]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/swapfile.c
lib/plist: add plist_requeue
[mirror_ubuntu-artful-kernel.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
072441e2 17#include <linux/shmem_fs.h>
1da177e4 18#include <linux/blkdev.h>
20137a49 19#include <linux/random.h>
1da177e4
LT
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
5ad64688 24#include <linux/ksm.h>
1da177e4
LT
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
fc0abb14 28#include <linux/mutex.h>
c59ede7b 29#include <linux/capability.h>
1da177e4 30#include <linux/syscalls.h>
8a9f3ccd 31#include <linux/memcontrol.h>
66d7dd51 32#include <linux/poll.h>
72788c38 33#include <linux/oom.h>
38b5faf4
DM
34#include <linux/frontswap.h>
35#include <linux/swapfile.h>
f981c595 36#include <linux/export.h>
1da177e4
LT
37
38#include <asm/pgtable.h>
39#include <asm/tlbflush.h>
40#include <linux/swapops.h>
27a7faa0 41#include <linux/page_cgroup.h>
1da177e4 42
570a335b
HD
43static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 unsigned char);
45static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 46static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 47
38b5faf4 48DEFINE_SPINLOCK(swap_lock);
7c363b8c 49static unsigned int nr_swapfiles;
ec8acf20
SL
50atomic_long_t nr_swap_pages;
51/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 52long total_swap_pages;
78ecba08 53static int least_priority;
1da177e4 54
1da177e4
LT
55static const char Bad_file[] = "Bad swap file entry ";
56static const char Unused_file[] = "Unused swap file entry ";
57static const char Bad_offset[] = "Bad swap offset entry ";
58static const char Unused_offset[] = "Unused swap offset entry ";
59
adfab836
DS
60/*
61 * all active swap_info_structs
62 * protected with swap_lock, and ordered by priority.
63 */
64LIST_HEAD(swap_list_head);
1da177e4 65
38b5faf4 66struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 67
fc0abb14 68static DEFINE_MUTEX(swapon_mutex);
1da177e4 69
66d7dd51
KS
70static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
71/* Activity counter to indicate that a swapon or swapoff has occurred */
72static atomic_t proc_poll_event = ATOMIC_INIT(0);
73
8d69aaee 74static inline unsigned char swap_count(unsigned char ent)
355cfa73 75{
570a335b 76 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
355cfa73
KH
77}
78
efa90a98 79/* returns 1 if swap entry is freed */
c9e44410
KH
80static int
81__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
82{
efa90a98 83 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
84 struct page *page;
85 int ret = 0;
86
33806f06 87 page = find_get_page(swap_address_space(entry), entry.val);
c9e44410
KH
88 if (!page)
89 return 0;
90 /*
91 * This function is called from scan_swap_map() and it's called
92 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
93 * We have to use trylock for avoiding deadlock. This is a special
94 * case and you should use try_to_free_swap() with explicit lock_page()
95 * in usual operations.
96 */
97 if (trylock_page(page)) {
98 ret = try_to_free_swap(page);
99 unlock_page(page);
100 }
101 page_cache_release(page);
102 return ret;
103}
355cfa73 104
6a6ba831
HD
105/*
106 * swapon tell device that all the old swap contents can be discarded,
107 * to allow the swap device to optimize its wear-levelling.
108 */
109static int discard_swap(struct swap_info_struct *si)
110{
111 struct swap_extent *se;
9625a5f2
HD
112 sector_t start_block;
113 sector_t nr_blocks;
6a6ba831
HD
114 int err = 0;
115
9625a5f2
HD
116 /* Do not discard the swap header page! */
117 se = &si->first_swap_extent;
118 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
119 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
120 if (nr_blocks) {
121 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 122 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
123 if (err)
124 return err;
125 cond_resched();
126 }
6a6ba831 127
9625a5f2
HD
128 list_for_each_entry(se, &si->first_swap_extent.list, list) {
129 start_block = se->start_block << (PAGE_SHIFT - 9);
130 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
131
132 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 133 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
134 if (err)
135 break;
136
137 cond_resched();
138 }
139 return err; /* That will often be -EOPNOTSUPP */
140}
141
7992fde7
HD
142/*
143 * swap allocation tell device that a cluster of swap can now be discarded,
144 * to allow the swap device to optimize its wear-levelling.
145 */
146static void discard_swap_cluster(struct swap_info_struct *si,
147 pgoff_t start_page, pgoff_t nr_pages)
148{
149 struct swap_extent *se = si->curr_swap_extent;
150 int found_extent = 0;
151
152 while (nr_pages) {
153 struct list_head *lh;
154
155 if (se->start_page <= start_page &&
156 start_page < se->start_page + se->nr_pages) {
157 pgoff_t offset = start_page - se->start_page;
158 sector_t start_block = se->start_block + offset;
858a2990 159 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
160
161 if (nr_blocks > nr_pages)
162 nr_blocks = nr_pages;
163 start_page += nr_blocks;
164 nr_pages -= nr_blocks;
165
166 if (!found_extent++)
167 si->curr_swap_extent = se;
168
169 start_block <<= PAGE_SHIFT - 9;
170 nr_blocks <<= PAGE_SHIFT - 9;
171 if (blkdev_issue_discard(si->bdev, start_block,
dd3932ed 172 nr_blocks, GFP_NOIO, 0))
7992fde7
HD
173 break;
174 }
175
176 lh = se->list.next;
7992fde7
HD
177 se = list_entry(lh, struct swap_extent, list);
178 }
179}
180
048c27fd
HD
181#define SWAPFILE_CLUSTER 256
182#define LATENCY_LIMIT 256
183
2a8f9449
SL
184static inline void cluster_set_flag(struct swap_cluster_info *info,
185 unsigned int flag)
186{
187 info->flags = flag;
188}
189
190static inline unsigned int cluster_count(struct swap_cluster_info *info)
191{
192 return info->data;
193}
194
195static inline void cluster_set_count(struct swap_cluster_info *info,
196 unsigned int c)
197{
198 info->data = c;
199}
200
201static inline void cluster_set_count_flag(struct swap_cluster_info *info,
202 unsigned int c, unsigned int f)
203{
204 info->flags = f;
205 info->data = c;
206}
207
208static inline unsigned int cluster_next(struct swap_cluster_info *info)
209{
210 return info->data;
211}
212
213static inline void cluster_set_next(struct swap_cluster_info *info,
214 unsigned int n)
215{
216 info->data = n;
217}
218
219static inline void cluster_set_next_flag(struct swap_cluster_info *info,
220 unsigned int n, unsigned int f)
221{
222 info->flags = f;
223 info->data = n;
224}
225
226static inline bool cluster_is_free(struct swap_cluster_info *info)
227{
228 return info->flags & CLUSTER_FLAG_FREE;
229}
230
231static inline bool cluster_is_null(struct swap_cluster_info *info)
232{
233 return info->flags & CLUSTER_FLAG_NEXT_NULL;
234}
235
236static inline void cluster_set_null(struct swap_cluster_info *info)
237{
238 info->flags = CLUSTER_FLAG_NEXT_NULL;
239 info->data = 0;
240}
241
815c2c54
SL
242/* Add a cluster to discard list and schedule it to do discard */
243static void swap_cluster_schedule_discard(struct swap_info_struct *si,
244 unsigned int idx)
245{
246 /*
247 * If scan_swap_map() can't find a free cluster, it will check
248 * si->swap_map directly. To make sure the discarding cluster isn't
249 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
250 * will be cleared after discard
251 */
252 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
253 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
254
255 if (cluster_is_null(&si->discard_cluster_head)) {
256 cluster_set_next_flag(&si->discard_cluster_head,
257 idx, 0);
258 cluster_set_next_flag(&si->discard_cluster_tail,
259 idx, 0);
260 } else {
261 unsigned int tail = cluster_next(&si->discard_cluster_tail);
262 cluster_set_next(&si->cluster_info[tail], idx);
263 cluster_set_next_flag(&si->discard_cluster_tail,
264 idx, 0);
265 }
266
267 schedule_work(&si->discard_work);
268}
269
270/*
271 * Doing discard actually. After a cluster discard is finished, the cluster
272 * will be added to free cluster list. caller should hold si->lock.
273*/
274static void swap_do_scheduled_discard(struct swap_info_struct *si)
275{
276 struct swap_cluster_info *info;
277 unsigned int idx;
278
279 info = si->cluster_info;
280
281 while (!cluster_is_null(&si->discard_cluster_head)) {
282 idx = cluster_next(&si->discard_cluster_head);
283
284 cluster_set_next_flag(&si->discard_cluster_head,
285 cluster_next(&info[idx]), 0);
286 if (cluster_next(&si->discard_cluster_tail) == idx) {
287 cluster_set_null(&si->discard_cluster_head);
288 cluster_set_null(&si->discard_cluster_tail);
289 }
290 spin_unlock(&si->lock);
291
292 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
293 SWAPFILE_CLUSTER);
294
295 spin_lock(&si->lock);
296 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
297 if (cluster_is_null(&si->free_cluster_head)) {
298 cluster_set_next_flag(&si->free_cluster_head,
299 idx, 0);
300 cluster_set_next_flag(&si->free_cluster_tail,
301 idx, 0);
302 } else {
303 unsigned int tail;
304
305 tail = cluster_next(&si->free_cluster_tail);
306 cluster_set_next(&info[tail], idx);
307 cluster_set_next_flag(&si->free_cluster_tail,
308 idx, 0);
309 }
310 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
311 0, SWAPFILE_CLUSTER);
312 }
313}
314
315static void swap_discard_work(struct work_struct *work)
316{
317 struct swap_info_struct *si;
318
319 si = container_of(work, struct swap_info_struct, discard_work);
320
321 spin_lock(&si->lock);
322 swap_do_scheduled_discard(si);
323 spin_unlock(&si->lock);
324}
325
2a8f9449
SL
326/*
327 * The cluster corresponding to page_nr will be used. The cluster will be
328 * removed from free cluster list and its usage counter will be increased.
329 */
330static void inc_cluster_info_page(struct swap_info_struct *p,
331 struct swap_cluster_info *cluster_info, unsigned long page_nr)
332{
333 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
334
335 if (!cluster_info)
336 return;
337 if (cluster_is_free(&cluster_info[idx])) {
338 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
339 cluster_set_next_flag(&p->free_cluster_head,
340 cluster_next(&cluster_info[idx]), 0);
341 if (cluster_next(&p->free_cluster_tail) == idx) {
342 cluster_set_null(&p->free_cluster_tail);
343 cluster_set_null(&p->free_cluster_head);
344 }
345 cluster_set_count_flag(&cluster_info[idx], 0, 0);
346 }
347
348 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
349 cluster_set_count(&cluster_info[idx],
350 cluster_count(&cluster_info[idx]) + 1);
351}
352
353/*
354 * The cluster corresponding to page_nr decreases one usage. If the usage
355 * counter becomes 0, which means no page in the cluster is in using, we can
356 * optionally discard the cluster and add it to free cluster list.
357 */
358static void dec_cluster_info_page(struct swap_info_struct *p,
359 struct swap_cluster_info *cluster_info, unsigned long page_nr)
360{
361 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
362
363 if (!cluster_info)
364 return;
365
366 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
367 cluster_set_count(&cluster_info[idx],
368 cluster_count(&cluster_info[idx]) - 1);
369
370 if (cluster_count(&cluster_info[idx]) == 0) {
815c2c54
SL
371 /*
372 * If the swap is discardable, prepare discard the cluster
373 * instead of free it immediately. The cluster will be freed
374 * after discard.
375 */
edfe23da
SL
376 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
377 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
815c2c54
SL
378 swap_cluster_schedule_discard(p, idx);
379 return;
380 }
381
2a8f9449
SL
382 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
383 if (cluster_is_null(&p->free_cluster_head)) {
384 cluster_set_next_flag(&p->free_cluster_head, idx, 0);
385 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
386 } else {
387 unsigned int tail = cluster_next(&p->free_cluster_tail);
388 cluster_set_next(&cluster_info[tail], idx);
389 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
390 }
391 }
392}
393
394/*
395 * It's possible scan_swap_map() uses a free cluster in the middle of free
396 * cluster list. Avoiding such abuse to avoid list corruption.
397 */
ebc2a1a6
SL
398static bool
399scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
400 unsigned long offset)
401{
ebc2a1a6
SL
402 struct percpu_cluster *percpu_cluster;
403 bool conflict;
404
2a8f9449 405 offset /= SWAPFILE_CLUSTER;
ebc2a1a6 406 conflict = !cluster_is_null(&si->free_cluster_head) &&
2a8f9449
SL
407 offset != cluster_next(&si->free_cluster_head) &&
408 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
409
410 if (!conflict)
411 return false;
412
413 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
414 cluster_set_null(&percpu_cluster->index);
415 return true;
416}
417
418/*
419 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
420 * might involve allocating a new cluster for current CPU too.
421 */
422static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
423 unsigned long *offset, unsigned long *scan_base)
424{
425 struct percpu_cluster *cluster;
426 bool found_free;
427 unsigned long tmp;
428
429new_cluster:
430 cluster = this_cpu_ptr(si->percpu_cluster);
431 if (cluster_is_null(&cluster->index)) {
432 if (!cluster_is_null(&si->free_cluster_head)) {
433 cluster->index = si->free_cluster_head;
434 cluster->next = cluster_next(&cluster->index) *
435 SWAPFILE_CLUSTER;
436 } else if (!cluster_is_null(&si->discard_cluster_head)) {
437 /*
438 * we don't have free cluster but have some clusters in
439 * discarding, do discard now and reclaim them
440 */
441 swap_do_scheduled_discard(si);
442 *scan_base = *offset = si->cluster_next;
443 goto new_cluster;
444 } else
445 return;
446 }
447
448 found_free = false;
449
450 /*
451 * Other CPUs can use our cluster if they can't find a free cluster,
452 * check if there is still free entry in the cluster
453 */
454 tmp = cluster->next;
455 while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
456 SWAPFILE_CLUSTER) {
457 if (!si->swap_map[tmp]) {
458 found_free = true;
459 break;
460 }
461 tmp++;
462 }
463 if (!found_free) {
464 cluster_set_null(&cluster->index);
465 goto new_cluster;
466 }
467 cluster->next = tmp + 1;
468 *offset = tmp;
469 *scan_base = tmp;
2a8f9449
SL
470}
471
24b8ff7c
CEB
472static unsigned long scan_swap_map(struct swap_info_struct *si,
473 unsigned char usage)
1da177e4 474{
ebebbbe9 475 unsigned long offset;
c60aa176 476 unsigned long scan_base;
7992fde7 477 unsigned long last_in_cluster = 0;
048c27fd 478 int latency_ration = LATENCY_LIMIT;
7dfad418 479
886bb7e9 480 /*
7dfad418
HD
481 * We try to cluster swap pages by allocating them sequentially
482 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
483 * way, however, we resort to first-free allocation, starting
484 * a new cluster. This prevents us from scattering swap pages
485 * all over the entire swap partition, so that we reduce
486 * overall disk seek times between swap pages. -- sct
487 * But we do now try to find an empty cluster. -Andrea
c60aa176 488 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
489 */
490
52b7efdb 491 si->flags += SWP_SCANNING;
c60aa176 492 scan_base = offset = si->cluster_next;
ebebbbe9 493
ebc2a1a6
SL
494 /* SSD algorithm */
495 if (si->cluster_info) {
496 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
497 goto checks;
498 }
499
ebebbbe9
HD
500 if (unlikely(!si->cluster_nr--)) {
501 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
502 si->cluster_nr = SWAPFILE_CLUSTER - 1;
503 goto checks;
504 }
2a8f9449 505
ec8acf20 506 spin_unlock(&si->lock);
7dfad418 507
c60aa176
HD
508 /*
509 * If seek is expensive, start searching for new cluster from
510 * start of partition, to minimize the span of allocated swap.
511 * But if seek is cheap, search from our current position, so
512 * that swap is allocated from all over the partition: if the
513 * Flash Translation Layer only remaps within limited zones,
514 * we don't want to wear out the first zone too quickly.
515 */
516 if (!(si->flags & SWP_SOLIDSTATE))
517 scan_base = offset = si->lowest_bit;
7dfad418
HD
518 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
519
520 /* Locate the first empty (unaligned) cluster */
521 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 522 if (si->swap_map[offset])
7dfad418
HD
523 last_in_cluster = offset + SWAPFILE_CLUSTER;
524 else if (offset == last_in_cluster) {
ec8acf20 525 spin_lock(&si->lock);
ebebbbe9
HD
526 offset -= SWAPFILE_CLUSTER - 1;
527 si->cluster_next = offset;
528 si->cluster_nr = SWAPFILE_CLUSTER - 1;
529 goto checks;
1da177e4 530 }
048c27fd
HD
531 if (unlikely(--latency_ration < 0)) {
532 cond_resched();
533 latency_ration = LATENCY_LIMIT;
534 }
7dfad418 535 }
ebebbbe9
HD
536
537 offset = si->lowest_bit;
c60aa176
HD
538 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
539
540 /* Locate the first empty (unaligned) cluster */
541 for (; last_in_cluster < scan_base; offset++) {
542 if (si->swap_map[offset])
543 last_in_cluster = offset + SWAPFILE_CLUSTER;
544 else if (offset == last_in_cluster) {
ec8acf20 545 spin_lock(&si->lock);
c60aa176
HD
546 offset -= SWAPFILE_CLUSTER - 1;
547 si->cluster_next = offset;
548 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
549 goto checks;
550 }
551 if (unlikely(--latency_ration < 0)) {
552 cond_resched();
553 latency_ration = LATENCY_LIMIT;
554 }
555 }
556
557 offset = scan_base;
ec8acf20 558 spin_lock(&si->lock);
ebebbbe9 559 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 560 }
7dfad418 561
ebebbbe9 562checks:
ebc2a1a6
SL
563 if (si->cluster_info) {
564 while (scan_swap_map_ssd_cluster_conflict(si, offset))
565 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
566 }
ebebbbe9 567 if (!(si->flags & SWP_WRITEOK))
52b7efdb 568 goto no_page;
7dfad418
HD
569 if (!si->highest_bit)
570 goto no_page;
ebebbbe9 571 if (offset > si->highest_bit)
c60aa176 572 scan_base = offset = si->lowest_bit;
c9e44410 573
b73d7fce
HD
574 /* reuse swap entry of cache-only swap if not busy. */
575 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 576 int swap_was_freed;
ec8acf20 577 spin_unlock(&si->lock);
c9e44410 578 swap_was_freed = __try_to_reclaim_swap(si, offset);
ec8acf20 579 spin_lock(&si->lock);
c9e44410
KH
580 /* entry was freed successfully, try to use this again */
581 if (swap_was_freed)
582 goto checks;
583 goto scan; /* check next one */
584 }
585
ebebbbe9
HD
586 if (si->swap_map[offset])
587 goto scan;
588
589 if (offset == si->lowest_bit)
590 si->lowest_bit++;
591 if (offset == si->highest_bit)
592 si->highest_bit--;
593 si->inuse_pages++;
594 if (si->inuse_pages == si->pages) {
595 si->lowest_bit = si->max;
596 si->highest_bit = 0;
1da177e4 597 }
253d553b 598 si->swap_map[offset] = usage;
2a8f9449 599 inc_cluster_info_page(si, si->cluster_info, offset);
ebebbbe9
HD
600 si->cluster_next = offset + 1;
601 si->flags -= SWP_SCANNING;
7992fde7 602
ebebbbe9 603 return offset;
7dfad418 604
ebebbbe9 605scan:
ec8acf20 606 spin_unlock(&si->lock);
7dfad418 607 while (++offset <= si->highest_bit) {
52b7efdb 608 if (!si->swap_map[offset]) {
ec8acf20 609 spin_lock(&si->lock);
52b7efdb
HD
610 goto checks;
611 }
c9e44410 612 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 613 spin_lock(&si->lock);
c9e44410
KH
614 goto checks;
615 }
048c27fd
HD
616 if (unlikely(--latency_ration < 0)) {
617 cond_resched();
618 latency_ration = LATENCY_LIMIT;
619 }
7dfad418 620 }
c60aa176 621 offset = si->lowest_bit;
a5998061 622 while (offset < scan_base) {
c60aa176 623 if (!si->swap_map[offset]) {
ec8acf20 624 spin_lock(&si->lock);
c60aa176
HD
625 goto checks;
626 }
c9e44410 627 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 628 spin_lock(&si->lock);
c9e44410
KH
629 goto checks;
630 }
c60aa176
HD
631 if (unlikely(--latency_ration < 0)) {
632 cond_resched();
633 latency_ration = LATENCY_LIMIT;
634 }
a5998061 635 offset++;
c60aa176 636 }
ec8acf20 637 spin_lock(&si->lock);
7dfad418
HD
638
639no_page:
52b7efdb 640 si->flags -= SWP_SCANNING;
1da177e4
LT
641 return 0;
642}
643
644swp_entry_t get_swap_page(void)
645{
adfab836 646 struct swap_info_struct *si, *next;
fb4f88dc 647 pgoff_t offset;
adfab836 648 struct list_head *tmp;
1da177e4 649
5d337b91 650 spin_lock(&swap_lock);
ec8acf20 651 if (atomic_long_read(&nr_swap_pages) <= 0)
fb4f88dc 652 goto noswap;
ec8acf20 653 atomic_long_dec(&nr_swap_pages);
fb4f88dc 654
adfab836
DS
655 list_for_each(tmp, &swap_list_head) {
656 si = list_entry(tmp, typeof(*si), list);
ec8acf20 657 spin_lock(&si->lock);
adfab836 658 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
ec8acf20 659 spin_unlock(&si->lock);
fb4f88dc 660 continue;
ec8acf20 661 }
fb4f88dc 662
adfab836
DS
663 /*
664 * rotate the current swap_info that we're going to use
665 * to after any other swap_info that have the same prio,
666 * so that all equal-priority swap_info get used equally
667 */
668 next = si;
669 list_for_each_entry_continue(next, &swap_list_head, list) {
670 if (si->prio != next->prio)
671 break;
672 list_rotate_left(&si->list);
673 next = si;
674 }
ec8acf20
SL
675
676 spin_unlock(&swap_lock);
355cfa73 677 /* This is called for allocating swap entry for cache */
253d553b 678 offset = scan_swap_map(si, SWAP_HAS_CACHE);
ec8acf20
SL
679 spin_unlock(&si->lock);
680 if (offset)
adfab836 681 return swp_entry(si->type, offset);
ec8acf20 682 spin_lock(&swap_lock);
adfab836
DS
683 /*
684 * if we got here, it's likely that si was almost full before,
685 * and since scan_swap_map() can drop the si->lock, multiple
686 * callers probably all tried to get a page from the same si
687 * and it filled up before we could get one. So we need to
688 * try again. Since we dropped the swap_lock, there may now
689 * be non-full higher priority swap_infos, and this si may have
690 * even been removed from the list (although very unlikely).
691 * Let's start over.
692 */
693 tmp = &swap_list_head;
1da177e4 694 }
fb4f88dc 695
ec8acf20 696 atomic_long_inc(&nr_swap_pages);
fb4f88dc 697noswap:
5d337b91 698 spin_unlock(&swap_lock);
fb4f88dc 699 return (swp_entry_t) {0};
1da177e4
LT
700}
701
2de1a7e4 702/* The only caller of this function is now suspend routine */
910321ea
HD
703swp_entry_t get_swap_page_of_type(int type)
704{
705 struct swap_info_struct *si;
706 pgoff_t offset;
707
910321ea 708 si = swap_info[type];
ec8acf20 709 spin_lock(&si->lock);
910321ea 710 if (si && (si->flags & SWP_WRITEOK)) {
ec8acf20 711 atomic_long_dec(&nr_swap_pages);
910321ea
HD
712 /* This is called for allocating swap entry, not cache */
713 offset = scan_swap_map(si, 1);
714 if (offset) {
ec8acf20 715 spin_unlock(&si->lock);
910321ea
HD
716 return swp_entry(type, offset);
717 }
ec8acf20 718 atomic_long_inc(&nr_swap_pages);
910321ea 719 }
ec8acf20 720 spin_unlock(&si->lock);
910321ea
HD
721 return (swp_entry_t) {0};
722}
723
73c34b6a 724static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1da177e4 725{
73c34b6a 726 struct swap_info_struct *p;
1da177e4
LT
727 unsigned long offset, type;
728
729 if (!entry.val)
730 goto out;
731 type = swp_type(entry);
732 if (type >= nr_swapfiles)
733 goto bad_nofile;
efa90a98 734 p = swap_info[type];
1da177e4
LT
735 if (!(p->flags & SWP_USED))
736 goto bad_device;
737 offset = swp_offset(entry);
738 if (offset >= p->max)
739 goto bad_offset;
740 if (!p->swap_map[offset])
741 goto bad_free;
ec8acf20 742 spin_lock(&p->lock);
1da177e4
LT
743 return p;
744
745bad_free:
465c47fd 746 pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
1da177e4
LT
747 goto out;
748bad_offset:
465c47fd 749 pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
750 goto out;
751bad_device:
465c47fd 752 pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
753 goto out;
754bad_nofile:
465c47fd 755 pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
756out:
757 return NULL;
886bb7e9 758}
1da177e4 759
8d69aaee
HD
760static unsigned char swap_entry_free(struct swap_info_struct *p,
761 swp_entry_t entry, unsigned char usage)
1da177e4 762{
253d553b 763 unsigned long offset = swp_offset(entry);
8d69aaee
HD
764 unsigned char count;
765 unsigned char has_cache;
355cfa73 766
253d553b
HD
767 count = p->swap_map[offset];
768 has_cache = count & SWAP_HAS_CACHE;
769 count &= ~SWAP_HAS_CACHE;
355cfa73 770
253d553b 771 if (usage == SWAP_HAS_CACHE) {
355cfa73 772 VM_BUG_ON(!has_cache);
253d553b 773 has_cache = 0;
aaa46865
HD
774 } else if (count == SWAP_MAP_SHMEM) {
775 /*
776 * Or we could insist on shmem.c using a special
777 * swap_shmem_free() and free_shmem_swap_and_cache()...
778 */
779 count = 0;
570a335b
HD
780 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
781 if (count == COUNT_CONTINUED) {
782 if (swap_count_continued(p, offset, count))
783 count = SWAP_MAP_MAX | COUNT_CONTINUED;
784 else
785 count = SWAP_MAP_MAX;
786 } else
787 count--;
788 }
253d553b
HD
789
790 if (!count)
791 mem_cgroup_uncharge_swap(entry);
792
793 usage = count | has_cache;
794 p->swap_map[offset] = usage;
355cfa73 795
355cfa73 796 /* free if no reference */
253d553b 797 if (!usage) {
2a8f9449 798 dec_cluster_info_page(p, p->cluster_info, offset);
355cfa73
KH
799 if (offset < p->lowest_bit)
800 p->lowest_bit = offset;
801 if (offset > p->highest_bit)
802 p->highest_bit = offset;
ec8acf20 803 atomic_long_inc(&nr_swap_pages);
355cfa73 804 p->inuse_pages--;
38b5faf4 805 frontswap_invalidate_page(p->type, offset);
73744923
MG
806 if (p->flags & SWP_BLKDEV) {
807 struct gendisk *disk = p->bdev->bd_disk;
808 if (disk->fops->swap_slot_free_notify)
809 disk->fops->swap_slot_free_notify(p->bdev,
810 offset);
811 }
1da177e4 812 }
253d553b
HD
813
814 return usage;
1da177e4
LT
815}
816
817/*
2de1a7e4 818 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
819 * is still around or has not been recycled.
820 */
821void swap_free(swp_entry_t entry)
822{
73c34b6a 823 struct swap_info_struct *p;
1da177e4
LT
824
825 p = swap_info_get(entry);
826 if (p) {
253d553b 827 swap_entry_free(p, entry, 1);
ec8acf20 828 spin_unlock(&p->lock);
1da177e4
LT
829 }
830}
831
cb4b86ba
KH
832/*
833 * Called after dropping swapcache to decrease refcnt to swap entries.
834 */
835void swapcache_free(swp_entry_t entry, struct page *page)
836{
355cfa73 837 struct swap_info_struct *p;
8d69aaee 838 unsigned char count;
355cfa73 839
355cfa73
KH
840 p = swap_info_get(entry);
841 if (p) {
253d553b
HD
842 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
843 if (page)
844 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
ec8acf20 845 spin_unlock(&p->lock);
355cfa73 846 }
cb4b86ba
KH
847}
848
1da177e4 849/*
c475a8ab 850 * How many references to page are currently swapped out?
570a335b
HD
851 * This does not give an exact answer when swap count is continued,
852 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 853 */
bde05d1c 854int page_swapcount(struct page *page)
1da177e4 855{
c475a8ab
HD
856 int count = 0;
857 struct swap_info_struct *p;
1da177e4
LT
858 swp_entry_t entry;
859
4c21e2f2 860 entry.val = page_private(page);
1da177e4
LT
861 p = swap_info_get(entry);
862 if (p) {
355cfa73 863 count = swap_count(p->swap_map[swp_offset(entry)]);
ec8acf20 864 spin_unlock(&p->lock);
1da177e4 865 }
c475a8ab 866 return count;
1da177e4
LT
867}
868
869/*
7b1fe597
HD
870 * We can write to an anon page without COW if there are no other references
871 * to it. And as a side-effect, free up its swap: because the old content
872 * on disk will never be read, and seeking back there to write new content
873 * later would only waste time away from clustering.
1da177e4 874 */
7b1fe597 875int reuse_swap_page(struct page *page)
1da177e4 876{
c475a8ab
HD
877 int count;
878
309381fe 879 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688
HD
880 if (unlikely(PageKsm(page)))
881 return 0;
c475a8ab 882 count = page_mapcount(page);
7b1fe597 883 if (count <= 1 && PageSwapCache(page)) {
c475a8ab 884 count += page_swapcount(page);
7b1fe597
HD
885 if (count == 1 && !PageWriteback(page)) {
886 delete_from_swap_cache(page);
887 SetPageDirty(page);
888 }
889 }
5ad64688 890 return count <= 1;
1da177e4
LT
891}
892
893/*
a2c43eed
HD
894 * If swap is getting full, or if there are no more mappings of this page,
895 * then try_to_free_swap is called to free its swap space.
1da177e4 896 */
a2c43eed 897int try_to_free_swap(struct page *page)
1da177e4 898{
309381fe 899 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
900
901 if (!PageSwapCache(page))
902 return 0;
903 if (PageWriteback(page))
904 return 0;
a2c43eed 905 if (page_swapcount(page))
1da177e4
LT
906 return 0;
907
b73d7fce
HD
908 /*
909 * Once hibernation has begun to create its image of memory,
910 * there's a danger that one of the calls to try_to_free_swap()
911 * - most probably a call from __try_to_reclaim_swap() while
912 * hibernation is allocating its own swap pages for the image,
913 * but conceivably even a call from memory reclaim - will free
914 * the swap from a page which has already been recorded in the
915 * image as a clean swapcache page, and then reuse its swap for
916 * another page of the image. On waking from hibernation, the
917 * original page might be freed under memory pressure, then
918 * later read back in from swap, now with the wrong data.
919 *
2de1a7e4 920 * Hibernation suspends storage while it is writing the image
f90ac398 921 * to disk so check that here.
b73d7fce 922 */
f90ac398 923 if (pm_suspended_storage())
b73d7fce
HD
924 return 0;
925
a2c43eed
HD
926 delete_from_swap_cache(page);
927 SetPageDirty(page);
928 return 1;
68a22394
RR
929}
930
1da177e4
LT
931/*
932 * Free the swap entry like above, but also try to
933 * free the page cache entry if it is the last user.
934 */
2509ef26 935int free_swap_and_cache(swp_entry_t entry)
1da177e4 936{
2509ef26 937 struct swap_info_struct *p;
1da177e4
LT
938 struct page *page = NULL;
939
a7420aa5 940 if (non_swap_entry(entry))
2509ef26 941 return 1;
0697212a 942
1da177e4
LT
943 p = swap_info_get(entry);
944 if (p) {
253d553b 945 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
33806f06
SL
946 page = find_get_page(swap_address_space(entry),
947 entry.val);
8413ac9d 948 if (page && !trylock_page(page)) {
93fac704
NP
949 page_cache_release(page);
950 page = NULL;
951 }
952 }
ec8acf20 953 spin_unlock(&p->lock);
1da177e4
LT
954 }
955 if (page) {
a2c43eed
HD
956 /*
957 * Not mapped elsewhere, or swap space full? Free it!
958 * Also recheck PageSwapCache now page is locked (above).
959 */
93fac704 960 if (PageSwapCache(page) && !PageWriteback(page) &&
a2c43eed 961 (!page_mapped(page) || vm_swap_full())) {
1da177e4
LT
962 delete_from_swap_cache(page);
963 SetPageDirty(page);
964 }
965 unlock_page(page);
966 page_cache_release(page);
967 }
2509ef26 968 return p != NULL;
1da177e4
LT
969}
970
b0cb1a19 971#ifdef CONFIG_HIBERNATION
f577eb30 972/*
915bae9e 973 * Find the swap type that corresponds to given device (if any).
f577eb30 974 *
915bae9e
RW
975 * @offset - number of the PAGE_SIZE-sized block of the device, starting
976 * from 0, in which the swap header is expected to be located.
977 *
978 * This is needed for the suspend to disk (aka swsusp).
f577eb30 979 */
7bf23687 980int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 981{
915bae9e 982 struct block_device *bdev = NULL;
efa90a98 983 int type;
f577eb30 984
915bae9e
RW
985 if (device)
986 bdev = bdget(device);
987
f577eb30 988 spin_lock(&swap_lock);
efa90a98
HD
989 for (type = 0; type < nr_swapfiles; type++) {
990 struct swap_info_struct *sis = swap_info[type];
f577eb30 991
915bae9e 992 if (!(sis->flags & SWP_WRITEOK))
f577eb30 993 continue;
b6b5bce3 994
915bae9e 995 if (!bdev) {
7bf23687 996 if (bdev_p)
dddac6a7 997 *bdev_p = bdgrab(sis->bdev);
7bf23687 998
6e1819d6 999 spin_unlock(&swap_lock);
efa90a98 1000 return type;
6e1819d6 1001 }
915bae9e 1002 if (bdev == sis->bdev) {
9625a5f2 1003 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 1004
915bae9e 1005 if (se->start_block == offset) {
7bf23687 1006 if (bdev_p)
dddac6a7 1007 *bdev_p = bdgrab(sis->bdev);
7bf23687 1008
915bae9e
RW
1009 spin_unlock(&swap_lock);
1010 bdput(bdev);
efa90a98 1011 return type;
915bae9e 1012 }
f577eb30
RW
1013 }
1014 }
1015 spin_unlock(&swap_lock);
915bae9e
RW
1016 if (bdev)
1017 bdput(bdev);
1018
f577eb30
RW
1019 return -ENODEV;
1020}
1021
73c34b6a
HD
1022/*
1023 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1024 * corresponding to given index in swap_info (swap type).
1025 */
1026sector_t swapdev_block(int type, pgoff_t offset)
1027{
1028 struct block_device *bdev;
1029
1030 if ((unsigned int)type >= nr_swapfiles)
1031 return 0;
1032 if (!(swap_info[type]->flags & SWP_WRITEOK))
1033 return 0;
d4906e1a 1034 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
1035}
1036
f577eb30
RW
1037/*
1038 * Return either the total number of swap pages of given type, or the number
1039 * of free pages of that type (depending on @free)
1040 *
1041 * This is needed for software suspend
1042 */
1043unsigned int count_swap_pages(int type, int free)
1044{
1045 unsigned int n = 0;
1046
efa90a98
HD
1047 spin_lock(&swap_lock);
1048 if ((unsigned int)type < nr_swapfiles) {
1049 struct swap_info_struct *sis = swap_info[type];
1050
ec8acf20 1051 spin_lock(&sis->lock);
efa90a98
HD
1052 if (sis->flags & SWP_WRITEOK) {
1053 n = sis->pages;
f577eb30 1054 if (free)
efa90a98 1055 n -= sis->inuse_pages;
f577eb30 1056 }
ec8acf20 1057 spin_unlock(&sis->lock);
f577eb30 1058 }
efa90a98 1059 spin_unlock(&swap_lock);
f577eb30
RW
1060 return n;
1061}
73c34b6a 1062#endif /* CONFIG_HIBERNATION */
f577eb30 1063
179ef71c
CG
1064static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
1065{
1066#ifdef CONFIG_MEM_SOFT_DIRTY
1067 /*
1068 * When pte keeps soft dirty bit the pte generated
1069 * from swap entry does not has it, still it's same
1070 * pte from logical point of view.
1071 */
1072 pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
1073 return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
1074#else
1075 return pte_same(pte, swp_pte);
1076#endif
1077}
1078
1da177e4 1079/*
72866f6f
HD
1080 * No need to decide whether this PTE shares the swap entry with others,
1081 * just let do_wp_page work it out if a write is requested later - to
1082 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1083 */
044d66c1 1084static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1085 unsigned long addr, swp_entry_t entry, struct page *page)
1086{
9e16b7fb 1087 struct page *swapcache;
72835c86 1088 struct mem_cgroup *memcg;
044d66c1
HD
1089 spinlock_t *ptl;
1090 pte_t *pte;
1091 int ret = 1;
1092
9e16b7fb
HD
1093 swapcache = page;
1094 page = ksm_might_need_to_copy(page, vma, addr);
1095 if (unlikely(!page))
1096 return -ENOMEM;
1097
72835c86
JW
1098 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
1099 GFP_KERNEL, &memcg)) {
044d66c1 1100 ret = -ENOMEM;
85d9fc89
KH
1101 goto out_nolock;
1102 }
044d66c1
HD
1103
1104 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
179ef71c 1105 if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
5d84c776 1106 mem_cgroup_cancel_charge_swapin(memcg);
044d66c1
HD
1107 ret = 0;
1108 goto out;
1109 }
8a9f3ccd 1110
b084d435 1111 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1112 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1113 get_page(page);
1114 set_pte_at(vma->vm_mm, addr, pte,
1115 pte_mkold(mk_pte(page, vma->vm_page_prot)));
9e16b7fb
HD
1116 if (page == swapcache)
1117 page_add_anon_rmap(page, vma, addr);
1118 else /* ksm created a completely new copy */
1119 page_add_new_anon_rmap(page, vma, addr);
72835c86 1120 mem_cgroup_commit_charge_swapin(page, memcg);
1da177e4
LT
1121 swap_free(entry);
1122 /*
1123 * Move the page to the active list so it is not
1124 * immediately swapped out again after swapon.
1125 */
1126 activate_page(page);
044d66c1
HD
1127out:
1128 pte_unmap_unlock(pte, ptl);
85d9fc89 1129out_nolock:
9e16b7fb
HD
1130 if (page != swapcache) {
1131 unlock_page(page);
1132 put_page(page);
1133 }
044d66c1 1134 return ret;
1da177e4
LT
1135}
1136
1137static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1138 unsigned long addr, unsigned long end,
1139 swp_entry_t entry, struct page *page)
1140{
1da177e4 1141 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 1142 pte_t *pte;
8a9f3ccd 1143 int ret = 0;
1da177e4 1144
044d66c1
HD
1145 /*
1146 * We don't actually need pte lock while scanning for swp_pte: since
1147 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1148 * page table while we're scanning; though it could get zapped, and on
1149 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1150 * of unmatched parts which look like swp_pte, so unuse_pte must
1151 * recheck under pte lock. Scanning without pte lock lets it be
2de1a7e4 1152 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
044d66c1
HD
1153 */
1154 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1155 do {
1156 /*
1157 * swapoff spends a _lot_ of time in this loop!
1158 * Test inline before going to call unuse_pte.
1159 */
179ef71c 1160 if (unlikely(maybe_same_pte(*pte, swp_pte))) {
044d66c1
HD
1161 pte_unmap(pte);
1162 ret = unuse_pte(vma, pmd, addr, entry, page);
1163 if (ret)
1164 goto out;
1165 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1166 }
1167 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
1168 pte_unmap(pte - 1);
1169out:
8a9f3ccd 1170 return ret;
1da177e4
LT
1171}
1172
1173static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1174 unsigned long addr, unsigned long end,
1175 swp_entry_t entry, struct page *page)
1176{
1177 pmd_t *pmd;
1178 unsigned long next;
8a9f3ccd 1179 int ret;
1da177e4
LT
1180
1181 pmd = pmd_offset(pud, addr);
1182 do {
1183 next = pmd_addr_end(addr, end);
1a5a9906 1184 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 1185 continue;
8a9f3ccd
BS
1186 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1187 if (ret)
1188 return ret;
1da177e4
LT
1189 } while (pmd++, addr = next, addr != end);
1190 return 0;
1191}
1192
1193static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1194 unsigned long addr, unsigned long end,
1195 swp_entry_t entry, struct page *page)
1196{
1197 pud_t *pud;
1198 unsigned long next;
8a9f3ccd 1199 int ret;
1da177e4
LT
1200
1201 pud = pud_offset(pgd, addr);
1202 do {
1203 next = pud_addr_end(addr, end);
1204 if (pud_none_or_clear_bad(pud))
1205 continue;
8a9f3ccd
BS
1206 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1207 if (ret)
1208 return ret;
1da177e4
LT
1209 } while (pud++, addr = next, addr != end);
1210 return 0;
1211}
1212
1213static int unuse_vma(struct vm_area_struct *vma,
1214 swp_entry_t entry, struct page *page)
1215{
1216 pgd_t *pgd;
1217 unsigned long addr, end, next;
8a9f3ccd 1218 int ret;
1da177e4 1219
3ca7b3c5 1220 if (page_anon_vma(page)) {
1da177e4
LT
1221 addr = page_address_in_vma(page, vma);
1222 if (addr == -EFAULT)
1223 return 0;
1224 else
1225 end = addr + PAGE_SIZE;
1226 } else {
1227 addr = vma->vm_start;
1228 end = vma->vm_end;
1229 }
1230
1231 pgd = pgd_offset(vma->vm_mm, addr);
1232 do {
1233 next = pgd_addr_end(addr, end);
1234 if (pgd_none_or_clear_bad(pgd))
1235 continue;
8a9f3ccd
BS
1236 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1237 if (ret)
1238 return ret;
1da177e4
LT
1239 } while (pgd++, addr = next, addr != end);
1240 return 0;
1241}
1242
1243static int unuse_mm(struct mm_struct *mm,
1244 swp_entry_t entry, struct page *page)
1245{
1246 struct vm_area_struct *vma;
8a9f3ccd 1247 int ret = 0;
1da177e4
LT
1248
1249 if (!down_read_trylock(&mm->mmap_sem)) {
1250 /*
7d03431c
FLVC
1251 * Activate page so shrink_inactive_list is unlikely to unmap
1252 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 1253 */
c475a8ab 1254 activate_page(page);
1da177e4
LT
1255 unlock_page(page);
1256 down_read(&mm->mmap_sem);
1257 lock_page(page);
1258 }
1da177e4 1259 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 1260 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4
LT
1261 break;
1262 }
1da177e4 1263 up_read(&mm->mmap_sem);
8a9f3ccd 1264 return (ret < 0)? ret: 0;
1da177e4
LT
1265}
1266
1267/*
38b5faf4
DM
1268 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1269 * from current position to next entry still in use.
1da177e4
LT
1270 * Recycle to start on reaching the end, returning 0 when empty.
1271 */
6eb396dc 1272static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 1273 unsigned int prev, bool frontswap)
1da177e4 1274{
6eb396dc
HD
1275 unsigned int max = si->max;
1276 unsigned int i = prev;
8d69aaee 1277 unsigned char count;
1da177e4
LT
1278
1279 /*
5d337b91 1280 * No need for swap_lock here: we're just looking
1da177e4
LT
1281 * for whether an entry is in use, not modifying it; false
1282 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 1283 * allocations from this area (while holding swap_lock).
1da177e4
LT
1284 */
1285 for (;;) {
1286 if (++i >= max) {
1287 if (!prev) {
1288 i = 0;
1289 break;
1290 }
1291 /*
1292 * No entries in use at top of swap_map,
1293 * loop back to start and recheck there.
1294 */
1295 max = prev + 1;
1296 prev = 0;
1297 i = 1;
1298 }
38b5faf4
DM
1299 if (frontswap) {
1300 if (frontswap_test(si, i))
1301 break;
1302 else
1303 continue;
1304 }
edfe23da 1305 count = ACCESS_ONCE(si->swap_map[i]);
355cfa73 1306 if (count && swap_count(count) != SWAP_MAP_BAD)
1da177e4
LT
1307 break;
1308 }
1309 return i;
1310}
1311
1312/*
1313 * We completely avoid races by reading each swap page in advance,
1314 * and then search for the process using it. All the necessary
1315 * page table adjustments can then be made atomically.
38b5faf4
DM
1316 *
1317 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1318 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 1319 */
38b5faf4
DM
1320int try_to_unuse(unsigned int type, bool frontswap,
1321 unsigned long pages_to_unuse)
1da177e4 1322{
efa90a98 1323 struct swap_info_struct *si = swap_info[type];
1da177e4 1324 struct mm_struct *start_mm;
edfe23da
SL
1325 volatile unsigned char *swap_map; /* swap_map is accessed without
1326 * locking. Mark it as volatile
1327 * to prevent compiler doing
1328 * something odd.
1329 */
8d69aaee 1330 unsigned char swcount;
1da177e4
LT
1331 struct page *page;
1332 swp_entry_t entry;
6eb396dc 1333 unsigned int i = 0;
1da177e4 1334 int retval = 0;
1da177e4
LT
1335
1336 /*
1337 * When searching mms for an entry, a good strategy is to
1338 * start at the first mm we freed the previous entry from
1339 * (though actually we don't notice whether we or coincidence
1340 * freed the entry). Initialize this start_mm with a hold.
1341 *
1342 * A simpler strategy would be to start at the last mm we
1343 * freed the previous entry from; but that would take less
1344 * advantage of mmlist ordering, which clusters forked mms
1345 * together, child after parent. If we race with dup_mmap(), we
1346 * prefer to resolve parent before child, lest we miss entries
1347 * duplicated after we scanned child: using last mm would invert
570a335b 1348 * that.
1da177e4
LT
1349 */
1350 start_mm = &init_mm;
1351 atomic_inc(&init_mm.mm_users);
1352
1353 /*
1354 * Keep on scanning until all entries have gone. Usually,
1355 * one pass through swap_map is enough, but not necessarily:
1356 * there are races when an instance of an entry might be missed.
1357 */
38b5faf4 1358 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4
LT
1359 if (signal_pending(current)) {
1360 retval = -EINTR;
1361 break;
1362 }
1363
886bb7e9 1364 /*
1da177e4
LT
1365 * Get a page for the entry, using the existing swap
1366 * cache page if there is one. Otherwise, get a clean
886bb7e9 1367 * page and read the swap into it.
1da177e4
LT
1368 */
1369 swap_map = &si->swap_map[i];
1370 entry = swp_entry(type, i);
02098fea
HD
1371 page = read_swap_cache_async(entry,
1372 GFP_HIGHUSER_MOVABLE, NULL, 0);
1da177e4
LT
1373 if (!page) {
1374 /*
1375 * Either swap_duplicate() failed because entry
1376 * has been freed independently, and will not be
1377 * reused since sys_swapoff() already disabled
1378 * allocation from here, or alloc_page() failed.
1379 */
edfe23da
SL
1380 swcount = *swap_map;
1381 /*
1382 * We don't hold lock here, so the swap entry could be
1383 * SWAP_MAP_BAD (when the cluster is discarding).
1384 * Instead of fail out, We can just skip the swap
1385 * entry because swapoff will wait for discarding
1386 * finish anyway.
1387 */
1388 if (!swcount || swcount == SWAP_MAP_BAD)
1da177e4
LT
1389 continue;
1390 retval = -ENOMEM;
1391 break;
1392 }
1393
1394 /*
1395 * Don't hold on to start_mm if it looks like exiting.
1396 */
1397 if (atomic_read(&start_mm->mm_users) == 1) {
1398 mmput(start_mm);
1399 start_mm = &init_mm;
1400 atomic_inc(&init_mm.mm_users);
1401 }
1402
1403 /*
1404 * Wait for and lock page. When do_swap_page races with
1405 * try_to_unuse, do_swap_page can handle the fault much
1406 * faster than try_to_unuse can locate the entry. This
1407 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1408 * defer to do_swap_page in such a case - in some tests,
1409 * do_swap_page and try_to_unuse repeatedly compete.
1410 */
1411 wait_on_page_locked(page);
1412 wait_on_page_writeback(page);
1413 lock_page(page);
1414 wait_on_page_writeback(page);
1415
1416 /*
1417 * Remove all references to entry.
1da177e4 1418 */
1da177e4 1419 swcount = *swap_map;
aaa46865
HD
1420 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1421 retval = shmem_unuse(entry, page);
1422 /* page has already been unlocked and released */
1423 if (retval < 0)
1424 break;
1425 continue;
1da177e4 1426 }
aaa46865
HD
1427 if (swap_count(swcount) && start_mm != &init_mm)
1428 retval = unuse_mm(start_mm, entry, page);
1429
355cfa73 1430 if (swap_count(*swap_map)) {
1da177e4
LT
1431 int set_start_mm = (*swap_map >= swcount);
1432 struct list_head *p = &start_mm->mmlist;
1433 struct mm_struct *new_start_mm = start_mm;
1434 struct mm_struct *prev_mm = start_mm;
1435 struct mm_struct *mm;
1436
1437 atomic_inc(&new_start_mm->mm_users);
1438 atomic_inc(&prev_mm->mm_users);
1439 spin_lock(&mmlist_lock);
aaa46865 1440 while (swap_count(*swap_map) && !retval &&
1da177e4
LT
1441 (p = p->next) != &start_mm->mmlist) {
1442 mm = list_entry(p, struct mm_struct, mmlist);
70af7c5c 1443 if (!atomic_inc_not_zero(&mm->mm_users))
1da177e4 1444 continue;
1da177e4
LT
1445 spin_unlock(&mmlist_lock);
1446 mmput(prev_mm);
1447 prev_mm = mm;
1448
1449 cond_resched();
1450
1451 swcount = *swap_map;
355cfa73 1452 if (!swap_count(swcount)) /* any usage ? */
1da177e4 1453 ;
aaa46865 1454 else if (mm == &init_mm)
1da177e4 1455 set_start_mm = 1;
aaa46865 1456 else
1da177e4 1457 retval = unuse_mm(mm, entry, page);
355cfa73 1458
32c5fc10 1459 if (set_start_mm && *swap_map < swcount) {
1da177e4
LT
1460 mmput(new_start_mm);
1461 atomic_inc(&mm->mm_users);
1462 new_start_mm = mm;
1463 set_start_mm = 0;
1464 }
1465 spin_lock(&mmlist_lock);
1466 }
1467 spin_unlock(&mmlist_lock);
1468 mmput(prev_mm);
1469 mmput(start_mm);
1470 start_mm = new_start_mm;
1471 }
1472 if (retval) {
1473 unlock_page(page);
1474 page_cache_release(page);
1475 break;
1476 }
1477
1da177e4
LT
1478 /*
1479 * If a reference remains (rare), we would like to leave
1480 * the page in the swap cache; but try_to_unmap could
1481 * then re-duplicate the entry once we drop page lock,
1482 * so we might loop indefinitely; also, that page could
1483 * not be swapped out to other storage meanwhile. So:
1484 * delete from cache even if there's another reference,
1485 * after ensuring that the data has been saved to disk -
1486 * since if the reference remains (rarer), it will be
1487 * read from disk into another page. Splitting into two
1488 * pages would be incorrect if swap supported "shared
1489 * private" pages, but they are handled by tmpfs files.
5ad64688
HD
1490 *
1491 * Given how unuse_vma() targets one particular offset
1492 * in an anon_vma, once the anon_vma has been determined,
1493 * this splitting happens to be just what is needed to
1494 * handle where KSM pages have been swapped out: re-reading
1495 * is unnecessarily slow, but we can fix that later on.
1da177e4 1496 */
355cfa73
KH
1497 if (swap_count(*swap_map) &&
1498 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
1499 struct writeback_control wbc = {
1500 .sync_mode = WB_SYNC_NONE,
1501 };
1502
1503 swap_writepage(page, &wbc);
1504 lock_page(page);
1505 wait_on_page_writeback(page);
1506 }
68bdc8d6
HD
1507
1508 /*
1509 * It is conceivable that a racing task removed this page from
1510 * swap cache just before we acquired the page lock at the top,
1511 * or while we dropped it in unuse_mm(). The page might even
1512 * be back in swap cache on another swap area: that we must not
1513 * delete, since it may not have been written out to swap yet.
1514 */
1515 if (PageSwapCache(page) &&
1516 likely(page_private(page) == entry.val))
2e0e26c7 1517 delete_from_swap_cache(page);
1da177e4
LT
1518
1519 /*
1520 * So we could skip searching mms once swap count went
1521 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 1522 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
1523 */
1524 SetPageDirty(page);
1525 unlock_page(page);
1526 page_cache_release(page);
1527
1528 /*
1529 * Make sure that we aren't completely killing
1530 * interactive performance.
1531 */
1532 cond_resched();
38b5faf4
DM
1533 if (frontswap && pages_to_unuse > 0) {
1534 if (!--pages_to_unuse)
1535 break;
1536 }
1da177e4
LT
1537 }
1538
1539 mmput(start_mm);
1da177e4
LT
1540 return retval;
1541}
1542
1543/*
5d337b91
HD
1544 * After a successful try_to_unuse, if no swap is now in use, we know
1545 * we can empty the mmlist. swap_lock must be held on entry and exit.
1546 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
1547 * added to the mmlist just after page_duplicate - before would be racy.
1548 */
1549static void drain_mmlist(void)
1550{
1551 struct list_head *p, *next;
efa90a98 1552 unsigned int type;
1da177e4 1553
efa90a98
HD
1554 for (type = 0; type < nr_swapfiles; type++)
1555 if (swap_info[type]->inuse_pages)
1da177e4
LT
1556 return;
1557 spin_lock(&mmlist_lock);
1558 list_for_each_safe(p, next, &init_mm.mmlist)
1559 list_del_init(p);
1560 spin_unlock(&mmlist_lock);
1561}
1562
1563/*
1564 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
1565 * corresponds to page offset for the specified swap entry.
1566 * Note that the type of this function is sector_t, but it returns page offset
1567 * into the bdev, not sector offset.
1da177e4 1568 */
d4906e1a 1569static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 1570{
f29ad6a9
HD
1571 struct swap_info_struct *sis;
1572 struct swap_extent *start_se;
1573 struct swap_extent *se;
1574 pgoff_t offset;
1575
efa90a98 1576 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
1577 *bdev = sis->bdev;
1578
1579 offset = swp_offset(entry);
1580 start_se = sis->curr_swap_extent;
1581 se = start_se;
1da177e4
LT
1582
1583 for ( ; ; ) {
1584 struct list_head *lh;
1585
1586 if (se->start_page <= offset &&
1587 offset < (se->start_page + se->nr_pages)) {
1588 return se->start_block + (offset - se->start_page);
1589 }
11d31886 1590 lh = se->list.next;
1da177e4
LT
1591 se = list_entry(lh, struct swap_extent, list);
1592 sis->curr_swap_extent = se;
1593 BUG_ON(se == start_se); /* It *must* be present */
1594 }
1595}
1596
d4906e1a
LS
1597/*
1598 * Returns the page offset into bdev for the specified page's swap entry.
1599 */
1600sector_t map_swap_page(struct page *page, struct block_device **bdev)
1601{
1602 swp_entry_t entry;
1603 entry.val = page_private(page);
1604 return map_swap_entry(entry, bdev);
1605}
1606
1da177e4
LT
1607/*
1608 * Free all of a swapdev's extent information
1609 */
1610static void destroy_swap_extents(struct swap_info_struct *sis)
1611{
9625a5f2 1612 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
1613 struct swap_extent *se;
1614
9625a5f2 1615 se = list_entry(sis->first_swap_extent.list.next,
1da177e4
LT
1616 struct swap_extent, list);
1617 list_del(&se->list);
1618 kfree(se);
1619 }
62c230bc
MG
1620
1621 if (sis->flags & SWP_FILE) {
1622 struct file *swap_file = sis->swap_file;
1623 struct address_space *mapping = swap_file->f_mapping;
1624
1625 sis->flags &= ~SWP_FILE;
1626 mapping->a_ops->swap_deactivate(swap_file);
1627 }
1da177e4
LT
1628}
1629
1630/*
1631 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 1632 * extent list. The extent list is kept sorted in page order.
1da177e4 1633 *
11d31886 1634 * This function rather assumes that it is called in ascending page order.
1da177e4 1635 */
a509bc1a 1636int
1da177e4
LT
1637add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1638 unsigned long nr_pages, sector_t start_block)
1639{
1640 struct swap_extent *se;
1641 struct swap_extent *new_se;
1642 struct list_head *lh;
1643
9625a5f2
HD
1644 if (start_page == 0) {
1645 se = &sis->first_swap_extent;
1646 sis->curr_swap_extent = se;
1647 se->start_page = 0;
1648 se->nr_pages = nr_pages;
1649 se->start_block = start_block;
1650 return 1;
1651 } else {
1652 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 1653 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
1654 BUG_ON(se->start_page + se->nr_pages != start_page);
1655 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
1656 /* Merge it */
1657 se->nr_pages += nr_pages;
1658 return 0;
1659 }
1da177e4
LT
1660 }
1661
1662 /*
1663 * No merge. Insert a new extent, preserving ordering.
1664 */
1665 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1666 if (new_se == NULL)
1667 return -ENOMEM;
1668 new_se->start_page = start_page;
1669 new_se->nr_pages = nr_pages;
1670 new_se->start_block = start_block;
1671
9625a5f2 1672 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 1673 return 1;
1da177e4
LT
1674}
1675
1676/*
1677 * A `swap extent' is a simple thing which maps a contiguous range of pages
1678 * onto a contiguous range of disk blocks. An ordered list of swap extents
1679 * is built at swapon time and is then used at swap_writepage/swap_readpage
1680 * time for locating where on disk a page belongs.
1681 *
1682 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1683 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1684 * swap files identically.
1685 *
1686 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1687 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1688 * swapfiles are handled *identically* after swapon time.
1689 *
1690 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1691 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1692 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1693 * requirements, they are simply tossed out - we will never use those blocks
1694 * for swapping.
1695 *
b0d9bcd4 1696 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
1697 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1698 * which will scribble on the fs.
1699 *
1700 * The amount of disk space which a single swap extent represents varies.
1701 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1702 * extents in the list. To avoid much list walking, we cache the previous
1703 * search location in `curr_swap_extent', and start new searches from there.
1704 * This is extremely effective. The average number of iterations in
1705 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1706 */
53092a74 1707static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 1708{
62c230bc
MG
1709 struct file *swap_file = sis->swap_file;
1710 struct address_space *mapping = swap_file->f_mapping;
1711 struct inode *inode = mapping->host;
1da177e4
LT
1712 int ret;
1713
1da177e4
LT
1714 if (S_ISBLK(inode->i_mode)) {
1715 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 1716 *span = sis->pages;
a509bc1a 1717 return ret;
1da177e4
LT
1718 }
1719
62c230bc 1720 if (mapping->a_ops->swap_activate) {
a509bc1a 1721 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
62c230bc
MG
1722 if (!ret) {
1723 sis->flags |= SWP_FILE;
1724 ret = add_swap_extent(sis, 0, sis->max, 0);
1725 *span = sis->pages;
1726 }
a509bc1a 1727 return ret;
62c230bc
MG
1728 }
1729
a509bc1a 1730 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
1731}
1732
cf0cac0a 1733static void _enable_swap_info(struct swap_info_struct *p, int prio,
2a8f9449
SL
1734 unsigned char *swap_map,
1735 struct swap_cluster_info *cluster_info)
40531542 1736{
adfab836 1737 struct swap_info_struct *si;
40531542 1738
40531542
CEB
1739 if (prio >= 0)
1740 p->prio = prio;
1741 else
1742 p->prio = --least_priority;
1743 p->swap_map = swap_map;
2a8f9449 1744 p->cluster_info = cluster_info;
40531542 1745 p->flags |= SWP_WRITEOK;
ec8acf20 1746 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
1747 total_swap_pages += p->pages;
1748
adfab836
DS
1749 assert_spin_locked(&swap_lock);
1750 BUG_ON(!list_empty(&p->list));
1751 /*
1752 * insert into swap list; the list is in priority order,
1753 * so that get_swap_page() can get a page from the highest
1754 * priority swap_info_struct with available page(s), and
1755 * swapoff can adjust the auto-assigned (i.e. negative) prio
1756 * values for any lower-priority swap_info_structs when
1757 * removing a negative-prio swap_info_struct
1758 */
1759 list_for_each_entry(si, &swap_list_head, list) {
1760 if (p->prio >= si->prio) {
1761 list_add_tail(&p->list, &si->list);
1762 return;
1763 }
40531542 1764 }
adfab836
DS
1765 /*
1766 * this covers two cases:
1767 * 1) p->prio is less than all existing prio
1768 * 2) the swap list is empty
1769 */
1770 list_add_tail(&p->list, &swap_list_head);
cf0cac0a
CEB
1771}
1772
1773static void enable_swap_info(struct swap_info_struct *p, int prio,
1774 unsigned char *swap_map,
2a8f9449 1775 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
1776 unsigned long *frontswap_map)
1777{
4f89849d 1778 frontswap_init(p->type, frontswap_map);
cf0cac0a 1779 spin_lock(&swap_lock);
ec8acf20 1780 spin_lock(&p->lock);
2a8f9449 1781 _enable_swap_info(p, prio, swap_map, cluster_info);
ec8acf20 1782 spin_unlock(&p->lock);
cf0cac0a
CEB
1783 spin_unlock(&swap_lock);
1784}
1785
1786static void reinsert_swap_info(struct swap_info_struct *p)
1787{
1788 spin_lock(&swap_lock);
ec8acf20 1789 spin_lock(&p->lock);
2a8f9449 1790 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
ec8acf20 1791 spin_unlock(&p->lock);
40531542
CEB
1792 spin_unlock(&swap_lock);
1793}
1794
c4ea37c2 1795SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 1796{
73c34b6a 1797 struct swap_info_struct *p = NULL;
8d69aaee 1798 unsigned char *swap_map;
2a8f9449 1799 struct swap_cluster_info *cluster_info;
4f89849d 1800 unsigned long *frontswap_map;
1da177e4
LT
1801 struct file *swap_file, *victim;
1802 struct address_space *mapping;
1803 struct inode *inode;
91a27b2a 1804 struct filename *pathname;
adfab836 1805 int err, found = 0;
5b808a23 1806 unsigned int old_block_size;
886bb7e9 1807
1da177e4
LT
1808 if (!capable(CAP_SYS_ADMIN))
1809 return -EPERM;
1810
191c5424
AV
1811 BUG_ON(!current->mm);
1812
1da177e4 1813 pathname = getname(specialfile);
1da177e4 1814 if (IS_ERR(pathname))
f58b59c1 1815 return PTR_ERR(pathname);
1da177e4 1816
669abf4e 1817 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
1818 err = PTR_ERR(victim);
1819 if (IS_ERR(victim))
1820 goto out;
1821
1822 mapping = victim->f_mapping;
5d337b91 1823 spin_lock(&swap_lock);
adfab836 1824 list_for_each_entry(p, &swap_list_head, list) {
22c6f8fd 1825 if (p->flags & SWP_WRITEOK) {
adfab836
DS
1826 if (p->swap_file->f_mapping == mapping) {
1827 found = 1;
1da177e4 1828 break;
adfab836 1829 }
1da177e4 1830 }
1da177e4 1831 }
adfab836 1832 if (!found) {
1da177e4 1833 err = -EINVAL;
5d337b91 1834 spin_unlock(&swap_lock);
1da177e4
LT
1835 goto out_dput;
1836 }
191c5424 1837 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
1838 vm_unacct_memory(p->pages);
1839 else {
1840 err = -ENOMEM;
5d337b91 1841 spin_unlock(&swap_lock);
1da177e4
LT
1842 goto out_dput;
1843 }
ec8acf20 1844 spin_lock(&p->lock);
78ecba08 1845 if (p->prio < 0) {
adfab836
DS
1846 struct swap_info_struct *si = p;
1847
1848 list_for_each_entry_continue(si, &swap_list_head, list) {
1849 si->prio++;
1850 }
78ecba08
HD
1851 least_priority++;
1852 }
adfab836 1853 list_del_init(&p->list);
ec8acf20 1854 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
1855 total_swap_pages -= p->pages;
1856 p->flags &= ~SWP_WRITEOK;
ec8acf20 1857 spin_unlock(&p->lock);
5d337b91 1858 spin_unlock(&swap_lock);
fb4f88dc 1859
e1e12d2f 1860 set_current_oom_origin();
adfab836 1861 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
e1e12d2f 1862 clear_current_oom_origin();
1da177e4 1863
1da177e4
LT
1864 if (err) {
1865 /* re-insert swap space back into swap_list */
cf0cac0a 1866 reinsert_swap_info(p);
1da177e4
LT
1867 goto out_dput;
1868 }
52b7efdb 1869
815c2c54
SL
1870 flush_work(&p->discard_work);
1871
5d337b91 1872 destroy_swap_extents(p);
570a335b
HD
1873 if (p->flags & SWP_CONTINUED)
1874 free_swap_count_continuations(p);
1875
fc0abb14 1876 mutex_lock(&swapon_mutex);
5d337b91 1877 spin_lock(&swap_lock);
ec8acf20 1878 spin_lock(&p->lock);
5d337b91
HD
1879 drain_mmlist();
1880
52b7efdb 1881 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
1882 p->highest_bit = 0; /* cuts scans short */
1883 while (p->flags >= SWP_SCANNING) {
ec8acf20 1884 spin_unlock(&p->lock);
5d337b91 1885 spin_unlock(&swap_lock);
13e4b57f 1886 schedule_timeout_uninterruptible(1);
5d337b91 1887 spin_lock(&swap_lock);
ec8acf20 1888 spin_lock(&p->lock);
52b7efdb 1889 }
52b7efdb 1890
1da177e4 1891 swap_file = p->swap_file;
5b808a23 1892 old_block_size = p->old_block_size;
1da177e4
LT
1893 p->swap_file = NULL;
1894 p->max = 0;
1895 swap_map = p->swap_map;
1896 p->swap_map = NULL;
2a8f9449
SL
1897 cluster_info = p->cluster_info;
1898 p->cluster_info = NULL;
4f89849d 1899 frontswap_map = frontswap_map_get(p);
ec8acf20 1900 spin_unlock(&p->lock);
5d337b91 1901 spin_unlock(&swap_lock);
adfab836 1902 frontswap_invalidate_area(p->type);
58e97ba6 1903 frontswap_map_set(p, NULL);
fc0abb14 1904 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
1905 free_percpu(p->percpu_cluster);
1906 p->percpu_cluster = NULL;
1da177e4 1907 vfree(swap_map);
2a8f9449 1908 vfree(cluster_info);
4f89849d 1909 vfree(frontswap_map);
2de1a7e4 1910 /* Destroy swap account information */
adfab836 1911 swap_cgroup_swapoff(p->type);
27a7faa0 1912
1da177e4
LT
1913 inode = mapping->host;
1914 if (S_ISBLK(inode->i_mode)) {
1915 struct block_device *bdev = I_BDEV(inode);
5b808a23 1916 set_blocksize(bdev, old_block_size);
e525fd89 1917 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 1918 } else {
1b1dcc1b 1919 mutex_lock(&inode->i_mutex);
1da177e4 1920 inode->i_flags &= ~S_SWAPFILE;
1b1dcc1b 1921 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1922 }
1923 filp_close(swap_file, NULL);
f893ab41
WY
1924
1925 /*
1926 * Clear the SWP_USED flag after all resources are freed so that swapon
1927 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
1928 * not hold p->lock after we cleared its SWP_WRITEOK.
1929 */
1930 spin_lock(&swap_lock);
1931 p->flags = 0;
1932 spin_unlock(&swap_lock);
1933
1da177e4 1934 err = 0;
66d7dd51
KS
1935 atomic_inc(&proc_poll_event);
1936 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
1937
1938out_dput:
1939 filp_close(victim, NULL);
1940out:
f58b59c1 1941 putname(pathname);
1da177e4
LT
1942 return err;
1943}
1944
1945#ifdef CONFIG_PROC_FS
66d7dd51
KS
1946static unsigned swaps_poll(struct file *file, poll_table *wait)
1947{
f1514638 1948 struct seq_file *seq = file->private_data;
66d7dd51
KS
1949
1950 poll_wait(file, &proc_poll_wait, wait);
1951
f1514638
KS
1952 if (seq->poll_event != atomic_read(&proc_poll_event)) {
1953 seq->poll_event = atomic_read(&proc_poll_event);
66d7dd51
KS
1954 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1955 }
1956
1957 return POLLIN | POLLRDNORM;
1958}
1959
1da177e4
LT
1960/* iterator */
1961static void *swap_start(struct seq_file *swap, loff_t *pos)
1962{
efa90a98
HD
1963 struct swap_info_struct *si;
1964 int type;
1da177e4
LT
1965 loff_t l = *pos;
1966
fc0abb14 1967 mutex_lock(&swapon_mutex);
1da177e4 1968
881e4aab
SS
1969 if (!l)
1970 return SEQ_START_TOKEN;
1971
efa90a98
HD
1972 for (type = 0; type < nr_swapfiles; type++) {
1973 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1974 si = swap_info[type];
1975 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 1976 continue;
881e4aab 1977 if (!--l)
efa90a98 1978 return si;
1da177e4
LT
1979 }
1980
1981 return NULL;
1982}
1983
1984static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1985{
efa90a98
HD
1986 struct swap_info_struct *si = v;
1987 int type;
1da177e4 1988
881e4aab 1989 if (v == SEQ_START_TOKEN)
efa90a98
HD
1990 type = 0;
1991 else
1992 type = si->type + 1;
881e4aab 1993
efa90a98
HD
1994 for (; type < nr_swapfiles; type++) {
1995 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1996 si = swap_info[type];
1997 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
1998 continue;
1999 ++*pos;
efa90a98 2000 return si;
1da177e4
LT
2001 }
2002
2003 return NULL;
2004}
2005
2006static void swap_stop(struct seq_file *swap, void *v)
2007{
fc0abb14 2008 mutex_unlock(&swapon_mutex);
1da177e4
LT
2009}
2010
2011static int swap_show(struct seq_file *swap, void *v)
2012{
efa90a98 2013 struct swap_info_struct *si = v;
1da177e4
LT
2014 struct file *file;
2015 int len;
2016
efa90a98 2017 if (si == SEQ_START_TOKEN) {
881e4aab
SS
2018 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2019 return 0;
2020 }
1da177e4 2021
efa90a98 2022 file = si->swap_file;
c32c2f63 2023 len = seq_path(swap, &file->f_path, " \t\n\\");
6eb396dc 2024 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9 2025 len < 40 ? 40 - len : 1, " ",
496ad9aa 2026 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2027 "partition" : "file\t",
efa90a98
HD
2028 si->pages << (PAGE_SHIFT - 10),
2029 si->inuse_pages << (PAGE_SHIFT - 10),
2030 si->prio);
1da177e4
LT
2031 return 0;
2032}
2033
15ad7cdc 2034static const struct seq_operations swaps_op = {
1da177e4
LT
2035 .start = swap_start,
2036 .next = swap_next,
2037 .stop = swap_stop,
2038 .show = swap_show
2039};
2040
2041static int swaps_open(struct inode *inode, struct file *file)
2042{
f1514638 2043 struct seq_file *seq;
66d7dd51
KS
2044 int ret;
2045
66d7dd51 2046 ret = seq_open(file, &swaps_op);
f1514638 2047 if (ret)
66d7dd51 2048 return ret;
66d7dd51 2049
f1514638
KS
2050 seq = file->private_data;
2051 seq->poll_event = atomic_read(&proc_poll_event);
2052 return 0;
1da177e4
LT
2053}
2054
15ad7cdc 2055static const struct file_operations proc_swaps_operations = {
1da177e4
LT
2056 .open = swaps_open,
2057 .read = seq_read,
2058 .llseek = seq_lseek,
2059 .release = seq_release,
66d7dd51 2060 .poll = swaps_poll,
1da177e4
LT
2061};
2062
2063static int __init procswaps_init(void)
2064{
3d71f86f 2065 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
2066 return 0;
2067}
2068__initcall(procswaps_init);
2069#endif /* CONFIG_PROC_FS */
2070
1796316a
JB
2071#ifdef MAX_SWAPFILES_CHECK
2072static int __init max_swapfiles_check(void)
2073{
2074 MAX_SWAPFILES_CHECK();
2075 return 0;
2076}
2077late_initcall(max_swapfiles_check);
2078#endif
2079
53cbb243 2080static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2081{
73c34b6a 2082 struct swap_info_struct *p;
1da177e4 2083 unsigned int type;
efa90a98
HD
2084
2085 p = kzalloc(sizeof(*p), GFP_KERNEL);
2086 if (!p)
53cbb243 2087 return ERR_PTR(-ENOMEM);
efa90a98 2088
5d337b91 2089 spin_lock(&swap_lock);
efa90a98
HD
2090 for (type = 0; type < nr_swapfiles; type++) {
2091 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2092 break;
efa90a98 2093 }
0697212a 2094 if (type >= MAX_SWAPFILES) {
5d337b91 2095 spin_unlock(&swap_lock);
efa90a98 2096 kfree(p);
730c0581 2097 return ERR_PTR(-EPERM);
1da177e4 2098 }
efa90a98
HD
2099 if (type >= nr_swapfiles) {
2100 p->type = type;
2101 swap_info[type] = p;
2102 /*
2103 * Write swap_info[type] before nr_swapfiles, in case a
2104 * racing procfs swap_start() or swap_next() is reading them.
2105 * (We never shrink nr_swapfiles, we never free this entry.)
2106 */
2107 smp_wmb();
2108 nr_swapfiles++;
2109 } else {
2110 kfree(p);
2111 p = swap_info[type];
2112 /*
2113 * Do not memset this entry: a racing procfs swap_next()
2114 * would be relying on p->type to remain valid.
2115 */
2116 }
9625a5f2 2117 INIT_LIST_HEAD(&p->first_swap_extent.list);
adfab836 2118 INIT_LIST_HEAD(&p->list);
1da177e4 2119 p->flags = SWP_USED;
5d337b91 2120 spin_unlock(&swap_lock);
ec8acf20 2121 spin_lock_init(&p->lock);
efa90a98 2122
53cbb243 2123 return p;
53cbb243
CEB
2124}
2125
4d0e1e10
CEB
2126static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2127{
2128 int error;
2129
2130 if (S_ISBLK(inode->i_mode)) {
2131 p->bdev = bdgrab(I_BDEV(inode));
2132 error = blkdev_get(p->bdev,
2133 FMODE_READ | FMODE_WRITE | FMODE_EXCL,
2134 sys_swapon);
2135 if (error < 0) {
2136 p->bdev = NULL;
87ade72a 2137 return -EINVAL;
4d0e1e10
CEB
2138 }
2139 p->old_block_size = block_size(p->bdev);
2140 error = set_blocksize(p->bdev, PAGE_SIZE);
2141 if (error < 0)
87ade72a 2142 return error;
4d0e1e10
CEB
2143 p->flags |= SWP_BLKDEV;
2144 } else if (S_ISREG(inode->i_mode)) {
2145 p->bdev = inode->i_sb->s_bdev;
2146 mutex_lock(&inode->i_mutex);
87ade72a
CEB
2147 if (IS_SWAPFILE(inode))
2148 return -EBUSY;
2149 } else
2150 return -EINVAL;
4d0e1e10
CEB
2151
2152 return 0;
4d0e1e10
CEB
2153}
2154
ca8bd38b
CEB
2155static unsigned long read_swap_header(struct swap_info_struct *p,
2156 union swap_header *swap_header,
2157 struct inode *inode)
2158{
2159 int i;
2160 unsigned long maxpages;
2161 unsigned long swapfilepages;
d6bbbd29 2162 unsigned long last_page;
ca8bd38b
CEB
2163
2164 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2165 pr_err("Unable to find swap-space signature\n");
38719025 2166 return 0;
ca8bd38b
CEB
2167 }
2168
2169 /* swap partition endianess hack... */
2170 if (swab32(swap_header->info.version) == 1) {
2171 swab32s(&swap_header->info.version);
2172 swab32s(&swap_header->info.last_page);
2173 swab32s(&swap_header->info.nr_badpages);
2174 for (i = 0; i < swap_header->info.nr_badpages; i++)
2175 swab32s(&swap_header->info.badpages[i]);
2176 }
2177 /* Check the swap header's sub-version */
2178 if (swap_header->info.version != 1) {
465c47fd
AM
2179 pr_warn("Unable to handle swap header version %d\n",
2180 swap_header->info.version);
38719025 2181 return 0;
ca8bd38b
CEB
2182 }
2183
2184 p->lowest_bit = 1;
2185 p->cluster_next = 1;
2186 p->cluster_nr = 0;
2187
2188 /*
2189 * Find out how many pages are allowed for a single swap
9b15b817 2190 * device. There are two limiting factors: 1) the number
a2c16d6c
HD
2191 * of bits for the swap offset in the swp_entry_t type, and
2192 * 2) the number of bits in the swap pte as defined by the
9b15b817 2193 * different architectures. In order to find the
a2c16d6c 2194 * largest possible bit mask, a swap entry with swap type 0
ca8bd38b 2195 * and swap offset ~0UL is created, encoded to a swap pte,
a2c16d6c 2196 * decoded to a swp_entry_t again, and finally the swap
ca8bd38b
CEB
2197 * offset is extracted. This will mask all the bits from
2198 * the initial ~0UL mask that can't be encoded in either
2199 * the swp_entry_t or the architecture definition of a
9b15b817 2200 * swap pte.
ca8bd38b
CEB
2201 */
2202 maxpages = swp_offset(pte_to_swp_entry(
9b15b817 2203 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
d6bbbd29
RJ
2204 last_page = swap_header->info.last_page;
2205 if (last_page > maxpages) {
465c47fd 2206 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2207 maxpages << (PAGE_SHIFT - 10),
2208 last_page << (PAGE_SHIFT - 10));
2209 }
2210 if (maxpages > last_page) {
2211 maxpages = last_page + 1;
ca8bd38b
CEB
2212 /* p->max is an unsigned int: don't overflow it */
2213 if ((unsigned int)maxpages == 0)
2214 maxpages = UINT_MAX;
2215 }
2216 p->highest_bit = maxpages - 1;
2217
2218 if (!maxpages)
38719025 2219 return 0;
ca8bd38b
CEB
2220 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2221 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 2222 pr_warn("Swap area shorter than signature indicates\n");
38719025 2223 return 0;
ca8bd38b
CEB
2224 }
2225 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 2226 return 0;
ca8bd38b 2227 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 2228 return 0;
ca8bd38b
CEB
2229
2230 return maxpages;
ca8bd38b
CEB
2231}
2232
915d4d7b
CEB
2233static int setup_swap_map_and_extents(struct swap_info_struct *p,
2234 union swap_header *swap_header,
2235 unsigned char *swap_map,
2a8f9449 2236 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
2237 unsigned long maxpages,
2238 sector_t *span)
2239{
2240 int i;
915d4d7b
CEB
2241 unsigned int nr_good_pages;
2242 int nr_extents;
2a8f9449
SL
2243 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2244 unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
915d4d7b
CEB
2245
2246 nr_good_pages = maxpages - 1; /* omit header page */
2247
2a8f9449
SL
2248 cluster_set_null(&p->free_cluster_head);
2249 cluster_set_null(&p->free_cluster_tail);
815c2c54
SL
2250 cluster_set_null(&p->discard_cluster_head);
2251 cluster_set_null(&p->discard_cluster_tail);
2a8f9449 2252
915d4d7b
CEB
2253 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2254 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
2255 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2256 return -EINVAL;
915d4d7b
CEB
2257 if (page_nr < maxpages) {
2258 swap_map[page_nr] = SWAP_MAP_BAD;
2259 nr_good_pages--;
2a8f9449
SL
2260 /*
2261 * Haven't marked the cluster free yet, no list
2262 * operation involved
2263 */
2264 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
2265 }
2266 }
2267
2a8f9449
SL
2268 /* Haven't marked the cluster free yet, no list operation involved */
2269 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2270 inc_cluster_info_page(p, cluster_info, i);
2271
915d4d7b
CEB
2272 if (nr_good_pages) {
2273 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
2274 /*
2275 * Not mark the cluster free yet, no list
2276 * operation involved
2277 */
2278 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
2279 p->max = maxpages;
2280 p->pages = nr_good_pages;
2281 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
2282 if (nr_extents < 0)
2283 return nr_extents;
915d4d7b
CEB
2284 nr_good_pages = p->pages;
2285 }
2286 if (!nr_good_pages) {
465c47fd 2287 pr_warn("Empty swap-file\n");
bdb8e3f6 2288 return -EINVAL;
915d4d7b
CEB
2289 }
2290
2a8f9449
SL
2291 if (!cluster_info)
2292 return nr_extents;
2293
2294 for (i = 0; i < nr_clusters; i++) {
2295 if (!cluster_count(&cluster_info[idx])) {
2296 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2297 if (cluster_is_null(&p->free_cluster_head)) {
2298 cluster_set_next_flag(&p->free_cluster_head,
2299 idx, 0);
2300 cluster_set_next_flag(&p->free_cluster_tail,
2301 idx, 0);
2302 } else {
2303 unsigned int tail;
2304
2305 tail = cluster_next(&p->free_cluster_tail);
2306 cluster_set_next(&cluster_info[tail], idx);
2307 cluster_set_next_flag(&p->free_cluster_tail,
2308 idx, 0);
2309 }
2310 }
2311 idx++;
2312 if (idx == nr_clusters)
2313 idx = 0;
2314 }
915d4d7b 2315 return nr_extents;
915d4d7b
CEB
2316}
2317
dcf6b7dd
RA
2318/*
2319 * Helper to sys_swapon determining if a given swap
2320 * backing device queue supports DISCARD operations.
2321 */
2322static bool swap_discardable(struct swap_info_struct *si)
2323{
2324 struct request_queue *q = bdev_get_queue(si->bdev);
2325
2326 if (!q || !blk_queue_discard(q))
2327 return false;
2328
2329 return true;
2330}
2331
53cbb243
CEB
2332SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2333{
2334 struct swap_info_struct *p;
91a27b2a 2335 struct filename *name;
53cbb243
CEB
2336 struct file *swap_file = NULL;
2337 struct address_space *mapping;
40531542
CEB
2338 int i;
2339 int prio;
53cbb243
CEB
2340 int error;
2341 union swap_header *swap_header;
915d4d7b 2342 int nr_extents;
53cbb243
CEB
2343 sector_t span;
2344 unsigned long maxpages;
53cbb243 2345 unsigned char *swap_map = NULL;
2a8f9449 2346 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 2347 unsigned long *frontswap_map = NULL;
53cbb243
CEB
2348 struct page *page = NULL;
2349 struct inode *inode = NULL;
53cbb243 2350
d15cab97
HD
2351 if (swap_flags & ~SWAP_FLAGS_VALID)
2352 return -EINVAL;
2353
53cbb243
CEB
2354 if (!capable(CAP_SYS_ADMIN))
2355 return -EPERM;
2356
2357 p = alloc_swap_info();
2542e513
CEB
2358 if (IS_ERR(p))
2359 return PTR_ERR(p);
53cbb243 2360
815c2c54
SL
2361 INIT_WORK(&p->discard_work, swap_discard_work);
2362
1da177e4 2363 name = getname(specialfile);
1da177e4 2364 if (IS_ERR(name)) {
7de7fb6b 2365 error = PTR_ERR(name);
1da177e4 2366 name = NULL;
bd69010b 2367 goto bad_swap;
1da177e4 2368 }
669abf4e 2369 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 2370 if (IS_ERR(swap_file)) {
7de7fb6b 2371 error = PTR_ERR(swap_file);
1da177e4 2372 swap_file = NULL;
bd69010b 2373 goto bad_swap;
1da177e4
LT
2374 }
2375
2376 p->swap_file = swap_file;
2377 mapping = swap_file->f_mapping;
1da177e4 2378
1da177e4 2379 for (i = 0; i < nr_swapfiles; i++) {
efa90a98 2380 struct swap_info_struct *q = swap_info[i];
1da177e4 2381
e8e6c2ec 2382 if (q == p || !q->swap_file)
1da177e4 2383 continue;
7de7fb6b
CEB
2384 if (mapping == q->swap_file->f_mapping) {
2385 error = -EBUSY;
1da177e4 2386 goto bad_swap;
7de7fb6b 2387 }
1da177e4
LT
2388 }
2389
2130781e
CEB
2390 inode = mapping->host;
2391 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
4d0e1e10
CEB
2392 error = claim_swapfile(p, inode);
2393 if (unlikely(error))
1da177e4 2394 goto bad_swap;
1da177e4 2395
1da177e4
LT
2396 /*
2397 * Read the swap header.
2398 */
2399 if (!mapping->a_ops->readpage) {
2400 error = -EINVAL;
2401 goto bad_swap;
2402 }
090d2b18 2403 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
2404 if (IS_ERR(page)) {
2405 error = PTR_ERR(page);
2406 goto bad_swap;
2407 }
81e33971 2408 swap_header = kmap(page);
1da177e4 2409
ca8bd38b
CEB
2410 maxpages = read_swap_header(p, swap_header, inode);
2411 if (unlikely(!maxpages)) {
1da177e4
LT
2412 error = -EINVAL;
2413 goto bad_swap;
2414 }
886bb7e9 2415
81e33971 2416 /* OK, set up the swap map and apply the bad block list */
803d0c83 2417 swap_map = vzalloc(maxpages);
81e33971
HD
2418 if (!swap_map) {
2419 error = -ENOMEM;
2420 goto bad_swap;
2421 }
2a8f9449
SL
2422 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2423 p->flags |= SWP_SOLIDSTATE;
2424 /*
2425 * select a random position to start with to help wear leveling
2426 * SSD
2427 */
2428 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2429
2430 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2431 SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2432 if (!cluster_info) {
2433 error = -ENOMEM;
2434 goto bad_swap;
2435 }
ebc2a1a6
SL
2436 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2437 if (!p->percpu_cluster) {
2438 error = -ENOMEM;
2439 goto bad_swap;
2440 }
2441 for_each_possible_cpu(i) {
2442 struct percpu_cluster *cluster;
2443 cluster = per_cpu_ptr(p->percpu_cluster, i);
2444 cluster_set_null(&cluster->index);
2445 }
2a8f9449 2446 }
1da177e4 2447
1421ef3c
CEB
2448 error = swap_cgroup_swapon(p->type, maxpages);
2449 if (error)
2450 goto bad_swap;
2451
915d4d7b 2452 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 2453 cluster_info, maxpages, &span);
915d4d7b
CEB
2454 if (unlikely(nr_extents < 0)) {
2455 error = nr_extents;
1da177e4
LT
2456 goto bad_swap;
2457 }
38b5faf4
DM
2458 /* frontswap enabled? set up bit-per-page map for frontswap */
2459 if (frontswap_enabled)
7b57976d 2460 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
1da177e4 2461
2a8f9449
SL
2462 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2463 /*
2464 * When discard is enabled for swap with no particular
2465 * policy flagged, we set all swap discard flags here in
2466 * order to sustain backward compatibility with older
2467 * swapon(8) releases.
2468 */
2469 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2470 SWP_PAGE_DISCARD);
dcf6b7dd 2471
2a8f9449
SL
2472 /*
2473 * By flagging sys_swapon, a sysadmin can tell us to
2474 * either do single-time area discards only, or to just
2475 * perform discards for released swap page-clusters.
2476 * Now it's time to adjust the p->flags accordingly.
2477 */
2478 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2479 p->flags &= ~SWP_PAGE_DISCARD;
2480 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2481 p->flags &= ~SWP_AREA_DISCARD;
2482
2483 /* issue a swapon-time discard if it's still required */
2484 if (p->flags & SWP_AREA_DISCARD) {
2485 int err = discard_swap(p);
2486 if (unlikely(err))
2487 pr_err("swapon: discard_swap(%p): %d\n",
2488 p, err);
dcf6b7dd 2489 }
20137a49 2490 }
6a6ba831 2491
fc0abb14 2492 mutex_lock(&swapon_mutex);
40531542 2493 prio = -1;
78ecba08 2494 if (swap_flags & SWAP_FLAG_PREFER)
40531542 2495 prio =
78ecba08 2496 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 2497 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 2498
465c47fd 2499 pr_info("Adding %uk swap on %s. "
dcf6b7dd 2500 "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 2501 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
2502 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2503 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 2504 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
2505 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2506 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 2507 (frontswap_map) ? "FS" : "");
c69dbfb8 2508
fc0abb14 2509 mutex_unlock(&swapon_mutex);
66d7dd51
KS
2510 atomic_inc(&proc_poll_event);
2511 wake_up_interruptible(&proc_poll_wait);
2512
9b01c350
CEB
2513 if (S_ISREG(inode->i_mode))
2514 inode->i_flags |= S_SWAPFILE;
1da177e4
LT
2515 error = 0;
2516 goto out;
2517bad_swap:
ebc2a1a6
SL
2518 free_percpu(p->percpu_cluster);
2519 p->percpu_cluster = NULL;
bd69010b 2520 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
2521 set_blocksize(p->bdev, p->old_block_size);
2522 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2523 }
4cd3bb10 2524 destroy_swap_extents(p);
e8e6c2ec 2525 swap_cgroup_swapoff(p->type);
5d337b91 2526 spin_lock(&swap_lock);
1da177e4 2527 p->swap_file = NULL;
1da177e4 2528 p->flags = 0;
5d337b91 2529 spin_unlock(&swap_lock);
1da177e4 2530 vfree(swap_map);
2a8f9449 2531 vfree(cluster_info);
52c50567 2532 if (swap_file) {
2130781e 2533 if (inode && S_ISREG(inode->i_mode)) {
52c50567 2534 mutex_unlock(&inode->i_mutex);
2130781e
CEB
2535 inode = NULL;
2536 }
1da177e4 2537 filp_close(swap_file, NULL);
52c50567 2538 }
1da177e4
LT
2539out:
2540 if (page && !IS_ERR(page)) {
2541 kunmap(page);
2542 page_cache_release(page);
2543 }
2544 if (name)
2545 putname(name);
9b01c350 2546 if (inode && S_ISREG(inode->i_mode))
1b1dcc1b 2547 mutex_unlock(&inode->i_mutex);
1da177e4
LT
2548 return error;
2549}
2550
2551void si_swapinfo(struct sysinfo *val)
2552{
efa90a98 2553 unsigned int type;
1da177e4
LT
2554 unsigned long nr_to_be_unused = 0;
2555
5d337b91 2556 spin_lock(&swap_lock);
efa90a98
HD
2557 for (type = 0; type < nr_swapfiles; type++) {
2558 struct swap_info_struct *si = swap_info[type];
2559
2560 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2561 nr_to_be_unused += si->inuse_pages;
1da177e4 2562 }
ec8acf20 2563 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 2564 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 2565 spin_unlock(&swap_lock);
1da177e4
LT
2566}
2567
2568/*
2569 * Verify that a swap entry is valid and increment its swap map count.
2570 *
355cfa73
KH
2571 * Returns error code in following case.
2572 * - success -> 0
2573 * - swp_entry is invalid -> EINVAL
2574 * - swp_entry is migration entry -> EINVAL
2575 * - swap-cache reference is requested but there is already one. -> EEXIST
2576 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 2577 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 2578 */
8d69aaee 2579static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 2580{
73c34b6a 2581 struct swap_info_struct *p;
1da177e4 2582 unsigned long offset, type;
8d69aaee
HD
2583 unsigned char count;
2584 unsigned char has_cache;
253d553b 2585 int err = -EINVAL;
1da177e4 2586
a7420aa5 2587 if (non_swap_entry(entry))
253d553b 2588 goto out;
0697212a 2589
1da177e4
LT
2590 type = swp_type(entry);
2591 if (type >= nr_swapfiles)
2592 goto bad_file;
efa90a98 2593 p = swap_info[type];
1da177e4
LT
2594 offset = swp_offset(entry);
2595
ec8acf20 2596 spin_lock(&p->lock);
355cfa73
KH
2597 if (unlikely(offset >= p->max))
2598 goto unlock_out;
2599
253d553b 2600 count = p->swap_map[offset];
edfe23da
SL
2601
2602 /*
2603 * swapin_readahead() doesn't check if a swap entry is valid, so the
2604 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2605 */
2606 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2607 err = -ENOENT;
2608 goto unlock_out;
2609 }
2610
253d553b
HD
2611 has_cache = count & SWAP_HAS_CACHE;
2612 count &= ~SWAP_HAS_CACHE;
2613 err = 0;
355cfa73 2614
253d553b 2615 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
2616
2617 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
2618 if (!has_cache && count)
2619 has_cache = SWAP_HAS_CACHE;
2620 else if (has_cache) /* someone else added cache */
2621 err = -EEXIST;
2622 else /* no users remaining */
2623 err = -ENOENT;
355cfa73
KH
2624
2625 } else if (count || has_cache) {
253d553b 2626
570a335b
HD
2627 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2628 count += usage;
2629 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 2630 err = -EINVAL;
570a335b
HD
2631 else if (swap_count_continued(p, offset, count))
2632 count = COUNT_CONTINUED;
2633 else
2634 err = -ENOMEM;
355cfa73 2635 } else
253d553b
HD
2636 err = -ENOENT; /* unused swap entry */
2637
2638 p->swap_map[offset] = count | has_cache;
2639
355cfa73 2640unlock_out:
ec8acf20 2641 spin_unlock(&p->lock);
1da177e4 2642out:
253d553b 2643 return err;
1da177e4
LT
2644
2645bad_file:
465c47fd 2646 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
2647 goto out;
2648}
253d553b 2649
aaa46865
HD
2650/*
2651 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2652 * (in which case its reference count is never incremented).
2653 */
2654void swap_shmem_alloc(swp_entry_t entry)
2655{
2656 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2657}
2658
355cfa73 2659/*
08259d58
HD
2660 * Increase reference count of swap entry by 1.
2661 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2662 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2663 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2664 * might occur if a page table entry has got corrupted.
355cfa73 2665 */
570a335b 2666int swap_duplicate(swp_entry_t entry)
355cfa73 2667{
570a335b
HD
2668 int err = 0;
2669
2670 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2671 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2672 return err;
355cfa73 2673}
1da177e4 2674
cb4b86ba 2675/*
355cfa73
KH
2676 * @entry: swap entry for which we allocate swap cache.
2677 *
73c34b6a 2678 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
2679 * This can return error codes. Returns 0 at success.
2680 * -EBUSY means there is a swap cache.
2681 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
2682 */
2683int swapcache_prepare(swp_entry_t entry)
2684{
253d553b 2685 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
2686}
2687
f981c595
MG
2688struct swap_info_struct *page_swap_info(struct page *page)
2689{
2690 swp_entry_t swap = { .val = page_private(page) };
2691 BUG_ON(!PageSwapCache(page));
2692 return swap_info[swp_type(swap)];
2693}
2694
2695/*
2696 * out-of-line __page_file_ methods to avoid include hell.
2697 */
2698struct address_space *__page_file_mapping(struct page *page)
2699{
309381fe 2700 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
2701 return page_swap_info(page)->swap_file->f_mapping;
2702}
2703EXPORT_SYMBOL_GPL(__page_file_mapping);
2704
2705pgoff_t __page_file_index(struct page *page)
2706{
2707 swp_entry_t swap = { .val = page_private(page) };
309381fe 2708 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
2709 return swp_offset(swap);
2710}
2711EXPORT_SYMBOL_GPL(__page_file_index);
2712
570a335b
HD
2713/*
2714 * add_swap_count_continuation - called when a swap count is duplicated
2715 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2716 * page of the original vmalloc'ed swap_map, to hold the continuation count
2717 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2718 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2719 *
2720 * These continuation pages are seldom referenced: the common paths all work
2721 * on the original swap_map, only referring to a continuation page when the
2722 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2723 *
2724 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2725 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2726 * can be called after dropping locks.
2727 */
2728int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2729{
2730 struct swap_info_struct *si;
2731 struct page *head;
2732 struct page *page;
2733 struct page *list_page;
2734 pgoff_t offset;
2735 unsigned char count;
2736
2737 /*
2738 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2739 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2740 */
2741 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2742
2743 si = swap_info_get(entry);
2744 if (!si) {
2745 /*
2746 * An acceptable race has occurred since the failing
2747 * __swap_duplicate(): the swap entry has been freed,
2748 * perhaps even the whole swap_map cleared for swapoff.
2749 */
2750 goto outer;
2751 }
2752
2753 offset = swp_offset(entry);
2754 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2755
2756 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2757 /*
2758 * The higher the swap count, the more likely it is that tasks
2759 * will race to add swap count continuation: we need to avoid
2760 * over-provisioning.
2761 */
2762 goto out;
2763 }
2764
2765 if (!page) {
ec8acf20 2766 spin_unlock(&si->lock);
570a335b
HD
2767 return -ENOMEM;
2768 }
2769
2770 /*
2771 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
2772 * no architecture is using highmem pages for kernel page tables: so it
2773 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
2774 */
2775 head = vmalloc_to_page(si->swap_map + offset);
2776 offset &= ~PAGE_MASK;
2777
2778 /*
2779 * Page allocation does not initialize the page's lru field,
2780 * but it does always reset its private field.
2781 */
2782 if (!page_private(head)) {
2783 BUG_ON(count & COUNT_CONTINUED);
2784 INIT_LIST_HEAD(&head->lru);
2785 set_page_private(head, SWP_CONTINUED);
2786 si->flags |= SWP_CONTINUED;
2787 }
2788
2789 list_for_each_entry(list_page, &head->lru, lru) {
2790 unsigned char *map;
2791
2792 /*
2793 * If the previous map said no continuation, but we've found
2794 * a continuation page, free our allocation and use this one.
2795 */
2796 if (!(count & COUNT_CONTINUED))
2797 goto out;
2798
9b04c5fe 2799 map = kmap_atomic(list_page) + offset;
570a335b 2800 count = *map;
9b04c5fe 2801 kunmap_atomic(map);
570a335b
HD
2802
2803 /*
2804 * If this continuation count now has some space in it,
2805 * free our allocation and use this one.
2806 */
2807 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2808 goto out;
2809 }
2810
2811 list_add_tail(&page->lru, &head->lru);
2812 page = NULL; /* now it's attached, don't free it */
2813out:
ec8acf20 2814 spin_unlock(&si->lock);
570a335b
HD
2815outer:
2816 if (page)
2817 __free_page(page);
2818 return 0;
2819}
2820
2821/*
2822 * swap_count_continued - when the original swap_map count is incremented
2823 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2824 * into, carry if so, or else fail until a new continuation page is allocated;
2825 * when the original swap_map count is decremented from 0 with continuation,
2826 * borrow from the continuation and report whether it still holds more.
2827 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2828 */
2829static bool swap_count_continued(struct swap_info_struct *si,
2830 pgoff_t offset, unsigned char count)
2831{
2832 struct page *head;
2833 struct page *page;
2834 unsigned char *map;
2835
2836 head = vmalloc_to_page(si->swap_map + offset);
2837 if (page_private(head) != SWP_CONTINUED) {
2838 BUG_ON(count & COUNT_CONTINUED);
2839 return false; /* need to add count continuation */
2840 }
2841
2842 offset &= ~PAGE_MASK;
2843 page = list_entry(head->lru.next, struct page, lru);
9b04c5fe 2844 map = kmap_atomic(page) + offset;
570a335b
HD
2845
2846 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2847 goto init_map; /* jump over SWAP_CONT_MAX checks */
2848
2849 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2850 /*
2851 * Think of how you add 1 to 999
2852 */
2853 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 2854 kunmap_atomic(map);
570a335b
HD
2855 page = list_entry(page->lru.next, struct page, lru);
2856 BUG_ON(page == head);
9b04c5fe 2857 map = kmap_atomic(page) + offset;
570a335b
HD
2858 }
2859 if (*map == SWAP_CONT_MAX) {
9b04c5fe 2860 kunmap_atomic(map);
570a335b
HD
2861 page = list_entry(page->lru.next, struct page, lru);
2862 if (page == head)
2863 return false; /* add count continuation */
9b04c5fe 2864 map = kmap_atomic(page) + offset;
570a335b
HD
2865init_map: *map = 0; /* we didn't zero the page */
2866 }
2867 *map += 1;
9b04c5fe 2868 kunmap_atomic(map);
570a335b
HD
2869 page = list_entry(page->lru.prev, struct page, lru);
2870 while (page != head) {
9b04c5fe 2871 map = kmap_atomic(page) + offset;
570a335b 2872 *map = COUNT_CONTINUED;
9b04c5fe 2873 kunmap_atomic(map);
570a335b
HD
2874 page = list_entry(page->lru.prev, struct page, lru);
2875 }
2876 return true; /* incremented */
2877
2878 } else { /* decrementing */
2879 /*
2880 * Think of how you subtract 1 from 1000
2881 */
2882 BUG_ON(count != COUNT_CONTINUED);
2883 while (*map == COUNT_CONTINUED) {
9b04c5fe 2884 kunmap_atomic(map);
570a335b
HD
2885 page = list_entry(page->lru.next, struct page, lru);
2886 BUG_ON(page == head);
9b04c5fe 2887 map = kmap_atomic(page) + offset;
570a335b
HD
2888 }
2889 BUG_ON(*map == 0);
2890 *map -= 1;
2891 if (*map == 0)
2892 count = 0;
9b04c5fe 2893 kunmap_atomic(map);
570a335b
HD
2894 page = list_entry(page->lru.prev, struct page, lru);
2895 while (page != head) {
9b04c5fe 2896 map = kmap_atomic(page) + offset;
570a335b
HD
2897 *map = SWAP_CONT_MAX | count;
2898 count = COUNT_CONTINUED;
9b04c5fe 2899 kunmap_atomic(map);
570a335b
HD
2900 page = list_entry(page->lru.prev, struct page, lru);
2901 }
2902 return count == COUNT_CONTINUED;
2903 }
2904}
2905
2906/*
2907 * free_swap_count_continuations - swapoff free all the continuation pages
2908 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2909 */
2910static void free_swap_count_continuations(struct swap_info_struct *si)
2911{
2912 pgoff_t offset;
2913
2914 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2915 struct page *head;
2916 head = vmalloc_to_page(si->swap_map + offset);
2917 if (page_private(head)) {
2918 struct list_head *this, *next;
2919 list_for_each_safe(this, next, &head->lru) {
2920 struct page *page;
2921 page = list_entry(this, struct page, lru);
2922 list_del(this);
2923 __free_page(page);
2924 }
2925 }
2926 }
2927}