]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/swapfile.c
mm: replace TIF_MEMDIE checks by tsk_is_oom_victim
[mirror_ubuntu-hirsute-kernel.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4 8#include <linux/mm.h>
6e84f315 9#include <linux/sched/mm.h>
29930025 10#include <linux/sched/task.h>
1da177e4
LT
11#include <linux/hugetlb.h>
12#include <linux/mman.h>
13#include <linux/slab.h>
14#include <linux/kernel_stat.h>
15#include <linux/swap.h>
16#include <linux/vmalloc.h>
17#include <linux/pagemap.h>
18#include <linux/namei.h>
072441e2 19#include <linux/shmem_fs.h>
1da177e4 20#include <linux/blkdev.h>
20137a49 21#include <linux/random.h>
1da177e4
LT
22#include <linux/writeback.h>
23#include <linux/proc_fs.h>
24#include <linux/seq_file.h>
25#include <linux/init.h>
5ad64688 26#include <linux/ksm.h>
1da177e4
LT
27#include <linux/rmap.h>
28#include <linux/security.h>
29#include <linux/backing-dev.h>
fc0abb14 30#include <linux/mutex.h>
c59ede7b 31#include <linux/capability.h>
1da177e4 32#include <linux/syscalls.h>
8a9f3ccd 33#include <linux/memcontrol.h>
66d7dd51 34#include <linux/poll.h>
72788c38 35#include <linux/oom.h>
38b5faf4
DM
36#include <linux/frontswap.h>
37#include <linux/swapfile.h>
f981c595 38#include <linux/export.h>
67afa38e 39#include <linux/swap_slots.h>
155b5f88 40#include <linux/sort.h>
1da177e4
LT
41
42#include <asm/pgtable.h>
43#include <asm/tlbflush.h>
44#include <linux/swapops.h>
5d1ea48b 45#include <linux/swap_cgroup.h>
1da177e4 46
570a335b
HD
47static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 unsigned char);
49static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 50static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 51
38b5faf4 52DEFINE_SPINLOCK(swap_lock);
7c363b8c 53static unsigned int nr_swapfiles;
ec8acf20 54atomic_long_t nr_swap_pages;
fb0fec50
CW
55/*
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
59 */
60EXPORT_SYMBOL_GPL(nr_swap_pages);
ec8acf20 61/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 62long total_swap_pages;
78ecba08 63static int least_priority;
1da177e4 64
1da177e4
LT
65static const char Bad_file[] = "Bad swap file entry ";
66static const char Unused_file[] = "Unused swap file entry ";
67static const char Bad_offset[] = "Bad swap offset entry ";
68static const char Unused_offset[] = "Unused swap offset entry ";
69
adfab836
DS
70/*
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
73 */
18ab4d4c
DS
74PLIST_HEAD(swap_active_head);
75
76/*
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
87 */
88static PLIST_HEAD(swap_avail_head);
89static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 90
38b5faf4 91struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 92
fc0abb14 93static DEFINE_MUTEX(swapon_mutex);
1da177e4 94
66d7dd51
KS
95static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96/* Activity counter to indicate that a swapon or swapoff has occurred */
97static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
81a0298b
HY
99atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
8d69aaee 101static inline unsigned char swap_count(unsigned char ent)
355cfa73 102{
570a335b 103 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
355cfa73
KH
104}
105
efa90a98 106/* returns 1 if swap entry is freed */
c9e44410
KH
107static int
108__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
109{
efa90a98 110 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
111 struct page *page;
112 int ret = 0;
113
f6ab1f7f 114 page = find_get_page(swap_address_space(entry), swp_offset(entry));
c9e44410
KH
115 if (!page)
116 return 0;
117 /*
118 * This function is called from scan_swap_map() and it's called
119 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
120 * We have to use trylock for avoiding deadlock. This is a special
121 * case and you should use try_to_free_swap() with explicit lock_page()
122 * in usual operations.
123 */
124 if (trylock_page(page)) {
125 ret = try_to_free_swap(page);
126 unlock_page(page);
127 }
09cbfeaf 128 put_page(page);
c9e44410
KH
129 return ret;
130}
355cfa73 131
6a6ba831
HD
132/*
133 * swapon tell device that all the old swap contents can be discarded,
134 * to allow the swap device to optimize its wear-levelling.
135 */
136static int discard_swap(struct swap_info_struct *si)
137{
138 struct swap_extent *se;
9625a5f2
HD
139 sector_t start_block;
140 sector_t nr_blocks;
6a6ba831
HD
141 int err = 0;
142
9625a5f2
HD
143 /* Do not discard the swap header page! */
144 se = &si->first_swap_extent;
145 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
146 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
147 if (nr_blocks) {
148 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 149 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
150 if (err)
151 return err;
152 cond_resched();
153 }
6a6ba831 154
9625a5f2
HD
155 list_for_each_entry(se, &si->first_swap_extent.list, list) {
156 start_block = se->start_block << (PAGE_SHIFT - 9);
157 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
158
159 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 160 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
161 if (err)
162 break;
163
164 cond_resched();
165 }
166 return err; /* That will often be -EOPNOTSUPP */
167}
168
7992fde7
HD
169/*
170 * swap allocation tell device that a cluster of swap can now be discarded,
171 * to allow the swap device to optimize its wear-levelling.
172 */
173static void discard_swap_cluster(struct swap_info_struct *si,
174 pgoff_t start_page, pgoff_t nr_pages)
175{
176 struct swap_extent *se = si->curr_swap_extent;
177 int found_extent = 0;
178
179 while (nr_pages) {
7992fde7
HD
180 if (se->start_page <= start_page &&
181 start_page < se->start_page + se->nr_pages) {
182 pgoff_t offset = start_page - se->start_page;
183 sector_t start_block = se->start_block + offset;
858a2990 184 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
185
186 if (nr_blocks > nr_pages)
187 nr_blocks = nr_pages;
188 start_page += nr_blocks;
189 nr_pages -= nr_blocks;
190
191 if (!found_extent++)
192 si->curr_swap_extent = se;
193
194 start_block <<= PAGE_SHIFT - 9;
195 nr_blocks <<= PAGE_SHIFT - 9;
196 if (blkdev_issue_discard(si->bdev, start_block,
dd3932ed 197 nr_blocks, GFP_NOIO, 0))
7992fde7
HD
198 break;
199 }
200
a8ae4991 201 se = list_next_entry(se, list);
7992fde7
HD
202 }
203}
204
38d8b4e6
HY
205#ifdef CONFIG_THP_SWAP
206#define SWAPFILE_CLUSTER HPAGE_PMD_NR
207#else
048c27fd 208#define SWAPFILE_CLUSTER 256
38d8b4e6 209#endif
048c27fd
HD
210#define LATENCY_LIMIT 256
211
2a8f9449
SL
212static inline void cluster_set_flag(struct swap_cluster_info *info,
213 unsigned int flag)
214{
215 info->flags = flag;
216}
217
218static inline unsigned int cluster_count(struct swap_cluster_info *info)
219{
220 return info->data;
221}
222
223static inline void cluster_set_count(struct swap_cluster_info *info,
224 unsigned int c)
225{
226 info->data = c;
227}
228
229static inline void cluster_set_count_flag(struct swap_cluster_info *info,
230 unsigned int c, unsigned int f)
231{
232 info->flags = f;
233 info->data = c;
234}
235
236static inline unsigned int cluster_next(struct swap_cluster_info *info)
237{
238 return info->data;
239}
240
241static inline void cluster_set_next(struct swap_cluster_info *info,
242 unsigned int n)
243{
244 info->data = n;
245}
246
247static inline void cluster_set_next_flag(struct swap_cluster_info *info,
248 unsigned int n, unsigned int f)
249{
250 info->flags = f;
251 info->data = n;
252}
253
254static inline bool cluster_is_free(struct swap_cluster_info *info)
255{
256 return info->flags & CLUSTER_FLAG_FREE;
257}
258
259static inline bool cluster_is_null(struct swap_cluster_info *info)
260{
261 return info->flags & CLUSTER_FLAG_NEXT_NULL;
262}
263
264static inline void cluster_set_null(struct swap_cluster_info *info)
265{
266 info->flags = CLUSTER_FLAG_NEXT_NULL;
267 info->data = 0;
268}
269
e0709829
HY
270static inline bool cluster_is_huge(struct swap_cluster_info *info)
271{
272 return info->flags & CLUSTER_FLAG_HUGE;
273}
274
275static inline void cluster_clear_huge(struct swap_cluster_info *info)
276{
277 info->flags &= ~CLUSTER_FLAG_HUGE;
278}
279
235b6217
HY
280static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
281 unsigned long offset)
282{
283 struct swap_cluster_info *ci;
284
285 ci = si->cluster_info;
286 if (ci) {
287 ci += offset / SWAPFILE_CLUSTER;
288 spin_lock(&ci->lock);
289 }
290 return ci;
291}
292
293static inline void unlock_cluster(struct swap_cluster_info *ci)
294{
295 if (ci)
296 spin_unlock(&ci->lock);
297}
298
299static inline struct swap_cluster_info *lock_cluster_or_swap_info(
300 struct swap_info_struct *si,
301 unsigned long offset)
302{
303 struct swap_cluster_info *ci;
304
305 ci = lock_cluster(si, offset);
306 if (!ci)
307 spin_lock(&si->lock);
308
309 return ci;
310}
311
312static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
313 struct swap_cluster_info *ci)
314{
315 if (ci)
316 unlock_cluster(ci);
317 else
318 spin_unlock(&si->lock);
319}
320
6b534915
HY
321static inline bool cluster_list_empty(struct swap_cluster_list *list)
322{
323 return cluster_is_null(&list->head);
324}
325
326static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
327{
328 return cluster_next(&list->head);
329}
330
331static void cluster_list_init(struct swap_cluster_list *list)
332{
333 cluster_set_null(&list->head);
334 cluster_set_null(&list->tail);
335}
336
337static void cluster_list_add_tail(struct swap_cluster_list *list,
338 struct swap_cluster_info *ci,
339 unsigned int idx)
340{
341 if (cluster_list_empty(list)) {
342 cluster_set_next_flag(&list->head, idx, 0);
343 cluster_set_next_flag(&list->tail, idx, 0);
344 } else {
235b6217 345 struct swap_cluster_info *ci_tail;
6b534915
HY
346 unsigned int tail = cluster_next(&list->tail);
347
235b6217
HY
348 /*
349 * Nested cluster lock, but both cluster locks are
350 * only acquired when we held swap_info_struct->lock
351 */
352 ci_tail = ci + tail;
353 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
354 cluster_set_next(ci_tail, idx);
0ef017d1 355 spin_unlock(&ci_tail->lock);
6b534915
HY
356 cluster_set_next_flag(&list->tail, idx, 0);
357 }
358}
359
360static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
361 struct swap_cluster_info *ci)
362{
363 unsigned int idx;
364
365 idx = cluster_next(&list->head);
366 if (cluster_next(&list->tail) == idx) {
367 cluster_set_null(&list->head);
368 cluster_set_null(&list->tail);
369 } else
370 cluster_set_next_flag(&list->head,
371 cluster_next(&ci[idx]), 0);
372
373 return idx;
374}
375
815c2c54
SL
376/* Add a cluster to discard list and schedule it to do discard */
377static void swap_cluster_schedule_discard(struct swap_info_struct *si,
378 unsigned int idx)
379{
380 /*
381 * If scan_swap_map() can't find a free cluster, it will check
382 * si->swap_map directly. To make sure the discarding cluster isn't
383 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
384 * will be cleared after discard
385 */
386 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
387 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
388
6b534915 389 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
815c2c54
SL
390
391 schedule_work(&si->discard_work);
392}
393
38d8b4e6
HY
394static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
395{
396 struct swap_cluster_info *ci = si->cluster_info;
397
398 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
399 cluster_list_add_tail(&si->free_clusters, ci, idx);
400}
401
815c2c54
SL
402/*
403 * Doing discard actually. After a cluster discard is finished, the cluster
404 * will be added to free cluster list. caller should hold si->lock.
405*/
406static void swap_do_scheduled_discard(struct swap_info_struct *si)
407{
235b6217 408 struct swap_cluster_info *info, *ci;
815c2c54
SL
409 unsigned int idx;
410
411 info = si->cluster_info;
412
6b534915
HY
413 while (!cluster_list_empty(&si->discard_clusters)) {
414 idx = cluster_list_del_first(&si->discard_clusters, info);
815c2c54
SL
415 spin_unlock(&si->lock);
416
417 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
418 SWAPFILE_CLUSTER);
419
420 spin_lock(&si->lock);
235b6217 421 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
38d8b4e6 422 __free_cluster(si, idx);
815c2c54
SL
423 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
424 0, SWAPFILE_CLUSTER);
235b6217 425 unlock_cluster(ci);
815c2c54
SL
426 }
427}
428
429static void swap_discard_work(struct work_struct *work)
430{
431 struct swap_info_struct *si;
432
433 si = container_of(work, struct swap_info_struct, discard_work);
434
435 spin_lock(&si->lock);
436 swap_do_scheduled_discard(si);
437 spin_unlock(&si->lock);
438}
439
38d8b4e6
HY
440static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
441{
442 struct swap_cluster_info *ci = si->cluster_info;
443
444 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
445 cluster_list_del_first(&si->free_clusters, ci);
446 cluster_set_count_flag(ci + idx, 0, 0);
447}
448
449static void free_cluster(struct swap_info_struct *si, unsigned long idx)
450{
451 struct swap_cluster_info *ci = si->cluster_info + idx;
452
453 VM_BUG_ON(cluster_count(ci) != 0);
454 /*
455 * If the swap is discardable, prepare discard the cluster
456 * instead of free it immediately. The cluster will be freed
457 * after discard.
458 */
459 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
460 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
461 swap_cluster_schedule_discard(si, idx);
462 return;
463 }
464
465 __free_cluster(si, idx);
466}
467
2a8f9449
SL
468/*
469 * The cluster corresponding to page_nr will be used. The cluster will be
470 * removed from free cluster list and its usage counter will be increased.
471 */
472static void inc_cluster_info_page(struct swap_info_struct *p,
473 struct swap_cluster_info *cluster_info, unsigned long page_nr)
474{
475 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
476
477 if (!cluster_info)
478 return;
38d8b4e6
HY
479 if (cluster_is_free(&cluster_info[idx]))
480 alloc_cluster(p, idx);
2a8f9449
SL
481
482 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
483 cluster_set_count(&cluster_info[idx],
484 cluster_count(&cluster_info[idx]) + 1);
485}
486
487/*
488 * The cluster corresponding to page_nr decreases one usage. If the usage
489 * counter becomes 0, which means no page in the cluster is in using, we can
490 * optionally discard the cluster and add it to free cluster list.
491 */
492static void dec_cluster_info_page(struct swap_info_struct *p,
493 struct swap_cluster_info *cluster_info, unsigned long page_nr)
494{
495 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
496
497 if (!cluster_info)
498 return;
499
500 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
501 cluster_set_count(&cluster_info[idx],
502 cluster_count(&cluster_info[idx]) - 1);
503
38d8b4e6
HY
504 if (cluster_count(&cluster_info[idx]) == 0)
505 free_cluster(p, idx);
2a8f9449
SL
506}
507
508/*
509 * It's possible scan_swap_map() uses a free cluster in the middle of free
510 * cluster list. Avoiding such abuse to avoid list corruption.
511 */
ebc2a1a6
SL
512static bool
513scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
514 unsigned long offset)
515{
ebc2a1a6
SL
516 struct percpu_cluster *percpu_cluster;
517 bool conflict;
518
2a8f9449 519 offset /= SWAPFILE_CLUSTER;
6b534915
HY
520 conflict = !cluster_list_empty(&si->free_clusters) &&
521 offset != cluster_list_first(&si->free_clusters) &&
2a8f9449 522 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
523
524 if (!conflict)
525 return false;
526
527 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
528 cluster_set_null(&percpu_cluster->index);
529 return true;
530}
531
532/*
533 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
534 * might involve allocating a new cluster for current CPU too.
535 */
36005bae 536static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
ebc2a1a6
SL
537 unsigned long *offset, unsigned long *scan_base)
538{
539 struct percpu_cluster *cluster;
235b6217 540 struct swap_cluster_info *ci;
ebc2a1a6 541 bool found_free;
235b6217 542 unsigned long tmp, max;
ebc2a1a6
SL
543
544new_cluster:
545 cluster = this_cpu_ptr(si->percpu_cluster);
546 if (cluster_is_null(&cluster->index)) {
6b534915
HY
547 if (!cluster_list_empty(&si->free_clusters)) {
548 cluster->index = si->free_clusters.head;
ebc2a1a6
SL
549 cluster->next = cluster_next(&cluster->index) *
550 SWAPFILE_CLUSTER;
6b534915 551 } else if (!cluster_list_empty(&si->discard_clusters)) {
ebc2a1a6
SL
552 /*
553 * we don't have free cluster but have some clusters in
554 * discarding, do discard now and reclaim them
555 */
556 swap_do_scheduled_discard(si);
557 *scan_base = *offset = si->cluster_next;
558 goto new_cluster;
559 } else
36005bae 560 return false;
ebc2a1a6
SL
561 }
562
563 found_free = false;
564
565 /*
566 * Other CPUs can use our cluster if they can't find a free cluster,
567 * check if there is still free entry in the cluster
568 */
569 tmp = cluster->next;
235b6217
HY
570 max = min_t(unsigned long, si->max,
571 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
572 if (tmp >= max) {
573 cluster_set_null(&cluster->index);
574 goto new_cluster;
575 }
576 ci = lock_cluster(si, tmp);
577 while (tmp < max) {
ebc2a1a6
SL
578 if (!si->swap_map[tmp]) {
579 found_free = true;
580 break;
581 }
582 tmp++;
583 }
235b6217 584 unlock_cluster(ci);
ebc2a1a6
SL
585 if (!found_free) {
586 cluster_set_null(&cluster->index);
587 goto new_cluster;
588 }
589 cluster->next = tmp + 1;
590 *offset = tmp;
591 *scan_base = tmp;
36005bae 592 return found_free;
2a8f9449
SL
593}
594
38d8b4e6
HY
595static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
596 unsigned int nr_entries)
597{
598 unsigned int end = offset + nr_entries - 1;
599
600 if (offset == si->lowest_bit)
601 si->lowest_bit += nr_entries;
602 if (end == si->highest_bit)
603 si->highest_bit -= nr_entries;
604 si->inuse_pages += nr_entries;
605 if (si->inuse_pages == si->pages) {
606 si->lowest_bit = si->max;
607 si->highest_bit = 0;
608 spin_lock(&swap_avail_lock);
609 plist_del(&si->avail_list, &swap_avail_head);
610 spin_unlock(&swap_avail_lock);
611 }
612}
613
614static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
615 unsigned int nr_entries)
616{
617 unsigned long end = offset + nr_entries - 1;
618 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
619
620 if (offset < si->lowest_bit)
621 si->lowest_bit = offset;
622 if (end > si->highest_bit) {
623 bool was_full = !si->highest_bit;
624
625 si->highest_bit = end;
626 if (was_full && (si->flags & SWP_WRITEOK)) {
627 spin_lock(&swap_avail_lock);
628 WARN_ON(!plist_node_empty(&si->avail_list));
629 if (plist_node_empty(&si->avail_list))
630 plist_add(&si->avail_list, &swap_avail_head);
631 spin_unlock(&swap_avail_lock);
632 }
633 }
634 atomic_long_add(nr_entries, &nr_swap_pages);
635 si->inuse_pages -= nr_entries;
636 if (si->flags & SWP_BLKDEV)
637 swap_slot_free_notify =
638 si->bdev->bd_disk->fops->swap_slot_free_notify;
639 else
640 swap_slot_free_notify = NULL;
641 while (offset <= end) {
642 frontswap_invalidate_page(si->type, offset);
643 if (swap_slot_free_notify)
644 swap_slot_free_notify(si->bdev, offset);
645 offset++;
646 }
647}
648
36005bae
TC
649static int scan_swap_map_slots(struct swap_info_struct *si,
650 unsigned char usage, int nr,
651 swp_entry_t slots[])
1da177e4 652{
235b6217 653 struct swap_cluster_info *ci;
ebebbbe9 654 unsigned long offset;
c60aa176 655 unsigned long scan_base;
7992fde7 656 unsigned long last_in_cluster = 0;
048c27fd 657 int latency_ration = LATENCY_LIMIT;
36005bae
TC
658 int n_ret = 0;
659
660 if (nr > SWAP_BATCH)
661 nr = SWAP_BATCH;
7dfad418 662
886bb7e9 663 /*
7dfad418
HD
664 * We try to cluster swap pages by allocating them sequentially
665 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
666 * way, however, we resort to first-free allocation, starting
667 * a new cluster. This prevents us from scattering swap pages
668 * all over the entire swap partition, so that we reduce
669 * overall disk seek times between swap pages. -- sct
670 * But we do now try to find an empty cluster. -Andrea
c60aa176 671 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
672 */
673
52b7efdb 674 si->flags += SWP_SCANNING;
c60aa176 675 scan_base = offset = si->cluster_next;
ebebbbe9 676
ebc2a1a6
SL
677 /* SSD algorithm */
678 if (si->cluster_info) {
36005bae
TC
679 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
680 goto checks;
681 else
682 goto scan;
ebc2a1a6
SL
683 }
684
ebebbbe9
HD
685 if (unlikely(!si->cluster_nr--)) {
686 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
687 si->cluster_nr = SWAPFILE_CLUSTER - 1;
688 goto checks;
689 }
2a8f9449 690
ec8acf20 691 spin_unlock(&si->lock);
7dfad418 692
c60aa176
HD
693 /*
694 * If seek is expensive, start searching for new cluster from
695 * start of partition, to minimize the span of allocated swap.
50088c44
CY
696 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
697 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 698 */
50088c44 699 scan_base = offset = si->lowest_bit;
7dfad418
HD
700 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
701
702 /* Locate the first empty (unaligned) cluster */
703 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 704 if (si->swap_map[offset])
7dfad418
HD
705 last_in_cluster = offset + SWAPFILE_CLUSTER;
706 else if (offset == last_in_cluster) {
ec8acf20 707 spin_lock(&si->lock);
ebebbbe9
HD
708 offset -= SWAPFILE_CLUSTER - 1;
709 si->cluster_next = offset;
710 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
711 goto checks;
712 }
713 if (unlikely(--latency_ration < 0)) {
714 cond_resched();
715 latency_ration = LATENCY_LIMIT;
716 }
717 }
718
719 offset = scan_base;
ec8acf20 720 spin_lock(&si->lock);
ebebbbe9 721 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 722 }
7dfad418 723
ebebbbe9 724checks:
ebc2a1a6 725 if (si->cluster_info) {
36005bae
TC
726 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
727 /* take a break if we already got some slots */
728 if (n_ret)
729 goto done;
730 if (!scan_swap_map_try_ssd_cluster(si, &offset,
731 &scan_base))
732 goto scan;
733 }
ebc2a1a6 734 }
ebebbbe9 735 if (!(si->flags & SWP_WRITEOK))
52b7efdb 736 goto no_page;
7dfad418
HD
737 if (!si->highest_bit)
738 goto no_page;
ebebbbe9 739 if (offset > si->highest_bit)
c60aa176 740 scan_base = offset = si->lowest_bit;
c9e44410 741
235b6217 742 ci = lock_cluster(si, offset);
b73d7fce
HD
743 /* reuse swap entry of cache-only swap if not busy. */
744 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 745 int swap_was_freed;
235b6217 746 unlock_cluster(ci);
ec8acf20 747 spin_unlock(&si->lock);
c9e44410 748 swap_was_freed = __try_to_reclaim_swap(si, offset);
ec8acf20 749 spin_lock(&si->lock);
c9e44410
KH
750 /* entry was freed successfully, try to use this again */
751 if (swap_was_freed)
752 goto checks;
753 goto scan; /* check next one */
754 }
755
235b6217
HY
756 if (si->swap_map[offset]) {
757 unlock_cluster(ci);
36005bae
TC
758 if (!n_ret)
759 goto scan;
760 else
761 goto done;
235b6217 762 }
2872bb2d
HY
763 si->swap_map[offset] = usage;
764 inc_cluster_info_page(si, si->cluster_info, offset);
765 unlock_cluster(ci);
ebebbbe9 766
38d8b4e6 767 swap_range_alloc(si, offset, 1);
ebebbbe9 768 si->cluster_next = offset + 1;
36005bae
TC
769 slots[n_ret++] = swp_entry(si->type, offset);
770
771 /* got enough slots or reach max slots? */
772 if ((n_ret == nr) || (offset >= si->highest_bit))
773 goto done;
774
775 /* search for next available slot */
776
777 /* time to take a break? */
778 if (unlikely(--latency_ration < 0)) {
779 if (n_ret)
780 goto done;
781 spin_unlock(&si->lock);
782 cond_resched();
783 spin_lock(&si->lock);
784 latency_ration = LATENCY_LIMIT;
785 }
786
787 /* try to get more slots in cluster */
788 if (si->cluster_info) {
789 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
790 goto checks;
791 else
792 goto done;
793 }
794 /* non-ssd case */
795 ++offset;
796
797 /* non-ssd case, still more slots in cluster? */
798 if (si->cluster_nr && !si->swap_map[offset]) {
799 --si->cluster_nr;
800 goto checks;
801 }
7992fde7 802
36005bae
TC
803done:
804 si->flags -= SWP_SCANNING;
805 return n_ret;
7dfad418 806
ebebbbe9 807scan:
ec8acf20 808 spin_unlock(&si->lock);
7dfad418 809 while (++offset <= si->highest_bit) {
52b7efdb 810 if (!si->swap_map[offset]) {
ec8acf20 811 spin_lock(&si->lock);
52b7efdb
HD
812 goto checks;
813 }
c9e44410 814 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 815 spin_lock(&si->lock);
c9e44410
KH
816 goto checks;
817 }
048c27fd
HD
818 if (unlikely(--latency_ration < 0)) {
819 cond_resched();
820 latency_ration = LATENCY_LIMIT;
821 }
7dfad418 822 }
c60aa176 823 offset = si->lowest_bit;
a5998061 824 while (offset < scan_base) {
c60aa176 825 if (!si->swap_map[offset]) {
ec8acf20 826 spin_lock(&si->lock);
c60aa176
HD
827 goto checks;
828 }
c9e44410 829 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 830 spin_lock(&si->lock);
c9e44410
KH
831 goto checks;
832 }
c60aa176
HD
833 if (unlikely(--latency_ration < 0)) {
834 cond_resched();
835 latency_ration = LATENCY_LIMIT;
836 }
a5998061 837 offset++;
c60aa176 838 }
ec8acf20 839 spin_lock(&si->lock);
7dfad418
HD
840
841no_page:
52b7efdb 842 si->flags -= SWP_SCANNING;
36005bae 843 return n_ret;
1da177e4
LT
844}
845
38d8b4e6
HY
846#ifdef CONFIG_THP_SWAP
847static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
848{
849 unsigned long idx;
850 struct swap_cluster_info *ci;
851 unsigned long offset, i;
852 unsigned char *map;
853
854 if (cluster_list_empty(&si->free_clusters))
855 return 0;
856
857 idx = cluster_list_first(&si->free_clusters);
858 offset = idx * SWAPFILE_CLUSTER;
859 ci = lock_cluster(si, offset);
860 alloc_cluster(si, idx);
e0709829 861 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
38d8b4e6
HY
862
863 map = si->swap_map + offset;
864 for (i = 0; i < SWAPFILE_CLUSTER; i++)
865 map[i] = SWAP_HAS_CACHE;
866 unlock_cluster(ci);
867 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
868 *slot = swp_entry(si->type, offset);
869
870 return 1;
871}
872
873static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
874{
875 unsigned long offset = idx * SWAPFILE_CLUSTER;
876 struct swap_cluster_info *ci;
877
878 ci = lock_cluster(si, offset);
879 cluster_set_count_flag(ci, 0, 0);
880 free_cluster(si, idx);
881 unlock_cluster(ci);
882 swap_range_free(si, offset, SWAPFILE_CLUSTER);
883}
884#else
885static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
886{
887 VM_WARN_ON_ONCE(1);
888 return 0;
889}
890#endif /* CONFIG_THP_SWAP */
891
36005bae
TC
892static unsigned long scan_swap_map(struct swap_info_struct *si,
893 unsigned char usage)
894{
895 swp_entry_t entry;
896 int n_ret;
897
898 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
899
900 if (n_ret)
901 return swp_offset(entry);
902 else
903 return 0;
904
905}
906
38d8b4e6 907int get_swap_pages(int n_goal, bool cluster, swp_entry_t swp_entries[])
1da177e4 908{
38d8b4e6 909 unsigned long nr_pages = cluster ? SWAPFILE_CLUSTER : 1;
adfab836 910 struct swap_info_struct *si, *next;
36005bae
TC
911 long avail_pgs;
912 int n_ret = 0;
1da177e4 913
38d8b4e6
HY
914 /* Only single cluster request supported */
915 WARN_ON_ONCE(n_goal > 1 && cluster);
916
917 avail_pgs = atomic_long_read(&nr_swap_pages) / nr_pages;
36005bae 918 if (avail_pgs <= 0)
fb4f88dc 919 goto noswap;
36005bae
TC
920
921 if (n_goal > SWAP_BATCH)
922 n_goal = SWAP_BATCH;
923
924 if (n_goal > avail_pgs)
925 n_goal = avail_pgs;
926
38d8b4e6 927 atomic_long_sub(n_goal * nr_pages, &nr_swap_pages);
fb4f88dc 928
18ab4d4c
DS
929 spin_lock(&swap_avail_lock);
930
931start_over:
932 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
933 /* requeue si to after same-priority siblings */
934 plist_requeue(&si->avail_list, &swap_avail_head);
935 spin_unlock(&swap_avail_lock);
ec8acf20 936 spin_lock(&si->lock);
adfab836 937 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c
DS
938 spin_lock(&swap_avail_lock);
939 if (plist_node_empty(&si->avail_list)) {
940 spin_unlock(&si->lock);
941 goto nextsi;
942 }
943 WARN(!si->highest_bit,
944 "swap_info %d in list but !highest_bit\n",
945 si->type);
946 WARN(!(si->flags & SWP_WRITEOK),
947 "swap_info %d in list but !SWP_WRITEOK\n",
948 si->type);
949 plist_del(&si->avail_list, &swap_avail_head);
ec8acf20 950 spin_unlock(&si->lock);
18ab4d4c 951 goto nextsi;
ec8acf20 952 }
f0eea189
HY
953 if (cluster) {
954 if (!(si->flags & SWP_FILE))
955 n_ret = swap_alloc_cluster(si, swp_entries);
956 } else
38d8b4e6
HY
957 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
958 n_goal, swp_entries);
ec8acf20 959 spin_unlock(&si->lock);
38d8b4e6 960 if (n_ret || cluster)
36005bae 961 goto check_out;
18ab4d4c 962 pr_debug("scan_swap_map of si %d failed to find offset\n",
36005bae
TC
963 si->type);
964
18ab4d4c
DS
965 spin_lock(&swap_avail_lock);
966nextsi:
adfab836
DS
967 /*
968 * if we got here, it's likely that si was almost full before,
969 * and since scan_swap_map() can drop the si->lock, multiple
970 * callers probably all tried to get a page from the same si
18ab4d4c
DS
971 * and it filled up before we could get one; or, the si filled
972 * up between us dropping swap_avail_lock and taking si->lock.
973 * Since we dropped the swap_avail_lock, the swap_avail_head
974 * list may have been modified; so if next is still in the
36005bae
TC
975 * swap_avail_head list then try it, otherwise start over
976 * if we have not gotten any slots.
adfab836 977 */
18ab4d4c
DS
978 if (plist_node_empty(&next->avail_list))
979 goto start_over;
1da177e4 980 }
fb4f88dc 981
18ab4d4c
DS
982 spin_unlock(&swap_avail_lock);
983
36005bae
TC
984check_out:
985 if (n_ret < n_goal)
38d8b4e6
HY
986 atomic_long_add((long)(n_goal - n_ret) * nr_pages,
987 &nr_swap_pages);
fb4f88dc 988noswap:
36005bae
TC
989 return n_ret;
990}
991
2de1a7e4 992/* The only caller of this function is now suspend routine */
910321ea
HD
993swp_entry_t get_swap_page_of_type(int type)
994{
995 struct swap_info_struct *si;
996 pgoff_t offset;
997
910321ea 998 si = swap_info[type];
ec8acf20 999 spin_lock(&si->lock);
910321ea 1000 if (si && (si->flags & SWP_WRITEOK)) {
ec8acf20 1001 atomic_long_dec(&nr_swap_pages);
910321ea
HD
1002 /* This is called for allocating swap entry, not cache */
1003 offset = scan_swap_map(si, 1);
1004 if (offset) {
ec8acf20 1005 spin_unlock(&si->lock);
910321ea
HD
1006 return swp_entry(type, offset);
1007 }
ec8acf20 1008 atomic_long_inc(&nr_swap_pages);
910321ea 1009 }
ec8acf20 1010 spin_unlock(&si->lock);
910321ea
HD
1011 return (swp_entry_t) {0};
1012}
1013
e8c26ab6 1014static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1da177e4 1015{
73c34b6a 1016 struct swap_info_struct *p;
1da177e4
LT
1017 unsigned long offset, type;
1018
1019 if (!entry.val)
1020 goto out;
1021 type = swp_type(entry);
1022 if (type >= nr_swapfiles)
1023 goto bad_nofile;
efa90a98 1024 p = swap_info[type];
1da177e4
LT
1025 if (!(p->flags & SWP_USED))
1026 goto bad_device;
1027 offset = swp_offset(entry);
1028 if (offset >= p->max)
1029 goto bad_offset;
1da177e4
LT
1030 return p;
1031
1da177e4 1032bad_offset:
6a991fc7 1033 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
1034 goto out;
1035bad_device:
6a991fc7 1036 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
1037 goto out;
1038bad_nofile:
6a991fc7 1039 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
1040out:
1041 return NULL;
886bb7e9 1042}
1da177e4 1043
e8c26ab6
TC
1044static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1045{
1046 struct swap_info_struct *p;
1047
1048 p = __swap_info_get(entry);
1049 if (!p)
1050 goto out;
1051 if (!p->swap_map[swp_offset(entry)])
1052 goto bad_free;
1053 return p;
1054
1055bad_free:
1056 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1057 goto out;
1058out:
1059 return NULL;
1060}
1061
235b6217
HY
1062static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1063{
1064 struct swap_info_struct *p;
1065
1066 p = _swap_info_get(entry);
1067 if (p)
1068 spin_lock(&p->lock);
1069 return p;
1070}
1071
7c00bafe
TC
1072static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1073 struct swap_info_struct *q)
1074{
1075 struct swap_info_struct *p;
1076
1077 p = _swap_info_get(entry);
1078
1079 if (p != q) {
1080 if (q != NULL)
1081 spin_unlock(&q->lock);
1082 if (p != NULL)
1083 spin_lock(&p->lock);
1084 }
1085 return p;
1086}
1087
1088static unsigned char __swap_entry_free(struct swap_info_struct *p,
1089 swp_entry_t entry, unsigned char usage)
1da177e4 1090{
235b6217 1091 struct swap_cluster_info *ci;
253d553b 1092 unsigned long offset = swp_offset(entry);
8d69aaee
HD
1093 unsigned char count;
1094 unsigned char has_cache;
235b6217 1095
7c00bafe 1096 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 1097
253d553b 1098 count = p->swap_map[offset];
235b6217 1099
253d553b
HD
1100 has_cache = count & SWAP_HAS_CACHE;
1101 count &= ~SWAP_HAS_CACHE;
355cfa73 1102
253d553b 1103 if (usage == SWAP_HAS_CACHE) {
355cfa73 1104 VM_BUG_ON(!has_cache);
253d553b 1105 has_cache = 0;
aaa46865
HD
1106 } else if (count == SWAP_MAP_SHMEM) {
1107 /*
1108 * Or we could insist on shmem.c using a special
1109 * swap_shmem_free() and free_shmem_swap_and_cache()...
1110 */
1111 count = 0;
570a335b
HD
1112 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1113 if (count == COUNT_CONTINUED) {
1114 if (swap_count_continued(p, offset, count))
1115 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1116 else
1117 count = SWAP_MAP_MAX;
1118 } else
1119 count--;
1120 }
253d553b 1121
253d553b 1122 usage = count | has_cache;
7c00bafe
TC
1123 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1124
1125 unlock_cluster_or_swap_info(p, ci);
1126
1127 return usage;
1128}
355cfa73 1129
7c00bafe
TC
1130static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1131{
1132 struct swap_cluster_info *ci;
1133 unsigned long offset = swp_offset(entry);
1134 unsigned char count;
1135
1136 ci = lock_cluster(p, offset);
1137 count = p->swap_map[offset];
1138 VM_BUG_ON(count != SWAP_HAS_CACHE);
1139 p->swap_map[offset] = 0;
1140 dec_cluster_info_page(p, p->cluster_info, offset);
235b6217
HY
1141 unlock_cluster(ci);
1142
38d8b4e6
HY
1143 mem_cgroup_uncharge_swap(entry, 1);
1144 swap_range_free(p, offset, 1);
1da177e4
LT
1145}
1146
1147/*
2de1a7e4 1148 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
1149 * is still around or has not been recycled.
1150 */
1151void swap_free(swp_entry_t entry)
1152{
73c34b6a 1153 struct swap_info_struct *p;
1da177e4 1154
235b6217 1155 p = _swap_info_get(entry);
7c00bafe
TC
1156 if (p) {
1157 if (!__swap_entry_free(p, entry, 1))
67afa38e 1158 free_swap_slot(entry);
7c00bafe 1159 }
1da177e4
LT
1160}
1161
cb4b86ba
KH
1162/*
1163 * Called after dropping swapcache to decrease refcnt to swap entries.
1164 */
75f6d6d2 1165static void swapcache_free(swp_entry_t entry)
cb4b86ba 1166{
355cfa73
KH
1167 struct swap_info_struct *p;
1168
235b6217 1169 p = _swap_info_get(entry);
7c00bafe
TC
1170 if (p) {
1171 if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
67afa38e 1172 free_swap_slot(entry);
7c00bafe
TC
1173 }
1174}
1175
38d8b4e6 1176#ifdef CONFIG_THP_SWAP
75f6d6d2 1177static void swapcache_free_cluster(swp_entry_t entry)
38d8b4e6
HY
1178{
1179 unsigned long offset = swp_offset(entry);
1180 unsigned long idx = offset / SWAPFILE_CLUSTER;
1181 struct swap_cluster_info *ci;
1182 struct swap_info_struct *si;
1183 unsigned char *map;
a3aea839
HY
1184 unsigned int i, free_entries = 0;
1185 unsigned char val;
38d8b4e6 1186
a3aea839 1187 si = _swap_info_get(entry);
38d8b4e6
HY
1188 if (!si)
1189 return;
1190
1191 ci = lock_cluster(si, offset);
e0709829 1192 VM_BUG_ON(!cluster_is_huge(ci));
38d8b4e6
HY
1193 map = si->swap_map + offset;
1194 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
a3aea839
HY
1195 val = map[i];
1196 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1197 if (val == SWAP_HAS_CACHE)
1198 free_entries++;
1199 }
1200 if (!free_entries) {
1201 for (i = 0; i < SWAPFILE_CLUSTER; i++)
1202 map[i] &= ~SWAP_HAS_CACHE;
38d8b4e6 1203 }
e0709829 1204 cluster_clear_huge(ci);
38d8b4e6 1205 unlock_cluster(ci);
a3aea839
HY
1206 if (free_entries == SWAPFILE_CLUSTER) {
1207 spin_lock(&si->lock);
1208 ci = lock_cluster(si, offset);
1209 memset(map, 0, SWAPFILE_CLUSTER);
1210 unlock_cluster(ci);
1211 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1212 swap_free_cluster(si, idx);
1213 spin_unlock(&si->lock);
1214 } else if (free_entries) {
1215 for (i = 0; i < SWAPFILE_CLUSTER; i++, entry.val++) {
1216 if (!__swap_entry_free(si, entry, SWAP_HAS_CACHE))
1217 free_swap_slot(entry);
1218 }
1219 }
38d8b4e6 1220}
59807685
HY
1221
1222int split_swap_cluster(swp_entry_t entry)
1223{
1224 struct swap_info_struct *si;
1225 struct swap_cluster_info *ci;
1226 unsigned long offset = swp_offset(entry);
1227
1228 si = _swap_info_get(entry);
1229 if (!si)
1230 return -EBUSY;
1231 ci = lock_cluster(si, offset);
1232 cluster_clear_huge(ci);
1233 unlock_cluster(ci);
1234 return 0;
1235}
75f6d6d2
MK
1236#else
1237static inline void swapcache_free_cluster(swp_entry_t entry)
1238{
1239}
38d8b4e6
HY
1240#endif /* CONFIG_THP_SWAP */
1241
75f6d6d2
MK
1242void put_swap_page(struct page *page, swp_entry_t entry)
1243{
1244 if (!PageTransHuge(page))
1245 swapcache_free(entry);
1246 else
1247 swapcache_free_cluster(entry);
1248}
1249
155b5f88
HY
1250static int swp_entry_cmp(const void *ent1, const void *ent2)
1251{
1252 const swp_entry_t *e1 = ent1, *e2 = ent2;
1253
1254 return (int)swp_type(*e1) - (int)swp_type(*e2);
1255}
1256
7c00bafe
TC
1257void swapcache_free_entries(swp_entry_t *entries, int n)
1258{
1259 struct swap_info_struct *p, *prev;
1260 int i;
1261
1262 if (n <= 0)
1263 return;
1264
1265 prev = NULL;
1266 p = NULL;
155b5f88
HY
1267
1268 /*
1269 * Sort swap entries by swap device, so each lock is only taken once.
1270 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1271 * so low that it isn't necessary to optimize further.
1272 */
1273 if (nr_swapfiles > 1)
1274 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
7c00bafe
TC
1275 for (i = 0; i < n; ++i) {
1276 p = swap_info_get_cont(entries[i], prev);
1277 if (p)
1278 swap_entry_free(p, entries[i]);
7c00bafe
TC
1279 prev = p;
1280 }
235b6217 1281 if (p)
7c00bafe 1282 spin_unlock(&p->lock);
cb4b86ba
KH
1283}
1284
1da177e4 1285/*
c475a8ab 1286 * How many references to page are currently swapped out?
570a335b
HD
1287 * This does not give an exact answer when swap count is continued,
1288 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 1289 */
bde05d1c 1290int page_swapcount(struct page *page)
1da177e4 1291{
c475a8ab
HD
1292 int count = 0;
1293 struct swap_info_struct *p;
235b6217 1294 struct swap_cluster_info *ci;
1da177e4 1295 swp_entry_t entry;
235b6217 1296 unsigned long offset;
1da177e4 1297
4c21e2f2 1298 entry.val = page_private(page);
235b6217 1299 p = _swap_info_get(entry);
1da177e4 1300 if (p) {
235b6217
HY
1301 offset = swp_offset(entry);
1302 ci = lock_cluster_or_swap_info(p, offset);
1303 count = swap_count(p->swap_map[offset]);
1304 unlock_cluster_or_swap_info(p, ci);
1da177e4 1305 }
c475a8ab 1306 return count;
1da177e4
LT
1307}
1308
322b8afe
HY
1309static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1310{
1311 int count = 0;
1312 pgoff_t offset = swp_offset(entry);
1313 struct swap_cluster_info *ci;
1314
1315 ci = lock_cluster_or_swap_info(si, offset);
1316 count = swap_count(si->swap_map[offset]);
1317 unlock_cluster_or_swap_info(si, ci);
1318 return count;
1319}
1320
e8c26ab6
TC
1321/*
1322 * How many references to @entry are currently swapped out?
1323 * This does not give an exact answer when swap count is continued,
1324 * but does include the high COUNT_CONTINUED flag to allow for that.
1325 */
1326int __swp_swapcount(swp_entry_t entry)
1327{
1328 int count = 0;
e8c26ab6 1329 struct swap_info_struct *si;
e8c26ab6
TC
1330
1331 si = __swap_info_get(entry);
322b8afe
HY
1332 if (si)
1333 count = swap_swapcount(si, entry);
e8c26ab6
TC
1334 return count;
1335}
1336
8334b962
MK
1337/*
1338 * How many references to @entry are currently swapped out?
1339 * This considers COUNT_CONTINUED so it returns exact answer.
1340 */
1341int swp_swapcount(swp_entry_t entry)
1342{
1343 int count, tmp_count, n;
1344 struct swap_info_struct *p;
235b6217 1345 struct swap_cluster_info *ci;
8334b962
MK
1346 struct page *page;
1347 pgoff_t offset;
1348 unsigned char *map;
1349
235b6217 1350 p = _swap_info_get(entry);
8334b962
MK
1351 if (!p)
1352 return 0;
1353
235b6217
HY
1354 offset = swp_offset(entry);
1355
1356 ci = lock_cluster_or_swap_info(p, offset);
1357
1358 count = swap_count(p->swap_map[offset]);
8334b962
MK
1359 if (!(count & COUNT_CONTINUED))
1360 goto out;
1361
1362 count &= ~COUNT_CONTINUED;
1363 n = SWAP_MAP_MAX + 1;
1364
8334b962
MK
1365 page = vmalloc_to_page(p->swap_map + offset);
1366 offset &= ~PAGE_MASK;
1367 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1368
1369 do {
a8ae4991 1370 page = list_next_entry(page, lru);
8334b962
MK
1371 map = kmap_atomic(page);
1372 tmp_count = map[offset];
1373 kunmap_atomic(map);
1374
1375 count += (tmp_count & ~COUNT_CONTINUED) * n;
1376 n *= (SWAP_CONT_MAX + 1);
1377 } while (tmp_count & COUNT_CONTINUED);
1378out:
235b6217 1379 unlock_cluster_or_swap_info(p, ci);
8334b962
MK
1380 return count;
1381}
1382
e0709829
HY
1383#ifdef CONFIG_THP_SWAP
1384static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1385 swp_entry_t entry)
1386{
1387 struct swap_cluster_info *ci;
1388 unsigned char *map = si->swap_map;
1389 unsigned long roffset = swp_offset(entry);
1390 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1391 int i;
1392 bool ret = false;
1393
1394 ci = lock_cluster_or_swap_info(si, offset);
1395 if (!ci || !cluster_is_huge(ci)) {
1396 if (map[roffset] != SWAP_HAS_CACHE)
1397 ret = true;
1398 goto unlock_out;
1399 }
1400 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1401 if (map[offset + i] != SWAP_HAS_CACHE) {
1402 ret = true;
1403 break;
1404 }
1405 }
1406unlock_out:
1407 unlock_cluster_or_swap_info(si, ci);
1408 return ret;
1409}
1410
1411static bool page_swapped(struct page *page)
1412{
1413 swp_entry_t entry;
1414 struct swap_info_struct *si;
1415
1416 if (likely(!PageTransCompound(page)))
1417 return page_swapcount(page) != 0;
1418
1419 page = compound_head(page);
1420 entry.val = page_private(page);
1421 si = _swap_info_get(entry);
1422 if (si)
1423 return swap_page_trans_huge_swapped(si, entry);
1424 return false;
1425}
ba3c4ce6
HY
1426
1427static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1428 int *total_swapcount)
1429{
1430 int i, map_swapcount, _total_mapcount, _total_swapcount;
1431 unsigned long offset = 0;
1432 struct swap_info_struct *si;
1433 struct swap_cluster_info *ci = NULL;
1434 unsigned char *map = NULL;
1435 int mapcount, swapcount = 0;
1436
1437 /* hugetlbfs shouldn't call it */
1438 VM_BUG_ON_PAGE(PageHuge(page), page);
1439
1440 if (likely(!PageTransCompound(page))) {
1441 mapcount = atomic_read(&page->_mapcount) + 1;
1442 if (total_mapcount)
1443 *total_mapcount = mapcount;
1444 if (PageSwapCache(page))
1445 swapcount = page_swapcount(page);
1446 if (total_swapcount)
1447 *total_swapcount = swapcount;
1448 return mapcount + swapcount;
1449 }
1450
1451 page = compound_head(page);
1452
1453 _total_mapcount = _total_swapcount = map_swapcount = 0;
1454 if (PageSwapCache(page)) {
1455 swp_entry_t entry;
1456
1457 entry.val = page_private(page);
1458 si = _swap_info_get(entry);
1459 if (si) {
1460 map = si->swap_map;
1461 offset = swp_offset(entry);
1462 }
1463 }
1464 if (map)
1465 ci = lock_cluster(si, offset);
1466 for (i = 0; i < HPAGE_PMD_NR; i++) {
1467 mapcount = atomic_read(&page[i]._mapcount) + 1;
1468 _total_mapcount += mapcount;
1469 if (map) {
1470 swapcount = swap_count(map[offset + i]);
1471 _total_swapcount += swapcount;
1472 }
1473 map_swapcount = max(map_swapcount, mapcount + swapcount);
1474 }
1475 unlock_cluster(ci);
1476 if (PageDoubleMap(page)) {
1477 map_swapcount -= 1;
1478 _total_mapcount -= HPAGE_PMD_NR;
1479 }
1480 mapcount = compound_mapcount(page);
1481 map_swapcount += mapcount;
1482 _total_mapcount += mapcount;
1483 if (total_mapcount)
1484 *total_mapcount = _total_mapcount;
1485 if (total_swapcount)
1486 *total_swapcount = _total_swapcount;
1487
1488 return map_swapcount;
1489}
e0709829
HY
1490#else
1491#define swap_page_trans_huge_swapped(si, entry) swap_swapcount(si, entry)
1492#define page_swapped(page) (page_swapcount(page) != 0)
ba3c4ce6
HY
1493
1494static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1495 int *total_swapcount)
1496{
1497 int mapcount, swapcount = 0;
1498
1499 /* hugetlbfs shouldn't call it */
1500 VM_BUG_ON_PAGE(PageHuge(page), page);
1501
1502 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1503 if (PageSwapCache(page))
1504 swapcount = page_swapcount(page);
1505 if (total_swapcount)
1506 *total_swapcount = swapcount;
1507 return mapcount + swapcount;
1508}
e0709829
HY
1509#endif
1510
1da177e4 1511/*
7b1fe597
HD
1512 * We can write to an anon page without COW if there are no other references
1513 * to it. And as a side-effect, free up its swap: because the old content
1514 * on disk will never be read, and seeking back there to write new content
1515 * later would only waste time away from clustering.
6d0a07ed 1516 *
ba3c4ce6 1517 * NOTE: total_map_swapcount should not be relied upon by the caller if
6d0a07ed
AA
1518 * reuse_swap_page() returns false, but it may be always overwritten
1519 * (see the other implementation for CONFIG_SWAP=n).
1da177e4 1520 */
ba3c4ce6 1521bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1da177e4 1522{
ba3c4ce6 1523 int count, total_mapcount, total_swapcount;
c475a8ab 1524
309381fe 1525 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688 1526 if (unlikely(PageKsm(page)))
6d0a07ed 1527 return false;
ba3c4ce6
HY
1528 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1529 &total_swapcount);
1530 if (total_map_swapcount)
1531 *total_map_swapcount = total_mapcount + total_swapcount;
1532 if (count == 1 && PageSwapCache(page) &&
1533 (likely(!PageTransCompound(page)) ||
1534 /* The remaining swap count will be freed soon */
1535 total_swapcount == page_swapcount(page))) {
f0571429 1536 if (!PageWriteback(page)) {
ba3c4ce6 1537 page = compound_head(page);
7b1fe597
HD
1538 delete_from_swap_cache(page);
1539 SetPageDirty(page);
f0571429
MK
1540 } else {
1541 swp_entry_t entry;
1542 struct swap_info_struct *p;
1543
1544 entry.val = page_private(page);
1545 p = swap_info_get(entry);
1546 if (p->flags & SWP_STABLE_WRITES) {
1547 spin_unlock(&p->lock);
1548 return false;
1549 }
1550 spin_unlock(&p->lock);
7b1fe597
HD
1551 }
1552 }
ba3c4ce6 1553
5ad64688 1554 return count <= 1;
1da177e4
LT
1555}
1556
1557/*
a2c43eed
HD
1558 * If swap is getting full, or if there are no more mappings of this page,
1559 * then try_to_free_swap is called to free its swap space.
1da177e4 1560 */
a2c43eed 1561int try_to_free_swap(struct page *page)
1da177e4 1562{
309381fe 1563 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
1564
1565 if (!PageSwapCache(page))
1566 return 0;
1567 if (PageWriteback(page))
1568 return 0;
e0709829 1569 if (page_swapped(page))
1da177e4
LT
1570 return 0;
1571
b73d7fce
HD
1572 /*
1573 * Once hibernation has begun to create its image of memory,
1574 * there's a danger that one of the calls to try_to_free_swap()
1575 * - most probably a call from __try_to_reclaim_swap() while
1576 * hibernation is allocating its own swap pages for the image,
1577 * but conceivably even a call from memory reclaim - will free
1578 * the swap from a page which has already been recorded in the
1579 * image as a clean swapcache page, and then reuse its swap for
1580 * another page of the image. On waking from hibernation, the
1581 * original page might be freed under memory pressure, then
1582 * later read back in from swap, now with the wrong data.
1583 *
2de1a7e4 1584 * Hibernation suspends storage while it is writing the image
f90ac398 1585 * to disk so check that here.
b73d7fce 1586 */
f90ac398 1587 if (pm_suspended_storage())
b73d7fce
HD
1588 return 0;
1589
e0709829 1590 page = compound_head(page);
a2c43eed
HD
1591 delete_from_swap_cache(page);
1592 SetPageDirty(page);
1593 return 1;
68a22394
RR
1594}
1595
1da177e4
LT
1596/*
1597 * Free the swap entry like above, but also try to
1598 * free the page cache entry if it is the last user.
1599 */
2509ef26 1600int free_swap_and_cache(swp_entry_t entry)
1da177e4 1601{
2509ef26 1602 struct swap_info_struct *p;
1da177e4 1603 struct page *page = NULL;
7c00bafe 1604 unsigned char count;
1da177e4 1605
a7420aa5 1606 if (non_swap_entry(entry))
2509ef26 1607 return 1;
0697212a 1608
7c00bafe 1609 p = _swap_info_get(entry);
1da177e4 1610 if (p) {
7c00bafe 1611 count = __swap_entry_free(p, entry, 1);
e0709829
HY
1612 if (count == SWAP_HAS_CACHE &&
1613 !swap_page_trans_huge_swapped(p, entry)) {
33806f06 1614 page = find_get_page(swap_address_space(entry),
f6ab1f7f 1615 swp_offset(entry));
8413ac9d 1616 if (page && !trylock_page(page)) {
09cbfeaf 1617 put_page(page);
93fac704
NP
1618 page = NULL;
1619 }
7c00bafe 1620 } else if (!count)
67afa38e 1621 free_swap_slot(entry);
1da177e4
LT
1622 }
1623 if (page) {
a2c43eed
HD
1624 /*
1625 * Not mapped elsewhere, or swap space full? Free it!
1626 * Also recheck PageSwapCache now page is locked (above).
1627 */
93fac704 1628 if (PageSwapCache(page) && !PageWriteback(page) &&
322b8afe 1629 (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
e0709829
HY
1630 !swap_page_trans_huge_swapped(p, entry)) {
1631 page = compound_head(page);
1da177e4
LT
1632 delete_from_swap_cache(page);
1633 SetPageDirty(page);
1634 }
1635 unlock_page(page);
09cbfeaf 1636 put_page(page);
1da177e4 1637 }
2509ef26 1638 return p != NULL;
1da177e4
LT
1639}
1640
b0cb1a19 1641#ifdef CONFIG_HIBERNATION
f577eb30 1642/*
915bae9e 1643 * Find the swap type that corresponds to given device (if any).
f577eb30 1644 *
915bae9e
RW
1645 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1646 * from 0, in which the swap header is expected to be located.
1647 *
1648 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1649 */
7bf23687 1650int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 1651{
915bae9e 1652 struct block_device *bdev = NULL;
efa90a98 1653 int type;
f577eb30 1654
915bae9e
RW
1655 if (device)
1656 bdev = bdget(device);
1657
f577eb30 1658 spin_lock(&swap_lock);
efa90a98
HD
1659 for (type = 0; type < nr_swapfiles; type++) {
1660 struct swap_info_struct *sis = swap_info[type];
f577eb30 1661
915bae9e 1662 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1663 continue;
b6b5bce3 1664
915bae9e 1665 if (!bdev) {
7bf23687 1666 if (bdev_p)
dddac6a7 1667 *bdev_p = bdgrab(sis->bdev);
7bf23687 1668
6e1819d6 1669 spin_unlock(&swap_lock);
efa90a98 1670 return type;
6e1819d6 1671 }
915bae9e 1672 if (bdev == sis->bdev) {
9625a5f2 1673 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 1674
915bae9e 1675 if (se->start_block == offset) {
7bf23687 1676 if (bdev_p)
dddac6a7 1677 *bdev_p = bdgrab(sis->bdev);
7bf23687 1678
915bae9e
RW
1679 spin_unlock(&swap_lock);
1680 bdput(bdev);
efa90a98 1681 return type;
915bae9e 1682 }
f577eb30
RW
1683 }
1684 }
1685 spin_unlock(&swap_lock);
915bae9e
RW
1686 if (bdev)
1687 bdput(bdev);
1688
f577eb30
RW
1689 return -ENODEV;
1690}
1691
73c34b6a
HD
1692/*
1693 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1694 * corresponding to given index in swap_info (swap type).
1695 */
1696sector_t swapdev_block(int type, pgoff_t offset)
1697{
1698 struct block_device *bdev;
1699
1700 if ((unsigned int)type >= nr_swapfiles)
1701 return 0;
1702 if (!(swap_info[type]->flags & SWP_WRITEOK))
1703 return 0;
d4906e1a 1704 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
1705}
1706
f577eb30
RW
1707/*
1708 * Return either the total number of swap pages of given type, or the number
1709 * of free pages of that type (depending on @free)
1710 *
1711 * This is needed for software suspend
1712 */
1713unsigned int count_swap_pages(int type, int free)
1714{
1715 unsigned int n = 0;
1716
efa90a98
HD
1717 spin_lock(&swap_lock);
1718 if ((unsigned int)type < nr_swapfiles) {
1719 struct swap_info_struct *sis = swap_info[type];
1720
ec8acf20 1721 spin_lock(&sis->lock);
efa90a98
HD
1722 if (sis->flags & SWP_WRITEOK) {
1723 n = sis->pages;
f577eb30 1724 if (free)
efa90a98 1725 n -= sis->inuse_pages;
f577eb30 1726 }
ec8acf20 1727 spin_unlock(&sis->lock);
f577eb30 1728 }
efa90a98 1729 spin_unlock(&swap_lock);
f577eb30
RW
1730 return n;
1731}
73c34b6a 1732#endif /* CONFIG_HIBERNATION */
f577eb30 1733
9f8bdb3f 1734static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
179ef71c 1735{
9f8bdb3f 1736 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
179ef71c
CG
1737}
1738
1da177e4 1739/*
72866f6f
HD
1740 * No need to decide whether this PTE shares the swap entry with others,
1741 * just let do_wp_page work it out if a write is requested later - to
1742 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1743 */
044d66c1 1744static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1745 unsigned long addr, swp_entry_t entry, struct page *page)
1746{
9e16b7fb 1747 struct page *swapcache;
72835c86 1748 struct mem_cgroup *memcg;
044d66c1
HD
1749 spinlock_t *ptl;
1750 pte_t *pte;
1751 int ret = 1;
1752
9e16b7fb
HD
1753 swapcache = page;
1754 page = ksm_might_need_to_copy(page, vma, addr);
1755 if (unlikely(!page))
1756 return -ENOMEM;
1757
f627c2f5
KS
1758 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1759 &memcg, false)) {
044d66c1 1760 ret = -ENOMEM;
85d9fc89
KH
1761 goto out_nolock;
1762 }
044d66c1
HD
1763
1764 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
9f8bdb3f 1765 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
f627c2f5 1766 mem_cgroup_cancel_charge(page, memcg, false);
044d66c1
HD
1767 ret = 0;
1768 goto out;
1769 }
8a9f3ccd 1770
b084d435 1771 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1772 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1773 get_page(page);
1774 set_pte_at(vma->vm_mm, addr, pte,
1775 pte_mkold(mk_pte(page, vma->vm_page_prot)));
00501b53 1776 if (page == swapcache) {
d281ee61 1777 page_add_anon_rmap(page, vma, addr, false);
f627c2f5 1778 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1779 } else { /* ksm created a completely new copy */
d281ee61 1780 page_add_new_anon_rmap(page, vma, addr, false);
f627c2f5 1781 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
1782 lru_cache_add_active_or_unevictable(page, vma);
1783 }
1da177e4
LT
1784 swap_free(entry);
1785 /*
1786 * Move the page to the active list so it is not
1787 * immediately swapped out again after swapon.
1788 */
1789 activate_page(page);
044d66c1
HD
1790out:
1791 pte_unmap_unlock(pte, ptl);
85d9fc89 1792out_nolock:
9e16b7fb
HD
1793 if (page != swapcache) {
1794 unlock_page(page);
1795 put_page(page);
1796 }
044d66c1 1797 return ret;
1da177e4
LT
1798}
1799
1800static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1801 unsigned long addr, unsigned long end,
1802 swp_entry_t entry, struct page *page)
1803{
1da177e4 1804 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 1805 pte_t *pte;
8a9f3ccd 1806 int ret = 0;
1da177e4 1807
044d66c1
HD
1808 /*
1809 * We don't actually need pte lock while scanning for swp_pte: since
1810 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1811 * page table while we're scanning; though it could get zapped, and on
1812 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1813 * of unmatched parts which look like swp_pte, so unuse_pte must
1814 * recheck under pte lock. Scanning without pte lock lets it be
2de1a7e4 1815 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
044d66c1
HD
1816 */
1817 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1818 do {
1819 /*
1820 * swapoff spends a _lot_ of time in this loop!
1821 * Test inline before going to call unuse_pte.
1822 */
9f8bdb3f 1823 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
044d66c1
HD
1824 pte_unmap(pte);
1825 ret = unuse_pte(vma, pmd, addr, entry, page);
1826 if (ret)
1827 goto out;
1828 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1829 }
1830 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
1831 pte_unmap(pte - 1);
1832out:
8a9f3ccd 1833 return ret;
1da177e4
LT
1834}
1835
1836static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1837 unsigned long addr, unsigned long end,
1838 swp_entry_t entry, struct page *page)
1839{
1840 pmd_t *pmd;
1841 unsigned long next;
8a9f3ccd 1842 int ret;
1da177e4
LT
1843
1844 pmd = pmd_offset(pud, addr);
1845 do {
dc644a07 1846 cond_resched();
1da177e4 1847 next = pmd_addr_end(addr, end);
1a5a9906 1848 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 1849 continue;
8a9f3ccd
BS
1850 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1851 if (ret)
1852 return ret;
1da177e4
LT
1853 } while (pmd++, addr = next, addr != end);
1854 return 0;
1855}
1856
c2febafc 1857static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1da177e4
LT
1858 unsigned long addr, unsigned long end,
1859 swp_entry_t entry, struct page *page)
1860{
1861 pud_t *pud;
1862 unsigned long next;
8a9f3ccd 1863 int ret;
1da177e4 1864
c2febafc 1865 pud = pud_offset(p4d, addr);
1da177e4
LT
1866 do {
1867 next = pud_addr_end(addr, end);
1868 if (pud_none_or_clear_bad(pud))
1869 continue;
8a9f3ccd
BS
1870 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1871 if (ret)
1872 return ret;
1da177e4
LT
1873 } while (pud++, addr = next, addr != end);
1874 return 0;
1875}
1876
c2febafc
KS
1877static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1878 unsigned long addr, unsigned long end,
1879 swp_entry_t entry, struct page *page)
1880{
1881 p4d_t *p4d;
1882 unsigned long next;
1883 int ret;
1884
1885 p4d = p4d_offset(pgd, addr);
1886 do {
1887 next = p4d_addr_end(addr, end);
1888 if (p4d_none_or_clear_bad(p4d))
1889 continue;
1890 ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1891 if (ret)
1892 return ret;
1893 } while (p4d++, addr = next, addr != end);
1894 return 0;
1895}
1896
1da177e4
LT
1897static int unuse_vma(struct vm_area_struct *vma,
1898 swp_entry_t entry, struct page *page)
1899{
1900 pgd_t *pgd;
1901 unsigned long addr, end, next;
8a9f3ccd 1902 int ret;
1da177e4 1903
3ca7b3c5 1904 if (page_anon_vma(page)) {
1da177e4
LT
1905 addr = page_address_in_vma(page, vma);
1906 if (addr == -EFAULT)
1907 return 0;
1908 else
1909 end = addr + PAGE_SIZE;
1910 } else {
1911 addr = vma->vm_start;
1912 end = vma->vm_end;
1913 }
1914
1915 pgd = pgd_offset(vma->vm_mm, addr);
1916 do {
1917 next = pgd_addr_end(addr, end);
1918 if (pgd_none_or_clear_bad(pgd))
1919 continue;
c2febafc 1920 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
8a9f3ccd
BS
1921 if (ret)
1922 return ret;
1da177e4
LT
1923 } while (pgd++, addr = next, addr != end);
1924 return 0;
1925}
1926
1927static int unuse_mm(struct mm_struct *mm,
1928 swp_entry_t entry, struct page *page)
1929{
1930 struct vm_area_struct *vma;
8a9f3ccd 1931 int ret = 0;
1da177e4
LT
1932
1933 if (!down_read_trylock(&mm->mmap_sem)) {
1934 /*
7d03431c
FLVC
1935 * Activate page so shrink_inactive_list is unlikely to unmap
1936 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 1937 */
c475a8ab 1938 activate_page(page);
1da177e4
LT
1939 unlock_page(page);
1940 down_read(&mm->mmap_sem);
1941 lock_page(page);
1942 }
1da177e4 1943 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 1944 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4 1945 break;
dc644a07 1946 cond_resched();
1da177e4 1947 }
1da177e4 1948 up_read(&mm->mmap_sem);
8a9f3ccd 1949 return (ret < 0)? ret: 0;
1da177e4
LT
1950}
1951
1952/*
38b5faf4
DM
1953 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1954 * from current position to next entry still in use.
1da177e4
LT
1955 * Recycle to start on reaching the end, returning 0 when empty.
1956 */
6eb396dc 1957static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 1958 unsigned int prev, bool frontswap)
1da177e4 1959{
6eb396dc
HD
1960 unsigned int max = si->max;
1961 unsigned int i = prev;
8d69aaee 1962 unsigned char count;
1da177e4
LT
1963
1964 /*
5d337b91 1965 * No need for swap_lock here: we're just looking
1da177e4
LT
1966 * for whether an entry is in use, not modifying it; false
1967 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 1968 * allocations from this area (while holding swap_lock).
1da177e4
LT
1969 */
1970 for (;;) {
1971 if (++i >= max) {
1972 if (!prev) {
1973 i = 0;
1974 break;
1975 }
1976 /*
1977 * No entries in use at top of swap_map,
1978 * loop back to start and recheck there.
1979 */
1980 max = prev + 1;
1981 prev = 0;
1982 i = 1;
1983 }
4db0c3c2 1984 count = READ_ONCE(si->swap_map[i]);
355cfa73 1985 if (count && swap_count(count) != SWAP_MAP_BAD)
dc644a07
HD
1986 if (!frontswap || frontswap_test(si, i))
1987 break;
1988 if ((i % LATENCY_LIMIT) == 0)
1989 cond_resched();
1da177e4
LT
1990 }
1991 return i;
1992}
1993
1994/*
1995 * We completely avoid races by reading each swap page in advance,
1996 * and then search for the process using it. All the necessary
1997 * page table adjustments can then be made atomically.
38b5faf4
DM
1998 *
1999 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
2000 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 2001 */
38b5faf4
DM
2002int try_to_unuse(unsigned int type, bool frontswap,
2003 unsigned long pages_to_unuse)
1da177e4 2004{
efa90a98 2005 struct swap_info_struct *si = swap_info[type];
1da177e4 2006 struct mm_struct *start_mm;
edfe23da
SL
2007 volatile unsigned char *swap_map; /* swap_map is accessed without
2008 * locking. Mark it as volatile
2009 * to prevent compiler doing
2010 * something odd.
2011 */
8d69aaee 2012 unsigned char swcount;
1da177e4
LT
2013 struct page *page;
2014 swp_entry_t entry;
6eb396dc 2015 unsigned int i = 0;
1da177e4 2016 int retval = 0;
1da177e4
LT
2017
2018 /*
2019 * When searching mms for an entry, a good strategy is to
2020 * start at the first mm we freed the previous entry from
2021 * (though actually we don't notice whether we or coincidence
2022 * freed the entry). Initialize this start_mm with a hold.
2023 *
2024 * A simpler strategy would be to start at the last mm we
2025 * freed the previous entry from; but that would take less
2026 * advantage of mmlist ordering, which clusters forked mms
2027 * together, child after parent. If we race with dup_mmap(), we
2028 * prefer to resolve parent before child, lest we miss entries
2029 * duplicated after we scanned child: using last mm would invert
570a335b 2030 * that.
1da177e4
LT
2031 */
2032 start_mm = &init_mm;
3fce371b 2033 mmget(&init_mm);
1da177e4
LT
2034
2035 /*
2036 * Keep on scanning until all entries have gone. Usually,
2037 * one pass through swap_map is enough, but not necessarily:
2038 * there are races when an instance of an entry might be missed.
2039 */
38b5faf4 2040 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4
LT
2041 if (signal_pending(current)) {
2042 retval = -EINTR;
2043 break;
2044 }
2045
886bb7e9 2046 /*
1da177e4
LT
2047 * Get a page for the entry, using the existing swap
2048 * cache page if there is one. Otherwise, get a clean
886bb7e9 2049 * page and read the swap into it.
1da177e4
LT
2050 */
2051 swap_map = &si->swap_map[i];
2052 entry = swp_entry(type, i);
02098fea 2053 page = read_swap_cache_async(entry,
23955622 2054 GFP_HIGHUSER_MOVABLE, NULL, 0, false);
1da177e4
LT
2055 if (!page) {
2056 /*
2057 * Either swap_duplicate() failed because entry
2058 * has been freed independently, and will not be
2059 * reused since sys_swapoff() already disabled
2060 * allocation from here, or alloc_page() failed.
2061 */
edfe23da
SL
2062 swcount = *swap_map;
2063 /*
2064 * We don't hold lock here, so the swap entry could be
2065 * SWAP_MAP_BAD (when the cluster is discarding).
2066 * Instead of fail out, We can just skip the swap
2067 * entry because swapoff will wait for discarding
2068 * finish anyway.
2069 */
2070 if (!swcount || swcount == SWAP_MAP_BAD)
1da177e4
LT
2071 continue;
2072 retval = -ENOMEM;
2073 break;
2074 }
2075
2076 /*
2077 * Don't hold on to start_mm if it looks like exiting.
2078 */
2079 if (atomic_read(&start_mm->mm_users) == 1) {
2080 mmput(start_mm);
2081 start_mm = &init_mm;
3fce371b 2082 mmget(&init_mm);
1da177e4
LT
2083 }
2084
2085 /*
2086 * Wait for and lock page. When do_swap_page races with
2087 * try_to_unuse, do_swap_page can handle the fault much
2088 * faster than try_to_unuse can locate the entry. This
2089 * apparently redundant "wait_on_page_locked" lets try_to_unuse
2090 * defer to do_swap_page in such a case - in some tests,
2091 * do_swap_page and try_to_unuse repeatedly compete.
2092 */
2093 wait_on_page_locked(page);
2094 wait_on_page_writeback(page);
2095 lock_page(page);
2096 wait_on_page_writeback(page);
2097
2098 /*
2099 * Remove all references to entry.
1da177e4 2100 */
1da177e4 2101 swcount = *swap_map;
aaa46865
HD
2102 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
2103 retval = shmem_unuse(entry, page);
2104 /* page has already been unlocked and released */
2105 if (retval < 0)
2106 break;
2107 continue;
1da177e4 2108 }
aaa46865
HD
2109 if (swap_count(swcount) && start_mm != &init_mm)
2110 retval = unuse_mm(start_mm, entry, page);
2111
355cfa73 2112 if (swap_count(*swap_map)) {
1da177e4
LT
2113 int set_start_mm = (*swap_map >= swcount);
2114 struct list_head *p = &start_mm->mmlist;
2115 struct mm_struct *new_start_mm = start_mm;
2116 struct mm_struct *prev_mm = start_mm;
2117 struct mm_struct *mm;
2118
3fce371b
VN
2119 mmget(new_start_mm);
2120 mmget(prev_mm);
1da177e4 2121 spin_lock(&mmlist_lock);
aaa46865 2122 while (swap_count(*swap_map) && !retval &&
1da177e4
LT
2123 (p = p->next) != &start_mm->mmlist) {
2124 mm = list_entry(p, struct mm_struct, mmlist);
388f7934 2125 if (!mmget_not_zero(mm))
1da177e4 2126 continue;
1da177e4
LT
2127 spin_unlock(&mmlist_lock);
2128 mmput(prev_mm);
2129 prev_mm = mm;
2130
2131 cond_resched();
2132
2133 swcount = *swap_map;
355cfa73 2134 if (!swap_count(swcount)) /* any usage ? */
1da177e4 2135 ;
aaa46865 2136 else if (mm == &init_mm)
1da177e4 2137 set_start_mm = 1;
aaa46865 2138 else
1da177e4 2139 retval = unuse_mm(mm, entry, page);
355cfa73 2140
32c5fc10 2141 if (set_start_mm && *swap_map < swcount) {
1da177e4 2142 mmput(new_start_mm);
3fce371b 2143 mmget(mm);
1da177e4
LT
2144 new_start_mm = mm;
2145 set_start_mm = 0;
2146 }
2147 spin_lock(&mmlist_lock);
2148 }
2149 spin_unlock(&mmlist_lock);
2150 mmput(prev_mm);
2151 mmput(start_mm);
2152 start_mm = new_start_mm;
2153 }
2154 if (retval) {
2155 unlock_page(page);
09cbfeaf 2156 put_page(page);
1da177e4
LT
2157 break;
2158 }
2159
1da177e4
LT
2160 /*
2161 * If a reference remains (rare), we would like to leave
2162 * the page in the swap cache; but try_to_unmap could
2163 * then re-duplicate the entry once we drop page lock,
2164 * so we might loop indefinitely; also, that page could
2165 * not be swapped out to other storage meanwhile. So:
2166 * delete from cache even if there's another reference,
2167 * after ensuring that the data has been saved to disk -
2168 * since if the reference remains (rarer), it will be
2169 * read from disk into another page. Splitting into two
2170 * pages would be incorrect if swap supported "shared
2171 * private" pages, but they are handled by tmpfs files.
5ad64688
HD
2172 *
2173 * Given how unuse_vma() targets one particular offset
2174 * in an anon_vma, once the anon_vma has been determined,
2175 * this splitting happens to be just what is needed to
2176 * handle where KSM pages have been swapped out: re-reading
2177 * is unnecessarily slow, but we can fix that later on.
1da177e4 2178 */
355cfa73
KH
2179 if (swap_count(*swap_map) &&
2180 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
2181 struct writeback_control wbc = {
2182 .sync_mode = WB_SYNC_NONE,
2183 };
2184
e0709829 2185 swap_writepage(compound_head(page), &wbc);
1da177e4
LT
2186 lock_page(page);
2187 wait_on_page_writeback(page);
2188 }
68bdc8d6
HD
2189
2190 /*
2191 * It is conceivable that a racing task removed this page from
2192 * swap cache just before we acquired the page lock at the top,
2193 * or while we dropped it in unuse_mm(). The page might even
2194 * be back in swap cache on another swap area: that we must not
2195 * delete, since it may not have been written out to swap yet.
2196 */
2197 if (PageSwapCache(page) &&
e0709829
HY
2198 likely(page_private(page) == entry.val) &&
2199 !page_swapped(page))
2200 delete_from_swap_cache(compound_head(page));
1da177e4
LT
2201
2202 /*
2203 * So we could skip searching mms once swap count went
2204 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 2205 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
2206 */
2207 SetPageDirty(page);
2208 unlock_page(page);
09cbfeaf 2209 put_page(page);
1da177e4
LT
2210
2211 /*
2212 * Make sure that we aren't completely killing
2213 * interactive performance.
2214 */
2215 cond_resched();
38b5faf4
DM
2216 if (frontswap && pages_to_unuse > 0) {
2217 if (!--pages_to_unuse)
2218 break;
2219 }
1da177e4
LT
2220 }
2221
2222 mmput(start_mm);
1da177e4
LT
2223 return retval;
2224}
2225
2226/*
5d337b91
HD
2227 * After a successful try_to_unuse, if no swap is now in use, we know
2228 * we can empty the mmlist. swap_lock must be held on entry and exit.
2229 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
2230 * added to the mmlist just after page_duplicate - before would be racy.
2231 */
2232static void drain_mmlist(void)
2233{
2234 struct list_head *p, *next;
efa90a98 2235 unsigned int type;
1da177e4 2236
efa90a98
HD
2237 for (type = 0; type < nr_swapfiles; type++)
2238 if (swap_info[type]->inuse_pages)
1da177e4
LT
2239 return;
2240 spin_lock(&mmlist_lock);
2241 list_for_each_safe(p, next, &init_mm.mmlist)
2242 list_del_init(p);
2243 spin_unlock(&mmlist_lock);
2244}
2245
2246/*
2247 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
2248 * corresponds to page offset for the specified swap entry.
2249 * Note that the type of this function is sector_t, but it returns page offset
2250 * into the bdev, not sector offset.
1da177e4 2251 */
d4906e1a 2252static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 2253{
f29ad6a9
HD
2254 struct swap_info_struct *sis;
2255 struct swap_extent *start_se;
2256 struct swap_extent *se;
2257 pgoff_t offset;
2258
efa90a98 2259 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
2260 *bdev = sis->bdev;
2261
2262 offset = swp_offset(entry);
2263 start_se = sis->curr_swap_extent;
2264 se = start_se;
1da177e4
LT
2265
2266 for ( ; ; ) {
1da177e4
LT
2267 if (se->start_page <= offset &&
2268 offset < (se->start_page + se->nr_pages)) {
2269 return se->start_block + (offset - se->start_page);
2270 }
a8ae4991 2271 se = list_next_entry(se, list);
1da177e4
LT
2272 sis->curr_swap_extent = se;
2273 BUG_ON(se == start_se); /* It *must* be present */
2274 }
2275}
2276
d4906e1a
LS
2277/*
2278 * Returns the page offset into bdev for the specified page's swap entry.
2279 */
2280sector_t map_swap_page(struct page *page, struct block_device **bdev)
2281{
2282 swp_entry_t entry;
2283 entry.val = page_private(page);
2284 return map_swap_entry(entry, bdev);
2285}
2286
1da177e4
LT
2287/*
2288 * Free all of a swapdev's extent information
2289 */
2290static void destroy_swap_extents(struct swap_info_struct *sis)
2291{
9625a5f2 2292 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
2293 struct swap_extent *se;
2294
a8ae4991 2295 se = list_first_entry(&sis->first_swap_extent.list,
1da177e4
LT
2296 struct swap_extent, list);
2297 list_del(&se->list);
2298 kfree(se);
2299 }
62c230bc
MG
2300
2301 if (sis->flags & SWP_FILE) {
2302 struct file *swap_file = sis->swap_file;
2303 struct address_space *mapping = swap_file->f_mapping;
2304
2305 sis->flags &= ~SWP_FILE;
2306 mapping->a_ops->swap_deactivate(swap_file);
2307 }
1da177e4
LT
2308}
2309
2310/*
2311 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 2312 * extent list. The extent list is kept sorted in page order.
1da177e4 2313 *
11d31886 2314 * This function rather assumes that it is called in ascending page order.
1da177e4 2315 */
a509bc1a 2316int
1da177e4
LT
2317add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2318 unsigned long nr_pages, sector_t start_block)
2319{
2320 struct swap_extent *se;
2321 struct swap_extent *new_se;
2322 struct list_head *lh;
2323
9625a5f2
HD
2324 if (start_page == 0) {
2325 se = &sis->first_swap_extent;
2326 sis->curr_swap_extent = se;
2327 se->start_page = 0;
2328 se->nr_pages = nr_pages;
2329 se->start_block = start_block;
2330 return 1;
2331 } else {
2332 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 2333 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
2334 BUG_ON(se->start_page + se->nr_pages != start_page);
2335 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
2336 /* Merge it */
2337 se->nr_pages += nr_pages;
2338 return 0;
2339 }
1da177e4
LT
2340 }
2341
2342 /*
2343 * No merge. Insert a new extent, preserving ordering.
2344 */
2345 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2346 if (new_se == NULL)
2347 return -ENOMEM;
2348 new_se->start_page = start_page;
2349 new_se->nr_pages = nr_pages;
2350 new_se->start_block = start_block;
2351
9625a5f2 2352 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 2353 return 1;
1da177e4
LT
2354}
2355
2356/*
2357 * A `swap extent' is a simple thing which maps a contiguous range of pages
2358 * onto a contiguous range of disk blocks. An ordered list of swap extents
2359 * is built at swapon time and is then used at swap_writepage/swap_readpage
2360 * time for locating where on disk a page belongs.
2361 *
2362 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2363 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2364 * swap files identically.
2365 *
2366 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2367 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2368 * swapfiles are handled *identically* after swapon time.
2369 *
2370 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2371 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2372 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2373 * requirements, they are simply tossed out - we will never use those blocks
2374 * for swapping.
2375 *
b0d9bcd4 2376 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
2377 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2378 * which will scribble on the fs.
2379 *
2380 * The amount of disk space which a single swap extent represents varies.
2381 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2382 * extents in the list. To avoid much list walking, we cache the previous
2383 * search location in `curr_swap_extent', and start new searches from there.
2384 * This is extremely effective. The average number of iterations in
2385 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2386 */
53092a74 2387static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 2388{
62c230bc
MG
2389 struct file *swap_file = sis->swap_file;
2390 struct address_space *mapping = swap_file->f_mapping;
2391 struct inode *inode = mapping->host;
1da177e4
LT
2392 int ret;
2393
1da177e4
LT
2394 if (S_ISBLK(inode->i_mode)) {
2395 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 2396 *span = sis->pages;
a509bc1a 2397 return ret;
1da177e4
LT
2398 }
2399
62c230bc 2400 if (mapping->a_ops->swap_activate) {
a509bc1a 2401 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
62c230bc
MG
2402 if (!ret) {
2403 sis->flags |= SWP_FILE;
2404 ret = add_swap_extent(sis, 0, sis->max, 0);
2405 *span = sis->pages;
2406 }
a509bc1a 2407 return ret;
62c230bc
MG
2408 }
2409
a509bc1a 2410 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
2411}
2412
cf0cac0a 2413static void _enable_swap_info(struct swap_info_struct *p, int prio,
2a8f9449
SL
2414 unsigned char *swap_map,
2415 struct swap_cluster_info *cluster_info)
40531542 2416{
40531542
CEB
2417 if (prio >= 0)
2418 p->prio = prio;
2419 else
2420 p->prio = --least_priority;
18ab4d4c
DS
2421 /*
2422 * the plist prio is negated because plist ordering is
2423 * low-to-high, while swap ordering is high-to-low
2424 */
2425 p->list.prio = -p->prio;
2426 p->avail_list.prio = -p->prio;
40531542 2427 p->swap_map = swap_map;
2a8f9449 2428 p->cluster_info = cluster_info;
40531542 2429 p->flags |= SWP_WRITEOK;
ec8acf20 2430 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
2431 total_swap_pages += p->pages;
2432
adfab836 2433 assert_spin_locked(&swap_lock);
adfab836 2434 /*
18ab4d4c
DS
2435 * both lists are plists, and thus priority ordered.
2436 * swap_active_head needs to be priority ordered for swapoff(),
2437 * which on removal of any swap_info_struct with an auto-assigned
2438 * (i.e. negative) priority increments the auto-assigned priority
2439 * of any lower-priority swap_info_structs.
2440 * swap_avail_head needs to be priority ordered for get_swap_page(),
2441 * which allocates swap pages from the highest available priority
2442 * swap_info_struct.
adfab836 2443 */
18ab4d4c
DS
2444 plist_add(&p->list, &swap_active_head);
2445 spin_lock(&swap_avail_lock);
2446 plist_add(&p->avail_list, &swap_avail_head);
2447 spin_unlock(&swap_avail_lock);
cf0cac0a
CEB
2448}
2449
2450static void enable_swap_info(struct swap_info_struct *p, int prio,
2451 unsigned char *swap_map,
2a8f9449 2452 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
2453 unsigned long *frontswap_map)
2454{
4f89849d 2455 frontswap_init(p->type, frontswap_map);
cf0cac0a 2456 spin_lock(&swap_lock);
ec8acf20 2457 spin_lock(&p->lock);
2a8f9449 2458 _enable_swap_info(p, prio, swap_map, cluster_info);
ec8acf20 2459 spin_unlock(&p->lock);
cf0cac0a
CEB
2460 spin_unlock(&swap_lock);
2461}
2462
2463static void reinsert_swap_info(struct swap_info_struct *p)
2464{
2465 spin_lock(&swap_lock);
ec8acf20 2466 spin_lock(&p->lock);
2a8f9449 2467 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
ec8acf20 2468 spin_unlock(&p->lock);
40531542
CEB
2469 spin_unlock(&swap_lock);
2470}
2471
67afa38e
TC
2472bool has_usable_swap(void)
2473{
2474 bool ret = true;
2475
2476 spin_lock(&swap_lock);
2477 if (plist_head_empty(&swap_active_head))
2478 ret = false;
2479 spin_unlock(&swap_lock);
2480 return ret;
2481}
2482
c4ea37c2 2483SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 2484{
73c34b6a 2485 struct swap_info_struct *p = NULL;
8d69aaee 2486 unsigned char *swap_map;
2a8f9449 2487 struct swap_cluster_info *cluster_info;
4f89849d 2488 unsigned long *frontswap_map;
1da177e4
LT
2489 struct file *swap_file, *victim;
2490 struct address_space *mapping;
2491 struct inode *inode;
91a27b2a 2492 struct filename *pathname;
adfab836 2493 int err, found = 0;
5b808a23 2494 unsigned int old_block_size;
886bb7e9 2495
1da177e4
LT
2496 if (!capable(CAP_SYS_ADMIN))
2497 return -EPERM;
2498
191c5424
AV
2499 BUG_ON(!current->mm);
2500
1da177e4 2501 pathname = getname(specialfile);
1da177e4 2502 if (IS_ERR(pathname))
f58b59c1 2503 return PTR_ERR(pathname);
1da177e4 2504
669abf4e 2505 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
2506 err = PTR_ERR(victim);
2507 if (IS_ERR(victim))
2508 goto out;
2509
2510 mapping = victim->f_mapping;
5d337b91 2511 spin_lock(&swap_lock);
18ab4d4c 2512 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 2513 if (p->flags & SWP_WRITEOK) {
adfab836
DS
2514 if (p->swap_file->f_mapping == mapping) {
2515 found = 1;
1da177e4 2516 break;
adfab836 2517 }
1da177e4 2518 }
1da177e4 2519 }
adfab836 2520 if (!found) {
1da177e4 2521 err = -EINVAL;
5d337b91 2522 spin_unlock(&swap_lock);
1da177e4
LT
2523 goto out_dput;
2524 }
191c5424 2525 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
2526 vm_unacct_memory(p->pages);
2527 else {
2528 err = -ENOMEM;
5d337b91 2529 spin_unlock(&swap_lock);
1da177e4
LT
2530 goto out_dput;
2531 }
18ab4d4c
DS
2532 spin_lock(&swap_avail_lock);
2533 plist_del(&p->avail_list, &swap_avail_head);
2534 spin_unlock(&swap_avail_lock);
ec8acf20 2535 spin_lock(&p->lock);
78ecba08 2536 if (p->prio < 0) {
adfab836
DS
2537 struct swap_info_struct *si = p;
2538
18ab4d4c 2539 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 2540 si->prio++;
18ab4d4c
DS
2541 si->list.prio--;
2542 si->avail_list.prio--;
adfab836 2543 }
78ecba08
HD
2544 least_priority++;
2545 }
18ab4d4c 2546 plist_del(&p->list, &swap_active_head);
ec8acf20 2547 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
2548 total_swap_pages -= p->pages;
2549 p->flags &= ~SWP_WRITEOK;
ec8acf20 2550 spin_unlock(&p->lock);
5d337b91 2551 spin_unlock(&swap_lock);
fb4f88dc 2552
039939a6
TC
2553 disable_swap_slots_cache_lock();
2554
e1e12d2f 2555 set_current_oom_origin();
adfab836 2556 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
e1e12d2f 2557 clear_current_oom_origin();
1da177e4 2558
1da177e4
LT
2559 if (err) {
2560 /* re-insert swap space back into swap_list */
cf0cac0a 2561 reinsert_swap_info(p);
039939a6 2562 reenable_swap_slots_cache_unlock();
1da177e4
LT
2563 goto out_dput;
2564 }
52b7efdb 2565
039939a6
TC
2566 reenable_swap_slots_cache_unlock();
2567
815c2c54
SL
2568 flush_work(&p->discard_work);
2569
5d337b91 2570 destroy_swap_extents(p);
570a335b
HD
2571 if (p->flags & SWP_CONTINUED)
2572 free_swap_count_continuations(p);
2573
81a0298b
HY
2574 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2575 atomic_dec(&nr_rotate_swap);
2576
fc0abb14 2577 mutex_lock(&swapon_mutex);
5d337b91 2578 spin_lock(&swap_lock);
ec8acf20 2579 spin_lock(&p->lock);
5d337b91
HD
2580 drain_mmlist();
2581
52b7efdb 2582 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
2583 p->highest_bit = 0; /* cuts scans short */
2584 while (p->flags >= SWP_SCANNING) {
ec8acf20 2585 spin_unlock(&p->lock);
5d337b91 2586 spin_unlock(&swap_lock);
13e4b57f 2587 schedule_timeout_uninterruptible(1);
5d337b91 2588 spin_lock(&swap_lock);
ec8acf20 2589 spin_lock(&p->lock);
52b7efdb 2590 }
52b7efdb 2591
1da177e4 2592 swap_file = p->swap_file;
5b808a23 2593 old_block_size = p->old_block_size;
1da177e4
LT
2594 p->swap_file = NULL;
2595 p->max = 0;
2596 swap_map = p->swap_map;
2597 p->swap_map = NULL;
2a8f9449
SL
2598 cluster_info = p->cluster_info;
2599 p->cluster_info = NULL;
4f89849d 2600 frontswap_map = frontswap_map_get(p);
ec8acf20 2601 spin_unlock(&p->lock);
5d337b91 2602 spin_unlock(&swap_lock);
adfab836 2603 frontswap_invalidate_area(p->type);
58e97ba6 2604 frontswap_map_set(p, NULL);
fc0abb14 2605 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
2606 free_percpu(p->percpu_cluster);
2607 p->percpu_cluster = NULL;
1da177e4 2608 vfree(swap_map);
54f180d3
HY
2609 kvfree(cluster_info);
2610 kvfree(frontswap_map);
2de1a7e4 2611 /* Destroy swap account information */
adfab836 2612 swap_cgroup_swapoff(p->type);
4b3ef9da 2613 exit_swap_address_space(p->type);
27a7faa0 2614
1da177e4
LT
2615 inode = mapping->host;
2616 if (S_ISBLK(inode->i_mode)) {
2617 struct block_device *bdev = I_BDEV(inode);
5b808a23 2618 set_blocksize(bdev, old_block_size);
e525fd89 2619 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2620 } else {
5955102c 2621 inode_lock(inode);
1da177e4 2622 inode->i_flags &= ~S_SWAPFILE;
5955102c 2623 inode_unlock(inode);
1da177e4
LT
2624 }
2625 filp_close(swap_file, NULL);
f893ab41
WY
2626
2627 /*
2628 * Clear the SWP_USED flag after all resources are freed so that swapon
2629 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2630 * not hold p->lock after we cleared its SWP_WRITEOK.
2631 */
2632 spin_lock(&swap_lock);
2633 p->flags = 0;
2634 spin_unlock(&swap_lock);
2635
1da177e4 2636 err = 0;
66d7dd51
KS
2637 atomic_inc(&proc_poll_event);
2638 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
2639
2640out_dput:
2641 filp_close(victim, NULL);
2642out:
f58b59c1 2643 putname(pathname);
1da177e4
LT
2644 return err;
2645}
2646
2647#ifdef CONFIG_PROC_FS
66d7dd51
KS
2648static unsigned swaps_poll(struct file *file, poll_table *wait)
2649{
f1514638 2650 struct seq_file *seq = file->private_data;
66d7dd51
KS
2651
2652 poll_wait(file, &proc_poll_wait, wait);
2653
f1514638
KS
2654 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2655 seq->poll_event = atomic_read(&proc_poll_event);
66d7dd51
KS
2656 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2657 }
2658
2659 return POLLIN | POLLRDNORM;
2660}
2661
1da177e4
LT
2662/* iterator */
2663static void *swap_start(struct seq_file *swap, loff_t *pos)
2664{
efa90a98
HD
2665 struct swap_info_struct *si;
2666 int type;
1da177e4
LT
2667 loff_t l = *pos;
2668
fc0abb14 2669 mutex_lock(&swapon_mutex);
1da177e4 2670
881e4aab
SS
2671 if (!l)
2672 return SEQ_START_TOKEN;
2673
efa90a98
HD
2674 for (type = 0; type < nr_swapfiles; type++) {
2675 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2676 si = swap_info[type];
2677 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2678 continue;
881e4aab 2679 if (!--l)
efa90a98 2680 return si;
1da177e4
LT
2681 }
2682
2683 return NULL;
2684}
2685
2686static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2687{
efa90a98
HD
2688 struct swap_info_struct *si = v;
2689 int type;
1da177e4 2690
881e4aab 2691 if (v == SEQ_START_TOKEN)
efa90a98
HD
2692 type = 0;
2693 else
2694 type = si->type + 1;
881e4aab 2695
efa90a98
HD
2696 for (; type < nr_swapfiles; type++) {
2697 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2698 si = swap_info[type];
2699 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
2700 continue;
2701 ++*pos;
efa90a98 2702 return si;
1da177e4
LT
2703 }
2704
2705 return NULL;
2706}
2707
2708static void swap_stop(struct seq_file *swap, void *v)
2709{
fc0abb14 2710 mutex_unlock(&swapon_mutex);
1da177e4
LT
2711}
2712
2713static int swap_show(struct seq_file *swap, void *v)
2714{
efa90a98 2715 struct swap_info_struct *si = v;
1da177e4
LT
2716 struct file *file;
2717 int len;
2718
efa90a98 2719 if (si == SEQ_START_TOKEN) {
881e4aab
SS
2720 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2721 return 0;
2722 }
1da177e4 2723
efa90a98 2724 file = si->swap_file;
2726d566 2725 len = seq_file_path(swap, file, " \t\n\\");
6eb396dc 2726 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9 2727 len < 40 ? 40 - len : 1, " ",
496ad9aa 2728 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2729 "partition" : "file\t",
efa90a98
HD
2730 si->pages << (PAGE_SHIFT - 10),
2731 si->inuse_pages << (PAGE_SHIFT - 10),
2732 si->prio);
1da177e4
LT
2733 return 0;
2734}
2735
15ad7cdc 2736static const struct seq_operations swaps_op = {
1da177e4
LT
2737 .start = swap_start,
2738 .next = swap_next,
2739 .stop = swap_stop,
2740 .show = swap_show
2741};
2742
2743static int swaps_open(struct inode *inode, struct file *file)
2744{
f1514638 2745 struct seq_file *seq;
66d7dd51
KS
2746 int ret;
2747
66d7dd51 2748 ret = seq_open(file, &swaps_op);
f1514638 2749 if (ret)
66d7dd51 2750 return ret;
66d7dd51 2751
f1514638
KS
2752 seq = file->private_data;
2753 seq->poll_event = atomic_read(&proc_poll_event);
2754 return 0;
1da177e4
LT
2755}
2756
15ad7cdc 2757static const struct file_operations proc_swaps_operations = {
1da177e4
LT
2758 .open = swaps_open,
2759 .read = seq_read,
2760 .llseek = seq_lseek,
2761 .release = seq_release,
66d7dd51 2762 .poll = swaps_poll,
1da177e4
LT
2763};
2764
2765static int __init procswaps_init(void)
2766{
3d71f86f 2767 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
2768 return 0;
2769}
2770__initcall(procswaps_init);
2771#endif /* CONFIG_PROC_FS */
2772
1796316a
JB
2773#ifdef MAX_SWAPFILES_CHECK
2774static int __init max_swapfiles_check(void)
2775{
2776 MAX_SWAPFILES_CHECK();
2777 return 0;
2778}
2779late_initcall(max_swapfiles_check);
2780#endif
2781
53cbb243 2782static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2783{
73c34b6a 2784 struct swap_info_struct *p;
1da177e4 2785 unsigned int type;
efa90a98
HD
2786
2787 p = kzalloc(sizeof(*p), GFP_KERNEL);
2788 if (!p)
53cbb243 2789 return ERR_PTR(-ENOMEM);
efa90a98 2790
5d337b91 2791 spin_lock(&swap_lock);
efa90a98
HD
2792 for (type = 0; type < nr_swapfiles; type++) {
2793 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2794 break;
efa90a98 2795 }
0697212a 2796 if (type >= MAX_SWAPFILES) {
5d337b91 2797 spin_unlock(&swap_lock);
efa90a98 2798 kfree(p);
730c0581 2799 return ERR_PTR(-EPERM);
1da177e4 2800 }
efa90a98
HD
2801 if (type >= nr_swapfiles) {
2802 p->type = type;
2803 swap_info[type] = p;
2804 /*
2805 * Write swap_info[type] before nr_swapfiles, in case a
2806 * racing procfs swap_start() or swap_next() is reading them.
2807 * (We never shrink nr_swapfiles, we never free this entry.)
2808 */
2809 smp_wmb();
2810 nr_swapfiles++;
2811 } else {
2812 kfree(p);
2813 p = swap_info[type];
2814 /*
2815 * Do not memset this entry: a racing procfs swap_next()
2816 * would be relying on p->type to remain valid.
2817 */
2818 }
9625a5f2 2819 INIT_LIST_HEAD(&p->first_swap_extent.list);
18ab4d4c
DS
2820 plist_node_init(&p->list, 0);
2821 plist_node_init(&p->avail_list, 0);
1da177e4 2822 p->flags = SWP_USED;
5d337b91 2823 spin_unlock(&swap_lock);
ec8acf20 2824 spin_lock_init(&p->lock);
efa90a98 2825
53cbb243 2826 return p;
53cbb243
CEB
2827}
2828
4d0e1e10
CEB
2829static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2830{
2831 int error;
2832
2833 if (S_ISBLK(inode->i_mode)) {
2834 p->bdev = bdgrab(I_BDEV(inode));
2835 error = blkdev_get(p->bdev,
6f179af8 2836 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
4d0e1e10
CEB
2837 if (error < 0) {
2838 p->bdev = NULL;
6f179af8 2839 return error;
4d0e1e10
CEB
2840 }
2841 p->old_block_size = block_size(p->bdev);
2842 error = set_blocksize(p->bdev, PAGE_SIZE);
2843 if (error < 0)
87ade72a 2844 return error;
4d0e1e10
CEB
2845 p->flags |= SWP_BLKDEV;
2846 } else if (S_ISREG(inode->i_mode)) {
2847 p->bdev = inode->i_sb->s_bdev;
5955102c 2848 inode_lock(inode);
87ade72a
CEB
2849 if (IS_SWAPFILE(inode))
2850 return -EBUSY;
2851 } else
2852 return -EINVAL;
4d0e1e10
CEB
2853
2854 return 0;
4d0e1e10
CEB
2855}
2856
ca8bd38b
CEB
2857static unsigned long read_swap_header(struct swap_info_struct *p,
2858 union swap_header *swap_header,
2859 struct inode *inode)
2860{
2861 int i;
2862 unsigned long maxpages;
2863 unsigned long swapfilepages;
d6bbbd29 2864 unsigned long last_page;
ca8bd38b
CEB
2865
2866 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2867 pr_err("Unable to find swap-space signature\n");
38719025 2868 return 0;
ca8bd38b
CEB
2869 }
2870
2871 /* swap partition endianess hack... */
2872 if (swab32(swap_header->info.version) == 1) {
2873 swab32s(&swap_header->info.version);
2874 swab32s(&swap_header->info.last_page);
2875 swab32s(&swap_header->info.nr_badpages);
dd111be6
JH
2876 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2877 return 0;
ca8bd38b
CEB
2878 for (i = 0; i < swap_header->info.nr_badpages; i++)
2879 swab32s(&swap_header->info.badpages[i]);
2880 }
2881 /* Check the swap header's sub-version */
2882 if (swap_header->info.version != 1) {
465c47fd
AM
2883 pr_warn("Unable to handle swap header version %d\n",
2884 swap_header->info.version);
38719025 2885 return 0;
ca8bd38b
CEB
2886 }
2887
2888 p->lowest_bit = 1;
2889 p->cluster_next = 1;
2890 p->cluster_nr = 0;
2891
2892 /*
2893 * Find out how many pages are allowed for a single swap
9b15b817 2894 * device. There are two limiting factors: 1) the number
a2c16d6c
HD
2895 * of bits for the swap offset in the swp_entry_t type, and
2896 * 2) the number of bits in the swap pte as defined by the
9b15b817 2897 * different architectures. In order to find the
a2c16d6c 2898 * largest possible bit mask, a swap entry with swap type 0
ca8bd38b 2899 * and swap offset ~0UL is created, encoded to a swap pte,
a2c16d6c 2900 * decoded to a swp_entry_t again, and finally the swap
ca8bd38b
CEB
2901 * offset is extracted. This will mask all the bits from
2902 * the initial ~0UL mask that can't be encoded in either
2903 * the swp_entry_t or the architecture definition of a
9b15b817 2904 * swap pte.
ca8bd38b
CEB
2905 */
2906 maxpages = swp_offset(pte_to_swp_entry(
9b15b817 2907 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
d6bbbd29
RJ
2908 last_page = swap_header->info.last_page;
2909 if (last_page > maxpages) {
465c47fd 2910 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2911 maxpages << (PAGE_SHIFT - 10),
2912 last_page << (PAGE_SHIFT - 10));
2913 }
2914 if (maxpages > last_page) {
2915 maxpages = last_page + 1;
ca8bd38b
CEB
2916 /* p->max is an unsigned int: don't overflow it */
2917 if ((unsigned int)maxpages == 0)
2918 maxpages = UINT_MAX;
2919 }
2920 p->highest_bit = maxpages - 1;
2921
2922 if (!maxpages)
38719025 2923 return 0;
ca8bd38b
CEB
2924 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2925 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 2926 pr_warn("Swap area shorter than signature indicates\n");
38719025 2927 return 0;
ca8bd38b
CEB
2928 }
2929 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 2930 return 0;
ca8bd38b 2931 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 2932 return 0;
ca8bd38b
CEB
2933
2934 return maxpages;
ca8bd38b
CEB
2935}
2936
4b3ef9da 2937#define SWAP_CLUSTER_INFO_COLS \
235b6217 2938 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
4b3ef9da
HY
2939#define SWAP_CLUSTER_SPACE_COLS \
2940 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2941#define SWAP_CLUSTER_COLS \
2942 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
235b6217 2943
915d4d7b
CEB
2944static int setup_swap_map_and_extents(struct swap_info_struct *p,
2945 union swap_header *swap_header,
2946 unsigned char *swap_map,
2a8f9449 2947 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
2948 unsigned long maxpages,
2949 sector_t *span)
2950{
235b6217 2951 unsigned int j, k;
915d4d7b
CEB
2952 unsigned int nr_good_pages;
2953 int nr_extents;
2a8f9449 2954 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
235b6217
HY
2955 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2956 unsigned long i, idx;
915d4d7b
CEB
2957
2958 nr_good_pages = maxpages - 1; /* omit header page */
2959
6b534915
HY
2960 cluster_list_init(&p->free_clusters);
2961 cluster_list_init(&p->discard_clusters);
2a8f9449 2962
915d4d7b
CEB
2963 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2964 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
2965 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2966 return -EINVAL;
915d4d7b
CEB
2967 if (page_nr < maxpages) {
2968 swap_map[page_nr] = SWAP_MAP_BAD;
2969 nr_good_pages--;
2a8f9449
SL
2970 /*
2971 * Haven't marked the cluster free yet, no list
2972 * operation involved
2973 */
2974 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
2975 }
2976 }
2977
2a8f9449
SL
2978 /* Haven't marked the cluster free yet, no list operation involved */
2979 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2980 inc_cluster_info_page(p, cluster_info, i);
2981
915d4d7b
CEB
2982 if (nr_good_pages) {
2983 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
2984 /*
2985 * Not mark the cluster free yet, no list
2986 * operation involved
2987 */
2988 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
2989 p->max = maxpages;
2990 p->pages = nr_good_pages;
2991 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
2992 if (nr_extents < 0)
2993 return nr_extents;
915d4d7b
CEB
2994 nr_good_pages = p->pages;
2995 }
2996 if (!nr_good_pages) {
465c47fd 2997 pr_warn("Empty swap-file\n");
bdb8e3f6 2998 return -EINVAL;
915d4d7b
CEB
2999 }
3000
2a8f9449
SL
3001 if (!cluster_info)
3002 return nr_extents;
3003
235b6217 3004
4b3ef9da
HY
3005 /*
3006 * Reduce false cache line sharing between cluster_info and
3007 * sharing same address space.
3008 */
235b6217
HY
3009 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3010 j = (k + col) % SWAP_CLUSTER_COLS;
3011 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3012 idx = i * SWAP_CLUSTER_COLS + j;
3013 if (idx >= nr_clusters)
3014 continue;
3015 if (cluster_count(&cluster_info[idx]))
3016 continue;
2a8f9449 3017 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
6b534915
HY
3018 cluster_list_add_tail(&p->free_clusters, cluster_info,
3019 idx);
2a8f9449 3020 }
2a8f9449 3021 }
915d4d7b 3022 return nr_extents;
915d4d7b
CEB
3023}
3024
dcf6b7dd
RA
3025/*
3026 * Helper to sys_swapon determining if a given swap
3027 * backing device queue supports DISCARD operations.
3028 */
3029static bool swap_discardable(struct swap_info_struct *si)
3030{
3031 struct request_queue *q = bdev_get_queue(si->bdev);
3032
3033 if (!q || !blk_queue_discard(q))
3034 return false;
3035
3036 return true;
3037}
3038
53cbb243
CEB
3039SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3040{
3041 struct swap_info_struct *p;
91a27b2a 3042 struct filename *name;
53cbb243
CEB
3043 struct file *swap_file = NULL;
3044 struct address_space *mapping;
40531542 3045 int prio;
53cbb243
CEB
3046 int error;
3047 union swap_header *swap_header;
915d4d7b 3048 int nr_extents;
53cbb243
CEB
3049 sector_t span;
3050 unsigned long maxpages;
53cbb243 3051 unsigned char *swap_map = NULL;
2a8f9449 3052 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 3053 unsigned long *frontswap_map = NULL;
53cbb243
CEB
3054 struct page *page = NULL;
3055 struct inode *inode = NULL;
53cbb243 3056
d15cab97
HD
3057 if (swap_flags & ~SWAP_FLAGS_VALID)
3058 return -EINVAL;
3059
53cbb243
CEB
3060 if (!capable(CAP_SYS_ADMIN))
3061 return -EPERM;
3062
3063 p = alloc_swap_info();
2542e513
CEB
3064 if (IS_ERR(p))
3065 return PTR_ERR(p);
53cbb243 3066
815c2c54
SL
3067 INIT_WORK(&p->discard_work, swap_discard_work);
3068
1da177e4 3069 name = getname(specialfile);
1da177e4 3070 if (IS_ERR(name)) {
7de7fb6b 3071 error = PTR_ERR(name);
1da177e4 3072 name = NULL;
bd69010b 3073 goto bad_swap;
1da177e4 3074 }
669abf4e 3075 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 3076 if (IS_ERR(swap_file)) {
7de7fb6b 3077 error = PTR_ERR(swap_file);
1da177e4 3078 swap_file = NULL;
bd69010b 3079 goto bad_swap;
1da177e4
LT
3080 }
3081
3082 p->swap_file = swap_file;
3083 mapping = swap_file->f_mapping;
2130781e 3084 inode = mapping->host;
6f179af8 3085
5955102c 3086 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
4d0e1e10
CEB
3087 error = claim_swapfile(p, inode);
3088 if (unlikely(error))
1da177e4 3089 goto bad_swap;
1da177e4 3090
1da177e4
LT
3091 /*
3092 * Read the swap header.
3093 */
3094 if (!mapping->a_ops->readpage) {
3095 error = -EINVAL;
3096 goto bad_swap;
3097 }
090d2b18 3098 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
3099 if (IS_ERR(page)) {
3100 error = PTR_ERR(page);
3101 goto bad_swap;
3102 }
81e33971 3103 swap_header = kmap(page);
1da177e4 3104
ca8bd38b
CEB
3105 maxpages = read_swap_header(p, swap_header, inode);
3106 if (unlikely(!maxpages)) {
1da177e4
LT
3107 error = -EINVAL;
3108 goto bad_swap;
3109 }
886bb7e9 3110
81e33971 3111 /* OK, set up the swap map and apply the bad block list */
803d0c83 3112 swap_map = vzalloc(maxpages);
81e33971
HD
3113 if (!swap_map) {
3114 error = -ENOMEM;
3115 goto bad_swap;
3116 }
f0571429
MK
3117
3118 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3119 p->flags |= SWP_STABLE_WRITES;
3120
2a8f9449 3121 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
6f179af8 3122 int cpu;
235b6217 3123 unsigned long ci, nr_cluster;
6f179af8 3124
2a8f9449
SL
3125 p->flags |= SWP_SOLIDSTATE;
3126 /*
3127 * select a random position to start with to help wear leveling
3128 * SSD
3129 */
3130 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
235b6217 3131 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2a8f9449 3132
54f180d3
HY
3133 cluster_info = kvzalloc(nr_cluster * sizeof(*cluster_info),
3134 GFP_KERNEL);
2a8f9449
SL
3135 if (!cluster_info) {
3136 error = -ENOMEM;
3137 goto bad_swap;
3138 }
235b6217
HY
3139
3140 for (ci = 0; ci < nr_cluster; ci++)
3141 spin_lock_init(&((cluster_info + ci)->lock));
3142
ebc2a1a6
SL
3143 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3144 if (!p->percpu_cluster) {
3145 error = -ENOMEM;
3146 goto bad_swap;
3147 }
6f179af8 3148 for_each_possible_cpu(cpu) {
ebc2a1a6 3149 struct percpu_cluster *cluster;
6f179af8 3150 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
ebc2a1a6
SL
3151 cluster_set_null(&cluster->index);
3152 }
81a0298b
HY
3153 } else
3154 atomic_inc(&nr_rotate_swap);
1da177e4 3155
1421ef3c
CEB
3156 error = swap_cgroup_swapon(p->type, maxpages);
3157 if (error)
3158 goto bad_swap;
3159
915d4d7b 3160 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 3161 cluster_info, maxpages, &span);
915d4d7b
CEB
3162 if (unlikely(nr_extents < 0)) {
3163 error = nr_extents;
1da177e4
LT
3164 goto bad_swap;
3165 }
38b5faf4 3166 /* frontswap enabled? set up bit-per-page map for frontswap */
8ea1d2a1 3167 if (IS_ENABLED(CONFIG_FRONTSWAP))
54f180d3
HY
3168 frontswap_map = kvzalloc(BITS_TO_LONGS(maxpages) * sizeof(long),
3169 GFP_KERNEL);
1da177e4 3170
2a8f9449
SL
3171 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3172 /*
3173 * When discard is enabled for swap with no particular
3174 * policy flagged, we set all swap discard flags here in
3175 * order to sustain backward compatibility with older
3176 * swapon(8) releases.
3177 */
3178 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3179 SWP_PAGE_DISCARD);
dcf6b7dd 3180
2a8f9449
SL
3181 /*
3182 * By flagging sys_swapon, a sysadmin can tell us to
3183 * either do single-time area discards only, or to just
3184 * perform discards for released swap page-clusters.
3185 * Now it's time to adjust the p->flags accordingly.
3186 */
3187 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3188 p->flags &= ~SWP_PAGE_DISCARD;
3189 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3190 p->flags &= ~SWP_AREA_DISCARD;
3191
3192 /* issue a swapon-time discard if it's still required */
3193 if (p->flags & SWP_AREA_DISCARD) {
3194 int err = discard_swap(p);
3195 if (unlikely(err))
3196 pr_err("swapon: discard_swap(%p): %d\n",
3197 p, err);
dcf6b7dd 3198 }
20137a49 3199 }
6a6ba831 3200
4b3ef9da
HY
3201 error = init_swap_address_space(p->type, maxpages);
3202 if (error)
3203 goto bad_swap;
3204
fc0abb14 3205 mutex_lock(&swapon_mutex);
40531542 3206 prio = -1;
78ecba08 3207 if (swap_flags & SWAP_FLAG_PREFER)
40531542 3208 prio =
78ecba08 3209 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 3210 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 3211
756a025f 3212 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 3213 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
3214 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3215 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 3216 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
3217 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3218 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 3219 (frontswap_map) ? "FS" : "");
c69dbfb8 3220
fc0abb14 3221 mutex_unlock(&swapon_mutex);
66d7dd51
KS
3222 atomic_inc(&proc_poll_event);
3223 wake_up_interruptible(&proc_poll_wait);
3224
9b01c350
CEB
3225 if (S_ISREG(inode->i_mode))
3226 inode->i_flags |= S_SWAPFILE;
1da177e4
LT
3227 error = 0;
3228 goto out;
3229bad_swap:
ebc2a1a6
SL
3230 free_percpu(p->percpu_cluster);
3231 p->percpu_cluster = NULL;
bd69010b 3232 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
3233 set_blocksize(p->bdev, p->old_block_size);
3234 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 3235 }
4cd3bb10 3236 destroy_swap_extents(p);
e8e6c2ec 3237 swap_cgroup_swapoff(p->type);
5d337b91 3238 spin_lock(&swap_lock);
1da177e4 3239 p->swap_file = NULL;
1da177e4 3240 p->flags = 0;
5d337b91 3241 spin_unlock(&swap_lock);
1da177e4 3242 vfree(swap_map);
2a8f9449 3243 vfree(cluster_info);
52c50567 3244 if (swap_file) {
2130781e 3245 if (inode && S_ISREG(inode->i_mode)) {
5955102c 3246 inode_unlock(inode);
2130781e
CEB
3247 inode = NULL;
3248 }
1da177e4 3249 filp_close(swap_file, NULL);
52c50567 3250 }
1da177e4
LT
3251out:
3252 if (page && !IS_ERR(page)) {
3253 kunmap(page);
09cbfeaf 3254 put_page(page);
1da177e4
LT
3255 }
3256 if (name)
3257 putname(name);
9b01c350 3258 if (inode && S_ISREG(inode->i_mode))
5955102c 3259 inode_unlock(inode);
039939a6
TC
3260 if (!error)
3261 enable_swap_slots_cache();
1da177e4
LT
3262 return error;
3263}
3264
3265void si_swapinfo(struct sysinfo *val)
3266{
efa90a98 3267 unsigned int type;
1da177e4
LT
3268 unsigned long nr_to_be_unused = 0;
3269
5d337b91 3270 spin_lock(&swap_lock);
efa90a98
HD
3271 for (type = 0; type < nr_swapfiles; type++) {
3272 struct swap_info_struct *si = swap_info[type];
3273
3274 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3275 nr_to_be_unused += si->inuse_pages;
1da177e4 3276 }
ec8acf20 3277 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 3278 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 3279 spin_unlock(&swap_lock);
1da177e4
LT
3280}
3281
3282/*
3283 * Verify that a swap entry is valid and increment its swap map count.
3284 *
355cfa73
KH
3285 * Returns error code in following case.
3286 * - success -> 0
3287 * - swp_entry is invalid -> EINVAL
3288 * - swp_entry is migration entry -> EINVAL
3289 * - swap-cache reference is requested but there is already one. -> EEXIST
3290 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 3291 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 3292 */
8d69aaee 3293static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 3294{
73c34b6a 3295 struct swap_info_struct *p;
235b6217 3296 struct swap_cluster_info *ci;
1da177e4 3297 unsigned long offset, type;
8d69aaee
HD
3298 unsigned char count;
3299 unsigned char has_cache;
253d553b 3300 int err = -EINVAL;
1da177e4 3301
a7420aa5 3302 if (non_swap_entry(entry))
253d553b 3303 goto out;
0697212a 3304
1da177e4
LT
3305 type = swp_type(entry);
3306 if (type >= nr_swapfiles)
3307 goto bad_file;
efa90a98 3308 p = swap_info[type];
1da177e4 3309 offset = swp_offset(entry);
355cfa73 3310 if (unlikely(offset >= p->max))
235b6217
HY
3311 goto out;
3312
3313 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 3314
253d553b 3315 count = p->swap_map[offset];
edfe23da
SL
3316
3317 /*
3318 * swapin_readahead() doesn't check if a swap entry is valid, so the
3319 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3320 */
3321 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3322 err = -ENOENT;
3323 goto unlock_out;
3324 }
3325
253d553b
HD
3326 has_cache = count & SWAP_HAS_CACHE;
3327 count &= ~SWAP_HAS_CACHE;
3328 err = 0;
355cfa73 3329
253d553b 3330 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
3331
3332 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
3333 if (!has_cache && count)
3334 has_cache = SWAP_HAS_CACHE;
3335 else if (has_cache) /* someone else added cache */
3336 err = -EEXIST;
3337 else /* no users remaining */
3338 err = -ENOENT;
355cfa73
KH
3339
3340 } else if (count || has_cache) {
253d553b 3341
570a335b
HD
3342 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3343 count += usage;
3344 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 3345 err = -EINVAL;
570a335b
HD
3346 else if (swap_count_continued(p, offset, count))
3347 count = COUNT_CONTINUED;
3348 else
3349 err = -ENOMEM;
355cfa73 3350 } else
253d553b
HD
3351 err = -ENOENT; /* unused swap entry */
3352
3353 p->swap_map[offset] = count | has_cache;
3354
355cfa73 3355unlock_out:
235b6217 3356 unlock_cluster_or_swap_info(p, ci);
1da177e4 3357out:
253d553b 3358 return err;
1da177e4
LT
3359
3360bad_file:
465c47fd 3361 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
3362 goto out;
3363}
253d553b 3364
aaa46865
HD
3365/*
3366 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3367 * (in which case its reference count is never incremented).
3368 */
3369void swap_shmem_alloc(swp_entry_t entry)
3370{
3371 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3372}
3373
355cfa73 3374/*
08259d58
HD
3375 * Increase reference count of swap entry by 1.
3376 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3377 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3378 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3379 * might occur if a page table entry has got corrupted.
355cfa73 3380 */
570a335b 3381int swap_duplicate(swp_entry_t entry)
355cfa73 3382{
570a335b
HD
3383 int err = 0;
3384
3385 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3386 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3387 return err;
355cfa73 3388}
1da177e4 3389
cb4b86ba 3390/*
355cfa73
KH
3391 * @entry: swap entry for which we allocate swap cache.
3392 *
73c34b6a 3393 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
3394 * This can return error codes. Returns 0 at success.
3395 * -EBUSY means there is a swap cache.
3396 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
3397 */
3398int swapcache_prepare(swp_entry_t entry)
3399{
253d553b 3400 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
3401}
3402
f981c595
MG
3403struct swap_info_struct *page_swap_info(struct page *page)
3404{
3405 swp_entry_t swap = { .val = page_private(page) };
f981c595
MG
3406 return swap_info[swp_type(swap)];
3407}
3408
3409/*
3410 * out-of-line __page_file_ methods to avoid include hell.
3411 */
3412struct address_space *__page_file_mapping(struct page *page)
3413{
309381fe 3414 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
3415 return page_swap_info(page)->swap_file->f_mapping;
3416}
3417EXPORT_SYMBOL_GPL(__page_file_mapping);
3418
3419pgoff_t __page_file_index(struct page *page)
3420{
3421 swp_entry_t swap = { .val = page_private(page) };
309381fe 3422 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
3423 return swp_offset(swap);
3424}
3425EXPORT_SYMBOL_GPL(__page_file_index);
3426
570a335b
HD
3427/*
3428 * add_swap_count_continuation - called when a swap count is duplicated
3429 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3430 * page of the original vmalloc'ed swap_map, to hold the continuation count
3431 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3432 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3433 *
3434 * These continuation pages are seldom referenced: the common paths all work
3435 * on the original swap_map, only referring to a continuation page when the
3436 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3437 *
3438 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3439 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3440 * can be called after dropping locks.
3441 */
3442int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3443{
3444 struct swap_info_struct *si;
235b6217 3445 struct swap_cluster_info *ci;
570a335b
HD
3446 struct page *head;
3447 struct page *page;
3448 struct page *list_page;
3449 pgoff_t offset;
3450 unsigned char count;
3451
3452 /*
3453 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3454 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3455 */
3456 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3457
3458 si = swap_info_get(entry);
3459 if (!si) {
3460 /*
3461 * An acceptable race has occurred since the failing
3462 * __swap_duplicate(): the swap entry has been freed,
3463 * perhaps even the whole swap_map cleared for swapoff.
3464 */
3465 goto outer;
3466 }
3467
3468 offset = swp_offset(entry);
235b6217
HY
3469
3470 ci = lock_cluster(si, offset);
3471
570a335b
HD
3472 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3473
3474 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3475 /*
3476 * The higher the swap count, the more likely it is that tasks
3477 * will race to add swap count continuation: we need to avoid
3478 * over-provisioning.
3479 */
3480 goto out;
3481 }
3482
3483 if (!page) {
235b6217 3484 unlock_cluster(ci);
ec8acf20 3485 spin_unlock(&si->lock);
570a335b
HD
3486 return -ENOMEM;
3487 }
3488
3489 /*
3490 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
3491 * no architecture is using highmem pages for kernel page tables: so it
3492 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
3493 */
3494 head = vmalloc_to_page(si->swap_map + offset);
3495 offset &= ~PAGE_MASK;
3496
3497 /*
3498 * Page allocation does not initialize the page's lru field,
3499 * but it does always reset its private field.
3500 */
3501 if (!page_private(head)) {
3502 BUG_ON(count & COUNT_CONTINUED);
3503 INIT_LIST_HEAD(&head->lru);
3504 set_page_private(head, SWP_CONTINUED);
3505 si->flags |= SWP_CONTINUED;
3506 }
3507
3508 list_for_each_entry(list_page, &head->lru, lru) {
3509 unsigned char *map;
3510
3511 /*
3512 * If the previous map said no continuation, but we've found
3513 * a continuation page, free our allocation and use this one.
3514 */
3515 if (!(count & COUNT_CONTINUED))
3516 goto out;
3517
9b04c5fe 3518 map = kmap_atomic(list_page) + offset;
570a335b 3519 count = *map;
9b04c5fe 3520 kunmap_atomic(map);
570a335b
HD
3521
3522 /*
3523 * If this continuation count now has some space in it,
3524 * free our allocation and use this one.
3525 */
3526 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3527 goto out;
3528 }
3529
3530 list_add_tail(&page->lru, &head->lru);
3531 page = NULL; /* now it's attached, don't free it */
3532out:
235b6217 3533 unlock_cluster(ci);
ec8acf20 3534 spin_unlock(&si->lock);
570a335b
HD
3535outer:
3536 if (page)
3537 __free_page(page);
3538 return 0;
3539}
3540
3541/*
3542 * swap_count_continued - when the original swap_map count is incremented
3543 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3544 * into, carry if so, or else fail until a new continuation page is allocated;
3545 * when the original swap_map count is decremented from 0 with continuation,
3546 * borrow from the continuation and report whether it still holds more.
235b6217
HY
3547 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3548 * lock.
570a335b
HD
3549 */
3550static bool swap_count_continued(struct swap_info_struct *si,
3551 pgoff_t offset, unsigned char count)
3552{
3553 struct page *head;
3554 struct page *page;
3555 unsigned char *map;
3556
3557 head = vmalloc_to_page(si->swap_map + offset);
3558 if (page_private(head) != SWP_CONTINUED) {
3559 BUG_ON(count & COUNT_CONTINUED);
3560 return false; /* need to add count continuation */
3561 }
3562
3563 offset &= ~PAGE_MASK;
3564 page = list_entry(head->lru.next, struct page, lru);
9b04c5fe 3565 map = kmap_atomic(page) + offset;
570a335b
HD
3566
3567 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3568 goto init_map; /* jump over SWAP_CONT_MAX checks */
3569
3570 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3571 /*
3572 * Think of how you add 1 to 999
3573 */
3574 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 3575 kunmap_atomic(map);
570a335b
HD
3576 page = list_entry(page->lru.next, struct page, lru);
3577 BUG_ON(page == head);
9b04c5fe 3578 map = kmap_atomic(page) + offset;
570a335b
HD
3579 }
3580 if (*map == SWAP_CONT_MAX) {
9b04c5fe 3581 kunmap_atomic(map);
570a335b
HD
3582 page = list_entry(page->lru.next, struct page, lru);
3583 if (page == head)
3584 return false; /* add count continuation */
9b04c5fe 3585 map = kmap_atomic(page) + offset;
570a335b
HD
3586init_map: *map = 0; /* we didn't zero the page */
3587 }
3588 *map += 1;
9b04c5fe 3589 kunmap_atomic(map);
570a335b
HD
3590 page = list_entry(page->lru.prev, struct page, lru);
3591 while (page != head) {
9b04c5fe 3592 map = kmap_atomic(page) + offset;
570a335b 3593 *map = COUNT_CONTINUED;
9b04c5fe 3594 kunmap_atomic(map);
570a335b
HD
3595 page = list_entry(page->lru.prev, struct page, lru);
3596 }
3597 return true; /* incremented */
3598
3599 } else { /* decrementing */
3600 /*
3601 * Think of how you subtract 1 from 1000
3602 */
3603 BUG_ON(count != COUNT_CONTINUED);
3604 while (*map == COUNT_CONTINUED) {
9b04c5fe 3605 kunmap_atomic(map);
570a335b
HD
3606 page = list_entry(page->lru.next, struct page, lru);
3607 BUG_ON(page == head);
9b04c5fe 3608 map = kmap_atomic(page) + offset;
570a335b
HD
3609 }
3610 BUG_ON(*map == 0);
3611 *map -= 1;
3612 if (*map == 0)
3613 count = 0;
9b04c5fe 3614 kunmap_atomic(map);
570a335b
HD
3615 page = list_entry(page->lru.prev, struct page, lru);
3616 while (page != head) {
9b04c5fe 3617 map = kmap_atomic(page) + offset;
570a335b
HD
3618 *map = SWAP_CONT_MAX | count;
3619 count = COUNT_CONTINUED;
9b04c5fe 3620 kunmap_atomic(map);
570a335b
HD
3621 page = list_entry(page->lru.prev, struct page, lru);
3622 }
3623 return count == COUNT_CONTINUED;
3624 }
3625}
3626
3627/*
3628 * free_swap_count_continuations - swapoff free all the continuation pages
3629 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3630 */
3631static void free_swap_count_continuations(struct swap_info_struct *si)
3632{
3633 pgoff_t offset;
3634
3635 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3636 struct page *head;
3637 head = vmalloc_to_page(si->swap_map + offset);
3638 if (page_private(head)) {
0d576d20
GT
3639 struct page *page, *next;
3640
3641 list_for_each_entry_safe(page, next, &head->lru, lru) {
3642 list_del(&page->lru);
570a335b
HD
3643 __free_page(page);
3644 }
3645 }
3646 }
3647}