
3665
3666 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3667 goto init_map; /* jump over SWAP_CONT_MAX checks */
3668
3669 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3670 /*
3671 * Think of how you add 1 to 999
3672 */
3673 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 3674 kunmap_atomic(map);
570a335b
HD
3675 page = list_entry(page->lru.next, struct page, lru);
3676 BUG_ON(page == head);
9b04c5fe 3677 map = kmap_atomic(page) + offset;
570a335b
HD
3678 }
3679 if (*map == SWAP_CONT_MAX) {
9b04c5fe 3680 kunmap_atomic(map);
570a335b 3681 page = list_entry(page->lru.next, struct page, lru);
2628bd6f
HY
3682 if (page == head) {
3683 ret = false; /* add count continuation */
3684 goto out;
3685 }
9b04c5fe 3686 map = kmap_atomic(page) + offset;
570a335b
HD
3687init_map: *map = 0; /* we didn't zero the page */
3688 }
3689 *map += 1;
9b04c5fe 3690 kunmap_atomic(map);
570a335b
HD
3691 page = list_entry(page->lru.prev, struct page, lru);
3692 while (page != head) {
9b04c5fe 3693 map = kmap_atomic(page) + offset;
570a335b 3694 *map = COUNT_CONTINUED;
9b04c5fe 3695 kunmap_atomic(map);
570a335b
HD
3696 page = list_entry(page->lru.prev, struct page, lru);
3697 }
2628bd6f 3698 ret = true; /* incremented */
570a335b
HD
3699
3700 } else { /* decrementing */
3701 /*
3702 * Think of how you subtract 1 from 1000
3703 */
3704 BUG_ON(count != COUNT_CONTINUED);
3705 while (*map == COUNT_CONTINUED) {
9b04c5fe 3706 kunmap_atomic(map);
570a335b
HD
3707 page = list_entry(page->lru.next, struct page, lru);
3708 BUG_ON(page == head);
9b04c5fe 3709 map = kmap_atomic(page) + offset;
570a335b
HD
3710 }
3711 BUG_ON(*map == 0);
3712 *map -= 1;
3713 if (*map == 0)
3714 count = 0;
9b04c5fe 3715 kunmap_atomic(map);
570a335b
HD
3716 page = list_entry(page->lru.prev, struct page, lru);
3717 while (page != head) {
9b04c5fe 3718 map = kmap_atomic(page) + offset;
570a335b
HD
3719 *map = SWAP_CONT_MAX | count;
3720 count = COUNT_CONTINUED;
9b04c5fe 3721 kunmap_atomic(map);
570a335b
HD
3722 page = list_entry(page->lru.prev, struct page, lru);
3723 }
2628bd6f 3724 ret = count == COUNT_CONTINUED;
570a335b 3725 }
2628bd6f
HY
3726out:
3727 spin_unlock(&si->cont_lock);
3728 return ret;
570a335b
HD
3729}
3730
3731/*
3732 * free_swap_count_continuations - swapoff free all the continuation pages
3733 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3734 */
3735static void free_swap_count_continuations(struct swap_info_struct *si)
3736{
3737 pgoff_t offset;
3738
3739 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3740 struct page *head;
3741 head = vmalloc_to_page(si->swap_map + offset);
3742 if (page_private(head)) {
0d576d20
GT
3743 struct page *page, *next;
3744
3745 list_for_each_entry_safe(page, next, &head->lru, lru) {
3746 list_del(&page->lru);
570a335b
HD
3747 __free_page(page);
3748 }
3749 }
3750 }
3751}
a2468cc9 3752
2cf85583
TH
3753#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3754void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3755 gfp_t gfp_mask)
3756{
3757 struct swap_info_struct *si, *next;
3758 if (!(gfp_mask & __GFP_IO) || !memcg)
3759 return;
3760
3761 if (!blk_cgroup_congested())
3762 return;
3763
3764 /*
3765 * We've already scheduled a throttle, avoid taking the global swap
3766 * lock.
3767 */
3768 if (current->throttle_queue)
3769 return;
3770
3771 spin_lock(&swap_avail_lock);
3772 plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3773 avail_lists[node]) {
3774 if (si->bdev) {
3775 blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3776 true);
3777 break;
3778 }
3779 }
3780 spin_unlock(&swap_avail_lock);
3781}
3782#endif
3783
a2468cc9
AL
3784static int __init swapfile_init(void)
3785{
3786 int nid;
3787
3788 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3789 GFP_KERNEL);
3790 if (!swap_avail_heads) {
3791 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3792 return -ENOMEM;
3793 }
3794
3795 for_each_node(nid)
3796 plist_head_init(&swap_avail_heads[nid]);
3797
3798 return 0;
3799}
3800subsys_initcall(swapfile_init);