]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/swapfile.c
tmpfs: make shmem_unuse more preemptible
[mirror_ubuntu-artful-kernel.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
17#include <linux/shm.h>
18#include <linux/blkdev.h>
19#include <linux/writeback.h>
20#include <linux/proc_fs.h>
21#include <linux/seq_file.h>
22#include <linux/init.h>
23#include <linux/module.h>
24#include <linux/rmap.h>
25#include <linux/security.h>
26#include <linux/backing-dev.h>
fc0abb14 27#include <linux/mutex.h>
c59ede7b 28#include <linux/capability.h>
1da177e4
LT
29#include <linux/syscalls.h>
30
31#include <asm/pgtable.h>
32#include <asm/tlbflush.h>
33#include <linux/swapops.h>
34
5d337b91 35DEFINE_SPINLOCK(swap_lock);
1da177e4
LT
36unsigned int nr_swapfiles;
37long total_swap_pages;
38static int swap_overflow;
39
1da177e4
LT
40static const char Bad_file[] = "Bad swap file entry ";
41static const char Unused_file[] = "Unused swap file entry ";
42static const char Bad_offset[] = "Bad swap offset entry ";
43static const char Unused_offset[] = "Unused swap offset entry ";
44
45struct swap_list_t swap_list = {-1, -1};
46
f577eb30 47static struct swap_info_struct swap_info[MAX_SWAPFILES];
1da177e4 48
fc0abb14 49static DEFINE_MUTEX(swapon_mutex);
1da177e4
LT
50
51/*
52 * We need this because the bdev->unplug_fn can sleep and we cannot
5d337b91 53 * hold swap_lock while calling the unplug_fn. And swap_lock
fc0abb14 54 * cannot be turned into a mutex.
1da177e4
LT
55 */
56static DECLARE_RWSEM(swap_unplug_sem);
57
1da177e4
LT
58void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
59{
60 swp_entry_t entry;
61
62 down_read(&swap_unplug_sem);
4c21e2f2 63 entry.val = page_private(page);
1da177e4
LT
64 if (PageSwapCache(page)) {
65 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
66 struct backing_dev_info *bdi;
67
68 /*
69 * If the page is removed from swapcache from under us (with a
70 * racy try_to_unuse/swapoff) we need an additional reference
4c21e2f2
HD
71 * count to avoid reading garbage from page_private(page) above.
72 * If the WARN_ON triggers during a swapoff it maybe the race
1da177e4
LT
73 * condition and it's harmless. However if it triggers without
74 * swapoff it signals a problem.
75 */
76 WARN_ON(page_count(page) <= 1);
77
78 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
ba32311e 79 blk_run_backing_dev(bdi, page);
1da177e4
LT
80 }
81 up_read(&swap_unplug_sem);
82}
83
048c27fd
HD
84#define SWAPFILE_CLUSTER 256
85#define LATENCY_LIMIT 256
86
6eb396dc 87static inline unsigned long scan_swap_map(struct swap_info_struct *si)
1da177e4 88{
7dfad418 89 unsigned long offset, last_in_cluster;
048c27fd 90 int latency_ration = LATENCY_LIMIT;
7dfad418 91
1da177e4 92 /*
7dfad418
HD
93 * We try to cluster swap pages by allocating them sequentially
94 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
95 * way, however, we resort to first-free allocation, starting
96 * a new cluster. This prevents us from scattering swap pages
97 * all over the entire swap partition, so that we reduce
98 * overall disk seek times between swap pages. -- sct
99 * But we do now try to find an empty cluster. -Andrea
100 */
101
52b7efdb 102 si->flags += SWP_SCANNING;
7dfad418
HD
103 if (unlikely(!si->cluster_nr)) {
104 si->cluster_nr = SWAPFILE_CLUSTER - 1;
105 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
106 goto lowest;
5d337b91 107 spin_unlock(&swap_lock);
7dfad418
HD
108
109 offset = si->lowest_bit;
110 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
111
112 /* Locate the first empty (unaligned) cluster */
113 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 114 if (si->swap_map[offset])
7dfad418
HD
115 last_in_cluster = offset + SWAPFILE_CLUSTER;
116 else if (offset == last_in_cluster) {
5d337b91 117 spin_lock(&swap_lock);
9b65ef59 118 si->cluster_next = offset-SWAPFILE_CLUSTER+1;
7dfad418 119 goto cluster;
1da177e4 120 }
048c27fd
HD
121 if (unlikely(--latency_ration < 0)) {
122 cond_resched();
123 latency_ration = LATENCY_LIMIT;
124 }
7dfad418 125 }
5d337b91 126 spin_lock(&swap_lock);
7dfad418 127 goto lowest;
1da177e4 128 }
7dfad418
HD
129
130 si->cluster_nr--;
131cluster:
132 offset = si->cluster_next;
133 if (offset > si->highest_bit)
134lowest: offset = si->lowest_bit;
52b7efdb
HD
135checks: if (!(si->flags & SWP_WRITEOK))
136 goto no_page;
7dfad418
HD
137 if (!si->highest_bit)
138 goto no_page;
139 if (!si->swap_map[offset]) {
52b7efdb 140 if (offset == si->lowest_bit)
1da177e4
LT
141 si->lowest_bit++;
142 if (offset == si->highest_bit)
143 si->highest_bit--;
7dfad418
HD
144 si->inuse_pages++;
145 if (si->inuse_pages == si->pages) {
1da177e4
LT
146 si->lowest_bit = si->max;
147 si->highest_bit = 0;
148 }
149 si->swap_map[offset] = 1;
7dfad418 150 si->cluster_next = offset + 1;
52b7efdb 151 si->flags -= SWP_SCANNING;
1da177e4
LT
152 return offset;
153 }
7dfad418 154
5d337b91 155 spin_unlock(&swap_lock);
7dfad418 156 while (++offset <= si->highest_bit) {
52b7efdb 157 if (!si->swap_map[offset]) {
5d337b91 158 spin_lock(&swap_lock);
52b7efdb
HD
159 goto checks;
160 }
048c27fd
HD
161 if (unlikely(--latency_ration < 0)) {
162 cond_resched();
163 latency_ration = LATENCY_LIMIT;
164 }
7dfad418 165 }
5d337b91 166 spin_lock(&swap_lock);
7dfad418
HD
167 goto lowest;
168
169no_page:
52b7efdb 170 si->flags -= SWP_SCANNING;
1da177e4
LT
171 return 0;
172}
173
174swp_entry_t get_swap_page(void)
175{
fb4f88dc
HD
176 struct swap_info_struct *si;
177 pgoff_t offset;
178 int type, next;
179 int wrapped = 0;
1da177e4 180
5d337b91 181 spin_lock(&swap_lock);
1da177e4 182 if (nr_swap_pages <= 0)
fb4f88dc
HD
183 goto noswap;
184 nr_swap_pages--;
185
186 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
187 si = swap_info + type;
188 next = si->next;
189 if (next < 0 ||
190 (!wrapped && si->prio != swap_info[next].prio)) {
191 next = swap_list.head;
192 wrapped++;
1da177e4 193 }
fb4f88dc
HD
194
195 if (!si->highest_bit)
196 continue;
197 if (!(si->flags & SWP_WRITEOK))
198 continue;
199
200 swap_list.next = next;
fb4f88dc 201 offset = scan_swap_map(si);
5d337b91
HD
202 if (offset) {
203 spin_unlock(&swap_lock);
fb4f88dc 204 return swp_entry(type, offset);
5d337b91 205 }
fb4f88dc 206 next = swap_list.next;
1da177e4 207 }
fb4f88dc
HD
208
209 nr_swap_pages++;
210noswap:
5d337b91 211 spin_unlock(&swap_lock);
fb4f88dc 212 return (swp_entry_t) {0};
1da177e4
LT
213}
214
3a291a20
RW
215swp_entry_t get_swap_page_of_type(int type)
216{
217 struct swap_info_struct *si;
218 pgoff_t offset;
219
220 spin_lock(&swap_lock);
221 si = swap_info + type;
222 if (si->flags & SWP_WRITEOK) {
223 nr_swap_pages--;
224 offset = scan_swap_map(si);
225 if (offset) {
226 spin_unlock(&swap_lock);
227 return swp_entry(type, offset);
228 }
229 nr_swap_pages++;
230 }
231 spin_unlock(&swap_lock);
232 return (swp_entry_t) {0};
233}
234
1da177e4
LT
235static struct swap_info_struct * swap_info_get(swp_entry_t entry)
236{
237 struct swap_info_struct * p;
238 unsigned long offset, type;
239
240 if (!entry.val)
241 goto out;
242 type = swp_type(entry);
243 if (type >= nr_swapfiles)
244 goto bad_nofile;
245 p = & swap_info[type];
246 if (!(p->flags & SWP_USED))
247 goto bad_device;
248 offset = swp_offset(entry);
249 if (offset >= p->max)
250 goto bad_offset;
251 if (!p->swap_map[offset])
252 goto bad_free;
5d337b91 253 spin_lock(&swap_lock);
1da177e4
LT
254 return p;
255
256bad_free:
257 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
258 goto out;
259bad_offset:
260 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
261 goto out;
262bad_device:
263 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
264 goto out;
265bad_nofile:
266 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
267out:
268 return NULL;
269}
270
1da177e4
LT
271static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
272{
273 int count = p->swap_map[offset];
274
275 if (count < SWAP_MAP_MAX) {
276 count--;
277 p->swap_map[offset] = count;
278 if (!count) {
279 if (offset < p->lowest_bit)
280 p->lowest_bit = offset;
281 if (offset > p->highest_bit)
282 p->highest_bit = offset;
89d09a2c
HD
283 if (p->prio > swap_info[swap_list.next].prio)
284 swap_list.next = p - swap_info;
1da177e4
LT
285 nr_swap_pages++;
286 p->inuse_pages--;
287 }
288 }
289 return count;
290}
291
292/*
293 * Caller has made sure that the swapdevice corresponding to entry
294 * is still around or has not been recycled.
295 */
296void swap_free(swp_entry_t entry)
297{
298 struct swap_info_struct * p;
299
300 p = swap_info_get(entry);
301 if (p) {
302 swap_entry_free(p, swp_offset(entry));
5d337b91 303 spin_unlock(&swap_lock);
1da177e4
LT
304 }
305}
306
307/*
c475a8ab 308 * How many references to page are currently swapped out?
1da177e4 309 */
c475a8ab 310static inline int page_swapcount(struct page *page)
1da177e4 311{
c475a8ab
HD
312 int count = 0;
313 struct swap_info_struct *p;
1da177e4
LT
314 swp_entry_t entry;
315
4c21e2f2 316 entry.val = page_private(page);
1da177e4
LT
317 p = swap_info_get(entry);
318 if (p) {
c475a8ab
HD
319 /* Subtract the 1 for the swap cache itself */
320 count = p->swap_map[swp_offset(entry)] - 1;
5d337b91 321 spin_unlock(&swap_lock);
1da177e4 322 }
c475a8ab 323 return count;
1da177e4
LT
324}
325
326/*
327 * We can use this swap cache entry directly
328 * if there are no other references to it.
1da177e4
LT
329 */
330int can_share_swap_page(struct page *page)
331{
c475a8ab
HD
332 int count;
333
334 BUG_ON(!PageLocked(page));
335 count = page_mapcount(page);
336 if (count <= 1 && PageSwapCache(page))
337 count += page_swapcount(page);
338 return count == 1;
1da177e4
LT
339}
340
341/*
342 * Work out if there are any other processes sharing this
343 * swap cache page. Free it if you can. Return success.
344 */
345int remove_exclusive_swap_page(struct page *page)
346{
347 int retval;
348 struct swap_info_struct * p;
349 swp_entry_t entry;
350
351 BUG_ON(PagePrivate(page));
352 BUG_ON(!PageLocked(page));
353
354 if (!PageSwapCache(page))
355 return 0;
356 if (PageWriteback(page))
357 return 0;
358 if (page_count(page) != 2) /* 2: us + cache */
359 return 0;
360
4c21e2f2 361 entry.val = page_private(page);
1da177e4
LT
362 p = swap_info_get(entry);
363 if (!p)
364 return 0;
365
366 /* Is the only swap cache user the cache itself? */
367 retval = 0;
368 if (p->swap_map[swp_offset(entry)] == 1) {
369 /* Recheck the page count with the swapcache lock held.. */
370 write_lock_irq(&swapper_space.tree_lock);
371 if ((page_count(page) == 2) && !PageWriteback(page)) {
372 __delete_from_swap_cache(page);
373 SetPageDirty(page);
374 retval = 1;
375 }
376 write_unlock_irq(&swapper_space.tree_lock);
377 }
5d337b91 378 spin_unlock(&swap_lock);
1da177e4
LT
379
380 if (retval) {
381 swap_free(entry);
382 page_cache_release(page);
383 }
384
385 return retval;
386}
387
388/*
389 * Free the swap entry like above, but also try to
390 * free the page cache entry if it is the last user.
391 */
392void free_swap_and_cache(swp_entry_t entry)
393{
394 struct swap_info_struct * p;
395 struct page *page = NULL;
396
0697212a
CL
397 if (is_migration_entry(entry))
398 return;
399
1da177e4
LT
400 p = swap_info_get(entry);
401 if (p) {
93fac704
NP
402 if (swap_entry_free(p, swp_offset(entry)) == 1) {
403 page = find_get_page(&swapper_space, entry.val);
404 if (page && unlikely(TestSetPageLocked(page))) {
405 page_cache_release(page);
406 page = NULL;
407 }
408 }
5d337b91 409 spin_unlock(&swap_lock);
1da177e4
LT
410 }
411 if (page) {
412 int one_user;
413
414 BUG_ON(PagePrivate(page));
1da177e4
LT
415 one_user = (page_count(page) == 2);
416 /* Only cache user (+us), or swap space full? Free it! */
93fac704
NP
417 /* Also recheck PageSwapCache after page is locked (above) */
418 if (PageSwapCache(page) && !PageWriteback(page) &&
419 (one_user || vm_swap_full())) {
1da177e4
LT
420 delete_from_swap_cache(page);
421 SetPageDirty(page);
422 }
423 unlock_page(page);
424 page_cache_release(page);
425 }
426}
427
b0cb1a19 428#ifdef CONFIG_HIBERNATION
f577eb30 429/*
915bae9e 430 * Find the swap type that corresponds to given device (if any).
f577eb30 431 *
915bae9e
RW
432 * @offset - number of the PAGE_SIZE-sized block of the device, starting
433 * from 0, in which the swap header is expected to be located.
434 *
435 * This is needed for the suspend to disk (aka swsusp).
f577eb30 436 */
7bf23687 437int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 438{
915bae9e 439 struct block_device *bdev = NULL;
f577eb30
RW
440 int i;
441
915bae9e
RW
442 if (device)
443 bdev = bdget(device);
444
f577eb30
RW
445 spin_lock(&swap_lock);
446 for (i = 0; i < nr_swapfiles; i++) {
915bae9e 447 struct swap_info_struct *sis = swap_info + i;
f577eb30 448
915bae9e 449 if (!(sis->flags & SWP_WRITEOK))
f577eb30 450 continue;
b6b5bce3 451
915bae9e 452 if (!bdev) {
7bf23687
RW
453 if (bdev_p)
454 *bdev_p = sis->bdev;
455
6e1819d6
RW
456 spin_unlock(&swap_lock);
457 return i;
458 }
915bae9e
RW
459 if (bdev == sis->bdev) {
460 struct swap_extent *se;
461
462 se = list_entry(sis->extent_list.next,
463 struct swap_extent, list);
464 if (se->start_block == offset) {
7bf23687
RW
465 if (bdev_p)
466 *bdev_p = sis->bdev;
467
915bae9e
RW
468 spin_unlock(&swap_lock);
469 bdput(bdev);
470 return i;
471 }
f577eb30
RW
472 }
473 }
474 spin_unlock(&swap_lock);
915bae9e
RW
475 if (bdev)
476 bdput(bdev);
477
f577eb30
RW
478 return -ENODEV;
479}
480
481/*
482 * Return either the total number of swap pages of given type, or the number
483 * of free pages of that type (depending on @free)
484 *
485 * This is needed for software suspend
486 */
487unsigned int count_swap_pages(int type, int free)
488{
489 unsigned int n = 0;
490
491 if (type < nr_swapfiles) {
492 spin_lock(&swap_lock);
493 if (swap_info[type].flags & SWP_WRITEOK) {
494 n = swap_info[type].pages;
495 if (free)
496 n -= swap_info[type].inuse_pages;
497 }
498 spin_unlock(&swap_lock);
499 }
500 return n;
501}
502#endif
503
1da177e4 504/*
72866f6f
HD
505 * No need to decide whether this PTE shares the swap entry with others,
506 * just let do_wp_page work it out if a write is requested later - to
507 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 508 */
2e441889 509static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
510 unsigned long addr, swp_entry_t entry, struct page *page)
511{
2e441889
HD
512 spinlock_t *ptl;
513 pte_t *pte;
514 int found = 1;
515
516 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
517 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
518 found = 0;
519 goto out;
520 }
521
4294621f 522 inc_mm_counter(vma->vm_mm, anon_rss);
1da177e4
LT
523 get_page(page);
524 set_pte_at(vma->vm_mm, addr, pte,
525 pte_mkold(mk_pte(page, vma->vm_page_prot)));
526 page_add_anon_rmap(page, vma, addr);
527 swap_free(entry);
528 /*
529 * Move the page to the active list so it is not
530 * immediately swapped out again after swapon.
531 */
532 activate_page(page);
2e441889
HD
533out:
534 pte_unmap_unlock(pte, ptl);
535 return found;
1da177e4
LT
536}
537
538static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
539 unsigned long addr, unsigned long end,
540 swp_entry_t entry, struct page *page)
541{
1da177e4 542 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 543 pte_t *pte;
705e87c0 544 int found = 0;
1da177e4 545
2e441889
HD
546 /*
547 * We don't actually need pte lock while scanning for swp_pte: since
548 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
549 * page table while we're scanning; though it could get zapped, and on
550 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
551 * of unmatched parts which look like swp_pte, so unuse_pte must
552 * recheck under pte lock. Scanning without pte lock lets it be
553 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
554 */
555 pte = pte_offset_map(pmd, addr);
1da177e4
LT
556 do {
557 /*
558 * swapoff spends a _lot_ of time in this loop!
559 * Test inline before going to call unuse_pte.
560 */
561 if (unlikely(pte_same(*pte, swp_pte))) {
2e441889
HD
562 pte_unmap(pte);
563 found = unuse_pte(vma, pmd, addr, entry, page);
564 if (found)
565 goto out;
566 pte = pte_offset_map(pmd, addr);
1da177e4
LT
567 }
568 } while (pte++, addr += PAGE_SIZE, addr != end);
2e441889
HD
569 pte_unmap(pte - 1);
570out:
705e87c0 571 return found;
1da177e4
LT
572}
573
574static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
575 unsigned long addr, unsigned long end,
576 swp_entry_t entry, struct page *page)
577{
578 pmd_t *pmd;
579 unsigned long next;
580
581 pmd = pmd_offset(pud, addr);
582 do {
583 next = pmd_addr_end(addr, end);
584 if (pmd_none_or_clear_bad(pmd))
585 continue;
586 if (unuse_pte_range(vma, pmd, addr, next, entry, page))
587 return 1;
588 } while (pmd++, addr = next, addr != end);
589 return 0;
590}
591
592static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
593 unsigned long addr, unsigned long end,
594 swp_entry_t entry, struct page *page)
595{
596 pud_t *pud;
597 unsigned long next;
598
599 pud = pud_offset(pgd, addr);
600 do {
601 next = pud_addr_end(addr, end);
602 if (pud_none_or_clear_bad(pud))
603 continue;
604 if (unuse_pmd_range(vma, pud, addr, next, entry, page))
605 return 1;
606 } while (pud++, addr = next, addr != end);
607 return 0;
608}
609
610static int unuse_vma(struct vm_area_struct *vma,
611 swp_entry_t entry, struct page *page)
612{
613 pgd_t *pgd;
614 unsigned long addr, end, next;
615
616 if (page->mapping) {
617 addr = page_address_in_vma(page, vma);
618 if (addr == -EFAULT)
619 return 0;
620 else
621 end = addr + PAGE_SIZE;
622 } else {
623 addr = vma->vm_start;
624 end = vma->vm_end;
625 }
626
627 pgd = pgd_offset(vma->vm_mm, addr);
628 do {
629 next = pgd_addr_end(addr, end);
630 if (pgd_none_or_clear_bad(pgd))
631 continue;
632 if (unuse_pud_range(vma, pgd, addr, next, entry, page))
633 return 1;
634 } while (pgd++, addr = next, addr != end);
635 return 0;
636}
637
638static int unuse_mm(struct mm_struct *mm,
639 swp_entry_t entry, struct page *page)
640{
641 struct vm_area_struct *vma;
642
643 if (!down_read_trylock(&mm->mmap_sem)) {
644 /*
c475a8ab
HD
645 * Activate page so shrink_cache is unlikely to unmap its
646 * ptes while lock is dropped, so swapoff can make progress.
1da177e4 647 */
c475a8ab 648 activate_page(page);
1da177e4
LT
649 unlock_page(page);
650 down_read(&mm->mmap_sem);
651 lock_page(page);
652 }
1da177e4
LT
653 for (vma = mm->mmap; vma; vma = vma->vm_next) {
654 if (vma->anon_vma && unuse_vma(vma, entry, page))
655 break;
656 }
1da177e4
LT
657 up_read(&mm->mmap_sem);
658 /*
659 * Currently unuse_mm cannot fail, but leave error handling
660 * at call sites for now, since we change it from time to time.
661 */
662 return 0;
663}
664
665/*
666 * Scan swap_map from current position to next entry still in use.
667 * Recycle to start on reaching the end, returning 0 when empty.
668 */
6eb396dc
HD
669static unsigned int find_next_to_unuse(struct swap_info_struct *si,
670 unsigned int prev)
1da177e4 671{
6eb396dc
HD
672 unsigned int max = si->max;
673 unsigned int i = prev;
1da177e4
LT
674 int count;
675
676 /*
5d337b91 677 * No need for swap_lock here: we're just looking
1da177e4
LT
678 * for whether an entry is in use, not modifying it; false
679 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 680 * allocations from this area (while holding swap_lock).
1da177e4
LT
681 */
682 for (;;) {
683 if (++i >= max) {
684 if (!prev) {
685 i = 0;
686 break;
687 }
688 /*
689 * No entries in use at top of swap_map,
690 * loop back to start and recheck there.
691 */
692 max = prev + 1;
693 prev = 0;
694 i = 1;
695 }
696 count = si->swap_map[i];
697 if (count && count != SWAP_MAP_BAD)
698 break;
699 }
700 return i;
701}
702
703/*
704 * We completely avoid races by reading each swap page in advance,
705 * and then search for the process using it. All the necessary
706 * page table adjustments can then be made atomically.
707 */
708static int try_to_unuse(unsigned int type)
709{
710 struct swap_info_struct * si = &swap_info[type];
711 struct mm_struct *start_mm;
712 unsigned short *swap_map;
713 unsigned short swcount;
714 struct page *page;
715 swp_entry_t entry;
6eb396dc 716 unsigned int i = 0;
1da177e4
LT
717 int retval = 0;
718 int reset_overflow = 0;
719 int shmem;
720
721 /*
722 * When searching mms for an entry, a good strategy is to
723 * start at the first mm we freed the previous entry from
724 * (though actually we don't notice whether we or coincidence
725 * freed the entry). Initialize this start_mm with a hold.
726 *
727 * A simpler strategy would be to start at the last mm we
728 * freed the previous entry from; but that would take less
729 * advantage of mmlist ordering, which clusters forked mms
730 * together, child after parent. If we race with dup_mmap(), we
731 * prefer to resolve parent before child, lest we miss entries
732 * duplicated after we scanned child: using last mm would invert
733 * that. Though it's only a serious concern when an overflowed
734 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
735 */
736 start_mm = &init_mm;
737 atomic_inc(&init_mm.mm_users);
738
739 /*
740 * Keep on scanning until all entries have gone. Usually,
741 * one pass through swap_map is enough, but not necessarily:
742 * there are races when an instance of an entry might be missed.
743 */
744 while ((i = find_next_to_unuse(si, i)) != 0) {
745 if (signal_pending(current)) {
746 retval = -EINTR;
747 break;
748 }
749
750 /*
751 * Get a page for the entry, using the existing swap
752 * cache page if there is one. Otherwise, get a clean
753 * page and read the swap into it.
754 */
755 swap_map = &si->swap_map[i];
756 entry = swp_entry(type, i);
02098fea
HD
757 page = read_swap_cache_async(entry,
758 GFP_HIGHUSER_MOVABLE, NULL, 0);
1da177e4
LT
759 if (!page) {
760 /*
761 * Either swap_duplicate() failed because entry
762 * has been freed independently, and will not be
763 * reused since sys_swapoff() already disabled
764 * allocation from here, or alloc_page() failed.
765 */
766 if (!*swap_map)
767 continue;
768 retval = -ENOMEM;
769 break;
770 }
771
772 /*
773 * Don't hold on to start_mm if it looks like exiting.
774 */
775 if (atomic_read(&start_mm->mm_users) == 1) {
776 mmput(start_mm);
777 start_mm = &init_mm;
778 atomic_inc(&init_mm.mm_users);
779 }
780
781 /*
782 * Wait for and lock page. When do_swap_page races with
783 * try_to_unuse, do_swap_page can handle the fault much
784 * faster than try_to_unuse can locate the entry. This
785 * apparently redundant "wait_on_page_locked" lets try_to_unuse
786 * defer to do_swap_page in such a case - in some tests,
787 * do_swap_page and try_to_unuse repeatedly compete.
788 */
789 wait_on_page_locked(page);
790 wait_on_page_writeback(page);
791 lock_page(page);
792 wait_on_page_writeback(page);
793
794 /*
795 * Remove all references to entry.
796 * Whenever we reach init_mm, there's no address space
797 * to search, but use it as a reminder to search shmem.
798 */
799 shmem = 0;
800 swcount = *swap_map;
801 if (swcount > 1) {
802 if (start_mm == &init_mm)
803 shmem = shmem_unuse(entry, page);
804 else
805 retval = unuse_mm(start_mm, entry, page);
806 }
807 if (*swap_map > 1) {
808 int set_start_mm = (*swap_map >= swcount);
809 struct list_head *p = &start_mm->mmlist;
810 struct mm_struct *new_start_mm = start_mm;
811 struct mm_struct *prev_mm = start_mm;
812 struct mm_struct *mm;
813
814 atomic_inc(&new_start_mm->mm_users);
815 atomic_inc(&prev_mm->mm_users);
816 spin_lock(&mmlist_lock);
817 while (*swap_map > 1 && !retval &&
818 (p = p->next) != &start_mm->mmlist) {
819 mm = list_entry(p, struct mm_struct, mmlist);
70af7c5c 820 if (!atomic_inc_not_zero(&mm->mm_users))
1da177e4 821 continue;
1da177e4
LT
822 spin_unlock(&mmlist_lock);
823 mmput(prev_mm);
824 prev_mm = mm;
825
826 cond_resched();
827
828 swcount = *swap_map;
829 if (swcount <= 1)
830 ;
831 else if (mm == &init_mm) {
832 set_start_mm = 1;
833 shmem = shmem_unuse(entry, page);
834 } else
835 retval = unuse_mm(mm, entry, page);
836 if (set_start_mm && *swap_map < swcount) {
837 mmput(new_start_mm);
838 atomic_inc(&mm->mm_users);
839 new_start_mm = mm;
840 set_start_mm = 0;
841 }
842 spin_lock(&mmlist_lock);
843 }
844 spin_unlock(&mmlist_lock);
845 mmput(prev_mm);
846 mmput(start_mm);
847 start_mm = new_start_mm;
848 }
849 if (retval) {
850 unlock_page(page);
851 page_cache_release(page);
852 break;
853 }
854
855 /*
856 * How could swap count reach 0x7fff when the maximum
857 * pid is 0x7fff, and there's no way to repeat a swap
858 * page within an mm (except in shmem, where it's the
859 * shared object which takes the reference count)?
860 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
861 *
862 * If that's wrong, then we should worry more about
863 * exit_mmap() and do_munmap() cases described above:
864 * we might be resetting SWAP_MAP_MAX too early here.
865 * We know "Undead"s can happen, they're okay, so don't
866 * report them; but do report if we reset SWAP_MAP_MAX.
867 */
868 if (*swap_map == SWAP_MAP_MAX) {
5d337b91 869 spin_lock(&swap_lock);
1da177e4 870 *swap_map = 1;
5d337b91 871 spin_unlock(&swap_lock);
1da177e4
LT
872 reset_overflow = 1;
873 }
874
875 /*
876 * If a reference remains (rare), we would like to leave
877 * the page in the swap cache; but try_to_unmap could
878 * then re-duplicate the entry once we drop page lock,
879 * so we might loop indefinitely; also, that page could
880 * not be swapped out to other storage meanwhile. So:
881 * delete from cache even if there's another reference,
882 * after ensuring that the data has been saved to disk -
883 * since if the reference remains (rarer), it will be
884 * read from disk into another page. Splitting into two
885 * pages would be incorrect if swap supported "shared
886 * private" pages, but they are handled by tmpfs files.
887 *
888 * Note shmem_unuse already deleted a swappage from
889 * the swap cache, unless the move to filepage failed:
890 * in which case it left swappage in cache, lowered its
891 * swap count to pass quickly through the loops above,
892 * and now we must reincrement count to try again later.
893 */
894 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
895 struct writeback_control wbc = {
896 .sync_mode = WB_SYNC_NONE,
897 };
898
899 swap_writepage(page, &wbc);
900 lock_page(page);
901 wait_on_page_writeback(page);
902 }
903 if (PageSwapCache(page)) {
904 if (shmem)
905 swap_duplicate(entry);
906 else
907 delete_from_swap_cache(page);
908 }
909
910 /*
911 * So we could skip searching mms once swap count went
912 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 913 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
914 */
915 SetPageDirty(page);
916 unlock_page(page);
917 page_cache_release(page);
918
919 /*
920 * Make sure that we aren't completely killing
921 * interactive performance.
922 */
923 cond_resched();
924 }
925
926 mmput(start_mm);
927 if (reset_overflow) {
928 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
929 swap_overflow = 0;
930 }
931 return retval;
932}
933
934/*
5d337b91
HD
935 * After a successful try_to_unuse, if no swap is now in use, we know
936 * we can empty the mmlist. swap_lock must be held on entry and exit.
937 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
938 * added to the mmlist just after page_duplicate - before would be racy.
939 */
940static void drain_mmlist(void)
941{
942 struct list_head *p, *next;
943 unsigned int i;
944
945 for (i = 0; i < nr_swapfiles; i++)
946 if (swap_info[i].inuse_pages)
947 return;
948 spin_lock(&mmlist_lock);
949 list_for_each_safe(p, next, &init_mm.mmlist)
950 list_del_init(p);
951 spin_unlock(&mmlist_lock);
952}
953
954/*
955 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
956 * corresponds to page offset `offset'.
957 */
958sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
959{
960 struct swap_extent *se = sis->curr_swap_extent;
961 struct swap_extent *start_se = se;
962
963 for ( ; ; ) {
964 struct list_head *lh;
965
966 if (se->start_page <= offset &&
967 offset < (se->start_page + se->nr_pages)) {
968 return se->start_block + (offset - se->start_page);
969 }
11d31886 970 lh = se->list.next;
1da177e4 971 if (lh == &sis->extent_list)
11d31886 972 lh = lh->next;
1da177e4
LT
973 se = list_entry(lh, struct swap_extent, list);
974 sis->curr_swap_extent = se;
975 BUG_ON(se == start_se); /* It *must* be present */
976 }
977}
978
b0cb1a19 979#ifdef CONFIG_HIBERNATION
3aef83e0
RW
980/*
981 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
982 * corresponding to given index in swap_info (swap type).
983 */
984sector_t swapdev_block(int swap_type, pgoff_t offset)
985{
986 struct swap_info_struct *sis;
987
988 if (swap_type >= nr_swapfiles)
989 return 0;
990
991 sis = swap_info + swap_type;
992 return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
993}
b0cb1a19 994#endif /* CONFIG_HIBERNATION */
3aef83e0 995
1da177e4
LT
996/*
997 * Free all of a swapdev's extent information
998 */
999static void destroy_swap_extents(struct swap_info_struct *sis)
1000{
1001 while (!list_empty(&sis->extent_list)) {
1002 struct swap_extent *se;
1003
1004 se = list_entry(sis->extent_list.next,
1005 struct swap_extent, list);
1006 list_del(&se->list);
1007 kfree(se);
1008 }
1da177e4
LT
1009}
1010
1011/*
1012 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 1013 * extent list. The extent list is kept sorted in page order.
1da177e4 1014 *
11d31886 1015 * This function rather assumes that it is called in ascending page order.
1da177e4
LT
1016 */
1017static int
1018add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1019 unsigned long nr_pages, sector_t start_block)
1020{
1021 struct swap_extent *se;
1022 struct swap_extent *new_se;
1023 struct list_head *lh;
1024
11d31886
HD
1025 lh = sis->extent_list.prev; /* The highest page extent */
1026 if (lh != &sis->extent_list) {
1da177e4 1027 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
1028 BUG_ON(se->start_page + se->nr_pages != start_page);
1029 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
1030 /* Merge it */
1031 se->nr_pages += nr_pages;
1032 return 0;
1033 }
1da177e4
LT
1034 }
1035
1036 /*
1037 * No merge. Insert a new extent, preserving ordering.
1038 */
1039 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1040 if (new_se == NULL)
1041 return -ENOMEM;
1042 new_se->start_page = start_page;
1043 new_se->nr_pages = nr_pages;
1044 new_se->start_block = start_block;
1045
11d31886 1046 list_add_tail(&new_se->list, &sis->extent_list);
53092a74 1047 return 1;
1da177e4
LT
1048}
1049
1050/*
1051 * A `swap extent' is a simple thing which maps a contiguous range of pages
1052 * onto a contiguous range of disk blocks. An ordered list of swap extents
1053 * is built at swapon time and is then used at swap_writepage/swap_readpage
1054 * time for locating where on disk a page belongs.
1055 *
1056 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1057 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1058 * swap files identically.
1059 *
1060 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1061 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1062 * swapfiles are handled *identically* after swapon time.
1063 *
1064 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1065 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1066 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1067 * requirements, they are simply tossed out - we will never use those blocks
1068 * for swapping.
1069 *
b0d9bcd4 1070 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
1071 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1072 * which will scribble on the fs.
1073 *
1074 * The amount of disk space which a single swap extent represents varies.
1075 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1076 * extents in the list. To avoid much list walking, we cache the previous
1077 * search location in `curr_swap_extent', and start new searches from there.
1078 * This is extremely effective. The average number of iterations in
1079 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1080 */
53092a74 1081static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4
LT
1082{
1083 struct inode *inode;
1084 unsigned blocks_per_page;
1085 unsigned long page_no;
1086 unsigned blkbits;
1087 sector_t probe_block;
1088 sector_t last_block;
53092a74
HD
1089 sector_t lowest_block = -1;
1090 sector_t highest_block = 0;
1091 int nr_extents = 0;
1da177e4
LT
1092 int ret;
1093
1094 inode = sis->swap_file->f_mapping->host;
1095 if (S_ISBLK(inode->i_mode)) {
1096 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 1097 *span = sis->pages;
1da177e4
LT
1098 goto done;
1099 }
1100
1101 blkbits = inode->i_blkbits;
1102 blocks_per_page = PAGE_SIZE >> blkbits;
1103
1104 /*
1105 * Map all the blocks into the extent list. This code doesn't try
1106 * to be very smart.
1107 */
1108 probe_block = 0;
1109 page_no = 0;
1110 last_block = i_size_read(inode) >> blkbits;
1111 while ((probe_block + blocks_per_page) <= last_block &&
1112 page_no < sis->max) {
1113 unsigned block_in_page;
1114 sector_t first_block;
1115
1116 first_block = bmap(inode, probe_block);
1117 if (first_block == 0)
1118 goto bad_bmap;
1119
1120 /*
1121 * It must be PAGE_SIZE aligned on-disk
1122 */
1123 if (first_block & (blocks_per_page - 1)) {
1124 probe_block++;
1125 goto reprobe;
1126 }
1127
1128 for (block_in_page = 1; block_in_page < blocks_per_page;
1129 block_in_page++) {
1130 sector_t block;
1131
1132 block = bmap(inode, probe_block + block_in_page);
1133 if (block == 0)
1134 goto bad_bmap;
1135 if (block != first_block + block_in_page) {
1136 /* Discontiguity */
1137 probe_block++;
1138 goto reprobe;
1139 }
1140 }
1141
53092a74
HD
1142 first_block >>= (PAGE_SHIFT - blkbits);
1143 if (page_no) { /* exclude the header page */
1144 if (first_block < lowest_block)
1145 lowest_block = first_block;
1146 if (first_block > highest_block)
1147 highest_block = first_block;
1148 }
1149
1da177e4
LT
1150 /*
1151 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1152 */
53092a74
HD
1153 ret = add_swap_extent(sis, page_no, 1, first_block);
1154 if (ret < 0)
1da177e4 1155 goto out;
53092a74 1156 nr_extents += ret;
1da177e4
LT
1157 page_no++;
1158 probe_block += blocks_per_page;
1159reprobe:
1160 continue;
1161 }
53092a74
HD
1162 ret = nr_extents;
1163 *span = 1 + highest_block - lowest_block;
1da177e4 1164 if (page_no == 0)
e2244ec2 1165 page_no = 1; /* force Empty message */
1da177e4 1166 sis->max = page_no;
e2244ec2 1167 sis->pages = page_no - 1;
1da177e4
LT
1168 sis->highest_bit = page_no - 1;
1169done:
1170 sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1171 struct swap_extent, list);
1172 goto out;
1173bad_bmap:
1174 printk(KERN_ERR "swapon: swapfile has holes\n");
1175 ret = -EINVAL;
1176out:
1177 return ret;
1178}
1179
1180#if 0 /* We don't need this yet */
1181#include <linux/backing-dev.h>
1182int page_queue_congested(struct page *page)
1183{
1184 struct backing_dev_info *bdi;
1185
1186 BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */
1187
1188 if (PageSwapCache(page)) {
4c21e2f2 1189 swp_entry_t entry = { .val = page_private(page) };
1da177e4
LT
1190 struct swap_info_struct *sis;
1191
1192 sis = get_swap_info_struct(swp_type(entry));
1193 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1194 } else
1195 bdi = page->mapping->backing_dev_info;
1196 return bdi_write_congested(bdi);
1197}
1198#endif
1199
1200asmlinkage long sys_swapoff(const char __user * specialfile)
1201{
1202 struct swap_info_struct * p = NULL;
1203 unsigned short *swap_map;
1204 struct file *swap_file, *victim;
1205 struct address_space *mapping;
1206 struct inode *inode;
1207 char * pathname;
1208 int i, type, prev;
1209 int err;
1210
1211 if (!capable(CAP_SYS_ADMIN))
1212 return -EPERM;
1213
1214 pathname = getname(specialfile);
1215 err = PTR_ERR(pathname);
1216 if (IS_ERR(pathname))
1217 goto out;
1218
1219 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1220 putname(pathname);
1221 err = PTR_ERR(victim);
1222 if (IS_ERR(victim))
1223 goto out;
1224
1225 mapping = victim->f_mapping;
1226 prev = -1;
5d337b91 1227 spin_lock(&swap_lock);
1da177e4
LT
1228 for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1229 p = swap_info + type;
1230 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1231 if (p->swap_file->f_mapping == mapping)
1232 break;
1233 }
1234 prev = type;
1235 }
1236 if (type < 0) {
1237 err = -EINVAL;
5d337b91 1238 spin_unlock(&swap_lock);
1da177e4
LT
1239 goto out_dput;
1240 }
1241 if (!security_vm_enough_memory(p->pages))
1242 vm_unacct_memory(p->pages);
1243 else {
1244 err = -ENOMEM;
5d337b91 1245 spin_unlock(&swap_lock);
1da177e4
LT
1246 goto out_dput;
1247 }
1248 if (prev < 0) {
1249 swap_list.head = p->next;
1250 } else {
1251 swap_info[prev].next = p->next;
1252 }
1253 if (type == swap_list.next) {
1254 /* just pick something that's safe... */
1255 swap_list.next = swap_list.head;
1256 }
1257 nr_swap_pages -= p->pages;
1258 total_swap_pages -= p->pages;
1259 p->flags &= ~SWP_WRITEOK;
5d337b91 1260 spin_unlock(&swap_lock);
fb4f88dc 1261
1da177e4
LT
1262 current->flags |= PF_SWAPOFF;
1263 err = try_to_unuse(type);
1264 current->flags &= ~PF_SWAPOFF;
1265
1da177e4
LT
1266 if (err) {
1267 /* re-insert swap space back into swap_list */
5d337b91 1268 spin_lock(&swap_lock);
1da177e4
LT
1269 for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1270 if (p->prio >= swap_info[i].prio)
1271 break;
1272 p->next = i;
1273 if (prev < 0)
1274 swap_list.head = swap_list.next = p - swap_info;
1275 else
1276 swap_info[prev].next = p - swap_info;
1277 nr_swap_pages += p->pages;
1278 total_swap_pages += p->pages;
1279 p->flags |= SWP_WRITEOK;
5d337b91 1280 spin_unlock(&swap_lock);
1da177e4
LT
1281 goto out_dput;
1282 }
52b7efdb
HD
1283
1284 /* wait for any unplug function to finish */
1285 down_write(&swap_unplug_sem);
1286 up_write(&swap_unplug_sem);
1287
5d337b91 1288 destroy_swap_extents(p);
fc0abb14 1289 mutex_lock(&swapon_mutex);
5d337b91
HD
1290 spin_lock(&swap_lock);
1291 drain_mmlist();
1292
52b7efdb 1293 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
1294 p->highest_bit = 0; /* cuts scans short */
1295 while (p->flags >= SWP_SCANNING) {
5d337b91 1296 spin_unlock(&swap_lock);
13e4b57f 1297 schedule_timeout_uninterruptible(1);
5d337b91 1298 spin_lock(&swap_lock);
52b7efdb 1299 }
52b7efdb 1300
1da177e4
LT
1301 swap_file = p->swap_file;
1302 p->swap_file = NULL;
1303 p->max = 0;
1304 swap_map = p->swap_map;
1305 p->swap_map = NULL;
1306 p->flags = 0;
5d337b91 1307 spin_unlock(&swap_lock);
fc0abb14 1308 mutex_unlock(&swapon_mutex);
1da177e4
LT
1309 vfree(swap_map);
1310 inode = mapping->host;
1311 if (S_ISBLK(inode->i_mode)) {
1312 struct block_device *bdev = I_BDEV(inode);
1313 set_blocksize(bdev, p->old_block_size);
1314 bd_release(bdev);
1315 } else {
1b1dcc1b 1316 mutex_lock(&inode->i_mutex);
1da177e4 1317 inode->i_flags &= ~S_SWAPFILE;
1b1dcc1b 1318 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1319 }
1320 filp_close(swap_file, NULL);
1321 err = 0;
1322
1323out_dput:
1324 filp_close(victim, NULL);
1325out:
1326 return err;
1327}
1328
1329#ifdef CONFIG_PROC_FS
1330/* iterator */
1331static void *swap_start(struct seq_file *swap, loff_t *pos)
1332{
1333 struct swap_info_struct *ptr = swap_info;
1334 int i;
1335 loff_t l = *pos;
1336
fc0abb14 1337 mutex_lock(&swapon_mutex);
1da177e4 1338
881e4aab
SS
1339 if (!l)
1340 return SEQ_START_TOKEN;
1341
1da177e4
LT
1342 for (i = 0; i < nr_swapfiles; i++, ptr++) {
1343 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1344 continue;
881e4aab 1345 if (!--l)
1da177e4
LT
1346 return ptr;
1347 }
1348
1349 return NULL;
1350}
1351
1352static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1353{
881e4aab 1354 struct swap_info_struct *ptr;
1da177e4
LT
1355 struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1356
881e4aab
SS
1357 if (v == SEQ_START_TOKEN)
1358 ptr = swap_info;
1359 else {
1360 ptr = v;
1361 ptr++;
1362 }
1363
1364 for (; ptr < endptr; ptr++) {
1da177e4
LT
1365 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1366 continue;
1367 ++*pos;
1368 return ptr;
1369 }
1370
1371 return NULL;
1372}
1373
1374static void swap_stop(struct seq_file *swap, void *v)
1375{
fc0abb14 1376 mutex_unlock(&swapon_mutex);
1da177e4
LT
1377}
1378
1379static int swap_show(struct seq_file *swap, void *v)
1380{
1381 struct swap_info_struct *ptr = v;
1382 struct file *file;
1383 int len;
1384
881e4aab
SS
1385 if (ptr == SEQ_START_TOKEN) {
1386 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1387 return 0;
1388 }
1da177e4
LT
1389
1390 file = ptr->swap_file;
d3ac7f89 1391 len = seq_path(swap, file->f_path.mnt, file->f_path.dentry, " \t\n\\");
6eb396dc 1392 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1da177e4 1393 len < 40 ? 40 - len : 1, " ",
d3ac7f89 1394 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1da177e4
LT
1395 "partition" : "file\t",
1396 ptr->pages << (PAGE_SHIFT - 10),
1397 ptr->inuse_pages << (PAGE_SHIFT - 10),
1398 ptr->prio);
1399 return 0;
1400}
1401
15ad7cdc 1402static const struct seq_operations swaps_op = {
1da177e4
LT
1403 .start = swap_start,
1404 .next = swap_next,
1405 .stop = swap_stop,
1406 .show = swap_show
1407};
1408
1409static int swaps_open(struct inode *inode, struct file *file)
1410{
1411 return seq_open(file, &swaps_op);
1412}
1413
15ad7cdc 1414static const struct file_operations proc_swaps_operations = {
1da177e4
LT
1415 .open = swaps_open,
1416 .read = seq_read,
1417 .llseek = seq_lseek,
1418 .release = seq_release,
1419};
1420
1421static int __init procswaps_init(void)
1422{
1423 struct proc_dir_entry *entry;
1424
1425 entry = create_proc_entry("swaps", 0, NULL);
1426 if (entry)
1427 entry->proc_fops = &proc_swaps_operations;
1428 return 0;
1429}
1430__initcall(procswaps_init);
1431#endif /* CONFIG_PROC_FS */
1432
1433/*
1434 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1435 *
1436 * The swapon system call
1437 */
1438asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1439{
1440 struct swap_info_struct * p;
1441 char *name = NULL;
1442 struct block_device *bdev = NULL;
1443 struct file *swap_file = NULL;
1444 struct address_space *mapping;
1445 unsigned int type;
1446 int i, prev;
1447 int error;
1448 static int least_priority;
1449 union swap_header *swap_header = NULL;
1450 int swap_header_version;
6eb396dc
HD
1451 unsigned int nr_good_pages = 0;
1452 int nr_extents = 0;
53092a74 1453 sector_t span;
1da177e4
LT
1454 unsigned long maxpages = 1;
1455 int swapfilesize;
1456 unsigned short *swap_map;
1457 struct page *page = NULL;
1458 struct inode *inode = NULL;
1459 int did_down = 0;
1460
1461 if (!capable(CAP_SYS_ADMIN))
1462 return -EPERM;
5d337b91 1463 spin_lock(&swap_lock);
1da177e4
LT
1464 p = swap_info;
1465 for (type = 0 ; type < nr_swapfiles ; type++,p++)
1466 if (!(p->flags & SWP_USED))
1467 break;
1468 error = -EPERM;
0697212a 1469 if (type >= MAX_SWAPFILES) {
5d337b91 1470 spin_unlock(&swap_lock);
1da177e4
LT
1471 goto out;
1472 }
1473 if (type >= nr_swapfiles)
1474 nr_swapfiles = type+1;
1475 INIT_LIST_HEAD(&p->extent_list);
1476 p->flags = SWP_USED;
1da177e4
LT
1477 p->swap_file = NULL;
1478 p->old_block_size = 0;
1479 p->swap_map = NULL;
1480 p->lowest_bit = 0;
1481 p->highest_bit = 0;
1482 p->cluster_nr = 0;
1483 p->inuse_pages = 0;
1da177e4
LT
1484 p->next = -1;
1485 if (swap_flags & SWAP_FLAG_PREFER) {
1486 p->prio =
1487 (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1488 } else {
1489 p->prio = --least_priority;
1490 }
5d337b91 1491 spin_unlock(&swap_lock);
1da177e4
LT
1492 name = getname(specialfile);
1493 error = PTR_ERR(name);
1494 if (IS_ERR(name)) {
1495 name = NULL;
1496 goto bad_swap_2;
1497 }
1498 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1499 error = PTR_ERR(swap_file);
1500 if (IS_ERR(swap_file)) {
1501 swap_file = NULL;
1502 goto bad_swap_2;
1503 }
1504
1505 p->swap_file = swap_file;
1506 mapping = swap_file->f_mapping;
1507 inode = mapping->host;
1508
1509 error = -EBUSY;
1510 for (i = 0; i < nr_swapfiles; i++) {
1511 struct swap_info_struct *q = &swap_info[i];
1512
1513 if (i == type || !q->swap_file)
1514 continue;
1515 if (mapping == q->swap_file->f_mapping)
1516 goto bad_swap;
1517 }
1518
1519 error = -EINVAL;
1520 if (S_ISBLK(inode->i_mode)) {
1521 bdev = I_BDEV(inode);
1522 error = bd_claim(bdev, sys_swapon);
1523 if (error < 0) {
1524 bdev = NULL;
f7b3a435 1525 error = -EINVAL;
1da177e4
LT
1526 goto bad_swap;
1527 }
1528 p->old_block_size = block_size(bdev);
1529 error = set_blocksize(bdev, PAGE_SIZE);
1530 if (error < 0)
1531 goto bad_swap;
1532 p->bdev = bdev;
1533 } else if (S_ISREG(inode->i_mode)) {
1534 p->bdev = inode->i_sb->s_bdev;
1b1dcc1b 1535 mutex_lock(&inode->i_mutex);
1da177e4
LT
1536 did_down = 1;
1537 if (IS_SWAPFILE(inode)) {
1538 error = -EBUSY;
1539 goto bad_swap;
1540 }
1541 } else {
1542 goto bad_swap;
1543 }
1544
1545 swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1546
1547 /*
1548 * Read the swap header.
1549 */
1550 if (!mapping->a_ops->readpage) {
1551 error = -EINVAL;
1552 goto bad_swap;
1553 }
090d2b18 1554 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
1555 if (IS_ERR(page)) {
1556 error = PTR_ERR(page);
1557 goto bad_swap;
1558 }
1da177e4
LT
1559 kmap(page);
1560 swap_header = page_address(page);
1561
1562 if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1563 swap_header_version = 1;
1564 else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1565 swap_header_version = 2;
1566 else {
e97a3111 1567 printk(KERN_ERR "Unable to find swap-space signature\n");
1da177e4
LT
1568 error = -EINVAL;
1569 goto bad_swap;
1570 }
1571
1572 switch (swap_header_version) {
1573 case 1:
1574 printk(KERN_ERR "version 0 swap is no longer supported. "
1575 "Use mkswap -v1 %s\n", name);
1576 error = -EINVAL;
1577 goto bad_swap;
1578 case 2:
1579 /* Check the swap header's sub-version and the size of
1580 the swap file and bad block lists */
1581 if (swap_header->info.version != 1) {
1582 printk(KERN_WARNING
1583 "Unable to handle swap header version %d\n",
1584 swap_header->info.version);
1585 error = -EINVAL;
1586 goto bad_swap;
1587 }
1588
1589 p->lowest_bit = 1;
52b7efdb
HD
1590 p->cluster_next = 1;
1591
1da177e4
LT
1592 /*
1593 * Find out how many pages are allowed for a single swap
1594 * device. There are two limiting factors: 1) the number of
1595 * bits for the swap offset in the swp_entry_t type and
1596 * 2) the number of bits in the a swap pte as defined by
1597 * the different architectures. In order to find the
1598 * largest possible bit mask a swap entry with swap type 0
1599 * and swap offset ~0UL is created, encoded to a swap pte,
1600 * decoded to a swp_entry_t again and finally the swap
1601 * offset is extracted. This will mask all the bits from
1602 * the initial ~0UL mask that can't be encoded in either
1603 * the swp_entry_t or the architecture definition of a
1604 * swap pte.
1605 */
1606 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1607 if (maxpages > swap_header->info.last_page)
1608 maxpages = swap_header->info.last_page;
1609 p->highest_bit = maxpages - 1;
1610
1611 error = -EINVAL;
e2244ec2
HD
1612 if (!maxpages)
1613 goto bad_swap;
5d1854e1
ES
1614 if (swapfilesize && maxpages > swapfilesize) {
1615 printk(KERN_WARNING
1616 "Swap area shorter than signature indicates\n");
1617 goto bad_swap;
1618 }
e2244ec2
HD
1619 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1620 goto bad_swap;
1da177e4
LT
1621 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1622 goto bad_swap;
cd105df4 1623
1da177e4
LT
1624 /* OK, set up the swap map and apply the bad block list */
1625 if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1626 error = -ENOMEM;
1627 goto bad_swap;
1628 }
1629
1630 error = 0;
1631 memset(p->swap_map, 0, maxpages * sizeof(short));
cd105df4
TK
1632 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1633 int page_nr = swap_header->info.badpages[i];
1634 if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
1da177e4
LT
1635 error = -EINVAL;
1636 else
cd105df4 1637 p->swap_map[page_nr] = SWAP_MAP_BAD;
1da177e4
LT
1638 }
1639 nr_good_pages = swap_header->info.last_page -
1640 swap_header->info.nr_badpages -
1641 1 /* header page */;
cd105df4 1642 if (error)
1da177e4
LT
1643 goto bad_swap;
1644 }
e2244ec2 1645
e2244ec2
HD
1646 if (nr_good_pages) {
1647 p->swap_map[0] = SWAP_MAP_BAD;
1648 p->max = maxpages;
1649 p->pages = nr_good_pages;
53092a74
HD
1650 nr_extents = setup_swap_extents(p, &span);
1651 if (nr_extents < 0) {
1652 error = nr_extents;
e2244ec2 1653 goto bad_swap;
53092a74 1654 }
e2244ec2
HD
1655 nr_good_pages = p->pages;
1656 }
1da177e4
LT
1657 if (!nr_good_pages) {
1658 printk(KERN_WARNING "Empty swap-file\n");
1659 error = -EINVAL;
1660 goto bad_swap;
1661 }
1da177e4 1662
fc0abb14 1663 mutex_lock(&swapon_mutex);
5d337b91 1664 spin_lock(&swap_lock);
1da177e4
LT
1665 p->flags = SWP_ACTIVE;
1666 nr_swap_pages += nr_good_pages;
1667 total_swap_pages += nr_good_pages;
53092a74 1668
6eb396dc 1669 printk(KERN_INFO "Adding %uk swap on %s. "
53092a74
HD
1670 "Priority:%d extents:%d across:%lluk\n",
1671 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1672 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1da177e4
LT
1673
1674 /* insert swap space into swap_list: */
1675 prev = -1;
1676 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1677 if (p->prio >= swap_info[i].prio) {
1678 break;
1679 }
1680 prev = i;
1681 }
1682 p->next = i;
1683 if (prev < 0) {
1684 swap_list.head = swap_list.next = p - swap_info;
1685 } else {
1686 swap_info[prev].next = p - swap_info;
1687 }
5d337b91 1688 spin_unlock(&swap_lock);
fc0abb14 1689 mutex_unlock(&swapon_mutex);
1da177e4
LT
1690 error = 0;
1691 goto out;
1692bad_swap:
1693 if (bdev) {
1694 set_blocksize(bdev, p->old_block_size);
1695 bd_release(bdev);
1696 }
4cd3bb10 1697 destroy_swap_extents(p);
1da177e4 1698bad_swap_2:
5d337b91 1699 spin_lock(&swap_lock);
1da177e4
LT
1700 swap_map = p->swap_map;
1701 p->swap_file = NULL;
1702 p->swap_map = NULL;
1703 p->flags = 0;
1704 if (!(swap_flags & SWAP_FLAG_PREFER))
1705 ++least_priority;
5d337b91 1706 spin_unlock(&swap_lock);
1da177e4
LT
1707 vfree(swap_map);
1708 if (swap_file)
1709 filp_close(swap_file, NULL);
1710out:
1711 if (page && !IS_ERR(page)) {
1712 kunmap(page);
1713 page_cache_release(page);
1714 }
1715 if (name)
1716 putname(name);
1717 if (did_down) {
1718 if (!error)
1719 inode->i_flags |= S_SWAPFILE;
1b1dcc1b 1720 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1721 }
1722 return error;
1723}
1724
1725void si_swapinfo(struct sysinfo *val)
1726{
1727 unsigned int i;
1728 unsigned long nr_to_be_unused = 0;
1729
5d337b91 1730 spin_lock(&swap_lock);
1da177e4
LT
1731 for (i = 0; i < nr_swapfiles; i++) {
1732 if (!(swap_info[i].flags & SWP_USED) ||
1733 (swap_info[i].flags & SWP_WRITEOK))
1734 continue;
1735 nr_to_be_unused += swap_info[i].inuse_pages;
1736 }
1737 val->freeswap = nr_swap_pages + nr_to_be_unused;
1738 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 1739 spin_unlock(&swap_lock);
1da177e4
LT
1740}
1741
1742/*
1743 * Verify that a swap entry is valid and increment its swap map count.
1744 *
1745 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1746 * "permanent", but will be reclaimed by the next swapoff.
1747 */
1748int swap_duplicate(swp_entry_t entry)
1749{
1750 struct swap_info_struct * p;
1751 unsigned long offset, type;
1752 int result = 0;
1753
0697212a
CL
1754 if (is_migration_entry(entry))
1755 return 1;
1756
1da177e4
LT
1757 type = swp_type(entry);
1758 if (type >= nr_swapfiles)
1759 goto bad_file;
1760 p = type + swap_info;
1761 offset = swp_offset(entry);
1762
5d337b91 1763 spin_lock(&swap_lock);
1da177e4
LT
1764 if (offset < p->max && p->swap_map[offset]) {
1765 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1766 p->swap_map[offset]++;
1767 result = 1;
1768 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1769 if (swap_overflow++ < 5)
1770 printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1771 p->swap_map[offset] = SWAP_MAP_MAX;
1772 result = 1;
1773 }
1774 }
5d337b91 1775 spin_unlock(&swap_lock);
1da177e4
LT
1776out:
1777 return result;
1778
1779bad_file:
1780 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1781 goto out;
1782}
1783
1784struct swap_info_struct *
1785get_swap_info_struct(unsigned type)
1786{
1787 return &swap_info[type];
1788}
1789
1790/*
5d337b91 1791 * swap_lock prevents swap_map being freed. Don't grab an extra
1da177e4
LT
1792 * reference on the swaphandle, it doesn't matter if it becomes unused.
1793 */
1794int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1795{
8952898b 1796 struct swap_info_struct *si;
3f9e7949 1797 int our_page_cluster = page_cluster;
8952898b
HD
1798 pgoff_t target, toff;
1799 pgoff_t base, end;
1800 int nr_pages = 0;
1da177e4 1801
3f9e7949 1802 if (!our_page_cluster) /* no readahead */
1da177e4 1803 return 0;
8952898b
HD
1804
1805 si = &swap_info[swp_type(entry)];
1806 target = swp_offset(entry);
1807 base = (target >> our_page_cluster) << our_page_cluster;
1808 end = base + (1 << our_page_cluster);
1809 if (!base) /* first page is swap header */
1810 base++;
1da177e4 1811
5d337b91 1812 spin_lock(&swap_lock);
8952898b
HD
1813 if (end > si->max) /* don't go beyond end of map */
1814 end = si->max;
1815
1816 /* Count contiguous allocated slots above our target */
1817 for (toff = target; ++toff < end; nr_pages++) {
1818 /* Don't read in free or bad pages */
1819 if (!si->swap_map[toff])
1820 break;
1821 if (si->swap_map[toff] == SWAP_MAP_BAD)
1da177e4 1822 break;
8952898b
HD
1823 }
1824 /* Count contiguous allocated slots below our target */
1825 for (toff = target; --toff >= base; nr_pages++) {
1da177e4 1826 /* Don't read in free or bad pages */
8952898b 1827 if (!si->swap_map[toff])
1da177e4 1828 break;
8952898b 1829 if (si->swap_map[toff] == SWAP_MAP_BAD)
1da177e4 1830 break;
8952898b 1831 }
5d337b91 1832 spin_unlock(&swap_lock);
8952898b
HD
1833
1834 /*
1835 * Indicate starting offset, and return number of pages to get:
1836 * if only 1, say 0, since there's then no readahead to be done.
1837 */
1838 *offset = ++toff;
1839 return nr_pages? ++nr_pages: 0;
1da177e4 1840}