]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/swapfile.c
mm/swapfile.c: remove the extra check in scan_swap_map_slots()
[mirror_ubuntu-hirsute-kernel.git] / mm / swapfile.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
1da177e4 9#include <linux/mm.h>
6e84f315 10#include <linux/sched/mm.h>
29930025 11#include <linux/sched/task.h>
1da177e4
LT
12#include <linux/hugetlb.h>
13#include <linux/mman.h>
14#include <linux/slab.h>
15#include <linux/kernel_stat.h>
16#include <linux/swap.h>
17#include <linux/vmalloc.h>
18#include <linux/pagemap.h>
19#include <linux/namei.h>
072441e2 20#include <linux/shmem_fs.h>
1da177e4 21#include <linux/blkdev.h>
20137a49 22#include <linux/random.h>
1da177e4
LT
23#include <linux/writeback.h>
24#include <linux/proc_fs.h>
25#include <linux/seq_file.h>
26#include <linux/init.h>
5ad64688 27#include <linux/ksm.h>
1da177e4
LT
28#include <linux/rmap.h>
29#include <linux/security.h>
30#include <linux/backing-dev.h>
fc0abb14 31#include <linux/mutex.h>
c59ede7b 32#include <linux/capability.h>
1da177e4 33#include <linux/syscalls.h>
8a9f3ccd 34#include <linux/memcontrol.h>
66d7dd51 35#include <linux/poll.h>
72788c38 36#include <linux/oom.h>
38b5faf4
DM
37#include <linux/frontswap.h>
38#include <linux/swapfile.h>
f981c595 39#include <linux/export.h>
67afa38e 40#include <linux/swap_slots.h>
155b5f88 41#include <linux/sort.h>
1da177e4
LT
42
43#include <asm/pgtable.h>
44#include <asm/tlbflush.h>
45#include <linux/swapops.h>
5d1ea48b 46#include <linux/swap_cgroup.h>
1da177e4 47
570a335b
HD
48static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49 unsigned char);
50static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 51static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 52
38b5faf4 53DEFINE_SPINLOCK(swap_lock);
7c363b8c 54static unsigned int nr_swapfiles;
ec8acf20 55atomic_long_t nr_swap_pages;
fb0fec50
CW
56/*
57 * Some modules use swappable objects and may try to swap them out under
58 * memory pressure (via the shrinker). Before doing so, they may wish to
59 * check to see if any swap space is available.
60 */
61EXPORT_SYMBOL_GPL(nr_swap_pages);
ec8acf20 62/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 63long total_swap_pages;
a2468cc9 64static int least_priority = -1;
1da177e4 65
1da177e4
LT
66static const char Bad_file[] = "Bad swap file entry ";
67static const char Unused_file[] = "Unused swap file entry ";
68static const char Bad_offset[] = "Bad swap offset entry ";
69static const char Unused_offset[] = "Unused swap offset entry ";
70
adfab836
DS
71/*
72 * all active swap_info_structs
73 * protected with swap_lock, and ordered by priority.
74 */
18ab4d4c
DS
75PLIST_HEAD(swap_active_head);
76
77/*
78 * all available (active, not full) swap_info_structs
79 * protected with swap_avail_lock, ordered by priority.
80 * This is used by get_swap_page() instead of swap_active_head
81 * because swap_active_head includes all swap_info_structs,
82 * but get_swap_page() doesn't need to look at full ones.
83 * This uses its own lock instead of swap_lock because when a
84 * swap_info_struct changes between not-full/full, it needs to
85 * add/remove itself to/from this list, but the swap_info_struct->lock
86 * is held and the locking order requires swap_lock to be taken
87 * before any swap_info_struct->lock.
88 */
bfc6b1ca 89static struct plist_head *swap_avail_heads;
18ab4d4c 90static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 91
38b5faf4 92struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 93
fc0abb14 94static DEFINE_MUTEX(swapon_mutex);
1da177e4 95
66d7dd51
KS
96static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
97/* Activity counter to indicate that a swapon or swapoff has occurred */
98static atomic_t proc_poll_event = ATOMIC_INIT(0);
99
81a0298b
HY
100atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101
c10d38cc
DJ
102static struct swap_info_struct *swap_type_to_swap_info(int type)
103{
104 if (type >= READ_ONCE(nr_swapfiles))
105 return NULL;
106
107 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */
108 return READ_ONCE(swap_info[type]);
109}
110
8d69aaee 111static inline unsigned char swap_count(unsigned char ent)
355cfa73 112{
955c97f0 113 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
355cfa73
KH
114}
115
bcd49e86
HY
116/* Reclaim the swap entry anyway if possible */
117#define TTRS_ANYWAY 0x1
118/*
119 * Reclaim the swap entry if there are no more mappings of the
120 * corresponding page
121 */
122#define TTRS_UNMAPPED 0x2
123/* Reclaim the swap entry if swap is getting full*/
124#define TTRS_FULL 0x4
125
efa90a98 126/* returns 1 if swap entry is freed */
bcd49e86
HY
127static int __try_to_reclaim_swap(struct swap_info_struct *si,
128 unsigned long offset, unsigned long flags)
c9e44410 129{
efa90a98 130 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
131 struct page *page;
132 int ret = 0;
133
bcd49e86 134 page = find_get_page(swap_address_space(entry), offset);
c9e44410
KH
135 if (!page)
136 return 0;
137 /*
bcd49e86
HY
138 * When this function is called from scan_swap_map_slots() and it's
139 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
140 * here. We have to use trylock for avoiding deadlock. This is a special
c9e44410
KH
141 * case and you should use try_to_free_swap() with explicit lock_page()
142 * in usual operations.
143 */
144 if (trylock_page(page)) {
bcd49e86
HY
145 if ((flags & TTRS_ANYWAY) ||
146 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
147 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
148 ret = try_to_free_swap(page);
c9e44410
KH
149 unlock_page(page);
150 }
09cbfeaf 151 put_page(page);
c9e44410
KH
152 return ret;
153}
355cfa73 154
4efaceb1
AL
155static inline struct swap_extent *first_se(struct swap_info_struct *sis)
156{
157 struct rb_node *rb = rb_first(&sis->swap_extent_root);
158 return rb_entry(rb, struct swap_extent, rb_node);
159}
160
161static inline struct swap_extent *next_se(struct swap_extent *se)
162{
163 struct rb_node *rb = rb_next(&se->rb_node);
164 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
165}
166
6a6ba831
HD
167/*
168 * swapon tell device that all the old swap contents can be discarded,
169 * to allow the swap device to optimize its wear-levelling.
170 */
171static int discard_swap(struct swap_info_struct *si)
172{
173 struct swap_extent *se;
9625a5f2
HD
174 sector_t start_block;
175 sector_t nr_blocks;
6a6ba831
HD
176 int err = 0;
177
9625a5f2 178 /* Do not discard the swap header page! */
4efaceb1 179 se = first_se(si);
9625a5f2
HD
180 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
181 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
182 if (nr_blocks) {
183 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 184 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
185 if (err)
186 return err;
187 cond_resched();
188 }
6a6ba831 189
4efaceb1 190 for (se = next_se(se); se; se = next_se(se)) {
9625a5f2
HD
191 start_block = se->start_block << (PAGE_SHIFT - 9);
192 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
193
194 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 195 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
196 if (err)
197 break;
198
199 cond_resched();
200 }
201 return err; /* That will often be -EOPNOTSUPP */
202}
203
4efaceb1
AL
204static struct swap_extent *
205offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
206{
207 struct swap_extent *se;
208 struct rb_node *rb;
209
210 rb = sis->swap_extent_root.rb_node;
211 while (rb) {
212 se = rb_entry(rb, struct swap_extent, rb_node);
213 if (offset < se->start_page)
214 rb = rb->rb_left;
215 else if (offset >= se->start_page + se->nr_pages)
216 rb = rb->rb_right;
217 else
218 return se;
219 }
220 /* It *must* be present */
221 BUG();
222}
223
7992fde7
HD
224/*
225 * swap allocation tell device that a cluster of swap can now be discarded,
226 * to allow the swap device to optimize its wear-levelling.
227 */
228static void discard_swap_cluster(struct swap_info_struct *si,
229 pgoff_t start_page, pgoff_t nr_pages)
230{
4efaceb1 231 struct swap_extent *se = offset_to_swap_extent(si, start_page);
7992fde7
HD
232
233 while (nr_pages) {
4efaceb1
AL
234 pgoff_t offset = start_page - se->start_page;
235 sector_t start_block = se->start_block + offset;
236 sector_t nr_blocks = se->nr_pages - offset;
237
238 if (nr_blocks > nr_pages)
239 nr_blocks = nr_pages;
240 start_page += nr_blocks;
241 nr_pages -= nr_blocks;
242
243 start_block <<= PAGE_SHIFT - 9;
244 nr_blocks <<= PAGE_SHIFT - 9;
245 if (blkdev_issue_discard(si->bdev, start_block,
246 nr_blocks, GFP_NOIO, 0))
247 break;
7992fde7 248
4efaceb1 249 se = next_se(se);
7992fde7
HD
250 }
251}
252
38d8b4e6
HY
253#ifdef CONFIG_THP_SWAP
254#define SWAPFILE_CLUSTER HPAGE_PMD_NR
a448f2d0
HY
255
256#define swap_entry_size(size) (size)
38d8b4e6 257#else
048c27fd 258#define SWAPFILE_CLUSTER 256
a448f2d0
HY
259
260/*
261 * Define swap_entry_size() as constant to let compiler to optimize
262 * out some code if !CONFIG_THP_SWAP
263 */
264#define swap_entry_size(size) 1
38d8b4e6 265#endif
048c27fd
HD
266#define LATENCY_LIMIT 256
267
2a8f9449
SL
268static inline void cluster_set_flag(struct swap_cluster_info *info,
269 unsigned int flag)
270{
271 info->flags = flag;
272}
273
274static inline unsigned int cluster_count(struct swap_cluster_info *info)
275{
276 return info->data;
277}
278
279static inline void cluster_set_count(struct swap_cluster_info *info,
280 unsigned int c)
281{
282 info->data = c;
283}
284
285static inline void cluster_set_count_flag(struct swap_cluster_info *info,
286 unsigned int c, unsigned int f)
287{
288 info->flags = f;
289 info->data = c;
290}
291
292static inline unsigned int cluster_next(struct swap_cluster_info *info)
293{
294 return info->data;
295}
296
297static inline void cluster_set_next(struct swap_cluster_info *info,
298 unsigned int n)
299{
300 info->data = n;
301}
302
303static inline void cluster_set_next_flag(struct swap_cluster_info *info,
304 unsigned int n, unsigned int f)
305{
306 info->flags = f;
307 info->data = n;
308}
309
310static inline bool cluster_is_free(struct swap_cluster_info *info)
311{
312 return info->flags & CLUSTER_FLAG_FREE;
313}
314
315static inline bool cluster_is_null(struct swap_cluster_info *info)
316{
317 return info->flags & CLUSTER_FLAG_NEXT_NULL;
318}
319
320static inline void cluster_set_null(struct swap_cluster_info *info)
321{
322 info->flags = CLUSTER_FLAG_NEXT_NULL;
323 info->data = 0;
324}
325
e0709829
HY
326static inline bool cluster_is_huge(struct swap_cluster_info *info)
327{
33ee011e
HY
328 if (IS_ENABLED(CONFIG_THP_SWAP))
329 return info->flags & CLUSTER_FLAG_HUGE;
330 return false;
e0709829
HY
331}
332
333static inline void cluster_clear_huge(struct swap_cluster_info *info)
334{
335 info->flags &= ~CLUSTER_FLAG_HUGE;
336}
337
235b6217
HY
338static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
339 unsigned long offset)
340{
341 struct swap_cluster_info *ci;
342
343 ci = si->cluster_info;
344 if (ci) {
345 ci += offset / SWAPFILE_CLUSTER;
346 spin_lock(&ci->lock);
347 }
348 return ci;
349}
350
351static inline void unlock_cluster(struct swap_cluster_info *ci)
352{
353 if (ci)
354 spin_unlock(&ci->lock);
355}
356
59d98bf3
HY
357/*
358 * Determine the locking method in use for this device. Return
359 * swap_cluster_info if SSD-style cluster-based locking is in place.
360 */
235b6217 361static inline struct swap_cluster_info *lock_cluster_or_swap_info(
59d98bf3 362 struct swap_info_struct *si, unsigned long offset)
235b6217
HY
363{
364 struct swap_cluster_info *ci;
365
59d98bf3 366 /* Try to use fine-grained SSD-style locking if available: */
235b6217 367 ci = lock_cluster(si, offset);
59d98bf3 368 /* Otherwise, fall back to traditional, coarse locking: */
235b6217
HY
369 if (!ci)
370 spin_lock(&si->lock);
371
372 return ci;
373}
374
375static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
376 struct swap_cluster_info *ci)
377{
378 if (ci)
379 unlock_cluster(ci);
380 else
381 spin_unlock(&si->lock);
382}
383
6b534915
HY
384static inline bool cluster_list_empty(struct swap_cluster_list *list)
385{
386 return cluster_is_null(&list->head);
387}
388
389static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
390{
391 return cluster_next(&list->head);
392}
393
394static void cluster_list_init(struct swap_cluster_list *list)
395{
396 cluster_set_null(&list->head);
397 cluster_set_null(&list->tail);
398}
399
400static void cluster_list_add_tail(struct swap_cluster_list *list,
401 struct swap_cluster_info *ci,
402 unsigned int idx)
403{
404 if (cluster_list_empty(list)) {
405 cluster_set_next_flag(&list->head, idx, 0);
406 cluster_set_next_flag(&list->tail, idx, 0);
407 } else {
235b6217 408 struct swap_cluster_info *ci_tail;
6b534915
HY
409 unsigned int tail = cluster_next(&list->tail);
410
235b6217
HY
411 /*
412 * Nested cluster lock, but both cluster locks are
413 * only acquired when we held swap_info_struct->lock
414 */
415 ci_tail = ci + tail;
416 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
417 cluster_set_next(ci_tail, idx);
0ef017d1 418 spin_unlock(&ci_tail->lock);
6b534915
HY
419 cluster_set_next_flag(&list->tail, idx, 0);
420 }
421}
422
423static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
424 struct swap_cluster_info *ci)
425{
426 unsigned int idx;
427
428 idx = cluster_next(&list->head);
429 if (cluster_next(&list->tail) == idx) {
430 cluster_set_null(&list->head);
431 cluster_set_null(&list->tail);
432 } else
433 cluster_set_next_flag(&list->head,
434 cluster_next(&ci[idx]), 0);
435
436 return idx;
437}
438
815c2c54
SL
439/* Add a cluster to discard list and schedule it to do discard */
440static void swap_cluster_schedule_discard(struct swap_info_struct *si,
441 unsigned int idx)
442{
443 /*
444 * If scan_swap_map() can't find a free cluster, it will check
445 * si->swap_map directly. To make sure the discarding cluster isn't
446 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
447 * will be cleared after discard
448 */
449 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
450 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
451
6b534915 452 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
815c2c54
SL
453
454 schedule_work(&si->discard_work);
455}
456
38d8b4e6
HY
457static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
458{
459 struct swap_cluster_info *ci = si->cluster_info;
460
461 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
462 cluster_list_add_tail(&si->free_clusters, ci, idx);
463}
464
815c2c54
SL
465/*
466 * Doing discard actually. After a cluster discard is finished, the cluster
467 * will be added to free cluster list. caller should hold si->lock.
468*/
469static void swap_do_scheduled_discard(struct swap_info_struct *si)
470{
235b6217 471 struct swap_cluster_info *info, *ci;
815c2c54
SL
472 unsigned int idx;
473
474 info = si->cluster_info;
475
6b534915
HY
476 while (!cluster_list_empty(&si->discard_clusters)) {
477 idx = cluster_list_del_first(&si->discard_clusters, info);
815c2c54
SL
478 spin_unlock(&si->lock);
479
480 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
481 SWAPFILE_CLUSTER);
482
483 spin_lock(&si->lock);
235b6217 484 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
38d8b4e6 485 __free_cluster(si, idx);
815c2c54
SL
486 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
487 0, SWAPFILE_CLUSTER);
235b6217 488 unlock_cluster(ci);
815c2c54
SL
489 }
490}
491
492static void swap_discard_work(struct work_struct *work)
493{
494 struct swap_info_struct *si;
495
496 si = container_of(work, struct swap_info_struct, discard_work);
497
498 spin_lock(&si->lock);
499 swap_do_scheduled_discard(si);
500 spin_unlock(&si->lock);
501}
502
38d8b4e6
HY
503static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
504{
505 struct swap_cluster_info *ci = si->cluster_info;
506
507 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
508 cluster_list_del_first(&si->free_clusters, ci);
509 cluster_set_count_flag(ci + idx, 0, 0);
510}
511
512static void free_cluster(struct swap_info_struct *si, unsigned long idx)
513{
514 struct swap_cluster_info *ci = si->cluster_info + idx;
515
516 VM_BUG_ON(cluster_count(ci) != 0);
517 /*
518 * If the swap is discardable, prepare discard the cluster
519 * instead of free it immediately. The cluster will be freed
520 * after discard.
521 */
522 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
523 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
524 swap_cluster_schedule_discard(si, idx);
525 return;
526 }
527
528 __free_cluster(si, idx);
529}
530
2a8f9449
SL
531/*
532 * The cluster corresponding to page_nr will be used. The cluster will be
533 * removed from free cluster list and its usage counter will be increased.
534 */
535static void inc_cluster_info_page(struct swap_info_struct *p,
536 struct swap_cluster_info *cluster_info, unsigned long page_nr)
537{
538 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
539
540 if (!cluster_info)
541 return;
38d8b4e6
HY
542 if (cluster_is_free(&cluster_info[idx]))
543 alloc_cluster(p, idx);
2a8f9449
SL
544
545 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
546 cluster_set_count(&cluster_info[idx],
547 cluster_count(&cluster_info[idx]) + 1);
548}
549
550/*
551 * The cluster corresponding to page_nr decreases one usage. If the usage
552 * counter becomes 0, which means no page in the cluster is in using, we can
553 * optionally discard the cluster and add it to free cluster list.
554 */
555static void dec_cluster_info_page(struct swap_info_struct *p,
556 struct swap_cluster_info *cluster_info, unsigned long page_nr)
557{
558 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
559
560 if (!cluster_info)
561 return;
562
563 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
564 cluster_set_count(&cluster_info[idx],
565 cluster_count(&cluster_info[idx]) - 1);
566
38d8b4e6
HY
567 if (cluster_count(&cluster_info[idx]) == 0)
568 free_cluster(p, idx);
2a8f9449
SL
569}
570
571/*
572 * It's possible scan_swap_map() uses a free cluster in the middle of free
573 * cluster list. Avoiding such abuse to avoid list corruption.
574 */
ebc2a1a6
SL
575static bool
576scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
577 unsigned long offset)
578{
ebc2a1a6
SL
579 struct percpu_cluster *percpu_cluster;
580 bool conflict;
581
2a8f9449 582 offset /= SWAPFILE_CLUSTER;
6b534915
HY
583 conflict = !cluster_list_empty(&si->free_clusters) &&
584 offset != cluster_list_first(&si->free_clusters) &&
2a8f9449 585 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
586
587 if (!conflict)
588 return false;
589
590 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
591 cluster_set_null(&percpu_cluster->index);
592 return true;
593}
594
595/*
596 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
597 * might involve allocating a new cluster for current CPU too.
598 */
36005bae 599static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
ebc2a1a6
SL
600 unsigned long *offset, unsigned long *scan_base)
601{
602 struct percpu_cluster *cluster;
235b6217 603 struct swap_cluster_info *ci;
ebc2a1a6 604 bool found_free;
235b6217 605 unsigned long tmp, max;
ebc2a1a6
SL
606
607new_cluster:
608 cluster = this_cpu_ptr(si->percpu_cluster);
609 if (cluster_is_null(&cluster->index)) {
6b534915
HY
610 if (!cluster_list_empty(&si->free_clusters)) {
611 cluster->index = si->free_clusters.head;
ebc2a1a6
SL
612 cluster->next = cluster_next(&cluster->index) *
613 SWAPFILE_CLUSTER;
6b534915 614 } else if (!cluster_list_empty(&si->discard_clusters)) {
ebc2a1a6
SL
615 /*
616 * we don't have free cluster but have some clusters in
617 * discarding, do discard now and reclaim them
618 */
619 swap_do_scheduled_discard(si);
620 *scan_base = *offset = si->cluster_next;
621 goto new_cluster;
622 } else
36005bae 623 return false;
ebc2a1a6
SL
624 }
625
626 found_free = false;
627
628 /*
629 * Other CPUs can use our cluster if they can't find a free cluster,
630 * check if there is still free entry in the cluster
631 */
632 tmp = cluster->next;
235b6217
HY
633 max = min_t(unsigned long, si->max,
634 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
635 if (tmp >= max) {
636 cluster_set_null(&cluster->index);
637 goto new_cluster;
638 }
639 ci = lock_cluster(si, tmp);
640 while (tmp < max) {
ebc2a1a6
SL
641 if (!si->swap_map[tmp]) {
642 found_free = true;
643 break;
644 }
645 tmp++;
646 }
235b6217 647 unlock_cluster(ci);
ebc2a1a6
SL
648 if (!found_free) {
649 cluster_set_null(&cluster->index);
650 goto new_cluster;
651 }
652 cluster->next = tmp + 1;
653 *offset = tmp;
654 *scan_base = tmp;
36005bae 655 return found_free;
2a8f9449
SL
656}
657
a2468cc9
AL
658static void __del_from_avail_list(struct swap_info_struct *p)
659{
660 int nid;
661
662 for_each_node(nid)
663 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
664}
665
666static void del_from_avail_list(struct swap_info_struct *p)
667{
668 spin_lock(&swap_avail_lock);
669 __del_from_avail_list(p);
670 spin_unlock(&swap_avail_lock);
671}
672
38d8b4e6
HY
673static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
674 unsigned int nr_entries)
675{
676 unsigned int end = offset + nr_entries - 1;
677
678 if (offset == si->lowest_bit)
679 si->lowest_bit += nr_entries;
680 if (end == si->highest_bit)
681 si->highest_bit -= nr_entries;
682 si->inuse_pages += nr_entries;
683 if (si->inuse_pages == si->pages) {
684 si->lowest_bit = si->max;
685 si->highest_bit = 0;
a2468cc9 686 del_from_avail_list(si);
38d8b4e6
HY
687 }
688}
689
a2468cc9
AL
690static void add_to_avail_list(struct swap_info_struct *p)
691{
692 int nid;
693
694 spin_lock(&swap_avail_lock);
695 for_each_node(nid) {
696 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
697 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
698 }
699 spin_unlock(&swap_avail_lock);
700}
701
38d8b4e6
HY
702static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
703 unsigned int nr_entries)
704{
705 unsigned long end = offset + nr_entries - 1;
706 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
707
708 if (offset < si->lowest_bit)
709 si->lowest_bit = offset;
710 if (end > si->highest_bit) {
711 bool was_full = !si->highest_bit;
712
713 si->highest_bit = end;
a2468cc9
AL
714 if (was_full && (si->flags & SWP_WRITEOK))
715 add_to_avail_list(si);
38d8b4e6
HY
716 }
717 atomic_long_add(nr_entries, &nr_swap_pages);
718 si->inuse_pages -= nr_entries;
719 if (si->flags & SWP_BLKDEV)
720 swap_slot_free_notify =
721 si->bdev->bd_disk->fops->swap_slot_free_notify;
722 else
723 swap_slot_free_notify = NULL;
724 while (offset <= end) {
725 frontswap_invalidate_page(si->type, offset);
726 if (swap_slot_free_notify)
727 swap_slot_free_notify(si->bdev, offset);
728 offset++;
729 }
730}
731
36005bae
TC
732static int scan_swap_map_slots(struct swap_info_struct *si,
733 unsigned char usage, int nr,
734 swp_entry_t slots[])
1da177e4 735{
235b6217 736 struct swap_cluster_info *ci;
ebebbbe9 737 unsigned long offset;
c60aa176 738 unsigned long scan_base;
7992fde7 739 unsigned long last_in_cluster = 0;
048c27fd 740 int latency_ration = LATENCY_LIMIT;
36005bae
TC
741 int n_ret = 0;
742
886bb7e9 743 /*
7dfad418
HD
744 * We try to cluster swap pages by allocating them sequentially
745 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
746 * way, however, we resort to first-free allocation, starting
747 * a new cluster. This prevents us from scattering swap pages
748 * all over the entire swap partition, so that we reduce
749 * overall disk seek times between swap pages. -- sct
750 * But we do now try to find an empty cluster. -Andrea
c60aa176 751 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
752 */
753
52b7efdb 754 si->flags += SWP_SCANNING;
c60aa176 755 scan_base = offset = si->cluster_next;
ebebbbe9 756
ebc2a1a6
SL
757 /* SSD algorithm */
758 if (si->cluster_info) {
bd2d18da 759 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
36005bae 760 goto scan;
f4eaf51a 761 } else if (unlikely(!si->cluster_nr--)) {
ebebbbe9
HD
762 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
763 si->cluster_nr = SWAPFILE_CLUSTER - 1;
764 goto checks;
765 }
2a8f9449 766
ec8acf20 767 spin_unlock(&si->lock);
7dfad418 768
c60aa176
HD
769 /*
770 * If seek is expensive, start searching for new cluster from
771 * start of partition, to minimize the span of allocated swap.
50088c44
CY
772 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
773 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 774 */
50088c44 775 scan_base = offset = si->lowest_bit;
7dfad418
HD
776 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
777
778 /* Locate the first empty (unaligned) cluster */
779 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 780 if (si->swap_map[offset])
7dfad418
HD
781 last_in_cluster = offset + SWAPFILE_CLUSTER;
782 else if (offset == last_in_cluster) {
ec8acf20 783 spin_lock(&si->lock);
ebebbbe9
HD
784 offset -= SWAPFILE_CLUSTER - 1;
785 si->cluster_next = offset;
786 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
787 goto checks;
788 }
789 if (unlikely(--latency_ration < 0)) {
790 cond_resched();
791 latency_ration = LATENCY_LIMIT;
792 }
793 }
794
795 offset = scan_base;
ec8acf20 796 spin_lock(&si->lock);
ebebbbe9 797 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 798 }
7dfad418 799
ebebbbe9 800checks:
ebc2a1a6 801 if (si->cluster_info) {
36005bae
TC
802 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
803 /* take a break if we already got some slots */
804 if (n_ret)
805 goto done;
806 if (!scan_swap_map_try_ssd_cluster(si, &offset,
807 &scan_base))
808 goto scan;
809 }
ebc2a1a6 810 }
ebebbbe9 811 if (!(si->flags & SWP_WRITEOK))
52b7efdb 812 goto no_page;
7dfad418
HD
813 if (!si->highest_bit)
814 goto no_page;
ebebbbe9 815 if (offset > si->highest_bit)
c60aa176 816 scan_base = offset = si->lowest_bit;
c9e44410 817
235b6217 818 ci = lock_cluster(si, offset);
b73d7fce
HD
819 /* reuse swap entry of cache-only swap if not busy. */
820 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 821 int swap_was_freed;
235b6217 822 unlock_cluster(ci);
ec8acf20 823 spin_unlock(&si->lock);
bcd49e86 824 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
ec8acf20 825 spin_lock(&si->lock);
c9e44410
KH
826 /* entry was freed successfully, try to use this again */
827 if (swap_was_freed)
828 goto checks;
829 goto scan; /* check next one */
830 }
831
235b6217
HY
832 if (si->swap_map[offset]) {
833 unlock_cluster(ci);
36005bae
TC
834 if (!n_ret)
835 goto scan;
836 else
837 goto done;
235b6217 838 }
2872bb2d
HY
839 si->swap_map[offset] = usage;
840 inc_cluster_info_page(si, si->cluster_info, offset);
841 unlock_cluster(ci);
ebebbbe9 842
38d8b4e6 843 swap_range_alloc(si, offset, 1);
ebebbbe9 844 si->cluster_next = offset + 1;
36005bae
TC
845 slots[n_ret++] = swp_entry(si->type, offset);
846
847 /* got enough slots or reach max slots? */
848 if ((n_ret == nr) || (offset >= si->highest_bit))
849 goto done;
850
851 /* search for next available slot */
852
853 /* time to take a break? */
854 if (unlikely(--latency_ration < 0)) {
855 if (n_ret)
856 goto done;
857 spin_unlock(&si->lock);
858 cond_resched();
859 spin_lock(&si->lock);
860 latency_ration = LATENCY_LIMIT;
861 }
862
863 /* try to get more slots in cluster */
864 if (si->cluster_info) {
865 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
866 goto checks;
f4eaf51a
WY
867 } else if (si->cluster_nr && !si->swap_map[++offset]) {
868 /* non-ssd case, still more slots in cluster? */
36005bae
TC
869 --si->cluster_nr;
870 goto checks;
871 }
7992fde7 872
36005bae
TC
873done:
874 si->flags -= SWP_SCANNING;
875 return n_ret;
7dfad418 876
ebebbbe9 877scan:
ec8acf20 878 spin_unlock(&si->lock);
7dfad418 879 while (++offset <= si->highest_bit) {
52b7efdb 880 if (!si->swap_map[offset]) {
ec8acf20 881 spin_lock(&si->lock);
52b7efdb
HD
882 goto checks;
883 }
c9e44410 884 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 885 spin_lock(&si->lock);
c9e44410
KH
886 goto checks;
887 }
048c27fd
HD
888 if (unlikely(--latency_ration < 0)) {
889 cond_resched();
890 latency_ration = LATENCY_LIMIT;
891 }
7dfad418 892 }
c60aa176 893 offset = si->lowest_bit;
a5998061 894 while (offset < scan_base) {
c60aa176 895 if (!si->swap_map[offset]) {
ec8acf20 896 spin_lock(&si->lock);
c60aa176
HD
897 goto checks;
898 }
c9e44410 899 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 900 spin_lock(&si->lock);
c9e44410
KH
901 goto checks;
902 }
c60aa176
HD
903 if (unlikely(--latency_ration < 0)) {
904 cond_resched();
905 latency_ration = LATENCY_LIMIT;
906 }
a5998061 907 offset++;
c60aa176 908 }
ec8acf20 909 spin_lock(&si->lock);
7dfad418
HD
910
911no_page:
52b7efdb 912 si->flags -= SWP_SCANNING;
36005bae 913 return n_ret;
1da177e4
LT
914}
915
38d8b4e6
HY
916static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
917{
918 unsigned long idx;
919 struct swap_cluster_info *ci;
920 unsigned long offset, i;
921 unsigned char *map;
922
fe5266d5
HY
923 /*
924 * Should not even be attempting cluster allocations when huge
925 * page swap is disabled. Warn and fail the allocation.
926 */
927 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
928 VM_WARN_ON_ONCE(1);
929 return 0;
930 }
931
38d8b4e6
HY
932 if (cluster_list_empty(&si->free_clusters))
933 return 0;
934
935 idx = cluster_list_first(&si->free_clusters);
936 offset = idx * SWAPFILE_CLUSTER;
937 ci = lock_cluster(si, offset);
938 alloc_cluster(si, idx);
e0709829 939 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
38d8b4e6
HY
940
941 map = si->swap_map + offset;
942 for (i = 0; i < SWAPFILE_CLUSTER; i++)
943 map[i] = SWAP_HAS_CACHE;
944 unlock_cluster(ci);
945 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
946 *slot = swp_entry(si->type, offset);
947
948 return 1;
949}
950
951static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
952{
953 unsigned long offset = idx * SWAPFILE_CLUSTER;
954 struct swap_cluster_info *ci;
955
956 ci = lock_cluster(si, offset);
979aafa5 957 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
38d8b4e6
HY
958 cluster_set_count_flag(ci, 0, 0);
959 free_cluster(si, idx);
960 unlock_cluster(ci);
961 swap_range_free(si, offset, SWAPFILE_CLUSTER);
962}
38d8b4e6 963
36005bae
TC
964static unsigned long scan_swap_map(struct swap_info_struct *si,
965 unsigned char usage)
966{
967 swp_entry_t entry;
968 int n_ret;
969
970 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
971
972 if (n_ret)
973 return swp_offset(entry);
974 else
975 return 0;
976
977}
978
5d5e8f19 979int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1da177e4 980{
5d5e8f19 981 unsigned long size = swap_entry_size(entry_size);
adfab836 982 struct swap_info_struct *si, *next;
36005bae
TC
983 long avail_pgs;
984 int n_ret = 0;
a2468cc9 985 int node;
1da177e4 986
38d8b4e6 987 /* Only single cluster request supported */
5d5e8f19 988 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
38d8b4e6 989
5d5e8f19 990 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
36005bae 991 if (avail_pgs <= 0)
fb4f88dc 992 goto noswap;
36005bae 993
08d3090f 994 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
36005bae 995
5d5e8f19 996 atomic_long_sub(n_goal * size, &nr_swap_pages);
fb4f88dc 997
18ab4d4c
DS
998 spin_lock(&swap_avail_lock);
999
1000start_over:
a2468cc9
AL
1001 node = numa_node_id();
1002 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
18ab4d4c 1003 /* requeue si to after same-priority siblings */
a2468cc9 1004 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
18ab4d4c 1005 spin_unlock(&swap_avail_lock);
ec8acf20 1006 spin_lock(&si->lock);
adfab836 1007 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c 1008 spin_lock(&swap_avail_lock);
a2468cc9 1009 if (plist_node_empty(&si->avail_lists[node])) {
18ab4d4c
DS
1010 spin_unlock(&si->lock);
1011 goto nextsi;
1012 }
1013 WARN(!si->highest_bit,
1014 "swap_info %d in list but !highest_bit\n",
1015 si->type);
1016 WARN(!(si->flags & SWP_WRITEOK),
1017 "swap_info %d in list but !SWP_WRITEOK\n",
1018 si->type);
a2468cc9 1019 __del_from_avail_list(si);
ec8acf20 1020 spin_unlock(&si->lock);
18ab4d4c 1021 goto nextsi;
ec8acf20 1022 }
5d5e8f19 1023 if (size == SWAPFILE_CLUSTER) {
bc4ae27d 1024 if (!(si->flags & SWP_FS))
f0eea189
HY
1025 n_ret = swap_alloc_cluster(si, swp_entries);
1026 } else
38d8b4e6
HY
1027 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1028 n_goal, swp_entries);
ec8acf20 1029 spin_unlock(&si->lock);
5d5e8f19 1030 if (n_ret || size == SWAPFILE_CLUSTER)
36005bae 1031 goto check_out;
18ab4d4c 1032 pr_debug("scan_swap_map of si %d failed to find offset\n",
36005bae
TC
1033 si->type);
1034
18ab4d4c
DS
1035 spin_lock(&swap_avail_lock);
1036nextsi:
adfab836
DS
1037 /*
1038 * if we got here, it's likely that si was almost full before,
1039 * and since scan_swap_map() can drop the si->lock, multiple
1040 * callers probably all tried to get a page from the same si
18ab4d4c
DS
1041 * and it filled up before we could get one; or, the si filled
1042 * up between us dropping swap_avail_lock and taking si->lock.
1043 * Since we dropped the swap_avail_lock, the swap_avail_head
1044 * list may have been modified; so if next is still in the
36005bae
TC
1045 * swap_avail_head list then try it, otherwise start over
1046 * if we have not gotten any slots.
adfab836 1047 */
a2468cc9 1048 if (plist_node_empty(&next->avail_lists[node]))
18ab4d4c 1049 goto start_over;
1da177e4 1050 }
fb4f88dc 1051
18ab4d4c
DS
1052 spin_unlock(&swap_avail_lock);
1053
36005bae
TC
1054check_out:
1055 if (n_ret < n_goal)
5d5e8f19 1056 atomic_long_add((long)(n_goal - n_ret) * size,
38d8b4e6 1057 &nr_swap_pages);
fb4f88dc 1058noswap:
36005bae
TC
1059 return n_ret;
1060}
1061
2de1a7e4 1062/* The only caller of this function is now suspend routine */
910321ea
HD
1063swp_entry_t get_swap_page_of_type(int type)
1064{
c10d38cc 1065 struct swap_info_struct *si = swap_type_to_swap_info(type);
910321ea
HD
1066 pgoff_t offset;
1067
c10d38cc
DJ
1068 if (!si)
1069 goto fail;
1070
ec8acf20 1071 spin_lock(&si->lock);
c10d38cc 1072 if (si->flags & SWP_WRITEOK) {
ec8acf20 1073 atomic_long_dec(&nr_swap_pages);
910321ea
HD
1074 /* This is called for allocating swap entry, not cache */
1075 offset = scan_swap_map(si, 1);
1076 if (offset) {
ec8acf20 1077 spin_unlock(&si->lock);
910321ea
HD
1078 return swp_entry(type, offset);
1079 }
ec8acf20 1080 atomic_long_inc(&nr_swap_pages);
910321ea 1081 }
ec8acf20 1082 spin_unlock(&si->lock);
c10d38cc 1083fail:
910321ea
HD
1084 return (swp_entry_t) {0};
1085}
1086
e8c26ab6 1087static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1da177e4 1088{
73c34b6a 1089 struct swap_info_struct *p;
eb085574 1090 unsigned long offset;
1da177e4
LT
1091
1092 if (!entry.val)
1093 goto out;
eb085574 1094 p = swp_swap_info(entry);
c10d38cc 1095 if (!p)
1da177e4 1096 goto bad_nofile;
1da177e4
LT
1097 if (!(p->flags & SWP_USED))
1098 goto bad_device;
1099 offset = swp_offset(entry);
1100 if (offset >= p->max)
1101 goto bad_offset;
1da177e4
LT
1102 return p;
1103
1da177e4 1104bad_offset:
6a991fc7 1105 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
1106 goto out;
1107bad_device:
6a991fc7 1108 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
1109 goto out;
1110bad_nofile:
6a991fc7 1111 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
1112out:
1113 return NULL;
886bb7e9 1114}
1da177e4 1115
e8c26ab6
TC
1116static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1117{
1118 struct swap_info_struct *p;
1119
1120 p = __swap_info_get(entry);
1121 if (!p)
1122 goto out;
1123 if (!p->swap_map[swp_offset(entry)])
1124 goto bad_free;
1125 return p;
1126
1127bad_free:
1128 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1129 goto out;
1130out:
1131 return NULL;
1132}
1133
235b6217
HY
1134static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1135{
1136 struct swap_info_struct *p;
1137
1138 p = _swap_info_get(entry);
1139 if (p)
1140 spin_lock(&p->lock);
1141 return p;
1142}
1143
7c00bafe
TC
1144static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1145 struct swap_info_struct *q)
1146{
1147 struct swap_info_struct *p;
1148
1149 p = _swap_info_get(entry);
1150
1151 if (p != q) {
1152 if (q != NULL)
1153 spin_unlock(&q->lock);
1154 if (p != NULL)
1155 spin_lock(&p->lock);
1156 }
1157 return p;
1158}
1159
b32d5f32
HY
1160static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1161 unsigned long offset,
1162 unsigned char usage)
1da177e4 1163{
8d69aaee
HD
1164 unsigned char count;
1165 unsigned char has_cache;
235b6217 1166
253d553b 1167 count = p->swap_map[offset];
235b6217 1168
253d553b
HD
1169 has_cache = count & SWAP_HAS_CACHE;
1170 count &= ~SWAP_HAS_CACHE;
355cfa73 1171
253d553b 1172 if (usage == SWAP_HAS_CACHE) {
355cfa73 1173 VM_BUG_ON(!has_cache);
253d553b 1174 has_cache = 0;
aaa46865
HD
1175 } else if (count == SWAP_MAP_SHMEM) {
1176 /*
1177 * Or we could insist on shmem.c using a special
1178 * swap_shmem_free() and free_shmem_swap_and_cache()...
1179 */
1180 count = 0;
570a335b
HD
1181 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1182 if (count == COUNT_CONTINUED) {
1183 if (swap_count_continued(p, offset, count))
1184 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1185 else
1186 count = SWAP_MAP_MAX;
1187 } else
1188 count--;
1189 }
253d553b 1190
253d553b 1191 usage = count | has_cache;
7c00bafe
TC
1192 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1193
b32d5f32
HY
1194 return usage;
1195}
1196
eb085574
HY
1197/*
1198 * Check whether swap entry is valid in the swap device. If so,
1199 * return pointer to swap_info_struct, and keep the swap entry valid
1200 * via preventing the swap device from being swapoff, until
1201 * put_swap_device() is called. Otherwise return NULL.
1202 *
1203 * The entirety of the RCU read critical section must come before the
1204 * return from or after the call to synchronize_rcu() in
1205 * enable_swap_info() or swapoff(). So if "si->flags & SWP_VALID" is
1206 * true, the si->map, si->cluster_info, etc. must be valid in the
1207 * critical section.
1208 *
1209 * Notice that swapoff or swapoff+swapon can still happen before the
1210 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1211 * in put_swap_device() if there isn't any other way to prevent
1212 * swapoff, such as page lock, page table lock, etc. The caller must
1213 * be prepared for that. For example, the following situation is
1214 * possible.
1215 *
1216 * CPU1 CPU2
1217 * do_swap_page()
1218 * ... swapoff+swapon
1219 * __read_swap_cache_async()
1220 * swapcache_prepare()
1221 * __swap_duplicate()
1222 * // check swap_map
1223 * // verify PTE not changed
1224 *
1225 * In __swap_duplicate(), the swap_map need to be checked before
1226 * changing partly because the specified swap entry may be for another
1227 * swap device which has been swapoff. And in do_swap_page(), after
1228 * the page is read from the swap device, the PTE is verified not
1229 * changed with the page table locked to check whether the swap device
1230 * has been swapoff or swapoff+swapon.
1231 */
1232struct swap_info_struct *get_swap_device(swp_entry_t entry)
1233{
1234 struct swap_info_struct *si;
1235 unsigned long offset;
1236
1237 if (!entry.val)
1238 goto out;
1239 si = swp_swap_info(entry);
1240 if (!si)
1241 goto bad_nofile;
1242
1243 rcu_read_lock();
1244 if (!(si->flags & SWP_VALID))
1245 goto unlock_out;
1246 offset = swp_offset(entry);
1247 if (offset >= si->max)
1248 goto unlock_out;
1249
1250 return si;
1251bad_nofile:
1252 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1253out:
1254 return NULL;
1255unlock_out:
1256 rcu_read_unlock();
1257 return NULL;
1258}
1259
b32d5f32
HY
1260static unsigned char __swap_entry_free(struct swap_info_struct *p,
1261 swp_entry_t entry, unsigned char usage)
1262{
1263 struct swap_cluster_info *ci;
1264 unsigned long offset = swp_offset(entry);
1265
1266 ci = lock_cluster_or_swap_info(p, offset);
1267 usage = __swap_entry_free_locked(p, offset, usage);
7c00bafe 1268 unlock_cluster_or_swap_info(p, ci);
10e364da
HY
1269 if (!usage)
1270 free_swap_slot(entry);
7c00bafe
TC
1271
1272 return usage;
1273}
355cfa73 1274
7c00bafe
TC
1275static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1276{
1277 struct swap_cluster_info *ci;
1278 unsigned long offset = swp_offset(entry);
1279 unsigned char count;
1280
1281 ci = lock_cluster(p, offset);
1282 count = p->swap_map[offset];
1283 VM_BUG_ON(count != SWAP_HAS_CACHE);
1284 p->swap_map[offset] = 0;
1285 dec_cluster_info_page(p, p->cluster_info, offset);
235b6217
HY
1286 unlock_cluster(ci);
1287
38d8b4e6
HY
1288 mem_cgroup_uncharge_swap(entry, 1);
1289 swap_range_free(p, offset, 1);
1da177e4
LT
1290}
1291
1292/*
2de1a7e4 1293 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
1294 * is still around or has not been recycled.
1295 */
1296void swap_free(swp_entry_t entry)
1297{
73c34b6a 1298 struct swap_info_struct *p;
1da177e4 1299
235b6217 1300 p = _swap_info_get(entry);
10e364da
HY
1301 if (p)
1302 __swap_entry_free(p, entry, 1);
1da177e4
LT
1303}
1304
cb4b86ba
KH
1305/*
1306 * Called after dropping swapcache to decrease refcnt to swap entries.
1307 */
a448f2d0 1308void put_swap_page(struct page *page, swp_entry_t entry)
38d8b4e6
HY
1309{
1310 unsigned long offset = swp_offset(entry);
1311 unsigned long idx = offset / SWAPFILE_CLUSTER;
1312 struct swap_cluster_info *ci;
1313 struct swap_info_struct *si;
1314 unsigned char *map;
a3aea839
HY
1315 unsigned int i, free_entries = 0;
1316 unsigned char val;
a448f2d0 1317 int size = swap_entry_size(hpage_nr_pages(page));
fe5266d5 1318
a3aea839 1319 si = _swap_info_get(entry);
38d8b4e6
HY
1320 if (!si)
1321 return;
1322
c2343d27 1323 ci = lock_cluster_or_swap_info(si, offset);
a448f2d0 1324 if (size == SWAPFILE_CLUSTER) {
a448f2d0
HY
1325 VM_BUG_ON(!cluster_is_huge(ci));
1326 map = si->swap_map + offset;
1327 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1328 val = map[i];
1329 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1330 if (val == SWAP_HAS_CACHE)
1331 free_entries++;
1332 }
a448f2d0 1333 cluster_clear_huge(ci);
a448f2d0 1334 if (free_entries == SWAPFILE_CLUSTER) {
c2343d27 1335 unlock_cluster_or_swap_info(si, ci);
a448f2d0 1336 spin_lock(&si->lock);
a448f2d0
HY
1337 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1338 swap_free_cluster(si, idx);
1339 spin_unlock(&si->lock);
1340 return;
1341 }
1342 }
c2343d27
HY
1343 for (i = 0; i < size; i++, entry.val++) {
1344 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1345 unlock_cluster_or_swap_info(si, ci);
1346 free_swap_slot(entry);
1347 if (i == size - 1)
1348 return;
1349 lock_cluster_or_swap_info(si, offset);
a3aea839
HY
1350 }
1351 }
c2343d27 1352 unlock_cluster_or_swap_info(si, ci);
38d8b4e6 1353}
59807685 1354
fe5266d5 1355#ifdef CONFIG_THP_SWAP
59807685
HY
1356int split_swap_cluster(swp_entry_t entry)
1357{
1358 struct swap_info_struct *si;
1359 struct swap_cluster_info *ci;
1360 unsigned long offset = swp_offset(entry);
1361
1362 si = _swap_info_get(entry);
1363 if (!si)
1364 return -EBUSY;
1365 ci = lock_cluster(si, offset);
1366 cluster_clear_huge(ci);
1367 unlock_cluster(ci);
1368 return 0;
1369}
fe5266d5 1370#endif
38d8b4e6 1371
155b5f88
HY
1372static int swp_entry_cmp(const void *ent1, const void *ent2)
1373{
1374 const swp_entry_t *e1 = ent1, *e2 = ent2;
1375
1376 return (int)swp_type(*e1) - (int)swp_type(*e2);
1377}
1378
7c00bafe
TC
1379void swapcache_free_entries(swp_entry_t *entries, int n)
1380{
1381 struct swap_info_struct *p, *prev;
1382 int i;
1383
1384 if (n <= 0)
1385 return;
1386
1387 prev = NULL;
1388 p = NULL;
155b5f88
HY
1389
1390 /*
1391 * Sort swap entries by swap device, so each lock is only taken once.
1392 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1393 * so low that it isn't necessary to optimize further.
1394 */
1395 if (nr_swapfiles > 1)
1396 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
7c00bafe
TC
1397 for (i = 0; i < n; ++i) {
1398 p = swap_info_get_cont(entries[i], prev);
1399 if (p)
1400 swap_entry_free(p, entries[i]);
7c00bafe
TC
1401 prev = p;
1402 }
235b6217 1403 if (p)
7c00bafe 1404 spin_unlock(&p->lock);
cb4b86ba
KH
1405}
1406
1da177e4 1407/*
c475a8ab 1408 * How many references to page are currently swapped out?
570a335b
HD
1409 * This does not give an exact answer when swap count is continued,
1410 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 1411 */
bde05d1c 1412int page_swapcount(struct page *page)
1da177e4 1413{
c475a8ab
HD
1414 int count = 0;
1415 struct swap_info_struct *p;
235b6217 1416 struct swap_cluster_info *ci;
1da177e4 1417 swp_entry_t entry;
235b6217 1418 unsigned long offset;
1da177e4 1419
4c21e2f2 1420 entry.val = page_private(page);
235b6217 1421 p = _swap_info_get(entry);
1da177e4 1422 if (p) {
235b6217
HY
1423 offset = swp_offset(entry);
1424 ci = lock_cluster_or_swap_info(p, offset);
1425 count = swap_count(p->swap_map[offset]);
1426 unlock_cluster_or_swap_info(p, ci);
1da177e4 1427 }
c475a8ab 1428 return count;
1da177e4
LT
1429}
1430
eb085574 1431int __swap_count(swp_entry_t entry)
aa8d22a1 1432{
eb085574 1433 struct swap_info_struct *si;
aa8d22a1 1434 pgoff_t offset = swp_offset(entry);
eb085574 1435 int count = 0;
aa8d22a1 1436
eb085574
HY
1437 si = get_swap_device(entry);
1438 if (si) {
1439 count = swap_count(si->swap_map[offset]);
1440 put_swap_device(si);
1441 }
1442 return count;
aa8d22a1
MK
1443}
1444
322b8afe
HY
1445static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1446{
1447 int count = 0;
1448 pgoff_t offset = swp_offset(entry);
1449 struct swap_cluster_info *ci;
1450
1451 ci = lock_cluster_or_swap_info(si, offset);
1452 count = swap_count(si->swap_map[offset]);
1453 unlock_cluster_or_swap_info(si, ci);
1454 return count;
1455}
1456
e8c26ab6
TC
1457/*
1458 * How many references to @entry are currently swapped out?
1459 * This does not give an exact answer when swap count is continued,
1460 * but does include the high COUNT_CONTINUED flag to allow for that.
1461 */
1462int __swp_swapcount(swp_entry_t entry)
1463{
1464 int count = 0;
e8c26ab6 1465 struct swap_info_struct *si;
e8c26ab6 1466
eb085574
HY
1467 si = get_swap_device(entry);
1468 if (si) {
322b8afe 1469 count = swap_swapcount(si, entry);
eb085574
HY
1470 put_swap_device(si);
1471 }
e8c26ab6
TC
1472 return count;
1473}
1474
8334b962
MK
1475/*
1476 * How many references to @entry are currently swapped out?
1477 * This considers COUNT_CONTINUED so it returns exact answer.
1478 */
1479int swp_swapcount(swp_entry_t entry)
1480{
1481 int count, tmp_count, n;
1482 struct swap_info_struct *p;
235b6217 1483 struct swap_cluster_info *ci;
8334b962
MK
1484 struct page *page;
1485 pgoff_t offset;
1486 unsigned char *map;
1487
235b6217 1488 p = _swap_info_get(entry);
8334b962
MK
1489 if (!p)
1490 return 0;
1491
235b6217
HY
1492 offset = swp_offset(entry);
1493
1494 ci = lock_cluster_or_swap_info(p, offset);
1495
1496 count = swap_count(p->swap_map[offset]);
8334b962
MK
1497 if (!(count & COUNT_CONTINUED))
1498 goto out;
1499
1500 count &= ~COUNT_CONTINUED;
1501 n = SWAP_MAP_MAX + 1;
1502
8334b962
MK
1503 page = vmalloc_to_page(p->swap_map + offset);
1504 offset &= ~PAGE_MASK;
1505 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1506
1507 do {
a8ae4991 1508 page = list_next_entry(page, lru);
8334b962
MK
1509 map = kmap_atomic(page);
1510 tmp_count = map[offset];
1511 kunmap_atomic(map);
1512
1513 count += (tmp_count & ~COUNT_CONTINUED) * n;
1514 n *= (SWAP_CONT_MAX + 1);
1515 } while (tmp_count & COUNT_CONTINUED);
1516out:
235b6217 1517 unlock_cluster_or_swap_info(p, ci);
8334b962
MK
1518 return count;
1519}
1520
e0709829
HY
1521static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1522 swp_entry_t entry)
1523{
1524 struct swap_cluster_info *ci;
1525 unsigned char *map = si->swap_map;
1526 unsigned long roffset = swp_offset(entry);
1527 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1528 int i;
1529 bool ret = false;
1530
1531 ci = lock_cluster_or_swap_info(si, offset);
1532 if (!ci || !cluster_is_huge(ci)) {
afa4711e 1533 if (swap_count(map[roffset]))
e0709829
HY
1534 ret = true;
1535 goto unlock_out;
1536 }
1537 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
afa4711e 1538 if (swap_count(map[offset + i])) {
e0709829
HY
1539 ret = true;
1540 break;
1541 }
1542 }
1543unlock_out:
1544 unlock_cluster_or_swap_info(si, ci);
1545 return ret;
1546}
1547
1548static bool page_swapped(struct page *page)
1549{
1550 swp_entry_t entry;
1551 struct swap_info_struct *si;
1552
fe5266d5 1553 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
e0709829
HY
1554 return page_swapcount(page) != 0;
1555
1556 page = compound_head(page);
1557 entry.val = page_private(page);
1558 si = _swap_info_get(entry);
1559 if (si)
1560 return swap_page_trans_huge_swapped(si, entry);
1561 return false;
1562}
ba3c4ce6
HY
1563
1564static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1565 int *total_swapcount)
1566{
1567 int i, map_swapcount, _total_mapcount, _total_swapcount;
1568 unsigned long offset = 0;
1569 struct swap_info_struct *si;
1570 struct swap_cluster_info *ci = NULL;
1571 unsigned char *map = NULL;
1572 int mapcount, swapcount = 0;
1573
1574 /* hugetlbfs shouldn't call it */
1575 VM_BUG_ON_PAGE(PageHuge(page), page);
1576
fe5266d5
HY
1577 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1578 mapcount = page_trans_huge_mapcount(page, total_mapcount);
ba3c4ce6
HY
1579 if (PageSwapCache(page))
1580 swapcount = page_swapcount(page);
1581 if (total_swapcount)
1582 *total_swapcount = swapcount;
1583 return mapcount + swapcount;
1584 }
1585
1586 page = compound_head(page);
1587
1588 _total_mapcount = _total_swapcount = map_swapcount = 0;
1589 if (PageSwapCache(page)) {
1590 swp_entry_t entry;
1591
1592 entry.val = page_private(page);
1593 si = _swap_info_get(entry);
1594 if (si) {
1595 map = si->swap_map;
1596 offset = swp_offset(entry);
1597 }
1598 }
1599 if (map)
1600 ci = lock_cluster(si, offset);
1601 for (i = 0; i < HPAGE_PMD_NR; i++) {
1602 mapcount = atomic_read(&page[i]._mapcount) + 1;
1603 _total_mapcount += mapcount;
1604 if (map) {
1605 swapcount = swap_count(map[offset + i]);
1606 _total_swapcount += swapcount;
1607 }
1608 map_swapcount = max(map_swapcount, mapcount + swapcount);
1609 }
1610 unlock_cluster(ci);
1611 if (PageDoubleMap(page)) {
1612 map_swapcount -= 1;
1613 _total_mapcount -= HPAGE_PMD_NR;
1614 }
1615 mapcount = compound_mapcount(page);
1616 map_swapcount += mapcount;
1617 _total_mapcount += mapcount;
1618 if (total_mapcount)
1619 *total_mapcount = _total_mapcount;
1620 if (total_swapcount)
1621 *total_swapcount = _total_swapcount;
1622
1623 return map_swapcount;
1624}
e0709829 1625
1da177e4 1626/*
7b1fe597
HD
1627 * We can write to an anon page without COW if there are no other references
1628 * to it. And as a side-effect, free up its swap: because the old content
1629 * on disk will never be read, and seeking back there to write new content
1630 * later would only waste time away from clustering.
6d0a07ed 1631 *
ba3c4ce6 1632 * NOTE: total_map_swapcount should not be relied upon by the caller if
6d0a07ed
AA
1633 * reuse_swap_page() returns false, but it may be always overwritten
1634 * (see the other implementation for CONFIG_SWAP=n).
1da177e4 1635 */
ba3c4ce6 1636bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1da177e4 1637{
ba3c4ce6 1638 int count, total_mapcount, total_swapcount;
c475a8ab 1639
309381fe 1640 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688 1641 if (unlikely(PageKsm(page)))
6d0a07ed 1642 return false;
ba3c4ce6
HY
1643 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1644 &total_swapcount);
1645 if (total_map_swapcount)
1646 *total_map_swapcount = total_mapcount + total_swapcount;
1647 if (count == 1 && PageSwapCache(page) &&
1648 (likely(!PageTransCompound(page)) ||
1649 /* The remaining swap count will be freed soon */
1650 total_swapcount == page_swapcount(page))) {
f0571429 1651 if (!PageWriteback(page)) {
ba3c4ce6 1652 page = compound_head(page);
7b1fe597
HD
1653 delete_from_swap_cache(page);
1654 SetPageDirty(page);
f0571429
MK
1655 } else {
1656 swp_entry_t entry;
1657 struct swap_info_struct *p;
1658
1659 entry.val = page_private(page);
1660 p = swap_info_get(entry);
1661 if (p->flags & SWP_STABLE_WRITES) {
1662 spin_unlock(&p->lock);
1663 return false;
1664 }
1665 spin_unlock(&p->lock);
7b1fe597
HD
1666 }
1667 }
ba3c4ce6 1668
5ad64688 1669 return count <= 1;
1da177e4
LT
1670}
1671
1672/*
a2c43eed
HD
1673 * If swap is getting full, or if there are no more mappings of this page,
1674 * then try_to_free_swap is called to free its swap space.
1da177e4 1675 */
a2c43eed 1676int try_to_free_swap(struct page *page)
1da177e4 1677{
309381fe 1678 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
1679
1680 if (!PageSwapCache(page))
1681 return 0;
1682 if (PageWriteback(page))
1683 return 0;
e0709829 1684 if (page_swapped(page))
1da177e4
LT
1685 return 0;
1686
b73d7fce
HD
1687 /*
1688 * Once hibernation has begun to create its image of memory,
1689 * there's a danger that one of the calls to try_to_free_swap()
1690 * - most probably a call from __try_to_reclaim_swap() while
1691 * hibernation is allocating its own swap pages for the image,
1692 * but conceivably even a call from memory reclaim - will free
1693 * the swap from a page which has already been recorded in the
1694 * image as a clean swapcache page, and then reuse its swap for
1695 * another page of the image. On waking from hibernation, the
1696 * original page might be freed under memory pressure, then
1697 * later read back in from swap, now with the wrong data.
1698 *
2de1a7e4 1699 * Hibernation suspends storage while it is writing the image
f90ac398 1700 * to disk so check that here.
b73d7fce 1701 */
f90ac398 1702 if (pm_suspended_storage())
b73d7fce
HD
1703 return 0;
1704
e0709829 1705 page = compound_head(page);
a2c43eed
HD
1706 delete_from_swap_cache(page);
1707 SetPageDirty(page);
1708 return 1;
68a22394
RR
1709}
1710
1da177e4
LT
1711/*
1712 * Free the swap entry like above, but also try to
1713 * free the page cache entry if it is the last user.
1714 */
2509ef26 1715int free_swap_and_cache(swp_entry_t entry)
1da177e4 1716{
2509ef26 1717 struct swap_info_struct *p;
7c00bafe 1718 unsigned char count;
1da177e4 1719
a7420aa5 1720 if (non_swap_entry(entry))
2509ef26 1721 return 1;
0697212a 1722
7c00bafe 1723 p = _swap_info_get(entry);
1da177e4 1724 if (p) {
7c00bafe 1725 count = __swap_entry_free(p, entry, 1);
e0709829 1726 if (count == SWAP_HAS_CACHE &&
bcd49e86
HY
1727 !swap_page_trans_huge_swapped(p, entry))
1728 __try_to_reclaim_swap(p, swp_offset(entry),
1729 TTRS_UNMAPPED | TTRS_FULL);
1da177e4 1730 }
2509ef26 1731 return p != NULL;
1da177e4
LT
1732}
1733
b0cb1a19 1734#ifdef CONFIG_HIBERNATION
f577eb30 1735/*
915bae9e 1736 * Find the swap type that corresponds to given device (if any).
f577eb30 1737 *
915bae9e
RW
1738 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1739 * from 0, in which the swap header is expected to be located.
1740 *
1741 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1742 */
7bf23687 1743int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 1744{
915bae9e 1745 struct block_device *bdev = NULL;
efa90a98 1746 int type;
f577eb30 1747
915bae9e
RW
1748 if (device)
1749 bdev = bdget(device);
1750
f577eb30 1751 spin_lock(&swap_lock);
efa90a98
HD
1752 for (type = 0; type < nr_swapfiles; type++) {
1753 struct swap_info_struct *sis = swap_info[type];
f577eb30 1754
915bae9e 1755 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1756 continue;
b6b5bce3 1757
915bae9e 1758 if (!bdev) {
7bf23687 1759 if (bdev_p)
dddac6a7 1760 *bdev_p = bdgrab(sis->bdev);
7bf23687 1761
6e1819d6 1762 spin_unlock(&swap_lock);
efa90a98 1763 return type;
6e1819d6 1764 }
915bae9e 1765 if (bdev == sis->bdev) {
4efaceb1 1766 struct swap_extent *se = first_se(sis);
915bae9e 1767
915bae9e 1768 if (se->start_block == offset) {
7bf23687 1769 if (bdev_p)
dddac6a7 1770 *bdev_p = bdgrab(sis->bdev);
7bf23687 1771
915bae9e
RW
1772 spin_unlock(&swap_lock);
1773 bdput(bdev);
efa90a98 1774 return type;
915bae9e 1775 }
f577eb30
RW
1776 }
1777 }
1778 spin_unlock(&swap_lock);
915bae9e
RW
1779 if (bdev)
1780 bdput(bdev);
1781
f577eb30
RW
1782 return -ENODEV;
1783}
1784
73c34b6a
HD
1785/*
1786 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1787 * corresponding to given index in swap_info (swap type).
1788 */
1789sector_t swapdev_block(int type, pgoff_t offset)
1790{
1791 struct block_device *bdev;
c10d38cc 1792 struct swap_info_struct *si = swap_type_to_swap_info(type);
73c34b6a 1793
c10d38cc 1794 if (!si || !(si->flags & SWP_WRITEOK))
73c34b6a 1795 return 0;
d4906e1a 1796 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
1797}
1798
f577eb30
RW
1799/*
1800 * Return either the total number of swap pages of given type, or the number
1801 * of free pages of that type (depending on @free)
1802 *
1803 * This is needed for software suspend
1804 */
1805unsigned int count_swap_pages(int type, int free)
1806{
1807 unsigned int n = 0;
1808
efa90a98
HD
1809 spin_lock(&swap_lock);
1810 if ((unsigned int)type < nr_swapfiles) {
1811 struct swap_info_struct *sis = swap_info[type];
1812
ec8acf20 1813 spin_lock(&sis->lock);
efa90a98
HD
1814 if (sis->flags & SWP_WRITEOK) {
1815 n = sis->pages;
f577eb30 1816 if (free)
efa90a98 1817 n -= sis->inuse_pages;
f577eb30 1818 }
ec8acf20 1819 spin_unlock(&sis->lock);
f577eb30 1820 }
efa90a98 1821 spin_unlock(&swap_lock);
f577eb30
RW
1822 return n;
1823}
73c34b6a 1824#endif /* CONFIG_HIBERNATION */
f577eb30 1825
9f8bdb3f 1826static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
179ef71c 1827{
9f8bdb3f 1828 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
179ef71c
CG
1829}
1830
1da177e4 1831/*
72866f6f
HD
1832 * No need to decide whether this PTE shares the swap entry with others,
1833 * just let do_wp_page work it out if a write is requested later - to
1834 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1835 */
044d66c1 1836static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1837 unsigned long addr, swp_entry_t entry, struct page *page)
1838{
9e16b7fb 1839 struct page *swapcache;
72835c86 1840 struct mem_cgroup *memcg;
044d66c1
HD
1841 spinlock_t *ptl;
1842 pte_t *pte;
1843 int ret = 1;
1844
9e16b7fb
HD
1845 swapcache = page;
1846 page = ksm_might_need_to_copy(page, vma, addr);
1847 if (unlikely(!page))
1848 return -ENOMEM;
1849
f627c2f5
KS
1850 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1851 &memcg, false)) {
044d66c1 1852 ret = -ENOMEM;
85d9fc89
KH
1853 goto out_nolock;
1854 }
044d66c1
HD
1855
1856 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
9f8bdb3f 1857 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
f627c2f5 1858 mem_cgroup_cancel_charge(page, memcg, false);
044d66c1
HD
1859 ret = 0;
1860 goto out;
1861 }
8a9f3ccd 1862
b084d435 1863 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1864 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1865 get_page(page);
1866 set_pte_at(vma->vm_mm, addr, pte,
1867 pte_mkold(mk_pte(page, vma->vm_page_prot)));
00501b53 1868 if (page == swapcache) {
d281ee61 1869 page_add_anon_rmap(page, vma, addr, false);
f627c2f5 1870 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1871 } else { /* ksm created a completely new copy */
d281ee61 1872 page_add_new_anon_rmap(page, vma, addr, false);
f627c2f5 1873 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
1874 lru_cache_add_active_or_unevictable(page, vma);
1875 }
1da177e4
LT
1876 swap_free(entry);
1877 /*
1878 * Move the page to the active list so it is not
1879 * immediately swapped out again after swapon.
1880 */
1881 activate_page(page);
044d66c1
HD
1882out:
1883 pte_unmap_unlock(pte, ptl);
85d9fc89 1884out_nolock:
9e16b7fb
HD
1885 if (page != swapcache) {
1886 unlock_page(page);
1887 put_page(page);
1888 }
044d66c1 1889 return ret;
1da177e4
LT
1890}
1891
1892static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
b56a2d8a
VRP
1893 unsigned long addr, unsigned long end,
1894 unsigned int type, bool frontswap,
1895 unsigned long *fs_pages_to_unuse)
1da177e4 1896{
b56a2d8a
VRP
1897 struct page *page;
1898 swp_entry_t entry;
705e87c0 1899 pte_t *pte;
b56a2d8a
VRP
1900 struct swap_info_struct *si;
1901 unsigned long offset;
8a9f3ccd 1902 int ret = 0;
b56a2d8a 1903 volatile unsigned char *swap_map;
1da177e4 1904
b56a2d8a 1905 si = swap_info[type];
044d66c1 1906 pte = pte_offset_map(pmd, addr);
1da177e4 1907 do {
b56a2d8a
VRP
1908 struct vm_fault vmf;
1909
1910 if (!is_swap_pte(*pte))
1911 continue;
1912
1913 entry = pte_to_swp_entry(*pte);
1914 if (swp_type(entry) != type)
1915 continue;
1916
1917 offset = swp_offset(entry);
1918 if (frontswap && !frontswap_test(si, offset))
1919 continue;
1920
1921 pte_unmap(pte);
1922 swap_map = &si->swap_map[offset];
ebc5951e
AR
1923 page = lookup_swap_cache(entry, vma, addr);
1924 if (!page) {
1925 vmf.vma = vma;
1926 vmf.address = addr;
1927 vmf.pmd = pmd;
1928 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1929 &vmf);
1930 }
b56a2d8a
VRP
1931 if (!page) {
1932 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1933 goto try_next;
1934 return -ENOMEM;
1935 }
1936
1937 lock_page(page);
1938 wait_on_page_writeback(page);
1939 ret = unuse_pte(vma, pmd, addr, entry, page);
1940 if (ret < 0) {
1941 unlock_page(page);
1942 put_page(page);
1943 goto out;
1944 }
1945
1946 try_to_free_swap(page);
1947 unlock_page(page);
1948 put_page(page);
1949
1950 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1951 ret = FRONTSWAP_PAGES_UNUSED;
1952 goto out;
1da177e4 1953 }
b56a2d8a
VRP
1954try_next:
1955 pte = pte_offset_map(pmd, addr);
1da177e4 1956 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1 1957 pte_unmap(pte - 1);
b56a2d8a
VRP
1958
1959 ret = 0;
044d66c1 1960out:
8a9f3ccd 1961 return ret;
1da177e4
LT
1962}
1963
1964static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1965 unsigned long addr, unsigned long end,
b56a2d8a
VRP
1966 unsigned int type, bool frontswap,
1967 unsigned long *fs_pages_to_unuse)
1da177e4
LT
1968{
1969 pmd_t *pmd;
1970 unsigned long next;
8a9f3ccd 1971 int ret;
1da177e4
LT
1972
1973 pmd = pmd_offset(pud, addr);
1974 do {
dc644a07 1975 cond_resched();
1da177e4 1976 next = pmd_addr_end(addr, end);
1a5a9906 1977 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 1978 continue;
b56a2d8a
VRP
1979 ret = unuse_pte_range(vma, pmd, addr, next, type,
1980 frontswap, fs_pages_to_unuse);
8a9f3ccd
BS
1981 if (ret)
1982 return ret;
1da177e4
LT
1983 } while (pmd++, addr = next, addr != end);
1984 return 0;
1985}
1986
c2febafc 1987static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1988 unsigned long addr, unsigned long end,
b56a2d8a
VRP
1989 unsigned int type, bool frontswap,
1990 unsigned long *fs_pages_to_unuse)
1da177e4
LT
1991{
1992 pud_t *pud;
1993 unsigned long next;
8a9f3ccd 1994 int ret;
1da177e4 1995
c2febafc 1996 pud = pud_offset(p4d, addr);
1da177e4
LT
1997 do {
1998 next = pud_addr_end(addr, end);
1999 if (pud_none_or_clear_bad(pud))
2000 continue;
b56a2d8a
VRP
2001 ret = unuse_pmd_range(vma, pud, addr, next, type,
2002 frontswap, fs_pages_to_unuse);
8a9f3ccd
BS
2003 if (ret)
2004 return ret;
1da177e4
LT
2005 } while (pud++, addr = next, addr != end);
2006 return 0;
2007}
2008
c2febafc
KS
2009static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2010 unsigned long addr, unsigned long end,
b56a2d8a
VRP
2011 unsigned int type, bool frontswap,
2012 unsigned long *fs_pages_to_unuse)
c2febafc
KS
2013{
2014 p4d_t *p4d;
2015 unsigned long next;
2016 int ret;
2017
2018 p4d = p4d_offset(pgd, addr);
2019 do {
2020 next = p4d_addr_end(addr, end);
2021 if (p4d_none_or_clear_bad(p4d))
2022 continue;
b56a2d8a
VRP
2023 ret = unuse_pud_range(vma, p4d, addr, next, type,
2024 frontswap, fs_pages_to_unuse);
c2febafc
KS
2025 if (ret)
2026 return ret;
2027 } while (p4d++, addr = next, addr != end);
2028 return 0;
2029}
2030
b56a2d8a
VRP
2031static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2032 bool frontswap, unsigned long *fs_pages_to_unuse)
1da177e4
LT
2033{
2034 pgd_t *pgd;
2035 unsigned long addr, end, next;
8a9f3ccd 2036 int ret;
1da177e4 2037
b56a2d8a
VRP
2038 addr = vma->vm_start;
2039 end = vma->vm_end;
1da177e4
LT
2040
2041 pgd = pgd_offset(vma->vm_mm, addr);
2042 do {
2043 next = pgd_addr_end(addr, end);
2044 if (pgd_none_or_clear_bad(pgd))
2045 continue;
b56a2d8a
VRP
2046 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2047 frontswap, fs_pages_to_unuse);
8a9f3ccd
BS
2048 if (ret)
2049 return ret;
1da177e4
LT
2050 } while (pgd++, addr = next, addr != end);
2051 return 0;
2052}
2053
b56a2d8a
VRP
2054static int unuse_mm(struct mm_struct *mm, unsigned int type,
2055 bool frontswap, unsigned long *fs_pages_to_unuse)
1da177e4
LT
2056{
2057 struct vm_area_struct *vma;
8a9f3ccd 2058 int ret = 0;
1da177e4 2059
b56a2d8a 2060 down_read(&mm->mmap_sem);
1da177e4 2061 for (vma = mm->mmap; vma; vma = vma->vm_next) {
b56a2d8a
VRP
2062 if (vma->anon_vma) {
2063 ret = unuse_vma(vma, type, frontswap,
2064 fs_pages_to_unuse);
2065 if (ret)
2066 break;
2067 }
dc644a07 2068 cond_resched();
1da177e4 2069 }
1da177e4 2070 up_read(&mm->mmap_sem);
b56a2d8a 2071 return ret;
1da177e4
LT
2072}
2073
2074/*
38b5faf4 2075 * Scan swap_map (or frontswap_map if frontswap parameter is true)
b56a2d8a
VRP
2076 * from current position to next entry still in use. Return 0
2077 * if there are no inuse entries after prev till end of the map.
1da177e4 2078 */
6eb396dc 2079static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 2080 unsigned int prev, bool frontswap)
1da177e4 2081{
b56a2d8a 2082 unsigned int i;
8d69aaee 2083 unsigned char count;
1da177e4
LT
2084
2085 /*
5d337b91 2086 * No need for swap_lock here: we're just looking
1da177e4
LT
2087 * for whether an entry is in use, not modifying it; false
2088 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 2089 * allocations from this area (while holding swap_lock).
1da177e4 2090 */
b56a2d8a 2091 for (i = prev + 1; i < si->max; i++) {
4db0c3c2 2092 count = READ_ONCE(si->swap_map[i]);
355cfa73 2093 if (count && swap_count(count) != SWAP_MAP_BAD)
dc644a07
HD
2094 if (!frontswap || frontswap_test(si, i))
2095 break;
2096 if ((i % LATENCY_LIMIT) == 0)
2097 cond_resched();
1da177e4 2098 }
b56a2d8a
VRP
2099
2100 if (i == si->max)
2101 i = 0;
2102
1da177e4
LT
2103 return i;
2104}
2105
2106/*
b56a2d8a 2107 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
38b5faf4 2108 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 2109 */
38b5faf4
DM
2110int try_to_unuse(unsigned int type, bool frontswap,
2111 unsigned long pages_to_unuse)
1da177e4 2112{
b56a2d8a
VRP
2113 struct mm_struct *prev_mm;
2114 struct mm_struct *mm;
2115 struct list_head *p;
2116 int retval = 0;
efa90a98 2117 struct swap_info_struct *si = swap_info[type];
1da177e4
LT
2118 struct page *page;
2119 swp_entry_t entry;
b56a2d8a 2120 unsigned int i;
1da177e4 2121
21820948 2122 if (!READ_ONCE(si->inuse_pages))
b56a2d8a 2123 return 0;
1da177e4 2124
b56a2d8a
VRP
2125 if (!frontswap)
2126 pages_to_unuse = 0;
2127
2128retry:
2129 retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2130 if (retval)
2131 goto out;
2132
2133 prev_mm = &init_mm;
2134 mmget(prev_mm);
2135
2136 spin_lock(&mmlist_lock);
2137 p = &init_mm.mmlist;
21820948 2138 while (READ_ONCE(si->inuse_pages) &&
64165b1a
HD
2139 !signal_pending(current) &&
2140 (p = p->next) != &init_mm.mmlist) {
1da177e4 2141
b56a2d8a
VRP
2142 mm = list_entry(p, struct mm_struct, mmlist);
2143 if (!mmget_not_zero(mm))
2144 continue;
2145 spin_unlock(&mmlist_lock);
2146 mmput(prev_mm);
2147 prev_mm = mm;
2148 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
1da177e4 2149
b56a2d8a
VRP
2150 if (retval) {
2151 mmput(prev_mm);
2152 goto out;
1da177e4
LT
2153 }
2154
2155 /*
b56a2d8a
VRP
2156 * Make sure that we aren't completely killing
2157 * interactive performance.
1da177e4 2158 */
b56a2d8a
VRP
2159 cond_resched();
2160 spin_lock(&mmlist_lock);
2161 }
2162 spin_unlock(&mmlist_lock);
1da177e4 2163
b56a2d8a 2164 mmput(prev_mm);
1da177e4 2165
b56a2d8a 2166 i = 0;
21820948 2167 while (READ_ONCE(si->inuse_pages) &&
64165b1a
HD
2168 !signal_pending(current) &&
2169 (i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4 2170
b56a2d8a
VRP
2171 entry = swp_entry(type, i);
2172 page = find_get_page(swap_address_space(entry), i);
2173 if (!page)
2174 continue;
68bdc8d6
HD
2175
2176 /*
2177 * It is conceivable that a racing task removed this page from
b56a2d8a
VRP
2178 * swap cache just before we acquired the page lock. The page
2179 * might even be back in swap cache on another swap area. But
2180 * that is okay, try_to_free_swap() only removes stale pages.
1da177e4 2181 */
b56a2d8a
VRP
2182 lock_page(page);
2183 wait_on_page_writeback(page);
2184 try_to_free_swap(page);
1da177e4 2185 unlock_page(page);
09cbfeaf 2186 put_page(page);
1da177e4
LT
2187
2188 /*
b56a2d8a
VRP
2189 * For frontswap, we just need to unuse pages_to_unuse, if
2190 * it was specified. Need not check frontswap again here as
2191 * we already zeroed out pages_to_unuse if not frontswap.
1da177e4 2192 */
b56a2d8a
VRP
2193 if (pages_to_unuse && --pages_to_unuse == 0)
2194 goto out;
1da177e4
LT
2195 }
2196
b56a2d8a
VRP
2197 /*
2198 * Lets check again to see if there are still swap entries in the map.
2199 * If yes, we would need to do retry the unuse logic again.
2200 * Under global memory pressure, swap entries can be reinserted back
2201 * into process space after the mmlist loop above passes over them.
dd862deb 2202 *
af53d3e9
HD
2203 * Limit the number of retries? No: when mmget_not_zero() above fails,
2204 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2205 * at its own independent pace; and even shmem_writepage() could have
2206 * been preempted after get_swap_page(), temporarily hiding that swap.
2207 * It's easy and robust (though cpu-intensive) just to keep retrying.
b56a2d8a 2208 */
21820948 2209 if (READ_ONCE(si->inuse_pages)) {
64165b1a
HD
2210 if (!signal_pending(current))
2211 goto retry;
2212 retval = -EINTR;
2213 }
b56a2d8a
VRP
2214out:
2215 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
1da177e4
LT
2216}
2217
2218/*
5d337b91
HD
2219 * After a successful try_to_unuse, if no swap is now in use, we know
2220 * we can empty the mmlist. swap_lock must be held on entry and exit.
2221 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
2222 * added to the mmlist just after page_duplicate - before would be racy.
2223 */
2224static void drain_mmlist(void)
2225{
2226 struct list_head *p, *next;
efa90a98 2227 unsigned int type;
1da177e4 2228
efa90a98
HD
2229 for (type = 0; type < nr_swapfiles; type++)
2230 if (swap_info[type]->inuse_pages)
1da177e4
LT
2231 return;
2232 spin_lock(&mmlist_lock);
2233 list_for_each_safe(p, next, &init_mm.mmlist)
2234 list_del_init(p);
2235 spin_unlock(&mmlist_lock);
2236}
2237
2238/*
2239 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
2240 * corresponds to page offset for the specified swap entry.
2241 * Note that the type of this function is sector_t, but it returns page offset
2242 * into the bdev, not sector offset.
1da177e4 2243 */
d4906e1a 2244static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 2245{
f29ad6a9 2246 struct swap_info_struct *sis;
f29ad6a9
HD
2247 struct swap_extent *se;
2248 pgoff_t offset;
2249
c10d38cc 2250 sis = swp_swap_info(entry);
f29ad6a9
HD
2251 *bdev = sis->bdev;
2252
2253 offset = swp_offset(entry);
4efaceb1
AL
2254 se = offset_to_swap_extent(sis, offset);
2255 return se->start_block + (offset - se->start_page);
1da177e4
LT
2256}
2257
d4906e1a
LS
2258/*
2259 * Returns the page offset into bdev for the specified page's swap entry.
2260 */
2261sector_t map_swap_page(struct page *page, struct block_device **bdev)
2262{
2263 swp_entry_t entry;
2264 entry.val = page_private(page);
2265 return map_swap_entry(entry, bdev);
2266}
2267
1da177e4
LT
2268/*
2269 * Free all of a swapdev's extent information
2270 */
2271static void destroy_swap_extents(struct swap_info_struct *sis)
2272{
4efaceb1
AL
2273 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2274 struct rb_node *rb = sis->swap_extent_root.rb_node;
2275 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
1da177e4 2276
4efaceb1 2277 rb_erase(rb, &sis->swap_extent_root);
1da177e4
LT
2278 kfree(se);
2279 }
62c230bc 2280
bc4ae27d 2281 if (sis->flags & SWP_ACTIVATED) {
62c230bc
MG
2282 struct file *swap_file = sis->swap_file;
2283 struct address_space *mapping = swap_file->f_mapping;
2284
bc4ae27d
OS
2285 sis->flags &= ~SWP_ACTIVATED;
2286 if (mapping->a_ops->swap_deactivate)
2287 mapping->a_ops->swap_deactivate(swap_file);
62c230bc 2288 }
1da177e4
LT
2289}
2290
2291/*
2292 * Add a block range (and the corresponding page range) into this swapdev's
4efaceb1 2293 * extent tree.
1da177e4 2294 *
11d31886 2295 * This function rather assumes that it is called in ascending page order.
1da177e4 2296 */
a509bc1a 2297int
1da177e4
LT
2298add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2299 unsigned long nr_pages, sector_t start_block)
2300{
4efaceb1 2301 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
1da177e4
LT
2302 struct swap_extent *se;
2303 struct swap_extent *new_se;
4efaceb1
AL
2304
2305 /*
2306 * place the new node at the right most since the
2307 * function is called in ascending page order.
2308 */
2309 while (*link) {
2310 parent = *link;
2311 link = &parent->rb_right;
2312 }
2313
2314 if (parent) {
2315 se = rb_entry(parent, struct swap_extent, rb_node);
11d31886
HD
2316 BUG_ON(se->start_page + se->nr_pages != start_page);
2317 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
2318 /* Merge it */
2319 se->nr_pages += nr_pages;
2320 return 0;
2321 }
1da177e4
LT
2322 }
2323
4efaceb1 2324 /* No merge, insert a new extent. */
1da177e4
LT
2325 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2326 if (new_se == NULL)
2327 return -ENOMEM;
2328 new_se->start_page = start_page;
2329 new_se->nr_pages = nr_pages;
2330 new_se->start_block = start_block;
2331
4efaceb1
AL
2332 rb_link_node(&new_se->rb_node, parent, link);
2333 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
53092a74 2334 return 1;
1da177e4 2335}
aa8aa8a3 2336EXPORT_SYMBOL_GPL(add_swap_extent);
1da177e4
LT
2337
2338/*
2339 * A `swap extent' is a simple thing which maps a contiguous range of pages
2340 * onto a contiguous range of disk blocks. An ordered list of swap extents
2341 * is built at swapon time and is then used at swap_writepage/swap_readpage
2342 * time for locating where on disk a page belongs.
2343 *
2344 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2345 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2346 * swap files identically.
2347 *
2348 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2349 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2350 * swapfiles are handled *identically* after swapon time.
2351 *
2352 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2353 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2354 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2355 * requirements, they are simply tossed out - we will never use those blocks
2356 * for swapping.
2357 *
1638045c
DW
2358 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2359 * prevents users from writing to the swap device, which will corrupt memory.
1da177e4
LT
2360 *
2361 * The amount of disk space which a single swap extent represents varies.
2362 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2363 * extents in the list. To avoid much list walking, we cache the previous
2364 * search location in `curr_swap_extent', and start new searches from there.
2365 * This is extremely effective. The average number of iterations in
2366 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2367 */
53092a74 2368static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 2369{
62c230bc
MG
2370 struct file *swap_file = sis->swap_file;
2371 struct address_space *mapping = swap_file->f_mapping;
2372 struct inode *inode = mapping->host;
1da177e4
LT
2373 int ret;
2374
1da177e4
LT
2375 if (S_ISBLK(inode->i_mode)) {
2376 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 2377 *span = sis->pages;
a509bc1a 2378 return ret;
1da177e4
LT
2379 }
2380
62c230bc 2381 if (mapping->a_ops->swap_activate) {
a509bc1a 2382 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
bc4ae27d
OS
2383 if (ret >= 0)
2384 sis->flags |= SWP_ACTIVATED;
62c230bc 2385 if (!ret) {
bc4ae27d 2386 sis->flags |= SWP_FS;
62c230bc
MG
2387 ret = add_swap_extent(sis, 0, sis->max, 0);
2388 *span = sis->pages;
2389 }
a509bc1a 2390 return ret;
62c230bc
MG
2391 }
2392
a509bc1a 2393 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
2394}
2395
a2468cc9
AL
2396static int swap_node(struct swap_info_struct *p)
2397{
2398 struct block_device *bdev;
2399
2400 if (p->bdev)
2401 bdev = p->bdev;
2402 else
2403 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2404
2405 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2406}
2407
eb085574
HY
2408static void setup_swap_info(struct swap_info_struct *p, int prio,
2409 unsigned char *swap_map,
2410 struct swap_cluster_info *cluster_info)
40531542 2411{
a2468cc9
AL
2412 int i;
2413
40531542
CEB
2414 if (prio >= 0)
2415 p->prio = prio;
2416 else
2417 p->prio = --least_priority;
18ab4d4c
DS
2418 /*
2419 * the plist prio is negated because plist ordering is
2420 * low-to-high, while swap ordering is high-to-low
2421 */
2422 p->list.prio = -p->prio;
a2468cc9
AL
2423 for_each_node(i) {
2424 if (p->prio >= 0)
2425 p->avail_lists[i].prio = -p->prio;
2426 else {
2427 if (swap_node(p) == i)
2428 p->avail_lists[i].prio = 1;
2429 else
2430 p->avail_lists[i].prio = -p->prio;
2431 }
2432 }
40531542 2433 p->swap_map = swap_map;
2a8f9449 2434 p->cluster_info = cluster_info;
eb085574
HY
2435}
2436
2437static void _enable_swap_info(struct swap_info_struct *p)
2438{
2439 p->flags |= SWP_WRITEOK | SWP_VALID;
ec8acf20 2440 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
2441 total_swap_pages += p->pages;
2442
adfab836 2443 assert_spin_locked(&swap_lock);
adfab836 2444 /*
18ab4d4c
DS
2445 * both lists are plists, and thus priority ordered.
2446 * swap_active_head needs to be priority ordered for swapoff(),
2447 * which on removal of any swap_info_struct with an auto-assigned
2448 * (i.e. negative) priority increments the auto-assigned priority
2449 * of any lower-priority swap_info_structs.
2450 * swap_avail_head needs to be priority ordered for get_swap_page(),
2451 * which allocates swap pages from the highest available priority
2452 * swap_info_struct.
adfab836 2453 */
18ab4d4c 2454 plist_add(&p->list, &swap_active_head);
a2468cc9 2455 add_to_avail_list(p);
cf0cac0a
CEB
2456}
2457
2458static void enable_swap_info(struct swap_info_struct *p, int prio,
2459 unsigned char *swap_map,
2a8f9449 2460 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
2461 unsigned long *frontswap_map)
2462{
4f89849d 2463 frontswap_init(p->type, frontswap_map);
cf0cac0a 2464 spin_lock(&swap_lock);
ec8acf20 2465 spin_lock(&p->lock);
eb085574
HY
2466 setup_swap_info(p, prio, swap_map, cluster_info);
2467 spin_unlock(&p->lock);
2468 spin_unlock(&swap_lock);
2469 /*
2470 * Guarantee swap_map, cluster_info, etc. fields are valid
2471 * between get/put_swap_device() if SWP_VALID bit is set
2472 */
2473 synchronize_rcu();
2474 spin_lock(&swap_lock);
2475 spin_lock(&p->lock);
2476 _enable_swap_info(p);
ec8acf20 2477 spin_unlock(&p->lock);
cf0cac0a
CEB
2478 spin_unlock(&swap_lock);
2479}
2480
2481static void reinsert_swap_info(struct swap_info_struct *p)
2482{
2483 spin_lock(&swap_lock);
ec8acf20 2484 spin_lock(&p->lock);
eb085574
HY
2485 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2486 _enable_swap_info(p);
ec8acf20 2487 spin_unlock(&p->lock);
40531542
CEB
2488 spin_unlock(&swap_lock);
2489}
2490
67afa38e
TC
2491bool has_usable_swap(void)
2492{
2493 bool ret = true;
2494
2495 spin_lock(&swap_lock);
2496 if (plist_head_empty(&swap_active_head))
2497 ret = false;
2498 spin_unlock(&swap_lock);
2499 return ret;
2500}
2501
c4ea37c2 2502SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 2503{
73c34b6a 2504 struct swap_info_struct *p = NULL;
8d69aaee 2505 unsigned char *swap_map;
2a8f9449 2506 struct swap_cluster_info *cluster_info;
4f89849d 2507 unsigned long *frontswap_map;
1da177e4
LT
2508 struct file *swap_file, *victim;
2509 struct address_space *mapping;
2510 struct inode *inode;
91a27b2a 2511 struct filename *pathname;
adfab836 2512 int err, found = 0;
5b808a23 2513 unsigned int old_block_size;
886bb7e9 2514
1da177e4
LT
2515 if (!capable(CAP_SYS_ADMIN))
2516 return -EPERM;
2517
191c5424
AV
2518 BUG_ON(!current->mm);
2519
1da177e4 2520 pathname = getname(specialfile);
1da177e4 2521 if (IS_ERR(pathname))
f58b59c1 2522 return PTR_ERR(pathname);
1da177e4 2523
669abf4e 2524 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
2525 err = PTR_ERR(victim);
2526 if (IS_ERR(victim))
2527 goto out;
2528
2529 mapping = victim->f_mapping;
5d337b91 2530 spin_lock(&swap_lock);
18ab4d4c 2531 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 2532 if (p->flags & SWP_WRITEOK) {
adfab836
DS
2533 if (p->swap_file->f_mapping == mapping) {
2534 found = 1;
1da177e4 2535 break;
adfab836 2536 }
1da177e4 2537 }
1da177e4 2538 }
adfab836 2539 if (!found) {
1da177e4 2540 err = -EINVAL;
5d337b91 2541 spin_unlock(&swap_lock);
1da177e4
LT
2542 goto out_dput;
2543 }
191c5424 2544 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
2545 vm_unacct_memory(p->pages);
2546 else {
2547 err = -ENOMEM;
5d337b91 2548 spin_unlock(&swap_lock);
1da177e4
LT
2549 goto out_dput;
2550 }
a2468cc9 2551 del_from_avail_list(p);
ec8acf20 2552 spin_lock(&p->lock);
78ecba08 2553 if (p->prio < 0) {
adfab836 2554 struct swap_info_struct *si = p;
a2468cc9 2555 int nid;
adfab836 2556
18ab4d4c 2557 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 2558 si->prio++;
18ab4d4c 2559 si->list.prio--;
a2468cc9
AL
2560 for_each_node(nid) {
2561 if (si->avail_lists[nid].prio != 1)
2562 si->avail_lists[nid].prio--;
2563 }
adfab836 2564 }
78ecba08
HD
2565 least_priority++;
2566 }
18ab4d4c 2567 plist_del(&p->list, &swap_active_head);
ec8acf20 2568 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
2569 total_swap_pages -= p->pages;
2570 p->flags &= ~SWP_WRITEOK;
ec8acf20 2571 spin_unlock(&p->lock);
5d337b91 2572 spin_unlock(&swap_lock);
fb4f88dc 2573
039939a6
TC
2574 disable_swap_slots_cache_lock();
2575
e1e12d2f 2576 set_current_oom_origin();
adfab836 2577 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
e1e12d2f 2578 clear_current_oom_origin();
1da177e4 2579
1da177e4
LT
2580 if (err) {
2581 /* re-insert swap space back into swap_list */
cf0cac0a 2582 reinsert_swap_info(p);
039939a6 2583 reenable_swap_slots_cache_unlock();
1da177e4
LT
2584 goto out_dput;
2585 }
52b7efdb 2586
039939a6
TC
2587 reenable_swap_slots_cache_unlock();
2588
eb085574
HY
2589 spin_lock(&swap_lock);
2590 spin_lock(&p->lock);
2591 p->flags &= ~SWP_VALID; /* mark swap device as invalid */
2592 spin_unlock(&p->lock);
2593 spin_unlock(&swap_lock);
2594 /*
2595 * wait for swap operations protected by get/put_swap_device()
2596 * to complete
2597 */
2598 synchronize_rcu();
2599
815c2c54
SL
2600 flush_work(&p->discard_work);
2601
5d337b91 2602 destroy_swap_extents(p);
570a335b
HD
2603 if (p->flags & SWP_CONTINUED)
2604 free_swap_count_continuations(p);
2605
81a0298b
HY
2606 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2607 atomic_dec(&nr_rotate_swap);
2608
fc0abb14 2609 mutex_lock(&swapon_mutex);
5d337b91 2610 spin_lock(&swap_lock);
ec8acf20 2611 spin_lock(&p->lock);
5d337b91
HD
2612 drain_mmlist();
2613
52b7efdb 2614 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
2615 p->highest_bit = 0; /* cuts scans short */
2616 while (p->flags >= SWP_SCANNING) {
ec8acf20 2617 spin_unlock(&p->lock);
5d337b91 2618 spin_unlock(&swap_lock);
13e4b57f 2619 schedule_timeout_uninterruptible(1);
5d337b91 2620 spin_lock(&swap_lock);
ec8acf20 2621 spin_lock(&p->lock);
52b7efdb 2622 }
52b7efdb 2623
1da177e4 2624 swap_file = p->swap_file;
5b808a23 2625 old_block_size = p->old_block_size;
1da177e4
LT
2626 p->swap_file = NULL;
2627 p->max = 0;
2628 swap_map = p->swap_map;
2629 p->swap_map = NULL;
2a8f9449
SL
2630 cluster_info = p->cluster_info;
2631 p->cluster_info = NULL;
4f89849d 2632 frontswap_map = frontswap_map_get(p);
ec8acf20 2633 spin_unlock(&p->lock);
5d337b91 2634 spin_unlock(&swap_lock);
adfab836 2635 frontswap_invalidate_area(p->type);
58e97ba6 2636 frontswap_map_set(p, NULL);
fc0abb14 2637 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
2638 free_percpu(p->percpu_cluster);
2639 p->percpu_cluster = NULL;
1da177e4 2640 vfree(swap_map);
54f180d3
HY
2641 kvfree(cluster_info);
2642 kvfree(frontswap_map);
2de1a7e4 2643 /* Destroy swap account information */
adfab836 2644 swap_cgroup_swapoff(p->type);
4b3ef9da 2645 exit_swap_address_space(p->type);
27a7faa0 2646
1da177e4
LT
2647 inode = mapping->host;
2648 if (S_ISBLK(inode->i_mode)) {
2649 struct block_device *bdev = I_BDEV(inode);
1638045c 2650
5b808a23 2651 set_blocksize(bdev, old_block_size);
e525fd89 2652 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2653 }
1638045c
DW
2654
2655 inode_lock(inode);
2656 inode->i_flags &= ~S_SWAPFILE;
2657 inode_unlock(inode);
1da177e4 2658 filp_close(swap_file, NULL);
f893ab41
WY
2659
2660 /*
2661 * Clear the SWP_USED flag after all resources are freed so that swapon
2662 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2663 * not hold p->lock after we cleared its SWP_WRITEOK.
2664 */
2665 spin_lock(&swap_lock);
2666 p->flags = 0;
2667 spin_unlock(&swap_lock);
2668
1da177e4 2669 err = 0;
66d7dd51
KS
2670 atomic_inc(&proc_poll_event);
2671 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
2672
2673out_dput:
2674 filp_close(victim, NULL);
2675out:
f58b59c1 2676 putname(pathname);
1da177e4
LT
2677 return err;
2678}
2679
2680#ifdef CONFIG_PROC_FS
9dd95748 2681static __poll_t swaps_poll(struct file *file, poll_table *wait)
66d7dd51 2682{
f1514638 2683 struct seq_file *seq = file->private_data;
66d7dd51
KS
2684
2685 poll_wait(file, &proc_poll_wait, wait);
2686
f1514638
KS
2687 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2688 seq->poll_event = atomic_read(&proc_poll_event);
a9a08845 2689 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
66d7dd51
KS
2690 }
2691
a9a08845 2692 return EPOLLIN | EPOLLRDNORM;
66d7dd51
KS
2693}
2694
1da177e4
LT
2695/* iterator */
2696static void *swap_start(struct seq_file *swap, loff_t *pos)
2697{
efa90a98
HD
2698 struct swap_info_struct *si;
2699 int type;
1da177e4
LT
2700 loff_t l = *pos;
2701
fc0abb14 2702 mutex_lock(&swapon_mutex);
1da177e4 2703
881e4aab
SS
2704 if (!l)
2705 return SEQ_START_TOKEN;
2706
c10d38cc 2707 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
efa90a98 2708 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2709 continue;
881e4aab 2710 if (!--l)
efa90a98 2711 return si;
1da177e4
LT
2712 }
2713
2714 return NULL;
2715}
2716
2717static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2718{
efa90a98
HD
2719 struct swap_info_struct *si = v;
2720 int type;
1da177e4 2721
881e4aab 2722 if (v == SEQ_START_TOKEN)
efa90a98
HD
2723 type = 0;
2724 else
2725 type = si->type + 1;
881e4aab 2726
10c8d69f 2727 ++(*pos);
c10d38cc 2728 for (; (si = swap_type_to_swap_info(type)); type++) {
efa90a98 2729 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2730 continue;
efa90a98 2731 return si;
1da177e4
LT
2732 }
2733
2734 return NULL;
2735}
2736
2737static void swap_stop(struct seq_file *swap, void *v)
2738{
fc0abb14 2739 mutex_unlock(&swapon_mutex);
1da177e4
LT
2740}
2741
2742static int swap_show(struct seq_file *swap, void *v)
2743{
efa90a98 2744 struct swap_info_struct *si = v;
1da177e4
LT
2745 struct file *file;
2746 int len;
2747
efa90a98 2748 if (si == SEQ_START_TOKEN) {
881e4aab
SS
2749 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2750 return 0;
2751 }
1da177e4 2752
efa90a98 2753 file = si->swap_file;
2726d566 2754 len = seq_file_path(swap, file, " \t\n\\");
6eb396dc 2755 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9 2756 len < 40 ? 40 - len : 1, " ",
496ad9aa 2757 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2758 "partition" : "file\t",
efa90a98
HD
2759 si->pages << (PAGE_SHIFT - 10),
2760 si->inuse_pages << (PAGE_SHIFT - 10),
2761 si->prio);
1da177e4
LT
2762 return 0;
2763}
2764
15ad7cdc 2765static const struct seq_operations swaps_op = {
1da177e4
LT
2766 .start = swap_start,
2767 .next = swap_next,
2768 .stop = swap_stop,
2769 .show = swap_show
2770};
2771
2772static int swaps_open(struct inode *inode, struct file *file)
2773{
f1514638 2774 struct seq_file *seq;
66d7dd51
KS
2775 int ret;
2776
66d7dd51 2777 ret = seq_open(file, &swaps_op);
f1514638 2778 if (ret)
66d7dd51 2779 return ret;
66d7dd51 2780
f1514638
KS
2781 seq = file->private_data;
2782 seq->poll_event = atomic_read(&proc_poll_event);
2783 return 0;
1da177e4
LT
2784}
2785
97a32539 2786static const struct proc_ops swaps_proc_ops = {
d919b33d 2787 .proc_flags = PROC_ENTRY_PERMANENT,
97a32539
AD
2788 .proc_open = swaps_open,
2789 .proc_read = seq_read,
2790 .proc_lseek = seq_lseek,
2791 .proc_release = seq_release,
2792 .proc_poll = swaps_poll,
1da177e4
LT
2793};
2794
2795static int __init procswaps_init(void)
2796{
97a32539 2797 proc_create("swaps", 0, NULL, &swaps_proc_ops);
1da177e4
LT
2798 return 0;
2799}
2800__initcall(procswaps_init);
2801#endif /* CONFIG_PROC_FS */
2802
1796316a
JB
2803#ifdef MAX_SWAPFILES_CHECK
2804static int __init max_swapfiles_check(void)
2805{
2806 MAX_SWAPFILES_CHECK();
2807 return 0;
2808}
2809late_initcall(max_swapfiles_check);
2810#endif
2811
53cbb243 2812static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2813{
73c34b6a 2814 struct swap_info_struct *p;
1da177e4 2815 unsigned int type;
a2468cc9 2816 int i;
efa90a98 2817
96008744 2818 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
efa90a98 2819 if (!p)
53cbb243 2820 return ERR_PTR(-ENOMEM);
efa90a98 2821
5d337b91 2822 spin_lock(&swap_lock);
efa90a98
HD
2823 for (type = 0; type < nr_swapfiles; type++) {
2824 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2825 break;
efa90a98 2826 }
0697212a 2827 if (type >= MAX_SWAPFILES) {
5d337b91 2828 spin_unlock(&swap_lock);
873d7bcf 2829 kvfree(p);
730c0581 2830 return ERR_PTR(-EPERM);
1da177e4 2831 }
efa90a98
HD
2832 if (type >= nr_swapfiles) {
2833 p->type = type;
c10d38cc 2834 WRITE_ONCE(swap_info[type], p);
efa90a98
HD
2835 /*
2836 * Write swap_info[type] before nr_swapfiles, in case a
2837 * racing procfs swap_start() or swap_next() is reading them.
2838 * (We never shrink nr_swapfiles, we never free this entry.)
2839 */
2840 smp_wmb();
c10d38cc 2841 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
efa90a98 2842 } else {
873d7bcf 2843 kvfree(p);
efa90a98
HD
2844 p = swap_info[type];
2845 /*
2846 * Do not memset this entry: a racing procfs swap_next()
2847 * would be relying on p->type to remain valid.
2848 */
2849 }
4efaceb1 2850 p->swap_extent_root = RB_ROOT;
18ab4d4c 2851 plist_node_init(&p->list, 0);
a2468cc9
AL
2852 for_each_node(i)
2853 plist_node_init(&p->avail_lists[i], 0);
1da177e4 2854 p->flags = SWP_USED;
5d337b91 2855 spin_unlock(&swap_lock);
ec8acf20 2856 spin_lock_init(&p->lock);
2628bd6f 2857 spin_lock_init(&p->cont_lock);
efa90a98 2858
53cbb243 2859 return p;
53cbb243
CEB
2860}
2861
4d0e1e10
CEB
2862static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2863{
2864 int error;
2865
2866 if (S_ISBLK(inode->i_mode)) {
2867 p->bdev = bdgrab(I_BDEV(inode));
2868 error = blkdev_get(p->bdev,
6f179af8 2869 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
4d0e1e10
CEB
2870 if (error < 0) {
2871 p->bdev = NULL;
6f179af8 2872 return error;
4d0e1e10
CEB
2873 }
2874 p->old_block_size = block_size(p->bdev);
2875 error = set_blocksize(p->bdev, PAGE_SIZE);
2876 if (error < 0)
87ade72a 2877 return error;
12d2966d
NA
2878 /*
2879 * Zoned block devices contain zones that have a sequential
2880 * write only restriction. Hence zoned block devices are not
2881 * suitable for swapping. Disallow them here.
2882 */
2883 if (blk_queue_is_zoned(p->bdev->bd_queue))
2884 return -EINVAL;
4d0e1e10
CEB
2885 p->flags |= SWP_BLKDEV;
2886 } else if (S_ISREG(inode->i_mode)) {
2887 p->bdev = inode->i_sb->s_bdev;
1638045c
DW
2888 }
2889
4d0e1e10 2890 return 0;
4d0e1e10
CEB
2891}
2892
377eeaa8
AK
2893
2894/*
2895 * Find out how many pages are allowed for a single swap device. There
2896 * are two limiting factors:
2897 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2898 * 2) the number of bits in the swap pte, as defined by the different
2899 * architectures.
2900 *
2901 * In order to find the largest possible bit mask, a swap entry with
2902 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2903 * decoded to a swp_entry_t again, and finally the swap offset is
2904 * extracted.
2905 *
2906 * This will mask all the bits from the initial ~0UL mask that can't
2907 * be encoded in either the swp_entry_t or the architecture definition
2908 * of a swap pte.
2909 */
2910unsigned long generic_max_swapfile_size(void)
2911{
2912 return swp_offset(pte_to_swp_entry(
2913 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2914}
2915
2916/* Can be overridden by an architecture for additional checks. */
2917__weak unsigned long max_swapfile_size(void)
2918{
2919 return generic_max_swapfile_size();
2920}
2921
ca8bd38b
CEB
2922static unsigned long read_swap_header(struct swap_info_struct *p,
2923 union swap_header *swap_header,
2924 struct inode *inode)
2925{
2926 int i;
2927 unsigned long maxpages;
2928 unsigned long swapfilepages;
d6bbbd29 2929 unsigned long last_page;
ca8bd38b
CEB
2930
2931 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2932 pr_err("Unable to find swap-space signature\n");
38719025 2933 return 0;
ca8bd38b
CEB
2934 }
2935
2936 /* swap partition endianess hack... */
2937 if (swab32(swap_header->info.version) == 1) {
2938 swab32s(&swap_header->info.version);
2939 swab32s(&swap_header->info.last_page);
2940 swab32s(&swap_header->info.nr_badpages);
dd111be6
JH
2941 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2942 return 0;
ca8bd38b
CEB
2943 for (i = 0; i < swap_header->info.nr_badpages; i++)
2944 swab32s(&swap_header->info.badpages[i]);
2945 }
2946 /* Check the swap header's sub-version */
2947 if (swap_header->info.version != 1) {
465c47fd
AM
2948 pr_warn("Unable to handle swap header version %d\n",
2949 swap_header->info.version);
38719025 2950 return 0;
ca8bd38b
CEB
2951 }
2952
2953 p->lowest_bit = 1;
2954 p->cluster_next = 1;
2955 p->cluster_nr = 0;
2956
377eeaa8 2957 maxpages = max_swapfile_size();
d6bbbd29 2958 last_page = swap_header->info.last_page;
a06ad633
TA
2959 if (!last_page) {
2960 pr_warn("Empty swap-file\n");
2961 return 0;
2962 }
d6bbbd29 2963 if (last_page > maxpages) {
465c47fd 2964 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2965 maxpages << (PAGE_SHIFT - 10),
2966 last_page << (PAGE_SHIFT - 10));
2967 }
2968 if (maxpages > last_page) {
2969 maxpages = last_page + 1;
ca8bd38b
CEB
2970 /* p->max is an unsigned int: don't overflow it */
2971 if ((unsigned int)maxpages == 0)
2972 maxpages = UINT_MAX;
2973 }
2974 p->highest_bit = maxpages - 1;
2975
2976 if (!maxpages)
38719025 2977 return 0;
ca8bd38b
CEB
2978 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2979 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 2980 pr_warn("Swap area shorter than signature indicates\n");
38719025 2981 return 0;
ca8bd38b
CEB
2982 }
2983 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 2984 return 0;
ca8bd38b 2985 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 2986 return 0;
ca8bd38b
CEB
2987
2988 return maxpages;
ca8bd38b
CEB
2989}
2990
4b3ef9da 2991#define SWAP_CLUSTER_INFO_COLS \
235b6217 2992 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
4b3ef9da
HY
2993#define SWAP_CLUSTER_SPACE_COLS \
2994 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2995#define SWAP_CLUSTER_COLS \
2996 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
235b6217 2997
915d4d7b
CEB
2998static int setup_swap_map_and_extents(struct swap_info_struct *p,
2999 union swap_header *swap_header,
3000 unsigned char *swap_map,
2a8f9449 3001 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
3002 unsigned long maxpages,
3003 sector_t *span)
3004{
235b6217 3005 unsigned int j, k;
915d4d7b
CEB
3006 unsigned int nr_good_pages;
3007 int nr_extents;
2a8f9449 3008 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
235b6217
HY
3009 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3010 unsigned long i, idx;
915d4d7b
CEB
3011
3012 nr_good_pages = maxpages - 1; /* omit header page */
3013
6b534915
HY
3014 cluster_list_init(&p->free_clusters);
3015 cluster_list_init(&p->discard_clusters);
2a8f9449 3016
915d4d7b
CEB
3017 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3018 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
3019 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3020 return -EINVAL;
915d4d7b
CEB
3021 if (page_nr < maxpages) {
3022 swap_map[page_nr] = SWAP_MAP_BAD;
3023 nr_good_pages--;
2a8f9449
SL
3024 /*
3025 * Haven't marked the cluster free yet, no list
3026 * operation involved
3027 */
3028 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
3029 }
3030 }
3031
2a8f9449
SL
3032 /* Haven't marked the cluster free yet, no list operation involved */
3033 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3034 inc_cluster_info_page(p, cluster_info, i);
3035
915d4d7b
CEB
3036 if (nr_good_pages) {
3037 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
3038 /*
3039 * Not mark the cluster free yet, no list
3040 * operation involved
3041 */
3042 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
3043 p->max = maxpages;
3044 p->pages = nr_good_pages;
3045 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
3046 if (nr_extents < 0)
3047 return nr_extents;
915d4d7b
CEB
3048 nr_good_pages = p->pages;
3049 }
3050 if (!nr_good_pages) {
465c47fd 3051 pr_warn("Empty swap-file\n");
bdb8e3f6 3052 return -EINVAL;
915d4d7b
CEB
3053 }
3054
2a8f9449
SL
3055 if (!cluster_info)
3056 return nr_extents;
3057
235b6217 3058
4b3ef9da
HY
3059 /*
3060 * Reduce false cache line sharing between cluster_info and
3061 * sharing same address space.
3062 */
235b6217
HY
3063 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3064 j = (k + col) % SWAP_CLUSTER_COLS;
3065 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3066 idx = i * SWAP_CLUSTER_COLS + j;
3067 if (idx >= nr_clusters)
3068 continue;
3069 if (cluster_count(&cluster_info[idx]))
3070 continue;
2a8f9449 3071 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
6b534915
HY
3072 cluster_list_add_tail(&p->free_clusters, cluster_info,
3073 idx);
2a8f9449 3074 }
2a8f9449 3075 }
915d4d7b 3076 return nr_extents;
915d4d7b
CEB
3077}
3078
dcf6b7dd
RA
3079/*
3080 * Helper to sys_swapon determining if a given swap
3081 * backing device queue supports DISCARD operations.
3082 */
3083static bool swap_discardable(struct swap_info_struct *si)
3084{
3085 struct request_queue *q = bdev_get_queue(si->bdev);
3086
3087 if (!q || !blk_queue_discard(q))
3088 return false;
3089
3090 return true;
3091}
3092
53cbb243
CEB
3093SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3094{
3095 struct swap_info_struct *p;
91a27b2a 3096 struct filename *name;
53cbb243
CEB
3097 struct file *swap_file = NULL;
3098 struct address_space *mapping;
40531542 3099 int prio;
53cbb243
CEB
3100 int error;
3101 union swap_header *swap_header;
915d4d7b 3102 int nr_extents;
53cbb243
CEB
3103 sector_t span;
3104 unsigned long maxpages;
53cbb243 3105 unsigned char *swap_map = NULL;
2a8f9449 3106 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 3107 unsigned long *frontswap_map = NULL;
53cbb243
CEB
3108 struct page *page = NULL;
3109 struct inode *inode = NULL;
7cbf3192 3110 bool inced_nr_rotate_swap = false;
53cbb243 3111
d15cab97
HD
3112 if (swap_flags & ~SWAP_FLAGS_VALID)
3113 return -EINVAL;
3114
53cbb243
CEB
3115 if (!capable(CAP_SYS_ADMIN))
3116 return -EPERM;
3117
a2468cc9
AL
3118 if (!swap_avail_heads)
3119 return -ENOMEM;
3120
53cbb243 3121 p = alloc_swap_info();
2542e513
CEB
3122 if (IS_ERR(p))
3123 return PTR_ERR(p);
53cbb243 3124
815c2c54
SL
3125 INIT_WORK(&p->discard_work, swap_discard_work);
3126
1da177e4 3127 name = getname(specialfile);
1da177e4 3128 if (IS_ERR(name)) {
7de7fb6b 3129 error = PTR_ERR(name);
1da177e4 3130 name = NULL;
bd69010b 3131 goto bad_swap;
1da177e4 3132 }
669abf4e 3133 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 3134 if (IS_ERR(swap_file)) {
7de7fb6b 3135 error = PTR_ERR(swap_file);
1da177e4 3136 swap_file = NULL;
bd69010b 3137 goto bad_swap;
1da177e4
LT
3138 }
3139
3140 p->swap_file = swap_file;
3141 mapping = swap_file->f_mapping;
2130781e 3142 inode = mapping->host;
6f179af8 3143
4d0e1e10
CEB
3144 error = claim_swapfile(p, inode);
3145 if (unlikely(error))
1da177e4 3146 goto bad_swap;
1da177e4 3147
d795a90e
NA
3148 inode_lock(inode);
3149 if (IS_SWAPFILE(inode)) {
3150 error = -EBUSY;
3151 goto bad_swap_unlock_inode;
3152 }
3153
1da177e4
LT
3154 /*
3155 * Read the swap header.
3156 */
3157 if (!mapping->a_ops->readpage) {
3158 error = -EINVAL;
d795a90e 3159 goto bad_swap_unlock_inode;
1da177e4 3160 }
090d2b18 3161 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
3162 if (IS_ERR(page)) {
3163 error = PTR_ERR(page);
d795a90e 3164 goto bad_swap_unlock_inode;
1da177e4 3165 }
81e33971 3166 swap_header = kmap(page);
1da177e4 3167
ca8bd38b
CEB
3168 maxpages = read_swap_header(p, swap_header, inode);
3169 if (unlikely(!maxpages)) {
1da177e4 3170 error = -EINVAL;
d795a90e 3171 goto bad_swap_unlock_inode;
1da177e4 3172 }
886bb7e9 3173
81e33971 3174 /* OK, set up the swap map and apply the bad block list */
803d0c83 3175 swap_map = vzalloc(maxpages);
81e33971
HD
3176 if (!swap_map) {
3177 error = -ENOMEM;
d795a90e 3178 goto bad_swap_unlock_inode;
81e33971 3179 }
f0571429
MK
3180
3181 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3182 p->flags |= SWP_STABLE_WRITES;
3183
539a6fea
MK
3184 if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3185 p->flags |= SWP_SYNCHRONOUS_IO;
3186
2a8f9449 3187 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
6f179af8 3188 int cpu;
235b6217 3189 unsigned long ci, nr_cluster;
6f179af8 3190
2a8f9449
SL
3191 p->flags |= SWP_SOLIDSTATE;
3192 /*
3193 * select a random position to start with to help wear leveling
3194 * SSD
3195 */
3196 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
235b6217 3197 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2a8f9449 3198
778e1cdd 3199 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
54f180d3 3200 GFP_KERNEL);
2a8f9449
SL
3201 if (!cluster_info) {
3202 error = -ENOMEM;
d795a90e 3203 goto bad_swap_unlock_inode;
2a8f9449 3204 }
235b6217
HY
3205
3206 for (ci = 0; ci < nr_cluster; ci++)
3207 spin_lock_init(&((cluster_info + ci)->lock));
3208
ebc2a1a6
SL
3209 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3210 if (!p->percpu_cluster) {
3211 error = -ENOMEM;
d795a90e 3212 goto bad_swap_unlock_inode;
ebc2a1a6 3213 }
6f179af8 3214 for_each_possible_cpu(cpu) {
ebc2a1a6 3215 struct percpu_cluster *cluster;
6f179af8 3216 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
ebc2a1a6
SL
3217 cluster_set_null(&cluster->index);
3218 }
7cbf3192 3219 } else {
81a0298b 3220 atomic_inc(&nr_rotate_swap);
7cbf3192
OS
3221 inced_nr_rotate_swap = true;
3222 }
1da177e4 3223
1421ef3c
CEB
3224 error = swap_cgroup_swapon(p->type, maxpages);
3225 if (error)
d795a90e 3226 goto bad_swap_unlock_inode;
1421ef3c 3227
915d4d7b 3228 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 3229 cluster_info, maxpages, &span);
915d4d7b
CEB
3230 if (unlikely(nr_extents < 0)) {
3231 error = nr_extents;
d795a90e 3232 goto bad_swap_unlock_inode;
1da177e4 3233 }
38b5faf4 3234 /* frontswap enabled? set up bit-per-page map for frontswap */
8ea1d2a1 3235 if (IS_ENABLED(CONFIG_FRONTSWAP))
778e1cdd
KC
3236 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3237 sizeof(long),
54f180d3 3238 GFP_KERNEL);
1da177e4 3239
2a8f9449
SL
3240 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3241 /*
3242 * When discard is enabled for swap with no particular
3243 * policy flagged, we set all swap discard flags here in
3244 * order to sustain backward compatibility with older
3245 * swapon(8) releases.
3246 */
3247 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3248 SWP_PAGE_DISCARD);
dcf6b7dd 3249
2a8f9449
SL
3250 /*
3251 * By flagging sys_swapon, a sysadmin can tell us to
3252 * either do single-time area discards only, or to just
3253 * perform discards for released swap page-clusters.
3254 * Now it's time to adjust the p->flags accordingly.
3255 */
3256 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3257 p->flags &= ~SWP_PAGE_DISCARD;
3258 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3259 p->flags &= ~SWP_AREA_DISCARD;
3260
3261 /* issue a swapon-time discard if it's still required */
3262 if (p->flags & SWP_AREA_DISCARD) {
3263 int err = discard_swap(p);
3264 if (unlikely(err))
3265 pr_err("swapon: discard_swap(%p): %d\n",
3266 p, err);
dcf6b7dd 3267 }
20137a49 3268 }
6a6ba831 3269
4b3ef9da
HY
3270 error = init_swap_address_space(p->type, maxpages);
3271 if (error)
d795a90e 3272 goto bad_swap_unlock_inode;
4b3ef9da 3273
dc617f29
DW
3274 /*
3275 * Flush any pending IO and dirty mappings before we start using this
3276 * swap device.
3277 */
3278 inode->i_flags |= S_SWAPFILE;
3279 error = inode_drain_writes(inode);
3280 if (error) {
3281 inode->i_flags &= ~S_SWAPFILE;
d795a90e 3282 goto bad_swap_unlock_inode;
dc617f29
DW
3283 }
3284
fc0abb14 3285 mutex_lock(&swapon_mutex);
40531542 3286 prio = -1;
78ecba08 3287 if (swap_flags & SWAP_FLAG_PREFER)
40531542 3288 prio =
78ecba08 3289 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 3290 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 3291
756a025f 3292 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 3293 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
3294 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3295 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 3296 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
3297 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3298 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 3299 (frontswap_map) ? "FS" : "");
c69dbfb8 3300
fc0abb14 3301 mutex_unlock(&swapon_mutex);
66d7dd51
KS
3302 atomic_inc(&proc_poll_event);
3303 wake_up_interruptible(&proc_poll_wait);
3304
1da177e4
LT
3305 error = 0;
3306 goto out;
d795a90e
NA
3307bad_swap_unlock_inode:
3308 inode_unlock(inode);
1da177e4 3309bad_swap:
ebc2a1a6
SL
3310 free_percpu(p->percpu_cluster);
3311 p->percpu_cluster = NULL;
bd69010b 3312 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
3313 set_blocksize(p->bdev, p->old_block_size);
3314 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 3315 }
d795a90e 3316 inode = NULL;
4cd3bb10 3317 destroy_swap_extents(p);
e8e6c2ec 3318 swap_cgroup_swapoff(p->type);
5d337b91 3319 spin_lock(&swap_lock);
1da177e4 3320 p->swap_file = NULL;
1da177e4 3321 p->flags = 0;
5d337b91 3322 spin_unlock(&swap_lock);
1da177e4 3323 vfree(swap_map);
8606a1a9 3324 kvfree(cluster_info);
b6b1fd2a 3325 kvfree(frontswap_map);
7cbf3192
OS
3326 if (inced_nr_rotate_swap)
3327 atomic_dec(&nr_rotate_swap);
d795a90e 3328 if (swap_file)
1da177e4
LT
3329 filp_close(swap_file, NULL);
3330out:
3331 if (page && !IS_ERR(page)) {
3332 kunmap(page);
09cbfeaf 3333 put_page(page);
1da177e4
LT
3334 }
3335 if (name)
3336 putname(name);
1638045c 3337 if (inode)
5955102c 3338 inode_unlock(inode);
039939a6
TC
3339 if (!error)
3340 enable_swap_slots_cache();
1da177e4
LT
3341 return error;
3342}
3343
3344void si_swapinfo(struct sysinfo *val)
3345{
efa90a98 3346 unsigned int type;
1da177e4
LT
3347 unsigned long nr_to_be_unused = 0;
3348
5d337b91 3349 spin_lock(&swap_lock);
efa90a98
HD
3350 for (type = 0; type < nr_swapfiles; type++) {
3351 struct swap_info_struct *si = swap_info[type];
3352
3353 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3354 nr_to_be_unused += si->inuse_pages;
1da177e4 3355 }
ec8acf20 3356 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 3357 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 3358 spin_unlock(&swap_lock);
1da177e4
LT
3359}
3360
3361/*
3362 * Verify that a swap entry is valid and increment its swap map count.
3363 *
355cfa73
KH
3364 * Returns error code in following case.
3365 * - success -> 0
3366 * - swp_entry is invalid -> EINVAL
3367 * - swp_entry is migration entry -> EINVAL
3368 * - swap-cache reference is requested but there is already one. -> EEXIST
3369 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 3370 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 3371 */
8d69aaee 3372static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 3373{
73c34b6a 3374 struct swap_info_struct *p;
235b6217 3375 struct swap_cluster_info *ci;
c10d38cc 3376 unsigned long offset;
8d69aaee
HD
3377 unsigned char count;
3378 unsigned char has_cache;
253d553b 3379 int err = -EINVAL;
1da177e4 3380
eb085574 3381 p = get_swap_device(entry);
c10d38cc 3382 if (!p)
235b6217
HY
3383 goto out;
3384
eb085574 3385 offset = swp_offset(entry);
235b6217 3386 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 3387
253d553b 3388 count = p->swap_map[offset];
edfe23da
SL
3389
3390 /*
3391 * swapin_readahead() doesn't check if a swap entry is valid, so the
3392 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3393 */
3394 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3395 err = -ENOENT;
3396 goto unlock_out;
3397 }
3398
253d553b
HD
3399 has_cache = count & SWAP_HAS_CACHE;
3400 count &= ~SWAP_HAS_CACHE;
3401 err = 0;
355cfa73 3402
253d553b 3403 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
3404
3405 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
3406 if (!has_cache && count)
3407 has_cache = SWAP_HAS_CACHE;
3408 else if (has_cache) /* someone else added cache */
3409 err = -EEXIST;
3410 else /* no users remaining */
3411 err = -ENOENT;
355cfa73
KH
3412
3413 } else if (count || has_cache) {
253d553b 3414
570a335b
HD
3415 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3416 count += usage;
3417 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 3418 err = -EINVAL;
570a335b
HD
3419 else if (swap_count_continued(p, offset, count))
3420 count = COUNT_CONTINUED;
3421 else
3422 err = -ENOMEM;
355cfa73 3423 } else
253d553b
HD
3424 err = -ENOENT; /* unused swap entry */
3425
3426 p->swap_map[offset] = count | has_cache;
3427
355cfa73 3428unlock_out:
235b6217 3429 unlock_cluster_or_swap_info(p, ci);
1da177e4 3430out:
eb085574
HY
3431 if (p)
3432 put_swap_device(p);
253d553b 3433 return err;
1da177e4 3434}
253d553b 3435
aaa46865
HD
3436/*
3437 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3438 * (in which case its reference count is never incremented).
3439 */
3440void swap_shmem_alloc(swp_entry_t entry)
3441{
3442 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3443}
3444
355cfa73 3445/*
08259d58
HD
3446 * Increase reference count of swap entry by 1.
3447 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3448 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3449 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3450 * might occur if a page table entry has got corrupted.
355cfa73 3451 */
570a335b 3452int swap_duplicate(swp_entry_t entry)
355cfa73 3453{
570a335b
HD
3454 int err = 0;
3455
3456 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3457 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3458 return err;
355cfa73 3459}
1da177e4 3460
cb4b86ba 3461/*
355cfa73
KH
3462 * @entry: swap entry for which we allocate swap cache.
3463 *
73c34b6a 3464 * Called when allocating swap cache for existing swap entry,
355cfa73 3465 * This can return error codes. Returns 0 at success.
3eeba135 3466 * -EEXIST means there is a swap cache.
355cfa73 3467 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
3468 */
3469int swapcache_prepare(swp_entry_t entry)
3470{
253d553b 3471 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
3472}
3473
0bcac06f
MK
3474struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3475{
c10d38cc 3476 return swap_type_to_swap_info(swp_type(entry));
0bcac06f
MK
3477}
3478
f981c595
MG
3479struct swap_info_struct *page_swap_info(struct page *page)
3480{
0bcac06f
MK
3481 swp_entry_t entry = { .val = page_private(page) };
3482 return swp_swap_info(entry);
f981c595
MG
3483}
3484
3485/*
3486 * out-of-line __page_file_ methods to avoid include hell.
3487 */
3488struct address_space *__page_file_mapping(struct page *page)
3489{
f981c595
MG
3490 return page_swap_info(page)->swap_file->f_mapping;
3491}
3492EXPORT_SYMBOL_GPL(__page_file_mapping);
3493
3494pgoff_t __page_file_index(struct page *page)
3495{
3496 swp_entry_t swap = { .val = page_private(page) };
f981c595
MG
3497 return swp_offset(swap);
3498}
3499EXPORT_SYMBOL_GPL(__page_file_index);
3500
570a335b
HD
3501/*
3502 * add_swap_count_continuation - called when a swap count is duplicated
3503 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3504 * page of the original vmalloc'ed swap_map, to hold the continuation count
3505 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3506 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3507 *
3508 * These continuation pages are seldom referenced: the common paths all work
3509 * on the original swap_map, only referring to a continuation page when the
3510 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3511 *
3512 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3513 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3514 * can be called after dropping locks.
3515 */
3516int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3517{
3518 struct swap_info_struct *si;
235b6217 3519 struct swap_cluster_info *ci;
570a335b
HD
3520 struct page *head;
3521 struct page *page;
3522 struct page *list_page;
3523 pgoff_t offset;
3524 unsigned char count;
eb085574 3525 int ret = 0;
570a335b
HD
3526
3527 /*
3528 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3529 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3530 */
3531 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3532
eb085574 3533 si = get_swap_device(entry);
570a335b
HD
3534 if (!si) {
3535 /*
3536 * An acceptable race has occurred since the failing
eb085574 3537 * __swap_duplicate(): the swap device may be swapoff
570a335b
HD
3538 */
3539 goto outer;
3540 }
eb085574 3541 spin_lock(&si->lock);
570a335b
HD
3542
3543 offset = swp_offset(entry);
235b6217
HY
3544
3545 ci = lock_cluster(si, offset);
3546
570a335b
HD
3547 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3548
3549 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3550 /*
3551 * The higher the swap count, the more likely it is that tasks
3552 * will race to add swap count continuation: we need to avoid
3553 * over-provisioning.
3554 */
3555 goto out;
3556 }
3557
3558 if (!page) {
eb085574
HY
3559 ret = -ENOMEM;
3560 goto out;
570a335b
HD
3561 }
3562
3563 /*
3564 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
3565 * no architecture is using highmem pages for kernel page tables: so it
3566 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
3567 */
3568 head = vmalloc_to_page(si->swap_map + offset);
3569 offset &= ~PAGE_MASK;
3570
2628bd6f 3571 spin_lock(&si->cont_lock);
570a335b
HD
3572 /*
3573 * Page allocation does not initialize the page's lru field,
3574 * but it does always reset its private field.
3575 */
3576 if (!page_private(head)) {
3577 BUG_ON(count & COUNT_CONTINUED);
3578 INIT_LIST_HEAD(&head->lru);
3579 set_page_private(head, SWP_CONTINUED);
3580 si->flags |= SWP_CONTINUED;
3581 }
3582
3583 list_for_each_entry(list_page, &head->lru, lru) {
3584 unsigned char *map;
3585
3586 /*
3587 * If the previous map said no continuation, but we've found
3588 * a continuation page, free our allocation and use this one.
3589 */
3590 if (!(count & COUNT_CONTINUED))
2628bd6f 3591 goto out_unlock_cont;
570a335b 3592
9b04c5fe 3593 map = kmap_atomic(list_page) + offset;
570a335b 3594 count = *map;
9b04c5fe 3595 kunmap_atomic(map);
570a335b
HD
3596
3597 /*
3598 * If this continuation count now has some space in it,
3599 * free our allocation and use this one.
3600 */
3601 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2628bd6f 3602 goto out_unlock_cont;
570a335b
HD
3603 }
3604
3605 list_add_tail(&page->lru, &head->lru);
3606 page = NULL; /* now it's attached, don't free it */
2628bd6f
HY
3607out_unlock_cont:
3608 spin_unlock(&si->cont_lock);
570a335b 3609out:
235b6217 3610 unlock_cluster(ci);
ec8acf20 3611 spin_unlock(&si->lock);
eb085574 3612 put_swap_device(si);
570a335b
HD
3613outer:
3614 if (page)
3615 __free_page(page);
eb085574 3616 return ret;
570a335b
HD
3617}
3618
3619/*
3620 * swap_count_continued - when the original swap_map count is incremented
3621 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3622 * into, carry if so, or else fail until a new continuation page is allocated;
3623 * when the original swap_map count is decremented from 0 with continuation,
3624 * borrow from the continuation and report whether it still holds more.
235b6217
HY
3625 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3626 * lock.
570a335b
HD
3627 */
3628static bool swap_count_continued(struct swap_info_struct *si,
3629 pgoff_t offset, unsigned char count)
3630{
3631 struct page *head;
3632 struct page *page;
3633 unsigned char *map;
2628bd6f 3634 bool ret;
570a335b
HD
3635
3636 head = vmalloc_to_page(si->swap_map + offset);
3637 if (page_private(head) != SWP_CONTINUED) {
3638 BUG_ON(count & COUNT_CONTINUED);
3639 return false; /* need to add count continuation */
3640 }
3641
2628bd6f 3642 spin_lock(&si->cont_lock);
570a335b 3643 offset &= ~PAGE_MASK;
213516ac 3644 page = list_next_entry(head, lru);
9b04c5fe 3645 map = kmap_atomic(page) + offset;
570a335b
HD
3646
3647 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3648 goto init_map; /* jump over SWAP_CONT_MAX checks */
3649
3650 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3651 /*
3652 * Think of how you add 1 to 999
3653 */
3654 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 3655 kunmap_atomic(map);
213516ac 3656 page = list_next_entry(page, lru);
570a335b 3657 BUG_ON(page == head);
9b04c5fe 3658 map = kmap_atomic(page) + offset;
570a335b
HD
3659 }
3660 if (*map == SWAP_CONT_MAX) {
9b04c5fe 3661 kunmap_atomic(map);
213516ac 3662 page = list_next_entry(page, lru);
2628bd6f
HY
3663 if (page == head) {
3664 ret = false; /* add count continuation */
3665 goto out;
3666 }
9b04c5fe 3667 map = kmap_atomic(page) + offset;
570a335b
HD
3668init_map: *map = 0; /* we didn't zero the page */
3669 }
3670 *map += 1;
9b04c5fe 3671 kunmap_atomic(map);
213516ac 3672 while ((page = list_prev_entry(page, lru)) != head) {
9b04c5fe 3673 map = kmap_atomic(page) + offset;
570a335b 3674 *map = COUNT_CONTINUED;
9b04c5fe 3675 kunmap_atomic(map);
570a335b 3676 }
2628bd6f 3677 ret = true; /* incremented */
570a335b
HD
3678
3679 } else { /* decrementing */
3680 /*
3681 * Think of how you subtract 1 from 1000
3682 */
3683 BUG_ON(count != COUNT_CONTINUED);
3684 while (*map == COUNT_CONTINUED) {
9b04c5fe 3685 kunmap_atomic(map);
213516ac 3686 page = list_next_entry(page, lru);
570a335b 3687 BUG_ON(page == head);
9b04c5fe 3688 map = kmap_atomic(page) + offset;
570a335b
HD
3689 }
3690 BUG_ON(*map == 0);
3691 *map -= 1;
3692 if (*map == 0)
3693 count = 0;
9b04c5fe 3694 kunmap_atomic(map);
213516ac 3695 while ((page = list_prev_entry(page, lru)) != head) {
9b04c5fe 3696 map = kmap_atomic(page) + offset;
570a335b
HD
3697 *map = SWAP_CONT_MAX | count;
3698 count = COUNT_CONTINUED;
9b04c5fe 3699 kunmap_atomic(map);
570a335b 3700 }
2628bd6f 3701 ret = count == COUNT_CONTINUED;
570a335b 3702 }
2628bd6f
HY
3703out:
3704 spin_unlock(&si->cont_lock);
3705 return ret;
570a335b
HD
3706}
3707
3708/*
3709 * free_swap_count_continuations - swapoff free all the continuation pages
3710 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3711 */
3712static void free_swap_count_continuations(struct swap_info_struct *si)
3713{
3714 pgoff_t offset;
3715
3716 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3717 struct page *head;
3718 head = vmalloc_to_page(si->swap_map + offset);
3719 if (page_private(head)) {
0d576d20
GT
3720 struct page *page, *next;
3721
3722 list_for_each_entry_safe(page, next, &head->lru, lru) {
3723 list_del(&page->lru);
570a335b
HD
3724 __free_page(page);
3725 }
3726 }
3727 }
3728}
a2468cc9 3729
2cf85583
TH
3730#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3731void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3732 gfp_t gfp_mask)
3733{
3734 struct swap_info_struct *si, *next;
3735 if (!(gfp_mask & __GFP_IO) || !memcg)
3736 return;
3737
3738 if (!blk_cgroup_congested())
3739 return;
3740
3741 /*
3742 * We've already scheduled a throttle, avoid taking the global swap
3743 * lock.
3744 */
3745 if (current->throttle_queue)
3746 return;
3747
3748 spin_lock(&swap_avail_lock);
3749 plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3750 avail_lists[node]) {
3751 if (si->bdev) {
3752 blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3753 true);
3754 break;
3755 }
3756 }
3757 spin_unlock(&swap_avail_lock);
3758}
3759#endif
3760
a2468cc9
AL
3761static int __init swapfile_init(void)
3762{
3763 int nid;
3764
3765 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3766 GFP_KERNEL);
3767 if (!swap_avail_heads) {
3768 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3769 return -ENOMEM;
3770 }
3771
3772 for_each_node(nid)
3773 plist_head_init(&swap_avail_heads[nid]);
3774
3775 return 0;
3776}
3777subsys_initcall(swapfile_init);