]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/swapfile.c
mm/swapfile.c: offset is only used when there is more slots
[mirror_ubuntu-hirsute-kernel.git] / mm / swapfile.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
1da177e4 9#include <linux/mm.h>
6e84f315 10#include <linux/sched/mm.h>
29930025 11#include <linux/sched/task.h>
1da177e4
LT
12#include <linux/hugetlb.h>
13#include <linux/mman.h>
14#include <linux/slab.h>
15#include <linux/kernel_stat.h>
16#include <linux/swap.h>
17#include <linux/vmalloc.h>
18#include <linux/pagemap.h>
19#include <linux/namei.h>
072441e2 20#include <linux/shmem_fs.h>
1da177e4 21#include <linux/blkdev.h>
20137a49 22#include <linux/random.h>
1da177e4
LT
23#include <linux/writeback.h>
24#include <linux/proc_fs.h>
25#include <linux/seq_file.h>
26#include <linux/init.h>
5ad64688 27#include <linux/ksm.h>
1da177e4
LT
28#include <linux/rmap.h>
29#include <linux/security.h>
30#include <linux/backing-dev.h>
fc0abb14 31#include <linux/mutex.h>
c59ede7b 32#include <linux/capability.h>
1da177e4 33#include <linux/syscalls.h>
8a9f3ccd 34#include <linux/memcontrol.h>
66d7dd51 35#include <linux/poll.h>
72788c38 36#include <linux/oom.h>
38b5faf4
DM
37#include <linux/frontswap.h>
38#include <linux/swapfile.h>
f981c595 39#include <linux/export.h>
67afa38e 40#include <linux/swap_slots.h>
155b5f88 41#include <linux/sort.h>
1da177e4
LT
42
43#include <asm/pgtable.h>
44#include <asm/tlbflush.h>
45#include <linux/swapops.h>
5d1ea48b 46#include <linux/swap_cgroup.h>
1da177e4 47
570a335b
HD
48static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49 unsigned char);
50static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 51static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 52
38b5faf4 53DEFINE_SPINLOCK(swap_lock);
7c363b8c 54static unsigned int nr_swapfiles;
ec8acf20 55atomic_long_t nr_swap_pages;
fb0fec50
CW
56/*
57 * Some modules use swappable objects and may try to swap them out under
58 * memory pressure (via the shrinker). Before doing so, they may wish to
59 * check to see if any swap space is available.
60 */
61EXPORT_SYMBOL_GPL(nr_swap_pages);
ec8acf20 62/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 63long total_swap_pages;
a2468cc9 64static int least_priority = -1;
1da177e4 65
1da177e4
LT
66static const char Bad_file[] = "Bad swap file entry ";
67static const char Unused_file[] = "Unused swap file entry ";
68static const char Bad_offset[] = "Bad swap offset entry ";
69static const char Unused_offset[] = "Unused swap offset entry ";
70
adfab836
DS
71/*
72 * all active swap_info_structs
73 * protected with swap_lock, and ordered by priority.
74 */
18ab4d4c
DS
75PLIST_HEAD(swap_active_head);
76
77/*
78 * all available (active, not full) swap_info_structs
79 * protected with swap_avail_lock, ordered by priority.
80 * This is used by get_swap_page() instead of swap_active_head
81 * because swap_active_head includes all swap_info_structs,
82 * but get_swap_page() doesn't need to look at full ones.
83 * This uses its own lock instead of swap_lock because when a
84 * swap_info_struct changes between not-full/full, it needs to
85 * add/remove itself to/from this list, but the swap_info_struct->lock
86 * is held and the locking order requires swap_lock to be taken
87 * before any swap_info_struct->lock.
88 */
bfc6b1ca 89static struct plist_head *swap_avail_heads;
18ab4d4c 90static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 91
38b5faf4 92struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 93
fc0abb14 94static DEFINE_MUTEX(swapon_mutex);
1da177e4 95
66d7dd51
KS
96static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
97/* Activity counter to indicate that a swapon or swapoff has occurred */
98static atomic_t proc_poll_event = ATOMIC_INIT(0);
99
81a0298b
HY
100atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101
c10d38cc
DJ
102static struct swap_info_struct *swap_type_to_swap_info(int type)
103{
104 if (type >= READ_ONCE(nr_swapfiles))
105 return NULL;
106
107 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */
108 return READ_ONCE(swap_info[type]);
109}
110
8d69aaee 111static inline unsigned char swap_count(unsigned char ent)
355cfa73 112{
955c97f0 113 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
355cfa73
KH
114}
115
bcd49e86
HY
116/* Reclaim the swap entry anyway if possible */
117#define TTRS_ANYWAY 0x1
118/*
119 * Reclaim the swap entry if there are no more mappings of the
120 * corresponding page
121 */
122#define TTRS_UNMAPPED 0x2
123/* Reclaim the swap entry if swap is getting full*/
124#define TTRS_FULL 0x4
125
efa90a98 126/* returns 1 if swap entry is freed */
bcd49e86
HY
127static int __try_to_reclaim_swap(struct swap_info_struct *si,
128 unsigned long offset, unsigned long flags)
c9e44410 129{
efa90a98 130 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
131 struct page *page;
132 int ret = 0;
133
bcd49e86 134 page = find_get_page(swap_address_space(entry), offset);
c9e44410
KH
135 if (!page)
136 return 0;
137 /*
bcd49e86
HY
138 * When this function is called from scan_swap_map_slots() and it's
139 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
140 * here. We have to use trylock for avoiding deadlock. This is a special
c9e44410
KH
141 * case and you should use try_to_free_swap() with explicit lock_page()
142 * in usual operations.
143 */
144 if (trylock_page(page)) {
bcd49e86
HY
145 if ((flags & TTRS_ANYWAY) ||
146 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
147 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
148 ret = try_to_free_swap(page);
c9e44410
KH
149 unlock_page(page);
150 }
09cbfeaf 151 put_page(page);
c9e44410
KH
152 return ret;
153}
355cfa73 154
4efaceb1
AL
155static inline struct swap_extent *first_se(struct swap_info_struct *sis)
156{
157 struct rb_node *rb = rb_first(&sis->swap_extent_root);
158 return rb_entry(rb, struct swap_extent, rb_node);
159}
160
161static inline struct swap_extent *next_se(struct swap_extent *se)
162{
163 struct rb_node *rb = rb_next(&se->rb_node);
164 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
165}
166
6a6ba831
HD
167/*
168 * swapon tell device that all the old swap contents can be discarded,
169 * to allow the swap device to optimize its wear-levelling.
170 */
171static int discard_swap(struct swap_info_struct *si)
172{
173 struct swap_extent *se;
9625a5f2
HD
174 sector_t start_block;
175 sector_t nr_blocks;
6a6ba831
HD
176 int err = 0;
177
9625a5f2 178 /* Do not discard the swap header page! */
4efaceb1 179 se = first_se(si);
9625a5f2
HD
180 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
181 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
182 if (nr_blocks) {
183 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 184 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
185 if (err)
186 return err;
187 cond_resched();
188 }
6a6ba831 189
4efaceb1 190 for (se = next_se(se); se; se = next_se(se)) {
9625a5f2
HD
191 start_block = se->start_block << (PAGE_SHIFT - 9);
192 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
193
194 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 195 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
196 if (err)
197 break;
198
199 cond_resched();
200 }
201 return err; /* That will often be -EOPNOTSUPP */
202}
203
4efaceb1
AL
204static struct swap_extent *
205offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
206{
207 struct swap_extent *se;
208 struct rb_node *rb;
209
210 rb = sis->swap_extent_root.rb_node;
211 while (rb) {
212 se = rb_entry(rb, struct swap_extent, rb_node);
213 if (offset < se->start_page)
214 rb = rb->rb_left;
215 else if (offset >= se->start_page + se->nr_pages)
216 rb = rb->rb_right;
217 else
218 return se;
219 }
220 /* It *must* be present */
221 BUG();
222}
223
7992fde7
HD
224/*
225 * swap allocation tell device that a cluster of swap can now be discarded,
226 * to allow the swap device to optimize its wear-levelling.
227 */
228static void discard_swap_cluster(struct swap_info_struct *si,
229 pgoff_t start_page, pgoff_t nr_pages)
230{
4efaceb1 231 struct swap_extent *se = offset_to_swap_extent(si, start_page);
7992fde7
HD
232
233 while (nr_pages) {
4efaceb1
AL
234 pgoff_t offset = start_page - se->start_page;
235 sector_t start_block = se->start_block + offset;
236 sector_t nr_blocks = se->nr_pages - offset;
237
238 if (nr_blocks > nr_pages)
239 nr_blocks = nr_pages;
240 start_page += nr_blocks;
241 nr_pages -= nr_blocks;
242
243 start_block <<= PAGE_SHIFT - 9;
244 nr_blocks <<= PAGE_SHIFT - 9;
245 if (blkdev_issue_discard(si->bdev, start_block,
246 nr_blocks, GFP_NOIO, 0))
247 break;
7992fde7 248
4efaceb1 249 se = next_se(se);
7992fde7
HD
250 }
251}
252
38d8b4e6
HY
253#ifdef CONFIG_THP_SWAP
254#define SWAPFILE_CLUSTER HPAGE_PMD_NR
a448f2d0
HY
255
256#define swap_entry_size(size) (size)
38d8b4e6 257#else
048c27fd 258#define SWAPFILE_CLUSTER 256
a448f2d0
HY
259
260/*
261 * Define swap_entry_size() as constant to let compiler to optimize
262 * out some code if !CONFIG_THP_SWAP
263 */
264#define swap_entry_size(size) 1
38d8b4e6 265#endif
048c27fd
HD
266#define LATENCY_LIMIT 256
267
2a8f9449
SL
268static inline void cluster_set_flag(struct swap_cluster_info *info,
269 unsigned int flag)
270{
271 info->flags = flag;
272}
273
274static inline unsigned int cluster_count(struct swap_cluster_info *info)
275{
276 return info->data;
277}
278
279static inline void cluster_set_count(struct swap_cluster_info *info,
280 unsigned int c)
281{
282 info->data = c;
283}
284
285static inline void cluster_set_count_flag(struct swap_cluster_info *info,
286 unsigned int c, unsigned int f)
287{
288 info->flags = f;
289 info->data = c;
290}
291
292static inline unsigned int cluster_next(struct swap_cluster_info *info)
293{
294 return info->data;
295}
296
297static inline void cluster_set_next(struct swap_cluster_info *info,
298 unsigned int n)
299{
300 info->data = n;
301}
302
303static inline void cluster_set_next_flag(struct swap_cluster_info *info,
304 unsigned int n, unsigned int f)
305{
306 info->flags = f;
307 info->data = n;
308}
309
310static inline bool cluster_is_free(struct swap_cluster_info *info)
311{
312 return info->flags & CLUSTER_FLAG_FREE;
313}
314
315static inline bool cluster_is_null(struct swap_cluster_info *info)
316{
317 return info->flags & CLUSTER_FLAG_NEXT_NULL;
318}
319
320static inline void cluster_set_null(struct swap_cluster_info *info)
321{
322 info->flags = CLUSTER_FLAG_NEXT_NULL;
323 info->data = 0;
324}
325
e0709829
HY
326static inline bool cluster_is_huge(struct swap_cluster_info *info)
327{
33ee011e
HY
328 if (IS_ENABLED(CONFIG_THP_SWAP))
329 return info->flags & CLUSTER_FLAG_HUGE;
330 return false;
e0709829
HY
331}
332
333static inline void cluster_clear_huge(struct swap_cluster_info *info)
334{
335 info->flags &= ~CLUSTER_FLAG_HUGE;
336}
337
235b6217
HY
338static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
339 unsigned long offset)
340{
341 struct swap_cluster_info *ci;
342
343 ci = si->cluster_info;
344 if (ci) {
345 ci += offset / SWAPFILE_CLUSTER;
346 spin_lock(&ci->lock);
347 }
348 return ci;
349}
350
351static inline void unlock_cluster(struct swap_cluster_info *ci)
352{
353 if (ci)
354 spin_unlock(&ci->lock);
355}
356
59d98bf3
HY
357/*
358 * Determine the locking method in use for this device. Return
359 * swap_cluster_info if SSD-style cluster-based locking is in place.
360 */
235b6217 361static inline struct swap_cluster_info *lock_cluster_or_swap_info(
59d98bf3 362 struct swap_info_struct *si, unsigned long offset)
235b6217
HY
363{
364 struct swap_cluster_info *ci;
365
59d98bf3 366 /* Try to use fine-grained SSD-style locking if available: */
235b6217 367 ci = lock_cluster(si, offset);
59d98bf3 368 /* Otherwise, fall back to traditional, coarse locking: */
235b6217
HY
369 if (!ci)
370 spin_lock(&si->lock);
371
372 return ci;
373}
374
375static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
376 struct swap_cluster_info *ci)
377{
378 if (ci)
379 unlock_cluster(ci);
380 else
381 spin_unlock(&si->lock);
382}
383
6b534915
HY
384static inline bool cluster_list_empty(struct swap_cluster_list *list)
385{
386 return cluster_is_null(&list->head);
387}
388
389static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
390{
391 return cluster_next(&list->head);
392}
393
394static void cluster_list_init(struct swap_cluster_list *list)
395{
396 cluster_set_null(&list->head);
397 cluster_set_null(&list->tail);
398}
399
400static void cluster_list_add_tail(struct swap_cluster_list *list,
401 struct swap_cluster_info *ci,
402 unsigned int idx)
403{
404 if (cluster_list_empty(list)) {
405 cluster_set_next_flag(&list->head, idx, 0);
406 cluster_set_next_flag(&list->tail, idx, 0);
407 } else {
235b6217 408 struct swap_cluster_info *ci_tail;
6b534915
HY
409 unsigned int tail = cluster_next(&list->tail);
410
235b6217
HY
411 /*
412 * Nested cluster lock, but both cluster locks are
413 * only acquired when we held swap_info_struct->lock
414 */
415 ci_tail = ci + tail;
416 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
417 cluster_set_next(ci_tail, idx);
0ef017d1 418 spin_unlock(&ci_tail->lock);
6b534915
HY
419 cluster_set_next_flag(&list->tail, idx, 0);
420 }
421}
422
423static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
424 struct swap_cluster_info *ci)
425{
426 unsigned int idx;
427
428 idx = cluster_next(&list->head);
429 if (cluster_next(&list->tail) == idx) {
430 cluster_set_null(&list->head);
431 cluster_set_null(&list->tail);
432 } else
433 cluster_set_next_flag(&list->head,
434 cluster_next(&ci[idx]), 0);
435
436 return idx;
437}
438
815c2c54
SL
439/* Add a cluster to discard list and schedule it to do discard */
440static void swap_cluster_schedule_discard(struct swap_info_struct *si,
441 unsigned int idx)
442{
443 /*
444 * If scan_swap_map() can't find a free cluster, it will check
445 * si->swap_map directly. To make sure the discarding cluster isn't
446 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
447 * will be cleared after discard
448 */
449 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
450 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
451
6b534915 452 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
815c2c54
SL
453
454 schedule_work(&si->discard_work);
455}
456
38d8b4e6
HY
457static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
458{
459 struct swap_cluster_info *ci = si->cluster_info;
460
461 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
462 cluster_list_add_tail(&si->free_clusters, ci, idx);
463}
464
815c2c54
SL
465/*
466 * Doing discard actually. After a cluster discard is finished, the cluster
467 * will be added to free cluster list. caller should hold si->lock.
468*/
469static void swap_do_scheduled_discard(struct swap_info_struct *si)
470{
235b6217 471 struct swap_cluster_info *info, *ci;
815c2c54
SL
472 unsigned int idx;
473
474 info = si->cluster_info;
475
6b534915
HY
476 while (!cluster_list_empty(&si->discard_clusters)) {
477 idx = cluster_list_del_first(&si->discard_clusters, info);
815c2c54
SL
478 spin_unlock(&si->lock);
479
480 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
481 SWAPFILE_CLUSTER);
482
483 spin_lock(&si->lock);
235b6217 484 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
38d8b4e6 485 __free_cluster(si, idx);
815c2c54
SL
486 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
487 0, SWAPFILE_CLUSTER);
235b6217 488 unlock_cluster(ci);
815c2c54
SL
489 }
490}
491
492static void swap_discard_work(struct work_struct *work)
493{
494 struct swap_info_struct *si;
495
496 si = container_of(work, struct swap_info_struct, discard_work);
497
498 spin_lock(&si->lock);
499 swap_do_scheduled_discard(si);
500 spin_unlock(&si->lock);
501}
502
38d8b4e6
HY
503static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
504{
505 struct swap_cluster_info *ci = si->cluster_info;
506
507 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
508 cluster_list_del_first(&si->free_clusters, ci);
509 cluster_set_count_flag(ci + idx, 0, 0);
510}
511
512static void free_cluster(struct swap_info_struct *si, unsigned long idx)
513{
514 struct swap_cluster_info *ci = si->cluster_info + idx;
515
516 VM_BUG_ON(cluster_count(ci) != 0);
517 /*
518 * If the swap is discardable, prepare discard the cluster
519 * instead of free it immediately. The cluster will be freed
520 * after discard.
521 */
522 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
523 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
524 swap_cluster_schedule_discard(si, idx);
525 return;
526 }
527
528 __free_cluster(si, idx);
529}
530
2a8f9449
SL
531/*
532 * The cluster corresponding to page_nr will be used. The cluster will be
533 * removed from free cluster list and its usage counter will be increased.
534 */
535static void inc_cluster_info_page(struct swap_info_struct *p,
536 struct swap_cluster_info *cluster_info, unsigned long page_nr)
537{
538 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
539
540 if (!cluster_info)
541 return;
38d8b4e6
HY
542 if (cluster_is_free(&cluster_info[idx]))
543 alloc_cluster(p, idx);
2a8f9449
SL
544
545 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
546 cluster_set_count(&cluster_info[idx],
547 cluster_count(&cluster_info[idx]) + 1);
548}
549
550/*
551 * The cluster corresponding to page_nr decreases one usage. If the usage
552 * counter becomes 0, which means no page in the cluster is in using, we can
553 * optionally discard the cluster and add it to free cluster list.
554 */
555static void dec_cluster_info_page(struct swap_info_struct *p,
556 struct swap_cluster_info *cluster_info, unsigned long page_nr)
557{
558 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
559
560 if (!cluster_info)
561 return;
562
563 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
564 cluster_set_count(&cluster_info[idx],
565 cluster_count(&cluster_info[idx]) - 1);
566
38d8b4e6
HY
567 if (cluster_count(&cluster_info[idx]) == 0)
568 free_cluster(p, idx);
2a8f9449
SL
569}
570
571/*
572 * It's possible scan_swap_map() uses a free cluster in the middle of free
573 * cluster list. Avoiding such abuse to avoid list corruption.
574 */
ebc2a1a6
SL
575static bool
576scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
577 unsigned long offset)
578{
ebc2a1a6
SL
579 struct percpu_cluster *percpu_cluster;
580 bool conflict;
581
2a8f9449 582 offset /= SWAPFILE_CLUSTER;
6b534915
HY
583 conflict = !cluster_list_empty(&si->free_clusters) &&
584 offset != cluster_list_first(&si->free_clusters) &&
2a8f9449 585 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
586
587 if (!conflict)
588 return false;
589
590 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
591 cluster_set_null(&percpu_cluster->index);
592 return true;
593}
594
595/*
596 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
597 * might involve allocating a new cluster for current CPU too.
598 */
36005bae 599static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
ebc2a1a6
SL
600 unsigned long *offset, unsigned long *scan_base)
601{
602 struct percpu_cluster *cluster;
235b6217 603 struct swap_cluster_info *ci;
ebc2a1a6 604 bool found_free;
235b6217 605 unsigned long tmp, max;
ebc2a1a6
SL
606
607new_cluster:
608 cluster = this_cpu_ptr(si->percpu_cluster);
609 if (cluster_is_null(&cluster->index)) {
6b534915
HY
610 if (!cluster_list_empty(&si->free_clusters)) {
611 cluster->index = si->free_clusters.head;
ebc2a1a6
SL
612 cluster->next = cluster_next(&cluster->index) *
613 SWAPFILE_CLUSTER;
6b534915 614 } else if (!cluster_list_empty(&si->discard_clusters)) {
ebc2a1a6
SL
615 /*
616 * we don't have free cluster but have some clusters in
617 * discarding, do discard now and reclaim them
618 */
619 swap_do_scheduled_discard(si);
620 *scan_base = *offset = si->cluster_next;
621 goto new_cluster;
622 } else
36005bae 623 return false;
ebc2a1a6
SL
624 }
625
626 found_free = false;
627
628 /*
629 * Other CPUs can use our cluster if they can't find a free cluster,
630 * check if there is still free entry in the cluster
631 */
632 tmp = cluster->next;
235b6217
HY
633 max = min_t(unsigned long, si->max,
634 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
635 if (tmp >= max) {
636 cluster_set_null(&cluster->index);
637 goto new_cluster;
638 }
639 ci = lock_cluster(si, tmp);
640 while (tmp < max) {
ebc2a1a6
SL
641 if (!si->swap_map[tmp]) {
642 found_free = true;
643 break;
644 }
645 tmp++;
646 }
235b6217 647 unlock_cluster(ci);
ebc2a1a6
SL
648 if (!found_free) {
649 cluster_set_null(&cluster->index);
650 goto new_cluster;
651 }
652 cluster->next = tmp + 1;
653 *offset = tmp;
654 *scan_base = tmp;
36005bae 655 return found_free;
2a8f9449
SL
656}
657
a2468cc9
AL
658static void __del_from_avail_list(struct swap_info_struct *p)
659{
660 int nid;
661
662 for_each_node(nid)
663 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
664}
665
666static void del_from_avail_list(struct swap_info_struct *p)
667{
668 spin_lock(&swap_avail_lock);
669 __del_from_avail_list(p);
670 spin_unlock(&swap_avail_lock);
671}
672
38d8b4e6
HY
673static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
674 unsigned int nr_entries)
675{
676 unsigned int end = offset + nr_entries - 1;
677
678 if (offset == si->lowest_bit)
679 si->lowest_bit += nr_entries;
680 if (end == si->highest_bit)
681 si->highest_bit -= nr_entries;
682 si->inuse_pages += nr_entries;
683 if (si->inuse_pages == si->pages) {
684 si->lowest_bit = si->max;
685 si->highest_bit = 0;
a2468cc9 686 del_from_avail_list(si);
38d8b4e6
HY
687 }
688}
689
a2468cc9
AL
690static void add_to_avail_list(struct swap_info_struct *p)
691{
692 int nid;
693
694 spin_lock(&swap_avail_lock);
695 for_each_node(nid) {
696 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
697 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
698 }
699 spin_unlock(&swap_avail_lock);
700}
701
38d8b4e6
HY
702static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
703 unsigned int nr_entries)
704{
705 unsigned long end = offset + nr_entries - 1;
706 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
707
708 if (offset < si->lowest_bit)
709 si->lowest_bit = offset;
710 if (end > si->highest_bit) {
711 bool was_full = !si->highest_bit;
712
713 si->highest_bit = end;
a2468cc9
AL
714 if (was_full && (si->flags & SWP_WRITEOK))
715 add_to_avail_list(si);
38d8b4e6
HY
716 }
717 atomic_long_add(nr_entries, &nr_swap_pages);
718 si->inuse_pages -= nr_entries;
719 if (si->flags & SWP_BLKDEV)
720 swap_slot_free_notify =
721 si->bdev->bd_disk->fops->swap_slot_free_notify;
722 else
723 swap_slot_free_notify = NULL;
724 while (offset <= end) {
725 frontswap_invalidate_page(si->type, offset);
726 if (swap_slot_free_notify)
727 swap_slot_free_notify(si->bdev, offset);
728 offset++;
729 }
730}
731
36005bae
TC
732static int scan_swap_map_slots(struct swap_info_struct *si,
733 unsigned char usage, int nr,
734 swp_entry_t slots[])
1da177e4 735{
235b6217 736 struct swap_cluster_info *ci;
ebebbbe9 737 unsigned long offset;
c60aa176 738 unsigned long scan_base;
7992fde7 739 unsigned long last_in_cluster = 0;
048c27fd 740 int latency_ration = LATENCY_LIMIT;
36005bae
TC
741 int n_ret = 0;
742
743 if (nr > SWAP_BATCH)
744 nr = SWAP_BATCH;
7dfad418 745
886bb7e9 746 /*
7dfad418
HD
747 * We try to cluster swap pages by allocating them sequentially
748 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
749 * way, however, we resort to first-free allocation, starting
750 * a new cluster. This prevents us from scattering swap pages
751 * all over the entire swap partition, so that we reduce
752 * overall disk seek times between swap pages. -- sct
753 * But we do now try to find an empty cluster. -Andrea
c60aa176 754 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
755 */
756
52b7efdb 757 si->flags += SWP_SCANNING;
c60aa176 758 scan_base = offset = si->cluster_next;
ebebbbe9 759
ebc2a1a6
SL
760 /* SSD algorithm */
761 if (si->cluster_info) {
36005bae
TC
762 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
763 goto checks;
764 else
765 goto scan;
ebc2a1a6
SL
766 }
767
ebebbbe9
HD
768 if (unlikely(!si->cluster_nr--)) {
769 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
770 si->cluster_nr = SWAPFILE_CLUSTER - 1;
771 goto checks;
772 }
2a8f9449 773
ec8acf20 774 spin_unlock(&si->lock);
7dfad418 775
c60aa176
HD
776 /*
777 * If seek is expensive, start searching for new cluster from
778 * start of partition, to minimize the span of allocated swap.
50088c44
CY
779 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
780 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 781 */
50088c44 782 scan_base = offset = si->lowest_bit;
7dfad418
HD
783 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
784
785 /* Locate the first empty (unaligned) cluster */
786 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 787 if (si->swap_map[offset])
7dfad418
HD
788 last_in_cluster = offset + SWAPFILE_CLUSTER;
789 else if (offset == last_in_cluster) {
ec8acf20 790 spin_lock(&si->lock);
ebebbbe9
HD
791 offset -= SWAPFILE_CLUSTER - 1;
792 si->cluster_next = offset;
793 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
794 goto checks;
795 }
796 if (unlikely(--latency_ration < 0)) {
797 cond_resched();
798 latency_ration = LATENCY_LIMIT;
799 }
800 }
801
802 offset = scan_base;
ec8acf20 803 spin_lock(&si->lock);
ebebbbe9 804 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 805 }
7dfad418 806
ebebbbe9 807checks:
ebc2a1a6 808 if (si->cluster_info) {
36005bae
TC
809 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
810 /* take a break if we already got some slots */
811 if (n_ret)
812 goto done;
813 if (!scan_swap_map_try_ssd_cluster(si, &offset,
814 &scan_base))
815 goto scan;
816 }
ebc2a1a6 817 }
ebebbbe9 818 if (!(si->flags & SWP_WRITEOK))
52b7efdb 819 goto no_page;
7dfad418
HD
820 if (!si->highest_bit)
821 goto no_page;
ebebbbe9 822 if (offset > si->highest_bit)
c60aa176 823 scan_base = offset = si->lowest_bit;
c9e44410 824
235b6217 825 ci = lock_cluster(si, offset);
b73d7fce
HD
826 /* reuse swap entry of cache-only swap if not busy. */
827 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 828 int swap_was_freed;
235b6217 829 unlock_cluster(ci);
ec8acf20 830 spin_unlock(&si->lock);
bcd49e86 831 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
ec8acf20 832 spin_lock(&si->lock);
c9e44410
KH
833 /* entry was freed successfully, try to use this again */
834 if (swap_was_freed)
835 goto checks;
836 goto scan; /* check next one */
837 }
838
235b6217
HY
839 if (si->swap_map[offset]) {
840 unlock_cluster(ci);
36005bae
TC
841 if (!n_ret)
842 goto scan;
843 else
844 goto done;
235b6217 845 }
2872bb2d
HY
846 si->swap_map[offset] = usage;
847 inc_cluster_info_page(si, si->cluster_info, offset);
848 unlock_cluster(ci);
ebebbbe9 849
38d8b4e6 850 swap_range_alloc(si, offset, 1);
ebebbbe9 851 si->cluster_next = offset + 1;
36005bae
TC
852 slots[n_ret++] = swp_entry(si->type, offset);
853
854 /* got enough slots or reach max slots? */
855 if ((n_ret == nr) || (offset >= si->highest_bit))
856 goto done;
857
858 /* search for next available slot */
859
860 /* time to take a break? */
861 if (unlikely(--latency_ration < 0)) {
862 if (n_ret)
863 goto done;
864 spin_unlock(&si->lock);
865 cond_resched();
866 spin_lock(&si->lock);
867 latency_ration = LATENCY_LIMIT;
868 }
869
870 /* try to get more slots in cluster */
871 if (si->cluster_info) {
872 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
873 goto checks;
874 else
875 goto done;
876 }
36005bae
TC
877
878 /* non-ssd case, still more slots in cluster? */
ca2c55a7 879 if (si->cluster_nr && !si->swap_map[++offset]) {
36005bae
TC
880 --si->cluster_nr;
881 goto checks;
882 }
7992fde7 883
36005bae
TC
884done:
885 si->flags -= SWP_SCANNING;
886 return n_ret;
7dfad418 887
ebebbbe9 888scan:
ec8acf20 889 spin_unlock(&si->lock);
7dfad418 890 while (++offset <= si->highest_bit) {
52b7efdb 891 if (!si->swap_map[offset]) {
ec8acf20 892 spin_lock(&si->lock);
52b7efdb
HD
893 goto checks;
894 }
c9e44410 895 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 896 spin_lock(&si->lock);
c9e44410
KH
897 goto checks;
898 }
048c27fd
HD
899 if (unlikely(--latency_ration < 0)) {
900 cond_resched();
901 latency_ration = LATENCY_LIMIT;
902 }
7dfad418 903 }
c60aa176 904 offset = si->lowest_bit;
a5998061 905 while (offset < scan_base) {
c60aa176 906 if (!si->swap_map[offset]) {
ec8acf20 907 spin_lock(&si->lock);
c60aa176
HD
908 goto checks;
909 }
c9e44410 910 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 911 spin_lock(&si->lock);
c9e44410
KH
912 goto checks;
913 }
c60aa176
HD
914 if (unlikely(--latency_ration < 0)) {
915 cond_resched();
916 latency_ration = LATENCY_LIMIT;
917 }
a5998061 918 offset++;
c60aa176 919 }
ec8acf20 920 spin_lock(&si->lock);
7dfad418
HD
921
922no_page:
52b7efdb 923 si->flags -= SWP_SCANNING;
36005bae 924 return n_ret;
1da177e4
LT
925}
926
38d8b4e6
HY
927static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
928{
929 unsigned long idx;
930 struct swap_cluster_info *ci;
931 unsigned long offset, i;
932 unsigned char *map;
933
fe5266d5
HY
934 /*
935 * Should not even be attempting cluster allocations when huge
936 * page swap is disabled. Warn and fail the allocation.
937 */
938 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
939 VM_WARN_ON_ONCE(1);
940 return 0;
941 }
942
38d8b4e6
HY
943 if (cluster_list_empty(&si->free_clusters))
944 return 0;
945
946 idx = cluster_list_first(&si->free_clusters);
947 offset = idx * SWAPFILE_CLUSTER;
948 ci = lock_cluster(si, offset);
949 alloc_cluster(si, idx);
e0709829 950 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
38d8b4e6
HY
951
952 map = si->swap_map + offset;
953 for (i = 0; i < SWAPFILE_CLUSTER; i++)
954 map[i] = SWAP_HAS_CACHE;
955 unlock_cluster(ci);
956 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
957 *slot = swp_entry(si->type, offset);
958
959 return 1;
960}
961
962static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
963{
964 unsigned long offset = idx * SWAPFILE_CLUSTER;
965 struct swap_cluster_info *ci;
966
967 ci = lock_cluster(si, offset);
979aafa5 968 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
38d8b4e6
HY
969 cluster_set_count_flag(ci, 0, 0);
970 free_cluster(si, idx);
971 unlock_cluster(ci);
972 swap_range_free(si, offset, SWAPFILE_CLUSTER);
973}
38d8b4e6 974
36005bae
TC
975static unsigned long scan_swap_map(struct swap_info_struct *si,
976 unsigned char usage)
977{
978 swp_entry_t entry;
979 int n_ret;
980
981 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
982
983 if (n_ret)
984 return swp_offset(entry);
985 else
986 return 0;
987
988}
989
5d5e8f19 990int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1da177e4 991{
5d5e8f19 992 unsigned long size = swap_entry_size(entry_size);
adfab836 993 struct swap_info_struct *si, *next;
36005bae
TC
994 long avail_pgs;
995 int n_ret = 0;
a2468cc9 996 int node;
1da177e4 997
38d8b4e6 998 /* Only single cluster request supported */
5d5e8f19 999 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
38d8b4e6 1000
5d5e8f19 1001 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
36005bae 1002 if (avail_pgs <= 0)
fb4f88dc 1003 goto noswap;
36005bae
TC
1004
1005 if (n_goal > SWAP_BATCH)
1006 n_goal = SWAP_BATCH;
1007
1008 if (n_goal > avail_pgs)
1009 n_goal = avail_pgs;
1010
5d5e8f19 1011 atomic_long_sub(n_goal * size, &nr_swap_pages);
fb4f88dc 1012
18ab4d4c
DS
1013 spin_lock(&swap_avail_lock);
1014
1015start_over:
a2468cc9
AL
1016 node = numa_node_id();
1017 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
18ab4d4c 1018 /* requeue si to after same-priority siblings */
a2468cc9 1019 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
18ab4d4c 1020 spin_unlock(&swap_avail_lock);
ec8acf20 1021 spin_lock(&si->lock);
adfab836 1022 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c 1023 spin_lock(&swap_avail_lock);
a2468cc9 1024 if (plist_node_empty(&si->avail_lists[node])) {
18ab4d4c
DS
1025 spin_unlock(&si->lock);
1026 goto nextsi;
1027 }
1028 WARN(!si->highest_bit,
1029 "swap_info %d in list but !highest_bit\n",
1030 si->type);
1031 WARN(!(si->flags & SWP_WRITEOK),
1032 "swap_info %d in list but !SWP_WRITEOK\n",
1033 si->type);
a2468cc9 1034 __del_from_avail_list(si);
ec8acf20 1035 spin_unlock(&si->lock);
18ab4d4c 1036 goto nextsi;
ec8acf20 1037 }
5d5e8f19 1038 if (size == SWAPFILE_CLUSTER) {
bc4ae27d 1039 if (!(si->flags & SWP_FS))
f0eea189
HY
1040 n_ret = swap_alloc_cluster(si, swp_entries);
1041 } else
38d8b4e6
HY
1042 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1043 n_goal, swp_entries);
ec8acf20 1044 spin_unlock(&si->lock);
5d5e8f19 1045 if (n_ret || size == SWAPFILE_CLUSTER)
36005bae 1046 goto check_out;
18ab4d4c 1047 pr_debug("scan_swap_map of si %d failed to find offset\n",
36005bae
TC
1048 si->type);
1049
18ab4d4c
DS
1050 spin_lock(&swap_avail_lock);
1051nextsi:
adfab836
DS
1052 /*
1053 * if we got here, it's likely that si was almost full before,
1054 * and since scan_swap_map() can drop the si->lock, multiple
1055 * callers probably all tried to get a page from the same si
18ab4d4c
DS
1056 * and it filled up before we could get one; or, the si filled
1057 * up between us dropping swap_avail_lock and taking si->lock.
1058 * Since we dropped the swap_avail_lock, the swap_avail_head
1059 * list may have been modified; so if next is still in the
36005bae
TC
1060 * swap_avail_head list then try it, otherwise start over
1061 * if we have not gotten any slots.
adfab836 1062 */
a2468cc9 1063 if (plist_node_empty(&next->avail_lists[node]))
18ab4d4c 1064 goto start_over;
1da177e4 1065 }
fb4f88dc 1066
18ab4d4c
DS
1067 spin_unlock(&swap_avail_lock);
1068
36005bae
TC
1069check_out:
1070 if (n_ret < n_goal)
5d5e8f19 1071 atomic_long_add((long)(n_goal - n_ret) * size,
38d8b4e6 1072 &nr_swap_pages);
fb4f88dc 1073noswap:
36005bae
TC
1074 return n_ret;
1075}
1076
2de1a7e4 1077/* The only caller of this function is now suspend routine */
910321ea
HD
1078swp_entry_t get_swap_page_of_type(int type)
1079{
c10d38cc 1080 struct swap_info_struct *si = swap_type_to_swap_info(type);
910321ea
HD
1081 pgoff_t offset;
1082
c10d38cc
DJ
1083 if (!si)
1084 goto fail;
1085
ec8acf20 1086 spin_lock(&si->lock);
c10d38cc 1087 if (si->flags & SWP_WRITEOK) {
ec8acf20 1088 atomic_long_dec(&nr_swap_pages);
910321ea
HD
1089 /* This is called for allocating swap entry, not cache */
1090 offset = scan_swap_map(si, 1);
1091 if (offset) {
ec8acf20 1092 spin_unlock(&si->lock);
910321ea
HD
1093 return swp_entry(type, offset);
1094 }
ec8acf20 1095 atomic_long_inc(&nr_swap_pages);
910321ea 1096 }
ec8acf20 1097 spin_unlock(&si->lock);
c10d38cc 1098fail:
910321ea
HD
1099 return (swp_entry_t) {0};
1100}
1101
e8c26ab6 1102static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1da177e4 1103{
73c34b6a 1104 struct swap_info_struct *p;
eb085574 1105 unsigned long offset;
1da177e4
LT
1106
1107 if (!entry.val)
1108 goto out;
eb085574 1109 p = swp_swap_info(entry);
c10d38cc 1110 if (!p)
1da177e4 1111 goto bad_nofile;
1da177e4
LT
1112 if (!(p->flags & SWP_USED))
1113 goto bad_device;
1114 offset = swp_offset(entry);
1115 if (offset >= p->max)
1116 goto bad_offset;
1da177e4
LT
1117 return p;
1118
1da177e4 1119bad_offset:
6a991fc7 1120 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
1121 goto out;
1122bad_device:
6a991fc7 1123 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
1124 goto out;
1125bad_nofile:
6a991fc7 1126 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
1127out:
1128 return NULL;
886bb7e9 1129}
1da177e4 1130
e8c26ab6
TC
1131static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1132{
1133 struct swap_info_struct *p;
1134
1135 p = __swap_info_get(entry);
1136 if (!p)
1137 goto out;
1138 if (!p->swap_map[swp_offset(entry)])
1139 goto bad_free;
1140 return p;
1141
1142bad_free:
1143 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1144 goto out;
1145out:
1146 return NULL;
1147}
1148
235b6217
HY
1149static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1150{
1151 struct swap_info_struct *p;
1152
1153 p = _swap_info_get(entry);
1154 if (p)
1155 spin_lock(&p->lock);
1156 return p;
1157}
1158
7c00bafe
TC
1159static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1160 struct swap_info_struct *q)
1161{
1162 struct swap_info_struct *p;
1163
1164 p = _swap_info_get(entry);
1165
1166 if (p != q) {
1167 if (q != NULL)
1168 spin_unlock(&q->lock);
1169 if (p != NULL)
1170 spin_lock(&p->lock);
1171 }
1172 return p;
1173}
1174
b32d5f32
HY
1175static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1176 unsigned long offset,
1177 unsigned char usage)
1da177e4 1178{
8d69aaee
HD
1179 unsigned char count;
1180 unsigned char has_cache;
235b6217 1181
253d553b 1182 count = p->swap_map[offset];
235b6217 1183
253d553b
HD
1184 has_cache = count & SWAP_HAS_CACHE;
1185 count &= ~SWAP_HAS_CACHE;
355cfa73 1186
253d553b 1187 if (usage == SWAP_HAS_CACHE) {
355cfa73 1188 VM_BUG_ON(!has_cache);
253d553b 1189 has_cache = 0;
aaa46865
HD
1190 } else if (count == SWAP_MAP_SHMEM) {
1191 /*
1192 * Or we could insist on shmem.c using a special
1193 * swap_shmem_free() and free_shmem_swap_and_cache()...
1194 */
1195 count = 0;
570a335b
HD
1196 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1197 if (count == COUNT_CONTINUED) {
1198 if (swap_count_continued(p, offset, count))
1199 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1200 else
1201 count = SWAP_MAP_MAX;
1202 } else
1203 count--;
1204 }
253d553b 1205
253d553b 1206 usage = count | has_cache;
7c00bafe
TC
1207 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1208
b32d5f32
HY
1209 return usage;
1210}
1211
eb085574
HY
1212/*
1213 * Check whether swap entry is valid in the swap device. If so,
1214 * return pointer to swap_info_struct, and keep the swap entry valid
1215 * via preventing the swap device from being swapoff, until
1216 * put_swap_device() is called. Otherwise return NULL.
1217 *
1218 * The entirety of the RCU read critical section must come before the
1219 * return from or after the call to synchronize_rcu() in
1220 * enable_swap_info() or swapoff(). So if "si->flags & SWP_VALID" is
1221 * true, the si->map, si->cluster_info, etc. must be valid in the
1222 * critical section.
1223 *
1224 * Notice that swapoff or swapoff+swapon can still happen before the
1225 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1226 * in put_swap_device() if there isn't any other way to prevent
1227 * swapoff, such as page lock, page table lock, etc. The caller must
1228 * be prepared for that. For example, the following situation is
1229 * possible.
1230 *
1231 * CPU1 CPU2
1232 * do_swap_page()
1233 * ... swapoff+swapon
1234 * __read_swap_cache_async()
1235 * swapcache_prepare()
1236 * __swap_duplicate()
1237 * // check swap_map
1238 * // verify PTE not changed
1239 *
1240 * In __swap_duplicate(), the swap_map need to be checked before
1241 * changing partly because the specified swap entry may be for another
1242 * swap device which has been swapoff. And in do_swap_page(), after
1243 * the page is read from the swap device, the PTE is verified not
1244 * changed with the page table locked to check whether the swap device
1245 * has been swapoff or swapoff+swapon.
1246 */
1247struct swap_info_struct *get_swap_device(swp_entry_t entry)
1248{
1249 struct swap_info_struct *si;
1250 unsigned long offset;
1251
1252 if (!entry.val)
1253 goto out;
1254 si = swp_swap_info(entry);
1255 if (!si)
1256 goto bad_nofile;
1257
1258 rcu_read_lock();
1259 if (!(si->flags & SWP_VALID))
1260 goto unlock_out;
1261 offset = swp_offset(entry);
1262 if (offset >= si->max)
1263 goto unlock_out;
1264
1265 return si;
1266bad_nofile:
1267 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1268out:
1269 return NULL;
1270unlock_out:
1271 rcu_read_unlock();
1272 return NULL;
1273}
1274
b32d5f32
HY
1275static unsigned char __swap_entry_free(struct swap_info_struct *p,
1276 swp_entry_t entry, unsigned char usage)
1277{
1278 struct swap_cluster_info *ci;
1279 unsigned long offset = swp_offset(entry);
1280
1281 ci = lock_cluster_or_swap_info(p, offset);
1282 usage = __swap_entry_free_locked(p, offset, usage);
7c00bafe 1283 unlock_cluster_or_swap_info(p, ci);
10e364da
HY
1284 if (!usage)
1285 free_swap_slot(entry);
7c00bafe
TC
1286
1287 return usage;
1288}
355cfa73 1289
7c00bafe
TC
1290static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1291{
1292 struct swap_cluster_info *ci;
1293 unsigned long offset = swp_offset(entry);
1294 unsigned char count;
1295
1296 ci = lock_cluster(p, offset);
1297 count = p->swap_map[offset];
1298 VM_BUG_ON(count != SWAP_HAS_CACHE);
1299 p->swap_map[offset] = 0;
1300 dec_cluster_info_page(p, p->cluster_info, offset);
235b6217
HY
1301 unlock_cluster(ci);
1302
38d8b4e6
HY
1303 mem_cgroup_uncharge_swap(entry, 1);
1304 swap_range_free(p, offset, 1);
1da177e4
LT
1305}
1306
1307/*
2de1a7e4 1308 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
1309 * is still around or has not been recycled.
1310 */
1311void swap_free(swp_entry_t entry)
1312{
73c34b6a 1313 struct swap_info_struct *p;
1da177e4 1314
235b6217 1315 p = _swap_info_get(entry);
10e364da
HY
1316 if (p)
1317 __swap_entry_free(p, entry, 1);
1da177e4
LT
1318}
1319
cb4b86ba
KH
1320/*
1321 * Called after dropping swapcache to decrease refcnt to swap entries.
1322 */
a448f2d0 1323void put_swap_page(struct page *page, swp_entry_t entry)
38d8b4e6
HY
1324{
1325 unsigned long offset = swp_offset(entry);
1326 unsigned long idx = offset / SWAPFILE_CLUSTER;
1327 struct swap_cluster_info *ci;
1328 struct swap_info_struct *si;
1329 unsigned char *map;
a3aea839
HY
1330 unsigned int i, free_entries = 0;
1331 unsigned char val;
a448f2d0 1332 int size = swap_entry_size(hpage_nr_pages(page));
fe5266d5 1333
a3aea839 1334 si = _swap_info_get(entry);
38d8b4e6
HY
1335 if (!si)
1336 return;
1337
c2343d27 1338 ci = lock_cluster_or_swap_info(si, offset);
a448f2d0 1339 if (size == SWAPFILE_CLUSTER) {
a448f2d0
HY
1340 VM_BUG_ON(!cluster_is_huge(ci));
1341 map = si->swap_map + offset;
1342 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1343 val = map[i];
1344 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1345 if (val == SWAP_HAS_CACHE)
1346 free_entries++;
1347 }
a448f2d0 1348 cluster_clear_huge(ci);
a448f2d0 1349 if (free_entries == SWAPFILE_CLUSTER) {
c2343d27 1350 unlock_cluster_or_swap_info(si, ci);
a448f2d0 1351 spin_lock(&si->lock);
a448f2d0
HY
1352 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1353 swap_free_cluster(si, idx);
1354 spin_unlock(&si->lock);
1355 return;
1356 }
1357 }
c2343d27
HY
1358 for (i = 0; i < size; i++, entry.val++) {
1359 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1360 unlock_cluster_or_swap_info(si, ci);
1361 free_swap_slot(entry);
1362 if (i == size - 1)
1363 return;
1364 lock_cluster_or_swap_info(si, offset);
a3aea839
HY
1365 }
1366 }
c2343d27 1367 unlock_cluster_or_swap_info(si, ci);
38d8b4e6 1368}
59807685 1369
fe5266d5 1370#ifdef CONFIG_THP_SWAP
59807685
HY
1371int split_swap_cluster(swp_entry_t entry)
1372{
1373 struct swap_info_struct *si;
1374 struct swap_cluster_info *ci;
1375 unsigned long offset = swp_offset(entry);
1376
1377 si = _swap_info_get(entry);
1378 if (!si)
1379 return -EBUSY;
1380 ci = lock_cluster(si, offset);
1381 cluster_clear_huge(ci);
1382 unlock_cluster(ci);
1383 return 0;
1384}
fe5266d5 1385#endif
38d8b4e6 1386
155b5f88
HY
1387static int swp_entry_cmp(const void *ent1, const void *ent2)
1388{
1389 const swp_entry_t *e1 = ent1, *e2 = ent2;
1390
1391 return (int)swp_type(*e1) - (int)swp_type(*e2);
1392}
1393
7c00bafe
TC
1394void swapcache_free_entries(swp_entry_t *entries, int n)
1395{
1396 struct swap_info_struct *p, *prev;
1397 int i;
1398
1399 if (n <= 0)
1400 return;
1401
1402 prev = NULL;
1403 p = NULL;
155b5f88
HY
1404
1405 /*
1406 * Sort swap entries by swap device, so each lock is only taken once.
1407 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1408 * so low that it isn't necessary to optimize further.
1409 */
1410 if (nr_swapfiles > 1)
1411 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
7c00bafe
TC
1412 for (i = 0; i < n; ++i) {
1413 p = swap_info_get_cont(entries[i], prev);
1414 if (p)
1415 swap_entry_free(p, entries[i]);
7c00bafe
TC
1416 prev = p;
1417 }
235b6217 1418 if (p)
7c00bafe 1419 spin_unlock(&p->lock);
cb4b86ba
KH
1420}
1421
1da177e4 1422/*
c475a8ab 1423 * How many references to page are currently swapped out?
570a335b
HD
1424 * This does not give an exact answer when swap count is continued,
1425 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 1426 */
bde05d1c 1427int page_swapcount(struct page *page)
1da177e4 1428{
c475a8ab
HD
1429 int count = 0;
1430 struct swap_info_struct *p;
235b6217 1431 struct swap_cluster_info *ci;
1da177e4 1432 swp_entry_t entry;
235b6217 1433 unsigned long offset;
1da177e4 1434
4c21e2f2 1435 entry.val = page_private(page);
235b6217 1436 p = _swap_info_get(entry);
1da177e4 1437 if (p) {
235b6217
HY
1438 offset = swp_offset(entry);
1439 ci = lock_cluster_or_swap_info(p, offset);
1440 count = swap_count(p->swap_map[offset]);
1441 unlock_cluster_or_swap_info(p, ci);
1da177e4 1442 }
c475a8ab 1443 return count;
1da177e4
LT
1444}
1445
eb085574 1446int __swap_count(swp_entry_t entry)
aa8d22a1 1447{
eb085574 1448 struct swap_info_struct *si;
aa8d22a1 1449 pgoff_t offset = swp_offset(entry);
eb085574 1450 int count = 0;
aa8d22a1 1451
eb085574
HY
1452 si = get_swap_device(entry);
1453 if (si) {
1454 count = swap_count(si->swap_map[offset]);
1455 put_swap_device(si);
1456 }
1457 return count;
aa8d22a1
MK
1458}
1459
322b8afe
HY
1460static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1461{
1462 int count = 0;
1463 pgoff_t offset = swp_offset(entry);
1464 struct swap_cluster_info *ci;
1465
1466 ci = lock_cluster_or_swap_info(si, offset);
1467 count = swap_count(si->swap_map[offset]);
1468 unlock_cluster_or_swap_info(si, ci);
1469 return count;
1470}
1471
e8c26ab6
TC
1472/*
1473 * How many references to @entry are currently swapped out?
1474 * This does not give an exact answer when swap count is continued,
1475 * but does include the high COUNT_CONTINUED flag to allow for that.
1476 */
1477int __swp_swapcount(swp_entry_t entry)
1478{
1479 int count = 0;
e8c26ab6 1480 struct swap_info_struct *si;
e8c26ab6 1481
eb085574
HY
1482 si = get_swap_device(entry);
1483 if (si) {
322b8afe 1484 count = swap_swapcount(si, entry);
eb085574
HY
1485 put_swap_device(si);
1486 }
e8c26ab6
TC
1487 return count;
1488}
1489
8334b962
MK
1490/*
1491 * How many references to @entry are currently swapped out?
1492 * This considers COUNT_CONTINUED so it returns exact answer.
1493 */
1494int swp_swapcount(swp_entry_t entry)
1495{
1496 int count, tmp_count, n;
1497 struct swap_info_struct *p;
235b6217 1498 struct swap_cluster_info *ci;
8334b962
MK
1499 struct page *page;
1500 pgoff_t offset;
1501 unsigned char *map;
1502
235b6217 1503 p = _swap_info_get(entry);
8334b962
MK
1504 if (!p)
1505 return 0;
1506
235b6217
HY
1507 offset = swp_offset(entry);
1508
1509 ci = lock_cluster_or_swap_info(p, offset);
1510
1511 count = swap_count(p->swap_map[offset]);
8334b962
MK
1512 if (!(count & COUNT_CONTINUED))
1513 goto out;
1514
1515 count &= ~COUNT_CONTINUED;
1516 n = SWAP_MAP_MAX + 1;
1517
8334b962
MK
1518 page = vmalloc_to_page(p->swap_map + offset);
1519 offset &= ~PAGE_MASK;
1520 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1521
1522 do {
a8ae4991 1523 page = list_next_entry(page, lru);
8334b962
MK
1524 map = kmap_atomic(page);
1525 tmp_count = map[offset];
1526 kunmap_atomic(map);
1527
1528 count += (tmp_count & ~COUNT_CONTINUED) * n;
1529 n *= (SWAP_CONT_MAX + 1);
1530 } while (tmp_count & COUNT_CONTINUED);
1531out:
235b6217 1532 unlock_cluster_or_swap_info(p, ci);
8334b962
MK
1533 return count;
1534}
1535
e0709829
HY
1536static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1537 swp_entry_t entry)
1538{
1539 struct swap_cluster_info *ci;
1540 unsigned char *map = si->swap_map;
1541 unsigned long roffset = swp_offset(entry);
1542 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1543 int i;
1544 bool ret = false;
1545
1546 ci = lock_cluster_or_swap_info(si, offset);
1547 if (!ci || !cluster_is_huge(ci)) {
afa4711e 1548 if (swap_count(map[roffset]))
e0709829
HY
1549 ret = true;
1550 goto unlock_out;
1551 }
1552 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
afa4711e 1553 if (swap_count(map[offset + i])) {
e0709829
HY
1554 ret = true;
1555 break;
1556 }
1557 }
1558unlock_out:
1559 unlock_cluster_or_swap_info(si, ci);
1560 return ret;
1561}
1562
1563static bool page_swapped(struct page *page)
1564{
1565 swp_entry_t entry;
1566 struct swap_info_struct *si;
1567
fe5266d5 1568 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
e0709829
HY
1569 return page_swapcount(page) != 0;
1570
1571 page = compound_head(page);
1572 entry.val = page_private(page);
1573 si = _swap_info_get(entry);
1574 if (si)
1575 return swap_page_trans_huge_swapped(si, entry);
1576 return false;
1577}
ba3c4ce6
HY
1578
1579static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1580 int *total_swapcount)
1581{
1582 int i, map_swapcount, _total_mapcount, _total_swapcount;
1583 unsigned long offset = 0;
1584 struct swap_info_struct *si;
1585 struct swap_cluster_info *ci = NULL;
1586 unsigned char *map = NULL;
1587 int mapcount, swapcount = 0;
1588
1589 /* hugetlbfs shouldn't call it */
1590 VM_BUG_ON_PAGE(PageHuge(page), page);
1591
fe5266d5
HY
1592 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1593 mapcount = page_trans_huge_mapcount(page, total_mapcount);
ba3c4ce6
HY
1594 if (PageSwapCache(page))
1595 swapcount = page_swapcount(page);
1596 if (total_swapcount)
1597 *total_swapcount = swapcount;
1598 return mapcount + swapcount;
1599 }
1600
1601 page = compound_head(page);
1602
1603 _total_mapcount = _total_swapcount = map_swapcount = 0;
1604 if (PageSwapCache(page)) {
1605 swp_entry_t entry;
1606
1607 entry.val = page_private(page);
1608 si = _swap_info_get(entry);
1609 if (si) {
1610 map = si->swap_map;
1611 offset = swp_offset(entry);
1612 }
1613 }
1614 if (map)
1615 ci = lock_cluster(si, offset);
1616 for (i = 0; i < HPAGE_PMD_NR; i++) {
1617 mapcount = atomic_read(&page[i]._mapcount) + 1;
1618 _total_mapcount += mapcount;
1619 if (map) {
1620 swapcount = swap_count(map[offset + i]);
1621 _total_swapcount += swapcount;
1622 }
1623 map_swapcount = max(map_swapcount, mapcount + swapcount);
1624 }
1625 unlock_cluster(ci);
1626 if (PageDoubleMap(page)) {
1627 map_swapcount -= 1;
1628 _total_mapcount -= HPAGE_PMD_NR;
1629 }
1630 mapcount = compound_mapcount(page);
1631 map_swapcount += mapcount;
1632 _total_mapcount += mapcount;
1633 if (total_mapcount)
1634 *total_mapcount = _total_mapcount;
1635 if (total_swapcount)
1636 *total_swapcount = _total_swapcount;
1637
1638 return map_swapcount;
1639}
e0709829 1640
1da177e4 1641/*
7b1fe597
HD
1642 * We can write to an anon page without COW if there are no other references
1643 * to it. And as a side-effect, free up its swap: because the old content
1644 * on disk will never be read, and seeking back there to write new content
1645 * later would only waste time away from clustering.
6d0a07ed 1646 *
ba3c4ce6 1647 * NOTE: total_map_swapcount should not be relied upon by the caller if
6d0a07ed
AA
1648 * reuse_swap_page() returns false, but it may be always overwritten
1649 * (see the other implementation for CONFIG_SWAP=n).
1da177e4 1650 */
ba3c4ce6 1651bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1da177e4 1652{
ba3c4ce6 1653 int count, total_mapcount, total_swapcount;
c475a8ab 1654
309381fe 1655 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688 1656 if (unlikely(PageKsm(page)))
6d0a07ed 1657 return false;
ba3c4ce6
HY
1658 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1659 &total_swapcount);
1660 if (total_map_swapcount)
1661 *total_map_swapcount = total_mapcount + total_swapcount;
1662 if (count == 1 && PageSwapCache(page) &&
1663 (likely(!PageTransCompound(page)) ||
1664 /* The remaining swap count will be freed soon */
1665 total_swapcount == page_swapcount(page))) {
f0571429 1666 if (!PageWriteback(page)) {
ba3c4ce6 1667 page = compound_head(page);
7b1fe597
HD
1668 delete_from_swap_cache(page);
1669 SetPageDirty(page);
f0571429
MK
1670 } else {
1671 swp_entry_t entry;
1672 struct swap_info_struct *p;
1673
1674 entry.val = page_private(page);
1675 p = swap_info_get(entry);
1676 if (p->flags & SWP_STABLE_WRITES) {
1677 spin_unlock(&p->lock);
1678 return false;
1679 }
1680 spin_unlock(&p->lock);
7b1fe597
HD
1681 }
1682 }
ba3c4ce6 1683
5ad64688 1684 return count <= 1;
1da177e4
LT
1685}
1686
1687/*
a2c43eed
HD
1688 * If swap is getting full, or if there are no more mappings of this page,
1689 * then try_to_free_swap is called to free its swap space.
1da177e4 1690 */
a2c43eed 1691int try_to_free_swap(struct page *page)
1da177e4 1692{
309381fe 1693 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
1694
1695 if (!PageSwapCache(page))
1696 return 0;
1697 if (PageWriteback(page))
1698 return 0;
e0709829 1699 if (page_swapped(page))
1da177e4
LT
1700 return 0;
1701
b73d7fce
HD
1702 /*
1703 * Once hibernation has begun to create its image of memory,
1704 * there's a danger that one of the calls to try_to_free_swap()
1705 * - most probably a call from __try_to_reclaim_swap() while
1706 * hibernation is allocating its own swap pages for the image,
1707 * but conceivably even a call from memory reclaim - will free
1708 * the swap from a page which has already been recorded in the
1709 * image as a clean swapcache page, and then reuse its swap for
1710 * another page of the image. On waking from hibernation, the
1711 * original page might be freed under memory pressure, then
1712 * later read back in from swap, now with the wrong data.
1713 *
2de1a7e4 1714 * Hibernation suspends storage while it is writing the image
f90ac398 1715 * to disk so check that here.
b73d7fce 1716 */
f90ac398 1717 if (pm_suspended_storage())
b73d7fce
HD
1718 return 0;
1719
e0709829 1720 page = compound_head(page);
a2c43eed
HD
1721 delete_from_swap_cache(page);
1722 SetPageDirty(page);
1723 return 1;
68a22394
RR
1724}
1725
1da177e4
LT
1726/*
1727 * Free the swap entry like above, but also try to
1728 * free the page cache entry if it is the last user.
1729 */
2509ef26 1730int free_swap_and_cache(swp_entry_t entry)
1da177e4 1731{
2509ef26 1732 struct swap_info_struct *p;
7c00bafe 1733 unsigned char count;
1da177e4 1734
a7420aa5 1735 if (non_swap_entry(entry))
2509ef26 1736 return 1;
0697212a 1737
7c00bafe 1738 p = _swap_info_get(entry);
1da177e4 1739 if (p) {
7c00bafe 1740 count = __swap_entry_free(p, entry, 1);
e0709829 1741 if (count == SWAP_HAS_CACHE &&
bcd49e86
HY
1742 !swap_page_trans_huge_swapped(p, entry))
1743 __try_to_reclaim_swap(p, swp_offset(entry),
1744 TTRS_UNMAPPED | TTRS_FULL);
1da177e4 1745 }
2509ef26 1746 return p != NULL;
1da177e4
LT
1747}
1748
b0cb1a19 1749#ifdef CONFIG_HIBERNATION
f577eb30 1750/*
915bae9e 1751 * Find the swap type that corresponds to given device (if any).
f577eb30 1752 *
915bae9e
RW
1753 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1754 * from 0, in which the swap header is expected to be located.
1755 *
1756 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1757 */
7bf23687 1758int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 1759{
915bae9e 1760 struct block_device *bdev = NULL;
efa90a98 1761 int type;
f577eb30 1762
915bae9e
RW
1763 if (device)
1764 bdev = bdget(device);
1765
f577eb30 1766 spin_lock(&swap_lock);
efa90a98
HD
1767 for (type = 0; type < nr_swapfiles; type++) {
1768 struct swap_info_struct *sis = swap_info[type];
f577eb30 1769
915bae9e 1770 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1771 continue;
b6b5bce3 1772
915bae9e 1773 if (!bdev) {
7bf23687 1774 if (bdev_p)
dddac6a7 1775 *bdev_p = bdgrab(sis->bdev);
7bf23687 1776
6e1819d6 1777 spin_unlock(&swap_lock);
efa90a98 1778 return type;
6e1819d6 1779 }
915bae9e 1780 if (bdev == sis->bdev) {
4efaceb1 1781 struct swap_extent *se = first_se(sis);
915bae9e 1782
915bae9e 1783 if (se->start_block == offset) {
7bf23687 1784 if (bdev_p)
dddac6a7 1785 *bdev_p = bdgrab(sis->bdev);
7bf23687 1786
915bae9e
RW
1787 spin_unlock(&swap_lock);
1788 bdput(bdev);
efa90a98 1789 return type;
915bae9e 1790 }
f577eb30
RW
1791 }
1792 }
1793 spin_unlock(&swap_lock);
915bae9e
RW
1794 if (bdev)
1795 bdput(bdev);
1796
f577eb30
RW
1797 return -ENODEV;
1798}
1799
73c34b6a
HD
1800/*
1801 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1802 * corresponding to given index in swap_info (swap type).
1803 */
1804sector_t swapdev_block(int type, pgoff_t offset)
1805{
1806 struct block_device *bdev;
c10d38cc 1807 struct swap_info_struct *si = swap_type_to_swap_info(type);
73c34b6a 1808
c10d38cc 1809 if (!si || !(si->flags & SWP_WRITEOK))
73c34b6a 1810 return 0;
d4906e1a 1811 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
1812}
1813
f577eb30
RW
1814/*
1815 * Return either the total number of swap pages of given type, or the number
1816 * of free pages of that type (depending on @free)
1817 *
1818 * This is needed for software suspend
1819 */
1820unsigned int count_swap_pages(int type, int free)
1821{
1822 unsigned int n = 0;
1823
efa90a98
HD
1824 spin_lock(&swap_lock);
1825 if ((unsigned int)type < nr_swapfiles) {
1826 struct swap_info_struct *sis = swap_info[type];
1827
ec8acf20 1828 spin_lock(&sis->lock);
efa90a98
HD
1829 if (sis->flags & SWP_WRITEOK) {
1830 n = sis->pages;
f577eb30 1831 if (free)
efa90a98 1832 n -= sis->inuse_pages;
f577eb30 1833 }
ec8acf20 1834 spin_unlock(&sis->lock);
f577eb30 1835 }
efa90a98 1836 spin_unlock(&swap_lock);
f577eb30
RW
1837 return n;
1838}
73c34b6a 1839#endif /* CONFIG_HIBERNATION */
f577eb30 1840
9f8bdb3f 1841static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
179ef71c 1842{
9f8bdb3f 1843 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
179ef71c
CG
1844}
1845
1da177e4 1846/*
72866f6f
HD
1847 * No need to decide whether this PTE shares the swap entry with others,
1848 * just let do_wp_page work it out if a write is requested later - to
1849 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1850 */
044d66c1 1851static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1852 unsigned long addr, swp_entry_t entry, struct page *page)
1853{
9e16b7fb 1854 struct page *swapcache;
72835c86 1855 struct mem_cgroup *memcg;
044d66c1
HD
1856 spinlock_t *ptl;
1857 pte_t *pte;
1858 int ret = 1;
1859
9e16b7fb
HD
1860 swapcache = page;
1861 page = ksm_might_need_to_copy(page, vma, addr);
1862 if (unlikely(!page))
1863 return -ENOMEM;
1864
f627c2f5
KS
1865 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1866 &memcg, false)) {
044d66c1 1867 ret = -ENOMEM;
85d9fc89
KH
1868 goto out_nolock;
1869 }
044d66c1
HD
1870
1871 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
9f8bdb3f 1872 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
f627c2f5 1873 mem_cgroup_cancel_charge(page, memcg, false);
044d66c1
HD
1874 ret = 0;
1875 goto out;
1876 }
8a9f3ccd 1877
b084d435 1878 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1879 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1880 get_page(page);
1881 set_pte_at(vma->vm_mm, addr, pte,
1882 pte_mkold(mk_pte(page, vma->vm_page_prot)));
00501b53 1883 if (page == swapcache) {
d281ee61 1884 page_add_anon_rmap(page, vma, addr, false);
f627c2f5 1885 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1886 } else { /* ksm created a completely new copy */
d281ee61 1887 page_add_new_anon_rmap(page, vma, addr, false);
f627c2f5 1888 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
1889 lru_cache_add_active_or_unevictable(page, vma);
1890 }
1da177e4
LT
1891 swap_free(entry);
1892 /*
1893 * Move the page to the active list so it is not
1894 * immediately swapped out again after swapon.
1895 */
1896 activate_page(page);
044d66c1
HD
1897out:
1898 pte_unmap_unlock(pte, ptl);
85d9fc89 1899out_nolock:
9e16b7fb
HD
1900 if (page != swapcache) {
1901 unlock_page(page);
1902 put_page(page);
1903 }
044d66c1 1904 return ret;
1da177e4
LT
1905}
1906
1907static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
b56a2d8a
VRP
1908 unsigned long addr, unsigned long end,
1909 unsigned int type, bool frontswap,
1910 unsigned long *fs_pages_to_unuse)
1da177e4 1911{
b56a2d8a
VRP
1912 struct page *page;
1913 swp_entry_t entry;
705e87c0 1914 pte_t *pte;
b56a2d8a
VRP
1915 struct swap_info_struct *si;
1916 unsigned long offset;
8a9f3ccd 1917 int ret = 0;
b56a2d8a 1918 volatile unsigned char *swap_map;
1da177e4 1919
b56a2d8a 1920 si = swap_info[type];
044d66c1 1921 pte = pte_offset_map(pmd, addr);
1da177e4 1922 do {
b56a2d8a
VRP
1923 struct vm_fault vmf;
1924
1925 if (!is_swap_pte(*pte))
1926 continue;
1927
1928 entry = pte_to_swp_entry(*pte);
1929 if (swp_type(entry) != type)
1930 continue;
1931
1932 offset = swp_offset(entry);
1933 if (frontswap && !frontswap_test(si, offset))
1934 continue;
1935
1936 pte_unmap(pte);
1937 swap_map = &si->swap_map[offset];
ebc5951e
AR
1938 page = lookup_swap_cache(entry, vma, addr);
1939 if (!page) {
1940 vmf.vma = vma;
1941 vmf.address = addr;
1942 vmf.pmd = pmd;
1943 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1944 &vmf);
1945 }
b56a2d8a
VRP
1946 if (!page) {
1947 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1948 goto try_next;
1949 return -ENOMEM;
1950 }
1951
1952 lock_page(page);
1953 wait_on_page_writeback(page);
1954 ret = unuse_pte(vma, pmd, addr, entry, page);
1955 if (ret < 0) {
1956 unlock_page(page);
1957 put_page(page);
1958 goto out;
1959 }
1960
1961 try_to_free_swap(page);
1962 unlock_page(page);
1963 put_page(page);
1964
1965 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1966 ret = FRONTSWAP_PAGES_UNUSED;
1967 goto out;
1da177e4 1968 }
b56a2d8a
VRP
1969try_next:
1970 pte = pte_offset_map(pmd, addr);
1da177e4 1971 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1 1972 pte_unmap(pte - 1);
b56a2d8a
VRP
1973
1974 ret = 0;
044d66c1 1975out:
8a9f3ccd 1976 return ret;
1da177e4
LT
1977}
1978
1979static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1980 unsigned long addr, unsigned long end,
b56a2d8a
VRP
1981 unsigned int type, bool frontswap,
1982 unsigned long *fs_pages_to_unuse)
1da177e4
LT
1983{
1984 pmd_t *pmd;
1985 unsigned long next;
8a9f3ccd 1986 int ret;
1da177e4
LT
1987
1988 pmd = pmd_offset(pud, addr);
1989 do {
dc644a07 1990 cond_resched();
1da177e4 1991 next = pmd_addr_end(addr, end);
1a5a9906 1992 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 1993 continue;
b56a2d8a
VRP
1994 ret = unuse_pte_range(vma, pmd, addr, next, type,
1995 frontswap, fs_pages_to_unuse);
8a9f3ccd
BS
1996 if (ret)
1997 return ret;
1da177e4
LT
1998 } while (pmd++, addr = next, addr != end);
1999 return 0;
2000}
2001
c2febafc 2002static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 2003 unsigned long addr, unsigned long end,
b56a2d8a
VRP
2004 unsigned int type, bool frontswap,
2005 unsigned long *fs_pages_to_unuse)
1da177e4
LT
2006{
2007 pud_t *pud;
2008 unsigned long next;
8a9f3ccd 2009 int ret;
1da177e4 2010
c2febafc 2011 pud = pud_offset(p4d, addr);
1da177e4
LT
2012 do {
2013 next = pud_addr_end(addr, end);
2014 if (pud_none_or_clear_bad(pud))
2015 continue;
b56a2d8a
VRP
2016 ret = unuse_pmd_range(vma, pud, addr, next, type,
2017 frontswap, fs_pages_to_unuse);
8a9f3ccd
BS
2018 if (ret)
2019 return ret;
1da177e4
LT
2020 } while (pud++, addr = next, addr != end);
2021 return 0;
2022}
2023
c2febafc
KS
2024static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2025 unsigned long addr, unsigned long end,
b56a2d8a
VRP
2026 unsigned int type, bool frontswap,
2027 unsigned long *fs_pages_to_unuse)
c2febafc
KS
2028{
2029 p4d_t *p4d;
2030 unsigned long next;
2031 int ret;
2032
2033 p4d = p4d_offset(pgd, addr);
2034 do {
2035 next = p4d_addr_end(addr, end);
2036 if (p4d_none_or_clear_bad(p4d))
2037 continue;
b56a2d8a
VRP
2038 ret = unuse_pud_range(vma, p4d, addr, next, type,
2039 frontswap, fs_pages_to_unuse);
c2febafc
KS
2040 if (ret)
2041 return ret;
2042 } while (p4d++, addr = next, addr != end);
2043 return 0;
2044}
2045
b56a2d8a
VRP
2046static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2047 bool frontswap, unsigned long *fs_pages_to_unuse)
1da177e4
LT
2048{
2049 pgd_t *pgd;
2050 unsigned long addr, end, next;
8a9f3ccd 2051 int ret;
1da177e4 2052
b56a2d8a
VRP
2053 addr = vma->vm_start;
2054 end = vma->vm_end;
1da177e4
LT
2055
2056 pgd = pgd_offset(vma->vm_mm, addr);
2057 do {
2058 next = pgd_addr_end(addr, end);
2059 if (pgd_none_or_clear_bad(pgd))
2060 continue;
b56a2d8a
VRP
2061 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2062 frontswap, fs_pages_to_unuse);
8a9f3ccd
BS
2063 if (ret)
2064 return ret;
1da177e4
LT
2065 } while (pgd++, addr = next, addr != end);
2066 return 0;
2067}
2068
b56a2d8a
VRP
2069static int unuse_mm(struct mm_struct *mm, unsigned int type,
2070 bool frontswap, unsigned long *fs_pages_to_unuse)
1da177e4
LT
2071{
2072 struct vm_area_struct *vma;
8a9f3ccd 2073 int ret = 0;
1da177e4 2074
b56a2d8a 2075 down_read(&mm->mmap_sem);
1da177e4 2076 for (vma = mm->mmap; vma; vma = vma->vm_next) {
b56a2d8a
VRP
2077 if (vma->anon_vma) {
2078 ret = unuse_vma(vma, type, frontswap,
2079 fs_pages_to_unuse);
2080 if (ret)
2081 break;
2082 }
dc644a07 2083 cond_resched();
1da177e4 2084 }
1da177e4 2085 up_read(&mm->mmap_sem);
b56a2d8a 2086 return ret;
1da177e4
LT
2087}
2088
2089/*
38b5faf4 2090 * Scan swap_map (or frontswap_map if frontswap parameter is true)
b56a2d8a
VRP
2091 * from current position to next entry still in use. Return 0
2092 * if there are no inuse entries after prev till end of the map.
1da177e4 2093 */
6eb396dc 2094static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 2095 unsigned int prev, bool frontswap)
1da177e4 2096{
b56a2d8a 2097 unsigned int i;
8d69aaee 2098 unsigned char count;
1da177e4
LT
2099
2100 /*
5d337b91 2101 * No need for swap_lock here: we're just looking
1da177e4
LT
2102 * for whether an entry is in use, not modifying it; false
2103 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 2104 * allocations from this area (while holding swap_lock).
1da177e4 2105 */
b56a2d8a 2106 for (i = prev + 1; i < si->max; i++) {
4db0c3c2 2107 count = READ_ONCE(si->swap_map[i]);
355cfa73 2108 if (count && swap_count(count) != SWAP_MAP_BAD)
dc644a07
HD
2109 if (!frontswap || frontswap_test(si, i))
2110 break;
2111 if ((i % LATENCY_LIMIT) == 0)
2112 cond_resched();
1da177e4 2113 }
b56a2d8a
VRP
2114
2115 if (i == si->max)
2116 i = 0;
2117
1da177e4
LT
2118 return i;
2119}
2120
2121/*
b56a2d8a 2122 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
38b5faf4 2123 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 2124 */
38b5faf4
DM
2125int try_to_unuse(unsigned int type, bool frontswap,
2126 unsigned long pages_to_unuse)
1da177e4 2127{
b56a2d8a
VRP
2128 struct mm_struct *prev_mm;
2129 struct mm_struct *mm;
2130 struct list_head *p;
2131 int retval = 0;
efa90a98 2132 struct swap_info_struct *si = swap_info[type];
1da177e4
LT
2133 struct page *page;
2134 swp_entry_t entry;
b56a2d8a 2135 unsigned int i;
1da177e4 2136
21820948 2137 if (!READ_ONCE(si->inuse_pages))
b56a2d8a 2138 return 0;
1da177e4 2139
b56a2d8a
VRP
2140 if (!frontswap)
2141 pages_to_unuse = 0;
2142
2143retry:
2144 retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2145 if (retval)
2146 goto out;
2147
2148 prev_mm = &init_mm;
2149 mmget(prev_mm);
2150
2151 spin_lock(&mmlist_lock);
2152 p = &init_mm.mmlist;
21820948 2153 while (READ_ONCE(si->inuse_pages) &&
64165b1a
HD
2154 !signal_pending(current) &&
2155 (p = p->next) != &init_mm.mmlist) {
1da177e4 2156
b56a2d8a
VRP
2157 mm = list_entry(p, struct mm_struct, mmlist);
2158 if (!mmget_not_zero(mm))
2159 continue;
2160 spin_unlock(&mmlist_lock);
2161 mmput(prev_mm);
2162 prev_mm = mm;
2163 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
1da177e4 2164
b56a2d8a
VRP
2165 if (retval) {
2166 mmput(prev_mm);
2167 goto out;
1da177e4
LT
2168 }
2169
2170 /*
b56a2d8a
VRP
2171 * Make sure that we aren't completely killing
2172 * interactive performance.
1da177e4 2173 */
b56a2d8a
VRP
2174 cond_resched();
2175 spin_lock(&mmlist_lock);
2176 }
2177 spin_unlock(&mmlist_lock);
1da177e4 2178
b56a2d8a 2179 mmput(prev_mm);
1da177e4 2180
b56a2d8a 2181 i = 0;
21820948 2182 while (READ_ONCE(si->inuse_pages) &&
64165b1a
HD
2183 !signal_pending(current) &&
2184 (i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4 2185
b56a2d8a
VRP
2186 entry = swp_entry(type, i);
2187 page = find_get_page(swap_address_space(entry), i);
2188 if (!page)
2189 continue;
68bdc8d6
HD
2190
2191 /*
2192 * It is conceivable that a racing task removed this page from
b56a2d8a
VRP
2193 * swap cache just before we acquired the page lock. The page
2194 * might even be back in swap cache on another swap area. But
2195 * that is okay, try_to_free_swap() only removes stale pages.
1da177e4 2196 */
b56a2d8a
VRP
2197 lock_page(page);
2198 wait_on_page_writeback(page);
2199 try_to_free_swap(page);
1da177e4 2200 unlock_page(page);
09cbfeaf 2201 put_page(page);
1da177e4
LT
2202
2203 /*
b56a2d8a
VRP
2204 * For frontswap, we just need to unuse pages_to_unuse, if
2205 * it was specified. Need not check frontswap again here as
2206 * we already zeroed out pages_to_unuse if not frontswap.
1da177e4 2207 */
b56a2d8a
VRP
2208 if (pages_to_unuse && --pages_to_unuse == 0)
2209 goto out;
1da177e4
LT
2210 }
2211
b56a2d8a
VRP
2212 /*
2213 * Lets check again to see if there are still swap entries in the map.
2214 * If yes, we would need to do retry the unuse logic again.
2215 * Under global memory pressure, swap entries can be reinserted back
2216 * into process space after the mmlist loop above passes over them.
dd862deb 2217 *
af53d3e9
HD
2218 * Limit the number of retries? No: when mmget_not_zero() above fails,
2219 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2220 * at its own independent pace; and even shmem_writepage() could have
2221 * been preempted after get_swap_page(), temporarily hiding that swap.
2222 * It's easy and robust (though cpu-intensive) just to keep retrying.
b56a2d8a 2223 */
21820948 2224 if (READ_ONCE(si->inuse_pages)) {
64165b1a
HD
2225 if (!signal_pending(current))
2226 goto retry;
2227 retval = -EINTR;
2228 }
b56a2d8a
VRP
2229out:
2230 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
1da177e4
LT
2231}
2232
2233/*
5d337b91
HD
2234 * After a successful try_to_unuse, if no swap is now in use, we know
2235 * we can empty the mmlist. swap_lock must be held on entry and exit.
2236 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
2237 * added to the mmlist just after page_duplicate - before would be racy.
2238 */
2239static void drain_mmlist(void)
2240{
2241 struct list_head *p, *next;
efa90a98 2242 unsigned int type;
1da177e4 2243
efa90a98
HD
2244 for (type = 0; type < nr_swapfiles; type++)
2245 if (swap_info[type]->inuse_pages)
1da177e4
LT
2246 return;
2247 spin_lock(&mmlist_lock);
2248 list_for_each_safe(p, next, &init_mm.mmlist)
2249 list_del_init(p);
2250 spin_unlock(&mmlist_lock);
2251}
2252
2253/*
2254 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
2255 * corresponds to page offset for the specified swap entry.
2256 * Note that the type of this function is sector_t, but it returns page offset
2257 * into the bdev, not sector offset.
1da177e4 2258 */
d4906e1a 2259static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 2260{
f29ad6a9 2261 struct swap_info_struct *sis;
f29ad6a9
HD
2262 struct swap_extent *se;
2263 pgoff_t offset;
2264
c10d38cc 2265 sis = swp_swap_info(entry);
f29ad6a9
HD
2266 *bdev = sis->bdev;
2267
2268 offset = swp_offset(entry);
4efaceb1
AL
2269 se = offset_to_swap_extent(sis, offset);
2270 return se->start_block + (offset - se->start_page);
1da177e4
LT
2271}
2272
d4906e1a
LS
2273/*
2274 * Returns the page offset into bdev for the specified page's swap entry.
2275 */
2276sector_t map_swap_page(struct page *page, struct block_device **bdev)
2277{
2278 swp_entry_t entry;
2279 entry.val = page_private(page);
2280 return map_swap_entry(entry, bdev);
2281}
2282
1da177e4
LT
2283/*
2284 * Free all of a swapdev's extent information
2285 */
2286static void destroy_swap_extents(struct swap_info_struct *sis)
2287{
4efaceb1
AL
2288 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2289 struct rb_node *rb = sis->swap_extent_root.rb_node;
2290 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
1da177e4 2291
4efaceb1 2292 rb_erase(rb, &sis->swap_extent_root);
1da177e4
LT
2293 kfree(se);
2294 }
62c230bc 2295
bc4ae27d 2296 if (sis->flags & SWP_ACTIVATED) {
62c230bc
MG
2297 struct file *swap_file = sis->swap_file;
2298 struct address_space *mapping = swap_file->f_mapping;
2299
bc4ae27d
OS
2300 sis->flags &= ~SWP_ACTIVATED;
2301 if (mapping->a_ops->swap_deactivate)
2302 mapping->a_ops->swap_deactivate(swap_file);
62c230bc 2303 }
1da177e4
LT
2304}
2305
2306/*
2307 * Add a block range (and the corresponding page range) into this swapdev's
4efaceb1 2308 * extent tree.
1da177e4 2309 *
11d31886 2310 * This function rather assumes that it is called in ascending page order.
1da177e4 2311 */
a509bc1a 2312int
1da177e4
LT
2313add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2314 unsigned long nr_pages, sector_t start_block)
2315{
4efaceb1 2316 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
1da177e4
LT
2317 struct swap_extent *se;
2318 struct swap_extent *new_se;
4efaceb1
AL
2319
2320 /*
2321 * place the new node at the right most since the
2322 * function is called in ascending page order.
2323 */
2324 while (*link) {
2325 parent = *link;
2326 link = &parent->rb_right;
2327 }
2328
2329 if (parent) {
2330 se = rb_entry(parent, struct swap_extent, rb_node);
11d31886
HD
2331 BUG_ON(se->start_page + se->nr_pages != start_page);
2332 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
2333 /* Merge it */
2334 se->nr_pages += nr_pages;
2335 return 0;
2336 }
1da177e4
LT
2337 }
2338
4efaceb1 2339 /* No merge, insert a new extent. */
1da177e4
LT
2340 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2341 if (new_se == NULL)
2342 return -ENOMEM;
2343 new_se->start_page = start_page;
2344 new_se->nr_pages = nr_pages;
2345 new_se->start_block = start_block;
2346
4efaceb1
AL
2347 rb_link_node(&new_se->rb_node, parent, link);
2348 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
53092a74 2349 return 1;
1da177e4 2350}
aa8aa8a3 2351EXPORT_SYMBOL_GPL(add_swap_extent);
1da177e4
LT
2352
2353/*
2354 * A `swap extent' is a simple thing which maps a contiguous range of pages
2355 * onto a contiguous range of disk blocks. An ordered list of swap extents
2356 * is built at swapon time and is then used at swap_writepage/swap_readpage
2357 * time for locating where on disk a page belongs.
2358 *
2359 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2360 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2361 * swap files identically.
2362 *
2363 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2364 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2365 * swapfiles are handled *identically* after swapon time.
2366 *
2367 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2368 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2369 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2370 * requirements, they are simply tossed out - we will never use those blocks
2371 * for swapping.
2372 *
1638045c
DW
2373 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2374 * prevents users from writing to the swap device, which will corrupt memory.
1da177e4
LT
2375 *
2376 * The amount of disk space which a single swap extent represents varies.
2377 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2378 * extents in the list. To avoid much list walking, we cache the previous
2379 * search location in `curr_swap_extent', and start new searches from there.
2380 * This is extremely effective. The average number of iterations in
2381 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2382 */
53092a74 2383static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 2384{
62c230bc
MG
2385 struct file *swap_file = sis->swap_file;
2386 struct address_space *mapping = swap_file->f_mapping;
2387 struct inode *inode = mapping->host;
1da177e4
LT
2388 int ret;
2389
1da177e4
LT
2390 if (S_ISBLK(inode->i_mode)) {
2391 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 2392 *span = sis->pages;
a509bc1a 2393 return ret;
1da177e4
LT
2394 }
2395
62c230bc 2396 if (mapping->a_ops->swap_activate) {
a509bc1a 2397 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
bc4ae27d
OS
2398 if (ret >= 0)
2399 sis->flags |= SWP_ACTIVATED;
62c230bc 2400 if (!ret) {
bc4ae27d 2401 sis->flags |= SWP_FS;
62c230bc
MG
2402 ret = add_swap_extent(sis, 0, sis->max, 0);
2403 *span = sis->pages;
2404 }
a509bc1a 2405 return ret;
62c230bc
MG
2406 }
2407
a509bc1a 2408 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
2409}
2410
a2468cc9
AL
2411static int swap_node(struct swap_info_struct *p)
2412{
2413 struct block_device *bdev;
2414
2415 if (p->bdev)
2416 bdev = p->bdev;
2417 else
2418 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2419
2420 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2421}
2422
eb085574
HY
2423static void setup_swap_info(struct swap_info_struct *p, int prio,
2424 unsigned char *swap_map,
2425 struct swap_cluster_info *cluster_info)
40531542 2426{
a2468cc9
AL
2427 int i;
2428
40531542
CEB
2429 if (prio >= 0)
2430 p->prio = prio;
2431 else
2432 p->prio = --least_priority;
18ab4d4c
DS
2433 /*
2434 * the plist prio is negated because plist ordering is
2435 * low-to-high, while swap ordering is high-to-low
2436 */
2437 p->list.prio = -p->prio;
a2468cc9
AL
2438 for_each_node(i) {
2439 if (p->prio >= 0)
2440 p->avail_lists[i].prio = -p->prio;
2441 else {
2442 if (swap_node(p) == i)
2443 p->avail_lists[i].prio = 1;
2444 else
2445 p->avail_lists[i].prio = -p->prio;
2446 }
2447 }
40531542 2448 p->swap_map = swap_map;
2a8f9449 2449 p->cluster_info = cluster_info;
eb085574
HY
2450}
2451
2452static void _enable_swap_info(struct swap_info_struct *p)
2453{
2454 p->flags |= SWP_WRITEOK | SWP_VALID;
ec8acf20 2455 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
2456 total_swap_pages += p->pages;
2457
adfab836 2458 assert_spin_locked(&swap_lock);
adfab836 2459 /*
18ab4d4c
DS
2460 * both lists are plists, and thus priority ordered.
2461 * swap_active_head needs to be priority ordered for swapoff(),
2462 * which on removal of any swap_info_struct with an auto-assigned
2463 * (i.e. negative) priority increments the auto-assigned priority
2464 * of any lower-priority swap_info_structs.
2465 * swap_avail_head needs to be priority ordered for get_swap_page(),
2466 * which allocates swap pages from the highest available priority
2467 * swap_info_struct.
adfab836 2468 */
18ab4d4c 2469 plist_add(&p->list, &swap_active_head);
a2468cc9 2470 add_to_avail_list(p);
cf0cac0a
CEB
2471}
2472
2473static void enable_swap_info(struct swap_info_struct *p, int prio,
2474 unsigned char *swap_map,
2a8f9449 2475 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
2476 unsigned long *frontswap_map)
2477{
4f89849d 2478 frontswap_init(p->type, frontswap_map);
cf0cac0a 2479 spin_lock(&swap_lock);
ec8acf20 2480 spin_lock(&p->lock);
eb085574
HY
2481 setup_swap_info(p, prio, swap_map, cluster_info);
2482 spin_unlock(&p->lock);
2483 spin_unlock(&swap_lock);
2484 /*
2485 * Guarantee swap_map, cluster_info, etc. fields are valid
2486 * between get/put_swap_device() if SWP_VALID bit is set
2487 */
2488 synchronize_rcu();
2489 spin_lock(&swap_lock);
2490 spin_lock(&p->lock);
2491 _enable_swap_info(p);
ec8acf20 2492 spin_unlock(&p->lock);
cf0cac0a
CEB
2493 spin_unlock(&swap_lock);
2494}
2495
2496static void reinsert_swap_info(struct swap_info_struct *p)
2497{
2498 spin_lock(&swap_lock);
ec8acf20 2499 spin_lock(&p->lock);
eb085574
HY
2500 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2501 _enable_swap_info(p);
ec8acf20 2502 spin_unlock(&p->lock);
40531542
CEB
2503 spin_unlock(&swap_lock);
2504}
2505
67afa38e
TC
2506bool has_usable_swap(void)
2507{
2508 bool ret = true;
2509
2510 spin_lock(&swap_lock);
2511 if (plist_head_empty(&swap_active_head))
2512 ret = false;
2513 spin_unlock(&swap_lock);
2514 return ret;
2515}
2516
c4ea37c2 2517SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 2518{
73c34b6a 2519 struct swap_info_struct *p = NULL;
8d69aaee 2520 unsigned char *swap_map;
2a8f9449 2521 struct swap_cluster_info *cluster_info;
4f89849d 2522 unsigned long *frontswap_map;
1da177e4
LT
2523 struct file *swap_file, *victim;
2524 struct address_space *mapping;
2525 struct inode *inode;
91a27b2a 2526 struct filename *pathname;
adfab836 2527 int err, found = 0;
5b808a23 2528 unsigned int old_block_size;
886bb7e9 2529
1da177e4
LT
2530 if (!capable(CAP_SYS_ADMIN))
2531 return -EPERM;
2532
191c5424
AV
2533 BUG_ON(!current->mm);
2534
1da177e4 2535 pathname = getname(specialfile);
1da177e4 2536 if (IS_ERR(pathname))
f58b59c1 2537 return PTR_ERR(pathname);
1da177e4 2538
669abf4e 2539 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
2540 err = PTR_ERR(victim);
2541 if (IS_ERR(victim))
2542 goto out;
2543
2544 mapping = victim->f_mapping;
5d337b91 2545 spin_lock(&swap_lock);
18ab4d4c 2546 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 2547 if (p->flags & SWP_WRITEOK) {
adfab836
DS
2548 if (p->swap_file->f_mapping == mapping) {
2549 found = 1;
1da177e4 2550 break;
adfab836 2551 }
1da177e4 2552 }
1da177e4 2553 }
adfab836 2554 if (!found) {
1da177e4 2555 err = -EINVAL;
5d337b91 2556 spin_unlock(&swap_lock);
1da177e4
LT
2557 goto out_dput;
2558 }
191c5424 2559 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
2560 vm_unacct_memory(p->pages);
2561 else {
2562 err = -ENOMEM;
5d337b91 2563 spin_unlock(&swap_lock);
1da177e4
LT
2564 goto out_dput;
2565 }
a2468cc9 2566 del_from_avail_list(p);
ec8acf20 2567 spin_lock(&p->lock);
78ecba08 2568 if (p->prio < 0) {
adfab836 2569 struct swap_info_struct *si = p;
a2468cc9 2570 int nid;
adfab836 2571
18ab4d4c 2572 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 2573 si->prio++;
18ab4d4c 2574 si->list.prio--;
a2468cc9
AL
2575 for_each_node(nid) {
2576 if (si->avail_lists[nid].prio != 1)
2577 si->avail_lists[nid].prio--;
2578 }
adfab836 2579 }
78ecba08
HD
2580 least_priority++;
2581 }
18ab4d4c 2582 plist_del(&p->list, &swap_active_head);
ec8acf20 2583 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
2584 total_swap_pages -= p->pages;
2585 p->flags &= ~SWP_WRITEOK;
ec8acf20 2586 spin_unlock(&p->lock);
5d337b91 2587 spin_unlock(&swap_lock);
fb4f88dc 2588
039939a6
TC
2589 disable_swap_slots_cache_lock();
2590
e1e12d2f 2591 set_current_oom_origin();
adfab836 2592 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
e1e12d2f 2593 clear_current_oom_origin();
1da177e4 2594
1da177e4
LT
2595 if (err) {
2596 /* re-insert swap space back into swap_list */
cf0cac0a 2597 reinsert_swap_info(p);
039939a6 2598 reenable_swap_slots_cache_unlock();
1da177e4
LT
2599 goto out_dput;
2600 }
52b7efdb 2601
039939a6
TC
2602 reenable_swap_slots_cache_unlock();
2603
eb085574
HY
2604 spin_lock(&swap_lock);
2605 spin_lock(&p->lock);
2606 p->flags &= ~SWP_VALID; /* mark swap device as invalid */
2607 spin_unlock(&p->lock);
2608 spin_unlock(&swap_lock);
2609 /*
2610 * wait for swap operations protected by get/put_swap_device()
2611 * to complete
2612 */
2613 synchronize_rcu();
2614
815c2c54
SL
2615 flush_work(&p->discard_work);
2616
5d337b91 2617 destroy_swap_extents(p);
570a335b
HD
2618 if (p->flags & SWP_CONTINUED)
2619 free_swap_count_continuations(p);
2620
81a0298b
HY
2621 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2622 atomic_dec(&nr_rotate_swap);
2623
fc0abb14 2624 mutex_lock(&swapon_mutex);
5d337b91 2625 spin_lock(&swap_lock);
ec8acf20 2626 spin_lock(&p->lock);
5d337b91
HD
2627 drain_mmlist();
2628
52b7efdb 2629 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
2630 p->highest_bit = 0; /* cuts scans short */
2631 while (p->flags >= SWP_SCANNING) {
ec8acf20 2632 spin_unlock(&p->lock);
5d337b91 2633 spin_unlock(&swap_lock);
13e4b57f 2634 schedule_timeout_uninterruptible(1);
5d337b91 2635 spin_lock(&swap_lock);
ec8acf20 2636 spin_lock(&p->lock);
52b7efdb 2637 }
52b7efdb 2638
1da177e4 2639 swap_file = p->swap_file;
5b808a23 2640 old_block_size = p->old_block_size;
1da177e4
LT
2641 p->swap_file = NULL;
2642 p->max = 0;
2643 swap_map = p->swap_map;
2644 p->swap_map = NULL;
2a8f9449
SL
2645 cluster_info = p->cluster_info;
2646 p->cluster_info = NULL;
4f89849d 2647 frontswap_map = frontswap_map_get(p);
ec8acf20 2648 spin_unlock(&p->lock);
5d337b91 2649 spin_unlock(&swap_lock);
adfab836 2650 frontswap_invalidate_area(p->type);
58e97ba6 2651 frontswap_map_set(p, NULL);
fc0abb14 2652 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
2653 free_percpu(p->percpu_cluster);
2654 p->percpu_cluster = NULL;
1da177e4 2655 vfree(swap_map);
54f180d3
HY
2656 kvfree(cluster_info);
2657 kvfree(frontswap_map);
2de1a7e4 2658 /* Destroy swap account information */
adfab836 2659 swap_cgroup_swapoff(p->type);
4b3ef9da 2660 exit_swap_address_space(p->type);
27a7faa0 2661
1da177e4
LT
2662 inode = mapping->host;
2663 if (S_ISBLK(inode->i_mode)) {
2664 struct block_device *bdev = I_BDEV(inode);
1638045c 2665
5b808a23 2666 set_blocksize(bdev, old_block_size);
e525fd89 2667 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2668 }
1638045c
DW
2669
2670 inode_lock(inode);
2671 inode->i_flags &= ~S_SWAPFILE;
2672 inode_unlock(inode);
1da177e4 2673 filp_close(swap_file, NULL);
f893ab41
WY
2674
2675 /*
2676 * Clear the SWP_USED flag after all resources are freed so that swapon
2677 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2678 * not hold p->lock after we cleared its SWP_WRITEOK.
2679 */
2680 spin_lock(&swap_lock);
2681 p->flags = 0;
2682 spin_unlock(&swap_lock);
2683
1da177e4 2684 err = 0;
66d7dd51
KS
2685 atomic_inc(&proc_poll_event);
2686 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
2687
2688out_dput:
2689 filp_close(victim, NULL);
2690out:
f58b59c1 2691 putname(pathname);
1da177e4
LT
2692 return err;
2693}
2694
2695#ifdef CONFIG_PROC_FS
9dd95748 2696static __poll_t swaps_poll(struct file *file, poll_table *wait)
66d7dd51 2697{
f1514638 2698 struct seq_file *seq = file->private_data;
66d7dd51
KS
2699
2700 poll_wait(file, &proc_poll_wait, wait);
2701
f1514638
KS
2702 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2703 seq->poll_event = atomic_read(&proc_poll_event);
a9a08845 2704 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
66d7dd51
KS
2705 }
2706
a9a08845 2707 return EPOLLIN | EPOLLRDNORM;
66d7dd51
KS
2708}
2709
1da177e4
LT
2710/* iterator */
2711static void *swap_start(struct seq_file *swap, loff_t *pos)
2712{
efa90a98
HD
2713 struct swap_info_struct *si;
2714 int type;
1da177e4
LT
2715 loff_t l = *pos;
2716
fc0abb14 2717 mutex_lock(&swapon_mutex);
1da177e4 2718
881e4aab
SS
2719 if (!l)
2720 return SEQ_START_TOKEN;
2721
c10d38cc 2722 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
efa90a98 2723 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2724 continue;
881e4aab 2725 if (!--l)
efa90a98 2726 return si;
1da177e4
LT
2727 }
2728
2729 return NULL;
2730}
2731
2732static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2733{
efa90a98
HD
2734 struct swap_info_struct *si = v;
2735 int type;
1da177e4 2736
881e4aab 2737 if (v == SEQ_START_TOKEN)
efa90a98
HD
2738 type = 0;
2739 else
2740 type = si->type + 1;
881e4aab 2741
10c8d69f 2742 ++(*pos);
c10d38cc 2743 for (; (si = swap_type_to_swap_info(type)); type++) {
efa90a98 2744 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2745 continue;
efa90a98 2746 return si;
1da177e4
LT
2747 }
2748
2749 return NULL;
2750}
2751
2752static void swap_stop(struct seq_file *swap, void *v)
2753{
fc0abb14 2754 mutex_unlock(&swapon_mutex);
1da177e4
LT
2755}
2756
2757static int swap_show(struct seq_file *swap, void *v)
2758{
efa90a98 2759 struct swap_info_struct *si = v;
1da177e4
LT
2760 struct file *file;
2761 int len;
2762
efa90a98 2763 if (si == SEQ_START_TOKEN) {
881e4aab
SS
2764 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2765 return 0;
2766 }
1da177e4 2767
efa90a98 2768 file = si->swap_file;
2726d566 2769 len = seq_file_path(swap, file, " \t\n\\");
6eb396dc 2770 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9 2771 len < 40 ? 40 - len : 1, " ",
496ad9aa 2772 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2773 "partition" : "file\t",
efa90a98
HD
2774 si->pages << (PAGE_SHIFT - 10),
2775 si->inuse_pages << (PAGE_SHIFT - 10),
2776 si->prio);
1da177e4
LT
2777 return 0;
2778}
2779
15ad7cdc 2780static const struct seq_operations swaps_op = {
1da177e4
LT
2781 .start = swap_start,
2782 .next = swap_next,
2783 .stop = swap_stop,
2784 .show = swap_show
2785};
2786
2787static int swaps_open(struct inode *inode, struct file *file)
2788{
f1514638 2789 struct seq_file *seq;
66d7dd51
KS
2790 int ret;
2791
66d7dd51 2792 ret = seq_open(file, &swaps_op);
f1514638 2793 if (ret)
66d7dd51 2794 return ret;
66d7dd51 2795
f1514638
KS
2796 seq = file->private_data;
2797 seq->poll_event = atomic_read(&proc_poll_event);
2798 return 0;
1da177e4
LT
2799}
2800
97a32539 2801static const struct proc_ops swaps_proc_ops = {
d919b33d 2802 .proc_flags = PROC_ENTRY_PERMANENT,
97a32539
AD
2803 .proc_open = swaps_open,
2804 .proc_read = seq_read,
2805 .proc_lseek = seq_lseek,
2806 .proc_release = seq_release,
2807 .proc_poll = swaps_poll,
1da177e4
LT
2808};
2809
2810static int __init procswaps_init(void)
2811{
97a32539 2812 proc_create("swaps", 0, NULL, &swaps_proc_ops);
1da177e4
LT
2813 return 0;
2814}
2815__initcall(procswaps_init);
2816#endif /* CONFIG_PROC_FS */
2817
1796316a
JB
2818#ifdef MAX_SWAPFILES_CHECK
2819static int __init max_swapfiles_check(void)
2820{
2821 MAX_SWAPFILES_CHECK();
2822 return 0;
2823}
2824late_initcall(max_swapfiles_check);
2825#endif
2826
53cbb243 2827static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2828{
73c34b6a 2829 struct swap_info_struct *p;
1da177e4 2830 unsigned int type;
a2468cc9 2831 int i;
efa90a98 2832
96008744 2833 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
efa90a98 2834 if (!p)
53cbb243 2835 return ERR_PTR(-ENOMEM);
efa90a98 2836
5d337b91 2837 spin_lock(&swap_lock);
efa90a98
HD
2838 for (type = 0; type < nr_swapfiles; type++) {
2839 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2840 break;
efa90a98 2841 }
0697212a 2842 if (type >= MAX_SWAPFILES) {
5d337b91 2843 spin_unlock(&swap_lock);
873d7bcf 2844 kvfree(p);
730c0581 2845 return ERR_PTR(-EPERM);
1da177e4 2846 }
efa90a98
HD
2847 if (type >= nr_swapfiles) {
2848 p->type = type;
c10d38cc 2849 WRITE_ONCE(swap_info[type], p);
efa90a98
HD
2850 /*
2851 * Write swap_info[type] before nr_swapfiles, in case a
2852 * racing procfs swap_start() or swap_next() is reading them.
2853 * (We never shrink nr_swapfiles, we never free this entry.)
2854 */
2855 smp_wmb();
c10d38cc 2856 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
efa90a98 2857 } else {
873d7bcf 2858 kvfree(p);
efa90a98
HD
2859 p = swap_info[type];
2860 /*
2861 * Do not memset this entry: a racing procfs swap_next()
2862 * would be relying on p->type to remain valid.
2863 */
2864 }
4efaceb1 2865 p->swap_extent_root = RB_ROOT;
18ab4d4c 2866 plist_node_init(&p->list, 0);
a2468cc9
AL
2867 for_each_node(i)
2868 plist_node_init(&p->avail_lists[i], 0);
1da177e4 2869 p->flags = SWP_USED;
5d337b91 2870 spin_unlock(&swap_lock);
ec8acf20 2871 spin_lock_init(&p->lock);
2628bd6f 2872 spin_lock_init(&p->cont_lock);
efa90a98 2873
53cbb243 2874 return p;
53cbb243
CEB
2875}
2876
4d0e1e10
CEB
2877static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2878{
2879 int error;
2880
2881 if (S_ISBLK(inode->i_mode)) {
2882 p->bdev = bdgrab(I_BDEV(inode));
2883 error = blkdev_get(p->bdev,
6f179af8 2884 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
4d0e1e10
CEB
2885 if (error < 0) {
2886 p->bdev = NULL;
6f179af8 2887 return error;
4d0e1e10
CEB
2888 }
2889 p->old_block_size = block_size(p->bdev);
2890 error = set_blocksize(p->bdev, PAGE_SIZE);
2891 if (error < 0)
87ade72a 2892 return error;
12d2966d
NA
2893 /*
2894 * Zoned block devices contain zones that have a sequential
2895 * write only restriction. Hence zoned block devices are not
2896 * suitable for swapping. Disallow them here.
2897 */
2898 if (blk_queue_is_zoned(p->bdev->bd_queue))
2899 return -EINVAL;
4d0e1e10
CEB
2900 p->flags |= SWP_BLKDEV;
2901 } else if (S_ISREG(inode->i_mode)) {
2902 p->bdev = inode->i_sb->s_bdev;
1638045c
DW
2903 }
2904
4d0e1e10 2905 return 0;
4d0e1e10
CEB
2906}
2907
377eeaa8
AK
2908
2909/*
2910 * Find out how many pages are allowed for a single swap device. There
2911 * are two limiting factors:
2912 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2913 * 2) the number of bits in the swap pte, as defined by the different
2914 * architectures.
2915 *
2916 * In order to find the largest possible bit mask, a swap entry with
2917 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2918 * decoded to a swp_entry_t again, and finally the swap offset is
2919 * extracted.
2920 *
2921 * This will mask all the bits from the initial ~0UL mask that can't
2922 * be encoded in either the swp_entry_t or the architecture definition
2923 * of a swap pte.
2924 */
2925unsigned long generic_max_swapfile_size(void)
2926{
2927 return swp_offset(pte_to_swp_entry(
2928 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2929}
2930
2931/* Can be overridden by an architecture for additional checks. */
2932__weak unsigned long max_swapfile_size(void)
2933{
2934 return generic_max_swapfile_size();
2935}
2936
ca8bd38b
CEB
2937static unsigned long read_swap_header(struct swap_info_struct *p,
2938 union swap_header *swap_header,
2939 struct inode *inode)
2940{
2941 int i;
2942 unsigned long maxpages;
2943 unsigned long swapfilepages;
d6bbbd29 2944 unsigned long last_page;
ca8bd38b
CEB
2945
2946 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2947 pr_err("Unable to find swap-space signature\n");
38719025 2948 return 0;
ca8bd38b
CEB
2949 }
2950
2951 /* swap partition endianess hack... */
2952 if (swab32(swap_header->info.version) == 1) {
2953 swab32s(&swap_header->info.version);
2954 swab32s(&swap_header->info.last_page);
2955 swab32s(&swap_header->info.nr_badpages);
dd111be6
JH
2956 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2957 return 0;
ca8bd38b
CEB
2958 for (i = 0; i < swap_header->info.nr_badpages; i++)
2959 swab32s(&swap_header->info.badpages[i]);
2960 }
2961 /* Check the swap header's sub-version */
2962 if (swap_header->info.version != 1) {
465c47fd
AM
2963 pr_warn("Unable to handle swap header version %d\n",
2964 swap_header->info.version);
38719025 2965 return 0;
ca8bd38b
CEB
2966 }
2967
2968 p->lowest_bit = 1;
2969 p->cluster_next = 1;
2970 p->cluster_nr = 0;
2971
377eeaa8 2972 maxpages = max_swapfile_size();
d6bbbd29 2973 last_page = swap_header->info.last_page;
a06ad633
TA
2974 if (!last_page) {
2975 pr_warn("Empty swap-file\n");
2976 return 0;
2977 }
d6bbbd29 2978 if (last_page > maxpages) {
465c47fd 2979 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2980 maxpages << (PAGE_SHIFT - 10),
2981 last_page << (PAGE_SHIFT - 10));
2982 }
2983 if (maxpages > last_page) {
2984 maxpages = last_page + 1;
ca8bd38b
CEB
2985 /* p->max is an unsigned int: don't overflow it */
2986 if ((unsigned int)maxpages == 0)
2987 maxpages = UINT_MAX;
2988 }
2989 p->highest_bit = maxpages - 1;
2990
2991 if (!maxpages)
38719025 2992 return 0;
ca8bd38b
CEB
2993 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2994 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 2995 pr_warn("Swap area shorter than signature indicates\n");
38719025 2996 return 0;
ca8bd38b
CEB
2997 }
2998 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 2999 return 0;
ca8bd38b 3000 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 3001 return 0;
ca8bd38b
CEB
3002
3003 return maxpages;
ca8bd38b
CEB
3004}
3005
4b3ef9da 3006#define SWAP_CLUSTER_INFO_COLS \
235b6217 3007 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
4b3ef9da
HY
3008#define SWAP_CLUSTER_SPACE_COLS \
3009 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3010#define SWAP_CLUSTER_COLS \
3011 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
235b6217 3012
915d4d7b
CEB
3013static int setup_swap_map_and_extents(struct swap_info_struct *p,
3014 union swap_header *swap_header,
3015 unsigned char *swap_map,
2a8f9449 3016 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
3017 unsigned long maxpages,
3018 sector_t *span)
3019{
235b6217 3020 unsigned int j, k;
915d4d7b
CEB
3021 unsigned int nr_good_pages;
3022 int nr_extents;
2a8f9449 3023 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
235b6217
HY
3024 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3025 unsigned long i, idx;
915d4d7b
CEB
3026
3027 nr_good_pages = maxpages - 1; /* omit header page */
3028
6b534915
HY
3029 cluster_list_init(&p->free_clusters);
3030 cluster_list_init(&p->discard_clusters);
2a8f9449 3031
915d4d7b
CEB
3032 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3033 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
3034 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3035 return -EINVAL;
915d4d7b
CEB
3036 if (page_nr < maxpages) {
3037 swap_map[page_nr] = SWAP_MAP_BAD;
3038 nr_good_pages--;
2a8f9449
SL
3039 /*
3040 * Haven't marked the cluster free yet, no list
3041 * operation involved
3042 */
3043 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
3044 }
3045 }
3046
2a8f9449
SL
3047 /* Haven't marked the cluster free yet, no list operation involved */
3048 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3049 inc_cluster_info_page(p, cluster_info, i);
3050
915d4d7b
CEB
3051 if (nr_good_pages) {
3052 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
3053 /*
3054 * Not mark the cluster free yet, no list
3055 * operation involved
3056 */
3057 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
3058 p->max = maxpages;
3059 p->pages = nr_good_pages;
3060 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
3061 if (nr_extents < 0)
3062 return nr_extents;
915d4d7b
CEB
3063 nr_good_pages = p->pages;
3064 }
3065 if (!nr_good_pages) {
465c47fd 3066 pr_warn("Empty swap-file\n");
bdb8e3f6 3067 return -EINVAL;
915d4d7b
CEB
3068 }
3069
2a8f9449
SL
3070 if (!cluster_info)
3071 return nr_extents;
3072
235b6217 3073
4b3ef9da
HY
3074 /*
3075 * Reduce false cache line sharing between cluster_info and
3076 * sharing same address space.
3077 */
235b6217
HY
3078 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3079 j = (k + col) % SWAP_CLUSTER_COLS;
3080 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3081 idx = i * SWAP_CLUSTER_COLS + j;
3082 if (idx >= nr_clusters)
3083 continue;
3084 if (cluster_count(&cluster_info[idx]))
3085 continue;
2a8f9449 3086 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
6b534915
HY
3087 cluster_list_add_tail(&p->free_clusters, cluster_info,
3088 idx);
2a8f9449 3089 }
2a8f9449 3090 }
915d4d7b 3091 return nr_extents;
915d4d7b
CEB
3092}
3093
dcf6b7dd
RA
3094/*
3095 * Helper to sys_swapon determining if a given swap
3096 * backing device queue supports DISCARD operations.
3097 */
3098static bool swap_discardable(struct swap_info_struct *si)
3099{
3100 struct request_queue *q = bdev_get_queue(si->bdev);
3101
3102 if (!q || !blk_queue_discard(q))
3103 return false;
3104
3105 return true;
3106}
3107
53cbb243
CEB
3108SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3109{
3110 struct swap_info_struct *p;
91a27b2a 3111 struct filename *name;
53cbb243
CEB
3112 struct file *swap_file = NULL;
3113 struct address_space *mapping;
40531542 3114 int prio;
53cbb243
CEB
3115 int error;
3116 union swap_header *swap_header;
915d4d7b 3117 int nr_extents;
53cbb243
CEB
3118 sector_t span;
3119 unsigned long maxpages;
53cbb243 3120 unsigned char *swap_map = NULL;
2a8f9449 3121 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 3122 unsigned long *frontswap_map = NULL;
53cbb243
CEB
3123 struct page *page = NULL;
3124 struct inode *inode = NULL;
7cbf3192 3125 bool inced_nr_rotate_swap = false;
53cbb243 3126
d15cab97
HD
3127 if (swap_flags & ~SWAP_FLAGS_VALID)
3128 return -EINVAL;
3129
53cbb243
CEB
3130 if (!capable(CAP_SYS_ADMIN))
3131 return -EPERM;
3132
a2468cc9
AL
3133 if (!swap_avail_heads)
3134 return -ENOMEM;
3135
53cbb243 3136 p = alloc_swap_info();
2542e513
CEB
3137 if (IS_ERR(p))
3138 return PTR_ERR(p);
53cbb243 3139
815c2c54
SL
3140 INIT_WORK(&p->discard_work, swap_discard_work);
3141
1da177e4 3142 name = getname(specialfile);
1da177e4 3143 if (IS_ERR(name)) {
7de7fb6b 3144 error = PTR_ERR(name);
1da177e4 3145 name = NULL;
bd69010b 3146 goto bad_swap;
1da177e4 3147 }
669abf4e 3148 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 3149 if (IS_ERR(swap_file)) {
7de7fb6b 3150 error = PTR_ERR(swap_file);
1da177e4 3151 swap_file = NULL;
bd69010b 3152 goto bad_swap;
1da177e4
LT
3153 }
3154
3155 p->swap_file = swap_file;
3156 mapping = swap_file->f_mapping;
2130781e 3157 inode = mapping->host;
6f179af8 3158
4d0e1e10
CEB
3159 error = claim_swapfile(p, inode);
3160 if (unlikely(error))
1da177e4 3161 goto bad_swap;
1da177e4 3162
d795a90e
NA
3163 inode_lock(inode);
3164 if (IS_SWAPFILE(inode)) {
3165 error = -EBUSY;
3166 goto bad_swap_unlock_inode;
3167 }
3168
1da177e4
LT
3169 /*
3170 * Read the swap header.
3171 */
3172 if (!mapping->a_ops->readpage) {
3173 error = -EINVAL;
d795a90e 3174 goto bad_swap_unlock_inode;
1da177e4 3175 }
090d2b18 3176 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
3177 if (IS_ERR(page)) {
3178 error = PTR_ERR(page);
d795a90e 3179 goto bad_swap_unlock_inode;
1da177e4 3180 }
81e33971 3181 swap_header = kmap(page);
1da177e4 3182
ca8bd38b
CEB
3183 maxpages = read_swap_header(p, swap_header, inode);
3184 if (unlikely(!maxpages)) {
1da177e4 3185 error = -EINVAL;
d795a90e 3186 goto bad_swap_unlock_inode;
1da177e4 3187 }
886bb7e9 3188
81e33971 3189 /* OK, set up the swap map and apply the bad block list */
803d0c83 3190 swap_map = vzalloc(maxpages);
81e33971
HD
3191 if (!swap_map) {
3192 error = -ENOMEM;
d795a90e 3193 goto bad_swap_unlock_inode;
81e33971 3194 }
f0571429
MK
3195
3196 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3197 p->flags |= SWP_STABLE_WRITES;
3198
539a6fea
MK
3199 if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3200 p->flags |= SWP_SYNCHRONOUS_IO;
3201
2a8f9449 3202 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
6f179af8 3203 int cpu;
235b6217 3204 unsigned long ci, nr_cluster;
6f179af8 3205
2a8f9449
SL
3206 p->flags |= SWP_SOLIDSTATE;
3207 /*
3208 * select a random position to start with to help wear leveling
3209 * SSD
3210 */
3211 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
235b6217 3212 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2a8f9449 3213
778e1cdd 3214 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
54f180d3 3215 GFP_KERNEL);
2a8f9449
SL
3216 if (!cluster_info) {
3217 error = -ENOMEM;
d795a90e 3218 goto bad_swap_unlock_inode;
2a8f9449 3219 }
235b6217
HY
3220
3221 for (ci = 0; ci < nr_cluster; ci++)
3222 spin_lock_init(&((cluster_info + ci)->lock));
3223
ebc2a1a6
SL
3224 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3225 if (!p->percpu_cluster) {
3226 error = -ENOMEM;
d795a90e 3227 goto bad_swap_unlock_inode;
ebc2a1a6 3228 }
6f179af8 3229 for_each_possible_cpu(cpu) {
ebc2a1a6 3230 struct percpu_cluster *cluster;
6f179af8 3231 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
ebc2a1a6
SL
3232 cluster_set_null(&cluster->index);
3233 }
7cbf3192 3234 } else {
81a0298b 3235 atomic_inc(&nr_rotate_swap);
7cbf3192
OS
3236 inced_nr_rotate_swap = true;
3237 }
1da177e4 3238
1421ef3c
CEB
3239 error = swap_cgroup_swapon(p->type, maxpages);
3240 if (error)
d795a90e 3241 goto bad_swap_unlock_inode;
1421ef3c 3242
915d4d7b 3243 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 3244 cluster_info, maxpages, &span);
915d4d7b
CEB
3245 if (unlikely(nr_extents < 0)) {
3246 error = nr_extents;
d795a90e 3247 goto bad_swap_unlock_inode;
1da177e4 3248 }
38b5faf4 3249 /* frontswap enabled? set up bit-per-page map for frontswap */
8ea1d2a1 3250 if (IS_ENABLED(CONFIG_FRONTSWAP))
778e1cdd
KC
3251 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3252 sizeof(long),
54f180d3 3253 GFP_KERNEL);
1da177e4 3254
2a8f9449
SL
3255 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3256 /*
3257 * When discard is enabled for swap with no particular
3258 * policy flagged, we set all swap discard flags here in
3259 * order to sustain backward compatibility with older
3260 * swapon(8) releases.
3261 */
3262 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3263 SWP_PAGE_DISCARD);
dcf6b7dd 3264
2a8f9449
SL
3265 /*
3266 * By flagging sys_swapon, a sysadmin can tell us to
3267 * either do single-time area discards only, or to just
3268 * perform discards for released swap page-clusters.
3269 * Now it's time to adjust the p->flags accordingly.
3270 */
3271 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3272 p->flags &= ~SWP_PAGE_DISCARD;
3273 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3274 p->flags &= ~SWP_AREA_DISCARD;
3275
3276 /* issue a swapon-time discard if it's still required */
3277 if (p->flags & SWP_AREA_DISCARD) {
3278 int err = discard_swap(p);
3279 if (unlikely(err))
3280 pr_err("swapon: discard_swap(%p): %d\n",
3281 p, err);
dcf6b7dd 3282 }
20137a49 3283 }
6a6ba831 3284
4b3ef9da
HY
3285 error = init_swap_address_space(p->type, maxpages);
3286 if (error)
d795a90e 3287 goto bad_swap_unlock_inode;
4b3ef9da 3288
dc617f29
DW
3289 /*
3290 * Flush any pending IO and dirty mappings before we start using this
3291 * swap device.
3292 */
3293 inode->i_flags |= S_SWAPFILE;
3294 error = inode_drain_writes(inode);
3295 if (error) {
3296 inode->i_flags &= ~S_SWAPFILE;
d795a90e 3297 goto bad_swap_unlock_inode;
dc617f29
DW
3298 }
3299
fc0abb14 3300 mutex_lock(&swapon_mutex);
40531542 3301 prio = -1;
78ecba08 3302 if (swap_flags & SWAP_FLAG_PREFER)
40531542 3303 prio =
78ecba08 3304 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 3305 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 3306
756a025f 3307 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 3308 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
3309 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3310 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 3311 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
3312 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3313 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 3314 (frontswap_map) ? "FS" : "");
c69dbfb8 3315
fc0abb14 3316 mutex_unlock(&swapon_mutex);
66d7dd51
KS
3317 atomic_inc(&proc_poll_event);
3318 wake_up_interruptible(&proc_poll_wait);
3319
1da177e4
LT
3320 error = 0;
3321 goto out;
d795a90e
NA
3322bad_swap_unlock_inode:
3323 inode_unlock(inode);
1da177e4 3324bad_swap:
ebc2a1a6
SL
3325 free_percpu(p->percpu_cluster);
3326 p->percpu_cluster = NULL;
bd69010b 3327 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
3328 set_blocksize(p->bdev, p->old_block_size);
3329 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 3330 }
d795a90e 3331 inode = NULL;
4cd3bb10 3332 destroy_swap_extents(p);
e8e6c2ec 3333 swap_cgroup_swapoff(p->type);
5d337b91 3334 spin_lock(&swap_lock);
1da177e4 3335 p->swap_file = NULL;
1da177e4 3336 p->flags = 0;
5d337b91 3337 spin_unlock(&swap_lock);
1da177e4 3338 vfree(swap_map);
8606a1a9 3339 kvfree(cluster_info);
b6b1fd2a 3340 kvfree(frontswap_map);
7cbf3192
OS
3341 if (inced_nr_rotate_swap)
3342 atomic_dec(&nr_rotate_swap);
d795a90e 3343 if (swap_file)
1da177e4
LT
3344 filp_close(swap_file, NULL);
3345out:
3346 if (page && !IS_ERR(page)) {
3347 kunmap(page);
09cbfeaf 3348 put_page(page);
1da177e4
LT
3349 }
3350 if (name)
3351 putname(name);
1638045c 3352 if (inode)
5955102c 3353 inode_unlock(inode);
039939a6
TC
3354 if (!error)
3355 enable_swap_slots_cache();
1da177e4
LT
3356 return error;
3357}
3358
3359void si_swapinfo(struct sysinfo *val)
3360{
efa90a98 3361 unsigned int type;
1da177e4
LT
3362 unsigned long nr_to_be_unused = 0;
3363
5d337b91 3364 spin_lock(&swap_lock);
efa90a98
HD
3365 for (type = 0; type < nr_swapfiles; type++) {
3366 struct swap_info_struct *si = swap_info[type];
3367
3368 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3369 nr_to_be_unused += si->inuse_pages;
1da177e4 3370 }
ec8acf20 3371 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 3372 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 3373 spin_unlock(&swap_lock);
1da177e4
LT
3374}
3375
3376/*
3377 * Verify that a swap entry is valid and increment its swap map count.
3378 *
355cfa73
KH
3379 * Returns error code in following case.
3380 * - success -> 0
3381 * - swp_entry is invalid -> EINVAL
3382 * - swp_entry is migration entry -> EINVAL
3383 * - swap-cache reference is requested but there is already one. -> EEXIST
3384 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 3385 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 3386 */
8d69aaee 3387static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 3388{
73c34b6a 3389 struct swap_info_struct *p;
235b6217 3390 struct swap_cluster_info *ci;
c10d38cc 3391 unsigned long offset;
8d69aaee
HD
3392 unsigned char count;
3393 unsigned char has_cache;
253d553b 3394 int err = -EINVAL;
1da177e4 3395
eb085574 3396 p = get_swap_device(entry);
c10d38cc 3397 if (!p)
235b6217
HY
3398 goto out;
3399
eb085574 3400 offset = swp_offset(entry);
235b6217 3401 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 3402
253d553b 3403 count = p->swap_map[offset];
edfe23da
SL
3404
3405 /*
3406 * swapin_readahead() doesn't check if a swap entry is valid, so the
3407 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3408 */
3409 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3410 err = -ENOENT;
3411 goto unlock_out;
3412 }
3413
253d553b
HD
3414 has_cache = count & SWAP_HAS_CACHE;
3415 count &= ~SWAP_HAS_CACHE;
3416 err = 0;
355cfa73 3417
253d553b 3418 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
3419
3420 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
3421 if (!has_cache && count)
3422 has_cache = SWAP_HAS_CACHE;
3423 else if (has_cache) /* someone else added cache */
3424 err = -EEXIST;
3425 else /* no users remaining */
3426 err = -ENOENT;
355cfa73
KH
3427
3428 } else if (count || has_cache) {
253d553b 3429
570a335b
HD
3430 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3431 count += usage;
3432 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 3433 err = -EINVAL;
570a335b
HD
3434 else if (swap_count_continued(p, offset, count))
3435 count = COUNT_CONTINUED;
3436 else
3437 err = -ENOMEM;
355cfa73 3438 } else
253d553b
HD
3439 err = -ENOENT; /* unused swap entry */
3440
3441 p->swap_map[offset] = count | has_cache;
3442
355cfa73 3443unlock_out:
235b6217 3444 unlock_cluster_or_swap_info(p, ci);
1da177e4 3445out:
eb085574
HY
3446 if (p)
3447 put_swap_device(p);
253d553b 3448 return err;
1da177e4 3449}
253d553b 3450
aaa46865
HD
3451/*
3452 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3453 * (in which case its reference count is never incremented).
3454 */
3455void swap_shmem_alloc(swp_entry_t entry)
3456{
3457 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3458}
3459
355cfa73 3460/*
08259d58
HD
3461 * Increase reference count of swap entry by 1.
3462 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3463 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3464 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3465 * might occur if a page table entry has got corrupted.
355cfa73 3466 */
570a335b 3467int swap_duplicate(swp_entry_t entry)
355cfa73 3468{
570a335b
HD
3469 int err = 0;
3470
3471 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3472 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3473 return err;
355cfa73 3474}
1da177e4 3475
cb4b86ba 3476/*
355cfa73
KH
3477 * @entry: swap entry for which we allocate swap cache.
3478 *
73c34b6a 3479 * Called when allocating swap cache for existing swap entry,
355cfa73 3480 * This can return error codes. Returns 0 at success.
3eeba135 3481 * -EEXIST means there is a swap cache.
355cfa73 3482 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
3483 */
3484int swapcache_prepare(swp_entry_t entry)
3485{
253d553b 3486 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
3487}
3488
0bcac06f
MK
3489struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3490{
c10d38cc 3491 return swap_type_to_swap_info(swp_type(entry));
0bcac06f
MK
3492}
3493
f981c595
MG
3494struct swap_info_struct *page_swap_info(struct page *page)
3495{
0bcac06f
MK
3496 swp_entry_t entry = { .val = page_private(page) };
3497 return swp_swap_info(entry);
f981c595
MG
3498}
3499
3500/*
3501 * out-of-line __page_file_ methods to avoid include hell.
3502 */
3503struct address_space *__page_file_mapping(struct page *page)
3504{
f981c595
MG
3505 return page_swap_info(page)->swap_file->f_mapping;
3506}
3507EXPORT_SYMBOL_GPL(__page_file_mapping);
3508
3509pgoff_t __page_file_index(struct page *page)
3510{
3511 swp_entry_t swap = { .val = page_private(page) };
f981c595
MG
3512 return swp_offset(swap);
3513}
3514EXPORT_SYMBOL_GPL(__page_file_index);
3515
570a335b
HD
3516/*
3517 * add_swap_count_continuation - called when a swap count is duplicated
3518 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3519 * page of the original vmalloc'ed swap_map, to hold the continuation count
3520 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3521 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3522 *
3523 * These continuation pages are seldom referenced: the common paths all work
3524 * on the original swap_map, only referring to a continuation page when the
3525 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3526 *
3527 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3528 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3529 * can be called after dropping locks.
3530 */
3531int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3532{
3533 struct swap_info_struct *si;
235b6217 3534 struct swap_cluster_info *ci;
570a335b
HD
3535 struct page *head;
3536 struct page *page;
3537 struct page *list_page;
3538 pgoff_t offset;
3539 unsigned char count;
eb085574 3540 int ret = 0;
570a335b
HD
3541
3542 /*
3543 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3544 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3545 */
3546 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3547
eb085574 3548 si = get_swap_device(entry);
570a335b
HD
3549 if (!si) {
3550 /*
3551 * An acceptable race has occurred since the failing
eb085574 3552 * __swap_duplicate(): the swap device may be swapoff
570a335b
HD
3553 */
3554 goto outer;
3555 }
eb085574 3556 spin_lock(&si->lock);
570a335b
HD
3557
3558 offset = swp_offset(entry);
235b6217
HY
3559
3560 ci = lock_cluster(si, offset);
3561
570a335b
HD
3562 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3563
3564 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3565 /*
3566 * The higher the swap count, the more likely it is that tasks
3567 * will race to add swap count continuation: we need to avoid
3568 * over-provisioning.
3569 */
3570 goto out;
3571 }
3572
3573 if (!page) {
eb085574
HY
3574 ret = -ENOMEM;
3575 goto out;
570a335b
HD
3576 }
3577
3578 /*
3579 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
3580 * no architecture is using highmem pages for kernel page tables: so it
3581 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
3582 */
3583 head = vmalloc_to_page(si->swap_map + offset);
3584 offset &= ~PAGE_MASK;
3585
2628bd6f 3586 spin_lock(&si->cont_lock);
570a335b
HD
3587 /*
3588 * Page allocation does not initialize the page's lru field,
3589 * but it does always reset its private field.
3590 */
3591 if (!page_private(head)) {
3592 BUG_ON(count & COUNT_CONTINUED);
3593 INIT_LIST_HEAD(&head->lru);
3594 set_page_private(head, SWP_CONTINUED);
3595 si->flags |= SWP_CONTINUED;
3596 }
3597
3598 list_for_each_entry(list_page, &head->lru, lru) {
3599 unsigned char *map;
3600
3601 /*
3602 * If the previous map said no continuation, but we've found
3603 * a continuation page, free our allocation and use this one.
3604 */
3605 if (!(count & COUNT_CONTINUED))
2628bd6f 3606 goto out_unlock_cont;
570a335b 3607
9b04c5fe 3608 map = kmap_atomic(list_page) + offset;
570a335b 3609 count = *map;
9b04c5fe 3610 kunmap_atomic(map);
570a335b
HD
3611
3612 /*
3613 * If this continuation count now has some space in it,
3614 * free our allocation and use this one.
3615 */
3616 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2628bd6f 3617 goto out_unlock_cont;
570a335b
HD
3618 }
3619
3620 list_add_tail(&page->lru, &head->lru);
3621 page = NULL; /* now it's attached, don't free it */
2628bd6f
HY
3622out_unlock_cont:
3623 spin_unlock(&si->cont_lock);
570a335b 3624out:
235b6217 3625 unlock_cluster(ci);
ec8acf20 3626 spin_unlock(&si->lock);
eb085574 3627 put_swap_device(si);
570a335b
HD
3628outer:
3629 if (page)
3630 __free_page(page);
eb085574 3631 return ret;
570a335b
HD
3632}
3633
3634/*
3635 * swap_count_continued - when the original swap_map count is incremented
3636 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3637 * into, carry if so, or else fail until a new continuation page is allocated;
3638 * when the original swap_map count is decremented from 0 with continuation,
3639 * borrow from the continuation and report whether it still holds more.
235b6217
HY
3640 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3641 * lock.
570a335b
HD
3642 */
3643static bool swap_count_continued(struct swap_info_struct *si,
3644 pgoff_t offset, unsigned char count)
3645{
3646 struct page *head;
3647 struct page *page;
3648 unsigned char *map;
2628bd6f 3649 bool ret;
570a335b
HD
3650
3651 head = vmalloc_to_page(si->swap_map + offset);
3652 if (page_private(head) != SWP_CONTINUED) {
3653 BUG_ON(count & COUNT_CONTINUED);
3654 return false; /* need to add count continuation */
3655 }
3656
2628bd6f 3657 spin_lock(&si->cont_lock);
570a335b 3658 offset &= ~PAGE_MASK;
213516ac 3659 page = list_next_entry(head, lru);
9b04c5fe 3660 map = kmap_atomic(page) + offset;
570a335b
HD
3661
3662 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3663 goto init_map; /* jump over SWAP_CONT_MAX checks */
3664
3665 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3666 /*
3667 * Think of how you add 1 to 999
3668 */
3669 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 3670 kunmap_atomic(map);
213516ac 3671 page = list_next_entry(page, lru);
570a335b 3672 BUG_ON(page == head);
9b04c5fe 3673 map = kmap_atomic(page) + offset;
570a335b
HD
3674 }
3675 if (*map == SWAP_CONT_MAX) {
9b04c5fe 3676 kunmap_atomic(map);
213516ac 3677 page = list_next_entry(page, lru);
2628bd6f
HY
3678 if (page == head) {
3679 ret = false; /* add count continuation */
3680 goto out;
3681 }
9b04c5fe 3682 map = kmap_atomic(page) + offset;
570a335b
HD
3683init_map: *map = 0; /* we didn't zero the page */
3684 }
3685 *map += 1;
9b04c5fe 3686 kunmap_atomic(map);
213516ac 3687 while ((page = list_prev_entry(page, lru)) != head) {
9b04c5fe 3688 map = kmap_atomic(page) + offset;
570a335b 3689 *map = COUNT_CONTINUED;
9b04c5fe 3690 kunmap_atomic(map);
570a335b 3691 }
2628bd6f 3692 ret = true; /* incremented */
570a335b
HD
3693
3694 } else { /* decrementing */
3695 /*
3696 * Think of how you subtract 1 from 1000
3697 */
3698 BUG_ON(count != COUNT_CONTINUED);
3699 while (*map == COUNT_CONTINUED) {
9b04c5fe 3700 kunmap_atomic(map);
213516ac 3701 page = list_next_entry(page, lru);
570a335b 3702 BUG_ON(page == head);
9b04c5fe 3703 map = kmap_atomic(page) + offset;
570a335b
HD
3704 }
3705 BUG_ON(*map == 0);
3706 *map -= 1;
3707 if (*map == 0)
3708 count = 0;
9b04c5fe 3709 kunmap_atomic(map);
213516ac 3710 while ((page = list_prev_entry(page, lru)) != head) {
9b04c5fe 3711 map = kmap_atomic(page) + offset;
570a335b
HD
3712 *map = SWAP_CONT_MAX | count;
3713 count = COUNT_CONTINUED;
9b04c5fe 3714 kunmap_atomic(map);
570a335b 3715 }
2628bd6f 3716 ret = count == COUNT_CONTINUED;
570a335b 3717 }
2628bd6f
HY
3718out:
3719 spin_unlock(&si->cont_lock);
3720 return ret;
570a335b
HD
3721}
3722
3723/*
3724 * free_swap_count_continuations - swapoff free all the continuation pages
3725 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3726 */
3727static void free_swap_count_continuations(struct swap_info_struct *si)
3728{
3729 pgoff_t offset;
3730
3731 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3732 struct page *head;
3733 head = vmalloc_to_page(si->swap_map + offset);
3734 if (page_private(head)) {
0d576d20
GT
3735 struct page *page, *next;
3736
3737 list_for_each_entry_safe(page, next, &head->lru, lru) {
3738 list_del(&page->lru);
570a335b
HD
3739 __free_page(page);
3740 }
3741 }
3742 }
3743}
a2468cc9 3744
2cf85583
TH
3745#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3746void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3747 gfp_t gfp_mask)
3748{
3749 struct swap_info_struct *si, *next;
3750 if (!(gfp_mask & __GFP_IO) || !memcg)
3751 return;
3752
3753 if (!blk_cgroup_congested())
3754 return;
3755
3756 /*
3757 * We've already scheduled a throttle, avoid taking the global swap
3758 * lock.
3759 */
3760 if (current->throttle_queue)
3761 return;
3762
3763 spin_lock(&swap_avail_lock);
3764 plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3765 avail_lists[node]) {
3766 if (si->bdev) {
3767 blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3768 true);
3769 break;
3770 }
3771 }
3772 spin_unlock(&swap_avail_lock);
3773}
3774#endif
3775
a2468cc9
AL
3776static int __init swapfile_init(void)
3777{
3778 int nid;
3779
3780 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3781 GFP_KERNEL);
3782 if (!swap_avail_heads) {
3783 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3784 return -ENOMEM;
3785 }
3786
3787 for_each_node(nid)
3788 plist_head_init(&swap_avail_heads[nid]);
3789
3790 return 0;
3791}
3792subsys_initcall(swapfile_init);