]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/swapfile.c
mm, THP, swap: make reuse_swap_page() works for THP swapped out
[mirror_ubuntu-bionic-kernel.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4 8#include <linux/mm.h>
6e84f315 9#include <linux/sched/mm.h>
29930025 10#include <linux/sched/task.h>
1da177e4
LT
11#include <linux/hugetlb.h>
12#include <linux/mman.h>
13#include <linux/slab.h>
14#include <linux/kernel_stat.h>
15#include <linux/swap.h>
16#include <linux/vmalloc.h>
17#include <linux/pagemap.h>
18#include <linux/namei.h>
072441e2 19#include <linux/shmem_fs.h>
1da177e4 20#include <linux/blkdev.h>
20137a49 21#include <linux/random.h>
1da177e4
LT
22#include <linux/writeback.h>
23#include <linux/proc_fs.h>
24#include <linux/seq_file.h>
25#include <linux/init.h>
5ad64688 26#include <linux/ksm.h>
1da177e4
LT
27#include <linux/rmap.h>
28#include <linux/security.h>
29#include <linux/backing-dev.h>
fc0abb14 30#include <linux/mutex.h>
c59ede7b 31#include <linux/capability.h>
1da177e4 32#include <linux/syscalls.h>
8a9f3ccd 33#include <linux/memcontrol.h>
66d7dd51 34#include <linux/poll.h>
72788c38 35#include <linux/oom.h>
38b5faf4
DM
36#include <linux/frontswap.h>
37#include <linux/swapfile.h>
f981c595 38#include <linux/export.h>
67afa38e 39#include <linux/swap_slots.h>
155b5f88 40#include <linux/sort.h>
1da177e4
LT
41
42#include <asm/pgtable.h>
43#include <asm/tlbflush.h>
44#include <linux/swapops.h>
5d1ea48b 45#include <linux/swap_cgroup.h>
1da177e4 46
570a335b
HD
47static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 unsigned char);
49static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 50static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 51
38b5faf4 52DEFINE_SPINLOCK(swap_lock);
7c363b8c 53static unsigned int nr_swapfiles;
ec8acf20 54atomic_long_t nr_swap_pages;
fb0fec50
CW
55/*
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
59 */
60EXPORT_SYMBOL_GPL(nr_swap_pages);
ec8acf20 61/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 62long total_swap_pages;
78ecba08 63static int least_priority;
1da177e4 64
1da177e4
LT
65static const char Bad_file[] = "Bad swap file entry ";
66static const char Unused_file[] = "Unused swap file entry ";
67static const char Bad_offset[] = "Bad swap offset entry ";
68static const char Unused_offset[] = "Unused swap offset entry ";
69
adfab836
DS
70/*
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
73 */
18ab4d4c
DS
74PLIST_HEAD(swap_active_head);
75
76/*
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
87 */
88static PLIST_HEAD(swap_avail_head);
89static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 90
38b5faf4 91struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 92
fc0abb14 93static DEFINE_MUTEX(swapon_mutex);
1da177e4 94
66d7dd51
KS
95static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96/* Activity counter to indicate that a swapon or swapoff has occurred */
97static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
8d69aaee 99static inline unsigned char swap_count(unsigned char ent)
355cfa73 100{
570a335b 101 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
355cfa73
KH
102}
103
efa90a98 104/* returns 1 if swap entry is freed */
c9e44410
KH
105static int
106__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
107{
efa90a98 108 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
109 struct page *page;
110 int ret = 0;
111
f6ab1f7f 112 page = find_get_page(swap_address_space(entry), swp_offset(entry));
c9e44410
KH
113 if (!page)
114 return 0;
115 /*
116 * This function is called from scan_swap_map() and it's called
117 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
118 * We have to use trylock for avoiding deadlock. This is a special
119 * case and you should use try_to_free_swap() with explicit lock_page()
120 * in usual operations.
121 */
122 if (trylock_page(page)) {
123 ret = try_to_free_swap(page);
124 unlock_page(page);
125 }
09cbfeaf 126 put_page(page);
c9e44410
KH
127 return ret;
128}
355cfa73 129
6a6ba831
HD
130/*
131 * swapon tell device that all the old swap contents can be discarded,
132 * to allow the swap device to optimize its wear-levelling.
133 */
134static int discard_swap(struct swap_info_struct *si)
135{
136 struct swap_extent *se;
9625a5f2
HD
137 sector_t start_block;
138 sector_t nr_blocks;
6a6ba831
HD
139 int err = 0;
140
9625a5f2
HD
141 /* Do not discard the swap header page! */
142 se = &si->first_swap_extent;
143 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
144 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
145 if (nr_blocks) {
146 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 147 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
148 if (err)
149 return err;
150 cond_resched();
151 }
6a6ba831 152
9625a5f2
HD
153 list_for_each_entry(se, &si->first_swap_extent.list, list) {
154 start_block = se->start_block << (PAGE_SHIFT - 9);
155 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
156
157 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 158 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
159 if (err)
160 break;
161
162 cond_resched();
163 }
164 return err; /* That will often be -EOPNOTSUPP */
165}
166
7992fde7
HD
167/*
168 * swap allocation tell device that a cluster of swap can now be discarded,
169 * to allow the swap device to optimize its wear-levelling.
170 */
171static void discard_swap_cluster(struct swap_info_struct *si,
172 pgoff_t start_page, pgoff_t nr_pages)
173{
174 struct swap_extent *se = si->curr_swap_extent;
175 int found_extent = 0;
176
177 while (nr_pages) {
7992fde7
HD
178 if (se->start_page <= start_page &&
179 start_page < se->start_page + se->nr_pages) {
180 pgoff_t offset = start_page - se->start_page;
181 sector_t start_block = se->start_block + offset;
858a2990 182 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
183
184 if (nr_blocks > nr_pages)
185 nr_blocks = nr_pages;
186 start_page += nr_blocks;
187 nr_pages -= nr_blocks;
188
189 if (!found_extent++)
190 si->curr_swap_extent = se;
191
192 start_block <<= PAGE_SHIFT - 9;
193 nr_blocks <<= PAGE_SHIFT - 9;
194 if (blkdev_issue_discard(si->bdev, start_block,
dd3932ed 195 nr_blocks, GFP_NOIO, 0))
7992fde7
HD
196 break;
197 }
198
a8ae4991 199 se = list_next_entry(se, list);
7992fde7
HD
200 }
201}
202
38d8b4e6
HY
203#ifdef CONFIG_THP_SWAP
204#define SWAPFILE_CLUSTER HPAGE_PMD_NR
205#else
048c27fd 206#define SWAPFILE_CLUSTER 256
38d8b4e6 207#endif
048c27fd
HD
208#define LATENCY_LIMIT 256
209
2a8f9449
SL
210static inline void cluster_set_flag(struct swap_cluster_info *info,
211 unsigned int flag)
212{
213 info->flags = flag;
214}
215
216static inline unsigned int cluster_count(struct swap_cluster_info *info)
217{
218 return info->data;
219}
220
221static inline void cluster_set_count(struct swap_cluster_info *info,
222 unsigned int c)
223{
224 info->data = c;
225}
226
227static inline void cluster_set_count_flag(struct swap_cluster_info *info,
228 unsigned int c, unsigned int f)
229{
230 info->flags = f;
231 info->data = c;
232}
233
234static inline unsigned int cluster_next(struct swap_cluster_info *info)
235{
236 return info->data;
237}
238
239static inline void cluster_set_next(struct swap_cluster_info *info,
240 unsigned int n)
241{
242 info->data = n;
243}
244
245static inline void cluster_set_next_flag(struct swap_cluster_info *info,
246 unsigned int n, unsigned int f)
247{
248 info->flags = f;
249 info->data = n;
250}
251
252static inline bool cluster_is_free(struct swap_cluster_info *info)
253{
254 return info->flags & CLUSTER_FLAG_FREE;
255}
256
257static inline bool cluster_is_null(struct swap_cluster_info *info)
258{
259 return info->flags & CLUSTER_FLAG_NEXT_NULL;
260}
261
262static inline void cluster_set_null(struct swap_cluster_info *info)
263{
264 info->flags = CLUSTER_FLAG_NEXT_NULL;
265 info->data = 0;
266}
267
e0709829
HY
268static inline bool cluster_is_huge(struct swap_cluster_info *info)
269{
270 return info->flags & CLUSTER_FLAG_HUGE;
271}
272
273static inline void cluster_clear_huge(struct swap_cluster_info *info)
274{
275 info->flags &= ~CLUSTER_FLAG_HUGE;
276}
277
235b6217
HY
278static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
279 unsigned long offset)
280{
281 struct swap_cluster_info *ci;
282
283 ci = si->cluster_info;
284 if (ci) {
285 ci += offset / SWAPFILE_CLUSTER;
286 spin_lock(&ci->lock);
287 }
288 return ci;
289}
290
291static inline void unlock_cluster(struct swap_cluster_info *ci)
292{
293 if (ci)
294 spin_unlock(&ci->lock);
295}
296
297static inline struct swap_cluster_info *lock_cluster_or_swap_info(
298 struct swap_info_struct *si,
299 unsigned long offset)
300{
301 struct swap_cluster_info *ci;
302
303 ci = lock_cluster(si, offset);
304 if (!ci)
305 spin_lock(&si->lock);
306
307 return ci;
308}
309
310static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
311 struct swap_cluster_info *ci)
312{
313 if (ci)
314 unlock_cluster(ci);
315 else
316 spin_unlock(&si->lock);
317}
318
6b534915
HY
319static inline bool cluster_list_empty(struct swap_cluster_list *list)
320{
321 return cluster_is_null(&list->head);
322}
323
324static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
325{
326 return cluster_next(&list->head);
327}
328
329static void cluster_list_init(struct swap_cluster_list *list)
330{
331 cluster_set_null(&list->head);
332 cluster_set_null(&list->tail);
333}
334
335static void cluster_list_add_tail(struct swap_cluster_list *list,
336 struct swap_cluster_info *ci,
337 unsigned int idx)
338{
339 if (cluster_list_empty(list)) {
340 cluster_set_next_flag(&list->head, idx, 0);
341 cluster_set_next_flag(&list->tail, idx, 0);
342 } else {
235b6217 343 struct swap_cluster_info *ci_tail;
6b534915
HY
344 unsigned int tail = cluster_next(&list->tail);
345
235b6217
HY
346 /*
347 * Nested cluster lock, but both cluster locks are
348 * only acquired when we held swap_info_struct->lock
349 */
350 ci_tail = ci + tail;
351 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
352 cluster_set_next(ci_tail, idx);
0ef017d1 353 spin_unlock(&ci_tail->lock);
6b534915
HY
354 cluster_set_next_flag(&list->tail, idx, 0);
355 }
356}
357
358static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
359 struct swap_cluster_info *ci)
360{
361 unsigned int idx;
362
363 idx = cluster_next(&list->head);
364 if (cluster_next(&list->tail) == idx) {
365 cluster_set_null(&list->head);
366 cluster_set_null(&list->tail);
367 } else
368 cluster_set_next_flag(&list->head,
369 cluster_next(&ci[idx]), 0);
370
371 return idx;
372}
373
815c2c54
SL
374/* Add a cluster to discard list and schedule it to do discard */
375static void swap_cluster_schedule_discard(struct swap_info_struct *si,
376 unsigned int idx)
377{
378 /*
379 * If scan_swap_map() can't find a free cluster, it will check
380 * si->swap_map directly. To make sure the discarding cluster isn't
381 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
382 * will be cleared after discard
383 */
384 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
385 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
386
6b534915 387 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
815c2c54
SL
388
389 schedule_work(&si->discard_work);
390}
391
38d8b4e6
HY
392static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
393{
394 struct swap_cluster_info *ci = si->cluster_info;
395
396 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
397 cluster_list_add_tail(&si->free_clusters, ci, idx);
398}
399
815c2c54
SL
400/*
401 * Doing discard actually. After a cluster discard is finished, the cluster
402 * will be added to free cluster list. caller should hold si->lock.
403*/
404static void swap_do_scheduled_discard(struct swap_info_struct *si)
405{
235b6217 406 struct swap_cluster_info *info, *ci;
815c2c54
SL
407 unsigned int idx;
408
409 info = si->cluster_info;
410
6b534915
HY
411 while (!cluster_list_empty(&si->discard_clusters)) {
412 idx = cluster_list_del_first(&si->discard_clusters, info);
815c2c54
SL
413 spin_unlock(&si->lock);
414
415 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
416 SWAPFILE_CLUSTER);
417
418 spin_lock(&si->lock);
235b6217 419 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
38d8b4e6 420 __free_cluster(si, idx);
815c2c54
SL
421 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
422 0, SWAPFILE_CLUSTER);
235b6217 423 unlock_cluster(ci);
815c2c54
SL
424 }
425}
426
427static void swap_discard_work(struct work_struct *work)
428{
429 struct swap_info_struct *si;
430
431 si = container_of(work, struct swap_info_struct, discard_work);
432
433 spin_lock(&si->lock);
434 swap_do_scheduled_discard(si);
435 spin_unlock(&si->lock);
436}
437
38d8b4e6
HY
438static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
439{
440 struct swap_cluster_info *ci = si->cluster_info;
441
442 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
443 cluster_list_del_first(&si->free_clusters, ci);
444 cluster_set_count_flag(ci + idx, 0, 0);
445}
446
447static void free_cluster(struct swap_info_struct *si, unsigned long idx)
448{
449 struct swap_cluster_info *ci = si->cluster_info + idx;
450
451 VM_BUG_ON(cluster_count(ci) != 0);
452 /*
453 * If the swap is discardable, prepare discard the cluster
454 * instead of free it immediately. The cluster will be freed
455 * after discard.
456 */
457 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
458 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
459 swap_cluster_schedule_discard(si, idx);
460 return;
461 }
462
463 __free_cluster(si, idx);
464}
465
2a8f9449
SL
466/*
467 * The cluster corresponding to page_nr will be used. The cluster will be
468 * removed from free cluster list and its usage counter will be increased.
469 */
470static void inc_cluster_info_page(struct swap_info_struct *p,
471 struct swap_cluster_info *cluster_info, unsigned long page_nr)
472{
473 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
474
475 if (!cluster_info)
476 return;
38d8b4e6
HY
477 if (cluster_is_free(&cluster_info[idx]))
478 alloc_cluster(p, idx);
2a8f9449
SL
479
480 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
481 cluster_set_count(&cluster_info[idx],
482 cluster_count(&cluster_info[idx]) + 1);
483}
484
485/*
486 * The cluster corresponding to page_nr decreases one usage. If the usage
487 * counter becomes 0, which means no page in the cluster is in using, we can
488 * optionally discard the cluster and add it to free cluster list.
489 */
490static void dec_cluster_info_page(struct swap_info_struct *p,
491 struct swap_cluster_info *cluster_info, unsigned long page_nr)
492{
493 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
494
495 if (!cluster_info)
496 return;
497
498 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
499 cluster_set_count(&cluster_info[idx],
500 cluster_count(&cluster_info[idx]) - 1);
501
38d8b4e6
HY
502 if (cluster_count(&cluster_info[idx]) == 0)
503 free_cluster(p, idx);
2a8f9449
SL
504}
505
506/*
507 * It's possible scan_swap_map() uses a free cluster in the middle of free
508 * cluster list. Avoiding such abuse to avoid list corruption.
509 */
ebc2a1a6
SL
510static bool
511scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
512 unsigned long offset)
513{
ebc2a1a6
SL
514 struct percpu_cluster *percpu_cluster;
515 bool conflict;
516
2a8f9449 517 offset /= SWAPFILE_CLUSTER;
6b534915
HY
518 conflict = !cluster_list_empty(&si->free_clusters) &&
519 offset != cluster_list_first(&si->free_clusters) &&
2a8f9449 520 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
521
522 if (!conflict)
523 return false;
524
525 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
526 cluster_set_null(&percpu_cluster->index);
527 return true;
528}
529
530/*
531 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
532 * might involve allocating a new cluster for current CPU too.
533 */
36005bae 534static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
ebc2a1a6
SL
535 unsigned long *offset, unsigned long *scan_base)
536{
537 struct percpu_cluster *cluster;
235b6217 538 struct swap_cluster_info *ci;
ebc2a1a6 539 bool found_free;
235b6217 540 unsigned long tmp, max;
ebc2a1a6
SL
541
542new_cluster:
543 cluster = this_cpu_ptr(si->percpu_cluster);
544 if (cluster_is_null(&cluster->index)) {
6b534915
HY
545 if (!cluster_list_empty(&si->free_clusters)) {
546 cluster->index = si->free_clusters.head;
ebc2a1a6
SL
547 cluster->next = cluster_next(&cluster->index) *
548 SWAPFILE_CLUSTER;
6b534915 549 } else if (!cluster_list_empty(&si->discard_clusters)) {
ebc2a1a6
SL
550 /*
551 * we don't have free cluster but have some clusters in
552 * discarding, do discard now and reclaim them
553 */
554 swap_do_scheduled_discard(si);
555 *scan_base = *offset = si->cluster_next;
556 goto new_cluster;
557 } else
36005bae 558 return false;
ebc2a1a6
SL
559 }
560
561 found_free = false;
562
563 /*
564 * Other CPUs can use our cluster if they can't find a free cluster,
565 * check if there is still free entry in the cluster
566 */
567 tmp = cluster->next;
235b6217
HY
568 max = min_t(unsigned long, si->max,
569 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
570 if (tmp >= max) {
571 cluster_set_null(&cluster->index);
572 goto new_cluster;
573 }
574 ci = lock_cluster(si, tmp);
575 while (tmp < max) {
ebc2a1a6
SL
576 if (!si->swap_map[tmp]) {
577 found_free = true;
578 break;
579 }
580 tmp++;
581 }
235b6217 582 unlock_cluster(ci);
ebc2a1a6
SL
583 if (!found_free) {
584 cluster_set_null(&cluster->index);
585 goto new_cluster;
586 }
587 cluster->next = tmp + 1;
588 *offset = tmp;
589 *scan_base = tmp;
36005bae 590 return found_free;
2a8f9449
SL
591}
592
38d8b4e6
HY
593static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
594 unsigned int nr_entries)
595{
596 unsigned int end = offset + nr_entries - 1;
597
598 if (offset == si->lowest_bit)
599 si->lowest_bit += nr_entries;
600 if (end == si->highest_bit)
601 si->highest_bit -= nr_entries;
602 si->inuse_pages += nr_entries;
603 if (si->inuse_pages == si->pages) {
604 si->lowest_bit = si->max;
605 si->highest_bit = 0;
606 spin_lock(&swap_avail_lock);
607 plist_del(&si->avail_list, &swap_avail_head);
608 spin_unlock(&swap_avail_lock);
609 }
610}
611
612static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
613 unsigned int nr_entries)
614{
615 unsigned long end = offset + nr_entries - 1;
616 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
617
618 if (offset < si->lowest_bit)
619 si->lowest_bit = offset;
620 if (end > si->highest_bit) {
621 bool was_full = !si->highest_bit;
622
623 si->highest_bit = end;
624 if (was_full && (si->flags & SWP_WRITEOK)) {
625 spin_lock(&swap_avail_lock);
626 WARN_ON(!plist_node_empty(&si->avail_list));
627 if (plist_node_empty(&si->avail_list))
628 plist_add(&si->avail_list, &swap_avail_head);
629 spin_unlock(&swap_avail_lock);
630 }
631 }
632 atomic_long_add(nr_entries, &nr_swap_pages);
633 si->inuse_pages -= nr_entries;
634 if (si->flags & SWP_BLKDEV)
635 swap_slot_free_notify =
636 si->bdev->bd_disk->fops->swap_slot_free_notify;
637 else
638 swap_slot_free_notify = NULL;
639 while (offset <= end) {
640 frontswap_invalidate_page(si->type, offset);
641 if (swap_slot_free_notify)
642 swap_slot_free_notify(si->bdev, offset);
643 offset++;
644 }
645}
646
36005bae
TC
647static int scan_swap_map_slots(struct swap_info_struct *si,
648 unsigned char usage, int nr,
649 swp_entry_t slots[])
1da177e4 650{
235b6217 651 struct swap_cluster_info *ci;
ebebbbe9 652 unsigned long offset;
c60aa176 653 unsigned long scan_base;
7992fde7 654 unsigned long last_in_cluster = 0;
048c27fd 655 int latency_ration = LATENCY_LIMIT;
36005bae
TC
656 int n_ret = 0;
657
658 if (nr > SWAP_BATCH)
659 nr = SWAP_BATCH;
7dfad418 660
886bb7e9 661 /*
7dfad418
HD
662 * We try to cluster swap pages by allocating them sequentially
663 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
664 * way, however, we resort to first-free allocation, starting
665 * a new cluster. This prevents us from scattering swap pages
666 * all over the entire swap partition, so that we reduce
667 * overall disk seek times between swap pages. -- sct
668 * But we do now try to find an empty cluster. -Andrea
c60aa176 669 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
670 */
671
52b7efdb 672 si->flags += SWP_SCANNING;
c60aa176 673 scan_base = offset = si->cluster_next;
ebebbbe9 674
ebc2a1a6
SL
675 /* SSD algorithm */
676 if (si->cluster_info) {
36005bae
TC
677 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
678 goto checks;
679 else
680 goto scan;
ebc2a1a6
SL
681 }
682
ebebbbe9
HD
683 if (unlikely(!si->cluster_nr--)) {
684 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
685 si->cluster_nr = SWAPFILE_CLUSTER - 1;
686 goto checks;
687 }
2a8f9449 688
ec8acf20 689 spin_unlock(&si->lock);
7dfad418 690
c60aa176
HD
691 /*
692 * If seek is expensive, start searching for new cluster from
693 * start of partition, to minimize the span of allocated swap.
50088c44
CY
694 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
695 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 696 */
50088c44 697 scan_base = offset = si->lowest_bit;
7dfad418
HD
698 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
699
700 /* Locate the first empty (unaligned) cluster */
701 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 702 if (si->swap_map[offset])
7dfad418
HD
703 last_in_cluster = offset + SWAPFILE_CLUSTER;
704 else if (offset == last_in_cluster) {
ec8acf20 705 spin_lock(&si->lock);
ebebbbe9
HD
706 offset -= SWAPFILE_CLUSTER - 1;
707 si->cluster_next = offset;
708 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
709 goto checks;
710 }
711 if (unlikely(--latency_ration < 0)) {
712 cond_resched();
713 latency_ration = LATENCY_LIMIT;
714 }
715 }
716
717 offset = scan_base;
ec8acf20 718 spin_lock(&si->lock);
ebebbbe9 719 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 720 }
7dfad418 721
ebebbbe9 722checks:
ebc2a1a6 723 if (si->cluster_info) {
36005bae
TC
724 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
725 /* take a break if we already got some slots */
726 if (n_ret)
727 goto done;
728 if (!scan_swap_map_try_ssd_cluster(si, &offset,
729 &scan_base))
730 goto scan;
731 }
ebc2a1a6 732 }
ebebbbe9 733 if (!(si->flags & SWP_WRITEOK))
52b7efdb 734 goto no_page;
7dfad418
HD
735 if (!si->highest_bit)
736 goto no_page;
ebebbbe9 737 if (offset > si->highest_bit)
c60aa176 738 scan_base = offset = si->lowest_bit;
c9e44410 739
235b6217 740 ci = lock_cluster(si, offset);
b73d7fce
HD
741 /* reuse swap entry of cache-only swap if not busy. */
742 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 743 int swap_was_freed;
235b6217 744 unlock_cluster(ci);
ec8acf20 745 spin_unlock(&si->lock);
c9e44410 746 swap_was_freed = __try_to_reclaim_swap(si, offset);
ec8acf20 747 spin_lock(&si->lock);
c9e44410
KH
748 /* entry was freed successfully, try to use this again */
749 if (swap_was_freed)
750 goto checks;
751 goto scan; /* check next one */
752 }
753
235b6217
HY
754 if (si->swap_map[offset]) {
755 unlock_cluster(ci);
36005bae
TC
756 if (!n_ret)
757 goto scan;
758 else
759 goto done;
235b6217 760 }
2872bb2d
HY
761 si->swap_map[offset] = usage;
762 inc_cluster_info_page(si, si->cluster_info, offset);
763 unlock_cluster(ci);
ebebbbe9 764
38d8b4e6 765 swap_range_alloc(si, offset, 1);
ebebbbe9 766 si->cluster_next = offset + 1;
36005bae
TC
767 slots[n_ret++] = swp_entry(si->type, offset);
768
769 /* got enough slots or reach max slots? */
770 if ((n_ret == nr) || (offset >= si->highest_bit))
771 goto done;
772
773 /* search for next available slot */
774
775 /* time to take a break? */
776 if (unlikely(--latency_ration < 0)) {
777 if (n_ret)
778 goto done;
779 spin_unlock(&si->lock);
780 cond_resched();
781 spin_lock(&si->lock);
782 latency_ration = LATENCY_LIMIT;
783 }
784
785 /* try to get more slots in cluster */
786 if (si->cluster_info) {
787 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
788 goto checks;
789 else
790 goto done;
791 }
792 /* non-ssd case */
793 ++offset;
794
795 /* non-ssd case, still more slots in cluster? */
796 if (si->cluster_nr && !si->swap_map[offset]) {
797 --si->cluster_nr;
798 goto checks;
799 }
7992fde7 800
36005bae
TC
801done:
802 si->flags -= SWP_SCANNING;
803 return n_ret;
7dfad418 804
ebebbbe9 805scan:
ec8acf20 806 spin_unlock(&si->lock);
7dfad418 807 while (++offset <= si->highest_bit) {
52b7efdb 808 if (!si->swap_map[offset]) {
ec8acf20 809 spin_lock(&si->lock);
52b7efdb
HD
810 goto checks;
811 }
c9e44410 812 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 813 spin_lock(&si->lock);
c9e44410
KH
814 goto checks;
815 }
048c27fd
HD
816 if (unlikely(--latency_ration < 0)) {
817 cond_resched();
818 latency_ration = LATENCY_LIMIT;
819 }
7dfad418 820 }
c60aa176 821 offset = si->lowest_bit;
a5998061 822 while (offset < scan_base) {
c60aa176 823 if (!si->swap_map[offset]) {
ec8acf20 824 spin_lock(&si->lock);
c60aa176
HD
825 goto checks;
826 }
c9e44410 827 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 828 spin_lock(&si->lock);
c9e44410
KH
829 goto checks;
830 }
c60aa176
HD
831 if (unlikely(--latency_ration < 0)) {
832 cond_resched();
833 latency_ration = LATENCY_LIMIT;
834 }
a5998061 835 offset++;
c60aa176 836 }
ec8acf20 837 spin_lock(&si->lock);
7dfad418
HD
838
839no_page:
52b7efdb 840 si->flags -= SWP_SCANNING;
36005bae 841 return n_ret;
1da177e4
LT
842}
843
38d8b4e6
HY
844#ifdef CONFIG_THP_SWAP
845static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
846{
847 unsigned long idx;
848 struct swap_cluster_info *ci;
849 unsigned long offset, i;
850 unsigned char *map;
851
852 if (cluster_list_empty(&si->free_clusters))
853 return 0;
854
855 idx = cluster_list_first(&si->free_clusters);
856 offset = idx * SWAPFILE_CLUSTER;
857 ci = lock_cluster(si, offset);
858 alloc_cluster(si, idx);
e0709829 859 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
38d8b4e6
HY
860
861 map = si->swap_map + offset;
862 for (i = 0; i < SWAPFILE_CLUSTER; i++)
863 map[i] = SWAP_HAS_CACHE;
864 unlock_cluster(ci);
865 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
866 *slot = swp_entry(si->type, offset);
867
868 return 1;
869}
870
871static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
872{
873 unsigned long offset = idx * SWAPFILE_CLUSTER;
874 struct swap_cluster_info *ci;
875
876 ci = lock_cluster(si, offset);
877 cluster_set_count_flag(ci, 0, 0);
878 free_cluster(si, idx);
879 unlock_cluster(ci);
880 swap_range_free(si, offset, SWAPFILE_CLUSTER);
881}
882#else
883static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
884{
885 VM_WARN_ON_ONCE(1);
886 return 0;
887}
888#endif /* CONFIG_THP_SWAP */
889
36005bae
TC
890static unsigned long scan_swap_map(struct swap_info_struct *si,
891 unsigned char usage)
892{
893 swp_entry_t entry;
894 int n_ret;
895
896 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
897
898 if (n_ret)
899 return swp_offset(entry);
900 else
901 return 0;
902
903}
904
38d8b4e6 905int get_swap_pages(int n_goal, bool cluster, swp_entry_t swp_entries[])
1da177e4 906{
38d8b4e6 907 unsigned long nr_pages = cluster ? SWAPFILE_CLUSTER : 1;
adfab836 908 struct swap_info_struct *si, *next;
36005bae
TC
909 long avail_pgs;
910 int n_ret = 0;
1da177e4 911
38d8b4e6
HY
912 /* Only single cluster request supported */
913 WARN_ON_ONCE(n_goal > 1 && cluster);
914
915 avail_pgs = atomic_long_read(&nr_swap_pages) / nr_pages;
36005bae 916 if (avail_pgs <= 0)
fb4f88dc 917 goto noswap;
36005bae
TC
918
919 if (n_goal > SWAP_BATCH)
920 n_goal = SWAP_BATCH;
921
922 if (n_goal > avail_pgs)
923 n_goal = avail_pgs;
924
38d8b4e6 925 atomic_long_sub(n_goal * nr_pages, &nr_swap_pages);
fb4f88dc 926
18ab4d4c
DS
927 spin_lock(&swap_avail_lock);
928
929start_over:
930 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
931 /* requeue si to after same-priority siblings */
932 plist_requeue(&si->avail_list, &swap_avail_head);
933 spin_unlock(&swap_avail_lock);
ec8acf20 934 spin_lock(&si->lock);
adfab836 935 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c
DS
936 spin_lock(&swap_avail_lock);
937 if (plist_node_empty(&si->avail_list)) {
938 spin_unlock(&si->lock);
939 goto nextsi;
940 }
941 WARN(!si->highest_bit,
942 "swap_info %d in list but !highest_bit\n",
943 si->type);
944 WARN(!(si->flags & SWP_WRITEOK),
945 "swap_info %d in list but !SWP_WRITEOK\n",
946 si->type);
947 plist_del(&si->avail_list, &swap_avail_head);
ec8acf20 948 spin_unlock(&si->lock);
18ab4d4c 949 goto nextsi;
ec8acf20 950 }
38d8b4e6
HY
951 if (cluster)
952 n_ret = swap_alloc_cluster(si, swp_entries);
953 else
954 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
955 n_goal, swp_entries);
ec8acf20 956 spin_unlock(&si->lock);
38d8b4e6 957 if (n_ret || cluster)
36005bae 958 goto check_out;
18ab4d4c 959 pr_debug("scan_swap_map of si %d failed to find offset\n",
36005bae
TC
960 si->type);
961
18ab4d4c
DS
962 spin_lock(&swap_avail_lock);
963nextsi:
adfab836
DS
964 /*
965 * if we got here, it's likely that si was almost full before,
966 * and since scan_swap_map() can drop the si->lock, multiple
967 * callers probably all tried to get a page from the same si
18ab4d4c
DS
968 * and it filled up before we could get one; or, the si filled
969 * up between us dropping swap_avail_lock and taking si->lock.
970 * Since we dropped the swap_avail_lock, the swap_avail_head
971 * list may have been modified; so if next is still in the
36005bae
TC
972 * swap_avail_head list then try it, otherwise start over
973 * if we have not gotten any slots.
adfab836 974 */
18ab4d4c
DS
975 if (plist_node_empty(&next->avail_list))
976 goto start_over;
1da177e4 977 }
fb4f88dc 978
18ab4d4c
DS
979 spin_unlock(&swap_avail_lock);
980
36005bae
TC
981check_out:
982 if (n_ret < n_goal)
38d8b4e6
HY
983 atomic_long_add((long)(n_goal - n_ret) * nr_pages,
984 &nr_swap_pages);
fb4f88dc 985noswap:
36005bae
TC
986 return n_ret;
987}
988
2de1a7e4 989/* The only caller of this function is now suspend routine */
910321ea
HD
990swp_entry_t get_swap_page_of_type(int type)
991{
992 struct swap_info_struct *si;
993 pgoff_t offset;
994
910321ea 995 si = swap_info[type];
ec8acf20 996 spin_lock(&si->lock);
910321ea 997 if (si && (si->flags & SWP_WRITEOK)) {
ec8acf20 998 atomic_long_dec(&nr_swap_pages);
910321ea
HD
999 /* This is called for allocating swap entry, not cache */
1000 offset = scan_swap_map(si, 1);
1001 if (offset) {
ec8acf20 1002 spin_unlock(&si->lock);
910321ea
HD
1003 return swp_entry(type, offset);
1004 }
ec8acf20 1005 atomic_long_inc(&nr_swap_pages);
910321ea 1006 }
ec8acf20 1007 spin_unlock(&si->lock);
910321ea
HD
1008 return (swp_entry_t) {0};
1009}
1010
e8c26ab6 1011static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1da177e4 1012{
73c34b6a 1013 struct swap_info_struct *p;
1da177e4
LT
1014 unsigned long offset, type;
1015
1016 if (!entry.val)
1017 goto out;
1018 type = swp_type(entry);
1019 if (type >= nr_swapfiles)
1020 goto bad_nofile;
efa90a98 1021 p = swap_info[type];
1da177e4
LT
1022 if (!(p->flags & SWP_USED))
1023 goto bad_device;
1024 offset = swp_offset(entry);
1025 if (offset >= p->max)
1026 goto bad_offset;
1da177e4
LT
1027 return p;
1028
1da177e4 1029bad_offset:
6a991fc7 1030 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
1031 goto out;
1032bad_device:
6a991fc7 1033 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
1034 goto out;
1035bad_nofile:
6a991fc7 1036 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
1037out:
1038 return NULL;
886bb7e9 1039}
1da177e4 1040
e8c26ab6
TC
1041static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1042{
1043 struct swap_info_struct *p;
1044
1045 p = __swap_info_get(entry);
1046 if (!p)
1047 goto out;
1048 if (!p->swap_map[swp_offset(entry)])
1049 goto bad_free;
1050 return p;
1051
1052bad_free:
1053 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1054 goto out;
1055out:
1056 return NULL;
1057}
1058
235b6217
HY
1059static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1060{
1061 struct swap_info_struct *p;
1062
1063 p = _swap_info_get(entry);
1064 if (p)
1065 spin_lock(&p->lock);
1066 return p;
1067}
1068
7c00bafe
TC
1069static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1070 struct swap_info_struct *q)
1071{
1072 struct swap_info_struct *p;
1073
1074 p = _swap_info_get(entry);
1075
1076 if (p != q) {
1077 if (q != NULL)
1078 spin_unlock(&q->lock);
1079 if (p != NULL)
1080 spin_lock(&p->lock);
1081 }
1082 return p;
1083}
1084
1085static unsigned char __swap_entry_free(struct swap_info_struct *p,
1086 swp_entry_t entry, unsigned char usage)
1da177e4 1087{
235b6217 1088 struct swap_cluster_info *ci;
253d553b 1089 unsigned long offset = swp_offset(entry);
8d69aaee
HD
1090 unsigned char count;
1091 unsigned char has_cache;
235b6217 1092
7c00bafe 1093 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 1094
253d553b 1095 count = p->swap_map[offset];
235b6217 1096
253d553b
HD
1097 has_cache = count & SWAP_HAS_CACHE;
1098 count &= ~SWAP_HAS_CACHE;
355cfa73 1099
253d553b 1100 if (usage == SWAP_HAS_CACHE) {
355cfa73 1101 VM_BUG_ON(!has_cache);
253d553b 1102 has_cache = 0;
aaa46865
HD
1103 } else if (count == SWAP_MAP_SHMEM) {
1104 /*
1105 * Or we could insist on shmem.c using a special
1106 * swap_shmem_free() and free_shmem_swap_and_cache()...
1107 */
1108 count = 0;
570a335b
HD
1109 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1110 if (count == COUNT_CONTINUED) {
1111 if (swap_count_continued(p, offset, count))
1112 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1113 else
1114 count = SWAP_MAP_MAX;
1115 } else
1116 count--;
1117 }
253d553b 1118
253d553b 1119 usage = count | has_cache;
7c00bafe
TC
1120 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1121
1122 unlock_cluster_or_swap_info(p, ci);
1123
1124 return usage;
1125}
355cfa73 1126
7c00bafe
TC
1127static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1128{
1129 struct swap_cluster_info *ci;
1130 unsigned long offset = swp_offset(entry);
1131 unsigned char count;
1132
1133 ci = lock_cluster(p, offset);
1134 count = p->swap_map[offset];
1135 VM_BUG_ON(count != SWAP_HAS_CACHE);
1136 p->swap_map[offset] = 0;
1137 dec_cluster_info_page(p, p->cluster_info, offset);
235b6217
HY
1138 unlock_cluster(ci);
1139
38d8b4e6
HY
1140 mem_cgroup_uncharge_swap(entry, 1);
1141 swap_range_free(p, offset, 1);
1da177e4
LT
1142}
1143
1144/*
2de1a7e4 1145 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
1146 * is still around or has not been recycled.
1147 */
1148void swap_free(swp_entry_t entry)
1149{
73c34b6a 1150 struct swap_info_struct *p;
1da177e4 1151
235b6217 1152 p = _swap_info_get(entry);
7c00bafe
TC
1153 if (p) {
1154 if (!__swap_entry_free(p, entry, 1))
67afa38e 1155 free_swap_slot(entry);
7c00bafe 1156 }
1da177e4
LT
1157}
1158
cb4b86ba
KH
1159/*
1160 * Called after dropping swapcache to decrease refcnt to swap entries.
1161 */
75f6d6d2 1162static void swapcache_free(swp_entry_t entry)
cb4b86ba 1163{
355cfa73
KH
1164 struct swap_info_struct *p;
1165
235b6217 1166 p = _swap_info_get(entry);
7c00bafe
TC
1167 if (p) {
1168 if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
67afa38e 1169 free_swap_slot(entry);
7c00bafe
TC
1170 }
1171}
1172
38d8b4e6 1173#ifdef CONFIG_THP_SWAP
75f6d6d2 1174static void swapcache_free_cluster(swp_entry_t entry)
38d8b4e6
HY
1175{
1176 unsigned long offset = swp_offset(entry);
1177 unsigned long idx = offset / SWAPFILE_CLUSTER;
1178 struct swap_cluster_info *ci;
1179 struct swap_info_struct *si;
1180 unsigned char *map;
a3aea839
HY
1181 unsigned int i, free_entries = 0;
1182 unsigned char val;
38d8b4e6 1183
a3aea839 1184 si = _swap_info_get(entry);
38d8b4e6
HY
1185 if (!si)
1186 return;
1187
1188 ci = lock_cluster(si, offset);
e0709829 1189 VM_BUG_ON(!cluster_is_huge(ci));
38d8b4e6
HY
1190 map = si->swap_map + offset;
1191 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
a3aea839
HY
1192 val = map[i];
1193 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1194 if (val == SWAP_HAS_CACHE)
1195 free_entries++;
1196 }
1197 if (!free_entries) {
1198 for (i = 0; i < SWAPFILE_CLUSTER; i++)
1199 map[i] &= ~SWAP_HAS_CACHE;
38d8b4e6 1200 }
e0709829 1201 cluster_clear_huge(ci);
38d8b4e6 1202 unlock_cluster(ci);
a3aea839
HY
1203 if (free_entries == SWAPFILE_CLUSTER) {
1204 spin_lock(&si->lock);
1205 ci = lock_cluster(si, offset);
1206 memset(map, 0, SWAPFILE_CLUSTER);
1207 unlock_cluster(ci);
1208 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1209 swap_free_cluster(si, idx);
1210 spin_unlock(&si->lock);
1211 } else if (free_entries) {
1212 for (i = 0; i < SWAPFILE_CLUSTER; i++, entry.val++) {
1213 if (!__swap_entry_free(si, entry, SWAP_HAS_CACHE))
1214 free_swap_slot(entry);
1215 }
1216 }
38d8b4e6 1217}
75f6d6d2
MK
1218#else
1219static inline void swapcache_free_cluster(swp_entry_t entry)
1220{
1221}
38d8b4e6
HY
1222#endif /* CONFIG_THP_SWAP */
1223
75f6d6d2
MK
1224void put_swap_page(struct page *page, swp_entry_t entry)
1225{
1226 if (!PageTransHuge(page))
1227 swapcache_free(entry);
1228 else
1229 swapcache_free_cluster(entry);
1230}
1231
155b5f88
HY
1232static int swp_entry_cmp(const void *ent1, const void *ent2)
1233{
1234 const swp_entry_t *e1 = ent1, *e2 = ent2;
1235
1236 return (int)swp_type(*e1) - (int)swp_type(*e2);
1237}
1238
7c00bafe
TC
1239void swapcache_free_entries(swp_entry_t *entries, int n)
1240{
1241 struct swap_info_struct *p, *prev;
1242 int i;
1243
1244 if (n <= 0)
1245 return;
1246
1247 prev = NULL;
1248 p = NULL;
155b5f88
HY
1249
1250 /*
1251 * Sort swap entries by swap device, so each lock is only taken once.
1252 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1253 * so low that it isn't necessary to optimize further.
1254 */
1255 if (nr_swapfiles > 1)
1256 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
7c00bafe
TC
1257 for (i = 0; i < n; ++i) {
1258 p = swap_info_get_cont(entries[i], prev);
1259 if (p)
1260 swap_entry_free(p, entries[i]);
7c00bafe
TC
1261 prev = p;
1262 }
235b6217 1263 if (p)
7c00bafe 1264 spin_unlock(&p->lock);
cb4b86ba
KH
1265}
1266
1da177e4 1267/*
c475a8ab 1268 * How many references to page are currently swapped out?
570a335b
HD
1269 * This does not give an exact answer when swap count is continued,
1270 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 1271 */
bde05d1c 1272int page_swapcount(struct page *page)
1da177e4 1273{
c475a8ab
HD
1274 int count = 0;
1275 struct swap_info_struct *p;
235b6217 1276 struct swap_cluster_info *ci;
1da177e4 1277 swp_entry_t entry;
235b6217 1278 unsigned long offset;
1da177e4 1279
4c21e2f2 1280 entry.val = page_private(page);
235b6217 1281 p = _swap_info_get(entry);
1da177e4 1282 if (p) {
235b6217
HY
1283 offset = swp_offset(entry);
1284 ci = lock_cluster_or_swap_info(p, offset);
1285 count = swap_count(p->swap_map[offset]);
1286 unlock_cluster_or_swap_info(p, ci);
1da177e4 1287 }
c475a8ab 1288 return count;
1da177e4
LT
1289}
1290
322b8afe
HY
1291static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1292{
1293 int count = 0;
1294 pgoff_t offset = swp_offset(entry);
1295 struct swap_cluster_info *ci;
1296
1297 ci = lock_cluster_or_swap_info(si, offset);
1298 count = swap_count(si->swap_map[offset]);
1299 unlock_cluster_or_swap_info(si, ci);
1300 return count;
1301}
1302
e8c26ab6
TC
1303/*
1304 * How many references to @entry are currently swapped out?
1305 * This does not give an exact answer when swap count is continued,
1306 * but does include the high COUNT_CONTINUED flag to allow for that.
1307 */
1308int __swp_swapcount(swp_entry_t entry)
1309{
1310 int count = 0;
e8c26ab6 1311 struct swap_info_struct *si;
e8c26ab6
TC
1312
1313 si = __swap_info_get(entry);
322b8afe
HY
1314 if (si)
1315 count = swap_swapcount(si, entry);
e8c26ab6
TC
1316 return count;
1317}
1318
8334b962
MK
1319/*
1320 * How many references to @entry are currently swapped out?
1321 * This considers COUNT_CONTINUED so it returns exact answer.
1322 */
1323int swp_swapcount(swp_entry_t entry)
1324{
1325 int count, tmp_count, n;
1326 struct swap_info_struct *p;
235b6217 1327 struct swap_cluster_info *ci;
8334b962
MK
1328 struct page *page;
1329 pgoff_t offset;
1330 unsigned char *map;
1331
235b6217 1332 p = _swap_info_get(entry);
8334b962
MK
1333 if (!p)
1334 return 0;
1335
235b6217
HY
1336 offset = swp_offset(entry);
1337
1338 ci = lock_cluster_or_swap_info(p, offset);
1339
1340 count = swap_count(p->swap_map[offset]);
8334b962
MK
1341 if (!(count & COUNT_CONTINUED))
1342 goto out;
1343
1344 count &= ~COUNT_CONTINUED;
1345 n = SWAP_MAP_MAX + 1;
1346
8334b962
MK
1347 page = vmalloc_to_page(p->swap_map + offset);
1348 offset &= ~PAGE_MASK;
1349 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1350
1351 do {
a8ae4991 1352 page = list_next_entry(page, lru);
8334b962
MK
1353 map = kmap_atomic(page);
1354 tmp_count = map[offset];
1355 kunmap_atomic(map);
1356
1357 count += (tmp_count & ~COUNT_CONTINUED) * n;
1358 n *= (SWAP_CONT_MAX + 1);
1359 } while (tmp_count & COUNT_CONTINUED);
1360out:
235b6217 1361 unlock_cluster_or_swap_info(p, ci);
8334b962
MK
1362 return count;
1363}
1364
e0709829
HY
1365#ifdef CONFIG_THP_SWAP
1366static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1367 swp_entry_t entry)
1368{
1369 struct swap_cluster_info *ci;
1370 unsigned char *map = si->swap_map;
1371 unsigned long roffset = swp_offset(entry);
1372 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1373 int i;
1374 bool ret = false;
1375
1376 ci = lock_cluster_or_swap_info(si, offset);
1377 if (!ci || !cluster_is_huge(ci)) {
1378 if (map[roffset] != SWAP_HAS_CACHE)
1379 ret = true;
1380 goto unlock_out;
1381 }
1382 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1383 if (map[offset + i] != SWAP_HAS_CACHE) {
1384 ret = true;
1385 break;
1386 }
1387 }
1388unlock_out:
1389 unlock_cluster_or_swap_info(si, ci);
1390 return ret;
1391}
1392
1393static bool page_swapped(struct page *page)
1394{
1395 swp_entry_t entry;
1396 struct swap_info_struct *si;
1397
1398 if (likely(!PageTransCompound(page)))
1399 return page_swapcount(page) != 0;
1400
1401 page = compound_head(page);
1402 entry.val = page_private(page);
1403 si = _swap_info_get(entry);
1404 if (si)
1405 return swap_page_trans_huge_swapped(si, entry);
1406 return false;
1407}
ba3c4ce6
HY
1408
1409static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1410 int *total_swapcount)
1411{
1412 int i, map_swapcount, _total_mapcount, _total_swapcount;
1413 unsigned long offset = 0;
1414 struct swap_info_struct *si;
1415 struct swap_cluster_info *ci = NULL;
1416 unsigned char *map = NULL;
1417 int mapcount, swapcount = 0;
1418
1419 /* hugetlbfs shouldn't call it */
1420 VM_BUG_ON_PAGE(PageHuge(page), page);
1421
1422 if (likely(!PageTransCompound(page))) {
1423 mapcount = atomic_read(&page->_mapcount) + 1;
1424 if (total_mapcount)
1425 *total_mapcount = mapcount;
1426 if (PageSwapCache(page))
1427 swapcount = page_swapcount(page);
1428 if (total_swapcount)
1429 *total_swapcount = swapcount;
1430 return mapcount + swapcount;
1431 }
1432
1433 page = compound_head(page);
1434
1435 _total_mapcount = _total_swapcount = map_swapcount = 0;
1436 if (PageSwapCache(page)) {
1437 swp_entry_t entry;
1438
1439 entry.val = page_private(page);
1440 si = _swap_info_get(entry);
1441 if (si) {
1442 map = si->swap_map;
1443 offset = swp_offset(entry);
1444 }
1445 }
1446 if (map)
1447 ci = lock_cluster(si, offset);
1448 for (i = 0; i < HPAGE_PMD_NR; i++) {
1449 mapcount = atomic_read(&page[i]._mapcount) + 1;
1450 _total_mapcount += mapcount;
1451 if (map) {
1452 swapcount = swap_count(map[offset + i]);
1453 _total_swapcount += swapcount;
1454 }
1455 map_swapcount = max(map_swapcount, mapcount + swapcount);
1456 }
1457 unlock_cluster(ci);
1458 if (PageDoubleMap(page)) {
1459 map_swapcount -= 1;
1460 _total_mapcount -= HPAGE_PMD_NR;
1461 }
1462 mapcount = compound_mapcount(page);
1463 map_swapcount += mapcount;
1464 _total_mapcount += mapcount;
1465 if (total_mapcount)
1466 *total_mapcount = _total_mapcount;
1467 if (total_swapcount)
1468 *total_swapcount = _total_swapcount;
1469
1470 return map_swapcount;
1471}
e0709829
HY
1472#else
1473#define swap_page_trans_huge_swapped(si, entry) swap_swapcount(si, entry)
1474#define page_swapped(page) (page_swapcount(page) != 0)
ba3c4ce6
HY
1475
1476static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1477 int *total_swapcount)
1478{
1479 int mapcount, swapcount = 0;
1480
1481 /* hugetlbfs shouldn't call it */
1482 VM_BUG_ON_PAGE(PageHuge(page), page);
1483
1484 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1485 if (PageSwapCache(page))
1486 swapcount = page_swapcount(page);
1487 if (total_swapcount)
1488 *total_swapcount = swapcount;
1489 return mapcount + swapcount;
1490}
e0709829
HY
1491#endif
1492
1da177e4 1493/*
7b1fe597
HD
1494 * We can write to an anon page without COW if there are no other references
1495 * to it. And as a side-effect, free up its swap: because the old content
1496 * on disk will never be read, and seeking back there to write new content
1497 * later would only waste time away from clustering.
6d0a07ed 1498 *
ba3c4ce6 1499 * NOTE: total_map_swapcount should not be relied upon by the caller if
6d0a07ed
AA
1500 * reuse_swap_page() returns false, but it may be always overwritten
1501 * (see the other implementation for CONFIG_SWAP=n).
1da177e4 1502 */
ba3c4ce6 1503bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1da177e4 1504{
ba3c4ce6 1505 int count, total_mapcount, total_swapcount;
c475a8ab 1506
309381fe 1507 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688 1508 if (unlikely(PageKsm(page)))
6d0a07ed 1509 return false;
ba3c4ce6
HY
1510 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1511 &total_swapcount);
1512 if (total_map_swapcount)
1513 *total_map_swapcount = total_mapcount + total_swapcount;
1514 if (count == 1 && PageSwapCache(page) &&
1515 (likely(!PageTransCompound(page)) ||
1516 /* The remaining swap count will be freed soon */
1517 total_swapcount == page_swapcount(page))) {
f0571429 1518 if (!PageWriteback(page)) {
ba3c4ce6 1519 page = compound_head(page);
7b1fe597
HD
1520 delete_from_swap_cache(page);
1521 SetPageDirty(page);
f0571429
MK
1522 } else {
1523 swp_entry_t entry;
1524 struct swap_info_struct *p;
1525
1526 entry.val = page_private(page);
1527 p = swap_info_get(entry);
1528 if (p->flags & SWP_STABLE_WRITES) {
1529 spin_unlock(&p->lock);
1530 return false;
1531 }
1532 spin_unlock(&p->lock);
7b1fe597
HD
1533 }
1534 }
ba3c4ce6 1535
5ad64688 1536 return count <= 1;
1da177e4
LT
1537}
1538
1539/*
a2c43eed
HD
1540 * If swap is getting full, or if there are no more mappings of this page,
1541 * then try_to_free_swap is called to free its swap space.
1da177e4 1542 */
a2c43eed 1543int try_to_free_swap(struct page *page)
1da177e4 1544{
309381fe 1545 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
1546
1547 if (!PageSwapCache(page))
1548 return 0;
1549 if (PageWriteback(page))
1550 return 0;
e0709829 1551 if (page_swapped(page))
1da177e4
LT
1552 return 0;
1553
b73d7fce
HD
1554 /*
1555 * Once hibernation has begun to create its image of memory,
1556 * there's a danger that one of the calls to try_to_free_swap()
1557 * - most probably a call from __try_to_reclaim_swap() while
1558 * hibernation is allocating its own swap pages for the image,
1559 * but conceivably even a call from memory reclaim - will free
1560 * the swap from a page which has already been recorded in the
1561 * image as a clean swapcache page, and then reuse its swap for
1562 * another page of the image. On waking from hibernation, the
1563 * original page might be freed under memory pressure, then
1564 * later read back in from swap, now with the wrong data.
1565 *
2de1a7e4 1566 * Hibernation suspends storage while it is writing the image
f90ac398 1567 * to disk so check that here.
b73d7fce 1568 */
f90ac398 1569 if (pm_suspended_storage())
b73d7fce
HD
1570 return 0;
1571
e0709829 1572 page = compound_head(page);
a2c43eed
HD
1573 delete_from_swap_cache(page);
1574 SetPageDirty(page);
1575 return 1;
68a22394
RR
1576}
1577
1da177e4
LT
1578/*
1579 * Free the swap entry like above, but also try to
1580 * free the page cache entry if it is the last user.
1581 */
2509ef26 1582int free_swap_and_cache(swp_entry_t entry)
1da177e4 1583{
2509ef26 1584 struct swap_info_struct *p;
1da177e4 1585 struct page *page = NULL;
7c00bafe 1586 unsigned char count;
1da177e4 1587
a7420aa5 1588 if (non_swap_entry(entry))
2509ef26 1589 return 1;
0697212a 1590
7c00bafe 1591 p = _swap_info_get(entry);
1da177e4 1592 if (p) {
7c00bafe 1593 count = __swap_entry_free(p, entry, 1);
e0709829
HY
1594 if (count == SWAP_HAS_CACHE &&
1595 !swap_page_trans_huge_swapped(p, entry)) {
33806f06 1596 page = find_get_page(swap_address_space(entry),
f6ab1f7f 1597 swp_offset(entry));
8413ac9d 1598 if (page && !trylock_page(page)) {
09cbfeaf 1599 put_page(page);
93fac704
NP
1600 page = NULL;
1601 }
7c00bafe 1602 } else if (!count)
67afa38e 1603 free_swap_slot(entry);
1da177e4
LT
1604 }
1605 if (page) {
a2c43eed
HD
1606 /*
1607 * Not mapped elsewhere, or swap space full? Free it!
1608 * Also recheck PageSwapCache now page is locked (above).
1609 */
93fac704 1610 if (PageSwapCache(page) && !PageWriteback(page) &&
322b8afe 1611 (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
e0709829
HY
1612 !swap_page_trans_huge_swapped(p, entry)) {
1613 page = compound_head(page);
1da177e4
LT
1614 delete_from_swap_cache(page);
1615 SetPageDirty(page);
1616 }
1617 unlock_page(page);
09cbfeaf 1618 put_page(page);
1da177e4 1619 }
2509ef26 1620 return p != NULL;
1da177e4
LT
1621}
1622
b0cb1a19 1623#ifdef CONFIG_HIBERNATION
f577eb30 1624/*
915bae9e 1625 * Find the swap type that corresponds to given device (if any).
f577eb30 1626 *
915bae9e
RW
1627 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1628 * from 0, in which the swap header is expected to be located.
1629 *
1630 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1631 */
7bf23687 1632int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 1633{
915bae9e 1634 struct block_device *bdev = NULL;
efa90a98 1635 int type;
f577eb30 1636
915bae9e
RW
1637 if (device)
1638 bdev = bdget(device);
1639
f577eb30 1640 spin_lock(&swap_lock);
efa90a98
HD
1641 for (type = 0; type < nr_swapfiles; type++) {
1642 struct swap_info_struct *sis = swap_info[type];
f577eb30 1643
915bae9e 1644 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1645 continue;
b6b5bce3 1646
915bae9e 1647 if (!bdev) {
7bf23687 1648 if (bdev_p)
dddac6a7 1649 *bdev_p = bdgrab(sis->bdev);
7bf23687 1650
6e1819d6 1651 spin_unlock(&swap_lock);
efa90a98 1652 return type;
6e1819d6 1653 }
915bae9e 1654 if (bdev == sis->bdev) {
9625a5f2 1655 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 1656
915bae9e 1657 if (se->start_block == offset) {
7bf23687 1658 if (bdev_p)
dddac6a7 1659 *bdev_p = bdgrab(sis->bdev);
7bf23687 1660
915bae9e
RW
1661 spin_unlock(&swap_lock);
1662 bdput(bdev);
efa90a98 1663 return type;
915bae9e 1664 }
f577eb30
RW
1665 }
1666 }
1667 spin_unlock(&swap_lock);
915bae9e
RW
1668 if (bdev)
1669 bdput(bdev);
1670
f577eb30
RW
1671 return -ENODEV;
1672}
1673
73c34b6a
HD
1674/*
1675 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1676 * corresponding to given index in swap_info (swap type).
1677 */
1678sector_t swapdev_block(int type, pgoff_t offset)
1679{
1680 struct block_device *bdev;
1681
1682 if ((unsigned int)type >= nr_swapfiles)
1683 return 0;
1684 if (!(swap_info[type]->flags & SWP_WRITEOK))
1685 return 0;
d4906e1a 1686 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
1687}
1688
f577eb30
RW
1689/*
1690 * Return either the total number of swap pages of given type, or the number
1691 * of free pages of that type (depending on @free)
1692 *
1693 * This is needed for software suspend
1694 */
1695unsigned int count_swap_pages(int type, int free)
1696{
1697 unsigned int n = 0;
1698
efa90a98
HD
1699 spin_lock(&swap_lock);
1700 if ((unsigned int)type < nr_swapfiles) {
1701 struct swap_info_struct *sis = swap_info[type];
1702
ec8acf20 1703 spin_lock(&sis->lock);
efa90a98
HD
1704 if (sis->flags & SWP_WRITEOK) {
1705 n = sis->pages;
f577eb30 1706 if (free)
efa90a98 1707 n -= sis->inuse_pages;
f577eb30 1708 }
ec8acf20 1709 spin_unlock(&sis->lock);
f577eb30 1710 }
efa90a98 1711 spin_unlock(&swap_lock);
f577eb30
RW
1712 return n;
1713}
73c34b6a 1714#endif /* CONFIG_HIBERNATION */
f577eb30 1715
9f8bdb3f 1716static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
179ef71c 1717{
9f8bdb3f 1718 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
179ef71c
CG
1719}
1720
1da177e4 1721/*
72866f6f
HD
1722 * No need to decide whether this PTE shares the swap entry with others,
1723 * just let do_wp_page work it out if a write is requested later - to
1724 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1725 */
044d66c1 1726static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1727 unsigned long addr, swp_entry_t entry, struct page *page)
1728{
9e16b7fb 1729 struct page *swapcache;
72835c86 1730 struct mem_cgroup *memcg;
044d66c1
HD
1731 spinlock_t *ptl;
1732 pte_t *pte;
1733 int ret = 1;
1734
9e16b7fb
HD
1735 swapcache = page;
1736 page = ksm_might_need_to_copy(page, vma, addr);
1737 if (unlikely(!page))
1738 return -ENOMEM;
1739
f627c2f5
KS
1740 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1741 &memcg, false)) {
044d66c1 1742 ret = -ENOMEM;
85d9fc89
KH
1743 goto out_nolock;
1744 }
044d66c1
HD
1745
1746 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
9f8bdb3f 1747 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
f627c2f5 1748 mem_cgroup_cancel_charge(page, memcg, false);
044d66c1
HD
1749 ret = 0;
1750 goto out;
1751 }
8a9f3ccd 1752
b084d435 1753 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1754 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1755 get_page(page);
1756 set_pte_at(vma->vm_mm, addr, pte,
1757 pte_mkold(mk_pte(page, vma->vm_page_prot)));
00501b53 1758 if (page == swapcache) {
d281ee61 1759 page_add_anon_rmap(page, vma, addr, false);
f627c2f5 1760 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1761 } else { /* ksm created a completely new copy */
d281ee61 1762 page_add_new_anon_rmap(page, vma, addr, false);
f627c2f5 1763 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
1764 lru_cache_add_active_or_unevictable(page, vma);
1765 }
1da177e4
LT
1766 swap_free(entry);
1767 /*
1768 * Move the page to the active list so it is not
1769 * immediately swapped out again after swapon.
1770 */
1771 activate_page(page);
044d66c1
HD
1772out:
1773 pte_unmap_unlock(pte, ptl);
85d9fc89 1774out_nolock:
9e16b7fb
HD
1775 if (page != swapcache) {
1776 unlock_page(page);
1777 put_page(page);
1778 }
044d66c1 1779 return ret;
1da177e4
LT
1780}
1781
1782static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1783 unsigned long addr, unsigned long end,
1784 swp_entry_t entry, struct page *page)
1785{
1da177e4 1786 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 1787 pte_t *pte;
8a9f3ccd 1788 int ret = 0;
1da177e4 1789
044d66c1
HD
1790 /*
1791 * We don't actually need pte lock while scanning for swp_pte: since
1792 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1793 * page table while we're scanning; though it could get zapped, and on
1794 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1795 * of unmatched parts which look like swp_pte, so unuse_pte must
1796 * recheck under pte lock. Scanning without pte lock lets it be
2de1a7e4 1797 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
044d66c1
HD
1798 */
1799 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1800 do {
1801 /*
1802 * swapoff spends a _lot_ of time in this loop!
1803 * Test inline before going to call unuse_pte.
1804 */
9f8bdb3f 1805 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
044d66c1
HD
1806 pte_unmap(pte);
1807 ret = unuse_pte(vma, pmd, addr, entry, page);
1808 if (ret)
1809 goto out;
1810 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1811 }
1812 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
1813 pte_unmap(pte - 1);
1814out:
8a9f3ccd 1815 return ret;
1da177e4
LT
1816}
1817
1818static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1819 unsigned long addr, unsigned long end,
1820 swp_entry_t entry, struct page *page)
1821{
1822 pmd_t *pmd;
1823 unsigned long next;
8a9f3ccd 1824 int ret;
1da177e4
LT
1825
1826 pmd = pmd_offset(pud, addr);
1827 do {
dc644a07 1828 cond_resched();
1da177e4 1829 next = pmd_addr_end(addr, end);
1a5a9906 1830 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 1831 continue;
8a9f3ccd
BS
1832 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1833 if (ret)
1834 return ret;
1da177e4
LT
1835 } while (pmd++, addr = next, addr != end);
1836 return 0;
1837}
1838
c2febafc 1839static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1da177e4
LT
1840 unsigned long addr, unsigned long end,
1841 swp_entry_t entry, struct page *page)
1842{
1843 pud_t *pud;
1844 unsigned long next;
8a9f3ccd 1845 int ret;
1da177e4 1846
c2febafc 1847 pud = pud_offset(p4d, addr);
1da177e4
LT
1848 do {
1849 next = pud_addr_end(addr, end);
1850 if (pud_none_or_clear_bad(pud))
1851 continue;
8a9f3ccd
BS
1852 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1853 if (ret)
1854 return ret;
1da177e4
LT
1855 } while (pud++, addr = next, addr != end);
1856 return 0;
1857}
1858
c2febafc
KS
1859static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1860 unsigned long addr, unsigned long end,
1861 swp_entry_t entry, struct page *page)
1862{
1863 p4d_t *p4d;
1864 unsigned long next;
1865 int ret;
1866
1867 p4d = p4d_offset(pgd, addr);
1868 do {
1869 next = p4d_addr_end(addr, end);
1870 if (p4d_none_or_clear_bad(p4d))
1871 continue;
1872 ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1873 if (ret)
1874 return ret;
1875 } while (p4d++, addr = next, addr != end);
1876 return 0;
1877}
1878
1da177e4
LT
1879static int unuse_vma(struct vm_area_struct *vma,
1880 swp_entry_t entry, struct page *page)
1881{
1882 pgd_t *pgd;
1883 unsigned long addr, end, next;
8a9f3ccd 1884 int ret;
1da177e4 1885
3ca7b3c5 1886 if (page_anon_vma(page)) {
1da177e4
LT
1887 addr = page_address_in_vma(page, vma);
1888 if (addr == -EFAULT)
1889 return 0;
1890 else
1891 end = addr + PAGE_SIZE;
1892 } else {
1893 addr = vma->vm_start;
1894 end = vma->vm_end;
1895 }
1896
1897 pgd = pgd_offset(vma->vm_mm, addr);
1898 do {
1899 next = pgd_addr_end(addr, end);
1900 if (pgd_none_or_clear_bad(pgd))
1901 continue;
c2febafc 1902 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
8a9f3ccd
BS
1903 if (ret)
1904 return ret;
1da177e4
LT
1905 } while (pgd++, addr = next, addr != end);
1906 return 0;
1907}
1908
1909static int unuse_mm(struct mm_struct *mm,
1910 swp_entry_t entry, struct page *page)
1911{
1912 struct vm_area_struct *vma;
8a9f3ccd 1913 int ret = 0;
1da177e4
LT
1914
1915 if (!down_read_trylock(&mm->mmap_sem)) {
1916 /*
7d03431c
FLVC
1917 * Activate page so shrink_inactive_list is unlikely to unmap
1918 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 1919 */
c475a8ab 1920 activate_page(page);
1da177e4
LT
1921 unlock_page(page);
1922 down_read(&mm->mmap_sem);
1923 lock_page(page);
1924 }
1da177e4 1925 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 1926 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4 1927 break;
dc644a07 1928 cond_resched();
1da177e4 1929 }
1da177e4 1930 up_read(&mm->mmap_sem);
8a9f3ccd 1931 return (ret < 0)? ret: 0;
1da177e4
LT
1932}
1933
1934/*
38b5faf4
DM
1935 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1936 * from current position to next entry still in use.
1da177e4
LT
1937 * Recycle to start on reaching the end, returning 0 when empty.
1938 */
6eb396dc 1939static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 1940 unsigned int prev, bool frontswap)
1da177e4 1941{
6eb396dc
HD
1942 unsigned int max = si->max;
1943 unsigned int i = prev;
8d69aaee 1944 unsigned char count;
1da177e4
LT
1945
1946 /*
5d337b91 1947 * No need for swap_lock here: we're just looking
1da177e4
LT
1948 * for whether an entry is in use, not modifying it; false
1949 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 1950 * allocations from this area (while holding swap_lock).
1da177e4
LT
1951 */
1952 for (;;) {
1953 if (++i >= max) {
1954 if (!prev) {
1955 i = 0;
1956 break;
1957 }
1958 /*
1959 * No entries in use at top of swap_map,
1960 * loop back to start and recheck there.
1961 */
1962 max = prev + 1;
1963 prev = 0;
1964 i = 1;
1965 }
4db0c3c2 1966 count = READ_ONCE(si->swap_map[i]);
355cfa73 1967 if (count && swap_count(count) != SWAP_MAP_BAD)
dc644a07
HD
1968 if (!frontswap || frontswap_test(si, i))
1969 break;
1970 if ((i % LATENCY_LIMIT) == 0)
1971 cond_resched();
1da177e4
LT
1972 }
1973 return i;
1974}
1975
1976/*
1977 * We completely avoid races by reading each swap page in advance,
1978 * and then search for the process using it. All the necessary
1979 * page table adjustments can then be made atomically.
38b5faf4
DM
1980 *
1981 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1982 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 1983 */
38b5faf4
DM
1984int try_to_unuse(unsigned int type, bool frontswap,
1985 unsigned long pages_to_unuse)
1da177e4 1986{
efa90a98 1987 struct swap_info_struct *si = swap_info[type];
1da177e4 1988 struct mm_struct *start_mm;
edfe23da
SL
1989 volatile unsigned char *swap_map; /* swap_map is accessed without
1990 * locking. Mark it as volatile
1991 * to prevent compiler doing
1992 * something odd.
1993 */
8d69aaee 1994 unsigned char swcount;
1da177e4
LT
1995 struct page *page;
1996 swp_entry_t entry;
6eb396dc 1997 unsigned int i = 0;
1da177e4 1998 int retval = 0;
1da177e4
LT
1999
2000 /*
2001 * When searching mms for an entry, a good strategy is to
2002 * start at the first mm we freed the previous entry from
2003 * (though actually we don't notice whether we or coincidence
2004 * freed the entry). Initialize this start_mm with a hold.
2005 *
2006 * A simpler strategy would be to start at the last mm we
2007 * freed the previous entry from; but that would take less
2008 * advantage of mmlist ordering, which clusters forked mms
2009 * together, child after parent. If we race with dup_mmap(), we
2010 * prefer to resolve parent before child, lest we miss entries
2011 * duplicated after we scanned child: using last mm would invert
570a335b 2012 * that.
1da177e4
LT
2013 */
2014 start_mm = &init_mm;
3fce371b 2015 mmget(&init_mm);
1da177e4
LT
2016
2017 /*
2018 * Keep on scanning until all entries have gone. Usually,
2019 * one pass through swap_map is enough, but not necessarily:
2020 * there are races when an instance of an entry might be missed.
2021 */
38b5faf4 2022 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4
LT
2023 if (signal_pending(current)) {
2024 retval = -EINTR;
2025 break;
2026 }
2027
886bb7e9 2028 /*
1da177e4
LT
2029 * Get a page for the entry, using the existing swap
2030 * cache page if there is one. Otherwise, get a clean
886bb7e9 2031 * page and read the swap into it.
1da177e4
LT
2032 */
2033 swap_map = &si->swap_map[i];
2034 entry = swp_entry(type, i);
02098fea 2035 page = read_swap_cache_async(entry,
23955622 2036 GFP_HIGHUSER_MOVABLE, NULL, 0, false);
1da177e4
LT
2037 if (!page) {
2038 /*
2039 * Either swap_duplicate() failed because entry
2040 * has been freed independently, and will not be
2041 * reused since sys_swapoff() already disabled
2042 * allocation from here, or alloc_page() failed.
2043 */
edfe23da
SL
2044 swcount = *swap_map;
2045 /*
2046 * We don't hold lock here, so the swap entry could be
2047 * SWAP_MAP_BAD (when the cluster is discarding).
2048 * Instead of fail out, We can just skip the swap
2049 * entry because swapoff will wait for discarding
2050 * finish anyway.
2051 */
2052 if (!swcount || swcount == SWAP_MAP_BAD)
1da177e4
LT
2053 continue;
2054 retval = -ENOMEM;
2055 break;
2056 }
2057
2058 /*
2059 * Don't hold on to start_mm if it looks like exiting.
2060 */
2061 if (atomic_read(&start_mm->mm_users) == 1) {
2062 mmput(start_mm);
2063 start_mm = &init_mm;
3fce371b 2064 mmget(&init_mm);
1da177e4
LT
2065 }
2066
2067 /*
2068 * Wait for and lock page. When do_swap_page races with
2069 * try_to_unuse, do_swap_page can handle the fault much
2070 * faster than try_to_unuse can locate the entry. This
2071 * apparently redundant "wait_on_page_locked" lets try_to_unuse
2072 * defer to do_swap_page in such a case - in some tests,
2073 * do_swap_page and try_to_unuse repeatedly compete.
2074 */
2075 wait_on_page_locked(page);
2076 wait_on_page_writeback(page);
2077 lock_page(page);
2078 wait_on_page_writeback(page);
2079
2080 /*
2081 * Remove all references to entry.
1da177e4 2082 */
1da177e4 2083 swcount = *swap_map;
aaa46865
HD
2084 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
2085 retval = shmem_unuse(entry, page);
2086 /* page has already been unlocked and released */
2087 if (retval < 0)
2088 break;
2089 continue;
1da177e4 2090 }
aaa46865
HD
2091 if (swap_count(swcount) && start_mm != &init_mm)
2092 retval = unuse_mm(start_mm, entry, page);
2093
355cfa73 2094 if (swap_count(*swap_map)) {
1da177e4
LT
2095 int set_start_mm = (*swap_map >= swcount);
2096 struct list_head *p = &start_mm->mmlist;
2097 struct mm_struct *new_start_mm = start_mm;
2098 struct mm_struct *prev_mm = start_mm;
2099 struct mm_struct *mm;
2100
3fce371b
VN
2101 mmget(new_start_mm);
2102 mmget(prev_mm);
1da177e4 2103 spin_lock(&mmlist_lock);
aaa46865 2104 while (swap_count(*swap_map) && !retval &&
1da177e4
LT
2105 (p = p->next) != &start_mm->mmlist) {
2106 mm = list_entry(p, struct mm_struct, mmlist);
388f7934 2107 if (!mmget_not_zero(mm))
1da177e4 2108 continue;
1da177e4
LT
2109 spin_unlock(&mmlist_lock);
2110 mmput(prev_mm);
2111 prev_mm = mm;
2112
2113 cond_resched();
2114
2115 swcount = *swap_map;
355cfa73 2116 if (!swap_count(swcount)) /* any usage ? */
1da177e4 2117 ;
aaa46865 2118 else if (mm == &init_mm)
1da177e4 2119 set_start_mm = 1;
aaa46865 2120 else
1da177e4 2121 retval = unuse_mm(mm, entry, page);
355cfa73 2122
32c5fc10 2123 if (set_start_mm && *swap_map < swcount) {
1da177e4 2124 mmput(new_start_mm);
3fce371b 2125 mmget(mm);
1da177e4
LT
2126 new_start_mm = mm;
2127 set_start_mm = 0;
2128 }
2129 spin_lock(&mmlist_lock);
2130 }
2131 spin_unlock(&mmlist_lock);
2132 mmput(prev_mm);
2133 mmput(start_mm);
2134 start_mm = new_start_mm;
2135 }
2136 if (retval) {
2137 unlock_page(page);
09cbfeaf 2138 put_page(page);
1da177e4
LT
2139 break;
2140 }
2141
1da177e4
LT
2142 /*
2143 * If a reference remains (rare), we would like to leave
2144 * the page in the swap cache; but try_to_unmap could
2145 * then re-duplicate the entry once we drop page lock,
2146 * so we might loop indefinitely; also, that page could
2147 * not be swapped out to other storage meanwhile. So:
2148 * delete from cache even if there's another reference,
2149 * after ensuring that the data has been saved to disk -
2150 * since if the reference remains (rarer), it will be
2151 * read from disk into another page. Splitting into two
2152 * pages would be incorrect if swap supported "shared
2153 * private" pages, but they are handled by tmpfs files.
5ad64688
HD
2154 *
2155 * Given how unuse_vma() targets one particular offset
2156 * in an anon_vma, once the anon_vma has been determined,
2157 * this splitting happens to be just what is needed to
2158 * handle where KSM pages have been swapped out: re-reading
2159 * is unnecessarily slow, but we can fix that later on.
1da177e4 2160 */
355cfa73
KH
2161 if (swap_count(*swap_map) &&
2162 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
2163 struct writeback_control wbc = {
2164 .sync_mode = WB_SYNC_NONE,
2165 };
2166
e0709829 2167 swap_writepage(compound_head(page), &wbc);
1da177e4
LT
2168 lock_page(page);
2169 wait_on_page_writeback(page);
2170 }
68bdc8d6
HD
2171
2172 /*
2173 * It is conceivable that a racing task removed this page from
2174 * swap cache just before we acquired the page lock at the top,
2175 * or while we dropped it in unuse_mm(). The page might even
2176 * be back in swap cache on another swap area: that we must not
2177 * delete, since it may not have been written out to swap yet.
2178 */
2179 if (PageSwapCache(page) &&
e0709829
HY
2180 likely(page_private(page) == entry.val) &&
2181 !page_swapped(page))
2182 delete_from_swap_cache(compound_head(page));
1da177e4
LT
2183
2184 /*
2185 * So we could skip searching mms once swap count went
2186 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 2187 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
2188 */
2189 SetPageDirty(page);
2190 unlock_page(page);
09cbfeaf 2191 put_page(page);
1da177e4
LT
2192
2193 /*
2194 * Make sure that we aren't completely killing
2195 * interactive performance.
2196 */
2197 cond_resched();
38b5faf4
DM
2198 if (frontswap && pages_to_unuse > 0) {
2199 if (!--pages_to_unuse)
2200 break;
2201 }
1da177e4
LT
2202 }
2203
2204 mmput(start_mm);
1da177e4
LT
2205 return retval;
2206}
2207
2208/*
5d337b91
HD
2209 * After a successful try_to_unuse, if no swap is now in use, we know
2210 * we can empty the mmlist. swap_lock must be held on entry and exit.
2211 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
2212 * added to the mmlist just after page_duplicate - before would be racy.
2213 */
2214static void drain_mmlist(void)
2215{
2216 struct list_head *p, *next;
efa90a98 2217 unsigned int type;
1da177e4 2218
efa90a98
HD
2219 for (type = 0; type < nr_swapfiles; type++)
2220 if (swap_info[type]->inuse_pages)
1da177e4
LT
2221 return;
2222 spin_lock(&mmlist_lock);
2223 list_for_each_safe(p, next, &init_mm.mmlist)
2224 list_del_init(p);
2225 spin_unlock(&mmlist_lock);
2226}
2227
2228/*
2229 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
2230 * corresponds to page offset for the specified swap entry.
2231 * Note that the type of this function is sector_t, but it returns page offset
2232 * into the bdev, not sector offset.
1da177e4 2233 */
d4906e1a 2234static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 2235{
f29ad6a9
HD
2236 struct swap_info_struct *sis;
2237 struct swap_extent *start_se;
2238 struct swap_extent *se;
2239 pgoff_t offset;
2240
efa90a98 2241 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
2242 *bdev = sis->bdev;
2243
2244 offset = swp_offset(entry);
2245 start_se = sis->curr_swap_extent;
2246 se = start_se;
1da177e4
LT
2247
2248 for ( ; ; ) {
1da177e4
LT
2249 if (se->start_page <= offset &&
2250 offset < (se->start_page + se->nr_pages)) {
2251 return se->start_block + (offset - se->start_page);
2252 }
a8ae4991 2253 se = list_next_entry(se, list);
1da177e4
LT
2254 sis->curr_swap_extent = se;
2255 BUG_ON(se == start_se); /* It *must* be present */
2256 }
2257}
2258
d4906e1a
LS
2259/*
2260 * Returns the page offset into bdev for the specified page's swap entry.
2261 */
2262sector_t map_swap_page(struct page *page, struct block_device **bdev)
2263{
2264 swp_entry_t entry;
2265 entry.val = page_private(page);
2266 return map_swap_entry(entry, bdev);
2267}
2268
1da177e4
LT
2269/*
2270 * Free all of a swapdev's extent information
2271 */
2272static void destroy_swap_extents(struct swap_info_struct *sis)
2273{
9625a5f2 2274 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
2275 struct swap_extent *se;
2276
a8ae4991 2277 se = list_first_entry(&sis->first_swap_extent.list,
1da177e4
LT
2278 struct swap_extent, list);
2279 list_del(&se->list);
2280 kfree(se);
2281 }
62c230bc
MG
2282
2283 if (sis->flags & SWP_FILE) {
2284 struct file *swap_file = sis->swap_file;
2285 struct address_space *mapping = swap_file->f_mapping;
2286
2287 sis->flags &= ~SWP_FILE;
2288 mapping->a_ops->swap_deactivate(swap_file);
2289 }
1da177e4
LT
2290}
2291
2292/*
2293 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 2294 * extent list. The extent list is kept sorted in page order.
1da177e4 2295 *
11d31886 2296 * This function rather assumes that it is called in ascending page order.
1da177e4 2297 */
a509bc1a 2298int
1da177e4
LT
2299add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2300 unsigned long nr_pages, sector_t start_block)
2301{
2302 struct swap_extent *se;
2303 struct swap_extent *new_se;
2304 struct list_head *lh;
2305
9625a5f2
HD
2306 if (start_page == 0) {
2307 se = &sis->first_swap_extent;
2308 sis->curr_swap_extent = se;
2309 se->start_page = 0;
2310 se->nr_pages = nr_pages;
2311 se->start_block = start_block;
2312 return 1;
2313 } else {
2314 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 2315 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
2316 BUG_ON(se->start_page + se->nr_pages != start_page);
2317 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
2318 /* Merge it */
2319 se->nr_pages += nr_pages;
2320 return 0;
2321 }
1da177e4
LT
2322 }
2323
2324 /*
2325 * No merge. Insert a new extent, preserving ordering.
2326 */
2327 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2328 if (new_se == NULL)
2329 return -ENOMEM;
2330 new_se->start_page = start_page;
2331 new_se->nr_pages = nr_pages;
2332 new_se->start_block = start_block;
2333
9625a5f2 2334 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 2335 return 1;
1da177e4
LT
2336}
2337
2338/*
2339 * A `swap extent' is a simple thing which maps a contiguous range of pages
2340 * onto a contiguous range of disk blocks. An ordered list of swap extents
2341 * is built at swapon time and is then used at swap_writepage/swap_readpage
2342 * time for locating where on disk a page belongs.
2343 *
2344 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2345 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2346 * swap files identically.
2347 *
2348 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2349 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2350 * swapfiles are handled *identically* after swapon time.
2351 *
2352 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2353 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2354 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2355 * requirements, they are simply tossed out - we will never use those blocks
2356 * for swapping.
2357 *
b0d9bcd4 2358 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
2359 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2360 * which will scribble on the fs.
2361 *
2362 * The amount of disk space which a single swap extent represents varies.
2363 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2364 * extents in the list. To avoid much list walking, we cache the previous
2365 * search location in `curr_swap_extent', and start new searches from there.
2366 * This is extremely effective. The average number of iterations in
2367 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2368 */
53092a74 2369static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 2370{
62c230bc
MG
2371 struct file *swap_file = sis->swap_file;
2372 struct address_space *mapping = swap_file->f_mapping;
2373 struct inode *inode = mapping->host;
1da177e4
LT
2374 int ret;
2375
1da177e4
LT
2376 if (S_ISBLK(inode->i_mode)) {
2377 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 2378 *span = sis->pages;
a509bc1a 2379 return ret;
1da177e4
LT
2380 }
2381
62c230bc 2382 if (mapping->a_ops->swap_activate) {
a509bc1a 2383 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
62c230bc
MG
2384 if (!ret) {
2385 sis->flags |= SWP_FILE;
2386 ret = add_swap_extent(sis, 0, sis->max, 0);
2387 *span = sis->pages;
2388 }
a509bc1a 2389 return ret;
62c230bc
MG
2390 }
2391
a509bc1a 2392 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
2393}
2394
cf0cac0a 2395static void _enable_swap_info(struct swap_info_struct *p, int prio,
2a8f9449
SL
2396 unsigned char *swap_map,
2397 struct swap_cluster_info *cluster_info)
40531542 2398{
40531542
CEB
2399 if (prio >= 0)
2400 p->prio = prio;
2401 else
2402 p->prio = --least_priority;
18ab4d4c
DS
2403 /*
2404 * the plist prio is negated because plist ordering is
2405 * low-to-high, while swap ordering is high-to-low
2406 */
2407 p->list.prio = -p->prio;
2408 p->avail_list.prio = -p->prio;
40531542 2409 p->swap_map = swap_map;
2a8f9449 2410 p->cluster_info = cluster_info;
40531542 2411 p->flags |= SWP_WRITEOK;
ec8acf20 2412 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
2413 total_swap_pages += p->pages;
2414
adfab836 2415 assert_spin_locked(&swap_lock);
adfab836 2416 /*
18ab4d4c
DS
2417 * both lists are plists, and thus priority ordered.
2418 * swap_active_head needs to be priority ordered for swapoff(),
2419 * which on removal of any swap_info_struct with an auto-assigned
2420 * (i.e. negative) priority increments the auto-assigned priority
2421 * of any lower-priority swap_info_structs.
2422 * swap_avail_head needs to be priority ordered for get_swap_page(),
2423 * which allocates swap pages from the highest available priority
2424 * swap_info_struct.
adfab836 2425 */
18ab4d4c
DS
2426 plist_add(&p->list, &swap_active_head);
2427 spin_lock(&swap_avail_lock);
2428 plist_add(&p->avail_list, &swap_avail_head);
2429 spin_unlock(&swap_avail_lock);
cf0cac0a
CEB
2430}
2431
2432static void enable_swap_info(struct swap_info_struct *p, int prio,
2433 unsigned char *swap_map,
2a8f9449 2434 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
2435 unsigned long *frontswap_map)
2436{
4f89849d 2437 frontswap_init(p->type, frontswap_map);
cf0cac0a 2438 spin_lock(&swap_lock);
ec8acf20 2439 spin_lock(&p->lock);
2a8f9449 2440 _enable_swap_info(p, prio, swap_map, cluster_info);
ec8acf20 2441 spin_unlock(&p->lock);
cf0cac0a
CEB
2442 spin_unlock(&swap_lock);
2443}
2444
2445static void reinsert_swap_info(struct swap_info_struct *p)
2446{
2447 spin_lock(&swap_lock);
ec8acf20 2448 spin_lock(&p->lock);
2a8f9449 2449 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
ec8acf20 2450 spin_unlock(&p->lock);
40531542
CEB
2451 spin_unlock(&swap_lock);
2452}
2453
67afa38e
TC
2454bool has_usable_swap(void)
2455{
2456 bool ret = true;
2457
2458 spin_lock(&swap_lock);
2459 if (plist_head_empty(&swap_active_head))
2460 ret = false;
2461 spin_unlock(&swap_lock);
2462 return ret;
2463}
2464
c4ea37c2 2465SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 2466{
73c34b6a 2467 struct swap_info_struct *p = NULL;
8d69aaee 2468 unsigned char *swap_map;
2a8f9449 2469 struct swap_cluster_info *cluster_info;
4f89849d 2470 unsigned long *frontswap_map;
1da177e4
LT
2471 struct file *swap_file, *victim;
2472 struct address_space *mapping;
2473 struct inode *inode;
91a27b2a 2474 struct filename *pathname;
adfab836 2475 int err, found = 0;
5b808a23 2476 unsigned int old_block_size;
886bb7e9 2477
1da177e4
LT
2478 if (!capable(CAP_SYS_ADMIN))
2479 return -EPERM;
2480
191c5424
AV
2481 BUG_ON(!current->mm);
2482
1da177e4 2483 pathname = getname(specialfile);
1da177e4 2484 if (IS_ERR(pathname))
f58b59c1 2485 return PTR_ERR(pathname);
1da177e4 2486
669abf4e 2487 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
2488 err = PTR_ERR(victim);
2489 if (IS_ERR(victim))
2490 goto out;
2491
2492 mapping = victim->f_mapping;
5d337b91 2493 spin_lock(&swap_lock);
18ab4d4c 2494 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 2495 if (p->flags & SWP_WRITEOK) {
adfab836
DS
2496 if (p->swap_file->f_mapping == mapping) {
2497 found = 1;
1da177e4 2498 break;
adfab836 2499 }
1da177e4 2500 }
1da177e4 2501 }
adfab836 2502 if (!found) {
1da177e4 2503 err = -EINVAL;
5d337b91 2504 spin_unlock(&swap_lock);
1da177e4
LT
2505 goto out_dput;
2506 }
191c5424 2507 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
2508 vm_unacct_memory(p->pages);
2509 else {
2510 err = -ENOMEM;
5d337b91 2511 spin_unlock(&swap_lock);
1da177e4
LT
2512 goto out_dput;
2513 }
18ab4d4c
DS
2514 spin_lock(&swap_avail_lock);
2515 plist_del(&p->avail_list, &swap_avail_head);
2516 spin_unlock(&swap_avail_lock);
ec8acf20 2517 spin_lock(&p->lock);
78ecba08 2518 if (p->prio < 0) {
adfab836
DS
2519 struct swap_info_struct *si = p;
2520
18ab4d4c 2521 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 2522 si->prio++;
18ab4d4c
DS
2523 si->list.prio--;
2524 si->avail_list.prio--;
adfab836 2525 }
78ecba08
HD
2526 least_priority++;
2527 }
18ab4d4c 2528 plist_del(&p->list, &swap_active_head);
ec8acf20 2529 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
2530 total_swap_pages -= p->pages;
2531 p->flags &= ~SWP_WRITEOK;
ec8acf20 2532 spin_unlock(&p->lock);
5d337b91 2533 spin_unlock(&swap_lock);
fb4f88dc 2534
039939a6
TC
2535 disable_swap_slots_cache_lock();
2536
e1e12d2f 2537 set_current_oom_origin();
adfab836 2538 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
e1e12d2f 2539 clear_current_oom_origin();
1da177e4 2540
1da177e4
LT
2541 if (err) {
2542 /* re-insert swap space back into swap_list */
cf0cac0a 2543 reinsert_swap_info(p);
039939a6 2544 reenable_swap_slots_cache_unlock();
1da177e4
LT
2545 goto out_dput;
2546 }
52b7efdb 2547
039939a6
TC
2548 reenable_swap_slots_cache_unlock();
2549
815c2c54
SL
2550 flush_work(&p->discard_work);
2551
5d337b91 2552 destroy_swap_extents(p);
570a335b
HD
2553 if (p->flags & SWP_CONTINUED)
2554 free_swap_count_continuations(p);
2555
fc0abb14 2556 mutex_lock(&swapon_mutex);
5d337b91 2557 spin_lock(&swap_lock);
ec8acf20 2558 spin_lock(&p->lock);
5d337b91
HD
2559 drain_mmlist();
2560
52b7efdb 2561 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
2562 p->highest_bit = 0; /* cuts scans short */
2563 while (p->flags >= SWP_SCANNING) {
ec8acf20 2564 spin_unlock(&p->lock);
5d337b91 2565 spin_unlock(&swap_lock);
13e4b57f 2566 schedule_timeout_uninterruptible(1);
5d337b91 2567 spin_lock(&swap_lock);
ec8acf20 2568 spin_lock(&p->lock);
52b7efdb 2569 }
52b7efdb 2570
1da177e4 2571 swap_file = p->swap_file;
5b808a23 2572 old_block_size = p->old_block_size;
1da177e4
LT
2573 p->swap_file = NULL;
2574 p->max = 0;
2575 swap_map = p->swap_map;
2576 p->swap_map = NULL;
2a8f9449
SL
2577 cluster_info = p->cluster_info;
2578 p->cluster_info = NULL;
4f89849d 2579 frontswap_map = frontswap_map_get(p);
ec8acf20 2580 spin_unlock(&p->lock);
5d337b91 2581 spin_unlock(&swap_lock);
adfab836 2582 frontswap_invalidate_area(p->type);
58e97ba6 2583 frontswap_map_set(p, NULL);
fc0abb14 2584 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
2585 free_percpu(p->percpu_cluster);
2586 p->percpu_cluster = NULL;
1da177e4 2587 vfree(swap_map);
54f180d3
HY
2588 kvfree(cluster_info);
2589 kvfree(frontswap_map);
2de1a7e4 2590 /* Destroy swap account information */
adfab836 2591 swap_cgroup_swapoff(p->type);
4b3ef9da 2592 exit_swap_address_space(p->type);
27a7faa0 2593
1da177e4
LT
2594 inode = mapping->host;
2595 if (S_ISBLK(inode->i_mode)) {
2596 struct block_device *bdev = I_BDEV(inode);
5b808a23 2597 set_blocksize(bdev, old_block_size);
e525fd89 2598 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2599 } else {
5955102c 2600 inode_lock(inode);
1da177e4 2601 inode->i_flags &= ~S_SWAPFILE;
5955102c 2602 inode_unlock(inode);
1da177e4
LT
2603 }
2604 filp_close(swap_file, NULL);
f893ab41
WY
2605
2606 /*
2607 * Clear the SWP_USED flag after all resources are freed so that swapon
2608 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2609 * not hold p->lock after we cleared its SWP_WRITEOK.
2610 */
2611 spin_lock(&swap_lock);
2612 p->flags = 0;
2613 spin_unlock(&swap_lock);
2614
1da177e4 2615 err = 0;
66d7dd51
KS
2616 atomic_inc(&proc_poll_event);
2617 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
2618
2619out_dput:
2620 filp_close(victim, NULL);
2621out:
f58b59c1 2622 putname(pathname);
1da177e4
LT
2623 return err;
2624}
2625
2626#ifdef CONFIG_PROC_FS
66d7dd51
KS
2627static unsigned swaps_poll(struct file *file, poll_table *wait)
2628{
f1514638 2629 struct seq_file *seq = file->private_data;
66d7dd51
KS
2630
2631 poll_wait(file, &proc_poll_wait, wait);
2632
f1514638
KS
2633 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2634 seq->poll_event = atomic_read(&proc_poll_event);
66d7dd51
KS
2635 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2636 }
2637
2638 return POLLIN | POLLRDNORM;
2639}
2640
1da177e4
LT
2641/* iterator */
2642static void *swap_start(struct seq_file *swap, loff_t *pos)
2643{
efa90a98
HD
2644 struct swap_info_struct *si;
2645 int type;
1da177e4
LT
2646 loff_t l = *pos;
2647
fc0abb14 2648 mutex_lock(&swapon_mutex);
1da177e4 2649
881e4aab
SS
2650 if (!l)
2651 return SEQ_START_TOKEN;
2652
efa90a98
HD
2653 for (type = 0; type < nr_swapfiles; type++) {
2654 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2655 si = swap_info[type];
2656 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2657 continue;
881e4aab 2658 if (!--l)
efa90a98 2659 return si;
1da177e4
LT
2660 }
2661
2662 return NULL;
2663}
2664
2665static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2666{
efa90a98
HD
2667 struct swap_info_struct *si = v;
2668 int type;
1da177e4 2669
881e4aab 2670 if (v == SEQ_START_TOKEN)
efa90a98
HD
2671 type = 0;
2672 else
2673 type = si->type + 1;
881e4aab 2674
efa90a98
HD
2675 for (; type < nr_swapfiles; type++) {
2676 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2677 si = swap_info[type];
2678 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
2679 continue;
2680 ++*pos;
efa90a98 2681 return si;
1da177e4
LT
2682 }
2683
2684 return NULL;
2685}
2686
2687static void swap_stop(struct seq_file *swap, void *v)
2688{
fc0abb14 2689 mutex_unlock(&swapon_mutex);
1da177e4
LT
2690}
2691
2692static int swap_show(struct seq_file *swap, void *v)
2693{
efa90a98 2694 struct swap_info_struct *si = v;
1da177e4
LT
2695 struct file *file;
2696 int len;
2697
efa90a98 2698 if (si == SEQ_START_TOKEN) {
881e4aab
SS
2699 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2700 return 0;
2701 }
1da177e4 2702
efa90a98 2703 file = si->swap_file;
2726d566 2704 len = seq_file_path(swap, file, " \t\n\\");
6eb396dc 2705 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9 2706 len < 40 ? 40 - len : 1, " ",
496ad9aa 2707 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2708 "partition" : "file\t",
efa90a98
HD
2709 si->pages << (PAGE_SHIFT - 10),
2710 si->inuse_pages << (PAGE_SHIFT - 10),
2711 si->prio);
1da177e4
LT
2712 return 0;
2713}
2714
15ad7cdc 2715static const struct seq_operations swaps_op = {
1da177e4
LT
2716 .start = swap_start,
2717 .next = swap_next,
2718 .stop = swap_stop,
2719 .show = swap_show
2720};
2721
2722static int swaps_open(struct inode *inode, struct file *file)
2723{
f1514638 2724 struct seq_file *seq;
66d7dd51
KS
2725 int ret;
2726
66d7dd51 2727 ret = seq_open(file, &swaps_op);
f1514638 2728 if (ret)
66d7dd51 2729 return ret;
66d7dd51 2730
f1514638
KS
2731 seq = file->private_data;
2732 seq->poll_event = atomic_read(&proc_poll_event);
2733 return 0;
1da177e4
LT
2734}
2735
15ad7cdc 2736static const struct file_operations proc_swaps_operations = {
1da177e4
LT
2737 .open = swaps_open,
2738 .read = seq_read,
2739 .llseek = seq_lseek,
2740 .release = seq_release,
66d7dd51 2741 .poll = swaps_poll,
1da177e4
LT
2742};
2743
2744static int __init procswaps_init(void)
2745{
3d71f86f 2746 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
2747 return 0;
2748}
2749__initcall(procswaps_init);
2750#endif /* CONFIG_PROC_FS */
2751
1796316a
JB
2752#ifdef MAX_SWAPFILES_CHECK
2753static int __init max_swapfiles_check(void)
2754{
2755 MAX_SWAPFILES_CHECK();
2756 return 0;
2757}
2758late_initcall(max_swapfiles_check);
2759#endif
2760
53cbb243 2761static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2762{
73c34b6a 2763 struct swap_info_struct *p;
1da177e4 2764 unsigned int type;
efa90a98
HD
2765
2766 p = kzalloc(sizeof(*p), GFP_KERNEL);
2767 if (!p)
53cbb243 2768 return ERR_PTR(-ENOMEM);
efa90a98 2769
5d337b91 2770 spin_lock(&swap_lock);
efa90a98
HD
2771 for (type = 0; type < nr_swapfiles; type++) {
2772 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2773 break;
efa90a98 2774 }
0697212a 2775 if (type >= MAX_SWAPFILES) {
5d337b91 2776 spin_unlock(&swap_lock);
efa90a98 2777 kfree(p);
730c0581 2778 return ERR_PTR(-EPERM);
1da177e4 2779 }
efa90a98
HD
2780 if (type >= nr_swapfiles) {
2781 p->type = type;
2782 swap_info[type] = p;
2783 /*
2784 * Write swap_info[type] before nr_swapfiles, in case a
2785 * racing procfs swap_start() or swap_next() is reading them.
2786 * (We never shrink nr_swapfiles, we never free this entry.)
2787 */
2788 smp_wmb();
2789 nr_swapfiles++;
2790 } else {
2791 kfree(p);
2792 p = swap_info[type];
2793 /*
2794 * Do not memset this entry: a racing procfs swap_next()
2795 * would be relying on p->type to remain valid.
2796 */
2797 }
9625a5f2 2798 INIT_LIST_HEAD(&p->first_swap_extent.list);
18ab4d4c
DS
2799 plist_node_init(&p->list, 0);
2800 plist_node_init(&p->avail_list, 0);
1da177e4 2801 p->flags = SWP_USED;
5d337b91 2802 spin_unlock(&swap_lock);
ec8acf20 2803 spin_lock_init(&p->lock);
efa90a98 2804
53cbb243 2805 return p;
53cbb243
CEB
2806}
2807
4d0e1e10
CEB
2808static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2809{
2810 int error;
2811
2812 if (S_ISBLK(inode->i_mode)) {
2813 p->bdev = bdgrab(I_BDEV(inode));
2814 error = blkdev_get(p->bdev,
6f179af8 2815 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
4d0e1e10
CEB
2816 if (error < 0) {
2817 p->bdev = NULL;
6f179af8 2818 return error;
4d0e1e10
CEB
2819 }
2820 p->old_block_size = block_size(p->bdev);
2821 error = set_blocksize(p->bdev, PAGE_SIZE);
2822 if (error < 0)
87ade72a 2823 return error;
4d0e1e10
CEB
2824 p->flags |= SWP_BLKDEV;
2825 } else if (S_ISREG(inode->i_mode)) {
2826 p->bdev = inode->i_sb->s_bdev;
5955102c 2827 inode_lock(inode);
87ade72a
CEB
2828 if (IS_SWAPFILE(inode))
2829 return -EBUSY;
2830 } else
2831 return -EINVAL;
4d0e1e10
CEB
2832
2833 return 0;
4d0e1e10
CEB
2834}
2835
ca8bd38b
CEB
2836static unsigned long read_swap_header(struct swap_info_struct *p,
2837 union swap_header *swap_header,
2838 struct inode *inode)
2839{
2840 int i;
2841 unsigned long maxpages;
2842 unsigned long swapfilepages;
d6bbbd29 2843 unsigned long last_page;
ca8bd38b
CEB
2844
2845 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2846 pr_err("Unable to find swap-space signature\n");
38719025 2847 return 0;
ca8bd38b
CEB
2848 }
2849
2850 /* swap partition endianess hack... */
2851 if (swab32(swap_header->info.version) == 1) {
2852 swab32s(&swap_header->info.version);
2853 swab32s(&swap_header->info.last_page);
2854 swab32s(&swap_header->info.nr_badpages);
dd111be6
JH
2855 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2856 return 0;
ca8bd38b
CEB
2857 for (i = 0; i < swap_header->info.nr_badpages; i++)
2858 swab32s(&swap_header->info.badpages[i]);
2859 }
2860 /* Check the swap header's sub-version */
2861 if (swap_header->info.version != 1) {
465c47fd
AM
2862 pr_warn("Unable to handle swap header version %d\n",
2863 swap_header->info.version);
38719025 2864 return 0;
ca8bd38b
CEB
2865 }
2866
2867 p->lowest_bit = 1;
2868 p->cluster_next = 1;
2869 p->cluster_nr = 0;
2870
2871 /*
2872 * Find out how many pages are allowed for a single swap
9b15b817 2873 * device. There are two limiting factors: 1) the number
a2c16d6c
HD
2874 * of bits for the swap offset in the swp_entry_t type, and
2875 * 2) the number of bits in the swap pte as defined by the
9b15b817 2876 * different architectures. In order to find the
a2c16d6c 2877 * largest possible bit mask, a swap entry with swap type 0
ca8bd38b 2878 * and swap offset ~0UL is created, encoded to a swap pte,
a2c16d6c 2879 * decoded to a swp_entry_t again, and finally the swap
ca8bd38b
CEB
2880 * offset is extracted. This will mask all the bits from
2881 * the initial ~0UL mask that can't be encoded in either
2882 * the swp_entry_t or the architecture definition of a
9b15b817 2883 * swap pte.
ca8bd38b
CEB
2884 */
2885 maxpages = swp_offset(pte_to_swp_entry(
9b15b817 2886 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
d6bbbd29
RJ
2887 last_page = swap_header->info.last_page;
2888 if (last_page > maxpages) {
465c47fd 2889 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2890 maxpages << (PAGE_SHIFT - 10),
2891 last_page << (PAGE_SHIFT - 10));
2892 }
2893 if (maxpages > last_page) {
2894 maxpages = last_page + 1;
ca8bd38b
CEB
2895 /* p->max is an unsigned int: don't overflow it */
2896 if ((unsigned int)maxpages == 0)
2897 maxpages = UINT_MAX;
2898 }
2899 p->highest_bit = maxpages - 1;
2900
2901 if (!maxpages)
38719025 2902 return 0;
ca8bd38b
CEB
2903 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2904 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 2905 pr_warn("Swap area shorter than signature indicates\n");
38719025 2906 return 0;
ca8bd38b
CEB
2907 }
2908 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 2909 return 0;
ca8bd38b 2910 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 2911 return 0;
ca8bd38b
CEB
2912
2913 return maxpages;
ca8bd38b
CEB
2914}
2915
4b3ef9da 2916#define SWAP_CLUSTER_INFO_COLS \
235b6217 2917 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
4b3ef9da
HY
2918#define SWAP_CLUSTER_SPACE_COLS \
2919 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2920#define SWAP_CLUSTER_COLS \
2921 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
235b6217 2922
915d4d7b
CEB
2923static int setup_swap_map_and_extents(struct swap_info_struct *p,
2924 union swap_header *swap_header,
2925 unsigned char *swap_map,
2a8f9449 2926 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
2927 unsigned long maxpages,
2928 sector_t *span)
2929{
235b6217 2930 unsigned int j, k;
915d4d7b
CEB
2931 unsigned int nr_good_pages;
2932 int nr_extents;
2a8f9449 2933 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
235b6217
HY
2934 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2935 unsigned long i, idx;
915d4d7b
CEB
2936
2937 nr_good_pages = maxpages - 1; /* omit header page */
2938
6b534915
HY
2939 cluster_list_init(&p->free_clusters);
2940 cluster_list_init(&p->discard_clusters);
2a8f9449 2941
915d4d7b
CEB
2942 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2943 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
2944 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2945 return -EINVAL;
915d4d7b
CEB
2946 if (page_nr < maxpages) {
2947 swap_map[page_nr] = SWAP_MAP_BAD;
2948 nr_good_pages--;
2a8f9449
SL
2949 /*
2950 * Haven't marked the cluster free yet, no list
2951 * operation involved
2952 */
2953 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
2954 }
2955 }
2956
2a8f9449
SL
2957 /* Haven't marked the cluster free yet, no list operation involved */
2958 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2959 inc_cluster_info_page(p, cluster_info, i);
2960
915d4d7b
CEB
2961 if (nr_good_pages) {
2962 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
2963 /*
2964 * Not mark the cluster free yet, no list
2965 * operation involved
2966 */
2967 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
2968 p->max = maxpages;
2969 p->pages = nr_good_pages;
2970 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
2971 if (nr_extents < 0)
2972 return nr_extents;
915d4d7b
CEB
2973 nr_good_pages = p->pages;
2974 }
2975 if (!nr_good_pages) {
465c47fd 2976 pr_warn("Empty swap-file\n");
bdb8e3f6 2977 return -EINVAL;
915d4d7b
CEB
2978 }
2979
2a8f9449
SL
2980 if (!cluster_info)
2981 return nr_extents;
2982
235b6217 2983
4b3ef9da
HY
2984 /*
2985 * Reduce false cache line sharing between cluster_info and
2986 * sharing same address space.
2987 */
235b6217
HY
2988 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2989 j = (k + col) % SWAP_CLUSTER_COLS;
2990 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2991 idx = i * SWAP_CLUSTER_COLS + j;
2992 if (idx >= nr_clusters)
2993 continue;
2994 if (cluster_count(&cluster_info[idx]))
2995 continue;
2a8f9449 2996 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
6b534915
HY
2997 cluster_list_add_tail(&p->free_clusters, cluster_info,
2998 idx);
2a8f9449 2999 }
2a8f9449 3000 }
915d4d7b 3001 return nr_extents;
915d4d7b
CEB
3002}
3003
dcf6b7dd
RA
3004/*
3005 * Helper to sys_swapon determining if a given swap
3006 * backing device queue supports DISCARD operations.
3007 */
3008static bool swap_discardable(struct swap_info_struct *si)
3009{
3010 struct request_queue *q = bdev_get_queue(si->bdev);
3011
3012 if (!q || !blk_queue_discard(q))
3013 return false;
3014
3015 return true;
3016}
3017
53cbb243
CEB
3018SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3019{
3020 struct swap_info_struct *p;
91a27b2a 3021 struct filename *name;
53cbb243
CEB
3022 struct file *swap_file = NULL;
3023 struct address_space *mapping;
40531542 3024 int prio;
53cbb243
CEB
3025 int error;
3026 union swap_header *swap_header;
915d4d7b 3027 int nr_extents;
53cbb243
CEB
3028 sector_t span;
3029 unsigned long maxpages;
53cbb243 3030 unsigned char *swap_map = NULL;
2a8f9449 3031 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 3032 unsigned long *frontswap_map = NULL;
53cbb243
CEB
3033 struct page *page = NULL;
3034 struct inode *inode = NULL;
53cbb243 3035
d15cab97
HD
3036 if (swap_flags & ~SWAP_FLAGS_VALID)
3037 return -EINVAL;
3038
53cbb243
CEB
3039 if (!capable(CAP_SYS_ADMIN))
3040 return -EPERM;
3041
3042 p = alloc_swap_info();
2542e513
CEB
3043 if (IS_ERR(p))
3044 return PTR_ERR(p);
53cbb243 3045
815c2c54
SL
3046 INIT_WORK(&p->discard_work, swap_discard_work);
3047
1da177e4 3048 name = getname(specialfile);
1da177e4 3049 if (IS_ERR(name)) {
7de7fb6b 3050 error = PTR_ERR(name);
1da177e4 3051 name = NULL;
bd69010b 3052 goto bad_swap;
1da177e4 3053 }
669abf4e 3054 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 3055 if (IS_ERR(swap_file)) {
7de7fb6b 3056 error = PTR_ERR(swap_file);
1da177e4 3057 swap_file = NULL;
bd69010b 3058 goto bad_swap;
1da177e4
LT
3059 }
3060
3061 p->swap_file = swap_file;
3062 mapping = swap_file->f_mapping;
2130781e 3063 inode = mapping->host;
6f179af8 3064
5955102c 3065 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
4d0e1e10
CEB
3066 error = claim_swapfile(p, inode);
3067 if (unlikely(error))
1da177e4 3068 goto bad_swap;
1da177e4 3069
1da177e4
LT
3070 /*
3071 * Read the swap header.
3072 */
3073 if (!mapping->a_ops->readpage) {
3074 error = -EINVAL;
3075 goto bad_swap;
3076 }
090d2b18 3077 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
3078 if (IS_ERR(page)) {
3079 error = PTR_ERR(page);
3080 goto bad_swap;
3081 }
81e33971 3082 swap_header = kmap(page);
1da177e4 3083
ca8bd38b
CEB
3084 maxpages = read_swap_header(p, swap_header, inode);
3085 if (unlikely(!maxpages)) {
1da177e4
LT
3086 error = -EINVAL;
3087 goto bad_swap;
3088 }
886bb7e9 3089
81e33971 3090 /* OK, set up the swap map and apply the bad block list */
803d0c83 3091 swap_map = vzalloc(maxpages);
81e33971
HD
3092 if (!swap_map) {
3093 error = -ENOMEM;
3094 goto bad_swap;
3095 }
f0571429
MK
3096
3097 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3098 p->flags |= SWP_STABLE_WRITES;
3099
2a8f9449 3100 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
6f179af8 3101 int cpu;
235b6217 3102 unsigned long ci, nr_cluster;
6f179af8 3103
2a8f9449
SL
3104 p->flags |= SWP_SOLIDSTATE;
3105 /*
3106 * select a random position to start with to help wear leveling
3107 * SSD
3108 */
3109 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
235b6217 3110 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2a8f9449 3111
54f180d3
HY
3112 cluster_info = kvzalloc(nr_cluster * sizeof(*cluster_info),
3113 GFP_KERNEL);
2a8f9449
SL
3114 if (!cluster_info) {
3115 error = -ENOMEM;
3116 goto bad_swap;
3117 }
235b6217
HY
3118
3119 for (ci = 0; ci < nr_cluster; ci++)
3120 spin_lock_init(&((cluster_info + ci)->lock));
3121
ebc2a1a6
SL
3122 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3123 if (!p->percpu_cluster) {
3124 error = -ENOMEM;
3125 goto bad_swap;
3126 }
6f179af8 3127 for_each_possible_cpu(cpu) {
ebc2a1a6 3128 struct percpu_cluster *cluster;
6f179af8 3129 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
ebc2a1a6
SL
3130 cluster_set_null(&cluster->index);
3131 }
2a8f9449 3132 }
1da177e4 3133
1421ef3c
CEB
3134 error = swap_cgroup_swapon(p->type, maxpages);
3135 if (error)
3136 goto bad_swap;
3137
915d4d7b 3138 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 3139 cluster_info, maxpages, &span);
915d4d7b
CEB
3140 if (unlikely(nr_extents < 0)) {
3141 error = nr_extents;
1da177e4
LT
3142 goto bad_swap;
3143 }
38b5faf4 3144 /* frontswap enabled? set up bit-per-page map for frontswap */
8ea1d2a1 3145 if (IS_ENABLED(CONFIG_FRONTSWAP))
54f180d3
HY
3146 frontswap_map = kvzalloc(BITS_TO_LONGS(maxpages) * sizeof(long),
3147 GFP_KERNEL);
1da177e4 3148
2a8f9449
SL
3149 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3150 /*
3151 * When discard is enabled for swap with no particular
3152 * policy flagged, we set all swap discard flags here in
3153 * order to sustain backward compatibility with older
3154 * swapon(8) releases.
3155 */
3156 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3157 SWP_PAGE_DISCARD);
dcf6b7dd 3158
2a8f9449
SL
3159 /*
3160 * By flagging sys_swapon, a sysadmin can tell us to
3161 * either do single-time area discards only, or to just
3162 * perform discards for released swap page-clusters.
3163 * Now it's time to adjust the p->flags accordingly.
3164 */
3165 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3166 p->flags &= ~SWP_PAGE_DISCARD;
3167 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3168 p->flags &= ~SWP_AREA_DISCARD;
3169
3170 /* issue a swapon-time discard if it's still required */
3171 if (p->flags & SWP_AREA_DISCARD) {
3172 int err = discard_swap(p);
3173 if (unlikely(err))
3174 pr_err("swapon: discard_swap(%p): %d\n",
3175 p, err);
dcf6b7dd 3176 }
20137a49 3177 }
6a6ba831 3178
4b3ef9da
HY
3179 error = init_swap_address_space(p->type, maxpages);
3180 if (error)
3181 goto bad_swap;
3182
fc0abb14 3183 mutex_lock(&swapon_mutex);
40531542 3184 prio = -1;
78ecba08 3185 if (swap_flags & SWAP_FLAG_PREFER)
40531542 3186 prio =
78ecba08 3187 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 3188 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 3189
756a025f 3190 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 3191 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
3192 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3193 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 3194 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
3195 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3196 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 3197 (frontswap_map) ? "FS" : "");
c69dbfb8 3198
fc0abb14 3199 mutex_unlock(&swapon_mutex);
66d7dd51
KS
3200 atomic_inc(&proc_poll_event);
3201 wake_up_interruptible(&proc_poll_wait);
3202
9b01c350
CEB
3203 if (S_ISREG(inode->i_mode))
3204 inode->i_flags |= S_SWAPFILE;
1da177e4
LT
3205 error = 0;
3206 goto out;
3207bad_swap:
ebc2a1a6
SL
3208 free_percpu(p->percpu_cluster);
3209 p->percpu_cluster = NULL;
bd69010b 3210 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
3211 set_blocksize(p->bdev, p->old_block_size);
3212 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 3213 }
4cd3bb10 3214 destroy_swap_extents(p);
e8e6c2ec 3215 swap_cgroup_swapoff(p->type);
5d337b91 3216 spin_lock(&swap_lock);
1da177e4 3217 p->swap_file = NULL;
1da177e4 3218 p->flags = 0;
5d337b91 3219 spin_unlock(&swap_lock);
1da177e4 3220 vfree(swap_map);
2a8f9449 3221 vfree(cluster_info);
52c50567 3222 if (swap_file) {
2130781e 3223 if (inode && S_ISREG(inode->i_mode)) {
5955102c 3224 inode_unlock(inode);
2130781e
CEB
3225 inode = NULL;
3226 }
1da177e4 3227 filp_close(swap_file, NULL);
52c50567 3228 }
1da177e4
LT
3229out:
3230 if (page && !IS_ERR(page)) {
3231 kunmap(page);
09cbfeaf 3232 put_page(page);
1da177e4
LT
3233 }
3234 if (name)
3235 putname(name);
9b01c350 3236 if (inode && S_ISREG(inode->i_mode))
5955102c 3237 inode_unlock(inode);
039939a6
TC
3238 if (!error)
3239 enable_swap_slots_cache();
1da177e4
LT
3240 return error;
3241}
3242
3243void si_swapinfo(struct sysinfo *val)
3244{
efa90a98 3245 unsigned int type;
1da177e4
LT
3246 unsigned long nr_to_be_unused = 0;
3247
5d337b91 3248 spin_lock(&swap_lock);
efa90a98
HD
3249 for (type = 0; type < nr_swapfiles; type++) {
3250 struct swap_info_struct *si = swap_info[type];
3251
3252 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3253 nr_to_be_unused += si->inuse_pages;
1da177e4 3254 }
ec8acf20 3255 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 3256 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 3257 spin_unlock(&swap_lock);
1da177e4
LT
3258}
3259
3260/*
3261 * Verify that a swap entry is valid and increment its swap map count.
3262 *
355cfa73
KH
3263 * Returns error code in following case.
3264 * - success -> 0
3265 * - swp_entry is invalid -> EINVAL
3266 * - swp_entry is migration entry -> EINVAL
3267 * - swap-cache reference is requested but there is already one. -> EEXIST
3268 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 3269 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 3270 */
8d69aaee 3271static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 3272{
73c34b6a 3273 struct swap_info_struct *p;
235b6217 3274 struct swap_cluster_info *ci;
1da177e4 3275 unsigned long offset, type;
8d69aaee
HD
3276 unsigned char count;
3277 unsigned char has_cache;
253d553b 3278 int err = -EINVAL;
1da177e4 3279
a7420aa5 3280 if (non_swap_entry(entry))
253d553b 3281 goto out;
0697212a 3282
1da177e4
LT
3283 type = swp_type(entry);
3284 if (type >= nr_swapfiles)
3285 goto bad_file;
efa90a98 3286 p = swap_info[type];
1da177e4 3287 offset = swp_offset(entry);
355cfa73 3288 if (unlikely(offset >= p->max))
235b6217
HY
3289 goto out;
3290
3291 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 3292
253d553b 3293 count = p->swap_map[offset];
edfe23da
SL
3294
3295 /*
3296 * swapin_readahead() doesn't check if a swap entry is valid, so the
3297 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3298 */
3299 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3300 err = -ENOENT;
3301 goto unlock_out;
3302 }
3303
253d553b
HD
3304 has_cache = count & SWAP_HAS_CACHE;
3305 count &= ~SWAP_HAS_CACHE;
3306 err = 0;
355cfa73 3307
253d553b 3308 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
3309
3310 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
3311 if (!has_cache && count)
3312 has_cache = SWAP_HAS_CACHE;
3313 else if (has_cache) /* someone else added cache */
3314 err = -EEXIST;
3315 else /* no users remaining */
3316 err = -ENOENT;
355cfa73
KH
3317
3318 } else if (count || has_cache) {
253d553b 3319
570a335b
HD
3320 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3321 count += usage;
3322 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 3323 err = -EINVAL;
570a335b
HD
3324 else if (swap_count_continued(p, offset, count))
3325 count = COUNT_CONTINUED;
3326 else
3327 err = -ENOMEM;
355cfa73 3328 } else
253d553b
HD
3329 err = -ENOENT; /* unused swap entry */
3330
3331 p->swap_map[offset] = count | has_cache;
3332
355cfa73 3333unlock_out:
235b6217 3334 unlock_cluster_or_swap_info(p, ci);
1da177e4 3335out:
253d553b 3336 return err;
1da177e4
LT
3337
3338bad_file:
465c47fd 3339 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
3340 goto out;
3341}
253d553b 3342
aaa46865
HD
3343/*
3344 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3345 * (in which case its reference count is never incremented).
3346 */
3347void swap_shmem_alloc(swp_entry_t entry)
3348{
3349 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3350}
3351
355cfa73 3352/*
08259d58
HD
3353 * Increase reference count of swap entry by 1.
3354 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3355 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3356 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3357 * might occur if a page table entry has got corrupted.
355cfa73 3358 */
570a335b 3359int swap_duplicate(swp_entry_t entry)
355cfa73 3360{
570a335b
HD
3361 int err = 0;
3362
3363 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3364 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3365 return err;
355cfa73 3366}
1da177e4 3367
cb4b86ba 3368/*
355cfa73
KH
3369 * @entry: swap entry for which we allocate swap cache.
3370 *
73c34b6a 3371 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
3372 * This can return error codes. Returns 0 at success.
3373 * -EBUSY means there is a swap cache.
3374 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
3375 */
3376int swapcache_prepare(swp_entry_t entry)
3377{
253d553b 3378 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
3379}
3380
f981c595
MG
3381struct swap_info_struct *page_swap_info(struct page *page)
3382{
3383 swp_entry_t swap = { .val = page_private(page) };
f981c595
MG
3384 return swap_info[swp_type(swap)];
3385}
3386
3387/*
3388 * out-of-line __page_file_ methods to avoid include hell.
3389 */
3390struct address_space *__page_file_mapping(struct page *page)
3391{
309381fe 3392 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
3393 return page_swap_info(page)->swap_file->f_mapping;
3394}
3395EXPORT_SYMBOL_GPL(__page_file_mapping);
3396
3397pgoff_t __page_file_index(struct page *page)
3398{
3399 swp_entry_t swap = { .val = page_private(page) };
309381fe 3400 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
3401 return swp_offset(swap);
3402}
3403EXPORT_SYMBOL_GPL(__page_file_index);
3404
570a335b
HD
3405/*
3406 * add_swap_count_continuation - called when a swap count is duplicated
3407 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3408 * page of the original vmalloc'ed swap_map, to hold the continuation count
3409 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3410 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3411 *
3412 * These continuation pages are seldom referenced: the common paths all work
3413 * on the original swap_map, only referring to a continuation page when the
3414 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3415 *
3416 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3417 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3418 * can be called after dropping locks.
3419 */
3420int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3421{
3422 struct swap_info_struct *si;
235b6217 3423 struct swap_cluster_info *ci;
570a335b
HD
3424 struct page *head;
3425 struct page *page;
3426 struct page *list_page;
3427 pgoff_t offset;
3428 unsigned char count;
3429
3430 /*
3431 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3432 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3433 */
3434 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3435
3436 si = swap_info_get(entry);
3437 if (!si) {
3438 /*
3439 * An acceptable race has occurred since the failing
3440 * __swap_duplicate(): the swap entry has been freed,
3441 * perhaps even the whole swap_map cleared for swapoff.
3442 */
3443 goto outer;
3444 }
3445
3446 offset = swp_offset(entry);
235b6217
HY
3447
3448 ci = lock_cluster(si, offset);
3449
570a335b
HD
3450 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3451
3452 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3453 /*
3454 * The higher the swap count, the more likely it is that tasks
3455 * will race to add swap count continuation: we need to avoid
3456 * over-provisioning.
3457 */
3458 goto out;
3459 }
3460
3461 if (!page) {
235b6217 3462 unlock_cluster(ci);
ec8acf20 3463 spin_unlock(&si->lock);
570a335b
HD
3464 return -ENOMEM;
3465 }
3466
3467 /*
3468 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
3469 * no architecture is using highmem pages for kernel page tables: so it
3470 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
3471 */
3472 head = vmalloc_to_page(si->swap_map + offset);
3473 offset &= ~PAGE_MASK;
3474
3475 /*
3476 * Page allocation does not initialize the page's lru field,
3477 * but it does always reset its private field.
3478 */
3479 if (!page_private(head)) {
3480 BUG_ON(count & COUNT_CONTINUED);
3481 INIT_LIST_HEAD(&head->lru);
3482 set_page_private(head, SWP_CONTINUED);
3483 si->flags |= SWP_CONTINUED;
3484 }
3485
3486 list_for_each_entry(list_page, &head->lru, lru) {
3487 unsigned char *map;
3488
3489 /*
3490 * If the previous map said no continuation, but we've found
3491 * a continuation page, free our allocation and use this one.
3492 */
3493 if (!(count & COUNT_CONTINUED))
3494 goto out;
3495
9b04c5fe 3496 map = kmap_atomic(list_page) + offset;
570a335b 3497 count = *map;
9b04c5fe 3498 kunmap_atomic(map);
570a335b
HD
3499
3500 /*
3501 * If this continuation count now has some space in it,
3502 * free our allocation and use this one.
3503 */
3504 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3505 goto out;
3506 }
3507
3508 list_add_tail(&page->lru, &head->lru);
3509 page = NULL; /* now it's attached, don't free it */
3510out:
235b6217 3511 unlock_cluster(ci);
ec8acf20 3512 spin_unlock(&si->lock);
570a335b
HD
3513outer:
3514 if (page)
3515 __free_page(page);
3516 return 0;
3517}
3518
3519/*
3520 * swap_count_continued - when the original swap_map count is incremented
3521 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3522 * into, carry if so, or else fail until a new continuation page is allocated;
3523 * when the original swap_map count is decremented from 0 with continuation,
3524 * borrow from the continuation and report whether it still holds more.
235b6217
HY
3525 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3526 * lock.
570a335b
HD
3527 */
3528static bool swap_count_continued(struct swap_info_struct *si,
3529 pgoff_t offset, unsigned char count)
3530{
3531 struct page *head;
3532 struct page *page;
3533 unsigned char *map;
3534
3535 head = vmalloc_to_page(si->swap_map + offset);
3536 if (page_private(head) != SWP_CONTINUED) {
3537 BUG_ON(count & COUNT_CONTINUED);
3538 return false; /* need to add count continuation */
3539 }
3540
3541 offset &= ~PAGE_MASK;
3542 page = list_entry(head->lru.next, struct page, lru);
9b04c5fe 3543 map = kmap_atomic(page) + offset;
570a335b
HD
3544
3545 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3546 goto init_map; /* jump over SWAP_CONT_MAX checks */
3547
3548 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3549 /*
3550 * Think of how you add 1 to 999
3551 */
3552 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 3553 kunmap_atomic(map);
570a335b
HD
3554 page = list_entry(page->lru.next, struct page, lru);
3555 BUG_ON(page == head);
9b04c5fe 3556 map = kmap_atomic(page) + offset;
570a335b
HD
3557 }
3558 if (*map == SWAP_CONT_MAX) {
9b04c5fe 3559 kunmap_atomic(map);
570a335b
HD
3560 page = list_entry(page->lru.next, struct page, lru);
3561 if (page == head)
3562 return false; /* add count continuation */
9b04c5fe 3563 map = kmap_atomic(page) + offset;
570a335b
HD
3564init_map: *map = 0; /* we didn't zero the page */
3565 }
3566 *map += 1;
9b04c5fe 3567 kunmap_atomic(map);
570a335b
HD
3568 page = list_entry(page->lru.prev, struct page, lru);
3569 while (page != head) {
9b04c5fe 3570 map = kmap_atomic(page) + offset;
570a335b 3571 *map = COUNT_CONTINUED;
9b04c5fe 3572 kunmap_atomic(map);
570a335b
HD
3573 page = list_entry(page->lru.prev, struct page, lru);
3574 }
3575 return true; /* incremented */
3576
3577 } else { /* decrementing */
3578 /*
3579 * Think of how you subtract 1 from 1000
3580 */
3581 BUG_ON(count != COUNT_CONTINUED);
3582 while (*map == COUNT_CONTINUED) {
9b04c5fe 3583 kunmap_atomic(map);
570a335b
HD
3584 page = list_entry(page->lru.next, struct page, lru);
3585 BUG_ON(page == head);
9b04c5fe 3586 map = kmap_atomic(page) + offset;
570a335b
HD
3587 }
3588 BUG_ON(*map == 0);
3589 *map -= 1;
3590 if (*map == 0)
3591 count = 0;
9b04c5fe 3592 kunmap_atomic(map);
570a335b
HD
3593 page = list_entry(page->lru.prev, struct page, lru);
3594 while (page != head) {
9b04c5fe 3595 map = kmap_atomic(page) + offset;
570a335b
HD
3596 *map = SWAP_CONT_MAX | count;
3597 count = COUNT_CONTINUED;
9b04c5fe 3598 kunmap_atomic(map);
570a335b
HD
3599 page = list_entry(page->lru.prev, struct page, lru);
3600 }
3601 return count == COUNT_CONTINUED;
3602 }
3603}
3604
3605/*
3606 * free_swap_count_continuations - swapoff free all the continuation pages
3607 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3608 */
3609static void free_swap_count_continuations(struct swap_info_struct *si)
3610{
3611 pgoff_t offset;
3612
3613 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3614 struct page *head;
3615 head = vmalloc_to_page(si->swap_map + offset);
3616 if (page_private(head)) {
0d576d20
GT
3617 struct page *page, *next;
3618
3619 list_for_each_entry_safe(page, next, &head->lru, lru) {
3620 list_del(&page->lru);
570a335b
HD
3621 __free_page(page);
3622 }
3623 }
3624 }
3625}