]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/swapfile.c
[PATCH] dm: Fix deadlock under high i/o load in raid1 setup.
[mirror_ubuntu-bionic-kernel.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
17#include <linux/shm.h>
18#include <linux/blkdev.h>
19#include <linux/writeback.h>
20#include <linux/proc_fs.h>
21#include <linux/seq_file.h>
22#include <linux/init.h>
23#include <linux/module.h>
24#include <linux/rmap.h>
25#include <linux/security.h>
26#include <linux/backing-dev.h>
fc0abb14 27#include <linux/mutex.h>
c59ede7b 28#include <linux/capability.h>
1da177e4
LT
29#include <linux/syscalls.h>
30
31#include <asm/pgtable.h>
32#include <asm/tlbflush.h>
33#include <linux/swapops.h>
34
5d337b91 35DEFINE_SPINLOCK(swap_lock);
1da177e4
LT
36unsigned int nr_swapfiles;
37long total_swap_pages;
38static int swap_overflow;
39
1da177e4
LT
40static const char Bad_file[] = "Bad swap file entry ";
41static const char Unused_file[] = "Unused swap file entry ";
42static const char Bad_offset[] = "Bad swap offset entry ";
43static const char Unused_offset[] = "Unused swap offset entry ";
44
45struct swap_list_t swap_list = {-1, -1};
46
f577eb30 47static struct swap_info_struct swap_info[MAX_SWAPFILES];
1da177e4 48
fc0abb14 49static DEFINE_MUTEX(swapon_mutex);
1da177e4
LT
50
51/*
52 * We need this because the bdev->unplug_fn can sleep and we cannot
5d337b91 53 * hold swap_lock while calling the unplug_fn. And swap_lock
fc0abb14 54 * cannot be turned into a mutex.
1da177e4
LT
55 */
56static DECLARE_RWSEM(swap_unplug_sem);
57
1da177e4
LT
58void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
59{
60 swp_entry_t entry;
61
62 down_read(&swap_unplug_sem);
4c21e2f2 63 entry.val = page_private(page);
1da177e4
LT
64 if (PageSwapCache(page)) {
65 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
66 struct backing_dev_info *bdi;
67
68 /*
69 * If the page is removed from swapcache from under us (with a
70 * racy try_to_unuse/swapoff) we need an additional reference
4c21e2f2
HD
71 * count to avoid reading garbage from page_private(page) above.
72 * If the WARN_ON triggers during a swapoff it maybe the race
1da177e4
LT
73 * condition and it's harmless. However if it triggers without
74 * swapoff it signals a problem.
75 */
76 WARN_ON(page_count(page) <= 1);
77
78 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
ba32311e 79 blk_run_backing_dev(bdi, page);
1da177e4
LT
80 }
81 up_read(&swap_unplug_sem);
82}
83
048c27fd
HD
84#define SWAPFILE_CLUSTER 256
85#define LATENCY_LIMIT 256
86
6eb396dc 87static inline unsigned long scan_swap_map(struct swap_info_struct *si)
1da177e4 88{
7dfad418 89 unsigned long offset, last_in_cluster;
048c27fd 90 int latency_ration = LATENCY_LIMIT;
7dfad418 91
1da177e4 92 /*
7dfad418
HD
93 * We try to cluster swap pages by allocating them sequentially
94 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
95 * way, however, we resort to first-free allocation, starting
96 * a new cluster. This prevents us from scattering swap pages
97 * all over the entire swap partition, so that we reduce
98 * overall disk seek times between swap pages. -- sct
99 * But we do now try to find an empty cluster. -Andrea
100 */
101
52b7efdb 102 si->flags += SWP_SCANNING;
7dfad418
HD
103 if (unlikely(!si->cluster_nr)) {
104 si->cluster_nr = SWAPFILE_CLUSTER - 1;
105 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
106 goto lowest;
5d337b91 107 spin_unlock(&swap_lock);
7dfad418
HD
108
109 offset = si->lowest_bit;
110 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
111
112 /* Locate the first empty (unaligned) cluster */
113 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 114 if (si->swap_map[offset])
7dfad418
HD
115 last_in_cluster = offset + SWAPFILE_CLUSTER;
116 else if (offset == last_in_cluster) {
5d337b91 117 spin_lock(&swap_lock);
9b65ef59 118 si->cluster_next = offset-SWAPFILE_CLUSTER+1;
7dfad418 119 goto cluster;
1da177e4 120 }
048c27fd
HD
121 if (unlikely(--latency_ration < 0)) {
122 cond_resched();
123 latency_ration = LATENCY_LIMIT;
124 }
7dfad418 125 }
5d337b91 126 spin_lock(&swap_lock);
7dfad418 127 goto lowest;
1da177e4 128 }
7dfad418
HD
129
130 si->cluster_nr--;
131cluster:
132 offset = si->cluster_next;
133 if (offset > si->highest_bit)
134lowest: offset = si->lowest_bit;
52b7efdb
HD
135checks: if (!(si->flags & SWP_WRITEOK))
136 goto no_page;
7dfad418
HD
137 if (!si->highest_bit)
138 goto no_page;
139 if (!si->swap_map[offset]) {
52b7efdb 140 if (offset == si->lowest_bit)
1da177e4
LT
141 si->lowest_bit++;
142 if (offset == si->highest_bit)
143 si->highest_bit--;
7dfad418
HD
144 si->inuse_pages++;
145 if (si->inuse_pages == si->pages) {
1da177e4
LT
146 si->lowest_bit = si->max;
147 si->highest_bit = 0;
148 }
149 si->swap_map[offset] = 1;
7dfad418 150 si->cluster_next = offset + 1;
52b7efdb 151 si->flags -= SWP_SCANNING;
1da177e4
LT
152 return offset;
153 }
7dfad418 154
5d337b91 155 spin_unlock(&swap_lock);
7dfad418 156 while (++offset <= si->highest_bit) {
52b7efdb 157 if (!si->swap_map[offset]) {
5d337b91 158 spin_lock(&swap_lock);
52b7efdb
HD
159 goto checks;
160 }
048c27fd
HD
161 if (unlikely(--latency_ration < 0)) {
162 cond_resched();
163 latency_ration = LATENCY_LIMIT;
164 }
7dfad418 165 }
5d337b91 166 spin_lock(&swap_lock);
7dfad418
HD
167 goto lowest;
168
169no_page:
52b7efdb 170 si->flags -= SWP_SCANNING;
1da177e4
LT
171 return 0;
172}
173
174swp_entry_t get_swap_page(void)
175{
fb4f88dc
HD
176 struct swap_info_struct *si;
177 pgoff_t offset;
178 int type, next;
179 int wrapped = 0;
1da177e4 180
5d337b91 181 spin_lock(&swap_lock);
1da177e4 182 if (nr_swap_pages <= 0)
fb4f88dc
HD
183 goto noswap;
184 nr_swap_pages--;
185
186 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
187 si = swap_info + type;
188 next = si->next;
189 if (next < 0 ||
190 (!wrapped && si->prio != swap_info[next].prio)) {
191 next = swap_list.head;
192 wrapped++;
1da177e4 193 }
fb4f88dc
HD
194
195 if (!si->highest_bit)
196 continue;
197 if (!(si->flags & SWP_WRITEOK))
198 continue;
199
200 swap_list.next = next;
fb4f88dc 201 offset = scan_swap_map(si);
5d337b91
HD
202 if (offset) {
203 spin_unlock(&swap_lock);
fb4f88dc 204 return swp_entry(type, offset);
5d337b91 205 }
fb4f88dc 206 next = swap_list.next;
1da177e4 207 }
fb4f88dc
HD
208
209 nr_swap_pages++;
210noswap:
5d337b91 211 spin_unlock(&swap_lock);
fb4f88dc 212 return (swp_entry_t) {0};
1da177e4
LT
213}
214
3a291a20
RW
215swp_entry_t get_swap_page_of_type(int type)
216{
217 struct swap_info_struct *si;
218 pgoff_t offset;
219
220 spin_lock(&swap_lock);
221 si = swap_info + type;
222 if (si->flags & SWP_WRITEOK) {
223 nr_swap_pages--;
224 offset = scan_swap_map(si);
225 if (offset) {
226 spin_unlock(&swap_lock);
227 return swp_entry(type, offset);
228 }
229 nr_swap_pages++;
230 }
231 spin_unlock(&swap_lock);
232 return (swp_entry_t) {0};
233}
234
1da177e4
LT
235static struct swap_info_struct * swap_info_get(swp_entry_t entry)
236{
237 struct swap_info_struct * p;
238 unsigned long offset, type;
239
240 if (!entry.val)
241 goto out;
242 type = swp_type(entry);
243 if (type >= nr_swapfiles)
244 goto bad_nofile;
245 p = & swap_info[type];
246 if (!(p->flags & SWP_USED))
247 goto bad_device;
248 offset = swp_offset(entry);
249 if (offset >= p->max)
250 goto bad_offset;
251 if (!p->swap_map[offset])
252 goto bad_free;
5d337b91 253 spin_lock(&swap_lock);
1da177e4
LT
254 return p;
255
256bad_free:
257 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
258 goto out;
259bad_offset:
260 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
261 goto out;
262bad_device:
263 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
264 goto out;
265bad_nofile:
266 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
267out:
268 return NULL;
269}
270
1da177e4
LT
271static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
272{
273 int count = p->swap_map[offset];
274
275 if (count < SWAP_MAP_MAX) {
276 count--;
277 p->swap_map[offset] = count;
278 if (!count) {
279 if (offset < p->lowest_bit)
280 p->lowest_bit = offset;
281 if (offset > p->highest_bit)
282 p->highest_bit = offset;
89d09a2c
HD
283 if (p->prio > swap_info[swap_list.next].prio)
284 swap_list.next = p - swap_info;
1da177e4
LT
285 nr_swap_pages++;
286 p->inuse_pages--;
287 }
288 }
289 return count;
290}
291
292/*
293 * Caller has made sure that the swapdevice corresponding to entry
294 * is still around or has not been recycled.
295 */
296void swap_free(swp_entry_t entry)
297{
298 struct swap_info_struct * p;
299
300 p = swap_info_get(entry);
301 if (p) {
302 swap_entry_free(p, swp_offset(entry));
5d337b91 303 spin_unlock(&swap_lock);
1da177e4
LT
304 }
305}
306
307/*
c475a8ab 308 * How many references to page are currently swapped out?
1da177e4 309 */
c475a8ab 310static inline int page_swapcount(struct page *page)
1da177e4 311{
c475a8ab
HD
312 int count = 0;
313 struct swap_info_struct *p;
1da177e4
LT
314 swp_entry_t entry;
315
4c21e2f2 316 entry.val = page_private(page);
1da177e4
LT
317 p = swap_info_get(entry);
318 if (p) {
c475a8ab
HD
319 /* Subtract the 1 for the swap cache itself */
320 count = p->swap_map[swp_offset(entry)] - 1;
5d337b91 321 spin_unlock(&swap_lock);
1da177e4 322 }
c475a8ab 323 return count;
1da177e4
LT
324}
325
326/*
327 * We can use this swap cache entry directly
328 * if there are no other references to it.
1da177e4
LT
329 */
330int can_share_swap_page(struct page *page)
331{
c475a8ab
HD
332 int count;
333
334 BUG_ON(!PageLocked(page));
335 count = page_mapcount(page);
336 if (count <= 1 && PageSwapCache(page))
337 count += page_swapcount(page);
338 return count == 1;
1da177e4
LT
339}
340
341/*
342 * Work out if there are any other processes sharing this
343 * swap cache page. Free it if you can. Return success.
344 */
345int remove_exclusive_swap_page(struct page *page)
346{
347 int retval;
348 struct swap_info_struct * p;
349 swp_entry_t entry;
350
351 BUG_ON(PagePrivate(page));
352 BUG_ON(!PageLocked(page));
353
354 if (!PageSwapCache(page))
355 return 0;
356 if (PageWriteback(page))
357 return 0;
358 if (page_count(page) != 2) /* 2: us + cache */
359 return 0;
360
4c21e2f2 361 entry.val = page_private(page);
1da177e4
LT
362 p = swap_info_get(entry);
363 if (!p)
364 return 0;
365
366 /* Is the only swap cache user the cache itself? */
367 retval = 0;
368 if (p->swap_map[swp_offset(entry)] == 1) {
369 /* Recheck the page count with the swapcache lock held.. */
370 write_lock_irq(&swapper_space.tree_lock);
371 if ((page_count(page) == 2) && !PageWriteback(page)) {
372 __delete_from_swap_cache(page);
373 SetPageDirty(page);
374 retval = 1;
375 }
376 write_unlock_irq(&swapper_space.tree_lock);
377 }
5d337b91 378 spin_unlock(&swap_lock);
1da177e4
LT
379
380 if (retval) {
381 swap_free(entry);
382 page_cache_release(page);
383 }
384
385 return retval;
386}
387
388/*
389 * Free the swap entry like above, but also try to
390 * free the page cache entry if it is the last user.
391 */
392void free_swap_and_cache(swp_entry_t entry)
393{
394 struct swap_info_struct * p;
395 struct page *page = NULL;
396
0697212a
CL
397 if (is_migration_entry(entry))
398 return;
399
1da177e4
LT
400 p = swap_info_get(entry);
401 if (p) {
93fac704
NP
402 if (swap_entry_free(p, swp_offset(entry)) == 1) {
403 page = find_get_page(&swapper_space, entry.val);
404 if (page && unlikely(TestSetPageLocked(page))) {
405 page_cache_release(page);
406 page = NULL;
407 }
408 }
5d337b91 409 spin_unlock(&swap_lock);
1da177e4
LT
410 }
411 if (page) {
412 int one_user;
413
414 BUG_ON(PagePrivate(page));
1da177e4
LT
415 one_user = (page_count(page) == 2);
416 /* Only cache user (+us), or swap space full? Free it! */
93fac704
NP
417 /* Also recheck PageSwapCache after page is locked (above) */
418 if (PageSwapCache(page) && !PageWriteback(page) &&
419 (one_user || vm_swap_full())) {
1da177e4
LT
420 delete_from_swap_cache(page);
421 SetPageDirty(page);
422 }
423 unlock_page(page);
424 page_cache_release(page);
425 }
426}
427
f577eb30
RW
428#ifdef CONFIG_SOFTWARE_SUSPEND
429/*
430 * Find the swap type that corresponds to given device (if any)
431 *
432 * This is needed for software suspend and is done in such a way that inode
433 * aliasing is allowed.
434 */
435int swap_type_of(dev_t device)
436{
437 int i;
438
f577eb30
RW
439 spin_lock(&swap_lock);
440 for (i = 0; i < nr_swapfiles; i++) {
441 struct inode *inode;
442
443 if (!(swap_info[i].flags & SWP_WRITEOK))
444 continue;
6e1819d6
RW
445 if (!device) {
446 spin_unlock(&swap_lock);
447 return i;
448 }
f577eb30
RW
449 inode = swap_info->swap_file->f_dentry->d_inode;
450 if (S_ISBLK(inode->i_mode) &&
451 device == MKDEV(imajor(inode), iminor(inode))) {
452 spin_unlock(&swap_lock);
453 return i;
454 }
455 }
456 spin_unlock(&swap_lock);
457 return -ENODEV;
458}
459
460/*
461 * Return either the total number of swap pages of given type, or the number
462 * of free pages of that type (depending on @free)
463 *
464 * This is needed for software suspend
465 */
466unsigned int count_swap_pages(int type, int free)
467{
468 unsigned int n = 0;
469
470 if (type < nr_swapfiles) {
471 spin_lock(&swap_lock);
472 if (swap_info[type].flags & SWP_WRITEOK) {
473 n = swap_info[type].pages;
474 if (free)
475 n -= swap_info[type].inuse_pages;
476 }
477 spin_unlock(&swap_lock);
478 }
479 return n;
480}
481#endif
482
1da177e4 483/*
72866f6f
HD
484 * No need to decide whether this PTE shares the swap entry with others,
485 * just let do_wp_page work it out if a write is requested later - to
486 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4
LT
487 */
488static void unuse_pte(struct vm_area_struct *vma, pte_t *pte,
489 unsigned long addr, swp_entry_t entry, struct page *page)
490{
4294621f 491 inc_mm_counter(vma->vm_mm, anon_rss);
1da177e4
LT
492 get_page(page);
493 set_pte_at(vma->vm_mm, addr, pte,
494 pte_mkold(mk_pte(page, vma->vm_page_prot)));
495 page_add_anon_rmap(page, vma, addr);
496 swap_free(entry);
497 /*
498 * Move the page to the active list so it is not
499 * immediately swapped out again after swapon.
500 */
501 activate_page(page);
502}
503
504static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
505 unsigned long addr, unsigned long end,
506 swp_entry_t entry, struct page *page)
507{
1da177e4 508 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0
HD
509 pte_t *pte;
510 spinlock_t *ptl;
511 int found = 0;
1da177e4 512
705e87c0 513 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1da177e4
LT
514 do {
515 /*
516 * swapoff spends a _lot_ of time in this loop!
517 * Test inline before going to call unuse_pte.
518 */
519 if (unlikely(pte_same(*pte, swp_pte))) {
705e87c0
HD
520 unuse_pte(vma, pte++, addr, entry, page);
521 found = 1;
522 break;
1da177e4
LT
523 }
524 } while (pte++, addr += PAGE_SIZE, addr != end);
705e87c0
HD
525 pte_unmap_unlock(pte - 1, ptl);
526 return found;
1da177e4
LT
527}
528
529static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
530 unsigned long addr, unsigned long end,
531 swp_entry_t entry, struct page *page)
532{
533 pmd_t *pmd;
534 unsigned long next;
535
536 pmd = pmd_offset(pud, addr);
537 do {
538 next = pmd_addr_end(addr, end);
539 if (pmd_none_or_clear_bad(pmd))
540 continue;
541 if (unuse_pte_range(vma, pmd, addr, next, entry, page))
542 return 1;
543 } while (pmd++, addr = next, addr != end);
544 return 0;
545}
546
547static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
548 unsigned long addr, unsigned long end,
549 swp_entry_t entry, struct page *page)
550{
551 pud_t *pud;
552 unsigned long next;
553
554 pud = pud_offset(pgd, addr);
555 do {
556 next = pud_addr_end(addr, end);
557 if (pud_none_or_clear_bad(pud))
558 continue;
559 if (unuse_pmd_range(vma, pud, addr, next, entry, page))
560 return 1;
561 } while (pud++, addr = next, addr != end);
562 return 0;
563}
564
565static int unuse_vma(struct vm_area_struct *vma,
566 swp_entry_t entry, struct page *page)
567{
568 pgd_t *pgd;
569 unsigned long addr, end, next;
570
571 if (page->mapping) {
572 addr = page_address_in_vma(page, vma);
573 if (addr == -EFAULT)
574 return 0;
575 else
576 end = addr + PAGE_SIZE;
577 } else {
578 addr = vma->vm_start;
579 end = vma->vm_end;
580 }
581
582 pgd = pgd_offset(vma->vm_mm, addr);
583 do {
584 next = pgd_addr_end(addr, end);
585 if (pgd_none_or_clear_bad(pgd))
586 continue;
587 if (unuse_pud_range(vma, pgd, addr, next, entry, page))
588 return 1;
589 } while (pgd++, addr = next, addr != end);
590 return 0;
591}
592
593static int unuse_mm(struct mm_struct *mm,
594 swp_entry_t entry, struct page *page)
595{
596 struct vm_area_struct *vma;
597
598 if (!down_read_trylock(&mm->mmap_sem)) {
599 /*
c475a8ab
HD
600 * Activate page so shrink_cache is unlikely to unmap its
601 * ptes while lock is dropped, so swapoff can make progress.
1da177e4 602 */
c475a8ab 603 activate_page(page);
1da177e4
LT
604 unlock_page(page);
605 down_read(&mm->mmap_sem);
606 lock_page(page);
607 }
1da177e4
LT
608 for (vma = mm->mmap; vma; vma = vma->vm_next) {
609 if (vma->anon_vma && unuse_vma(vma, entry, page))
610 break;
611 }
1da177e4
LT
612 up_read(&mm->mmap_sem);
613 /*
614 * Currently unuse_mm cannot fail, but leave error handling
615 * at call sites for now, since we change it from time to time.
616 */
617 return 0;
618}
619
620/*
621 * Scan swap_map from current position to next entry still in use.
622 * Recycle to start on reaching the end, returning 0 when empty.
623 */
6eb396dc
HD
624static unsigned int find_next_to_unuse(struct swap_info_struct *si,
625 unsigned int prev)
1da177e4 626{
6eb396dc
HD
627 unsigned int max = si->max;
628 unsigned int i = prev;
1da177e4
LT
629 int count;
630
631 /*
5d337b91 632 * No need for swap_lock here: we're just looking
1da177e4
LT
633 * for whether an entry is in use, not modifying it; false
634 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 635 * allocations from this area (while holding swap_lock).
1da177e4
LT
636 */
637 for (;;) {
638 if (++i >= max) {
639 if (!prev) {
640 i = 0;
641 break;
642 }
643 /*
644 * No entries in use at top of swap_map,
645 * loop back to start and recheck there.
646 */
647 max = prev + 1;
648 prev = 0;
649 i = 1;
650 }
651 count = si->swap_map[i];
652 if (count && count != SWAP_MAP_BAD)
653 break;
654 }
655 return i;
656}
657
658/*
659 * We completely avoid races by reading each swap page in advance,
660 * and then search for the process using it. All the necessary
661 * page table adjustments can then be made atomically.
662 */
663static int try_to_unuse(unsigned int type)
664{
665 struct swap_info_struct * si = &swap_info[type];
666 struct mm_struct *start_mm;
667 unsigned short *swap_map;
668 unsigned short swcount;
669 struct page *page;
670 swp_entry_t entry;
6eb396dc 671 unsigned int i = 0;
1da177e4
LT
672 int retval = 0;
673 int reset_overflow = 0;
674 int shmem;
675
676 /*
677 * When searching mms for an entry, a good strategy is to
678 * start at the first mm we freed the previous entry from
679 * (though actually we don't notice whether we or coincidence
680 * freed the entry). Initialize this start_mm with a hold.
681 *
682 * A simpler strategy would be to start at the last mm we
683 * freed the previous entry from; but that would take less
684 * advantage of mmlist ordering, which clusters forked mms
685 * together, child after parent. If we race with dup_mmap(), we
686 * prefer to resolve parent before child, lest we miss entries
687 * duplicated after we scanned child: using last mm would invert
688 * that. Though it's only a serious concern when an overflowed
689 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
690 */
691 start_mm = &init_mm;
692 atomic_inc(&init_mm.mm_users);
693
694 /*
695 * Keep on scanning until all entries have gone. Usually,
696 * one pass through swap_map is enough, but not necessarily:
697 * there are races when an instance of an entry might be missed.
698 */
699 while ((i = find_next_to_unuse(si, i)) != 0) {
700 if (signal_pending(current)) {
701 retval = -EINTR;
702 break;
703 }
704
705 /*
706 * Get a page for the entry, using the existing swap
707 * cache page if there is one. Otherwise, get a clean
708 * page and read the swap into it.
709 */
710 swap_map = &si->swap_map[i];
711 entry = swp_entry(type, i);
712 page = read_swap_cache_async(entry, NULL, 0);
713 if (!page) {
714 /*
715 * Either swap_duplicate() failed because entry
716 * has been freed independently, and will not be
717 * reused since sys_swapoff() already disabled
718 * allocation from here, or alloc_page() failed.
719 */
720 if (!*swap_map)
721 continue;
722 retval = -ENOMEM;
723 break;
724 }
725
726 /*
727 * Don't hold on to start_mm if it looks like exiting.
728 */
729 if (atomic_read(&start_mm->mm_users) == 1) {
730 mmput(start_mm);
731 start_mm = &init_mm;
732 atomic_inc(&init_mm.mm_users);
733 }
734
735 /*
736 * Wait for and lock page. When do_swap_page races with
737 * try_to_unuse, do_swap_page can handle the fault much
738 * faster than try_to_unuse can locate the entry. This
739 * apparently redundant "wait_on_page_locked" lets try_to_unuse
740 * defer to do_swap_page in such a case - in some tests,
741 * do_swap_page and try_to_unuse repeatedly compete.
742 */
743 wait_on_page_locked(page);
744 wait_on_page_writeback(page);
745 lock_page(page);
746 wait_on_page_writeback(page);
747
748 /*
749 * Remove all references to entry.
750 * Whenever we reach init_mm, there's no address space
751 * to search, but use it as a reminder to search shmem.
752 */
753 shmem = 0;
754 swcount = *swap_map;
755 if (swcount > 1) {
756 if (start_mm == &init_mm)
757 shmem = shmem_unuse(entry, page);
758 else
759 retval = unuse_mm(start_mm, entry, page);
760 }
761 if (*swap_map > 1) {
762 int set_start_mm = (*swap_map >= swcount);
763 struct list_head *p = &start_mm->mmlist;
764 struct mm_struct *new_start_mm = start_mm;
765 struct mm_struct *prev_mm = start_mm;
766 struct mm_struct *mm;
767
768 atomic_inc(&new_start_mm->mm_users);
769 atomic_inc(&prev_mm->mm_users);
770 spin_lock(&mmlist_lock);
771 while (*swap_map > 1 && !retval &&
772 (p = p->next) != &start_mm->mmlist) {
773 mm = list_entry(p, struct mm_struct, mmlist);
70af7c5c 774 if (!atomic_inc_not_zero(&mm->mm_users))
1da177e4 775 continue;
1da177e4
LT
776 spin_unlock(&mmlist_lock);
777 mmput(prev_mm);
778 prev_mm = mm;
779
780 cond_resched();
781
782 swcount = *swap_map;
783 if (swcount <= 1)
784 ;
785 else if (mm == &init_mm) {
786 set_start_mm = 1;
787 shmem = shmem_unuse(entry, page);
788 } else
789 retval = unuse_mm(mm, entry, page);
790 if (set_start_mm && *swap_map < swcount) {
791 mmput(new_start_mm);
792 atomic_inc(&mm->mm_users);
793 new_start_mm = mm;
794 set_start_mm = 0;
795 }
796 spin_lock(&mmlist_lock);
797 }
798 spin_unlock(&mmlist_lock);
799 mmput(prev_mm);
800 mmput(start_mm);
801 start_mm = new_start_mm;
802 }
803 if (retval) {
804 unlock_page(page);
805 page_cache_release(page);
806 break;
807 }
808
809 /*
810 * How could swap count reach 0x7fff when the maximum
811 * pid is 0x7fff, and there's no way to repeat a swap
812 * page within an mm (except in shmem, where it's the
813 * shared object which takes the reference count)?
814 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
815 *
816 * If that's wrong, then we should worry more about
817 * exit_mmap() and do_munmap() cases described above:
818 * we might be resetting SWAP_MAP_MAX too early here.
819 * We know "Undead"s can happen, they're okay, so don't
820 * report them; but do report if we reset SWAP_MAP_MAX.
821 */
822 if (*swap_map == SWAP_MAP_MAX) {
5d337b91 823 spin_lock(&swap_lock);
1da177e4 824 *swap_map = 1;
5d337b91 825 spin_unlock(&swap_lock);
1da177e4
LT
826 reset_overflow = 1;
827 }
828
829 /*
830 * If a reference remains (rare), we would like to leave
831 * the page in the swap cache; but try_to_unmap could
832 * then re-duplicate the entry once we drop page lock,
833 * so we might loop indefinitely; also, that page could
834 * not be swapped out to other storage meanwhile. So:
835 * delete from cache even if there's another reference,
836 * after ensuring that the data has been saved to disk -
837 * since if the reference remains (rarer), it will be
838 * read from disk into another page. Splitting into two
839 * pages would be incorrect if swap supported "shared
840 * private" pages, but they are handled by tmpfs files.
841 *
842 * Note shmem_unuse already deleted a swappage from
843 * the swap cache, unless the move to filepage failed:
844 * in which case it left swappage in cache, lowered its
845 * swap count to pass quickly through the loops above,
846 * and now we must reincrement count to try again later.
847 */
848 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
849 struct writeback_control wbc = {
850 .sync_mode = WB_SYNC_NONE,
851 };
852
853 swap_writepage(page, &wbc);
854 lock_page(page);
855 wait_on_page_writeback(page);
856 }
857 if (PageSwapCache(page)) {
858 if (shmem)
859 swap_duplicate(entry);
860 else
861 delete_from_swap_cache(page);
862 }
863
864 /*
865 * So we could skip searching mms once swap count went
866 * to 1, we did not mark any present ptes as dirty: must
867 * mark page dirty so shrink_list will preserve it.
868 */
869 SetPageDirty(page);
870 unlock_page(page);
871 page_cache_release(page);
872
873 /*
874 * Make sure that we aren't completely killing
875 * interactive performance.
876 */
877 cond_resched();
878 }
879
880 mmput(start_mm);
881 if (reset_overflow) {
882 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
883 swap_overflow = 0;
884 }
885 return retval;
886}
887
888/*
5d337b91
HD
889 * After a successful try_to_unuse, if no swap is now in use, we know
890 * we can empty the mmlist. swap_lock must be held on entry and exit.
891 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
892 * added to the mmlist just after page_duplicate - before would be racy.
893 */
894static void drain_mmlist(void)
895{
896 struct list_head *p, *next;
897 unsigned int i;
898
899 for (i = 0; i < nr_swapfiles; i++)
900 if (swap_info[i].inuse_pages)
901 return;
902 spin_lock(&mmlist_lock);
903 list_for_each_safe(p, next, &init_mm.mmlist)
904 list_del_init(p);
905 spin_unlock(&mmlist_lock);
906}
907
908/*
909 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
910 * corresponds to page offset `offset'.
911 */
912sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
913{
914 struct swap_extent *se = sis->curr_swap_extent;
915 struct swap_extent *start_se = se;
916
917 for ( ; ; ) {
918 struct list_head *lh;
919
920 if (se->start_page <= offset &&
921 offset < (se->start_page + se->nr_pages)) {
922 return se->start_block + (offset - se->start_page);
923 }
11d31886 924 lh = se->list.next;
1da177e4 925 if (lh == &sis->extent_list)
11d31886 926 lh = lh->next;
1da177e4
LT
927 se = list_entry(lh, struct swap_extent, list);
928 sis->curr_swap_extent = se;
929 BUG_ON(se == start_se); /* It *must* be present */
930 }
931}
932
933/*
934 * Free all of a swapdev's extent information
935 */
936static void destroy_swap_extents(struct swap_info_struct *sis)
937{
938 while (!list_empty(&sis->extent_list)) {
939 struct swap_extent *se;
940
941 se = list_entry(sis->extent_list.next,
942 struct swap_extent, list);
943 list_del(&se->list);
944 kfree(se);
945 }
1da177e4
LT
946}
947
948/*
949 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 950 * extent list. The extent list is kept sorted in page order.
1da177e4 951 *
11d31886 952 * This function rather assumes that it is called in ascending page order.
1da177e4
LT
953 */
954static int
955add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
956 unsigned long nr_pages, sector_t start_block)
957{
958 struct swap_extent *se;
959 struct swap_extent *new_se;
960 struct list_head *lh;
961
11d31886
HD
962 lh = sis->extent_list.prev; /* The highest page extent */
963 if (lh != &sis->extent_list) {
1da177e4 964 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
965 BUG_ON(se->start_page + se->nr_pages != start_page);
966 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
967 /* Merge it */
968 se->nr_pages += nr_pages;
969 return 0;
970 }
1da177e4
LT
971 }
972
973 /*
974 * No merge. Insert a new extent, preserving ordering.
975 */
976 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
977 if (new_se == NULL)
978 return -ENOMEM;
979 new_se->start_page = start_page;
980 new_se->nr_pages = nr_pages;
981 new_se->start_block = start_block;
982
11d31886 983 list_add_tail(&new_se->list, &sis->extent_list);
53092a74 984 return 1;
1da177e4
LT
985}
986
987/*
988 * A `swap extent' is a simple thing which maps a contiguous range of pages
989 * onto a contiguous range of disk blocks. An ordered list of swap extents
990 * is built at swapon time and is then used at swap_writepage/swap_readpage
991 * time for locating where on disk a page belongs.
992 *
993 * If the swapfile is an S_ISBLK block device, a single extent is installed.
994 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
995 * swap files identically.
996 *
997 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
998 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
999 * swapfiles are handled *identically* after swapon time.
1000 *
1001 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1002 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1003 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1004 * requirements, they are simply tossed out - we will never use those blocks
1005 * for swapping.
1006 *
b0d9bcd4 1007 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
1008 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1009 * which will scribble on the fs.
1010 *
1011 * The amount of disk space which a single swap extent represents varies.
1012 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1013 * extents in the list. To avoid much list walking, we cache the previous
1014 * search location in `curr_swap_extent', and start new searches from there.
1015 * This is extremely effective. The average number of iterations in
1016 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1017 */
53092a74 1018static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4
LT
1019{
1020 struct inode *inode;
1021 unsigned blocks_per_page;
1022 unsigned long page_no;
1023 unsigned blkbits;
1024 sector_t probe_block;
1025 sector_t last_block;
53092a74
HD
1026 sector_t lowest_block = -1;
1027 sector_t highest_block = 0;
1028 int nr_extents = 0;
1da177e4
LT
1029 int ret;
1030
1031 inode = sis->swap_file->f_mapping->host;
1032 if (S_ISBLK(inode->i_mode)) {
1033 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 1034 *span = sis->pages;
1da177e4
LT
1035 goto done;
1036 }
1037
1038 blkbits = inode->i_blkbits;
1039 blocks_per_page = PAGE_SIZE >> blkbits;
1040
1041 /*
1042 * Map all the blocks into the extent list. This code doesn't try
1043 * to be very smart.
1044 */
1045 probe_block = 0;
1046 page_no = 0;
1047 last_block = i_size_read(inode) >> blkbits;
1048 while ((probe_block + blocks_per_page) <= last_block &&
1049 page_no < sis->max) {
1050 unsigned block_in_page;
1051 sector_t first_block;
1052
1053 first_block = bmap(inode, probe_block);
1054 if (first_block == 0)
1055 goto bad_bmap;
1056
1057 /*
1058 * It must be PAGE_SIZE aligned on-disk
1059 */
1060 if (first_block & (blocks_per_page - 1)) {
1061 probe_block++;
1062 goto reprobe;
1063 }
1064
1065 for (block_in_page = 1; block_in_page < blocks_per_page;
1066 block_in_page++) {
1067 sector_t block;
1068
1069 block = bmap(inode, probe_block + block_in_page);
1070 if (block == 0)
1071 goto bad_bmap;
1072 if (block != first_block + block_in_page) {
1073 /* Discontiguity */
1074 probe_block++;
1075 goto reprobe;
1076 }
1077 }
1078
53092a74
HD
1079 first_block >>= (PAGE_SHIFT - blkbits);
1080 if (page_no) { /* exclude the header page */
1081 if (first_block < lowest_block)
1082 lowest_block = first_block;
1083 if (first_block > highest_block)
1084 highest_block = first_block;
1085 }
1086
1da177e4
LT
1087 /*
1088 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1089 */
53092a74
HD
1090 ret = add_swap_extent(sis, page_no, 1, first_block);
1091 if (ret < 0)
1da177e4 1092 goto out;
53092a74 1093 nr_extents += ret;
1da177e4
LT
1094 page_no++;
1095 probe_block += blocks_per_page;
1096reprobe:
1097 continue;
1098 }
53092a74
HD
1099 ret = nr_extents;
1100 *span = 1 + highest_block - lowest_block;
1da177e4 1101 if (page_no == 0)
e2244ec2 1102 page_no = 1; /* force Empty message */
1da177e4 1103 sis->max = page_no;
e2244ec2 1104 sis->pages = page_no - 1;
1da177e4
LT
1105 sis->highest_bit = page_no - 1;
1106done:
1107 sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1108 struct swap_extent, list);
1109 goto out;
1110bad_bmap:
1111 printk(KERN_ERR "swapon: swapfile has holes\n");
1112 ret = -EINVAL;
1113out:
1114 return ret;
1115}
1116
1117#if 0 /* We don't need this yet */
1118#include <linux/backing-dev.h>
1119int page_queue_congested(struct page *page)
1120{
1121 struct backing_dev_info *bdi;
1122
1123 BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */
1124
1125 if (PageSwapCache(page)) {
4c21e2f2 1126 swp_entry_t entry = { .val = page_private(page) };
1da177e4
LT
1127 struct swap_info_struct *sis;
1128
1129 sis = get_swap_info_struct(swp_type(entry));
1130 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1131 } else
1132 bdi = page->mapping->backing_dev_info;
1133 return bdi_write_congested(bdi);
1134}
1135#endif
1136
1137asmlinkage long sys_swapoff(const char __user * specialfile)
1138{
1139 struct swap_info_struct * p = NULL;
1140 unsigned short *swap_map;
1141 struct file *swap_file, *victim;
1142 struct address_space *mapping;
1143 struct inode *inode;
1144 char * pathname;
1145 int i, type, prev;
1146 int err;
1147
1148 if (!capable(CAP_SYS_ADMIN))
1149 return -EPERM;
1150
1151 pathname = getname(specialfile);
1152 err = PTR_ERR(pathname);
1153 if (IS_ERR(pathname))
1154 goto out;
1155
1156 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1157 putname(pathname);
1158 err = PTR_ERR(victim);
1159 if (IS_ERR(victim))
1160 goto out;
1161
1162 mapping = victim->f_mapping;
1163 prev = -1;
5d337b91 1164 spin_lock(&swap_lock);
1da177e4
LT
1165 for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1166 p = swap_info + type;
1167 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1168 if (p->swap_file->f_mapping == mapping)
1169 break;
1170 }
1171 prev = type;
1172 }
1173 if (type < 0) {
1174 err = -EINVAL;
5d337b91 1175 spin_unlock(&swap_lock);
1da177e4
LT
1176 goto out_dput;
1177 }
1178 if (!security_vm_enough_memory(p->pages))
1179 vm_unacct_memory(p->pages);
1180 else {
1181 err = -ENOMEM;
5d337b91 1182 spin_unlock(&swap_lock);
1da177e4
LT
1183 goto out_dput;
1184 }
1185 if (prev < 0) {
1186 swap_list.head = p->next;
1187 } else {
1188 swap_info[prev].next = p->next;
1189 }
1190 if (type == swap_list.next) {
1191 /* just pick something that's safe... */
1192 swap_list.next = swap_list.head;
1193 }
1194 nr_swap_pages -= p->pages;
1195 total_swap_pages -= p->pages;
1196 p->flags &= ~SWP_WRITEOK;
5d337b91 1197 spin_unlock(&swap_lock);
fb4f88dc 1198
1da177e4
LT
1199 current->flags |= PF_SWAPOFF;
1200 err = try_to_unuse(type);
1201 current->flags &= ~PF_SWAPOFF;
1202
1da177e4
LT
1203 if (err) {
1204 /* re-insert swap space back into swap_list */
5d337b91 1205 spin_lock(&swap_lock);
1da177e4
LT
1206 for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1207 if (p->prio >= swap_info[i].prio)
1208 break;
1209 p->next = i;
1210 if (prev < 0)
1211 swap_list.head = swap_list.next = p - swap_info;
1212 else
1213 swap_info[prev].next = p - swap_info;
1214 nr_swap_pages += p->pages;
1215 total_swap_pages += p->pages;
1216 p->flags |= SWP_WRITEOK;
5d337b91 1217 spin_unlock(&swap_lock);
1da177e4
LT
1218 goto out_dput;
1219 }
52b7efdb
HD
1220
1221 /* wait for any unplug function to finish */
1222 down_write(&swap_unplug_sem);
1223 up_write(&swap_unplug_sem);
1224
5d337b91 1225 destroy_swap_extents(p);
fc0abb14 1226 mutex_lock(&swapon_mutex);
5d337b91
HD
1227 spin_lock(&swap_lock);
1228 drain_mmlist();
1229
52b7efdb 1230 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
1231 p->highest_bit = 0; /* cuts scans short */
1232 while (p->flags >= SWP_SCANNING) {
5d337b91 1233 spin_unlock(&swap_lock);
13e4b57f 1234 schedule_timeout_uninterruptible(1);
5d337b91 1235 spin_lock(&swap_lock);
52b7efdb 1236 }
52b7efdb 1237
1da177e4
LT
1238 swap_file = p->swap_file;
1239 p->swap_file = NULL;
1240 p->max = 0;
1241 swap_map = p->swap_map;
1242 p->swap_map = NULL;
1243 p->flags = 0;
5d337b91 1244 spin_unlock(&swap_lock);
fc0abb14 1245 mutex_unlock(&swapon_mutex);
1da177e4
LT
1246 vfree(swap_map);
1247 inode = mapping->host;
1248 if (S_ISBLK(inode->i_mode)) {
1249 struct block_device *bdev = I_BDEV(inode);
1250 set_blocksize(bdev, p->old_block_size);
1251 bd_release(bdev);
1252 } else {
1b1dcc1b 1253 mutex_lock(&inode->i_mutex);
1da177e4 1254 inode->i_flags &= ~S_SWAPFILE;
1b1dcc1b 1255 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1256 }
1257 filp_close(swap_file, NULL);
1258 err = 0;
1259
1260out_dput:
1261 filp_close(victim, NULL);
1262out:
1263 return err;
1264}
1265
1266#ifdef CONFIG_PROC_FS
1267/* iterator */
1268static void *swap_start(struct seq_file *swap, loff_t *pos)
1269{
1270 struct swap_info_struct *ptr = swap_info;
1271 int i;
1272 loff_t l = *pos;
1273
fc0abb14 1274 mutex_lock(&swapon_mutex);
1da177e4
LT
1275
1276 for (i = 0; i < nr_swapfiles; i++, ptr++) {
1277 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1278 continue;
1279 if (!l--)
1280 return ptr;
1281 }
1282
1283 return NULL;
1284}
1285
1286static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1287{
1288 struct swap_info_struct *ptr = v;
1289 struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1290
1291 for (++ptr; ptr < endptr; ptr++) {
1292 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1293 continue;
1294 ++*pos;
1295 return ptr;
1296 }
1297
1298 return NULL;
1299}
1300
1301static void swap_stop(struct seq_file *swap, void *v)
1302{
fc0abb14 1303 mutex_unlock(&swapon_mutex);
1da177e4
LT
1304}
1305
1306static int swap_show(struct seq_file *swap, void *v)
1307{
1308 struct swap_info_struct *ptr = v;
1309 struct file *file;
1310 int len;
1311
1312 if (v == swap_info)
1313 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1314
1315 file = ptr->swap_file;
1316 len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\");
6eb396dc 1317 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1da177e4
LT
1318 len < 40 ? 40 - len : 1, " ",
1319 S_ISBLK(file->f_dentry->d_inode->i_mode) ?
1320 "partition" : "file\t",
1321 ptr->pages << (PAGE_SHIFT - 10),
1322 ptr->inuse_pages << (PAGE_SHIFT - 10),
1323 ptr->prio);
1324 return 0;
1325}
1326
1327static struct seq_operations swaps_op = {
1328 .start = swap_start,
1329 .next = swap_next,
1330 .stop = swap_stop,
1331 .show = swap_show
1332};
1333
1334static int swaps_open(struct inode *inode, struct file *file)
1335{
1336 return seq_open(file, &swaps_op);
1337}
1338
1339static struct file_operations proc_swaps_operations = {
1340 .open = swaps_open,
1341 .read = seq_read,
1342 .llseek = seq_lseek,
1343 .release = seq_release,
1344};
1345
1346static int __init procswaps_init(void)
1347{
1348 struct proc_dir_entry *entry;
1349
1350 entry = create_proc_entry("swaps", 0, NULL);
1351 if (entry)
1352 entry->proc_fops = &proc_swaps_operations;
1353 return 0;
1354}
1355__initcall(procswaps_init);
1356#endif /* CONFIG_PROC_FS */
1357
1358/*
1359 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1360 *
1361 * The swapon system call
1362 */
1363asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1364{
1365 struct swap_info_struct * p;
1366 char *name = NULL;
1367 struct block_device *bdev = NULL;
1368 struct file *swap_file = NULL;
1369 struct address_space *mapping;
1370 unsigned int type;
1371 int i, prev;
1372 int error;
1373 static int least_priority;
1374 union swap_header *swap_header = NULL;
1375 int swap_header_version;
6eb396dc
HD
1376 unsigned int nr_good_pages = 0;
1377 int nr_extents = 0;
53092a74 1378 sector_t span;
1da177e4
LT
1379 unsigned long maxpages = 1;
1380 int swapfilesize;
1381 unsigned short *swap_map;
1382 struct page *page = NULL;
1383 struct inode *inode = NULL;
1384 int did_down = 0;
1385
1386 if (!capable(CAP_SYS_ADMIN))
1387 return -EPERM;
5d337b91 1388 spin_lock(&swap_lock);
1da177e4
LT
1389 p = swap_info;
1390 for (type = 0 ; type < nr_swapfiles ; type++,p++)
1391 if (!(p->flags & SWP_USED))
1392 break;
1393 error = -EPERM;
0697212a 1394 if (type >= MAX_SWAPFILES) {
5d337b91 1395 spin_unlock(&swap_lock);
1da177e4
LT
1396 goto out;
1397 }
1398 if (type >= nr_swapfiles)
1399 nr_swapfiles = type+1;
1400 INIT_LIST_HEAD(&p->extent_list);
1401 p->flags = SWP_USED;
1da177e4
LT
1402 p->swap_file = NULL;
1403 p->old_block_size = 0;
1404 p->swap_map = NULL;
1405 p->lowest_bit = 0;
1406 p->highest_bit = 0;
1407 p->cluster_nr = 0;
1408 p->inuse_pages = 0;
1da177e4
LT
1409 p->next = -1;
1410 if (swap_flags & SWAP_FLAG_PREFER) {
1411 p->prio =
1412 (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1413 } else {
1414 p->prio = --least_priority;
1415 }
5d337b91 1416 spin_unlock(&swap_lock);
1da177e4
LT
1417 name = getname(specialfile);
1418 error = PTR_ERR(name);
1419 if (IS_ERR(name)) {
1420 name = NULL;
1421 goto bad_swap_2;
1422 }
1423 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1424 error = PTR_ERR(swap_file);
1425 if (IS_ERR(swap_file)) {
1426 swap_file = NULL;
1427 goto bad_swap_2;
1428 }
1429
1430 p->swap_file = swap_file;
1431 mapping = swap_file->f_mapping;
1432 inode = mapping->host;
1433
1434 error = -EBUSY;
1435 for (i = 0; i < nr_swapfiles; i++) {
1436 struct swap_info_struct *q = &swap_info[i];
1437
1438 if (i == type || !q->swap_file)
1439 continue;
1440 if (mapping == q->swap_file->f_mapping)
1441 goto bad_swap;
1442 }
1443
1444 error = -EINVAL;
1445 if (S_ISBLK(inode->i_mode)) {
1446 bdev = I_BDEV(inode);
1447 error = bd_claim(bdev, sys_swapon);
1448 if (error < 0) {
1449 bdev = NULL;
f7b3a435 1450 error = -EINVAL;
1da177e4
LT
1451 goto bad_swap;
1452 }
1453 p->old_block_size = block_size(bdev);
1454 error = set_blocksize(bdev, PAGE_SIZE);
1455 if (error < 0)
1456 goto bad_swap;
1457 p->bdev = bdev;
1458 } else if (S_ISREG(inode->i_mode)) {
1459 p->bdev = inode->i_sb->s_bdev;
1b1dcc1b 1460 mutex_lock(&inode->i_mutex);
1da177e4
LT
1461 did_down = 1;
1462 if (IS_SWAPFILE(inode)) {
1463 error = -EBUSY;
1464 goto bad_swap;
1465 }
1466 } else {
1467 goto bad_swap;
1468 }
1469
1470 swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1471
1472 /*
1473 * Read the swap header.
1474 */
1475 if (!mapping->a_ops->readpage) {
1476 error = -EINVAL;
1477 goto bad_swap;
1478 }
090d2b18 1479 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
1480 if (IS_ERR(page)) {
1481 error = PTR_ERR(page);
1482 goto bad_swap;
1483 }
1484 wait_on_page_locked(page);
1485 if (!PageUptodate(page))
1486 goto bad_swap;
1487 kmap(page);
1488 swap_header = page_address(page);
1489
1490 if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1491 swap_header_version = 1;
1492 else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1493 swap_header_version = 2;
1494 else {
e97a3111 1495 printk(KERN_ERR "Unable to find swap-space signature\n");
1da177e4
LT
1496 error = -EINVAL;
1497 goto bad_swap;
1498 }
1499
1500 switch (swap_header_version) {
1501 case 1:
1502 printk(KERN_ERR "version 0 swap is no longer supported. "
1503 "Use mkswap -v1 %s\n", name);
1504 error = -EINVAL;
1505 goto bad_swap;
1506 case 2:
1507 /* Check the swap header's sub-version and the size of
1508 the swap file and bad block lists */
1509 if (swap_header->info.version != 1) {
1510 printk(KERN_WARNING
1511 "Unable to handle swap header version %d\n",
1512 swap_header->info.version);
1513 error = -EINVAL;
1514 goto bad_swap;
1515 }
1516
1517 p->lowest_bit = 1;
52b7efdb
HD
1518 p->cluster_next = 1;
1519
1da177e4
LT
1520 /*
1521 * Find out how many pages are allowed for a single swap
1522 * device. There are two limiting factors: 1) the number of
1523 * bits for the swap offset in the swp_entry_t type and
1524 * 2) the number of bits in the a swap pte as defined by
1525 * the different architectures. In order to find the
1526 * largest possible bit mask a swap entry with swap type 0
1527 * and swap offset ~0UL is created, encoded to a swap pte,
1528 * decoded to a swp_entry_t again and finally the swap
1529 * offset is extracted. This will mask all the bits from
1530 * the initial ~0UL mask that can't be encoded in either
1531 * the swp_entry_t or the architecture definition of a
1532 * swap pte.
1533 */
1534 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1535 if (maxpages > swap_header->info.last_page)
1536 maxpages = swap_header->info.last_page;
1537 p->highest_bit = maxpages - 1;
1538
1539 error = -EINVAL;
e2244ec2
HD
1540 if (!maxpages)
1541 goto bad_swap;
1542 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1543 goto bad_swap;
1da177e4
LT
1544 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1545 goto bad_swap;
cd105df4 1546
1da177e4
LT
1547 /* OK, set up the swap map and apply the bad block list */
1548 if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1549 error = -ENOMEM;
1550 goto bad_swap;
1551 }
1552
1553 error = 0;
1554 memset(p->swap_map, 0, maxpages * sizeof(short));
cd105df4
TK
1555 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1556 int page_nr = swap_header->info.badpages[i];
1557 if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
1da177e4
LT
1558 error = -EINVAL;
1559 else
cd105df4 1560 p->swap_map[page_nr] = SWAP_MAP_BAD;
1da177e4
LT
1561 }
1562 nr_good_pages = swap_header->info.last_page -
1563 swap_header->info.nr_badpages -
1564 1 /* header page */;
cd105df4 1565 if (error)
1da177e4
LT
1566 goto bad_swap;
1567 }
e2244ec2 1568
1da177e4
LT
1569 if (swapfilesize && maxpages > swapfilesize) {
1570 printk(KERN_WARNING
1571 "Swap area shorter than signature indicates\n");
1572 error = -EINVAL;
1573 goto bad_swap;
1574 }
e2244ec2
HD
1575 if (nr_good_pages) {
1576 p->swap_map[0] = SWAP_MAP_BAD;
1577 p->max = maxpages;
1578 p->pages = nr_good_pages;
53092a74
HD
1579 nr_extents = setup_swap_extents(p, &span);
1580 if (nr_extents < 0) {
1581 error = nr_extents;
e2244ec2 1582 goto bad_swap;
53092a74 1583 }
e2244ec2
HD
1584 nr_good_pages = p->pages;
1585 }
1da177e4
LT
1586 if (!nr_good_pages) {
1587 printk(KERN_WARNING "Empty swap-file\n");
1588 error = -EINVAL;
1589 goto bad_swap;
1590 }
1da177e4 1591
fc0abb14 1592 mutex_lock(&swapon_mutex);
5d337b91 1593 spin_lock(&swap_lock);
1da177e4
LT
1594 p->flags = SWP_ACTIVE;
1595 nr_swap_pages += nr_good_pages;
1596 total_swap_pages += nr_good_pages;
53092a74 1597
6eb396dc 1598 printk(KERN_INFO "Adding %uk swap on %s. "
53092a74
HD
1599 "Priority:%d extents:%d across:%lluk\n",
1600 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1601 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1da177e4
LT
1602
1603 /* insert swap space into swap_list: */
1604 prev = -1;
1605 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1606 if (p->prio >= swap_info[i].prio) {
1607 break;
1608 }
1609 prev = i;
1610 }
1611 p->next = i;
1612 if (prev < 0) {
1613 swap_list.head = swap_list.next = p - swap_info;
1614 } else {
1615 swap_info[prev].next = p - swap_info;
1616 }
5d337b91 1617 spin_unlock(&swap_lock);
fc0abb14 1618 mutex_unlock(&swapon_mutex);
1da177e4
LT
1619 error = 0;
1620 goto out;
1621bad_swap:
1622 if (bdev) {
1623 set_blocksize(bdev, p->old_block_size);
1624 bd_release(bdev);
1625 }
4cd3bb10 1626 destroy_swap_extents(p);
1da177e4 1627bad_swap_2:
5d337b91 1628 spin_lock(&swap_lock);
1da177e4
LT
1629 swap_map = p->swap_map;
1630 p->swap_file = NULL;
1631 p->swap_map = NULL;
1632 p->flags = 0;
1633 if (!(swap_flags & SWAP_FLAG_PREFER))
1634 ++least_priority;
5d337b91 1635 spin_unlock(&swap_lock);
1da177e4
LT
1636 vfree(swap_map);
1637 if (swap_file)
1638 filp_close(swap_file, NULL);
1639out:
1640 if (page && !IS_ERR(page)) {
1641 kunmap(page);
1642 page_cache_release(page);
1643 }
1644 if (name)
1645 putname(name);
1646 if (did_down) {
1647 if (!error)
1648 inode->i_flags |= S_SWAPFILE;
1b1dcc1b 1649 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1650 }
1651 return error;
1652}
1653
1654void si_swapinfo(struct sysinfo *val)
1655{
1656 unsigned int i;
1657 unsigned long nr_to_be_unused = 0;
1658
5d337b91 1659 spin_lock(&swap_lock);
1da177e4
LT
1660 for (i = 0; i < nr_swapfiles; i++) {
1661 if (!(swap_info[i].flags & SWP_USED) ||
1662 (swap_info[i].flags & SWP_WRITEOK))
1663 continue;
1664 nr_to_be_unused += swap_info[i].inuse_pages;
1665 }
1666 val->freeswap = nr_swap_pages + nr_to_be_unused;
1667 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 1668 spin_unlock(&swap_lock);
1da177e4
LT
1669}
1670
1671/*
1672 * Verify that a swap entry is valid and increment its swap map count.
1673 *
1674 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1675 * "permanent", but will be reclaimed by the next swapoff.
1676 */
1677int swap_duplicate(swp_entry_t entry)
1678{
1679 struct swap_info_struct * p;
1680 unsigned long offset, type;
1681 int result = 0;
1682
0697212a
CL
1683 if (is_migration_entry(entry))
1684 return 1;
1685
1da177e4
LT
1686 type = swp_type(entry);
1687 if (type >= nr_swapfiles)
1688 goto bad_file;
1689 p = type + swap_info;
1690 offset = swp_offset(entry);
1691
5d337b91 1692 spin_lock(&swap_lock);
1da177e4
LT
1693 if (offset < p->max && p->swap_map[offset]) {
1694 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1695 p->swap_map[offset]++;
1696 result = 1;
1697 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1698 if (swap_overflow++ < 5)
1699 printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1700 p->swap_map[offset] = SWAP_MAP_MAX;
1701 result = 1;
1702 }
1703 }
5d337b91 1704 spin_unlock(&swap_lock);
1da177e4
LT
1705out:
1706 return result;
1707
1708bad_file:
1709 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1710 goto out;
1711}
1712
1713struct swap_info_struct *
1714get_swap_info_struct(unsigned type)
1715{
1716 return &swap_info[type];
1717}
1718
1719/*
5d337b91 1720 * swap_lock prevents swap_map being freed. Don't grab an extra
1da177e4
LT
1721 * reference on the swaphandle, it doesn't matter if it becomes unused.
1722 */
1723int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1724{
1725 int ret = 0, i = 1 << page_cluster;
1726 unsigned long toff;
1727 struct swap_info_struct *swapdev = swp_type(entry) + swap_info;
1728
1729 if (!page_cluster) /* no readahead */
1730 return 0;
1731 toff = (swp_offset(entry) >> page_cluster) << page_cluster;
1732 if (!toff) /* first page is swap header */
1733 toff++, i--;
1734 *offset = toff;
1735
5d337b91 1736 spin_lock(&swap_lock);
1da177e4
LT
1737 do {
1738 /* Don't read-ahead past the end of the swap area */
1739 if (toff >= swapdev->max)
1740 break;
1741 /* Don't read in free or bad pages */
1742 if (!swapdev->swap_map[toff])
1743 break;
1744 if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
1745 break;
1746 toff++;
1747 ret++;
1748 } while (--i);
5d337b91 1749 spin_unlock(&swap_lock);
1da177e4
LT
1750 return ret;
1751}