]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/swapfile.c
mm/oom_kill: count global and memory cgroup oom kills
[mirror_ubuntu-bionic-kernel.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4 8#include <linux/mm.h>
6e84f315 9#include <linux/sched/mm.h>
29930025 10#include <linux/sched/task.h>
1da177e4
LT
11#include <linux/hugetlb.h>
12#include <linux/mman.h>
13#include <linux/slab.h>
14#include <linux/kernel_stat.h>
15#include <linux/swap.h>
16#include <linux/vmalloc.h>
17#include <linux/pagemap.h>
18#include <linux/namei.h>
072441e2 19#include <linux/shmem_fs.h>
1da177e4 20#include <linux/blkdev.h>
20137a49 21#include <linux/random.h>
1da177e4
LT
22#include <linux/writeback.h>
23#include <linux/proc_fs.h>
24#include <linux/seq_file.h>
25#include <linux/init.h>
5ad64688 26#include <linux/ksm.h>
1da177e4
LT
27#include <linux/rmap.h>
28#include <linux/security.h>
29#include <linux/backing-dev.h>
fc0abb14 30#include <linux/mutex.h>
c59ede7b 31#include <linux/capability.h>
1da177e4 32#include <linux/syscalls.h>
8a9f3ccd 33#include <linux/memcontrol.h>
66d7dd51 34#include <linux/poll.h>
72788c38 35#include <linux/oom.h>
38b5faf4
DM
36#include <linux/frontswap.h>
37#include <linux/swapfile.h>
f981c595 38#include <linux/export.h>
67afa38e 39#include <linux/swap_slots.h>
1da177e4
LT
40
41#include <asm/pgtable.h>
42#include <asm/tlbflush.h>
43#include <linux/swapops.h>
5d1ea48b 44#include <linux/swap_cgroup.h>
1da177e4 45
570a335b
HD
46static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
47 unsigned char);
48static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 49static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 50
38b5faf4 51DEFINE_SPINLOCK(swap_lock);
7c363b8c 52static unsigned int nr_swapfiles;
ec8acf20 53atomic_long_t nr_swap_pages;
fb0fec50
CW
54/*
55 * Some modules use swappable objects and may try to swap them out under
56 * memory pressure (via the shrinker). Before doing so, they may wish to
57 * check to see if any swap space is available.
58 */
59EXPORT_SYMBOL_GPL(nr_swap_pages);
ec8acf20 60/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 61long total_swap_pages;
78ecba08 62static int least_priority;
1da177e4 63
1da177e4
LT
64static const char Bad_file[] = "Bad swap file entry ";
65static const char Unused_file[] = "Unused swap file entry ";
66static const char Bad_offset[] = "Bad swap offset entry ";
67static const char Unused_offset[] = "Unused swap offset entry ";
68
adfab836
DS
69/*
70 * all active swap_info_structs
71 * protected with swap_lock, and ordered by priority.
72 */
18ab4d4c
DS
73PLIST_HEAD(swap_active_head);
74
75/*
76 * all available (active, not full) swap_info_structs
77 * protected with swap_avail_lock, ordered by priority.
78 * This is used by get_swap_page() instead of swap_active_head
79 * because swap_active_head includes all swap_info_structs,
80 * but get_swap_page() doesn't need to look at full ones.
81 * This uses its own lock instead of swap_lock because when a
82 * swap_info_struct changes between not-full/full, it needs to
83 * add/remove itself to/from this list, but the swap_info_struct->lock
84 * is held and the locking order requires swap_lock to be taken
85 * before any swap_info_struct->lock.
86 */
87static PLIST_HEAD(swap_avail_head);
88static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 89
38b5faf4 90struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 91
fc0abb14 92static DEFINE_MUTEX(swapon_mutex);
1da177e4 93
66d7dd51
KS
94static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
95/* Activity counter to indicate that a swapon or swapoff has occurred */
96static atomic_t proc_poll_event = ATOMIC_INIT(0);
97
8d69aaee 98static inline unsigned char swap_count(unsigned char ent)
355cfa73 99{
570a335b 100 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
355cfa73
KH
101}
102
efa90a98 103/* returns 1 if swap entry is freed */
c9e44410
KH
104static int
105__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
106{
efa90a98 107 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
108 struct page *page;
109 int ret = 0;
110
f6ab1f7f 111 page = find_get_page(swap_address_space(entry), swp_offset(entry));
c9e44410
KH
112 if (!page)
113 return 0;
114 /*
115 * This function is called from scan_swap_map() and it's called
116 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
117 * We have to use trylock for avoiding deadlock. This is a special
118 * case and you should use try_to_free_swap() with explicit lock_page()
119 * in usual operations.
120 */
121 if (trylock_page(page)) {
122 ret = try_to_free_swap(page);
123 unlock_page(page);
124 }
09cbfeaf 125 put_page(page);
c9e44410
KH
126 return ret;
127}
355cfa73 128
6a6ba831
HD
129/*
130 * swapon tell device that all the old swap contents can be discarded,
131 * to allow the swap device to optimize its wear-levelling.
132 */
133static int discard_swap(struct swap_info_struct *si)
134{
135 struct swap_extent *se;
9625a5f2
HD
136 sector_t start_block;
137 sector_t nr_blocks;
6a6ba831
HD
138 int err = 0;
139
9625a5f2
HD
140 /* Do not discard the swap header page! */
141 se = &si->first_swap_extent;
142 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
143 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
144 if (nr_blocks) {
145 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 146 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
147 if (err)
148 return err;
149 cond_resched();
150 }
6a6ba831 151
9625a5f2
HD
152 list_for_each_entry(se, &si->first_swap_extent.list, list) {
153 start_block = se->start_block << (PAGE_SHIFT - 9);
154 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
155
156 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 157 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
158 if (err)
159 break;
160
161 cond_resched();
162 }
163 return err; /* That will often be -EOPNOTSUPP */
164}
165
7992fde7
HD
166/*
167 * swap allocation tell device that a cluster of swap can now be discarded,
168 * to allow the swap device to optimize its wear-levelling.
169 */
170static void discard_swap_cluster(struct swap_info_struct *si,
171 pgoff_t start_page, pgoff_t nr_pages)
172{
173 struct swap_extent *se = si->curr_swap_extent;
174 int found_extent = 0;
175
176 while (nr_pages) {
7992fde7
HD
177 if (se->start_page <= start_page &&
178 start_page < se->start_page + se->nr_pages) {
179 pgoff_t offset = start_page - se->start_page;
180 sector_t start_block = se->start_block + offset;
858a2990 181 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
182
183 if (nr_blocks > nr_pages)
184 nr_blocks = nr_pages;
185 start_page += nr_blocks;
186 nr_pages -= nr_blocks;
187
188 if (!found_extent++)
189 si->curr_swap_extent = se;
190
191 start_block <<= PAGE_SHIFT - 9;
192 nr_blocks <<= PAGE_SHIFT - 9;
193 if (blkdev_issue_discard(si->bdev, start_block,
dd3932ed 194 nr_blocks, GFP_NOIO, 0))
7992fde7
HD
195 break;
196 }
197
a8ae4991 198 se = list_next_entry(se, list);
7992fde7
HD
199 }
200}
201
38d8b4e6
HY
202#ifdef CONFIG_THP_SWAP
203#define SWAPFILE_CLUSTER HPAGE_PMD_NR
204#else
048c27fd 205#define SWAPFILE_CLUSTER 256
38d8b4e6 206#endif
048c27fd
HD
207#define LATENCY_LIMIT 256
208
2a8f9449
SL
209static inline void cluster_set_flag(struct swap_cluster_info *info,
210 unsigned int flag)
211{
212 info->flags = flag;
213}
214
215static inline unsigned int cluster_count(struct swap_cluster_info *info)
216{
217 return info->data;
218}
219
220static inline void cluster_set_count(struct swap_cluster_info *info,
221 unsigned int c)
222{
223 info->data = c;
224}
225
226static inline void cluster_set_count_flag(struct swap_cluster_info *info,
227 unsigned int c, unsigned int f)
228{
229 info->flags = f;
230 info->data = c;
231}
232
233static inline unsigned int cluster_next(struct swap_cluster_info *info)
234{
235 return info->data;
236}
237
238static inline void cluster_set_next(struct swap_cluster_info *info,
239 unsigned int n)
240{
241 info->data = n;
242}
243
244static inline void cluster_set_next_flag(struct swap_cluster_info *info,
245 unsigned int n, unsigned int f)
246{
247 info->flags = f;
248 info->data = n;
249}
250
251static inline bool cluster_is_free(struct swap_cluster_info *info)
252{
253 return info->flags & CLUSTER_FLAG_FREE;
254}
255
256static inline bool cluster_is_null(struct swap_cluster_info *info)
257{
258 return info->flags & CLUSTER_FLAG_NEXT_NULL;
259}
260
261static inline void cluster_set_null(struct swap_cluster_info *info)
262{
263 info->flags = CLUSTER_FLAG_NEXT_NULL;
264 info->data = 0;
265}
266
235b6217
HY
267static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
268 unsigned long offset)
269{
270 struct swap_cluster_info *ci;
271
272 ci = si->cluster_info;
273 if (ci) {
274 ci += offset / SWAPFILE_CLUSTER;
275 spin_lock(&ci->lock);
276 }
277 return ci;
278}
279
280static inline void unlock_cluster(struct swap_cluster_info *ci)
281{
282 if (ci)
283 spin_unlock(&ci->lock);
284}
285
286static inline struct swap_cluster_info *lock_cluster_or_swap_info(
287 struct swap_info_struct *si,
288 unsigned long offset)
289{
290 struct swap_cluster_info *ci;
291
292 ci = lock_cluster(si, offset);
293 if (!ci)
294 spin_lock(&si->lock);
295
296 return ci;
297}
298
299static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
300 struct swap_cluster_info *ci)
301{
302 if (ci)
303 unlock_cluster(ci);
304 else
305 spin_unlock(&si->lock);
306}
307
6b534915
HY
308static inline bool cluster_list_empty(struct swap_cluster_list *list)
309{
310 return cluster_is_null(&list->head);
311}
312
313static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
314{
315 return cluster_next(&list->head);
316}
317
318static void cluster_list_init(struct swap_cluster_list *list)
319{
320 cluster_set_null(&list->head);
321 cluster_set_null(&list->tail);
322}
323
324static void cluster_list_add_tail(struct swap_cluster_list *list,
325 struct swap_cluster_info *ci,
326 unsigned int idx)
327{
328 if (cluster_list_empty(list)) {
329 cluster_set_next_flag(&list->head, idx, 0);
330 cluster_set_next_flag(&list->tail, idx, 0);
331 } else {
235b6217 332 struct swap_cluster_info *ci_tail;
6b534915
HY
333 unsigned int tail = cluster_next(&list->tail);
334
235b6217
HY
335 /*
336 * Nested cluster lock, but both cluster locks are
337 * only acquired when we held swap_info_struct->lock
338 */
339 ci_tail = ci + tail;
340 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
341 cluster_set_next(ci_tail, idx);
0ef017d1 342 spin_unlock(&ci_tail->lock);
6b534915
HY
343 cluster_set_next_flag(&list->tail, idx, 0);
344 }
345}
346
347static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
348 struct swap_cluster_info *ci)
349{
350 unsigned int idx;
351
352 idx = cluster_next(&list->head);
353 if (cluster_next(&list->tail) == idx) {
354 cluster_set_null(&list->head);
355 cluster_set_null(&list->tail);
356 } else
357 cluster_set_next_flag(&list->head,
358 cluster_next(&ci[idx]), 0);
359
360 return idx;
361}
362
815c2c54
SL
363/* Add a cluster to discard list and schedule it to do discard */
364static void swap_cluster_schedule_discard(struct swap_info_struct *si,
365 unsigned int idx)
366{
367 /*
368 * If scan_swap_map() can't find a free cluster, it will check
369 * si->swap_map directly. To make sure the discarding cluster isn't
370 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
371 * will be cleared after discard
372 */
373 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
374 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
375
6b534915 376 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
815c2c54
SL
377
378 schedule_work(&si->discard_work);
379}
380
38d8b4e6
HY
381static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
382{
383 struct swap_cluster_info *ci = si->cluster_info;
384
385 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
386 cluster_list_add_tail(&si->free_clusters, ci, idx);
387}
388
815c2c54
SL
389/*
390 * Doing discard actually. After a cluster discard is finished, the cluster
391 * will be added to free cluster list. caller should hold si->lock.
392*/
393static void swap_do_scheduled_discard(struct swap_info_struct *si)
394{
235b6217 395 struct swap_cluster_info *info, *ci;
815c2c54
SL
396 unsigned int idx;
397
398 info = si->cluster_info;
399
6b534915
HY
400 while (!cluster_list_empty(&si->discard_clusters)) {
401 idx = cluster_list_del_first(&si->discard_clusters, info);
815c2c54
SL
402 spin_unlock(&si->lock);
403
404 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
405 SWAPFILE_CLUSTER);
406
407 spin_lock(&si->lock);
235b6217 408 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
38d8b4e6 409 __free_cluster(si, idx);
815c2c54
SL
410 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
411 0, SWAPFILE_CLUSTER);
235b6217 412 unlock_cluster(ci);
815c2c54
SL
413 }
414}
415
416static void swap_discard_work(struct work_struct *work)
417{
418 struct swap_info_struct *si;
419
420 si = container_of(work, struct swap_info_struct, discard_work);
421
422 spin_lock(&si->lock);
423 swap_do_scheduled_discard(si);
424 spin_unlock(&si->lock);
425}
426
38d8b4e6
HY
427static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
428{
429 struct swap_cluster_info *ci = si->cluster_info;
430
431 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
432 cluster_list_del_first(&si->free_clusters, ci);
433 cluster_set_count_flag(ci + idx, 0, 0);
434}
435
436static void free_cluster(struct swap_info_struct *si, unsigned long idx)
437{
438 struct swap_cluster_info *ci = si->cluster_info + idx;
439
440 VM_BUG_ON(cluster_count(ci) != 0);
441 /*
442 * If the swap is discardable, prepare discard the cluster
443 * instead of free it immediately. The cluster will be freed
444 * after discard.
445 */
446 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
447 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
448 swap_cluster_schedule_discard(si, idx);
449 return;
450 }
451
452 __free_cluster(si, idx);
453}
454
2a8f9449
SL
455/*
456 * The cluster corresponding to page_nr will be used. The cluster will be
457 * removed from free cluster list and its usage counter will be increased.
458 */
459static void inc_cluster_info_page(struct swap_info_struct *p,
460 struct swap_cluster_info *cluster_info, unsigned long page_nr)
461{
462 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
463
464 if (!cluster_info)
465 return;
38d8b4e6
HY
466 if (cluster_is_free(&cluster_info[idx]))
467 alloc_cluster(p, idx);
2a8f9449
SL
468
469 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
470 cluster_set_count(&cluster_info[idx],
471 cluster_count(&cluster_info[idx]) + 1);
472}
473
474/*
475 * The cluster corresponding to page_nr decreases one usage. If the usage
476 * counter becomes 0, which means no page in the cluster is in using, we can
477 * optionally discard the cluster and add it to free cluster list.
478 */
479static void dec_cluster_info_page(struct swap_info_struct *p,
480 struct swap_cluster_info *cluster_info, unsigned long page_nr)
481{
482 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
483
484 if (!cluster_info)
485 return;
486
487 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
488 cluster_set_count(&cluster_info[idx],
489 cluster_count(&cluster_info[idx]) - 1);
490
38d8b4e6
HY
491 if (cluster_count(&cluster_info[idx]) == 0)
492 free_cluster(p, idx);
2a8f9449
SL
493}
494
495/*
496 * It's possible scan_swap_map() uses a free cluster in the middle of free
497 * cluster list. Avoiding such abuse to avoid list corruption.
498 */
ebc2a1a6
SL
499static bool
500scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
501 unsigned long offset)
502{
ebc2a1a6
SL
503 struct percpu_cluster *percpu_cluster;
504 bool conflict;
505
2a8f9449 506 offset /= SWAPFILE_CLUSTER;
6b534915
HY
507 conflict = !cluster_list_empty(&si->free_clusters) &&
508 offset != cluster_list_first(&si->free_clusters) &&
2a8f9449 509 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
510
511 if (!conflict)
512 return false;
513
514 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
515 cluster_set_null(&percpu_cluster->index);
516 return true;
517}
518
519/*
520 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
521 * might involve allocating a new cluster for current CPU too.
522 */
36005bae 523static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
ebc2a1a6
SL
524 unsigned long *offset, unsigned long *scan_base)
525{
526 struct percpu_cluster *cluster;
235b6217 527 struct swap_cluster_info *ci;
ebc2a1a6 528 bool found_free;
235b6217 529 unsigned long tmp, max;
ebc2a1a6
SL
530
531new_cluster:
532 cluster = this_cpu_ptr(si->percpu_cluster);
533 if (cluster_is_null(&cluster->index)) {
6b534915
HY
534 if (!cluster_list_empty(&si->free_clusters)) {
535 cluster->index = si->free_clusters.head;
ebc2a1a6
SL
536 cluster->next = cluster_next(&cluster->index) *
537 SWAPFILE_CLUSTER;
6b534915 538 } else if (!cluster_list_empty(&si->discard_clusters)) {
ebc2a1a6
SL
539 /*
540 * we don't have free cluster but have some clusters in
541 * discarding, do discard now and reclaim them
542 */
543 swap_do_scheduled_discard(si);
544 *scan_base = *offset = si->cluster_next;
545 goto new_cluster;
546 } else
36005bae 547 return false;
ebc2a1a6
SL
548 }
549
550 found_free = false;
551
552 /*
553 * Other CPUs can use our cluster if they can't find a free cluster,
554 * check if there is still free entry in the cluster
555 */
556 tmp = cluster->next;
235b6217
HY
557 max = min_t(unsigned long, si->max,
558 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
559 if (tmp >= max) {
560 cluster_set_null(&cluster->index);
561 goto new_cluster;
562 }
563 ci = lock_cluster(si, tmp);
564 while (tmp < max) {
ebc2a1a6
SL
565 if (!si->swap_map[tmp]) {
566 found_free = true;
567 break;
568 }
569 tmp++;
570 }
235b6217 571 unlock_cluster(ci);
ebc2a1a6
SL
572 if (!found_free) {
573 cluster_set_null(&cluster->index);
574 goto new_cluster;
575 }
576 cluster->next = tmp + 1;
577 *offset = tmp;
578 *scan_base = tmp;
36005bae 579 return found_free;
2a8f9449
SL
580}
581
38d8b4e6
HY
582static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
583 unsigned int nr_entries)
584{
585 unsigned int end = offset + nr_entries - 1;
586
587 if (offset == si->lowest_bit)
588 si->lowest_bit += nr_entries;
589 if (end == si->highest_bit)
590 si->highest_bit -= nr_entries;
591 si->inuse_pages += nr_entries;
592 if (si->inuse_pages == si->pages) {
593 si->lowest_bit = si->max;
594 si->highest_bit = 0;
595 spin_lock(&swap_avail_lock);
596 plist_del(&si->avail_list, &swap_avail_head);
597 spin_unlock(&swap_avail_lock);
598 }
599}
600
601static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
602 unsigned int nr_entries)
603{
604 unsigned long end = offset + nr_entries - 1;
605 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
606
607 if (offset < si->lowest_bit)
608 si->lowest_bit = offset;
609 if (end > si->highest_bit) {
610 bool was_full = !si->highest_bit;
611
612 si->highest_bit = end;
613 if (was_full && (si->flags & SWP_WRITEOK)) {
614 spin_lock(&swap_avail_lock);
615 WARN_ON(!plist_node_empty(&si->avail_list));
616 if (plist_node_empty(&si->avail_list))
617 plist_add(&si->avail_list, &swap_avail_head);
618 spin_unlock(&swap_avail_lock);
619 }
620 }
621 atomic_long_add(nr_entries, &nr_swap_pages);
622 si->inuse_pages -= nr_entries;
623 if (si->flags & SWP_BLKDEV)
624 swap_slot_free_notify =
625 si->bdev->bd_disk->fops->swap_slot_free_notify;
626 else
627 swap_slot_free_notify = NULL;
628 while (offset <= end) {
629 frontswap_invalidate_page(si->type, offset);
630 if (swap_slot_free_notify)
631 swap_slot_free_notify(si->bdev, offset);
632 offset++;
633 }
634}
635
36005bae
TC
636static int scan_swap_map_slots(struct swap_info_struct *si,
637 unsigned char usage, int nr,
638 swp_entry_t slots[])
1da177e4 639{
235b6217 640 struct swap_cluster_info *ci;
ebebbbe9 641 unsigned long offset;
c60aa176 642 unsigned long scan_base;
7992fde7 643 unsigned long last_in_cluster = 0;
048c27fd 644 int latency_ration = LATENCY_LIMIT;
36005bae
TC
645 int n_ret = 0;
646
647 if (nr > SWAP_BATCH)
648 nr = SWAP_BATCH;
7dfad418 649
886bb7e9 650 /*
7dfad418
HD
651 * We try to cluster swap pages by allocating them sequentially
652 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
653 * way, however, we resort to first-free allocation, starting
654 * a new cluster. This prevents us from scattering swap pages
655 * all over the entire swap partition, so that we reduce
656 * overall disk seek times between swap pages. -- sct
657 * But we do now try to find an empty cluster. -Andrea
c60aa176 658 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
659 */
660
52b7efdb 661 si->flags += SWP_SCANNING;
c60aa176 662 scan_base = offset = si->cluster_next;
ebebbbe9 663
ebc2a1a6
SL
664 /* SSD algorithm */
665 if (si->cluster_info) {
36005bae
TC
666 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
667 goto checks;
668 else
669 goto scan;
ebc2a1a6
SL
670 }
671
ebebbbe9
HD
672 if (unlikely(!si->cluster_nr--)) {
673 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
674 si->cluster_nr = SWAPFILE_CLUSTER - 1;
675 goto checks;
676 }
2a8f9449 677
ec8acf20 678 spin_unlock(&si->lock);
7dfad418 679
c60aa176
HD
680 /*
681 * If seek is expensive, start searching for new cluster from
682 * start of partition, to minimize the span of allocated swap.
50088c44
CY
683 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
684 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 685 */
50088c44 686 scan_base = offset = si->lowest_bit;
7dfad418
HD
687 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
688
689 /* Locate the first empty (unaligned) cluster */
690 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 691 if (si->swap_map[offset])
7dfad418
HD
692 last_in_cluster = offset + SWAPFILE_CLUSTER;
693 else if (offset == last_in_cluster) {
ec8acf20 694 spin_lock(&si->lock);
ebebbbe9
HD
695 offset -= SWAPFILE_CLUSTER - 1;
696 si->cluster_next = offset;
697 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
698 goto checks;
699 }
700 if (unlikely(--latency_ration < 0)) {
701 cond_resched();
702 latency_ration = LATENCY_LIMIT;
703 }
704 }
705
706 offset = scan_base;
ec8acf20 707 spin_lock(&si->lock);
ebebbbe9 708 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 709 }
7dfad418 710
ebebbbe9 711checks:
ebc2a1a6 712 if (si->cluster_info) {
36005bae
TC
713 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
714 /* take a break if we already got some slots */
715 if (n_ret)
716 goto done;
717 if (!scan_swap_map_try_ssd_cluster(si, &offset,
718 &scan_base))
719 goto scan;
720 }
ebc2a1a6 721 }
ebebbbe9 722 if (!(si->flags & SWP_WRITEOK))
52b7efdb 723 goto no_page;
7dfad418
HD
724 if (!si->highest_bit)
725 goto no_page;
ebebbbe9 726 if (offset > si->highest_bit)
c60aa176 727 scan_base = offset = si->lowest_bit;
c9e44410 728
235b6217 729 ci = lock_cluster(si, offset);
b73d7fce
HD
730 /* reuse swap entry of cache-only swap if not busy. */
731 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 732 int swap_was_freed;
235b6217 733 unlock_cluster(ci);
ec8acf20 734 spin_unlock(&si->lock);
c9e44410 735 swap_was_freed = __try_to_reclaim_swap(si, offset);
ec8acf20 736 spin_lock(&si->lock);
c9e44410
KH
737 /* entry was freed successfully, try to use this again */
738 if (swap_was_freed)
739 goto checks;
740 goto scan; /* check next one */
741 }
742
235b6217
HY
743 if (si->swap_map[offset]) {
744 unlock_cluster(ci);
36005bae
TC
745 if (!n_ret)
746 goto scan;
747 else
748 goto done;
235b6217 749 }
2872bb2d
HY
750 si->swap_map[offset] = usage;
751 inc_cluster_info_page(si, si->cluster_info, offset);
752 unlock_cluster(ci);
ebebbbe9 753
38d8b4e6 754 swap_range_alloc(si, offset, 1);
ebebbbe9 755 si->cluster_next = offset + 1;
36005bae
TC
756 slots[n_ret++] = swp_entry(si->type, offset);
757
758 /* got enough slots or reach max slots? */
759 if ((n_ret == nr) || (offset >= si->highest_bit))
760 goto done;
761
762 /* search for next available slot */
763
764 /* time to take a break? */
765 if (unlikely(--latency_ration < 0)) {
766 if (n_ret)
767 goto done;
768 spin_unlock(&si->lock);
769 cond_resched();
770 spin_lock(&si->lock);
771 latency_ration = LATENCY_LIMIT;
772 }
773
774 /* try to get more slots in cluster */
775 if (si->cluster_info) {
776 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
777 goto checks;
778 else
779 goto done;
780 }
781 /* non-ssd case */
782 ++offset;
783
784 /* non-ssd case, still more slots in cluster? */
785 if (si->cluster_nr && !si->swap_map[offset]) {
786 --si->cluster_nr;
787 goto checks;
788 }
7992fde7 789
36005bae
TC
790done:
791 si->flags -= SWP_SCANNING;
792 return n_ret;
7dfad418 793
ebebbbe9 794scan:
ec8acf20 795 spin_unlock(&si->lock);
7dfad418 796 while (++offset <= si->highest_bit) {
52b7efdb 797 if (!si->swap_map[offset]) {
ec8acf20 798 spin_lock(&si->lock);
52b7efdb
HD
799 goto checks;
800 }
c9e44410 801 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 802 spin_lock(&si->lock);
c9e44410
KH
803 goto checks;
804 }
048c27fd
HD
805 if (unlikely(--latency_ration < 0)) {
806 cond_resched();
807 latency_ration = LATENCY_LIMIT;
808 }
7dfad418 809 }
c60aa176 810 offset = si->lowest_bit;
a5998061 811 while (offset < scan_base) {
c60aa176 812 if (!si->swap_map[offset]) {
ec8acf20 813 spin_lock(&si->lock);
c60aa176
HD
814 goto checks;
815 }
c9e44410 816 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 817 spin_lock(&si->lock);
c9e44410
KH
818 goto checks;
819 }
c60aa176
HD
820 if (unlikely(--latency_ration < 0)) {
821 cond_resched();
822 latency_ration = LATENCY_LIMIT;
823 }
a5998061 824 offset++;
c60aa176 825 }
ec8acf20 826 spin_lock(&si->lock);
7dfad418
HD
827
828no_page:
52b7efdb 829 si->flags -= SWP_SCANNING;
36005bae 830 return n_ret;
1da177e4
LT
831}
832
38d8b4e6
HY
833#ifdef CONFIG_THP_SWAP
834static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
835{
836 unsigned long idx;
837 struct swap_cluster_info *ci;
838 unsigned long offset, i;
839 unsigned char *map;
840
841 if (cluster_list_empty(&si->free_clusters))
842 return 0;
843
844 idx = cluster_list_first(&si->free_clusters);
845 offset = idx * SWAPFILE_CLUSTER;
846 ci = lock_cluster(si, offset);
847 alloc_cluster(si, idx);
848 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, 0);
849
850 map = si->swap_map + offset;
851 for (i = 0; i < SWAPFILE_CLUSTER; i++)
852 map[i] = SWAP_HAS_CACHE;
853 unlock_cluster(ci);
854 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
855 *slot = swp_entry(si->type, offset);
856
857 return 1;
858}
859
860static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
861{
862 unsigned long offset = idx * SWAPFILE_CLUSTER;
863 struct swap_cluster_info *ci;
864
865 ci = lock_cluster(si, offset);
866 cluster_set_count_flag(ci, 0, 0);
867 free_cluster(si, idx);
868 unlock_cluster(ci);
869 swap_range_free(si, offset, SWAPFILE_CLUSTER);
870}
871#else
872static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
873{
874 VM_WARN_ON_ONCE(1);
875 return 0;
876}
877#endif /* CONFIG_THP_SWAP */
878
36005bae
TC
879static unsigned long scan_swap_map(struct swap_info_struct *si,
880 unsigned char usage)
881{
882 swp_entry_t entry;
883 int n_ret;
884
885 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
886
887 if (n_ret)
888 return swp_offset(entry);
889 else
890 return 0;
891
892}
893
38d8b4e6 894int get_swap_pages(int n_goal, bool cluster, swp_entry_t swp_entries[])
1da177e4 895{
38d8b4e6 896 unsigned long nr_pages = cluster ? SWAPFILE_CLUSTER : 1;
adfab836 897 struct swap_info_struct *si, *next;
36005bae
TC
898 long avail_pgs;
899 int n_ret = 0;
1da177e4 900
38d8b4e6
HY
901 /* Only single cluster request supported */
902 WARN_ON_ONCE(n_goal > 1 && cluster);
903
904 avail_pgs = atomic_long_read(&nr_swap_pages) / nr_pages;
36005bae 905 if (avail_pgs <= 0)
fb4f88dc 906 goto noswap;
36005bae
TC
907
908 if (n_goal > SWAP_BATCH)
909 n_goal = SWAP_BATCH;
910
911 if (n_goal > avail_pgs)
912 n_goal = avail_pgs;
913
38d8b4e6 914 atomic_long_sub(n_goal * nr_pages, &nr_swap_pages);
fb4f88dc 915
18ab4d4c
DS
916 spin_lock(&swap_avail_lock);
917
918start_over:
919 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
920 /* requeue si to after same-priority siblings */
921 plist_requeue(&si->avail_list, &swap_avail_head);
922 spin_unlock(&swap_avail_lock);
ec8acf20 923 spin_lock(&si->lock);
adfab836 924 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c
DS
925 spin_lock(&swap_avail_lock);
926 if (plist_node_empty(&si->avail_list)) {
927 spin_unlock(&si->lock);
928 goto nextsi;
929 }
930 WARN(!si->highest_bit,
931 "swap_info %d in list but !highest_bit\n",
932 si->type);
933 WARN(!(si->flags & SWP_WRITEOK),
934 "swap_info %d in list but !SWP_WRITEOK\n",
935 si->type);
936 plist_del(&si->avail_list, &swap_avail_head);
ec8acf20 937 spin_unlock(&si->lock);
18ab4d4c 938 goto nextsi;
ec8acf20 939 }
38d8b4e6
HY
940 if (cluster)
941 n_ret = swap_alloc_cluster(si, swp_entries);
942 else
943 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
944 n_goal, swp_entries);
ec8acf20 945 spin_unlock(&si->lock);
38d8b4e6 946 if (n_ret || cluster)
36005bae 947 goto check_out;
18ab4d4c 948 pr_debug("scan_swap_map of si %d failed to find offset\n",
36005bae
TC
949 si->type);
950
18ab4d4c
DS
951 spin_lock(&swap_avail_lock);
952nextsi:
adfab836
DS
953 /*
954 * if we got here, it's likely that si was almost full before,
955 * and since scan_swap_map() can drop the si->lock, multiple
956 * callers probably all tried to get a page from the same si
18ab4d4c
DS
957 * and it filled up before we could get one; or, the si filled
958 * up between us dropping swap_avail_lock and taking si->lock.
959 * Since we dropped the swap_avail_lock, the swap_avail_head
960 * list may have been modified; so if next is still in the
36005bae
TC
961 * swap_avail_head list then try it, otherwise start over
962 * if we have not gotten any slots.
adfab836 963 */
18ab4d4c
DS
964 if (plist_node_empty(&next->avail_list))
965 goto start_over;
1da177e4 966 }
fb4f88dc 967
18ab4d4c
DS
968 spin_unlock(&swap_avail_lock);
969
36005bae
TC
970check_out:
971 if (n_ret < n_goal)
38d8b4e6
HY
972 atomic_long_add((long)(n_goal - n_ret) * nr_pages,
973 &nr_swap_pages);
fb4f88dc 974noswap:
36005bae
TC
975 return n_ret;
976}
977
2de1a7e4 978/* The only caller of this function is now suspend routine */
910321ea
HD
979swp_entry_t get_swap_page_of_type(int type)
980{
981 struct swap_info_struct *si;
982 pgoff_t offset;
983
910321ea 984 si = swap_info[type];
ec8acf20 985 spin_lock(&si->lock);
910321ea 986 if (si && (si->flags & SWP_WRITEOK)) {
ec8acf20 987 atomic_long_dec(&nr_swap_pages);
910321ea
HD
988 /* This is called for allocating swap entry, not cache */
989 offset = scan_swap_map(si, 1);
990 if (offset) {
ec8acf20 991 spin_unlock(&si->lock);
910321ea
HD
992 return swp_entry(type, offset);
993 }
ec8acf20 994 atomic_long_inc(&nr_swap_pages);
910321ea 995 }
ec8acf20 996 spin_unlock(&si->lock);
910321ea
HD
997 return (swp_entry_t) {0};
998}
999
e8c26ab6 1000static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1da177e4 1001{
73c34b6a 1002 struct swap_info_struct *p;
1da177e4
LT
1003 unsigned long offset, type;
1004
1005 if (!entry.val)
1006 goto out;
1007 type = swp_type(entry);
1008 if (type >= nr_swapfiles)
1009 goto bad_nofile;
efa90a98 1010 p = swap_info[type];
1da177e4
LT
1011 if (!(p->flags & SWP_USED))
1012 goto bad_device;
1013 offset = swp_offset(entry);
1014 if (offset >= p->max)
1015 goto bad_offset;
1da177e4
LT
1016 return p;
1017
1da177e4 1018bad_offset:
6a991fc7 1019 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
1020 goto out;
1021bad_device:
6a991fc7 1022 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
1023 goto out;
1024bad_nofile:
6a991fc7 1025 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
1026out:
1027 return NULL;
886bb7e9 1028}
1da177e4 1029
e8c26ab6
TC
1030static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1031{
1032 struct swap_info_struct *p;
1033
1034 p = __swap_info_get(entry);
1035 if (!p)
1036 goto out;
1037 if (!p->swap_map[swp_offset(entry)])
1038 goto bad_free;
1039 return p;
1040
1041bad_free:
1042 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1043 goto out;
1044out:
1045 return NULL;
1046}
1047
235b6217
HY
1048static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1049{
1050 struct swap_info_struct *p;
1051
1052 p = _swap_info_get(entry);
1053 if (p)
1054 spin_lock(&p->lock);
1055 return p;
1056}
1057
7c00bafe
TC
1058static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1059 struct swap_info_struct *q)
1060{
1061 struct swap_info_struct *p;
1062
1063 p = _swap_info_get(entry);
1064
1065 if (p != q) {
1066 if (q != NULL)
1067 spin_unlock(&q->lock);
1068 if (p != NULL)
1069 spin_lock(&p->lock);
1070 }
1071 return p;
1072}
1073
1074static unsigned char __swap_entry_free(struct swap_info_struct *p,
1075 swp_entry_t entry, unsigned char usage)
1da177e4 1076{
235b6217 1077 struct swap_cluster_info *ci;
253d553b 1078 unsigned long offset = swp_offset(entry);
8d69aaee
HD
1079 unsigned char count;
1080 unsigned char has_cache;
235b6217 1081
7c00bafe 1082 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 1083
253d553b 1084 count = p->swap_map[offset];
235b6217 1085
253d553b
HD
1086 has_cache = count & SWAP_HAS_CACHE;
1087 count &= ~SWAP_HAS_CACHE;
355cfa73 1088
253d553b 1089 if (usage == SWAP_HAS_CACHE) {
355cfa73 1090 VM_BUG_ON(!has_cache);
253d553b 1091 has_cache = 0;
aaa46865
HD
1092 } else if (count == SWAP_MAP_SHMEM) {
1093 /*
1094 * Or we could insist on shmem.c using a special
1095 * swap_shmem_free() and free_shmem_swap_and_cache()...
1096 */
1097 count = 0;
570a335b
HD
1098 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1099 if (count == COUNT_CONTINUED) {
1100 if (swap_count_continued(p, offset, count))
1101 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1102 else
1103 count = SWAP_MAP_MAX;
1104 } else
1105 count--;
1106 }
253d553b 1107
253d553b 1108 usage = count | has_cache;
7c00bafe
TC
1109 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1110
1111 unlock_cluster_or_swap_info(p, ci);
1112
1113 return usage;
1114}
355cfa73 1115
7c00bafe
TC
1116static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1117{
1118 struct swap_cluster_info *ci;
1119 unsigned long offset = swp_offset(entry);
1120 unsigned char count;
1121
1122 ci = lock_cluster(p, offset);
1123 count = p->swap_map[offset];
1124 VM_BUG_ON(count != SWAP_HAS_CACHE);
1125 p->swap_map[offset] = 0;
1126 dec_cluster_info_page(p, p->cluster_info, offset);
235b6217
HY
1127 unlock_cluster(ci);
1128
38d8b4e6
HY
1129 mem_cgroup_uncharge_swap(entry, 1);
1130 swap_range_free(p, offset, 1);
1da177e4
LT
1131}
1132
1133/*
2de1a7e4 1134 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
1135 * is still around or has not been recycled.
1136 */
1137void swap_free(swp_entry_t entry)
1138{
73c34b6a 1139 struct swap_info_struct *p;
1da177e4 1140
235b6217 1141 p = _swap_info_get(entry);
7c00bafe
TC
1142 if (p) {
1143 if (!__swap_entry_free(p, entry, 1))
67afa38e 1144 free_swap_slot(entry);
7c00bafe 1145 }
1da177e4
LT
1146}
1147
cb4b86ba
KH
1148/*
1149 * Called after dropping swapcache to decrease refcnt to swap entries.
1150 */
75f6d6d2 1151static void swapcache_free(swp_entry_t entry)
cb4b86ba 1152{
355cfa73
KH
1153 struct swap_info_struct *p;
1154
235b6217 1155 p = _swap_info_get(entry);
7c00bafe
TC
1156 if (p) {
1157 if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
67afa38e 1158 free_swap_slot(entry);
7c00bafe
TC
1159 }
1160}
1161
38d8b4e6 1162#ifdef CONFIG_THP_SWAP
75f6d6d2 1163static void swapcache_free_cluster(swp_entry_t entry)
38d8b4e6
HY
1164{
1165 unsigned long offset = swp_offset(entry);
1166 unsigned long idx = offset / SWAPFILE_CLUSTER;
1167 struct swap_cluster_info *ci;
1168 struct swap_info_struct *si;
1169 unsigned char *map;
1170 unsigned int i;
1171
1172 si = swap_info_get(entry);
1173 if (!si)
1174 return;
1175
1176 ci = lock_cluster(si, offset);
1177 map = si->swap_map + offset;
1178 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1179 VM_BUG_ON(map[i] != SWAP_HAS_CACHE);
1180 map[i] = 0;
1181 }
1182 unlock_cluster(ci);
1183 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1184 swap_free_cluster(si, idx);
1185 spin_unlock(&si->lock);
1186}
75f6d6d2
MK
1187#else
1188static inline void swapcache_free_cluster(swp_entry_t entry)
1189{
1190}
38d8b4e6
HY
1191#endif /* CONFIG_THP_SWAP */
1192
75f6d6d2
MK
1193void put_swap_page(struct page *page, swp_entry_t entry)
1194{
1195 if (!PageTransHuge(page))
1196 swapcache_free(entry);
1197 else
1198 swapcache_free_cluster(entry);
1199}
1200
7c00bafe
TC
1201void swapcache_free_entries(swp_entry_t *entries, int n)
1202{
1203 struct swap_info_struct *p, *prev;
1204 int i;
1205
1206 if (n <= 0)
1207 return;
1208
1209 prev = NULL;
1210 p = NULL;
1211 for (i = 0; i < n; ++i) {
1212 p = swap_info_get_cont(entries[i], prev);
1213 if (p)
1214 swap_entry_free(p, entries[i]);
7c00bafe
TC
1215 prev = p;
1216 }
235b6217 1217 if (p)
7c00bafe 1218 spin_unlock(&p->lock);
cb4b86ba
KH
1219}
1220
1da177e4 1221/*
c475a8ab 1222 * How many references to page are currently swapped out?
570a335b
HD
1223 * This does not give an exact answer when swap count is continued,
1224 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 1225 */
bde05d1c 1226int page_swapcount(struct page *page)
1da177e4 1227{
c475a8ab
HD
1228 int count = 0;
1229 struct swap_info_struct *p;
235b6217 1230 struct swap_cluster_info *ci;
1da177e4 1231 swp_entry_t entry;
235b6217 1232 unsigned long offset;
1da177e4 1233
4c21e2f2 1234 entry.val = page_private(page);
235b6217 1235 p = _swap_info_get(entry);
1da177e4 1236 if (p) {
235b6217
HY
1237 offset = swp_offset(entry);
1238 ci = lock_cluster_or_swap_info(p, offset);
1239 count = swap_count(p->swap_map[offset]);
1240 unlock_cluster_or_swap_info(p, ci);
1da177e4 1241 }
c475a8ab 1242 return count;
1da177e4
LT
1243}
1244
322b8afe
HY
1245static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1246{
1247 int count = 0;
1248 pgoff_t offset = swp_offset(entry);
1249 struct swap_cluster_info *ci;
1250
1251 ci = lock_cluster_or_swap_info(si, offset);
1252 count = swap_count(si->swap_map[offset]);
1253 unlock_cluster_or_swap_info(si, ci);
1254 return count;
1255}
1256
e8c26ab6
TC
1257/*
1258 * How many references to @entry are currently swapped out?
1259 * This does not give an exact answer when swap count is continued,
1260 * but does include the high COUNT_CONTINUED flag to allow for that.
1261 */
1262int __swp_swapcount(swp_entry_t entry)
1263{
1264 int count = 0;
e8c26ab6 1265 struct swap_info_struct *si;
e8c26ab6
TC
1266
1267 si = __swap_info_get(entry);
322b8afe
HY
1268 if (si)
1269 count = swap_swapcount(si, entry);
e8c26ab6
TC
1270 return count;
1271}
1272
8334b962
MK
1273/*
1274 * How many references to @entry are currently swapped out?
1275 * This considers COUNT_CONTINUED so it returns exact answer.
1276 */
1277int swp_swapcount(swp_entry_t entry)
1278{
1279 int count, tmp_count, n;
1280 struct swap_info_struct *p;
235b6217 1281 struct swap_cluster_info *ci;
8334b962
MK
1282 struct page *page;
1283 pgoff_t offset;
1284 unsigned char *map;
1285
235b6217 1286 p = _swap_info_get(entry);
8334b962
MK
1287 if (!p)
1288 return 0;
1289
235b6217
HY
1290 offset = swp_offset(entry);
1291
1292 ci = lock_cluster_or_swap_info(p, offset);
1293
1294 count = swap_count(p->swap_map[offset]);
8334b962
MK
1295 if (!(count & COUNT_CONTINUED))
1296 goto out;
1297
1298 count &= ~COUNT_CONTINUED;
1299 n = SWAP_MAP_MAX + 1;
1300
8334b962
MK
1301 page = vmalloc_to_page(p->swap_map + offset);
1302 offset &= ~PAGE_MASK;
1303 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1304
1305 do {
a8ae4991 1306 page = list_next_entry(page, lru);
8334b962
MK
1307 map = kmap_atomic(page);
1308 tmp_count = map[offset];
1309 kunmap_atomic(map);
1310
1311 count += (tmp_count & ~COUNT_CONTINUED) * n;
1312 n *= (SWAP_CONT_MAX + 1);
1313 } while (tmp_count & COUNT_CONTINUED);
1314out:
235b6217 1315 unlock_cluster_or_swap_info(p, ci);
8334b962
MK
1316 return count;
1317}
1318
1da177e4 1319/*
7b1fe597
HD
1320 * We can write to an anon page without COW if there are no other references
1321 * to it. And as a side-effect, free up its swap: because the old content
1322 * on disk will never be read, and seeking back there to write new content
1323 * later would only waste time away from clustering.
6d0a07ed
AA
1324 *
1325 * NOTE: total_mapcount should not be relied upon by the caller if
1326 * reuse_swap_page() returns false, but it may be always overwritten
1327 * (see the other implementation for CONFIG_SWAP=n).
1da177e4 1328 */
6d0a07ed 1329bool reuse_swap_page(struct page *page, int *total_mapcount)
1da177e4 1330{
c475a8ab
HD
1331 int count;
1332
309381fe 1333 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688 1334 if (unlikely(PageKsm(page)))
6d0a07ed
AA
1335 return false;
1336 count = page_trans_huge_mapcount(page, total_mapcount);
7b1fe597 1337 if (count <= 1 && PageSwapCache(page)) {
c475a8ab 1338 count += page_swapcount(page);
f0571429
MK
1339 if (count != 1)
1340 goto out;
1341 if (!PageWriteback(page)) {
7b1fe597
HD
1342 delete_from_swap_cache(page);
1343 SetPageDirty(page);
f0571429
MK
1344 } else {
1345 swp_entry_t entry;
1346 struct swap_info_struct *p;
1347
1348 entry.val = page_private(page);
1349 p = swap_info_get(entry);
1350 if (p->flags & SWP_STABLE_WRITES) {
1351 spin_unlock(&p->lock);
1352 return false;
1353 }
1354 spin_unlock(&p->lock);
7b1fe597
HD
1355 }
1356 }
f0571429 1357out:
5ad64688 1358 return count <= 1;
1da177e4
LT
1359}
1360
1361/*
a2c43eed
HD
1362 * If swap is getting full, or if there are no more mappings of this page,
1363 * then try_to_free_swap is called to free its swap space.
1da177e4 1364 */
a2c43eed 1365int try_to_free_swap(struct page *page)
1da177e4 1366{
309381fe 1367 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
1368
1369 if (!PageSwapCache(page))
1370 return 0;
1371 if (PageWriteback(page))
1372 return 0;
a2c43eed 1373 if (page_swapcount(page))
1da177e4
LT
1374 return 0;
1375
b73d7fce
HD
1376 /*
1377 * Once hibernation has begun to create its image of memory,
1378 * there's a danger that one of the calls to try_to_free_swap()
1379 * - most probably a call from __try_to_reclaim_swap() while
1380 * hibernation is allocating its own swap pages for the image,
1381 * but conceivably even a call from memory reclaim - will free
1382 * the swap from a page which has already been recorded in the
1383 * image as a clean swapcache page, and then reuse its swap for
1384 * another page of the image. On waking from hibernation, the
1385 * original page might be freed under memory pressure, then
1386 * later read back in from swap, now with the wrong data.
1387 *
2de1a7e4 1388 * Hibernation suspends storage while it is writing the image
f90ac398 1389 * to disk so check that here.
b73d7fce 1390 */
f90ac398 1391 if (pm_suspended_storage())
b73d7fce
HD
1392 return 0;
1393
a2c43eed
HD
1394 delete_from_swap_cache(page);
1395 SetPageDirty(page);
1396 return 1;
68a22394
RR
1397}
1398
1da177e4
LT
1399/*
1400 * Free the swap entry like above, but also try to
1401 * free the page cache entry if it is the last user.
1402 */
2509ef26 1403int free_swap_and_cache(swp_entry_t entry)
1da177e4 1404{
2509ef26 1405 struct swap_info_struct *p;
1da177e4 1406 struct page *page = NULL;
7c00bafe 1407 unsigned char count;
1da177e4 1408
a7420aa5 1409 if (non_swap_entry(entry))
2509ef26 1410 return 1;
0697212a 1411
7c00bafe 1412 p = _swap_info_get(entry);
1da177e4 1413 if (p) {
7c00bafe
TC
1414 count = __swap_entry_free(p, entry, 1);
1415 if (count == SWAP_HAS_CACHE) {
33806f06 1416 page = find_get_page(swap_address_space(entry),
f6ab1f7f 1417 swp_offset(entry));
8413ac9d 1418 if (page && !trylock_page(page)) {
09cbfeaf 1419 put_page(page);
93fac704
NP
1420 page = NULL;
1421 }
7c00bafe 1422 } else if (!count)
67afa38e 1423 free_swap_slot(entry);
1da177e4
LT
1424 }
1425 if (page) {
a2c43eed
HD
1426 /*
1427 * Not mapped elsewhere, or swap space full? Free it!
1428 * Also recheck PageSwapCache now page is locked (above).
1429 */
93fac704 1430 if (PageSwapCache(page) && !PageWriteback(page) &&
322b8afe
HY
1431 (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
1432 !swap_swapcount(p, entry)) {
1da177e4
LT
1433 delete_from_swap_cache(page);
1434 SetPageDirty(page);
1435 }
1436 unlock_page(page);
09cbfeaf 1437 put_page(page);
1da177e4 1438 }
2509ef26 1439 return p != NULL;
1da177e4
LT
1440}
1441
b0cb1a19 1442#ifdef CONFIG_HIBERNATION
f577eb30 1443/*
915bae9e 1444 * Find the swap type that corresponds to given device (if any).
f577eb30 1445 *
915bae9e
RW
1446 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1447 * from 0, in which the swap header is expected to be located.
1448 *
1449 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1450 */
7bf23687 1451int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 1452{
915bae9e 1453 struct block_device *bdev = NULL;
efa90a98 1454 int type;
f577eb30 1455
915bae9e
RW
1456 if (device)
1457 bdev = bdget(device);
1458
f577eb30 1459 spin_lock(&swap_lock);
efa90a98
HD
1460 for (type = 0; type < nr_swapfiles; type++) {
1461 struct swap_info_struct *sis = swap_info[type];
f577eb30 1462
915bae9e 1463 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1464 continue;
b6b5bce3 1465
915bae9e 1466 if (!bdev) {
7bf23687 1467 if (bdev_p)
dddac6a7 1468 *bdev_p = bdgrab(sis->bdev);
7bf23687 1469
6e1819d6 1470 spin_unlock(&swap_lock);
efa90a98 1471 return type;
6e1819d6 1472 }
915bae9e 1473 if (bdev == sis->bdev) {
9625a5f2 1474 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 1475
915bae9e 1476 if (se->start_block == offset) {
7bf23687 1477 if (bdev_p)
dddac6a7 1478 *bdev_p = bdgrab(sis->bdev);
7bf23687 1479
915bae9e
RW
1480 spin_unlock(&swap_lock);
1481 bdput(bdev);
efa90a98 1482 return type;
915bae9e 1483 }
f577eb30
RW
1484 }
1485 }
1486 spin_unlock(&swap_lock);
915bae9e
RW
1487 if (bdev)
1488 bdput(bdev);
1489
f577eb30
RW
1490 return -ENODEV;
1491}
1492
73c34b6a
HD
1493/*
1494 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1495 * corresponding to given index in swap_info (swap type).
1496 */
1497sector_t swapdev_block(int type, pgoff_t offset)
1498{
1499 struct block_device *bdev;
1500
1501 if ((unsigned int)type >= nr_swapfiles)
1502 return 0;
1503 if (!(swap_info[type]->flags & SWP_WRITEOK))
1504 return 0;
d4906e1a 1505 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
1506}
1507
f577eb30
RW
1508/*
1509 * Return either the total number of swap pages of given type, or the number
1510 * of free pages of that type (depending on @free)
1511 *
1512 * This is needed for software suspend
1513 */
1514unsigned int count_swap_pages(int type, int free)
1515{
1516 unsigned int n = 0;
1517
efa90a98
HD
1518 spin_lock(&swap_lock);
1519 if ((unsigned int)type < nr_swapfiles) {
1520 struct swap_info_struct *sis = swap_info[type];
1521
ec8acf20 1522 spin_lock(&sis->lock);
efa90a98
HD
1523 if (sis->flags & SWP_WRITEOK) {
1524 n = sis->pages;
f577eb30 1525 if (free)
efa90a98 1526 n -= sis->inuse_pages;
f577eb30 1527 }
ec8acf20 1528 spin_unlock(&sis->lock);
f577eb30 1529 }
efa90a98 1530 spin_unlock(&swap_lock);
f577eb30
RW
1531 return n;
1532}
73c34b6a 1533#endif /* CONFIG_HIBERNATION */
f577eb30 1534
9f8bdb3f 1535static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
179ef71c 1536{
9f8bdb3f 1537 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
179ef71c
CG
1538}
1539
1da177e4 1540/*
72866f6f
HD
1541 * No need to decide whether this PTE shares the swap entry with others,
1542 * just let do_wp_page work it out if a write is requested later - to
1543 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1544 */
044d66c1 1545static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1546 unsigned long addr, swp_entry_t entry, struct page *page)
1547{
9e16b7fb 1548 struct page *swapcache;
72835c86 1549 struct mem_cgroup *memcg;
044d66c1
HD
1550 spinlock_t *ptl;
1551 pte_t *pte;
1552 int ret = 1;
1553
9e16b7fb
HD
1554 swapcache = page;
1555 page = ksm_might_need_to_copy(page, vma, addr);
1556 if (unlikely(!page))
1557 return -ENOMEM;
1558
f627c2f5
KS
1559 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1560 &memcg, false)) {
044d66c1 1561 ret = -ENOMEM;
85d9fc89
KH
1562 goto out_nolock;
1563 }
044d66c1
HD
1564
1565 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
9f8bdb3f 1566 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
f627c2f5 1567 mem_cgroup_cancel_charge(page, memcg, false);
044d66c1
HD
1568 ret = 0;
1569 goto out;
1570 }
8a9f3ccd 1571
b084d435 1572 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1573 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1574 get_page(page);
1575 set_pte_at(vma->vm_mm, addr, pte,
1576 pte_mkold(mk_pte(page, vma->vm_page_prot)));
00501b53 1577 if (page == swapcache) {
d281ee61 1578 page_add_anon_rmap(page, vma, addr, false);
f627c2f5 1579 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1580 } else { /* ksm created a completely new copy */
d281ee61 1581 page_add_new_anon_rmap(page, vma, addr, false);
f627c2f5 1582 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
1583 lru_cache_add_active_or_unevictable(page, vma);
1584 }
1da177e4
LT
1585 swap_free(entry);
1586 /*
1587 * Move the page to the active list so it is not
1588 * immediately swapped out again after swapon.
1589 */
1590 activate_page(page);
044d66c1
HD
1591out:
1592 pte_unmap_unlock(pte, ptl);
85d9fc89 1593out_nolock:
9e16b7fb
HD
1594 if (page != swapcache) {
1595 unlock_page(page);
1596 put_page(page);
1597 }
044d66c1 1598 return ret;
1da177e4
LT
1599}
1600
1601static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1602 unsigned long addr, unsigned long end,
1603 swp_entry_t entry, struct page *page)
1604{
1da177e4 1605 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 1606 pte_t *pte;
8a9f3ccd 1607 int ret = 0;
1da177e4 1608
044d66c1
HD
1609 /*
1610 * We don't actually need pte lock while scanning for swp_pte: since
1611 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1612 * page table while we're scanning; though it could get zapped, and on
1613 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1614 * of unmatched parts which look like swp_pte, so unuse_pte must
1615 * recheck under pte lock. Scanning without pte lock lets it be
2de1a7e4 1616 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
044d66c1
HD
1617 */
1618 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1619 do {
1620 /*
1621 * swapoff spends a _lot_ of time in this loop!
1622 * Test inline before going to call unuse_pte.
1623 */
9f8bdb3f 1624 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
044d66c1
HD
1625 pte_unmap(pte);
1626 ret = unuse_pte(vma, pmd, addr, entry, page);
1627 if (ret)
1628 goto out;
1629 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1630 }
1631 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
1632 pte_unmap(pte - 1);
1633out:
8a9f3ccd 1634 return ret;
1da177e4
LT
1635}
1636
1637static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1638 unsigned long addr, unsigned long end,
1639 swp_entry_t entry, struct page *page)
1640{
1641 pmd_t *pmd;
1642 unsigned long next;
8a9f3ccd 1643 int ret;
1da177e4
LT
1644
1645 pmd = pmd_offset(pud, addr);
1646 do {
dc644a07 1647 cond_resched();
1da177e4 1648 next = pmd_addr_end(addr, end);
1a5a9906 1649 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 1650 continue;
8a9f3ccd
BS
1651 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1652 if (ret)
1653 return ret;
1da177e4
LT
1654 } while (pmd++, addr = next, addr != end);
1655 return 0;
1656}
1657
c2febafc 1658static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1da177e4
LT
1659 unsigned long addr, unsigned long end,
1660 swp_entry_t entry, struct page *page)
1661{
1662 pud_t *pud;
1663 unsigned long next;
8a9f3ccd 1664 int ret;
1da177e4 1665
c2febafc 1666 pud = pud_offset(p4d, addr);
1da177e4
LT
1667 do {
1668 next = pud_addr_end(addr, end);
1669 if (pud_none_or_clear_bad(pud))
1670 continue;
8a9f3ccd
BS
1671 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1672 if (ret)
1673 return ret;
1da177e4
LT
1674 } while (pud++, addr = next, addr != end);
1675 return 0;
1676}
1677
c2febafc
KS
1678static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1679 unsigned long addr, unsigned long end,
1680 swp_entry_t entry, struct page *page)
1681{
1682 p4d_t *p4d;
1683 unsigned long next;
1684 int ret;
1685
1686 p4d = p4d_offset(pgd, addr);
1687 do {
1688 next = p4d_addr_end(addr, end);
1689 if (p4d_none_or_clear_bad(p4d))
1690 continue;
1691 ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1692 if (ret)
1693 return ret;
1694 } while (p4d++, addr = next, addr != end);
1695 return 0;
1696}
1697
1da177e4
LT
1698static int unuse_vma(struct vm_area_struct *vma,
1699 swp_entry_t entry, struct page *page)
1700{
1701 pgd_t *pgd;
1702 unsigned long addr, end, next;
8a9f3ccd 1703 int ret;
1da177e4 1704
3ca7b3c5 1705 if (page_anon_vma(page)) {
1da177e4
LT
1706 addr = page_address_in_vma(page, vma);
1707 if (addr == -EFAULT)
1708 return 0;
1709 else
1710 end = addr + PAGE_SIZE;
1711 } else {
1712 addr = vma->vm_start;
1713 end = vma->vm_end;
1714 }
1715
1716 pgd = pgd_offset(vma->vm_mm, addr);
1717 do {
1718 next = pgd_addr_end(addr, end);
1719 if (pgd_none_or_clear_bad(pgd))
1720 continue;
c2febafc 1721 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
8a9f3ccd
BS
1722 if (ret)
1723 return ret;
1da177e4
LT
1724 } while (pgd++, addr = next, addr != end);
1725 return 0;
1726}
1727
1728static int unuse_mm(struct mm_struct *mm,
1729 swp_entry_t entry, struct page *page)
1730{
1731 struct vm_area_struct *vma;
8a9f3ccd 1732 int ret = 0;
1da177e4
LT
1733
1734 if (!down_read_trylock(&mm->mmap_sem)) {
1735 /*
7d03431c
FLVC
1736 * Activate page so shrink_inactive_list is unlikely to unmap
1737 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 1738 */
c475a8ab 1739 activate_page(page);
1da177e4
LT
1740 unlock_page(page);
1741 down_read(&mm->mmap_sem);
1742 lock_page(page);
1743 }
1da177e4 1744 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 1745 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4 1746 break;
dc644a07 1747 cond_resched();
1da177e4 1748 }
1da177e4 1749 up_read(&mm->mmap_sem);
8a9f3ccd 1750 return (ret < 0)? ret: 0;
1da177e4
LT
1751}
1752
1753/*
38b5faf4
DM
1754 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1755 * from current position to next entry still in use.
1da177e4
LT
1756 * Recycle to start on reaching the end, returning 0 when empty.
1757 */
6eb396dc 1758static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 1759 unsigned int prev, bool frontswap)
1da177e4 1760{
6eb396dc
HD
1761 unsigned int max = si->max;
1762 unsigned int i = prev;
8d69aaee 1763 unsigned char count;
1da177e4
LT
1764
1765 /*
5d337b91 1766 * No need for swap_lock here: we're just looking
1da177e4
LT
1767 * for whether an entry is in use, not modifying it; false
1768 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 1769 * allocations from this area (while holding swap_lock).
1da177e4
LT
1770 */
1771 for (;;) {
1772 if (++i >= max) {
1773 if (!prev) {
1774 i = 0;
1775 break;
1776 }
1777 /*
1778 * No entries in use at top of swap_map,
1779 * loop back to start and recheck there.
1780 */
1781 max = prev + 1;
1782 prev = 0;
1783 i = 1;
1784 }
4db0c3c2 1785 count = READ_ONCE(si->swap_map[i]);
355cfa73 1786 if (count && swap_count(count) != SWAP_MAP_BAD)
dc644a07
HD
1787 if (!frontswap || frontswap_test(si, i))
1788 break;
1789 if ((i % LATENCY_LIMIT) == 0)
1790 cond_resched();
1da177e4
LT
1791 }
1792 return i;
1793}
1794
1795/*
1796 * We completely avoid races by reading each swap page in advance,
1797 * and then search for the process using it. All the necessary
1798 * page table adjustments can then be made atomically.
38b5faf4
DM
1799 *
1800 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1801 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 1802 */
38b5faf4
DM
1803int try_to_unuse(unsigned int type, bool frontswap,
1804 unsigned long pages_to_unuse)
1da177e4 1805{
efa90a98 1806 struct swap_info_struct *si = swap_info[type];
1da177e4 1807 struct mm_struct *start_mm;
edfe23da
SL
1808 volatile unsigned char *swap_map; /* swap_map is accessed without
1809 * locking. Mark it as volatile
1810 * to prevent compiler doing
1811 * something odd.
1812 */
8d69aaee 1813 unsigned char swcount;
1da177e4
LT
1814 struct page *page;
1815 swp_entry_t entry;
6eb396dc 1816 unsigned int i = 0;
1da177e4 1817 int retval = 0;
1da177e4
LT
1818
1819 /*
1820 * When searching mms for an entry, a good strategy is to
1821 * start at the first mm we freed the previous entry from
1822 * (though actually we don't notice whether we or coincidence
1823 * freed the entry). Initialize this start_mm with a hold.
1824 *
1825 * A simpler strategy would be to start at the last mm we
1826 * freed the previous entry from; but that would take less
1827 * advantage of mmlist ordering, which clusters forked mms
1828 * together, child after parent. If we race with dup_mmap(), we
1829 * prefer to resolve parent before child, lest we miss entries
1830 * duplicated after we scanned child: using last mm would invert
570a335b 1831 * that.
1da177e4
LT
1832 */
1833 start_mm = &init_mm;
3fce371b 1834 mmget(&init_mm);
1da177e4
LT
1835
1836 /*
1837 * Keep on scanning until all entries have gone. Usually,
1838 * one pass through swap_map is enough, but not necessarily:
1839 * there are races when an instance of an entry might be missed.
1840 */
38b5faf4 1841 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4
LT
1842 if (signal_pending(current)) {
1843 retval = -EINTR;
1844 break;
1845 }
1846
886bb7e9 1847 /*
1da177e4
LT
1848 * Get a page for the entry, using the existing swap
1849 * cache page if there is one. Otherwise, get a clean
886bb7e9 1850 * page and read the swap into it.
1da177e4
LT
1851 */
1852 swap_map = &si->swap_map[i];
1853 entry = swp_entry(type, i);
02098fea
HD
1854 page = read_swap_cache_async(entry,
1855 GFP_HIGHUSER_MOVABLE, NULL, 0);
1da177e4
LT
1856 if (!page) {
1857 /*
1858 * Either swap_duplicate() failed because entry
1859 * has been freed independently, and will not be
1860 * reused since sys_swapoff() already disabled
1861 * allocation from here, or alloc_page() failed.
1862 */
edfe23da
SL
1863 swcount = *swap_map;
1864 /*
1865 * We don't hold lock here, so the swap entry could be
1866 * SWAP_MAP_BAD (when the cluster is discarding).
1867 * Instead of fail out, We can just skip the swap
1868 * entry because swapoff will wait for discarding
1869 * finish anyway.
1870 */
1871 if (!swcount || swcount == SWAP_MAP_BAD)
1da177e4
LT
1872 continue;
1873 retval = -ENOMEM;
1874 break;
1875 }
1876
1877 /*
1878 * Don't hold on to start_mm if it looks like exiting.
1879 */
1880 if (atomic_read(&start_mm->mm_users) == 1) {
1881 mmput(start_mm);
1882 start_mm = &init_mm;
3fce371b 1883 mmget(&init_mm);
1da177e4
LT
1884 }
1885
1886 /*
1887 * Wait for and lock page. When do_swap_page races with
1888 * try_to_unuse, do_swap_page can handle the fault much
1889 * faster than try_to_unuse can locate the entry. This
1890 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1891 * defer to do_swap_page in such a case - in some tests,
1892 * do_swap_page and try_to_unuse repeatedly compete.
1893 */
1894 wait_on_page_locked(page);
1895 wait_on_page_writeback(page);
1896 lock_page(page);
1897 wait_on_page_writeback(page);
1898
1899 /*
1900 * Remove all references to entry.
1da177e4 1901 */
1da177e4 1902 swcount = *swap_map;
aaa46865
HD
1903 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1904 retval = shmem_unuse(entry, page);
1905 /* page has already been unlocked and released */
1906 if (retval < 0)
1907 break;
1908 continue;
1da177e4 1909 }
aaa46865
HD
1910 if (swap_count(swcount) && start_mm != &init_mm)
1911 retval = unuse_mm(start_mm, entry, page);
1912
355cfa73 1913 if (swap_count(*swap_map)) {
1da177e4
LT
1914 int set_start_mm = (*swap_map >= swcount);
1915 struct list_head *p = &start_mm->mmlist;
1916 struct mm_struct *new_start_mm = start_mm;
1917 struct mm_struct *prev_mm = start_mm;
1918 struct mm_struct *mm;
1919
3fce371b
VN
1920 mmget(new_start_mm);
1921 mmget(prev_mm);
1da177e4 1922 spin_lock(&mmlist_lock);
aaa46865 1923 while (swap_count(*swap_map) && !retval &&
1da177e4
LT
1924 (p = p->next) != &start_mm->mmlist) {
1925 mm = list_entry(p, struct mm_struct, mmlist);
388f7934 1926 if (!mmget_not_zero(mm))
1da177e4 1927 continue;
1da177e4
LT
1928 spin_unlock(&mmlist_lock);
1929 mmput(prev_mm);
1930 prev_mm = mm;
1931
1932 cond_resched();
1933
1934 swcount = *swap_map;
355cfa73 1935 if (!swap_count(swcount)) /* any usage ? */
1da177e4 1936 ;
aaa46865 1937 else if (mm == &init_mm)
1da177e4 1938 set_start_mm = 1;
aaa46865 1939 else
1da177e4 1940 retval = unuse_mm(mm, entry, page);
355cfa73 1941
32c5fc10 1942 if (set_start_mm && *swap_map < swcount) {
1da177e4 1943 mmput(new_start_mm);
3fce371b 1944 mmget(mm);
1da177e4
LT
1945 new_start_mm = mm;
1946 set_start_mm = 0;
1947 }
1948 spin_lock(&mmlist_lock);
1949 }
1950 spin_unlock(&mmlist_lock);
1951 mmput(prev_mm);
1952 mmput(start_mm);
1953 start_mm = new_start_mm;
1954 }
1955 if (retval) {
1956 unlock_page(page);
09cbfeaf 1957 put_page(page);
1da177e4
LT
1958 break;
1959 }
1960
1da177e4
LT
1961 /*
1962 * If a reference remains (rare), we would like to leave
1963 * the page in the swap cache; but try_to_unmap could
1964 * then re-duplicate the entry once we drop page lock,
1965 * so we might loop indefinitely; also, that page could
1966 * not be swapped out to other storage meanwhile. So:
1967 * delete from cache even if there's another reference,
1968 * after ensuring that the data has been saved to disk -
1969 * since if the reference remains (rarer), it will be
1970 * read from disk into another page. Splitting into two
1971 * pages would be incorrect if swap supported "shared
1972 * private" pages, but they are handled by tmpfs files.
5ad64688
HD
1973 *
1974 * Given how unuse_vma() targets one particular offset
1975 * in an anon_vma, once the anon_vma has been determined,
1976 * this splitting happens to be just what is needed to
1977 * handle where KSM pages have been swapped out: re-reading
1978 * is unnecessarily slow, but we can fix that later on.
1da177e4 1979 */
355cfa73
KH
1980 if (swap_count(*swap_map) &&
1981 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
1982 struct writeback_control wbc = {
1983 .sync_mode = WB_SYNC_NONE,
1984 };
1985
1986 swap_writepage(page, &wbc);
1987 lock_page(page);
1988 wait_on_page_writeback(page);
1989 }
68bdc8d6
HD
1990
1991 /*
1992 * It is conceivable that a racing task removed this page from
1993 * swap cache just before we acquired the page lock at the top,
1994 * or while we dropped it in unuse_mm(). The page might even
1995 * be back in swap cache on another swap area: that we must not
1996 * delete, since it may not have been written out to swap yet.
1997 */
1998 if (PageSwapCache(page) &&
1999 likely(page_private(page) == entry.val))
2e0e26c7 2000 delete_from_swap_cache(page);
1da177e4
LT
2001
2002 /*
2003 * So we could skip searching mms once swap count went
2004 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 2005 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
2006 */
2007 SetPageDirty(page);
2008 unlock_page(page);
09cbfeaf 2009 put_page(page);
1da177e4
LT
2010
2011 /*
2012 * Make sure that we aren't completely killing
2013 * interactive performance.
2014 */
2015 cond_resched();
38b5faf4
DM
2016 if (frontswap && pages_to_unuse > 0) {
2017 if (!--pages_to_unuse)
2018 break;
2019 }
1da177e4
LT
2020 }
2021
2022 mmput(start_mm);
1da177e4
LT
2023 return retval;
2024}
2025
2026/*
5d337b91
HD
2027 * After a successful try_to_unuse, if no swap is now in use, we know
2028 * we can empty the mmlist. swap_lock must be held on entry and exit.
2029 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
2030 * added to the mmlist just after page_duplicate - before would be racy.
2031 */
2032static void drain_mmlist(void)
2033{
2034 struct list_head *p, *next;
efa90a98 2035 unsigned int type;
1da177e4 2036
efa90a98
HD
2037 for (type = 0; type < nr_swapfiles; type++)
2038 if (swap_info[type]->inuse_pages)
1da177e4
LT
2039 return;
2040 spin_lock(&mmlist_lock);
2041 list_for_each_safe(p, next, &init_mm.mmlist)
2042 list_del_init(p);
2043 spin_unlock(&mmlist_lock);
2044}
2045
2046/*
2047 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
2048 * corresponds to page offset for the specified swap entry.
2049 * Note that the type of this function is sector_t, but it returns page offset
2050 * into the bdev, not sector offset.
1da177e4 2051 */
d4906e1a 2052static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 2053{
f29ad6a9
HD
2054 struct swap_info_struct *sis;
2055 struct swap_extent *start_se;
2056 struct swap_extent *se;
2057 pgoff_t offset;
2058
efa90a98 2059 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
2060 *bdev = sis->bdev;
2061
2062 offset = swp_offset(entry);
2063 start_se = sis->curr_swap_extent;
2064 se = start_se;
1da177e4
LT
2065
2066 for ( ; ; ) {
1da177e4
LT
2067 if (se->start_page <= offset &&
2068 offset < (se->start_page + se->nr_pages)) {
2069 return se->start_block + (offset - se->start_page);
2070 }
a8ae4991 2071 se = list_next_entry(se, list);
1da177e4
LT
2072 sis->curr_swap_extent = se;
2073 BUG_ON(se == start_se); /* It *must* be present */
2074 }
2075}
2076
d4906e1a
LS
2077/*
2078 * Returns the page offset into bdev for the specified page's swap entry.
2079 */
2080sector_t map_swap_page(struct page *page, struct block_device **bdev)
2081{
2082 swp_entry_t entry;
2083 entry.val = page_private(page);
2084 return map_swap_entry(entry, bdev);
2085}
2086
1da177e4
LT
2087/*
2088 * Free all of a swapdev's extent information
2089 */
2090static void destroy_swap_extents(struct swap_info_struct *sis)
2091{
9625a5f2 2092 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
2093 struct swap_extent *se;
2094
a8ae4991 2095 se = list_first_entry(&sis->first_swap_extent.list,
1da177e4
LT
2096 struct swap_extent, list);
2097 list_del(&se->list);
2098 kfree(se);
2099 }
62c230bc
MG
2100
2101 if (sis->flags & SWP_FILE) {
2102 struct file *swap_file = sis->swap_file;
2103 struct address_space *mapping = swap_file->f_mapping;
2104
2105 sis->flags &= ~SWP_FILE;
2106 mapping->a_ops->swap_deactivate(swap_file);
2107 }
1da177e4
LT
2108}
2109
2110/*
2111 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 2112 * extent list. The extent list is kept sorted in page order.
1da177e4 2113 *
11d31886 2114 * This function rather assumes that it is called in ascending page order.
1da177e4 2115 */
a509bc1a 2116int
1da177e4
LT
2117add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2118 unsigned long nr_pages, sector_t start_block)
2119{
2120 struct swap_extent *se;
2121 struct swap_extent *new_se;
2122 struct list_head *lh;
2123
9625a5f2
HD
2124 if (start_page == 0) {
2125 se = &sis->first_swap_extent;
2126 sis->curr_swap_extent = se;
2127 se->start_page = 0;
2128 se->nr_pages = nr_pages;
2129 se->start_block = start_block;
2130 return 1;
2131 } else {
2132 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 2133 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
2134 BUG_ON(se->start_page + se->nr_pages != start_page);
2135 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
2136 /* Merge it */
2137 se->nr_pages += nr_pages;
2138 return 0;
2139 }
1da177e4
LT
2140 }
2141
2142 /*
2143 * No merge. Insert a new extent, preserving ordering.
2144 */
2145 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2146 if (new_se == NULL)
2147 return -ENOMEM;
2148 new_se->start_page = start_page;
2149 new_se->nr_pages = nr_pages;
2150 new_se->start_block = start_block;
2151
9625a5f2 2152 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 2153 return 1;
1da177e4
LT
2154}
2155
2156/*
2157 * A `swap extent' is a simple thing which maps a contiguous range of pages
2158 * onto a contiguous range of disk blocks. An ordered list of swap extents
2159 * is built at swapon time and is then used at swap_writepage/swap_readpage
2160 * time for locating where on disk a page belongs.
2161 *
2162 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2163 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2164 * swap files identically.
2165 *
2166 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2167 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2168 * swapfiles are handled *identically* after swapon time.
2169 *
2170 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2171 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2172 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2173 * requirements, they are simply tossed out - we will never use those blocks
2174 * for swapping.
2175 *
b0d9bcd4 2176 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
2177 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2178 * which will scribble on the fs.
2179 *
2180 * The amount of disk space which a single swap extent represents varies.
2181 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2182 * extents in the list. To avoid much list walking, we cache the previous
2183 * search location in `curr_swap_extent', and start new searches from there.
2184 * This is extremely effective. The average number of iterations in
2185 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2186 */
53092a74 2187static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 2188{
62c230bc
MG
2189 struct file *swap_file = sis->swap_file;
2190 struct address_space *mapping = swap_file->f_mapping;
2191 struct inode *inode = mapping->host;
1da177e4
LT
2192 int ret;
2193
1da177e4
LT
2194 if (S_ISBLK(inode->i_mode)) {
2195 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 2196 *span = sis->pages;
a509bc1a 2197 return ret;
1da177e4
LT
2198 }
2199
62c230bc 2200 if (mapping->a_ops->swap_activate) {
a509bc1a 2201 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
62c230bc
MG
2202 if (!ret) {
2203 sis->flags |= SWP_FILE;
2204 ret = add_swap_extent(sis, 0, sis->max, 0);
2205 *span = sis->pages;
2206 }
a509bc1a 2207 return ret;
62c230bc
MG
2208 }
2209
a509bc1a 2210 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
2211}
2212
cf0cac0a 2213static void _enable_swap_info(struct swap_info_struct *p, int prio,
2a8f9449
SL
2214 unsigned char *swap_map,
2215 struct swap_cluster_info *cluster_info)
40531542 2216{
40531542
CEB
2217 if (prio >= 0)
2218 p->prio = prio;
2219 else
2220 p->prio = --least_priority;
18ab4d4c
DS
2221 /*
2222 * the plist prio is negated because plist ordering is
2223 * low-to-high, while swap ordering is high-to-low
2224 */
2225 p->list.prio = -p->prio;
2226 p->avail_list.prio = -p->prio;
40531542 2227 p->swap_map = swap_map;
2a8f9449 2228 p->cluster_info = cluster_info;
40531542 2229 p->flags |= SWP_WRITEOK;
ec8acf20 2230 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
2231 total_swap_pages += p->pages;
2232
adfab836 2233 assert_spin_locked(&swap_lock);
adfab836 2234 /*
18ab4d4c
DS
2235 * both lists are plists, and thus priority ordered.
2236 * swap_active_head needs to be priority ordered for swapoff(),
2237 * which on removal of any swap_info_struct with an auto-assigned
2238 * (i.e. negative) priority increments the auto-assigned priority
2239 * of any lower-priority swap_info_structs.
2240 * swap_avail_head needs to be priority ordered for get_swap_page(),
2241 * which allocates swap pages from the highest available priority
2242 * swap_info_struct.
adfab836 2243 */
18ab4d4c
DS
2244 plist_add(&p->list, &swap_active_head);
2245 spin_lock(&swap_avail_lock);
2246 plist_add(&p->avail_list, &swap_avail_head);
2247 spin_unlock(&swap_avail_lock);
cf0cac0a
CEB
2248}
2249
2250static void enable_swap_info(struct swap_info_struct *p, int prio,
2251 unsigned char *swap_map,
2a8f9449 2252 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
2253 unsigned long *frontswap_map)
2254{
4f89849d 2255 frontswap_init(p->type, frontswap_map);
cf0cac0a 2256 spin_lock(&swap_lock);
ec8acf20 2257 spin_lock(&p->lock);
2a8f9449 2258 _enable_swap_info(p, prio, swap_map, cluster_info);
ec8acf20 2259 spin_unlock(&p->lock);
cf0cac0a
CEB
2260 spin_unlock(&swap_lock);
2261}
2262
2263static void reinsert_swap_info(struct swap_info_struct *p)
2264{
2265 spin_lock(&swap_lock);
ec8acf20 2266 spin_lock(&p->lock);
2a8f9449 2267 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
ec8acf20 2268 spin_unlock(&p->lock);
40531542
CEB
2269 spin_unlock(&swap_lock);
2270}
2271
67afa38e
TC
2272bool has_usable_swap(void)
2273{
2274 bool ret = true;
2275
2276 spin_lock(&swap_lock);
2277 if (plist_head_empty(&swap_active_head))
2278 ret = false;
2279 spin_unlock(&swap_lock);
2280 return ret;
2281}
2282
c4ea37c2 2283SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 2284{
73c34b6a 2285 struct swap_info_struct *p = NULL;
8d69aaee 2286 unsigned char *swap_map;
2a8f9449 2287 struct swap_cluster_info *cluster_info;
4f89849d 2288 unsigned long *frontswap_map;
1da177e4
LT
2289 struct file *swap_file, *victim;
2290 struct address_space *mapping;
2291 struct inode *inode;
91a27b2a 2292 struct filename *pathname;
adfab836 2293 int err, found = 0;
5b808a23 2294 unsigned int old_block_size;
886bb7e9 2295
1da177e4
LT
2296 if (!capable(CAP_SYS_ADMIN))
2297 return -EPERM;
2298
191c5424
AV
2299 BUG_ON(!current->mm);
2300
1da177e4 2301 pathname = getname(specialfile);
1da177e4 2302 if (IS_ERR(pathname))
f58b59c1 2303 return PTR_ERR(pathname);
1da177e4 2304
669abf4e 2305 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
2306 err = PTR_ERR(victim);
2307 if (IS_ERR(victim))
2308 goto out;
2309
2310 mapping = victim->f_mapping;
5d337b91 2311 spin_lock(&swap_lock);
18ab4d4c 2312 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 2313 if (p->flags & SWP_WRITEOK) {
adfab836
DS
2314 if (p->swap_file->f_mapping == mapping) {
2315 found = 1;
1da177e4 2316 break;
adfab836 2317 }
1da177e4 2318 }
1da177e4 2319 }
adfab836 2320 if (!found) {
1da177e4 2321 err = -EINVAL;
5d337b91 2322 spin_unlock(&swap_lock);
1da177e4
LT
2323 goto out_dput;
2324 }
191c5424 2325 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
2326 vm_unacct_memory(p->pages);
2327 else {
2328 err = -ENOMEM;
5d337b91 2329 spin_unlock(&swap_lock);
1da177e4
LT
2330 goto out_dput;
2331 }
18ab4d4c
DS
2332 spin_lock(&swap_avail_lock);
2333 plist_del(&p->avail_list, &swap_avail_head);
2334 spin_unlock(&swap_avail_lock);
ec8acf20 2335 spin_lock(&p->lock);
78ecba08 2336 if (p->prio < 0) {
adfab836
DS
2337 struct swap_info_struct *si = p;
2338
18ab4d4c 2339 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 2340 si->prio++;
18ab4d4c
DS
2341 si->list.prio--;
2342 si->avail_list.prio--;
adfab836 2343 }
78ecba08
HD
2344 least_priority++;
2345 }
18ab4d4c 2346 plist_del(&p->list, &swap_active_head);
ec8acf20 2347 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
2348 total_swap_pages -= p->pages;
2349 p->flags &= ~SWP_WRITEOK;
ec8acf20 2350 spin_unlock(&p->lock);
5d337b91 2351 spin_unlock(&swap_lock);
fb4f88dc 2352
039939a6
TC
2353 disable_swap_slots_cache_lock();
2354
e1e12d2f 2355 set_current_oom_origin();
adfab836 2356 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
e1e12d2f 2357 clear_current_oom_origin();
1da177e4 2358
1da177e4
LT
2359 if (err) {
2360 /* re-insert swap space back into swap_list */
cf0cac0a 2361 reinsert_swap_info(p);
039939a6 2362 reenable_swap_slots_cache_unlock();
1da177e4
LT
2363 goto out_dput;
2364 }
52b7efdb 2365
039939a6
TC
2366 reenable_swap_slots_cache_unlock();
2367
815c2c54
SL
2368 flush_work(&p->discard_work);
2369
5d337b91 2370 destroy_swap_extents(p);
570a335b
HD
2371 if (p->flags & SWP_CONTINUED)
2372 free_swap_count_continuations(p);
2373
fc0abb14 2374 mutex_lock(&swapon_mutex);
5d337b91 2375 spin_lock(&swap_lock);
ec8acf20 2376 spin_lock(&p->lock);
5d337b91
HD
2377 drain_mmlist();
2378
52b7efdb 2379 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
2380 p->highest_bit = 0; /* cuts scans short */
2381 while (p->flags >= SWP_SCANNING) {
ec8acf20 2382 spin_unlock(&p->lock);
5d337b91 2383 spin_unlock(&swap_lock);
13e4b57f 2384 schedule_timeout_uninterruptible(1);
5d337b91 2385 spin_lock(&swap_lock);
ec8acf20 2386 spin_lock(&p->lock);
52b7efdb 2387 }
52b7efdb 2388
1da177e4 2389 swap_file = p->swap_file;
5b808a23 2390 old_block_size = p->old_block_size;
1da177e4
LT
2391 p->swap_file = NULL;
2392 p->max = 0;
2393 swap_map = p->swap_map;
2394 p->swap_map = NULL;
2a8f9449
SL
2395 cluster_info = p->cluster_info;
2396 p->cluster_info = NULL;
4f89849d 2397 frontswap_map = frontswap_map_get(p);
ec8acf20 2398 spin_unlock(&p->lock);
5d337b91 2399 spin_unlock(&swap_lock);
adfab836 2400 frontswap_invalidate_area(p->type);
58e97ba6 2401 frontswap_map_set(p, NULL);
fc0abb14 2402 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
2403 free_percpu(p->percpu_cluster);
2404 p->percpu_cluster = NULL;
1da177e4 2405 vfree(swap_map);
54f180d3
HY
2406 kvfree(cluster_info);
2407 kvfree(frontswap_map);
2de1a7e4 2408 /* Destroy swap account information */
adfab836 2409 swap_cgroup_swapoff(p->type);
4b3ef9da 2410 exit_swap_address_space(p->type);
27a7faa0 2411
1da177e4
LT
2412 inode = mapping->host;
2413 if (S_ISBLK(inode->i_mode)) {
2414 struct block_device *bdev = I_BDEV(inode);
5b808a23 2415 set_blocksize(bdev, old_block_size);
e525fd89 2416 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2417 } else {
5955102c 2418 inode_lock(inode);
1da177e4 2419 inode->i_flags &= ~S_SWAPFILE;
5955102c 2420 inode_unlock(inode);
1da177e4
LT
2421 }
2422 filp_close(swap_file, NULL);
f893ab41
WY
2423
2424 /*
2425 * Clear the SWP_USED flag after all resources are freed so that swapon
2426 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2427 * not hold p->lock after we cleared its SWP_WRITEOK.
2428 */
2429 spin_lock(&swap_lock);
2430 p->flags = 0;
2431 spin_unlock(&swap_lock);
2432
1da177e4 2433 err = 0;
66d7dd51
KS
2434 atomic_inc(&proc_poll_event);
2435 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
2436
2437out_dput:
2438 filp_close(victim, NULL);
2439out:
f58b59c1 2440 putname(pathname);
1da177e4
LT
2441 return err;
2442}
2443
2444#ifdef CONFIG_PROC_FS
66d7dd51
KS
2445static unsigned swaps_poll(struct file *file, poll_table *wait)
2446{
f1514638 2447 struct seq_file *seq = file->private_data;
66d7dd51
KS
2448
2449 poll_wait(file, &proc_poll_wait, wait);
2450
f1514638
KS
2451 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2452 seq->poll_event = atomic_read(&proc_poll_event);
66d7dd51
KS
2453 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2454 }
2455
2456 return POLLIN | POLLRDNORM;
2457}
2458
1da177e4
LT
2459/* iterator */
2460static void *swap_start(struct seq_file *swap, loff_t *pos)
2461{
efa90a98
HD
2462 struct swap_info_struct *si;
2463 int type;
1da177e4
LT
2464 loff_t l = *pos;
2465
fc0abb14 2466 mutex_lock(&swapon_mutex);
1da177e4 2467
881e4aab
SS
2468 if (!l)
2469 return SEQ_START_TOKEN;
2470
efa90a98
HD
2471 for (type = 0; type < nr_swapfiles; type++) {
2472 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2473 si = swap_info[type];
2474 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2475 continue;
881e4aab 2476 if (!--l)
efa90a98 2477 return si;
1da177e4
LT
2478 }
2479
2480 return NULL;
2481}
2482
2483static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2484{
efa90a98
HD
2485 struct swap_info_struct *si = v;
2486 int type;
1da177e4 2487
881e4aab 2488 if (v == SEQ_START_TOKEN)
efa90a98
HD
2489 type = 0;
2490 else
2491 type = si->type + 1;
881e4aab 2492
efa90a98
HD
2493 for (; type < nr_swapfiles; type++) {
2494 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2495 si = swap_info[type];
2496 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
2497 continue;
2498 ++*pos;
efa90a98 2499 return si;
1da177e4
LT
2500 }
2501
2502 return NULL;
2503}
2504
2505static void swap_stop(struct seq_file *swap, void *v)
2506{
fc0abb14 2507 mutex_unlock(&swapon_mutex);
1da177e4
LT
2508}
2509
2510static int swap_show(struct seq_file *swap, void *v)
2511{
efa90a98 2512 struct swap_info_struct *si = v;
1da177e4
LT
2513 struct file *file;
2514 int len;
2515
efa90a98 2516 if (si == SEQ_START_TOKEN) {
881e4aab
SS
2517 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2518 return 0;
2519 }
1da177e4 2520
efa90a98 2521 file = si->swap_file;
2726d566 2522 len = seq_file_path(swap, file, " \t\n\\");
6eb396dc 2523 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9 2524 len < 40 ? 40 - len : 1, " ",
496ad9aa 2525 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2526 "partition" : "file\t",
efa90a98
HD
2527 si->pages << (PAGE_SHIFT - 10),
2528 si->inuse_pages << (PAGE_SHIFT - 10),
2529 si->prio);
1da177e4
LT
2530 return 0;
2531}
2532
15ad7cdc 2533static const struct seq_operations swaps_op = {
1da177e4
LT
2534 .start = swap_start,
2535 .next = swap_next,
2536 .stop = swap_stop,
2537 .show = swap_show
2538};
2539
2540static int swaps_open(struct inode *inode, struct file *file)
2541{
f1514638 2542 struct seq_file *seq;
66d7dd51
KS
2543 int ret;
2544
66d7dd51 2545 ret = seq_open(file, &swaps_op);
f1514638 2546 if (ret)
66d7dd51 2547 return ret;
66d7dd51 2548
f1514638
KS
2549 seq = file->private_data;
2550 seq->poll_event = atomic_read(&proc_poll_event);
2551 return 0;
1da177e4
LT
2552}
2553
15ad7cdc 2554static const struct file_operations proc_swaps_operations = {
1da177e4
LT
2555 .open = swaps_open,
2556 .read = seq_read,
2557 .llseek = seq_lseek,
2558 .release = seq_release,
66d7dd51 2559 .poll = swaps_poll,
1da177e4
LT
2560};
2561
2562static int __init procswaps_init(void)
2563{
3d71f86f 2564 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
2565 return 0;
2566}
2567__initcall(procswaps_init);
2568#endif /* CONFIG_PROC_FS */
2569
1796316a
JB
2570#ifdef MAX_SWAPFILES_CHECK
2571static int __init max_swapfiles_check(void)
2572{
2573 MAX_SWAPFILES_CHECK();
2574 return 0;
2575}
2576late_initcall(max_swapfiles_check);
2577#endif
2578
53cbb243 2579static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2580{
73c34b6a 2581 struct swap_info_struct *p;
1da177e4 2582 unsigned int type;
efa90a98
HD
2583
2584 p = kzalloc(sizeof(*p), GFP_KERNEL);
2585 if (!p)
53cbb243 2586 return ERR_PTR(-ENOMEM);
efa90a98 2587
5d337b91 2588 spin_lock(&swap_lock);
efa90a98
HD
2589 for (type = 0; type < nr_swapfiles; type++) {
2590 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2591 break;
efa90a98 2592 }
0697212a 2593 if (type >= MAX_SWAPFILES) {
5d337b91 2594 spin_unlock(&swap_lock);
efa90a98 2595 kfree(p);
730c0581 2596 return ERR_PTR(-EPERM);
1da177e4 2597 }
efa90a98
HD
2598 if (type >= nr_swapfiles) {
2599 p->type = type;
2600 swap_info[type] = p;
2601 /*
2602 * Write swap_info[type] before nr_swapfiles, in case a
2603 * racing procfs swap_start() or swap_next() is reading them.
2604 * (We never shrink nr_swapfiles, we never free this entry.)
2605 */
2606 smp_wmb();
2607 nr_swapfiles++;
2608 } else {
2609 kfree(p);
2610 p = swap_info[type];
2611 /*
2612 * Do not memset this entry: a racing procfs swap_next()
2613 * would be relying on p->type to remain valid.
2614 */
2615 }
9625a5f2 2616 INIT_LIST_HEAD(&p->first_swap_extent.list);
18ab4d4c
DS
2617 plist_node_init(&p->list, 0);
2618 plist_node_init(&p->avail_list, 0);
1da177e4 2619 p->flags = SWP_USED;
5d337b91 2620 spin_unlock(&swap_lock);
ec8acf20 2621 spin_lock_init(&p->lock);
efa90a98 2622
53cbb243 2623 return p;
53cbb243
CEB
2624}
2625
4d0e1e10
CEB
2626static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2627{
2628 int error;
2629
2630 if (S_ISBLK(inode->i_mode)) {
2631 p->bdev = bdgrab(I_BDEV(inode));
2632 error = blkdev_get(p->bdev,
6f179af8 2633 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
4d0e1e10
CEB
2634 if (error < 0) {
2635 p->bdev = NULL;
6f179af8 2636 return error;
4d0e1e10
CEB
2637 }
2638 p->old_block_size = block_size(p->bdev);
2639 error = set_blocksize(p->bdev, PAGE_SIZE);
2640 if (error < 0)
87ade72a 2641 return error;
4d0e1e10
CEB
2642 p->flags |= SWP_BLKDEV;
2643 } else if (S_ISREG(inode->i_mode)) {
2644 p->bdev = inode->i_sb->s_bdev;
5955102c 2645 inode_lock(inode);
87ade72a
CEB
2646 if (IS_SWAPFILE(inode))
2647 return -EBUSY;
2648 } else
2649 return -EINVAL;
4d0e1e10
CEB
2650
2651 return 0;
4d0e1e10
CEB
2652}
2653
ca8bd38b
CEB
2654static unsigned long read_swap_header(struct swap_info_struct *p,
2655 union swap_header *swap_header,
2656 struct inode *inode)
2657{
2658 int i;
2659 unsigned long maxpages;
2660 unsigned long swapfilepages;
d6bbbd29 2661 unsigned long last_page;
ca8bd38b
CEB
2662
2663 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2664 pr_err("Unable to find swap-space signature\n");
38719025 2665 return 0;
ca8bd38b
CEB
2666 }
2667
2668 /* swap partition endianess hack... */
2669 if (swab32(swap_header->info.version) == 1) {
2670 swab32s(&swap_header->info.version);
2671 swab32s(&swap_header->info.last_page);
2672 swab32s(&swap_header->info.nr_badpages);
dd111be6
JH
2673 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2674 return 0;
ca8bd38b
CEB
2675 for (i = 0; i < swap_header->info.nr_badpages; i++)
2676 swab32s(&swap_header->info.badpages[i]);
2677 }
2678 /* Check the swap header's sub-version */
2679 if (swap_header->info.version != 1) {
465c47fd
AM
2680 pr_warn("Unable to handle swap header version %d\n",
2681 swap_header->info.version);
38719025 2682 return 0;
ca8bd38b
CEB
2683 }
2684
2685 p->lowest_bit = 1;
2686 p->cluster_next = 1;
2687 p->cluster_nr = 0;
2688
2689 /*
2690 * Find out how many pages are allowed for a single swap
9b15b817 2691 * device. There are two limiting factors: 1) the number
a2c16d6c
HD
2692 * of bits for the swap offset in the swp_entry_t type, and
2693 * 2) the number of bits in the swap pte as defined by the
9b15b817 2694 * different architectures. In order to find the
a2c16d6c 2695 * largest possible bit mask, a swap entry with swap type 0
ca8bd38b 2696 * and swap offset ~0UL is created, encoded to a swap pte,
a2c16d6c 2697 * decoded to a swp_entry_t again, and finally the swap
ca8bd38b
CEB
2698 * offset is extracted. This will mask all the bits from
2699 * the initial ~0UL mask that can't be encoded in either
2700 * the swp_entry_t or the architecture definition of a
9b15b817 2701 * swap pte.
ca8bd38b
CEB
2702 */
2703 maxpages = swp_offset(pte_to_swp_entry(
9b15b817 2704 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
d6bbbd29
RJ
2705 last_page = swap_header->info.last_page;
2706 if (last_page > maxpages) {
465c47fd 2707 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2708 maxpages << (PAGE_SHIFT - 10),
2709 last_page << (PAGE_SHIFT - 10));
2710 }
2711 if (maxpages > last_page) {
2712 maxpages = last_page + 1;
ca8bd38b
CEB
2713 /* p->max is an unsigned int: don't overflow it */
2714 if ((unsigned int)maxpages == 0)
2715 maxpages = UINT_MAX;
2716 }
2717 p->highest_bit = maxpages - 1;
2718
2719 if (!maxpages)
38719025 2720 return 0;
ca8bd38b
CEB
2721 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2722 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 2723 pr_warn("Swap area shorter than signature indicates\n");
38719025 2724 return 0;
ca8bd38b
CEB
2725 }
2726 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 2727 return 0;
ca8bd38b 2728 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 2729 return 0;
ca8bd38b
CEB
2730
2731 return maxpages;
ca8bd38b
CEB
2732}
2733
4b3ef9da 2734#define SWAP_CLUSTER_INFO_COLS \
235b6217 2735 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
4b3ef9da
HY
2736#define SWAP_CLUSTER_SPACE_COLS \
2737 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2738#define SWAP_CLUSTER_COLS \
2739 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
235b6217 2740
915d4d7b
CEB
2741static int setup_swap_map_and_extents(struct swap_info_struct *p,
2742 union swap_header *swap_header,
2743 unsigned char *swap_map,
2a8f9449 2744 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
2745 unsigned long maxpages,
2746 sector_t *span)
2747{
235b6217 2748 unsigned int j, k;
915d4d7b
CEB
2749 unsigned int nr_good_pages;
2750 int nr_extents;
2a8f9449 2751 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
235b6217
HY
2752 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2753 unsigned long i, idx;
915d4d7b
CEB
2754
2755 nr_good_pages = maxpages - 1; /* omit header page */
2756
6b534915
HY
2757 cluster_list_init(&p->free_clusters);
2758 cluster_list_init(&p->discard_clusters);
2a8f9449 2759
915d4d7b
CEB
2760 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2761 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
2762 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2763 return -EINVAL;
915d4d7b
CEB
2764 if (page_nr < maxpages) {
2765 swap_map[page_nr] = SWAP_MAP_BAD;
2766 nr_good_pages--;
2a8f9449
SL
2767 /*
2768 * Haven't marked the cluster free yet, no list
2769 * operation involved
2770 */
2771 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
2772 }
2773 }
2774
2a8f9449
SL
2775 /* Haven't marked the cluster free yet, no list operation involved */
2776 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2777 inc_cluster_info_page(p, cluster_info, i);
2778
915d4d7b
CEB
2779 if (nr_good_pages) {
2780 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
2781 /*
2782 * Not mark the cluster free yet, no list
2783 * operation involved
2784 */
2785 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
2786 p->max = maxpages;
2787 p->pages = nr_good_pages;
2788 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
2789 if (nr_extents < 0)
2790 return nr_extents;
915d4d7b
CEB
2791 nr_good_pages = p->pages;
2792 }
2793 if (!nr_good_pages) {
465c47fd 2794 pr_warn("Empty swap-file\n");
bdb8e3f6 2795 return -EINVAL;
915d4d7b
CEB
2796 }
2797
2a8f9449
SL
2798 if (!cluster_info)
2799 return nr_extents;
2800
235b6217 2801
4b3ef9da
HY
2802 /*
2803 * Reduce false cache line sharing between cluster_info and
2804 * sharing same address space.
2805 */
235b6217
HY
2806 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2807 j = (k + col) % SWAP_CLUSTER_COLS;
2808 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2809 idx = i * SWAP_CLUSTER_COLS + j;
2810 if (idx >= nr_clusters)
2811 continue;
2812 if (cluster_count(&cluster_info[idx]))
2813 continue;
2a8f9449 2814 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
6b534915
HY
2815 cluster_list_add_tail(&p->free_clusters, cluster_info,
2816 idx);
2a8f9449 2817 }
2a8f9449 2818 }
915d4d7b 2819 return nr_extents;
915d4d7b
CEB
2820}
2821
dcf6b7dd
RA
2822/*
2823 * Helper to sys_swapon determining if a given swap
2824 * backing device queue supports DISCARD operations.
2825 */
2826static bool swap_discardable(struct swap_info_struct *si)
2827{
2828 struct request_queue *q = bdev_get_queue(si->bdev);
2829
2830 if (!q || !blk_queue_discard(q))
2831 return false;
2832
2833 return true;
2834}
2835
53cbb243
CEB
2836SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2837{
2838 struct swap_info_struct *p;
91a27b2a 2839 struct filename *name;
53cbb243
CEB
2840 struct file *swap_file = NULL;
2841 struct address_space *mapping;
40531542 2842 int prio;
53cbb243
CEB
2843 int error;
2844 union swap_header *swap_header;
915d4d7b 2845 int nr_extents;
53cbb243
CEB
2846 sector_t span;
2847 unsigned long maxpages;
53cbb243 2848 unsigned char *swap_map = NULL;
2a8f9449 2849 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 2850 unsigned long *frontswap_map = NULL;
53cbb243
CEB
2851 struct page *page = NULL;
2852 struct inode *inode = NULL;
53cbb243 2853
d15cab97
HD
2854 if (swap_flags & ~SWAP_FLAGS_VALID)
2855 return -EINVAL;
2856
53cbb243
CEB
2857 if (!capable(CAP_SYS_ADMIN))
2858 return -EPERM;
2859
2860 p = alloc_swap_info();
2542e513
CEB
2861 if (IS_ERR(p))
2862 return PTR_ERR(p);
53cbb243 2863
815c2c54
SL
2864 INIT_WORK(&p->discard_work, swap_discard_work);
2865
1da177e4 2866 name = getname(specialfile);
1da177e4 2867 if (IS_ERR(name)) {
7de7fb6b 2868 error = PTR_ERR(name);
1da177e4 2869 name = NULL;
bd69010b 2870 goto bad_swap;
1da177e4 2871 }
669abf4e 2872 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 2873 if (IS_ERR(swap_file)) {
7de7fb6b 2874 error = PTR_ERR(swap_file);
1da177e4 2875 swap_file = NULL;
bd69010b 2876 goto bad_swap;
1da177e4
LT
2877 }
2878
2879 p->swap_file = swap_file;
2880 mapping = swap_file->f_mapping;
2130781e 2881 inode = mapping->host;
6f179af8 2882
5955102c 2883 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
4d0e1e10
CEB
2884 error = claim_swapfile(p, inode);
2885 if (unlikely(error))
1da177e4 2886 goto bad_swap;
1da177e4 2887
1da177e4
LT
2888 /*
2889 * Read the swap header.
2890 */
2891 if (!mapping->a_ops->readpage) {
2892 error = -EINVAL;
2893 goto bad_swap;
2894 }
090d2b18 2895 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
2896 if (IS_ERR(page)) {
2897 error = PTR_ERR(page);
2898 goto bad_swap;
2899 }
81e33971 2900 swap_header = kmap(page);
1da177e4 2901
ca8bd38b
CEB
2902 maxpages = read_swap_header(p, swap_header, inode);
2903 if (unlikely(!maxpages)) {
1da177e4
LT
2904 error = -EINVAL;
2905 goto bad_swap;
2906 }
886bb7e9 2907
81e33971 2908 /* OK, set up the swap map and apply the bad block list */
803d0c83 2909 swap_map = vzalloc(maxpages);
81e33971
HD
2910 if (!swap_map) {
2911 error = -ENOMEM;
2912 goto bad_swap;
2913 }
f0571429
MK
2914
2915 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
2916 p->flags |= SWP_STABLE_WRITES;
2917
2a8f9449 2918 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
6f179af8 2919 int cpu;
235b6217 2920 unsigned long ci, nr_cluster;
6f179af8 2921
2a8f9449
SL
2922 p->flags |= SWP_SOLIDSTATE;
2923 /*
2924 * select a random position to start with to help wear leveling
2925 * SSD
2926 */
2927 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
235b6217 2928 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2a8f9449 2929
54f180d3
HY
2930 cluster_info = kvzalloc(nr_cluster * sizeof(*cluster_info),
2931 GFP_KERNEL);
2a8f9449
SL
2932 if (!cluster_info) {
2933 error = -ENOMEM;
2934 goto bad_swap;
2935 }
235b6217
HY
2936
2937 for (ci = 0; ci < nr_cluster; ci++)
2938 spin_lock_init(&((cluster_info + ci)->lock));
2939
ebc2a1a6
SL
2940 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2941 if (!p->percpu_cluster) {
2942 error = -ENOMEM;
2943 goto bad_swap;
2944 }
6f179af8 2945 for_each_possible_cpu(cpu) {
ebc2a1a6 2946 struct percpu_cluster *cluster;
6f179af8 2947 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
ebc2a1a6
SL
2948 cluster_set_null(&cluster->index);
2949 }
2a8f9449 2950 }
1da177e4 2951
1421ef3c
CEB
2952 error = swap_cgroup_swapon(p->type, maxpages);
2953 if (error)
2954 goto bad_swap;
2955
915d4d7b 2956 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 2957 cluster_info, maxpages, &span);
915d4d7b
CEB
2958 if (unlikely(nr_extents < 0)) {
2959 error = nr_extents;
1da177e4
LT
2960 goto bad_swap;
2961 }
38b5faf4 2962 /* frontswap enabled? set up bit-per-page map for frontswap */
8ea1d2a1 2963 if (IS_ENABLED(CONFIG_FRONTSWAP))
54f180d3
HY
2964 frontswap_map = kvzalloc(BITS_TO_LONGS(maxpages) * sizeof(long),
2965 GFP_KERNEL);
1da177e4 2966
2a8f9449
SL
2967 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2968 /*
2969 * When discard is enabled for swap with no particular
2970 * policy flagged, we set all swap discard flags here in
2971 * order to sustain backward compatibility with older
2972 * swapon(8) releases.
2973 */
2974 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2975 SWP_PAGE_DISCARD);
dcf6b7dd 2976
2a8f9449
SL
2977 /*
2978 * By flagging sys_swapon, a sysadmin can tell us to
2979 * either do single-time area discards only, or to just
2980 * perform discards for released swap page-clusters.
2981 * Now it's time to adjust the p->flags accordingly.
2982 */
2983 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2984 p->flags &= ~SWP_PAGE_DISCARD;
2985 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2986 p->flags &= ~SWP_AREA_DISCARD;
2987
2988 /* issue a swapon-time discard if it's still required */
2989 if (p->flags & SWP_AREA_DISCARD) {
2990 int err = discard_swap(p);
2991 if (unlikely(err))
2992 pr_err("swapon: discard_swap(%p): %d\n",
2993 p, err);
dcf6b7dd 2994 }
20137a49 2995 }
6a6ba831 2996
4b3ef9da
HY
2997 error = init_swap_address_space(p->type, maxpages);
2998 if (error)
2999 goto bad_swap;
3000
fc0abb14 3001 mutex_lock(&swapon_mutex);
40531542 3002 prio = -1;
78ecba08 3003 if (swap_flags & SWAP_FLAG_PREFER)
40531542 3004 prio =
78ecba08 3005 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 3006 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 3007
756a025f 3008 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 3009 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
3010 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3011 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 3012 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
3013 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3014 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 3015 (frontswap_map) ? "FS" : "");
c69dbfb8 3016
fc0abb14 3017 mutex_unlock(&swapon_mutex);
66d7dd51
KS
3018 atomic_inc(&proc_poll_event);
3019 wake_up_interruptible(&proc_poll_wait);
3020
9b01c350
CEB
3021 if (S_ISREG(inode->i_mode))
3022 inode->i_flags |= S_SWAPFILE;
1da177e4
LT
3023 error = 0;
3024 goto out;
3025bad_swap:
ebc2a1a6
SL
3026 free_percpu(p->percpu_cluster);
3027 p->percpu_cluster = NULL;
bd69010b 3028 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
3029 set_blocksize(p->bdev, p->old_block_size);
3030 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 3031 }
4cd3bb10 3032 destroy_swap_extents(p);
e8e6c2ec 3033 swap_cgroup_swapoff(p->type);
5d337b91 3034 spin_lock(&swap_lock);
1da177e4 3035 p->swap_file = NULL;
1da177e4 3036 p->flags = 0;
5d337b91 3037 spin_unlock(&swap_lock);
1da177e4 3038 vfree(swap_map);
2a8f9449 3039 vfree(cluster_info);
52c50567 3040 if (swap_file) {
2130781e 3041 if (inode && S_ISREG(inode->i_mode)) {
5955102c 3042 inode_unlock(inode);
2130781e
CEB
3043 inode = NULL;
3044 }
1da177e4 3045 filp_close(swap_file, NULL);
52c50567 3046 }
1da177e4
LT
3047out:
3048 if (page && !IS_ERR(page)) {
3049 kunmap(page);
09cbfeaf 3050 put_page(page);
1da177e4
LT
3051 }
3052 if (name)
3053 putname(name);
9b01c350 3054 if (inode && S_ISREG(inode->i_mode))
5955102c 3055 inode_unlock(inode);
039939a6
TC
3056 if (!error)
3057 enable_swap_slots_cache();
1da177e4
LT
3058 return error;
3059}
3060
3061void si_swapinfo(struct sysinfo *val)
3062{
efa90a98 3063 unsigned int type;
1da177e4
LT
3064 unsigned long nr_to_be_unused = 0;
3065
5d337b91 3066 spin_lock(&swap_lock);
efa90a98
HD
3067 for (type = 0; type < nr_swapfiles; type++) {
3068 struct swap_info_struct *si = swap_info[type];
3069
3070 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3071 nr_to_be_unused += si->inuse_pages;
1da177e4 3072 }
ec8acf20 3073 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 3074 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 3075 spin_unlock(&swap_lock);
1da177e4
LT
3076}
3077
3078/*
3079 * Verify that a swap entry is valid and increment its swap map count.
3080 *
355cfa73
KH
3081 * Returns error code in following case.
3082 * - success -> 0
3083 * - swp_entry is invalid -> EINVAL
3084 * - swp_entry is migration entry -> EINVAL
3085 * - swap-cache reference is requested but there is already one. -> EEXIST
3086 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 3087 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 3088 */
8d69aaee 3089static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 3090{
73c34b6a 3091 struct swap_info_struct *p;
235b6217 3092 struct swap_cluster_info *ci;
1da177e4 3093 unsigned long offset, type;
8d69aaee
HD
3094 unsigned char count;
3095 unsigned char has_cache;
253d553b 3096 int err = -EINVAL;
1da177e4 3097
a7420aa5 3098 if (non_swap_entry(entry))
253d553b 3099 goto out;
0697212a 3100
1da177e4
LT
3101 type = swp_type(entry);
3102 if (type >= nr_swapfiles)
3103 goto bad_file;
efa90a98 3104 p = swap_info[type];
1da177e4 3105 offset = swp_offset(entry);
355cfa73 3106 if (unlikely(offset >= p->max))
235b6217
HY
3107 goto out;
3108
3109 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 3110
253d553b 3111 count = p->swap_map[offset];
edfe23da
SL
3112
3113 /*
3114 * swapin_readahead() doesn't check if a swap entry is valid, so the
3115 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3116 */
3117 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3118 err = -ENOENT;
3119 goto unlock_out;
3120 }
3121
253d553b
HD
3122 has_cache = count & SWAP_HAS_CACHE;
3123 count &= ~SWAP_HAS_CACHE;
3124 err = 0;
355cfa73 3125
253d553b 3126 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
3127
3128 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
3129 if (!has_cache && count)
3130 has_cache = SWAP_HAS_CACHE;
3131 else if (has_cache) /* someone else added cache */
3132 err = -EEXIST;
3133 else /* no users remaining */
3134 err = -ENOENT;
355cfa73
KH
3135
3136 } else if (count || has_cache) {
253d553b 3137
570a335b
HD
3138 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3139 count += usage;
3140 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 3141 err = -EINVAL;
570a335b
HD
3142 else if (swap_count_continued(p, offset, count))
3143 count = COUNT_CONTINUED;
3144 else
3145 err = -ENOMEM;
355cfa73 3146 } else
253d553b
HD
3147 err = -ENOENT; /* unused swap entry */
3148
3149 p->swap_map[offset] = count | has_cache;
3150
355cfa73 3151unlock_out:
235b6217 3152 unlock_cluster_or_swap_info(p, ci);
1da177e4 3153out:
253d553b 3154 return err;
1da177e4
LT
3155
3156bad_file:
465c47fd 3157 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
3158 goto out;
3159}
253d553b 3160
aaa46865
HD
3161/*
3162 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3163 * (in which case its reference count is never incremented).
3164 */
3165void swap_shmem_alloc(swp_entry_t entry)
3166{
3167 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3168}
3169
355cfa73 3170/*
08259d58
HD
3171 * Increase reference count of swap entry by 1.
3172 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3173 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3174 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3175 * might occur if a page table entry has got corrupted.
355cfa73 3176 */
570a335b 3177int swap_duplicate(swp_entry_t entry)
355cfa73 3178{
570a335b
HD
3179 int err = 0;
3180
3181 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3182 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3183 return err;
355cfa73 3184}
1da177e4 3185
cb4b86ba 3186/*
355cfa73
KH
3187 * @entry: swap entry for which we allocate swap cache.
3188 *
73c34b6a 3189 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
3190 * This can return error codes. Returns 0 at success.
3191 * -EBUSY means there is a swap cache.
3192 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
3193 */
3194int swapcache_prepare(swp_entry_t entry)
3195{
253d553b 3196 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
3197}
3198
f981c595
MG
3199struct swap_info_struct *page_swap_info(struct page *page)
3200{
3201 swp_entry_t swap = { .val = page_private(page) };
f981c595
MG
3202 return swap_info[swp_type(swap)];
3203}
3204
3205/*
3206 * out-of-line __page_file_ methods to avoid include hell.
3207 */
3208struct address_space *__page_file_mapping(struct page *page)
3209{
309381fe 3210 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
3211 return page_swap_info(page)->swap_file->f_mapping;
3212}
3213EXPORT_SYMBOL_GPL(__page_file_mapping);
3214
3215pgoff_t __page_file_index(struct page *page)
3216{
3217 swp_entry_t swap = { .val = page_private(page) };
309381fe 3218 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
3219 return swp_offset(swap);
3220}
3221EXPORT_SYMBOL_GPL(__page_file_index);
3222
570a335b
HD
3223/*
3224 * add_swap_count_continuation - called when a swap count is duplicated
3225 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3226 * page of the original vmalloc'ed swap_map, to hold the continuation count
3227 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3228 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3229 *
3230 * These continuation pages are seldom referenced: the common paths all work
3231 * on the original swap_map, only referring to a continuation page when the
3232 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3233 *
3234 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3235 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3236 * can be called after dropping locks.
3237 */
3238int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3239{
3240 struct swap_info_struct *si;
235b6217 3241 struct swap_cluster_info *ci;
570a335b
HD
3242 struct page *head;
3243 struct page *page;
3244 struct page *list_page;
3245 pgoff_t offset;
3246 unsigned char count;
3247
3248 /*
3249 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3250 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3251 */
3252 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3253
3254 si = swap_info_get(entry);
3255 if (!si) {
3256 /*
3257 * An acceptable race has occurred since the failing
3258 * __swap_duplicate(): the swap entry has been freed,
3259 * perhaps even the whole swap_map cleared for swapoff.
3260 */
3261 goto outer;
3262 }
3263
3264 offset = swp_offset(entry);
235b6217
HY
3265
3266 ci = lock_cluster(si, offset);
3267
570a335b
HD
3268 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3269
3270 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3271 /*
3272 * The higher the swap count, the more likely it is that tasks
3273 * will race to add swap count continuation: we need to avoid
3274 * over-provisioning.
3275 */
3276 goto out;
3277 }
3278
3279 if (!page) {
235b6217 3280 unlock_cluster(ci);
ec8acf20 3281 spin_unlock(&si->lock);
570a335b
HD
3282 return -ENOMEM;
3283 }
3284
3285 /*
3286 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
3287 * no architecture is using highmem pages for kernel page tables: so it
3288 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
3289 */
3290 head = vmalloc_to_page(si->swap_map + offset);
3291 offset &= ~PAGE_MASK;
3292
3293 /*
3294 * Page allocation does not initialize the page's lru field,
3295 * but it does always reset its private field.
3296 */
3297 if (!page_private(head)) {
3298 BUG_ON(count & COUNT_CONTINUED);
3299 INIT_LIST_HEAD(&head->lru);
3300 set_page_private(head, SWP_CONTINUED);
3301 si->flags |= SWP_CONTINUED;
3302 }
3303
3304 list_for_each_entry(list_page, &head->lru, lru) {
3305 unsigned char *map;
3306
3307 /*
3308 * If the previous map said no continuation, but we've found
3309 * a continuation page, free our allocation and use this one.
3310 */
3311 if (!(count & COUNT_CONTINUED))
3312 goto out;
3313
9b04c5fe 3314 map = kmap_atomic(list_page) + offset;
570a335b 3315 count = *map;
9b04c5fe 3316 kunmap_atomic(map);
570a335b
HD
3317
3318 /*
3319 * If this continuation count now has some space in it,
3320 * free our allocation and use this one.
3321 */
3322 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3323 goto out;
3324 }
3325
3326 list_add_tail(&page->lru, &head->lru);
3327 page = NULL; /* now it's attached, don't free it */
3328out:
235b6217 3329 unlock_cluster(ci);
ec8acf20 3330 spin_unlock(&si->lock);
570a335b
HD
3331outer:
3332 if (page)
3333 __free_page(page);
3334 return 0;
3335}
3336
3337/*
3338 * swap_count_continued - when the original swap_map count is incremented
3339 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3340 * into, carry if so, or else fail until a new continuation page is allocated;
3341 * when the original swap_map count is decremented from 0 with continuation,
3342 * borrow from the continuation and report whether it still holds more.
235b6217
HY
3343 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3344 * lock.
570a335b
HD
3345 */
3346static bool swap_count_continued(struct swap_info_struct *si,
3347 pgoff_t offset, unsigned char count)
3348{
3349 struct page *head;
3350 struct page *page;
3351 unsigned char *map;
3352
3353 head = vmalloc_to_page(si->swap_map + offset);
3354 if (page_private(head) != SWP_CONTINUED) {
3355 BUG_ON(count & COUNT_CONTINUED);
3356 return false; /* need to add count continuation */
3357 }
3358
3359 offset &= ~PAGE_MASK;
3360 page = list_entry(head->lru.next, struct page, lru);
9b04c5fe 3361 map = kmap_atomic(page) + offset;
570a335b
HD
3362
3363 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3364 goto init_map; /* jump over SWAP_CONT_MAX checks */
3365
3366 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3367 /*
3368 * Think of how you add 1 to 999
3369 */
3370 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 3371 kunmap_atomic(map);
570a335b
HD
3372 page = list_entry(page->lru.next, struct page, lru);
3373 BUG_ON(page == head);
9b04c5fe 3374 map = kmap_atomic(page) + offset;
570a335b
HD
3375 }
3376 if (*map == SWAP_CONT_MAX) {
9b04c5fe 3377 kunmap_atomic(map);
570a335b
HD
3378 page = list_entry(page->lru.next, struct page, lru);
3379 if (page == head)
3380 return false; /* add count continuation */
9b04c5fe 3381 map = kmap_atomic(page) + offset;
570a335b
HD
3382init_map: *map = 0; /* we didn't zero the page */
3383 }
3384 *map += 1;
9b04c5fe 3385 kunmap_atomic(map);
570a335b
HD
3386 page = list_entry(page->lru.prev, struct page, lru);
3387 while (page != head) {
9b04c5fe 3388 map = kmap_atomic(page) + offset;
570a335b 3389 *map = COUNT_CONTINUED;
9b04c5fe 3390 kunmap_atomic(map);
570a335b
HD
3391 page = list_entry(page->lru.prev, struct page, lru);
3392 }
3393 return true; /* incremented */
3394
3395 } else { /* decrementing */
3396 /*
3397 * Think of how you subtract 1 from 1000
3398 */
3399 BUG_ON(count != COUNT_CONTINUED);
3400 while (*map == COUNT_CONTINUED) {
9b04c5fe 3401 kunmap_atomic(map);
570a335b
HD
3402 page = list_entry(page->lru.next, struct page, lru);
3403 BUG_ON(page == head);
9b04c5fe 3404 map = kmap_atomic(page) + offset;
570a335b
HD
3405 }
3406 BUG_ON(*map == 0);
3407 *map -= 1;
3408 if (*map == 0)
3409 count = 0;
9b04c5fe 3410 kunmap_atomic(map);
570a335b
HD
3411 page = list_entry(page->lru.prev, struct page, lru);
3412 while (page != head) {
9b04c5fe 3413 map = kmap_atomic(page) + offset;
570a335b
HD
3414 *map = SWAP_CONT_MAX | count;
3415 count = COUNT_CONTINUED;
9b04c5fe 3416 kunmap_atomic(map);
570a335b
HD
3417 page = list_entry(page->lru.prev, struct page, lru);
3418 }
3419 return count == COUNT_CONTINUED;
3420 }
3421}
3422
3423/*
3424 * free_swap_count_continuations - swapoff free all the continuation pages
3425 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3426 */
3427static void free_swap_count_continuations(struct swap_info_struct *si)
3428{
3429 pgoff_t offset;
3430
3431 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3432 struct page *head;
3433 head = vmalloc_to_page(si->swap_map + offset);
3434 if (page_private(head)) {
0d576d20
GT
3435 struct page *page, *next;
3436
3437 list_for_each_entry_safe(page, next, &head->lru, lru) {
3438 list_del(&page->lru);
570a335b
HD
3439 __free_page(page);
3440 }
3441 }
3442 }
3443}