]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/swapfile.c
swapfile: swap allocation use discard
[mirror_ubuntu-zesty-kernel.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
17#include <linux/shm.h>
18#include <linux/blkdev.h>
19#include <linux/writeback.h>
20#include <linux/proc_fs.h>
21#include <linux/seq_file.h>
22#include <linux/init.h>
23#include <linux/module.h>
24#include <linux/rmap.h>
25#include <linux/security.h>
26#include <linux/backing-dev.h>
fc0abb14 27#include <linux/mutex.h>
c59ede7b 28#include <linux/capability.h>
1da177e4 29#include <linux/syscalls.h>
8a9f3ccd 30#include <linux/memcontrol.h>
1da177e4
LT
31
32#include <asm/pgtable.h>
33#include <asm/tlbflush.h>
34#include <linux/swapops.h>
35
7c363b8c
AB
36static DEFINE_SPINLOCK(swap_lock);
37static unsigned int nr_swapfiles;
b962716b 38long nr_swap_pages;
1da177e4
LT
39long total_swap_pages;
40static int swap_overflow;
78ecba08 41static int least_priority;
1da177e4 42
1da177e4
LT
43static const char Bad_file[] = "Bad swap file entry ";
44static const char Unused_file[] = "Unused swap file entry ";
45static const char Bad_offset[] = "Bad swap offset entry ";
46static const char Unused_offset[] = "Unused swap offset entry ";
47
7c363b8c 48static struct swap_list_t swap_list = {-1, -1};
1da177e4 49
f577eb30 50static struct swap_info_struct swap_info[MAX_SWAPFILES];
1da177e4 51
fc0abb14 52static DEFINE_MUTEX(swapon_mutex);
1da177e4
LT
53
54/*
55 * We need this because the bdev->unplug_fn can sleep and we cannot
5d337b91 56 * hold swap_lock while calling the unplug_fn. And swap_lock
fc0abb14 57 * cannot be turned into a mutex.
1da177e4
LT
58 */
59static DECLARE_RWSEM(swap_unplug_sem);
60
1da177e4
LT
61void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
62{
63 swp_entry_t entry;
64
65 down_read(&swap_unplug_sem);
4c21e2f2 66 entry.val = page_private(page);
1da177e4
LT
67 if (PageSwapCache(page)) {
68 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
69 struct backing_dev_info *bdi;
70
71 /*
72 * If the page is removed from swapcache from under us (with a
73 * racy try_to_unuse/swapoff) we need an additional reference
4c21e2f2
HD
74 * count to avoid reading garbage from page_private(page) above.
75 * If the WARN_ON triggers during a swapoff it maybe the race
1da177e4
LT
76 * condition and it's harmless. However if it triggers without
77 * swapoff it signals a problem.
78 */
79 WARN_ON(page_count(page) <= 1);
80
81 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
ba32311e 82 blk_run_backing_dev(bdi, page);
1da177e4
LT
83 }
84 up_read(&swap_unplug_sem);
85}
86
6a6ba831
HD
87/*
88 * swapon tell device that all the old swap contents can be discarded,
89 * to allow the swap device to optimize its wear-levelling.
90 */
91static int discard_swap(struct swap_info_struct *si)
92{
93 struct swap_extent *se;
94 int err = 0;
95
96 list_for_each_entry(se, &si->extent_list, list) {
97 sector_t start_block = se->start_block << (PAGE_SHIFT - 9);
98 pgoff_t nr_blocks = se->nr_pages << (PAGE_SHIFT - 9);
99
100 if (se->start_page == 0) {
101 /* Do not discard the swap header page! */
102 start_block += 1 << (PAGE_SHIFT - 9);
103 nr_blocks -= 1 << (PAGE_SHIFT - 9);
104 if (!nr_blocks)
105 continue;
106 }
107
108 err = blkdev_issue_discard(si->bdev, start_block,
109 nr_blocks, GFP_KERNEL);
110 if (err)
111 break;
112
113 cond_resched();
114 }
115 return err; /* That will often be -EOPNOTSUPP */
116}
117
7992fde7
HD
118/*
119 * swap allocation tell device that a cluster of swap can now be discarded,
120 * to allow the swap device to optimize its wear-levelling.
121 */
122static void discard_swap_cluster(struct swap_info_struct *si,
123 pgoff_t start_page, pgoff_t nr_pages)
124{
125 struct swap_extent *se = si->curr_swap_extent;
126 int found_extent = 0;
127
128 while (nr_pages) {
129 struct list_head *lh;
130
131 if (se->start_page <= start_page &&
132 start_page < se->start_page + se->nr_pages) {
133 pgoff_t offset = start_page - se->start_page;
134 sector_t start_block = se->start_block + offset;
135 pgoff_t nr_blocks = se->nr_pages - offset;
136
137 if (nr_blocks > nr_pages)
138 nr_blocks = nr_pages;
139 start_page += nr_blocks;
140 nr_pages -= nr_blocks;
141
142 if (!found_extent++)
143 si->curr_swap_extent = se;
144
145 start_block <<= PAGE_SHIFT - 9;
146 nr_blocks <<= PAGE_SHIFT - 9;
147 if (blkdev_issue_discard(si->bdev, start_block,
148 nr_blocks, GFP_NOIO))
149 break;
150 }
151
152 lh = se->list.next;
153 if (lh == &si->extent_list)
154 lh = lh->next;
155 se = list_entry(lh, struct swap_extent, list);
156 }
157}
158
159static int wait_for_discard(void *word)
160{
161 schedule();
162 return 0;
163}
164
048c27fd
HD
165#define SWAPFILE_CLUSTER 256
166#define LATENCY_LIMIT 256
167
6eb396dc 168static inline unsigned long scan_swap_map(struct swap_info_struct *si)
1da177e4 169{
ebebbbe9 170 unsigned long offset;
7992fde7 171 unsigned long last_in_cluster = 0;
048c27fd 172 int latency_ration = LATENCY_LIMIT;
7992fde7 173 int found_free_cluster = 0;
7dfad418 174
886bb7e9 175 /*
7dfad418
HD
176 * We try to cluster swap pages by allocating them sequentially
177 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
178 * way, however, we resort to first-free allocation, starting
179 * a new cluster. This prevents us from scattering swap pages
180 * all over the entire swap partition, so that we reduce
181 * overall disk seek times between swap pages. -- sct
182 * But we do now try to find an empty cluster. -Andrea
183 */
184
52b7efdb 185 si->flags += SWP_SCANNING;
ebebbbe9
HD
186 offset = si->cluster_next;
187
188 if (unlikely(!si->cluster_nr--)) {
189 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
190 si->cluster_nr = SWAPFILE_CLUSTER - 1;
191 goto checks;
192 }
7992fde7
HD
193 if (si->flags & SWP_DISCARDABLE) {
194 /*
195 * Start range check on racing allocations, in case
196 * they overlap the cluster we eventually decide on
197 * (we scan without swap_lock to allow preemption).
198 * It's hardly conceivable that cluster_nr could be
199 * wrapped during our scan, but don't depend on it.
200 */
201 if (si->lowest_alloc)
202 goto checks;
203 si->lowest_alloc = si->max;
204 si->highest_alloc = 0;
205 }
5d337b91 206 spin_unlock(&swap_lock);
7dfad418
HD
207
208 offset = si->lowest_bit;
209 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
210
211 /* Locate the first empty (unaligned) cluster */
212 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 213 if (si->swap_map[offset])
7dfad418
HD
214 last_in_cluster = offset + SWAPFILE_CLUSTER;
215 else if (offset == last_in_cluster) {
5d337b91 216 spin_lock(&swap_lock);
ebebbbe9
HD
217 offset -= SWAPFILE_CLUSTER - 1;
218 si->cluster_next = offset;
219 si->cluster_nr = SWAPFILE_CLUSTER - 1;
7992fde7 220 found_free_cluster = 1;
ebebbbe9 221 goto checks;
1da177e4 222 }
048c27fd
HD
223 if (unlikely(--latency_ration < 0)) {
224 cond_resched();
225 latency_ration = LATENCY_LIMIT;
226 }
7dfad418 227 }
ebebbbe9
HD
228
229 offset = si->lowest_bit;
5d337b91 230 spin_lock(&swap_lock);
ebebbbe9 231 si->cluster_nr = SWAPFILE_CLUSTER - 1;
7992fde7 232 si->lowest_alloc = 0;
1da177e4 233 }
7dfad418 234
ebebbbe9
HD
235checks:
236 if (!(si->flags & SWP_WRITEOK))
52b7efdb 237 goto no_page;
7dfad418
HD
238 if (!si->highest_bit)
239 goto no_page;
ebebbbe9
HD
240 if (offset > si->highest_bit)
241 offset = si->lowest_bit;
242 if (si->swap_map[offset])
243 goto scan;
244
245 if (offset == si->lowest_bit)
246 si->lowest_bit++;
247 if (offset == si->highest_bit)
248 si->highest_bit--;
249 si->inuse_pages++;
250 if (si->inuse_pages == si->pages) {
251 si->lowest_bit = si->max;
252 si->highest_bit = 0;
1da177e4 253 }
ebebbbe9
HD
254 si->swap_map[offset] = 1;
255 si->cluster_next = offset + 1;
256 si->flags -= SWP_SCANNING;
7992fde7
HD
257
258 if (si->lowest_alloc) {
259 /*
260 * Only set when SWP_DISCARDABLE, and there's a scan
261 * for a free cluster in progress or just completed.
262 */
263 if (found_free_cluster) {
264 /*
265 * To optimize wear-levelling, discard the
266 * old data of the cluster, taking care not to
267 * discard any of its pages that have already
268 * been allocated by racing tasks (offset has
269 * already stepped over any at the beginning).
270 */
271 if (offset < si->highest_alloc &&
272 si->lowest_alloc <= last_in_cluster)
273 last_in_cluster = si->lowest_alloc - 1;
274 si->flags |= SWP_DISCARDING;
275 spin_unlock(&swap_lock);
276
277 if (offset < last_in_cluster)
278 discard_swap_cluster(si, offset,
279 last_in_cluster - offset + 1);
280
281 spin_lock(&swap_lock);
282 si->lowest_alloc = 0;
283 si->flags &= ~SWP_DISCARDING;
284
285 smp_mb(); /* wake_up_bit advises this */
286 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
287
288 } else if (si->flags & SWP_DISCARDING) {
289 /*
290 * Delay using pages allocated by racing tasks
291 * until the whole discard has been issued. We
292 * could defer that delay until swap_writepage,
293 * but it's easier to keep this self-contained.
294 */
295 spin_unlock(&swap_lock);
296 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
297 wait_for_discard, TASK_UNINTERRUPTIBLE);
298 spin_lock(&swap_lock);
299 } else {
300 /*
301 * Note pages allocated by racing tasks while
302 * scan for a free cluster is in progress, so
303 * that its final discard can exclude them.
304 */
305 if (offset < si->lowest_alloc)
306 si->lowest_alloc = offset;
307 if (offset > si->highest_alloc)
308 si->highest_alloc = offset;
309 }
310 }
ebebbbe9 311 return offset;
7dfad418 312
ebebbbe9 313scan:
5d337b91 314 spin_unlock(&swap_lock);
7dfad418 315 while (++offset <= si->highest_bit) {
52b7efdb 316 if (!si->swap_map[offset]) {
5d337b91 317 spin_lock(&swap_lock);
52b7efdb
HD
318 goto checks;
319 }
048c27fd
HD
320 if (unlikely(--latency_ration < 0)) {
321 cond_resched();
322 latency_ration = LATENCY_LIMIT;
323 }
7dfad418 324 }
5d337b91 325 spin_lock(&swap_lock);
ebebbbe9 326 goto checks;
7dfad418
HD
327
328no_page:
52b7efdb 329 si->flags -= SWP_SCANNING;
1da177e4
LT
330 return 0;
331}
332
333swp_entry_t get_swap_page(void)
334{
fb4f88dc
HD
335 struct swap_info_struct *si;
336 pgoff_t offset;
337 int type, next;
338 int wrapped = 0;
1da177e4 339
5d337b91 340 spin_lock(&swap_lock);
1da177e4 341 if (nr_swap_pages <= 0)
fb4f88dc
HD
342 goto noswap;
343 nr_swap_pages--;
344
345 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
346 si = swap_info + type;
347 next = si->next;
348 if (next < 0 ||
349 (!wrapped && si->prio != swap_info[next].prio)) {
350 next = swap_list.head;
351 wrapped++;
1da177e4 352 }
fb4f88dc
HD
353
354 if (!si->highest_bit)
355 continue;
356 if (!(si->flags & SWP_WRITEOK))
357 continue;
358
359 swap_list.next = next;
fb4f88dc 360 offset = scan_swap_map(si);
5d337b91
HD
361 if (offset) {
362 spin_unlock(&swap_lock);
fb4f88dc 363 return swp_entry(type, offset);
5d337b91 364 }
fb4f88dc 365 next = swap_list.next;
1da177e4 366 }
fb4f88dc
HD
367
368 nr_swap_pages++;
369noswap:
5d337b91 370 spin_unlock(&swap_lock);
fb4f88dc 371 return (swp_entry_t) {0};
1da177e4
LT
372}
373
3a291a20
RW
374swp_entry_t get_swap_page_of_type(int type)
375{
376 struct swap_info_struct *si;
377 pgoff_t offset;
378
379 spin_lock(&swap_lock);
380 si = swap_info + type;
381 if (si->flags & SWP_WRITEOK) {
382 nr_swap_pages--;
383 offset = scan_swap_map(si);
384 if (offset) {
385 spin_unlock(&swap_lock);
386 return swp_entry(type, offset);
387 }
388 nr_swap_pages++;
389 }
390 spin_unlock(&swap_lock);
391 return (swp_entry_t) {0};
392}
393
1da177e4
LT
394static struct swap_info_struct * swap_info_get(swp_entry_t entry)
395{
396 struct swap_info_struct * p;
397 unsigned long offset, type;
398
399 if (!entry.val)
400 goto out;
401 type = swp_type(entry);
402 if (type >= nr_swapfiles)
403 goto bad_nofile;
404 p = & swap_info[type];
405 if (!(p->flags & SWP_USED))
406 goto bad_device;
407 offset = swp_offset(entry);
408 if (offset >= p->max)
409 goto bad_offset;
410 if (!p->swap_map[offset])
411 goto bad_free;
5d337b91 412 spin_lock(&swap_lock);
1da177e4
LT
413 return p;
414
415bad_free:
416 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
417 goto out;
418bad_offset:
419 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
420 goto out;
421bad_device:
422 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
423 goto out;
424bad_nofile:
425 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
426out:
427 return NULL;
886bb7e9 428}
1da177e4 429
1da177e4
LT
430static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
431{
432 int count = p->swap_map[offset];
433
434 if (count < SWAP_MAP_MAX) {
435 count--;
436 p->swap_map[offset] = count;
437 if (!count) {
438 if (offset < p->lowest_bit)
439 p->lowest_bit = offset;
440 if (offset > p->highest_bit)
441 p->highest_bit = offset;
89d09a2c
HD
442 if (p->prio > swap_info[swap_list.next].prio)
443 swap_list.next = p - swap_info;
1da177e4
LT
444 nr_swap_pages++;
445 p->inuse_pages--;
446 }
447 }
448 return count;
449}
450
451/*
452 * Caller has made sure that the swapdevice corresponding to entry
453 * is still around or has not been recycled.
454 */
455void swap_free(swp_entry_t entry)
456{
457 struct swap_info_struct * p;
458
459 p = swap_info_get(entry);
460 if (p) {
461 swap_entry_free(p, swp_offset(entry));
5d337b91 462 spin_unlock(&swap_lock);
1da177e4
LT
463 }
464}
465
466/*
c475a8ab 467 * How many references to page are currently swapped out?
1da177e4 468 */
c475a8ab 469static inline int page_swapcount(struct page *page)
1da177e4 470{
c475a8ab
HD
471 int count = 0;
472 struct swap_info_struct *p;
1da177e4
LT
473 swp_entry_t entry;
474
4c21e2f2 475 entry.val = page_private(page);
1da177e4
LT
476 p = swap_info_get(entry);
477 if (p) {
c475a8ab
HD
478 /* Subtract the 1 for the swap cache itself */
479 count = p->swap_map[swp_offset(entry)] - 1;
5d337b91 480 spin_unlock(&swap_lock);
1da177e4 481 }
c475a8ab 482 return count;
1da177e4
LT
483}
484
485/*
7b1fe597
HD
486 * We can write to an anon page without COW if there are no other references
487 * to it. And as a side-effect, free up its swap: because the old content
488 * on disk will never be read, and seeking back there to write new content
489 * later would only waste time away from clustering.
1da177e4 490 */
7b1fe597 491int reuse_swap_page(struct page *page)
1da177e4 492{
c475a8ab
HD
493 int count;
494
51726b12 495 VM_BUG_ON(!PageLocked(page));
c475a8ab 496 count = page_mapcount(page);
7b1fe597 497 if (count <= 1 && PageSwapCache(page)) {
c475a8ab 498 count += page_swapcount(page);
7b1fe597
HD
499 if (count == 1 && !PageWriteback(page)) {
500 delete_from_swap_cache(page);
501 SetPageDirty(page);
502 }
503 }
c475a8ab 504 return count == 1;
1da177e4
LT
505}
506
507/*
a2c43eed
HD
508 * If swap is getting full, or if there are no more mappings of this page,
509 * then try_to_free_swap is called to free its swap space.
1da177e4 510 */
a2c43eed 511int try_to_free_swap(struct page *page)
1da177e4 512{
51726b12 513 VM_BUG_ON(!PageLocked(page));
1da177e4
LT
514
515 if (!PageSwapCache(page))
516 return 0;
517 if (PageWriteback(page))
518 return 0;
a2c43eed 519 if (page_swapcount(page))
1da177e4
LT
520 return 0;
521
a2c43eed
HD
522 delete_from_swap_cache(page);
523 SetPageDirty(page);
524 return 1;
68a22394
RR
525}
526
1da177e4
LT
527/*
528 * Free the swap entry like above, but also try to
529 * free the page cache entry if it is the last user.
530 */
531void free_swap_and_cache(swp_entry_t entry)
532{
533 struct swap_info_struct * p;
534 struct page *page = NULL;
535
0697212a
CL
536 if (is_migration_entry(entry))
537 return;
538
1da177e4
LT
539 p = swap_info_get(entry);
540 if (p) {
93fac704
NP
541 if (swap_entry_free(p, swp_offset(entry)) == 1) {
542 page = find_get_page(&swapper_space, entry.val);
8413ac9d 543 if (page && !trylock_page(page)) {
93fac704
NP
544 page_cache_release(page);
545 page = NULL;
546 }
547 }
5d337b91 548 spin_unlock(&swap_lock);
1da177e4
LT
549 }
550 if (page) {
a2c43eed
HD
551 /*
552 * Not mapped elsewhere, or swap space full? Free it!
553 * Also recheck PageSwapCache now page is locked (above).
554 */
93fac704 555 if (PageSwapCache(page) && !PageWriteback(page) &&
a2c43eed 556 (!page_mapped(page) || vm_swap_full())) {
1da177e4
LT
557 delete_from_swap_cache(page);
558 SetPageDirty(page);
559 }
560 unlock_page(page);
561 page_cache_release(page);
562 }
563}
564
b0cb1a19 565#ifdef CONFIG_HIBERNATION
f577eb30 566/*
915bae9e 567 * Find the swap type that corresponds to given device (if any).
f577eb30 568 *
915bae9e
RW
569 * @offset - number of the PAGE_SIZE-sized block of the device, starting
570 * from 0, in which the swap header is expected to be located.
571 *
572 * This is needed for the suspend to disk (aka swsusp).
f577eb30 573 */
7bf23687 574int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 575{
915bae9e 576 struct block_device *bdev = NULL;
f577eb30
RW
577 int i;
578
915bae9e
RW
579 if (device)
580 bdev = bdget(device);
581
f577eb30
RW
582 spin_lock(&swap_lock);
583 for (i = 0; i < nr_swapfiles; i++) {
915bae9e 584 struct swap_info_struct *sis = swap_info + i;
f577eb30 585
915bae9e 586 if (!(sis->flags & SWP_WRITEOK))
f577eb30 587 continue;
b6b5bce3 588
915bae9e 589 if (!bdev) {
7bf23687
RW
590 if (bdev_p)
591 *bdev_p = sis->bdev;
592
6e1819d6
RW
593 spin_unlock(&swap_lock);
594 return i;
595 }
915bae9e
RW
596 if (bdev == sis->bdev) {
597 struct swap_extent *se;
598
599 se = list_entry(sis->extent_list.next,
600 struct swap_extent, list);
601 if (se->start_block == offset) {
7bf23687
RW
602 if (bdev_p)
603 *bdev_p = sis->bdev;
604
915bae9e
RW
605 spin_unlock(&swap_lock);
606 bdput(bdev);
607 return i;
608 }
f577eb30
RW
609 }
610 }
611 spin_unlock(&swap_lock);
915bae9e
RW
612 if (bdev)
613 bdput(bdev);
614
f577eb30
RW
615 return -ENODEV;
616}
617
618/*
619 * Return either the total number of swap pages of given type, or the number
620 * of free pages of that type (depending on @free)
621 *
622 * This is needed for software suspend
623 */
624unsigned int count_swap_pages(int type, int free)
625{
626 unsigned int n = 0;
627
628 if (type < nr_swapfiles) {
629 spin_lock(&swap_lock);
630 if (swap_info[type].flags & SWP_WRITEOK) {
631 n = swap_info[type].pages;
632 if (free)
633 n -= swap_info[type].inuse_pages;
634 }
635 spin_unlock(&swap_lock);
636 }
637 return n;
638}
639#endif
640
1da177e4 641/*
72866f6f
HD
642 * No need to decide whether this PTE shares the swap entry with others,
643 * just let do_wp_page work it out if a write is requested later - to
644 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 645 */
044d66c1 646static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
647 unsigned long addr, swp_entry_t entry, struct page *page)
648{
044d66c1
HD
649 spinlock_t *ptl;
650 pte_t *pte;
651 int ret = 1;
652
e1a1cd59 653 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
044d66c1
HD
654 ret = -ENOMEM;
655
656 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
657 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
658 if (ret > 0)
659 mem_cgroup_uncharge_page(page);
660 ret = 0;
661 goto out;
662 }
8a9f3ccd 663
4294621f 664 inc_mm_counter(vma->vm_mm, anon_rss);
1da177e4
LT
665 get_page(page);
666 set_pte_at(vma->vm_mm, addr, pte,
667 pte_mkold(mk_pte(page, vma->vm_page_prot)));
668 page_add_anon_rmap(page, vma, addr);
669 swap_free(entry);
670 /*
671 * Move the page to the active list so it is not
672 * immediately swapped out again after swapon.
673 */
674 activate_page(page);
044d66c1
HD
675out:
676 pte_unmap_unlock(pte, ptl);
677 return ret;
1da177e4
LT
678}
679
680static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
681 unsigned long addr, unsigned long end,
682 swp_entry_t entry, struct page *page)
683{
1da177e4 684 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 685 pte_t *pte;
8a9f3ccd 686 int ret = 0;
1da177e4 687
044d66c1
HD
688 /*
689 * We don't actually need pte lock while scanning for swp_pte: since
690 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
691 * page table while we're scanning; though it could get zapped, and on
692 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
693 * of unmatched parts which look like swp_pte, so unuse_pte must
694 * recheck under pte lock. Scanning without pte lock lets it be
695 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
696 */
697 pte = pte_offset_map(pmd, addr);
1da177e4
LT
698 do {
699 /*
700 * swapoff spends a _lot_ of time in this loop!
701 * Test inline before going to call unuse_pte.
702 */
703 if (unlikely(pte_same(*pte, swp_pte))) {
044d66c1
HD
704 pte_unmap(pte);
705 ret = unuse_pte(vma, pmd, addr, entry, page);
706 if (ret)
707 goto out;
708 pte = pte_offset_map(pmd, addr);
1da177e4
LT
709 }
710 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
711 pte_unmap(pte - 1);
712out:
8a9f3ccd 713 return ret;
1da177e4
LT
714}
715
716static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
717 unsigned long addr, unsigned long end,
718 swp_entry_t entry, struct page *page)
719{
720 pmd_t *pmd;
721 unsigned long next;
8a9f3ccd 722 int ret;
1da177e4
LT
723
724 pmd = pmd_offset(pud, addr);
725 do {
726 next = pmd_addr_end(addr, end);
727 if (pmd_none_or_clear_bad(pmd))
728 continue;
8a9f3ccd
BS
729 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
730 if (ret)
731 return ret;
1da177e4
LT
732 } while (pmd++, addr = next, addr != end);
733 return 0;
734}
735
736static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
737 unsigned long addr, unsigned long end,
738 swp_entry_t entry, struct page *page)
739{
740 pud_t *pud;
741 unsigned long next;
8a9f3ccd 742 int ret;
1da177e4
LT
743
744 pud = pud_offset(pgd, addr);
745 do {
746 next = pud_addr_end(addr, end);
747 if (pud_none_or_clear_bad(pud))
748 continue;
8a9f3ccd
BS
749 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
750 if (ret)
751 return ret;
1da177e4
LT
752 } while (pud++, addr = next, addr != end);
753 return 0;
754}
755
756static int unuse_vma(struct vm_area_struct *vma,
757 swp_entry_t entry, struct page *page)
758{
759 pgd_t *pgd;
760 unsigned long addr, end, next;
8a9f3ccd 761 int ret;
1da177e4
LT
762
763 if (page->mapping) {
764 addr = page_address_in_vma(page, vma);
765 if (addr == -EFAULT)
766 return 0;
767 else
768 end = addr + PAGE_SIZE;
769 } else {
770 addr = vma->vm_start;
771 end = vma->vm_end;
772 }
773
774 pgd = pgd_offset(vma->vm_mm, addr);
775 do {
776 next = pgd_addr_end(addr, end);
777 if (pgd_none_or_clear_bad(pgd))
778 continue;
8a9f3ccd
BS
779 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
780 if (ret)
781 return ret;
1da177e4
LT
782 } while (pgd++, addr = next, addr != end);
783 return 0;
784}
785
786static int unuse_mm(struct mm_struct *mm,
787 swp_entry_t entry, struct page *page)
788{
789 struct vm_area_struct *vma;
8a9f3ccd 790 int ret = 0;
1da177e4
LT
791
792 if (!down_read_trylock(&mm->mmap_sem)) {
793 /*
7d03431c
FLVC
794 * Activate page so shrink_inactive_list is unlikely to unmap
795 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 796 */
c475a8ab 797 activate_page(page);
1da177e4
LT
798 unlock_page(page);
799 down_read(&mm->mmap_sem);
800 lock_page(page);
801 }
1da177e4 802 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 803 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4
LT
804 break;
805 }
1da177e4 806 up_read(&mm->mmap_sem);
8a9f3ccd 807 return (ret < 0)? ret: 0;
1da177e4
LT
808}
809
810/*
811 * Scan swap_map from current position to next entry still in use.
812 * Recycle to start on reaching the end, returning 0 when empty.
813 */
6eb396dc
HD
814static unsigned int find_next_to_unuse(struct swap_info_struct *si,
815 unsigned int prev)
1da177e4 816{
6eb396dc
HD
817 unsigned int max = si->max;
818 unsigned int i = prev;
1da177e4
LT
819 int count;
820
821 /*
5d337b91 822 * No need for swap_lock here: we're just looking
1da177e4
LT
823 * for whether an entry is in use, not modifying it; false
824 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 825 * allocations from this area (while holding swap_lock).
1da177e4
LT
826 */
827 for (;;) {
828 if (++i >= max) {
829 if (!prev) {
830 i = 0;
831 break;
832 }
833 /*
834 * No entries in use at top of swap_map,
835 * loop back to start and recheck there.
836 */
837 max = prev + 1;
838 prev = 0;
839 i = 1;
840 }
841 count = si->swap_map[i];
842 if (count && count != SWAP_MAP_BAD)
843 break;
844 }
845 return i;
846}
847
848/*
849 * We completely avoid races by reading each swap page in advance,
850 * and then search for the process using it. All the necessary
851 * page table adjustments can then be made atomically.
852 */
853static int try_to_unuse(unsigned int type)
854{
855 struct swap_info_struct * si = &swap_info[type];
856 struct mm_struct *start_mm;
857 unsigned short *swap_map;
858 unsigned short swcount;
859 struct page *page;
860 swp_entry_t entry;
6eb396dc 861 unsigned int i = 0;
1da177e4
LT
862 int retval = 0;
863 int reset_overflow = 0;
864 int shmem;
865
866 /*
867 * When searching mms for an entry, a good strategy is to
868 * start at the first mm we freed the previous entry from
869 * (though actually we don't notice whether we or coincidence
870 * freed the entry). Initialize this start_mm with a hold.
871 *
872 * A simpler strategy would be to start at the last mm we
873 * freed the previous entry from; but that would take less
874 * advantage of mmlist ordering, which clusters forked mms
875 * together, child after parent. If we race with dup_mmap(), we
876 * prefer to resolve parent before child, lest we miss entries
877 * duplicated after we scanned child: using last mm would invert
878 * that. Though it's only a serious concern when an overflowed
879 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
880 */
881 start_mm = &init_mm;
882 atomic_inc(&init_mm.mm_users);
883
884 /*
885 * Keep on scanning until all entries have gone. Usually,
886 * one pass through swap_map is enough, but not necessarily:
887 * there are races when an instance of an entry might be missed.
888 */
889 while ((i = find_next_to_unuse(si, i)) != 0) {
890 if (signal_pending(current)) {
891 retval = -EINTR;
892 break;
893 }
894
886bb7e9 895 /*
1da177e4
LT
896 * Get a page for the entry, using the existing swap
897 * cache page if there is one. Otherwise, get a clean
886bb7e9 898 * page and read the swap into it.
1da177e4
LT
899 */
900 swap_map = &si->swap_map[i];
901 entry = swp_entry(type, i);
02098fea
HD
902 page = read_swap_cache_async(entry,
903 GFP_HIGHUSER_MOVABLE, NULL, 0);
1da177e4
LT
904 if (!page) {
905 /*
906 * Either swap_duplicate() failed because entry
907 * has been freed independently, and will not be
908 * reused since sys_swapoff() already disabled
909 * allocation from here, or alloc_page() failed.
910 */
911 if (!*swap_map)
912 continue;
913 retval = -ENOMEM;
914 break;
915 }
916
917 /*
918 * Don't hold on to start_mm if it looks like exiting.
919 */
920 if (atomic_read(&start_mm->mm_users) == 1) {
921 mmput(start_mm);
922 start_mm = &init_mm;
923 atomic_inc(&init_mm.mm_users);
924 }
925
926 /*
927 * Wait for and lock page. When do_swap_page races with
928 * try_to_unuse, do_swap_page can handle the fault much
929 * faster than try_to_unuse can locate the entry. This
930 * apparently redundant "wait_on_page_locked" lets try_to_unuse
931 * defer to do_swap_page in such a case - in some tests,
932 * do_swap_page and try_to_unuse repeatedly compete.
933 */
934 wait_on_page_locked(page);
935 wait_on_page_writeback(page);
936 lock_page(page);
937 wait_on_page_writeback(page);
938
939 /*
940 * Remove all references to entry.
941 * Whenever we reach init_mm, there's no address space
942 * to search, but use it as a reminder to search shmem.
943 */
944 shmem = 0;
945 swcount = *swap_map;
946 if (swcount > 1) {
947 if (start_mm == &init_mm)
948 shmem = shmem_unuse(entry, page);
949 else
950 retval = unuse_mm(start_mm, entry, page);
951 }
952 if (*swap_map > 1) {
953 int set_start_mm = (*swap_map >= swcount);
954 struct list_head *p = &start_mm->mmlist;
955 struct mm_struct *new_start_mm = start_mm;
956 struct mm_struct *prev_mm = start_mm;
957 struct mm_struct *mm;
958
959 atomic_inc(&new_start_mm->mm_users);
960 atomic_inc(&prev_mm->mm_users);
961 spin_lock(&mmlist_lock);
2e0e26c7 962 while (*swap_map > 1 && !retval && !shmem &&
1da177e4
LT
963 (p = p->next) != &start_mm->mmlist) {
964 mm = list_entry(p, struct mm_struct, mmlist);
70af7c5c 965 if (!atomic_inc_not_zero(&mm->mm_users))
1da177e4 966 continue;
1da177e4
LT
967 spin_unlock(&mmlist_lock);
968 mmput(prev_mm);
969 prev_mm = mm;
970
971 cond_resched();
972
973 swcount = *swap_map;
974 if (swcount <= 1)
975 ;
976 else if (mm == &init_mm) {
977 set_start_mm = 1;
978 shmem = shmem_unuse(entry, page);
979 } else
980 retval = unuse_mm(mm, entry, page);
981 if (set_start_mm && *swap_map < swcount) {
982 mmput(new_start_mm);
983 atomic_inc(&mm->mm_users);
984 new_start_mm = mm;
985 set_start_mm = 0;
986 }
987 spin_lock(&mmlist_lock);
988 }
989 spin_unlock(&mmlist_lock);
990 mmput(prev_mm);
991 mmput(start_mm);
992 start_mm = new_start_mm;
993 }
2e0e26c7
HD
994 if (shmem) {
995 /* page has already been unlocked and released */
996 if (shmem > 0)
997 continue;
998 retval = shmem;
999 break;
1000 }
1da177e4
LT
1001 if (retval) {
1002 unlock_page(page);
1003 page_cache_release(page);
1004 break;
1005 }
1006
1007 /*
1008 * How could swap count reach 0x7fff when the maximum
1009 * pid is 0x7fff, and there's no way to repeat a swap
1010 * page within an mm (except in shmem, where it's the
1011 * shared object which takes the reference count)?
1012 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
1013 *
1014 * If that's wrong, then we should worry more about
1015 * exit_mmap() and do_munmap() cases described above:
1016 * we might be resetting SWAP_MAP_MAX too early here.
1017 * We know "Undead"s can happen, they're okay, so don't
1018 * report them; but do report if we reset SWAP_MAP_MAX.
1019 */
1020 if (*swap_map == SWAP_MAP_MAX) {
5d337b91 1021 spin_lock(&swap_lock);
1da177e4 1022 *swap_map = 1;
5d337b91 1023 spin_unlock(&swap_lock);
1da177e4
LT
1024 reset_overflow = 1;
1025 }
1026
1027 /*
1028 * If a reference remains (rare), we would like to leave
1029 * the page in the swap cache; but try_to_unmap could
1030 * then re-duplicate the entry once we drop page lock,
1031 * so we might loop indefinitely; also, that page could
1032 * not be swapped out to other storage meanwhile. So:
1033 * delete from cache even if there's another reference,
1034 * after ensuring that the data has been saved to disk -
1035 * since if the reference remains (rarer), it will be
1036 * read from disk into another page. Splitting into two
1037 * pages would be incorrect if swap supported "shared
1038 * private" pages, but they are handled by tmpfs files.
1da177e4
LT
1039 */
1040 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
1041 struct writeback_control wbc = {
1042 .sync_mode = WB_SYNC_NONE,
1043 };
1044
1045 swap_writepage(page, &wbc);
1046 lock_page(page);
1047 wait_on_page_writeback(page);
1048 }
68bdc8d6
HD
1049
1050 /*
1051 * It is conceivable that a racing task removed this page from
1052 * swap cache just before we acquired the page lock at the top,
1053 * or while we dropped it in unuse_mm(). The page might even
1054 * be back in swap cache on another swap area: that we must not
1055 * delete, since it may not have been written out to swap yet.
1056 */
1057 if (PageSwapCache(page) &&
1058 likely(page_private(page) == entry.val))
2e0e26c7 1059 delete_from_swap_cache(page);
1da177e4
LT
1060
1061 /*
1062 * So we could skip searching mms once swap count went
1063 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 1064 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
1065 */
1066 SetPageDirty(page);
1067 unlock_page(page);
1068 page_cache_release(page);
1069
1070 /*
1071 * Make sure that we aren't completely killing
1072 * interactive performance.
1073 */
1074 cond_resched();
1075 }
1076
1077 mmput(start_mm);
1078 if (reset_overflow) {
1079 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
1080 swap_overflow = 0;
1081 }
1082 return retval;
1083}
1084
1085/*
5d337b91
HD
1086 * After a successful try_to_unuse, if no swap is now in use, we know
1087 * we can empty the mmlist. swap_lock must be held on entry and exit.
1088 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
1089 * added to the mmlist just after page_duplicate - before would be racy.
1090 */
1091static void drain_mmlist(void)
1092{
1093 struct list_head *p, *next;
1094 unsigned int i;
1095
1096 for (i = 0; i < nr_swapfiles; i++)
1097 if (swap_info[i].inuse_pages)
1098 return;
1099 spin_lock(&mmlist_lock);
1100 list_for_each_safe(p, next, &init_mm.mmlist)
1101 list_del_init(p);
1102 spin_unlock(&mmlist_lock);
1103}
1104
1105/*
1106 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1107 * corresponds to page offset `offset'.
1108 */
1109sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
1110{
1111 struct swap_extent *se = sis->curr_swap_extent;
1112 struct swap_extent *start_se = se;
1113
1114 for ( ; ; ) {
1115 struct list_head *lh;
1116
1117 if (se->start_page <= offset &&
1118 offset < (se->start_page + se->nr_pages)) {
1119 return se->start_block + (offset - se->start_page);
1120 }
11d31886 1121 lh = se->list.next;
1da177e4 1122 if (lh == &sis->extent_list)
11d31886 1123 lh = lh->next;
1da177e4
LT
1124 se = list_entry(lh, struct swap_extent, list);
1125 sis->curr_swap_extent = se;
1126 BUG_ON(se == start_se); /* It *must* be present */
1127 }
1128}
1129
b0cb1a19 1130#ifdef CONFIG_HIBERNATION
3aef83e0
RW
1131/*
1132 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1133 * corresponding to given index in swap_info (swap type).
1134 */
1135sector_t swapdev_block(int swap_type, pgoff_t offset)
1136{
1137 struct swap_info_struct *sis;
1138
1139 if (swap_type >= nr_swapfiles)
1140 return 0;
1141
1142 sis = swap_info + swap_type;
1143 return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
1144}
b0cb1a19 1145#endif /* CONFIG_HIBERNATION */
3aef83e0 1146
1da177e4
LT
1147/*
1148 * Free all of a swapdev's extent information
1149 */
1150static void destroy_swap_extents(struct swap_info_struct *sis)
1151{
1152 while (!list_empty(&sis->extent_list)) {
1153 struct swap_extent *se;
1154
1155 se = list_entry(sis->extent_list.next,
1156 struct swap_extent, list);
1157 list_del(&se->list);
1158 kfree(se);
1159 }
1da177e4
LT
1160}
1161
1162/*
1163 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 1164 * extent list. The extent list is kept sorted in page order.
1da177e4 1165 *
11d31886 1166 * This function rather assumes that it is called in ascending page order.
1da177e4
LT
1167 */
1168static int
1169add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1170 unsigned long nr_pages, sector_t start_block)
1171{
1172 struct swap_extent *se;
1173 struct swap_extent *new_se;
1174 struct list_head *lh;
1175
11d31886
HD
1176 lh = sis->extent_list.prev; /* The highest page extent */
1177 if (lh != &sis->extent_list) {
1da177e4 1178 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
1179 BUG_ON(se->start_page + se->nr_pages != start_page);
1180 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
1181 /* Merge it */
1182 se->nr_pages += nr_pages;
1183 return 0;
1184 }
1da177e4
LT
1185 }
1186
1187 /*
1188 * No merge. Insert a new extent, preserving ordering.
1189 */
1190 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1191 if (new_se == NULL)
1192 return -ENOMEM;
1193 new_se->start_page = start_page;
1194 new_se->nr_pages = nr_pages;
1195 new_se->start_block = start_block;
1196
11d31886 1197 list_add_tail(&new_se->list, &sis->extent_list);
53092a74 1198 return 1;
1da177e4
LT
1199}
1200
1201/*
1202 * A `swap extent' is a simple thing which maps a contiguous range of pages
1203 * onto a contiguous range of disk blocks. An ordered list of swap extents
1204 * is built at swapon time and is then used at swap_writepage/swap_readpage
1205 * time for locating where on disk a page belongs.
1206 *
1207 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1208 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1209 * swap files identically.
1210 *
1211 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1212 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1213 * swapfiles are handled *identically* after swapon time.
1214 *
1215 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1216 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1217 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1218 * requirements, they are simply tossed out - we will never use those blocks
1219 * for swapping.
1220 *
b0d9bcd4 1221 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
1222 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1223 * which will scribble on the fs.
1224 *
1225 * The amount of disk space which a single swap extent represents varies.
1226 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1227 * extents in the list. To avoid much list walking, we cache the previous
1228 * search location in `curr_swap_extent', and start new searches from there.
1229 * This is extremely effective. The average number of iterations in
1230 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1231 */
53092a74 1232static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4
LT
1233{
1234 struct inode *inode;
1235 unsigned blocks_per_page;
1236 unsigned long page_no;
1237 unsigned blkbits;
1238 sector_t probe_block;
1239 sector_t last_block;
53092a74
HD
1240 sector_t lowest_block = -1;
1241 sector_t highest_block = 0;
1242 int nr_extents = 0;
1da177e4
LT
1243 int ret;
1244
1245 inode = sis->swap_file->f_mapping->host;
1246 if (S_ISBLK(inode->i_mode)) {
1247 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 1248 *span = sis->pages;
1da177e4
LT
1249 goto done;
1250 }
1251
1252 blkbits = inode->i_blkbits;
1253 blocks_per_page = PAGE_SIZE >> blkbits;
1254
1255 /*
1256 * Map all the blocks into the extent list. This code doesn't try
1257 * to be very smart.
1258 */
1259 probe_block = 0;
1260 page_no = 0;
1261 last_block = i_size_read(inode) >> blkbits;
1262 while ((probe_block + blocks_per_page) <= last_block &&
1263 page_no < sis->max) {
1264 unsigned block_in_page;
1265 sector_t first_block;
1266
1267 first_block = bmap(inode, probe_block);
1268 if (first_block == 0)
1269 goto bad_bmap;
1270
1271 /*
1272 * It must be PAGE_SIZE aligned on-disk
1273 */
1274 if (first_block & (blocks_per_page - 1)) {
1275 probe_block++;
1276 goto reprobe;
1277 }
1278
1279 for (block_in_page = 1; block_in_page < blocks_per_page;
1280 block_in_page++) {
1281 sector_t block;
1282
1283 block = bmap(inode, probe_block + block_in_page);
1284 if (block == 0)
1285 goto bad_bmap;
1286 if (block != first_block + block_in_page) {
1287 /* Discontiguity */
1288 probe_block++;
1289 goto reprobe;
1290 }
1291 }
1292
53092a74
HD
1293 first_block >>= (PAGE_SHIFT - blkbits);
1294 if (page_no) { /* exclude the header page */
1295 if (first_block < lowest_block)
1296 lowest_block = first_block;
1297 if (first_block > highest_block)
1298 highest_block = first_block;
1299 }
1300
1da177e4
LT
1301 /*
1302 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1303 */
53092a74
HD
1304 ret = add_swap_extent(sis, page_no, 1, first_block);
1305 if (ret < 0)
1da177e4 1306 goto out;
53092a74 1307 nr_extents += ret;
1da177e4
LT
1308 page_no++;
1309 probe_block += blocks_per_page;
1310reprobe:
1311 continue;
1312 }
53092a74
HD
1313 ret = nr_extents;
1314 *span = 1 + highest_block - lowest_block;
1da177e4 1315 if (page_no == 0)
e2244ec2 1316 page_no = 1; /* force Empty message */
1da177e4 1317 sis->max = page_no;
e2244ec2 1318 sis->pages = page_no - 1;
1da177e4
LT
1319 sis->highest_bit = page_no - 1;
1320done:
1321 sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1322 struct swap_extent, list);
1323 goto out;
1324bad_bmap:
1325 printk(KERN_ERR "swapon: swapfile has holes\n");
1326 ret = -EINVAL;
1327out:
1328 return ret;
1329}
1330
1331#if 0 /* We don't need this yet */
1332#include <linux/backing-dev.h>
1333int page_queue_congested(struct page *page)
1334{
1335 struct backing_dev_info *bdi;
1336
51726b12 1337 VM_BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */
1da177e4
LT
1338
1339 if (PageSwapCache(page)) {
4c21e2f2 1340 swp_entry_t entry = { .val = page_private(page) };
1da177e4
LT
1341 struct swap_info_struct *sis;
1342
1343 sis = get_swap_info_struct(swp_type(entry));
1344 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1345 } else
1346 bdi = page->mapping->backing_dev_info;
1347 return bdi_write_congested(bdi);
1348}
1349#endif
1350
1351asmlinkage long sys_swapoff(const char __user * specialfile)
1352{
1353 struct swap_info_struct * p = NULL;
1354 unsigned short *swap_map;
1355 struct file *swap_file, *victim;
1356 struct address_space *mapping;
1357 struct inode *inode;
1358 char * pathname;
1359 int i, type, prev;
1360 int err;
886bb7e9 1361
1da177e4
LT
1362 if (!capable(CAP_SYS_ADMIN))
1363 return -EPERM;
1364
1365 pathname = getname(specialfile);
1366 err = PTR_ERR(pathname);
1367 if (IS_ERR(pathname))
1368 goto out;
1369
1370 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1371 putname(pathname);
1372 err = PTR_ERR(victim);
1373 if (IS_ERR(victim))
1374 goto out;
1375
1376 mapping = victim->f_mapping;
1377 prev = -1;
5d337b91 1378 spin_lock(&swap_lock);
1da177e4
LT
1379 for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1380 p = swap_info + type;
22c6f8fd 1381 if (p->flags & SWP_WRITEOK) {
1da177e4
LT
1382 if (p->swap_file->f_mapping == mapping)
1383 break;
1384 }
1385 prev = type;
1386 }
1387 if (type < 0) {
1388 err = -EINVAL;
5d337b91 1389 spin_unlock(&swap_lock);
1da177e4
LT
1390 goto out_dput;
1391 }
1392 if (!security_vm_enough_memory(p->pages))
1393 vm_unacct_memory(p->pages);
1394 else {
1395 err = -ENOMEM;
5d337b91 1396 spin_unlock(&swap_lock);
1da177e4
LT
1397 goto out_dput;
1398 }
1399 if (prev < 0) {
1400 swap_list.head = p->next;
1401 } else {
1402 swap_info[prev].next = p->next;
1403 }
1404 if (type == swap_list.next) {
1405 /* just pick something that's safe... */
1406 swap_list.next = swap_list.head;
1407 }
78ecba08
HD
1408 if (p->prio < 0) {
1409 for (i = p->next; i >= 0; i = swap_info[i].next)
1410 swap_info[i].prio = p->prio--;
1411 least_priority++;
1412 }
1da177e4
LT
1413 nr_swap_pages -= p->pages;
1414 total_swap_pages -= p->pages;
1415 p->flags &= ~SWP_WRITEOK;
5d337b91 1416 spin_unlock(&swap_lock);
fb4f88dc 1417
1da177e4
LT
1418 current->flags |= PF_SWAPOFF;
1419 err = try_to_unuse(type);
1420 current->flags &= ~PF_SWAPOFF;
1421
1da177e4
LT
1422 if (err) {
1423 /* re-insert swap space back into swap_list */
5d337b91 1424 spin_lock(&swap_lock);
78ecba08
HD
1425 if (p->prio < 0)
1426 p->prio = --least_priority;
1427 prev = -1;
1428 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1da177e4
LT
1429 if (p->prio >= swap_info[i].prio)
1430 break;
78ecba08
HD
1431 prev = i;
1432 }
1da177e4
LT
1433 p->next = i;
1434 if (prev < 0)
1435 swap_list.head = swap_list.next = p - swap_info;
1436 else
1437 swap_info[prev].next = p - swap_info;
1438 nr_swap_pages += p->pages;
1439 total_swap_pages += p->pages;
1440 p->flags |= SWP_WRITEOK;
5d337b91 1441 spin_unlock(&swap_lock);
1da177e4
LT
1442 goto out_dput;
1443 }
52b7efdb
HD
1444
1445 /* wait for any unplug function to finish */
1446 down_write(&swap_unplug_sem);
1447 up_write(&swap_unplug_sem);
1448
5d337b91 1449 destroy_swap_extents(p);
fc0abb14 1450 mutex_lock(&swapon_mutex);
5d337b91
HD
1451 spin_lock(&swap_lock);
1452 drain_mmlist();
1453
52b7efdb 1454 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
1455 p->highest_bit = 0; /* cuts scans short */
1456 while (p->flags >= SWP_SCANNING) {
5d337b91 1457 spin_unlock(&swap_lock);
13e4b57f 1458 schedule_timeout_uninterruptible(1);
5d337b91 1459 spin_lock(&swap_lock);
52b7efdb 1460 }
52b7efdb 1461
1da177e4
LT
1462 swap_file = p->swap_file;
1463 p->swap_file = NULL;
1464 p->max = 0;
1465 swap_map = p->swap_map;
1466 p->swap_map = NULL;
1467 p->flags = 0;
5d337b91 1468 spin_unlock(&swap_lock);
fc0abb14 1469 mutex_unlock(&swapon_mutex);
1da177e4
LT
1470 vfree(swap_map);
1471 inode = mapping->host;
1472 if (S_ISBLK(inode->i_mode)) {
1473 struct block_device *bdev = I_BDEV(inode);
1474 set_blocksize(bdev, p->old_block_size);
1475 bd_release(bdev);
1476 } else {
1b1dcc1b 1477 mutex_lock(&inode->i_mutex);
1da177e4 1478 inode->i_flags &= ~S_SWAPFILE;
1b1dcc1b 1479 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1480 }
1481 filp_close(swap_file, NULL);
1482 err = 0;
1483
1484out_dput:
1485 filp_close(victim, NULL);
1486out:
1487 return err;
1488}
1489
1490#ifdef CONFIG_PROC_FS
1491/* iterator */
1492static void *swap_start(struct seq_file *swap, loff_t *pos)
1493{
1494 struct swap_info_struct *ptr = swap_info;
1495 int i;
1496 loff_t l = *pos;
1497
fc0abb14 1498 mutex_lock(&swapon_mutex);
1da177e4 1499
881e4aab
SS
1500 if (!l)
1501 return SEQ_START_TOKEN;
1502
1da177e4
LT
1503 for (i = 0; i < nr_swapfiles; i++, ptr++) {
1504 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1505 continue;
881e4aab 1506 if (!--l)
1da177e4
LT
1507 return ptr;
1508 }
1509
1510 return NULL;
1511}
1512
1513static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1514{
881e4aab 1515 struct swap_info_struct *ptr;
1da177e4
LT
1516 struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1517
881e4aab
SS
1518 if (v == SEQ_START_TOKEN)
1519 ptr = swap_info;
1520 else {
1521 ptr = v;
1522 ptr++;
1523 }
1524
1525 for (; ptr < endptr; ptr++) {
1da177e4
LT
1526 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1527 continue;
1528 ++*pos;
1529 return ptr;
1530 }
1531
1532 return NULL;
1533}
1534
1535static void swap_stop(struct seq_file *swap, void *v)
1536{
fc0abb14 1537 mutex_unlock(&swapon_mutex);
1da177e4
LT
1538}
1539
1540static int swap_show(struct seq_file *swap, void *v)
1541{
1542 struct swap_info_struct *ptr = v;
1543 struct file *file;
1544 int len;
1545
881e4aab
SS
1546 if (ptr == SEQ_START_TOKEN) {
1547 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1548 return 0;
1549 }
1da177e4
LT
1550
1551 file = ptr->swap_file;
c32c2f63 1552 len = seq_path(swap, &file->f_path, " \t\n\\");
6eb396dc 1553 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9
HD
1554 len < 40 ? 40 - len : 1, " ",
1555 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1da177e4 1556 "partition" : "file\t",
886bb7e9
HD
1557 ptr->pages << (PAGE_SHIFT - 10),
1558 ptr->inuse_pages << (PAGE_SHIFT - 10),
1559 ptr->prio);
1da177e4
LT
1560 return 0;
1561}
1562
15ad7cdc 1563static const struct seq_operations swaps_op = {
1da177e4
LT
1564 .start = swap_start,
1565 .next = swap_next,
1566 .stop = swap_stop,
1567 .show = swap_show
1568};
1569
1570static int swaps_open(struct inode *inode, struct file *file)
1571{
1572 return seq_open(file, &swaps_op);
1573}
1574
15ad7cdc 1575static const struct file_operations proc_swaps_operations = {
1da177e4
LT
1576 .open = swaps_open,
1577 .read = seq_read,
1578 .llseek = seq_lseek,
1579 .release = seq_release,
1580};
1581
1582static int __init procswaps_init(void)
1583{
3d71f86f 1584 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
1585 return 0;
1586}
1587__initcall(procswaps_init);
1588#endif /* CONFIG_PROC_FS */
1589
1796316a
JB
1590#ifdef MAX_SWAPFILES_CHECK
1591static int __init max_swapfiles_check(void)
1592{
1593 MAX_SWAPFILES_CHECK();
1594 return 0;
1595}
1596late_initcall(max_swapfiles_check);
1597#endif
1598
1da177e4
LT
1599/*
1600 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1601 *
1602 * The swapon system call
1603 */
1604asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1605{
1606 struct swap_info_struct * p;
1607 char *name = NULL;
1608 struct block_device *bdev = NULL;
1609 struct file *swap_file = NULL;
1610 struct address_space *mapping;
1611 unsigned int type;
1612 int i, prev;
1613 int error;
1da177e4 1614 union swap_header *swap_header = NULL;
6eb396dc
HD
1615 unsigned int nr_good_pages = 0;
1616 int nr_extents = 0;
53092a74 1617 sector_t span;
1da177e4 1618 unsigned long maxpages = 1;
73fd8748 1619 unsigned long swapfilepages;
78ecba08 1620 unsigned short *swap_map = NULL;
1da177e4
LT
1621 struct page *page = NULL;
1622 struct inode *inode = NULL;
1623 int did_down = 0;
1624
1625 if (!capable(CAP_SYS_ADMIN))
1626 return -EPERM;
5d337b91 1627 spin_lock(&swap_lock);
1da177e4
LT
1628 p = swap_info;
1629 for (type = 0 ; type < nr_swapfiles ; type++,p++)
1630 if (!(p->flags & SWP_USED))
1631 break;
1632 error = -EPERM;
0697212a 1633 if (type >= MAX_SWAPFILES) {
5d337b91 1634 spin_unlock(&swap_lock);
1da177e4
LT
1635 goto out;
1636 }
1637 if (type >= nr_swapfiles)
1638 nr_swapfiles = type+1;
78ecba08 1639 memset(p, 0, sizeof(*p));
1da177e4
LT
1640 INIT_LIST_HEAD(&p->extent_list);
1641 p->flags = SWP_USED;
1da177e4 1642 p->next = -1;
5d337b91 1643 spin_unlock(&swap_lock);
1da177e4
LT
1644 name = getname(specialfile);
1645 error = PTR_ERR(name);
1646 if (IS_ERR(name)) {
1647 name = NULL;
1648 goto bad_swap_2;
1649 }
1650 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1651 error = PTR_ERR(swap_file);
1652 if (IS_ERR(swap_file)) {
1653 swap_file = NULL;
1654 goto bad_swap_2;
1655 }
1656
1657 p->swap_file = swap_file;
1658 mapping = swap_file->f_mapping;
1659 inode = mapping->host;
1660
1661 error = -EBUSY;
1662 for (i = 0; i < nr_swapfiles; i++) {
1663 struct swap_info_struct *q = &swap_info[i];
1664
1665 if (i == type || !q->swap_file)
1666 continue;
1667 if (mapping == q->swap_file->f_mapping)
1668 goto bad_swap;
1669 }
1670
1671 error = -EINVAL;
1672 if (S_ISBLK(inode->i_mode)) {
1673 bdev = I_BDEV(inode);
1674 error = bd_claim(bdev, sys_swapon);
1675 if (error < 0) {
1676 bdev = NULL;
f7b3a435 1677 error = -EINVAL;
1da177e4
LT
1678 goto bad_swap;
1679 }
1680 p->old_block_size = block_size(bdev);
1681 error = set_blocksize(bdev, PAGE_SIZE);
1682 if (error < 0)
1683 goto bad_swap;
1684 p->bdev = bdev;
1685 } else if (S_ISREG(inode->i_mode)) {
1686 p->bdev = inode->i_sb->s_bdev;
1b1dcc1b 1687 mutex_lock(&inode->i_mutex);
1da177e4
LT
1688 did_down = 1;
1689 if (IS_SWAPFILE(inode)) {
1690 error = -EBUSY;
1691 goto bad_swap;
1692 }
1693 } else {
1694 goto bad_swap;
1695 }
1696
73fd8748 1697 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1da177e4
LT
1698
1699 /*
1700 * Read the swap header.
1701 */
1702 if (!mapping->a_ops->readpage) {
1703 error = -EINVAL;
1704 goto bad_swap;
1705 }
090d2b18 1706 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
1707 if (IS_ERR(page)) {
1708 error = PTR_ERR(page);
1709 goto bad_swap;
1710 }
81e33971 1711 swap_header = kmap(page);
1da177e4 1712
81e33971 1713 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
e97a3111 1714 printk(KERN_ERR "Unable to find swap-space signature\n");
1da177e4
LT
1715 error = -EINVAL;
1716 goto bad_swap;
1717 }
886bb7e9 1718
81e33971
HD
1719 /* swap partition endianess hack... */
1720 if (swab32(swap_header->info.version) == 1) {
1721 swab32s(&swap_header->info.version);
1722 swab32s(&swap_header->info.last_page);
1723 swab32s(&swap_header->info.nr_badpages);
1724 for (i = 0; i < swap_header->info.nr_badpages; i++)
1725 swab32s(&swap_header->info.badpages[i]);
1726 }
1727 /* Check the swap header's sub-version */
1728 if (swap_header->info.version != 1) {
1729 printk(KERN_WARNING
1730 "Unable to handle swap header version %d\n",
1731 swap_header->info.version);
1da177e4
LT
1732 error = -EINVAL;
1733 goto bad_swap;
81e33971 1734 }
1da177e4 1735
81e33971
HD
1736 p->lowest_bit = 1;
1737 p->cluster_next = 1;
52b7efdb 1738
81e33971
HD
1739 /*
1740 * Find out how many pages are allowed for a single swap
1741 * device. There are two limiting factors: 1) the number of
1742 * bits for the swap offset in the swp_entry_t type and
1743 * 2) the number of bits in the a swap pte as defined by
1744 * the different architectures. In order to find the
1745 * largest possible bit mask a swap entry with swap type 0
1746 * and swap offset ~0UL is created, encoded to a swap pte,
1747 * decoded to a swp_entry_t again and finally the swap
1748 * offset is extracted. This will mask all the bits from
1749 * the initial ~0UL mask that can't be encoded in either
1750 * the swp_entry_t or the architecture definition of a
1751 * swap pte.
1752 */
1753 maxpages = swp_offset(pte_to_swp_entry(
1754 swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
1755 if (maxpages > swap_header->info.last_page)
1756 maxpages = swap_header->info.last_page;
1757 p->highest_bit = maxpages - 1;
1da177e4 1758
81e33971
HD
1759 error = -EINVAL;
1760 if (!maxpages)
1761 goto bad_swap;
1762 if (swapfilepages && maxpages > swapfilepages) {
1763 printk(KERN_WARNING
1764 "Swap area shorter than signature indicates\n");
1765 goto bad_swap;
1766 }
1767 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1768 goto bad_swap;
1769 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1770 goto bad_swap;
cd105df4 1771
81e33971
HD
1772 /* OK, set up the swap map and apply the bad block list */
1773 swap_map = vmalloc(maxpages * sizeof(short));
1774 if (!swap_map) {
1775 error = -ENOMEM;
1776 goto bad_swap;
1777 }
1da177e4 1778
81e33971
HD
1779 memset(swap_map, 0, maxpages * sizeof(short));
1780 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1781 int page_nr = swap_header->info.badpages[i];
1782 if (page_nr <= 0 || page_nr >= swap_header->info.last_page) {
1783 error = -EINVAL;
1da177e4 1784 goto bad_swap;
81e33971
HD
1785 }
1786 swap_map[page_nr] = SWAP_MAP_BAD;
1da177e4 1787 }
81e33971
HD
1788 nr_good_pages = swap_header->info.last_page -
1789 swap_header->info.nr_badpages -
1790 1 /* header page */;
e2244ec2 1791
e2244ec2 1792 if (nr_good_pages) {
78ecba08 1793 swap_map[0] = SWAP_MAP_BAD;
e2244ec2
HD
1794 p->max = maxpages;
1795 p->pages = nr_good_pages;
53092a74
HD
1796 nr_extents = setup_swap_extents(p, &span);
1797 if (nr_extents < 0) {
1798 error = nr_extents;
e2244ec2 1799 goto bad_swap;
53092a74 1800 }
e2244ec2
HD
1801 nr_good_pages = p->pages;
1802 }
1da177e4
LT
1803 if (!nr_good_pages) {
1804 printk(KERN_WARNING "Empty swap-file\n");
1805 error = -EINVAL;
1806 goto bad_swap;
1807 }
1da177e4 1808
6a6ba831
HD
1809 if (discard_swap(p) == 0)
1810 p->flags |= SWP_DISCARDABLE;
1811
fc0abb14 1812 mutex_lock(&swapon_mutex);
5d337b91 1813 spin_lock(&swap_lock);
78ecba08
HD
1814 if (swap_flags & SWAP_FLAG_PREFER)
1815 p->prio =
1816 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
1817 else
1818 p->prio = --least_priority;
1819 p->swap_map = swap_map;
22c6f8fd 1820 p->flags |= SWP_WRITEOK;
1da177e4
LT
1821 nr_swap_pages += nr_good_pages;
1822 total_swap_pages += nr_good_pages;
53092a74 1823
6eb396dc 1824 printk(KERN_INFO "Adding %uk swap on %s. "
6a6ba831 1825 "Priority:%d extents:%d across:%lluk%s\n",
53092a74 1826 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
6a6ba831
HD
1827 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
1828 (p->flags & SWP_DISCARDABLE) ? " D" : "");
1da177e4
LT
1829
1830 /* insert swap space into swap_list: */
1831 prev = -1;
1832 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1833 if (p->prio >= swap_info[i].prio) {
1834 break;
1835 }
1836 prev = i;
1837 }
1838 p->next = i;
1839 if (prev < 0) {
1840 swap_list.head = swap_list.next = p - swap_info;
1841 } else {
1842 swap_info[prev].next = p - swap_info;
1843 }
5d337b91 1844 spin_unlock(&swap_lock);
fc0abb14 1845 mutex_unlock(&swapon_mutex);
1da177e4
LT
1846 error = 0;
1847 goto out;
1848bad_swap:
1849 if (bdev) {
1850 set_blocksize(bdev, p->old_block_size);
1851 bd_release(bdev);
1852 }
4cd3bb10 1853 destroy_swap_extents(p);
1da177e4 1854bad_swap_2:
5d337b91 1855 spin_lock(&swap_lock);
1da177e4 1856 p->swap_file = NULL;
1da177e4 1857 p->flags = 0;
5d337b91 1858 spin_unlock(&swap_lock);
1da177e4
LT
1859 vfree(swap_map);
1860 if (swap_file)
1861 filp_close(swap_file, NULL);
1862out:
1863 if (page && !IS_ERR(page)) {
1864 kunmap(page);
1865 page_cache_release(page);
1866 }
1867 if (name)
1868 putname(name);
1869 if (did_down) {
1870 if (!error)
1871 inode->i_flags |= S_SWAPFILE;
1b1dcc1b 1872 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1873 }
1874 return error;
1875}
1876
1877void si_swapinfo(struct sysinfo *val)
1878{
1879 unsigned int i;
1880 unsigned long nr_to_be_unused = 0;
1881
5d337b91 1882 spin_lock(&swap_lock);
1da177e4
LT
1883 for (i = 0; i < nr_swapfiles; i++) {
1884 if (!(swap_info[i].flags & SWP_USED) ||
1885 (swap_info[i].flags & SWP_WRITEOK))
1886 continue;
1887 nr_to_be_unused += swap_info[i].inuse_pages;
1888 }
1889 val->freeswap = nr_swap_pages + nr_to_be_unused;
1890 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 1891 spin_unlock(&swap_lock);
1da177e4
LT
1892}
1893
1894/*
1895 * Verify that a swap entry is valid and increment its swap map count.
1896 *
1897 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1898 * "permanent", but will be reclaimed by the next swapoff.
1899 */
1900int swap_duplicate(swp_entry_t entry)
1901{
1902 struct swap_info_struct * p;
1903 unsigned long offset, type;
1904 int result = 0;
1905
0697212a
CL
1906 if (is_migration_entry(entry))
1907 return 1;
1908
1da177e4
LT
1909 type = swp_type(entry);
1910 if (type >= nr_swapfiles)
1911 goto bad_file;
1912 p = type + swap_info;
1913 offset = swp_offset(entry);
1914
5d337b91 1915 spin_lock(&swap_lock);
1da177e4
LT
1916 if (offset < p->max && p->swap_map[offset]) {
1917 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1918 p->swap_map[offset]++;
1919 result = 1;
1920 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1921 if (swap_overflow++ < 5)
1922 printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1923 p->swap_map[offset] = SWAP_MAP_MAX;
1924 result = 1;
1925 }
1926 }
5d337b91 1927 spin_unlock(&swap_lock);
1da177e4
LT
1928out:
1929 return result;
1930
1931bad_file:
1932 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1933 goto out;
1934}
1935
1936struct swap_info_struct *
1937get_swap_info_struct(unsigned type)
1938{
1939 return &swap_info[type];
1940}
1941
1942/*
5d337b91 1943 * swap_lock prevents swap_map being freed. Don't grab an extra
1da177e4
LT
1944 * reference on the swaphandle, it doesn't matter if it becomes unused.
1945 */
1946int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1947{
8952898b 1948 struct swap_info_struct *si;
3f9e7949 1949 int our_page_cluster = page_cluster;
8952898b
HD
1950 pgoff_t target, toff;
1951 pgoff_t base, end;
1952 int nr_pages = 0;
1da177e4 1953
3f9e7949 1954 if (!our_page_cluster) /* no readahead */
1da177e4 1955 return 0;
8952898b
HD
1956
1957 si = &swap_info[swp_type(entry)];
1958 target = swp_offset(entry);
1959 base = (target >> our_page_cluster) << our_page_cluster;
1960 end = base + (1 << our_page_cluster);
1961 if (!base) /* first page is swap header */
1962 base++;
1da177e4 1963
5d337b91 1964 spin_lock(&swap_lock);
8952898b
HD
1965 if (end > si->max) /* don't go beyond end of map */
1966 end = si->max;
1967
1968 /* Count contiguous allocated slots above our target */
1969 for (toff = target; ++toff < end; nr_pages++) {
1970 /* Don't read in free or bad pages */
1971 if (!si->swap_map[toff])
1972 break;
1973 if (si->swap_map[toff] == SWAP_MAP_BAD)
1da177e4 1974 break;
8952898b
HD
1975 }
1976 /* Count contiguous allocated slots below our target */
1977 for (toff = target; --toff >= base; nr_pages++) {
1da177e4 1978 /* Don't read in free or bad pages */
8952898b 1979 if (!si->swap_map[toff])
1da177e4 1980 break;
8952898b 1981 if (si->swap_map[toff] == SWAP_MAP_BAD)
1da177e4 1982 break;
8952898b 1983 }
5d337b91 1984 spin_unlock(&swap_lock);
8952898b
HD
1985
1986 /*
1987 * Indicate starting offset, and return number of pages to get:
1988 * if only 1, say 0, since there's then no readahead to be done.
1989 */
1990 *offset = ++toff;
1991 return nr_pages? ++nr_pages: 0;
1da177e4 1992}