]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/swapfile.c
mm, THP, swap: support to reclaim swap space for THP swapped out
[mirror_ubuntu-bionic-kernel.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4 8#include <linux/mm.h>
6e84f315 9#include <linux/sched/mm.h>
29930025 10#include <linux/sched/task.h>
1da177e4
LT
11#include <linux/hugetlb.h>
12#include <linux/mman.h>
13#include <linux/slab.h>
14#include <linux/kernel_stat.h>
15#include <linux/swap.h>
16#include <linux/vmalloc.h>
17#include <linux/pagemap.h>
18#include <linux/namei.h>
072441e2 19#include <linux/shmem_fs.h>
1da177e4 20#include <linux/blkdev.h>
20137a49 21#include <linux/random.h>
1da177e4
LT
22#include <linux/writeback.h>
23#include <linux/proc_fs.h>
24#include <linux/seq_file.h>
25#include <linux/init.h>
5ad64688 26#include <linux/ksm.h>
1da177e4
LT
27#include <linux/rmap.h>
28#include <linux/security.h>
29#include <linux/backing-dev.h>
fc0abb14 30#include <linux/mutex.h>
c59ede7b 31#include <linux/capability.h>
1da177e4 32#include <linux/syscalls.h>
8a9f3ccd 33#include <linux/memcontrol.h>
66d7dd51 34#include <linux/poll.h>
72788c38 35#include <linux/oom.h>
38b5faf4
DM
36#include <linux/frontswap.h>
37#include <linux/swapfile.h>
f981c595 38#include <linux/export.h>
67afa38e 39#include <linux/swap_slots.h>
155b5f88 40#include <linux/sort.h>
1da177e4
LT
41
42#include <asm/pgtable.h>
43#include <asm/tlbflush.h>
44#include <linux/swapops.h>
5d1ea48b 45#include <linux/swap_cgroup.h>
1da177e4 46
570a335b
HD
47static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 unsigned char);
49static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 50static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 51
38b5faf4 52DEFINE_SPINLOCK(swap_lock);
7c363b8c 53static unsigned int nr_swapfiles;
ec8acf20 54atomic_long_t nr_swap_pages;
fb0fec50
CW
55/*
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
59 */
60EXPORT_SYMBOL_GPL(nr_swap_pages);
ec8acf20 61/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 62long total_swap_pages;
78ecba08 63static int least_priority;
1da177e4 64
1da177e4
LT
65static const char Bad_file[] = "Bad swap file entry ";
66static const char Unused_file[] = "Unused swap file entry ";
67static const char Bad_offset[] = "Bad swap offset entry ";
68static const char Unused_offset[] = "Unused swap offset entry ";
69
adfab836
DS
70/*
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
73 */
18ab4d4c
DS
74PLIST_HEAD(swap_active_head);
75
76/*
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
87 */
88static PLIST_HEAD(swap_avail_head);
89static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 90
38b5faf4 91struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 92
fc0abb14 93static DEFINE_MUTEX(swapon_mutex);
1da177e4 94
66d7dd51
KS
95static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96/* Activity counter to indicate that a swapon or swapoff has occurred */
97static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
8d69aaee 99static inline unsigned char swap_count(unsigned char ent)
355cfa73 100{
570a335b 101 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
355cfa73
KH
102}
103
efa90a98 104/* returns 1 if swap entry is freed */
c9e44410
KH
105static int
106__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
107{
efa90a98 108 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
109 struct page *page;
110 int ret = 0;
111
f6ab1f7f 112 page = find_get_page(swap_address_space(entry), swp_offset(entry));
c9e44410
KH
113 if (!page)
114 return 0;
115 /*
116 * This function is called from scan_swap_map() and it's called
117 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
118 * We have to use trylock for avoiding deadlock. This is a special
119 * case and you should use try_to_free_swap() with explicit lock_page()
120 * in usual operations.
121 */
122 if (trylock_page(page)) {
123 ret = try_to_free_swap(page);
124 unlock_page(page);
125 }
09cbfeaf 126 put_page(page);
c9e44410
KH
127 return ret;
128}
355cfa73 129
6a6ba831
HD
130/*
131 * swapon tell device that all the old swap contents can be discarded,
132 * to allow the swap device to optimize its wear-levelling.
133 */
134static int discard_swap(struct swap_info_struct *si)
135{
136 struct swap_extent *se;
9625a5f2
HD
137 sector_t start_block;
138 sector_t nr_blocks;
6a6ba831
HD
139 int err = 0;
140
9625a5f2
HD
141 /* Do not discard the swap header page! */
142 se = &si->first_swap_extent;
143 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
144 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
145 if (nr_blocks) {
146 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 147 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
148 if (err)
149 return err;
150 cond_resched();
151 }
6a6ba831 152
9625a5f2
HD
153 list_for_each_entry(se, &si->first_swap_extent.list, list) {
154 start_block = se->start_block << (PAGE_SHIFT - 9);
155 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
156
157 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 158 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
159 if (err)
160 break;
161
162 cond_resched();
163 }
164 return err; /* That will often be -EOPNOTSUPP */
165}
166
7992fde7
HD
167/*
168 * swap allocation tell device that a cluster of swap can now be discarded,
169 * to allow the swap device to optimize its wear-levelling.
170 */
171static void discard_swap_cluster(struct swap_info_struct *si,
172 pgoff_t start_page, pgoff_t nr_pages)
173{
174 struct swap_extent *se = si->curr_swap_extent;
175 int found_extent = 0;
176
177 while (nr_pages) {
7992fde7
HD
178 if (se->start_page <= start_page &&
179 start_page < se->start_page + se->nr_pages) {
180 pgoff_t offset = start_page - se->start_page;
181 sector_t start_block = se->start_block + offset;
858a2990 182 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
183
184 if (nr_blocks > nr_pages)
185 nr_blocks = nr_pages;
186 start_page += nr_blocks;
187 nr_pages -= nr_blocks;
188
189 if (!found_extent++)
190 si->curr_swap_extent = se;
191
192 start_block <<= PAGE_SHIFT - 9;
193 nr_blocks <<= PAGE_SHIFT - 9;
194 if (blkdev_issue_discard(si->bdev, start_block,
dd3932ed 195 nr_blocks, GFP_NOIO, 0))
7992fde7
HD
196 break;
197 }
198
a8ae4991 199 se = list_next_entry(se, list);
7992fde7
HD
200 }
201}
202
38d8b4e6
HY
203#ifdef CONFIG_THP_SWAP
204#define SWAPFILE_CLUSTER HPAGE_PMD_NR
205#else
048c27fd 206#define SWAPFILE_CLUSTER 256
38d8b4e6 207#endif
048c27fd
HD
208#define LATENCY_LIMIT 256
209
2a8f9449
SL
210static inline void cluster_set_flag(struct swap_cluster_info *info,
211 unsigned int flag)
212{
213 info->flags = flag;
214}
215
216static inline unsigned int cluster_count(struct swap_cluster_info *info)
217{
218 return info->data;
219}
220
221static inline void cluster_set_count(struct swap_cluster_info *info,
222 unsigned int c)
223{
224 info->data = c;
225}
226
227static inline void cluster_set_count_flag(struct swap_cluster_info *info,
228 unsigned int c, unsigned int f)
229{
230 info->flags = f;
231 info->data = c;
232}
233
234static inline unsigned int cluster_next(struct swap_cluster_info *info)
235{
236 return info->data;
237}
238
239static inline void cluster_set_next(struct swap_cluster_info *info,
240 unsigned int n)
241{
242 info->data = n;
243}
244
245static inline void cluster_set_next_flag(struct swap_cluster_info *info,
246 unsigned int n, unsigned int f)
247{
248 info->flags = f;
249 info->data = n;
250}
251
252static inline bool cluster_is_free(struct swap_cluster_info *info)
253{
254 return info->flags & CLUSTER_FLAG_FREE;
255}
256
257static inline bool cluster_is_null(struct swap_cluster_info *info)
258{
259 return info->flags & CLUSTER_FLAG_NEXT_NULL;
260}
261
262static inline void cluster_set_null(struct swap_cluster_info *info)
263{
264 info->flags = CLUSTER_FLAG_NEXT_NULL;
265 info->data = 0;
266}
267
e0709829
HY
268static inline bool cluster_is_huge(struct swap_cluster_info *info)
269{
270 return info->flags & CLUSTER_FLAG_HUGE;
271}
272
273static inline void cluster_clear_huge(struct swap_cluster_info *info)
274{
275 info->flags &= ~CLUSTER_FLAG_HUGE;
276}
277
235b6217
HY
278static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
279 unsigned long offset)
280{
281 struct swap_cluster_info *ci;
282
283 ci = si->cluster_info;
284 if (ci) {
285 ci += offset / SWAPFILE_CLUSTER;
286 spin_lock(&ci->lock);
287 }
288 return ci;
289}
290
291static inline void unlock_cluster(struct swap_cluster_info *ci)
292{
293 if (ci)
294 spin_unlock(&ci->lock);
295}
296
297static inline struct swap_cluster_info *lock_cluster_or_swap_info(
298 struct swap_info_struct *si,
299 unsigned long offset)
300{
301 struct swap_cluster_info *ci;
302
303 ci = lock_cluster(si, offset);
304 if (!ci)
305 spin_lock(&si->lock);
306
307 return ci;
308}
309
310static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
311 struct swap_cluster_info *ci)
312{
313 if (ci)
314 unlock_cluster(ci);
315 else
316 spin_unlock(&si->lock);
317}
318
6b534915
HY
319static inline bool cluster_list_empty(struct swap_cluster_list *list)
320{
321 return cluster_is_null(&list->head);
322}
323
324static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
325{
326 return cluster_next(&list->head);
327}
328
329static void cluster_list_init(struct swap_cluster_list *list)
330{
331 cluster_set_null(&list->head);
332 cluster_set_null(&list->tail);
333}
334
335static void cluster_list_add_tail(struct swap_cluster_list *list,
336 struct swap_cluster_info *ci,
337 unsigned int idx)
338{
339 if (cluster_list_empty(list)) {
340 cluster_set_next_flag(&list->head, idx, 0);
341 cluster_set_next_flag(&list->tail, idx, 0);
342 } else {
235b6217 343 struct swap_cluster_info *ci_tail;
6b534915
HY
344 unsigned int tail = cluster_next(&list->tail);
345
235b6217
HY
346 /*
347 * Nested cluster lock, but both cluster locks are
348 * only acquired when we held swap_info_struct->lock
349 */
350 ci_tail = ci + tail;
351 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
352 cluster_set_next(ci_tail, idx);
0ef017d1 353 spin_unlock(&ci_tail->lock);
6b534915
HY
354 cluster_set_next_flag(&list->tail, idx, 0);
355 }
356}
357
358static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
359 struct swap_cluster_info *ci)
360{
361 unsigned int idx;
362
363 idx = cluster_next(&list->head);
364 if (cluster_next(&list->tail) == idx) {
365 cluster_set_null(&list->head);
366 cluster_set_null(&list->tail);
367 } else
368 cluster_set_next_flag(&list->head,
369 cluster_next(&ci[idx]), 0);
370
371 return idx;
372}
373
815c2c54
SL
374/* Add a cluster to discard list and schedule it to do discard */
375static void swap_cluster_schedule_discard(struct swap_info_struct *si,
376 unsigned int idx)
377{
378 /*
379 * If scan_swap_map() can't find a free cluster, it will check
380 * si->swap_map directly. To make sure the discarding cluster isn't
381 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
382 * will be cleared after discard
383 */
384 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
385 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
386
6b534915 387 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
815c2c54
SL
388
389 schedule_work(&si->discard_work);
390}
391
38d8b4e6
HY
392static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
393{
394 struct swap_cluster_info *ci = si->cluster_info;
395
396 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
397 cluster_list_add_tail(&si->free_clusters, ci, idx);
398}
399
815c2c54
SL
400/*
401 * Doing discard actually. After a cluster discard is finished, the cluster
402 * will be added to free cluster list. caller should hold si->lock.
403*/
404static void swap_do_scheduled_discard(struct swap_info_struct *si)
405{
235b6217 406 struct swap_cluster_info *info, *ci;
815c2c54
SL
407 unsigned int idx;
408
409 info = si->cluster_info;
410
6b534915
HY
411 while (!cluster_list_empty(&si->discard_clusters)) {
412 idx = cluster_list_del_first(&si->discard_clusters, info);
815c2c54
SL
413 spin_unlock(&si->lock);
414
415 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
416 SWAPFILE_CLUSTER);
417
418 spin_lock(&si->lock);
235b6217 419 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
38d8b4e6 420 __free_cluster(si, idx);
815c2c54
SL
421 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
422 0, SWAPFILE_CLUSTER);
235b6217 423 unlock_cluster(ci);
815c2c54
SL
424 }
425}
426
427static void swap_discard_work(struct work_struct *work)
428{
429 struct swap_info_struct *si;
430
431 si = container_of(work, struct swap_info_struct, discard_work);
432
433 spin_lock(&si->lock);
434 swap_do_scheduled_discard(si);
435 spin_unlock(&si->lock);
436}
437
38d8b4e6
HY
438static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
439{
440 struct swap_cluster_info *ci = si->cluster_info;
441
442 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
443 cluster_list_del_first(&si->free_clusters, ci);
444 cluster_set_count_flag(ci + idx, 0, 0);
445}
446
447static void free_cluster(struct swap_info_struct *si, unsigned long idx)
448{
449 struct swap_cluster_info *ci = si->cluster_info + idx;
450
451 VM_BUG_ON(cluster_count(ci) != 0);
452 /*
453 * If the swap is discardable, prepare discard the cluster
454 * instead of free it immediately. The cluster will be freed
455 * after discard.
456 */
457 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
458 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
459 swap_cluster_schedule_discard(si, idx);
460 return;
461 }
462
463 __free_cluster(si, idx);
464}
465
2a8f9449
SL
466/*
467 * The cluster corresponding to page_nr will be used. The cluster will be
468 * removed from free cluster list and its usage counter will be increased.
469 */
470static void inc_cluster_info_page(struct swap_info_struct *p,
471 struct swap_cluster_info *cluster_info, unsigned long page_nr)
472{
473 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
474
475 if (!cluster_info)
476 return;
38d8b4e6
HY
477 if (cluster_is_free(&cluster_info[idx]))
478 alloc_cluster(p, idx);
2a8f9449
SL
479
480 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
481 cluster_set_count(&cluster_info[idx],
482 cluster_count(&cluster_info[idx]) + 1);
483}
484
485/*
486 * The cluster corresponding to page_nr decreases one usage. If the usage
487 * counter becomes 0, which means no page in the cluster is in using, we can
488 * optionally discard the cluster and add it to free cluster list.
489 */
490static void dec_cluster_info_page(struct swap_info_struct *p,
491 struct swap_cluster_info *cluster_info, unsigned long page_nr)
492{
493 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
494
495 if (!cluster_info)
496 return;
497
498 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
499 cluster_set_count(&cluster_info[idx],
500 cluster_count(&cluster_info[idx]) - 1);
501
38d8b4e6
HY
502 if (cluster_count(&cluster_info[idx]) == 0)
503 free_cluster(p, idx);
2a8f9449
SL
504}
505
506/*
507 * It's possible scan_swap_map() uses a free cluster in the middle of free
508 * cluster list. Avoiding such abuse to avoid list corruption.
509 */
ebc2a1a6
SL
510static bool
511scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
512 unsigned long offset)
513{
ebc2a1a6
SL
514 struct percpu_cluster *percpu_cluster;
515 bool conflict;
516
2a8f9449 517 offset /= SWAPFILE_CLUSTER;
6b534915
HY
518 conflict = !cluster_list_empty(&si->free_clusters) &&
519 offset != cluster_list_first(&si->free_clusters) &&
2a8f9449 520 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
521
522 if (!conflict)
523 return false;
524
525 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
526 cluster_set_null(&percpu_cluster->index);
527 return true;
528}
529
530/*
531 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
532 * might involve allocating a new cluster for current CPU too.
533 */
36005bae 534static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
ebc2a1a6
SL
535 unsigned long *offset, unsigned long *scan_base)
536{
537 struct percpu_cluster *cluster;
235b6217 538 struct swap_cluster_info *ci;
ebc2a1a6 539 bool found_free;
235b6217 540 unsigned long tmp, max;
ebc2a1a6
SL
541
542new_cluster:
543 cluster = this_cpu_ptr(si->percpu_cluster);
544 if (cluster_is_null(&cluster->index)) {
6b534915
HY
545 if (!cluster_list_empty(&si->free_clusters)) {
546 cluster->index = si->free_clusters.head;
ebc2a1a6
SL
547 cluster->next = cluster_next(&cluster->index) *
548 SWAPFILE_CLUSTER;
6b534915 549 } else if (!cluster_list_empty(&si->discard_clusters)) {
ebc2a1a6
SL
550 /*
551 * we don't have free cluster but have some clusters in
552 * discarding, do discard now and reclaim them
553 */
554 swap_do_scheduled_discard(si);
555 *scan_base = *offset = si->cluster_next;
556 goto new_cluster;
557 } else
36005bae 558 return false;
ebc2a1a6
SL
559 }
560
561 found_free = false;
562
563 /*
564 * Other CPUs can use our cluster if they can't find a free cluster,
565 * check if there is still free entry in the cluster
566 */
567 tmp = cluster->next;
235b6217
HY
568 max = min_t(unsigned long, si->max,
569 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
570 if (tmp >= max) {
571 cluster_set_null(&cluster->index);
572 goto new_cluster;
573 }
574 ci = lock_cluster(si, tmp);
575 while (tmp < max) {
ebc2a1a6
SL
576 if (!si->swap_map[tmp]) {
577 found_free = true;
578 break;
579 }
580 tmp++;
581 }
235b6217 582 unlock_cluster(ci);
ebc2a1a6
SL
583 if (!found_free) {
584 cluster_set_null(&cluster->index);
585 goto new_cluster;
586 }
587 cluster->next = tmp + 1;
588 *offset = tmp;
589 *scan_base = tmp;
36005bae 590 return found_free;
2a8f9449
SL
591}
592
38d8b4e6
HY
593static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
594 unsigned int nr_entries)
595{
596 unsigned int end = offset + nr_entries - 1;
597
598 if (offset == si->lowest_bit)
599 si->lowest_bit += nr_entries;
600 if (end == si->highest_bit)
601 si->highest_bit -= nr_entries;
602 si->inuse_pages += nr_entries;
603 if (si->inuse_pages == si->pages) {
604 si->lowest_bit = si->max;
605 si->highest_bit = 0;
606 spin_lock(&swap_avail_lock);
607 plist_del(&si->avail_list, &swap_avail_head);
608 spin_unlock(&swap_avail_lock);
609 }
610}
611
612static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
613 unsigned int nr_entries)
614{
615 unsigned long end = offset + nr_entries - 1;
616 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
617
618 if (offset < si->lowest_bit)
619 si->lowest_bit = offset;
620 if (end > si->highest_bit) {
621 bool was_full = !si->highest_bit;
622
623 si->highest_bit = end;
624 if (was_full && (si->flags & SWP_WRITEOK)) {
625 spin_lock(&swap_avail_lock);
626 WARN_ON(!plist_node_empty(&si->avail_list));
627 if (plist_node_empty(&si->avail_list))
628 plist_add(&si->avail_list, &swap_avail_head);
629 spin_unlock(&swap_avail_lock);
630 }
631 }
632 atomic_long_add(nr_entries, &nr_swap_pages);
633 si->inuse_pages -= nr_entries;
634 if (si->flags & SWP_BLKDEV)
635 swap_slot_free_notify =
636 si->bdev->bd_disk->fops->swap_slot_free_notify;
637 else
638 swap_slot_free_notify = NULL;
639 while (offset <= end) {
640 frontswap_invalidate_page(si->type, offset);
641 if (swap_slot_free_notify)
642 swap_slot_free_notify(si->bdev, offset);
643 offset++;
644 }
645}
646
36005bae
TC
647static int scan_swap_map_slots(struct swap_info_struct *si,
648 unsigned char usage, int nr,
649 swp_entry_t slots[])
1da177e4 650{
235b6217 651 struct swap_cluster_info *ci;
ebebbbe9 652 unsigned long offset;
c60aa176 653 unsigned long scan_base;
7992fde7 654 unsigned long last_in_cluster = 0;
048c27fd 655 int latency_ration = LATENCY_LIMIT;
36005bae
TC
656 int n_ret = 0;
657
658 if (nr > SWAP_BATCH)
659 nr = SWAP_BATCH;
7dfad418 660
886bb7e9 661 /*
7dfad418
HD
662 * We try to cluster swap pages by allocating them sequentially
663 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
664 * way, however, we resort to first-free allocation, starting
665 * a new cluster. This prevents us from scattering swap pages
666 * all over the entire swap partition, so that we reduce
667 * overall disk seek times between swap pages. -- sct
668 * But we do now try to find an empty cluster. -Andrea
c60aa176 669 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
670 */
671
52b7efdb 672 si->flags += SWP_SCANNING;
c60aa176 673 scan_base = offset = si->cluster_next;
ebebbbe9 674
ebc2a1a6
SL
675 /* SSD algorithm */
676 if (si->cluster_info) {
36005bae
TC
677 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
678 goto checks;
679 else
680 goto scan;
ebc2a1a6
SL
681 }
682
ebebbbe9
HD
683 if (unlikely(!si->cluster_nr--)) {
684 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
685 si->cluster_nr = SWAPFILE_CLUSTER - 1;
686 goto checks;
687 }
2a8f9449 688
ec8acf20 689 spin_unlock(&si->lock);
7dfad418 690
c60aa176
HD
691 /*
692 * If seek is expensive, start searching for new cluster from
693 * start of partition, to minimize the span of allocated swap.
50088c44
CY
694 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
695 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 696 */
50088c44 697 scan_base = offset = si->lowest_bit;
7dfad418
HD
698 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
699
700 /* Locate the first empty (unaligned) cluster */
701 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 702 if (si->swap_map[offset])
7dfad418
HD
703 last_in_cluster = offset + SWAPFILE_CLUSTER;
704 else if (offset == last_in_cluster) {
ec8acf20 705 spin_lock(&si->lock);
ebebbbe9
HD
706 offset -= SWAPFILE_CLUSTER - 1;
707 si->cluster_next = offset;
708 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
709 goto checks;
710 }
711 if (unlikely(--latency_ration < 0)) {
712 cond_resched();
713 latency_ration = LATENCY_LIMIT;
714 }
715 }
716
717 offset = scan_base;
ec8acf20 718 spin_lock(&si->lock);
ebebbbe9 719 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 720 }
7dfad418 721
ebebbbe9 722checks:
ebc2a1a6 723 if (si->cluster_info) {
36005bae
TC
724 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
725 /* take a break if we already got some slots */
726 if (n_ret)
727 goto done;
728 if (!scan_swap_map_try_ssd_cluster(si, &offset,
729 &scan_base))
730 goto scan;
731 }
ebc2a1a6 732 }
ebebbbe9 733 if (!(si->flags & SWP_WRITEOK))
52b7efdb 734 goto no_page;
7dfad418
HD
735 if (!si->highest_bit)
736 goto no_page;
ebebbbe9 737 if (offset > si->highest_bit)
c60aa176 738 scan_base = offset = si->lowest_bit;
c9e44410 739
235b6217 740 ci = lock_cluster(si, offset);
b73d7fce
HD
741 /* reuse swap entry of cache-only swap if not busy. */
742 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 743 int swap_was_freed;
235b6217 744 unlock_cluster(ci);
ec8acf20 745 spin_unlock(&si->lock);
c9e44410 746 swap_was_freed = __try_to_reclaim_swap(si, offset);
ec8acf20 747 spin_lock(&si->lock);
c9e44410
KH
748 /* entry was freed successfully, try to use this again */
749 if (swap_was_freed)
750 goto checks;
751 goto scan; /* check next one */
752 }
753
235b6217
HY
754 if (si->swap_map[offset]) {
755 unlock_cluster(ci);
36005bae
TC
756 if (!n_ret)
757 goto scan;
758 else
759 goto done;
235b6217 760 }
2872bb2d
HY
761 si->swap_map[offset] = usage;
762 inc_cluster_info_page(si, si->cluster_info, offset);
763 unlock_cluster(ci);
ebebbbe9 764
38d8b4e6 765 swap_range_alloc(si, offset, 1);
ebebbbe9 766 si->cluster_next = offset + 1;
36005bae
TC
767 slots[n_ret++] = swp_entry(si->type, offset);
768
769 /* got enough slots or reach max slots? */
770 if ((n_ret == nr) || (offset >= si->highest_bit))
771 goto done;
772
773 /* search for next available slot */
774
775 /* time to take a break? */
776 if (unlikely(--latency_ration < 0)) {
777 if (n_ret)
778 goto done;
779 spin_unlock(&si->lock);
780 cond_resched();
781 spin_lock(&si->lock);
782 latency_ration = LATENCY_LIMIT;
783 }
784
785 /* try to get more slots in cluster */
786 if (si->cluster_info) {
787 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
788 goto checks;
789 else
790 goto done;
791 }
792 /* non-ssd case */
793 ++offset;
794
795 /* non-ssd case, still more slots in cluster? */
796 if (si->cluster_nr && !si->swap_map[offset]) {
797 --si->cluster_nr;
798 goto checks;
799 }
7992fde7 800
36005bae
TC
801done:
802 si->flags -= SWP_SCANNING;
803 return n_ret;
7dfad418 804
ebebbbe9 805scan:
ec8acf20 806 spin_unlock(&si->lock);
7dfad418 807 while (++offset <= si->highest_bit) {
52b7efdb 808 if (!si->swap_map[offset]) {
ec8acf20 809 spin_lock(&si->lock);
52b7efdb
HD
810 goto checks;
811 }
c9e44410 812 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 813 spin_lock(&si->lock);
c9e44410
KH
814 goto checks;
815 }
048c27fd
HD
816 if (unlikely(--latency_ration < 0)) {
817 cond_resched();
818 latency_ration = LATENCY_LIMIT;
819 }
7dfad418 820 }
c60aa176 821 offset = si->lowest_bit;
a5998061 822 while (offset < scan_base) {
c60aa176 823 if (!si->swap_map[offset]) {
ec8acf20 824 spin_lock(&si->lock);
c60aa176
HD
825 goto checks;
826 }
c9e44410 827 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 828 spin_lock(&si->lock);
c9e44410
KH
829 goto checks;
830 }
c60aa176
HD
831 if (unlikely(--latency_ration < 0)) {
832 cond_resched();
833 latency_ration = LATENCY_LIMIT;
834 }
a5998061 835 offset++;
c60aa176 836 }
ec8acf20 837 spin_lock(&si->lock);
7dfad418
HD
838
839no_page:
52b7efdb 840 si->flags -= SWP_SCANNING;
36005bae 841 return n_ret;
1da177e4
LT
842}
843
38d8b4e6
HY
844#ifdef CONFIG_THP_SWAP
845static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
846{
847 unsigned long idx;
848 struct swap_cluster_info *ci;
849 unsigned long offset, i;
850 unsigned char *map;
851
852 if (cluster_list_empty(&si->free_clusters))
853 return 0;
854
855 idx = cluster_list_first(&si->free_clusters);
856 offset = idx * SWAPFILE_CLUSTER;
857 ci = lock_cluster(si, offset);
858 alloc_cluster(si, idx);
e0709829 859 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
38d8b4e6
HY
860
861 map = si->swap_map + offset;
862 for (i = 0; i < SWAPFILE_CLUSTER; i++)
863 map[i] = SWAP_HAS_CACHE;
864 unlock_cluster(ci);
865 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
866 *slot = swp_entry(si->type, offset);
867
868 return 1;
869}
870
871static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
872{
873 unsigned long offset = idx * SWAPFILE_CLUSTER;
874 struct swap_cluster_info *ci;
875
876 ci = lock_cluster(si, offset);
877 cluster_set_count_flag(ci, 0, 0);
878 free_cluster(si, idx);
879 unlock_cluster(ci);
880 swap_range_free(si, offset, SWAPFILE_CLUSTER);
881}
882#else
883static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
884{
885 VM_WARN_ON_ONCE(1);
886 return 0;
887}
888#endif /* CONFIG_THP_SWAP */
889
36005bae
TC
890static unsigned long scan_swap_map(struct swap_info_struct *si,
891 unsigned char usage)
892{
893 swp_entry_t entry;
894 int n_ret;
895
896 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
897
898 if (n_ret)
899 return swp_offset(entry);
900 else
901 return 0;
902
903}
904
38d8b4e6 905int get_swap_pages(int n_goal, bool cluster, swp_entry_t swp_entries[])
1da177e4 906{
38d8b4e6 907 unsigned long nr_pages = cluster ? SWAPFILE_CLUSTER : 1;
adfab836 908 struct swap_info_struct *si, *next;
36005bae
TC
909 long avail_pgs;
910 int n_ret = 0;
1da177e4 911
38d8b4e6
HY
912 /* Only single cluster request supported */
913 WARN_ON_ONCE(n_goal > 1 && cluster);
914
915 avail_pgs = atomic_long_read(&nr_swap_pages) / nr_pages;
36005bae 916 if (avail_pgs <= 0)
fb4f88dc 917 goto noswap;
36005bae
TC
918
919 if (n_goal > SWAP_BATCH)
920 n_goal = SWAP_BATCH;
921
922 if (n_goal > avail_pgs)
923 n_goal = avail_pgs;
924
38d8b4e6 925 atomic_long_sub(n_goal * nr_pages, &nr_swap_pages);
fb4f88dc 926
18ab4d4c
DS
927 spin_lock(&swap_avail_lock);
928
929start_over:
930 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
931 /* requeue si to after same-priority siblings */
932 plist_requeue(&si->avail_list, &swap_avail_head);
933 spin_unlock(&swap_avail_lock);
ec8acf20 934 spin_lock(&si->lock);
adfab836 935 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c
DS
936 spin_lock(&swap_avail_lock);
937 if (plist_node_empty(&si->avail_list)) {
938 spin_unlock(&si->lock);
939 goto nextsi;
940 }
941 WARN(!si->highest_bit,
942 "swap_info %d in list but !highest_bit\n",
943 si->type);
944 WARN(!(si->flags & SWP_WRITEOK),
945 "swap_info %d in list but !SWP_WRITEOK\n",
946 si->type);
947 plist_del(&si->avail_list, &swap_avail_head);
ec8acf20 948 spin_unlock(&si->lock);
18ab4d4c 949 goto nextsi;
ec8acf20 950 }
38d8b4e6
HY
951 if (cluster)
952 n_ret = swap_alloc_cluster(si, swp_entries);
953 else
954 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
955 n_goal, swp_entries);
ec8acf20 956 spin_unlock(&si->lock);
38d8b4e6 957 if (n_ret || cluster)
36005bae 958 goto check_out;
18ab4d4c 959 pr_debug("scan_swap_map of si %d failed to find offset\n",
36005bae
TC
960 si->type);
961
18ab4d4c
DS
962 spin_lock(&swap_avail_lock);
963nextsi:
adfab836
DS
964 /*
965 * if we got here, it's likely that si was almost full before,
966 * and since scan_swap_map() can drop the si->lock, multiple
967 * callers probably all tried to get a page from the same si
18ab4d4c
DS
968 * and it filled up before we could get one; or, the si filled
969 * up between us dropping swap_avail_lock and taking si->lock.
970 * Since we dropped the swap_avail_lock, the swap_avail_head
971 * list may have been modified; so if next is still in the
36005bae
TC
972 * swap_avail_head list then try it, otherwise start over
973 * if we have not gotten any slots.
adfab836 974 */
18ab4d4c
DS
975 if (plist_node_empty(&next->avail_list))
976 goto start_over;
1da177e4 977 }
fb4f88dc 978
18ab4d4c
DS
979 spin_unlock(&swap_avail_lock);
980
36005bae
TC
981check_out:
982 if (n_ret < n_goal)
38d8b4e6
HY
983 atomic_long_add((long)(n_goal - n_ret) * nr_pages,
984 &nr_swap_pages);
fb4f88dc 985noswap:
36005bae
TC
986 return n_ret;
987}
988
2de1a7e4 989/* The only caller of this function is now suspend routine */
910321ea
HD
990swp_entry_t get_swap_page_of_type(int type)
991{
992 struct swap_info_struct *si;
993 pgoff_t offset;
994
910321ea 995 si = swap_info[type];
ec8acf20 996 spin_lock(&si->lock);
910321ea 997 if (si && (si->flags & SWP_WRITEOK)) {
ec8acf20 998 atomic_long_dec(&nr_swap_pages);
910321ea
HD
999 /* This is called for allocating swap entry, not cache */
1000 offset = scan_swap_map(si, 1);
1001 if (offset) {
ec8acf20 1002 spin_unlock(&si->lock);
910321ea
HD
1003 return swp_entry(type, offset);
1004 }
ec8acf20 1005 atomic_long_inc(&nr_swap_pages);
910321ea 1006 }
ec8acf20 1007 spin_unlock(&si->lock);
910321ea
HD
1008 return (swp_entry_t) {0};
1009}
1010
e8c26ab6 1011static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1da177e4 1012{
73c34b6a 1013 struct swap_info_struct *p;
1da177e4
LT
1014 unsigned long offset, type;
1015
1016 if (!entry.val)
1017 goto out;
1018 type = swp_type(entry);
1019 if (type >= nr_swapfiles)
1020 goto bad_nofile;
efa90a98 1021 p = swap_info[type];
1da177e4
LT
1022 if (!(p->flags & SWP_USED))
1023 goto bad_device;
1024 offset = swp_offset(entry);
1025 if (offset >= p->max)
1026 goto bad_offset;
1da177e4
LT
1027 return p;
1028
1da177e4 1029bad_offset:
6a991fc7 1030 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
1031 goto out;
1032bad_device:
6a991fc7 1033 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
1034 goto out;
1035bad_nofile:
6a991fc7 1036 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
1037out:
1038 return NULL;
886bb7e9 1039}
1da177e4 1040
e8c26ab6
TC
1041static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1042{
1043 struct swap_info_struct *p;
1044
1045 p = __swap_info_get(entry);
1046 if (!p)
1047 goto out;
1048 if (!p->swap_map[swp_offset(entry)])
1049 goto bad_free;
1050 return p;
1051
1052bad_free:
1053 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1054 goto out;
1055out:
1056 return NULL;
1057}
1058
235b6217
HY
1059static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1060{
1061 struct swap_info_struct *p;
1062
1063 p = _swap_info_get(entry);
1064 if (p)
1065 spin_lock(&p->lock);
1066 return p;
1067}
1068
7c00bafe
TC
1069static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1070 struct swap_info_struct *q)
1071{
1072 struct swap_info_struct *p;
1073
1074 p = _swap_info_get(entry);
1075
1076 if (p != q) {
1077 if (q != NULL)
1078 spin_unlock(&q->lock);
1079 if (p != NULL)
1080 spin_lock(&p->lock);
1081 }
1082 return p;
1083}
1084
1085static unsigned char __swap_entry_free(struct swap_info_struct *p,
1086 swp_entry_t entry, unsigned char usage)
1da177e4 1087{
235b6217 1088 struct swap_cluster_info *ci;
253d553b 1089 unsigned long offset = swp_offset(entry);
8d69aaee
HD
1090 unsigned char count;
1091 unsigned char has_cache;
235b6217 1092
7c00bafe 1093 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 1094
253d553b 1095 count = p->swap_map[offset];
235b6217 1096
253d553b
HD
1097 has_cache = count & SWAP_HAS_CACHE;
1098 count &= ~SWAP_HAS_CACHE;
355cfa73 1099
253d553b 1100 if (usage == SWAP_HAS_CACHE) {
355cfa73 1101 VM_BUG_ON(!has_cache);
253d553b 1102 has_cache = 0;
aaa46865
HD
1103 } else if (count == SWAP_MAP_SHMEM) {
1104 /*
1105 * Or we could insist on shmem.c using a special
1106 * swap_shmem_free() and free_shmem_swap_and_cache()...
1107 */
1108 count = 0;
570a335b
HD
1109 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1110 if (count == COUNT_CONTINUED) {
1111 if (swap_count_continued(p, offset, count))
1112 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1113 else
1114 count = SWAP_MAP_MAX;
1115 } else
1116 count--;
1117 }
253d553b 1118
253d553b 1119 usage = count | has_cache;
7c00bafe
TC
1120 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1121
1122 unlock_cluster_or_swap_info(p, ci);
1123
1124 return usage;
1125}
355cfa73 1126
7c00bafe
TC
1127static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1128{
1129 struct swap_cluster_info *ci;
1130 unsigned long offset = swp_offset(entry);
1131 unsigned char count;
1132
1133 ci = lock_cluster(p, offset);
1134 count = p->swap_map[offset];
1135 VM_BUG_ON(count != SWAP_HAS_CACHE);
1136 p->swap_map[offset] = 0;
1137 dec_cluster_info_page(p, p->cluster_info, offset);
235b6217
HY
1138 unlock_cluster(ci);
1139
38d8b4e6
HY
1140 mem_cgroup_uncharge_swap(entry, 1);
1141 swap_range_free(p, offset, 1);
1da177e4
LT
1142}
1143
1144/*
2de1a7e4 1145 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
1146 * is still around or has not been recycled.
1147 */
1148void swap_free(swp_entry_t entry)
1149{
73c34b6a 1150 struct swap_info_struct *p;
1da177e4 1151
235b6217 1152 p = _swap_info_get(entry);
7c00bafe
TC
1153 if (p) {
1154 if (!__swap_entry_free(p, entry, 1))
67afa38e 1155 free_swap_slot(entry);
7c00bafe 1156 }
1da177e4
LT
1157}
1158
cb4b86ba
KH
1159/*
1160 * Called after dropping swapcache to decrease refcnt to swap entries.
1161 */
75f6d6d2 1162static void swapcache_free(swp_entry_t entry)
cb4b86ba 1163{
355cfa73
KH
1164 struct swap_info_struct *p;
1165
235b6217 1166 p = _swap_info_get(entry);
7c00bafe
TC
1167 if (p) {
1168 if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
67afa38e 1169 free_swap_slot(entry);
7c00bafe
TC
1170 }
1171}
1172
38d8b4e6 1173#ifdef CONFIG_THP_SWAP
75f6d6d2 1174static void swapcache_free_cluster(swp_entry_t entry)
38d8b4e6
HY
1175{
1176 unsigned long offset = swp_offset(entry);
1177 unsigned long idx = offset / SWAPFILE_CLUSTER;
1178 struct swap_cluster_info *ci;
1179 struct swap_info_struct *si;
1180 unsigned char *map;
a3aea839
HY
1181 unsigned int i, free_entries = 0;
1182 unsigned char val;
38d8b4e6 1183
a3aea839 1184 si = _swap_info_get(entry);
38d8b4e6
HY
1185 if (!si)
1186 return;
1187
1188 ci = lock_cluster(si, offset);
e0709829 1189 VM_BUG_ON(!cluster_is_huge(ci));
38d8b4e6
HY
1190 map = si->swap_map + offset;
1191 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
a3aea839
HY
1192 val = map[i];
1193 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1194 if (val == SWAP_HAS_CACHE)
1195 free_entries++;
1196 }
1197 if (!free_entries) {
1198 for (i = 0; i < SWAPFILE_CLUSTER; i++)
1199 map[i] &= ~SWAP_HAS_CACHE;
38d8b4e6 1200 }
e0709829 1201 cluster_clear_huge(ci);
38d8b4e6 1202 unlock_cluster(ci);
a3aea839
HY
1203 if (free_entries == SWAPFILE_CLUSTER) {
1204 spin_lock(&si->lock);
1205 ci = lock_cluster(si, offset);
1206 memset(map, 0, SWAPFILE_CLUSTER);
1207 unlock_cluster(ci);
1208 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1209 swap_free_cluster(si, idx);
1210 spin_unlock(&si->lock);
1211 } else if (free_entries) {
1212 for (i = 0; i < SWAPFILE_CLUSTER; i++, entry.val++) {
1213 if (!__swap_entry_free(si, entry, SWAP_HAS_CACHE))
1214 free_swap_slot(entry);
1215 }
1216 }
38d8b4e6 1217}
75f6d6d2
MK
1218#else
1219static inline void swapcache_free_cluster(swp_entry_t entry)
1220{
1221}
38d8b4e6
HY
1222#endif /* CONFIG_THP_SWAP */
1223
75f6d6d2
MK
1224void put_swap_page(struct page *page, swp_entry_t entry)
1225{
1226 if (!PageTransHuge(page))
1227 swapcache_free(entry);
1228 else
1229 swapcache_free_cluster(entry);
1230}
1231
155b5f88
HY
1232static int swp_entry_cmp(const void *ent1, const void *ent2)
1233{
1234 const swp_entry_t *e1 = ent1, *e2 = ent2;
1235
1236 return (int)swp_type(*e1) - (int)swp_type(*e2);
1237}
1238
7c00bafe
TC
1239void swapcache_free_entries(swp_entry_t *entries, int n)
1240{
1241 struct swap_info_struct *p, *prev;
1242 int i;
1243
1244 if (n <= 0)
1245 return;
1246
1247 prev = NULL;
1248 p = NULL;
155b5f88
HY
1249
1250 /*
1251 * Sort swap entries by swap device, so each lock is only taken once.
1252 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1253 * so low that it isn't necessary to optimize further.
1254 */
1255 if (nr_swapfiles > 1)
1256 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
7c00bafe
TC
1257 for (i = 0; i < n; ++i) {
1258 p = swap_info_get_cont(entries[i], prev);
1259 if (p)
1260 swap_entry_free(p, entries[i]);
7c00bafe
TC
1261 prev = p;
1262 }
235b6217 1263 if (p)
7c00bafe 1264 spin_unlock(&p->lock);
cb4b86ba
KH
1265}
1266
1da177e4 1267/*
c475a8ab 1268 * How many references to page are currently swapped out?
570a335b
HD
1269 * This does not give an exact answer when swap count is continued,
1270 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 1271 */
bde05d1c 1272int page_swapcount(struct page *page)
1da177e4 1273{
c475a8ab
HD
1274 int count = 0;
1275 struct swap_info_struct *p;
235b6217 1276 struct swap_cluster_info *ci;
1da177e4 1277 swp_entry_t entry;
235b6217 1278 unsigned long offset;
1da177e4 1279
4c21e2f2 1280 entry.val = page_private(page);
235b6217 1281 p = _swap_info_get(entry);
1da177e4 1282 if (p) {
235b6217
HY
1283 offset = swp_offset(entry);
1284 ci = lock_cluster_or_swap_info(p, offset);
1285 count = swap_count(p->swap_map[offset]);
1286 unlock_cluster_or_swap_info(p, ci);
1da177e4 1287 }
c475a8ab 1288 return count;
1da177e4
LT
1289}
1290
322b8afe
HY
1291static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1292{
1293 int count = 0;
1294 pgoff_t offset = swp_offset(entry);
1295 struct swap_cluster_info *ci;
1296
1297 ci = lock_cluster_or_swap_info(si, offset);
1298 count = swap_count(si->swap_map[offset]);
1299 unlock_cluster_or_swap_info(si, ci);
1300 return count;
1301}
1302
e8c26ab6
TC
1303/*
1304 * How many references to @entry are currently swapped out?
1305 * This does not give an exact answer when swap count is continued,
1306 * but does include the high COUNT_CONTINUED flag to allow for that.
1307 */
1308int __swp_swapcount(swp_entry_t entry)
1309{
1310 int count = 0;
e8c26ab6 1311 struct swap_info_struct *si;
e8c26ab6
TC
1312
1313 si = __swap_info_get(entry);
322b8afe
HY
1314 if (si)
1315 count = swap_swapcount(si, entry);
e8c26ab6
TC
1316 return count;
1317}
1318
8334b962
MK
1319/*
1320 * How many references to @entry are currently swapped out?
1321 * This considers COUNT_CONTINUED so it returns exact answer.
1322 */
1323int swp_swapcount(swp_entry_t entry)
1324{
1325 int count, tmp_count, n;
1326 struct swap_info_struct *p;
235b6217 1327 struct swap_cluster_info *ci;
8334b962
MK
1328 struct page *page;
1329 pgoff_t offset;
1330 unsigned char *map;
1331
235b6217 1332 p = _swap_info_get(entry);
8334b962
MK
1333 if (!p)
1334 return 0;
1335
235b6217
HY
1336 offset = swp_offset(entry);
1337
1338 ci = lock_cluster_or_swap_info(p, offset);
1339
1340 count = swap_count(p->swap_map[offset]);
8334b962
MK
1341 if (!(count & COUNT_CONTINUED))
1342 goto out;
1343
1344 count &= ~COUNT_CONTINUED;
1345 n = SWAP_MAP_MAX + 1;
1346
8334b962
MK
1347 page = vmalloc_to_page(p->swap_map + offset);
1348 offset &= ~PAGE_MASK;
1349 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1350
1351 do {
a8ae4991 1352 page = list_next_entry(page, lru);
8334b962
MK
1353 map = kmap_atomic(page);
1354 tmp_count = map[offset];
1355 kunmap_atomic(map);
1356
1357 count += (tmp_count & ~COUNT_CONTINUED) * n;
1358 n *= (SWAP_CONT_MAX + 1);
1359 } while (tmp_count & COUNT_CONTINUED);
1360out:
235b6217 1361 unlock_cluster_or_swap_info(p, ci);
8334b962
MK
1362 return count;
1363}
1364
e0709829
HY
1365#ifdef CONFIG_THP_SWAP
1366static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1367 swp_entry_t entry)
1368{
1369 struct swap_cluster_info *ci;
1370 unsigned char *map = si->swap_map;
1371 unsigned long roffset = swp_offset(entry);
1372 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1373 int i;
1374 bool ret = false;
1375
1376 ci = lock_cluster_or_swap_info(si, offset);
1377 if (!ci || !cluster_is_huge(ci)) {
1378 if (map[roffset] != SWAP_HAS_CACHE)
1379 ret = true;
1380 goto unlock_out;
1381 }
1382 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1383 if (map[offset + i] != SWAP_HAS_CACHE) {
1384 ret = true;
1385 break;
1386 }
1387 }
1388unlock_out:
1389 unlock_cluster_or_swap_info(si, ci);
1390 return ret;
1391}
1392
1393static bool page_swapped(struct page *page)
1394{
1395 swp_entry_t entry;
1396 struct swap_info_struct *si;
1397
1398 if (likely(!PageTransCompound(page)))
1399 return page_swapcount(page) != 0;
1400
1401 page = compound_head(page);
1402 entry.val = page_private(page);
1403 si = _swap_info_get(entry);
1404 if (si)
1405 return swap_page_trans_huge_swapped(si, entry);
1406 return false;
1407}
1408#else
1409#define swap_page_trans_huge_swapped(si, entry) swap_swapcount(si, entry)
1410#define page_swapped(page) (page_swapcount(page) != 0)
1411#endif
1412
1da177e4 1413/*
7b1fe597
HD
1414 * We can write to an anon page without COW if there are no other references
1415 * to it. And as a side-effect, free up its swap: because the old content
1416 * on disk will never be read, and seeking back there to write new content
1417 * later would only waste time away from clustering.
6d0a07ed
AA
1418 *
1419 * NOTE: total_mapcount should not be relied upon by the caller if
1420 * reuse_swap_page() returns false, but it may be always overwritten
1421 * (see the other implementation for CONFIG_SWAP=n).
1da177e4 1422 */
6d0a07ed 1423bool reuse_swap_page(struct page *page, int *total_mapcount)
1da177e4 1424{
c475a8ab
HD
1425 int count;
1426
309381fe 1427 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688 1428 if (unlikely(PageKsm(page)))
6d0a07ed
AA
1429 return false;
1430 count = page_trans_huge_mapcount(page, total_mapcount);
7b1fe597 1431 if (count <= 1 && PageSwapCache(page)) {
c475a8ab 1432 count += page_swapcount(page);
f0571429
MK
1433 if (count != 1)
1434 goto out;
1435 if (!PageWriteback(page)) {
7b1fe597
HD
1436 delete_from_swap_cache(page);
1437 SetPageDirty(page);
f0571429
MK
1438 } else {
1439 swp_entry_t entry;
1440 struct swap_info_struct *p;
1441
1442 entry.val = page_private(page);
1443 p = swap_info_get(entry);
1444 if (p->flags & SWP_STABLE_WRITES) {
1445 spin_unlock(&p->lock);
1446 return false;
1447 }
1448 spin_unlock(&p->lock);
7b1fe597
HD
1449 }
1450 }
f0571429 1451out:
5ad64688 1452 return count <= 1;
1da177e4
LT
1453}
1454
1455/*
a2c43eed
HD
1456 * If swap is getting full, or if there are no more mappings of this page,
1457 * then try_to_free_swap is called to free its swap space.
1da177e4 1458 */
a2c43eed 1459int try_to_free_swap(struct page *page)
1da177e4 1460{
309381fe 1461 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
1462
1463 if (!PageSwapCache(page))
1464 return 0;
1465 if (PageWriteback(page))
1466 return 0;
e0709829 1467 if (page_swapped(page))
1da177e4
LT
1468 return 0;
1469
b73d7fce
HD
1470 /*
1471 * Once hibernation has begun to create its image of memory,
1472 * there's a danger that one of the calls to try_to_free_swap()
1473 * - most probably a call from __try_to_reclaim_swap() while
1474 * hibernation is allocating its own swap pages for the image,
1475 * but conceivably even a call from memory reclaim - will free
1476 * the swap from a page which has already been recorded in the
1477 * image as a clean swapcache page, and then reuse its swap for
1478 * another page of the image. On waking from hibernation, the
1479 * original page might be freed under memory pressure, then
1480 * later read back in from swap, now with the wrong data.
1481 *
2de1a7e4 1482 * Hibernation suspends storage while it is writing the image
f90ac398 1483 * to disk so check that here.
b73d7fce 1484 */
f90ac398 1485 if (pm_suspended_storage())
b73d7fce
HD
1486 return 0;
1487
e0709829 1488 page = compound_head(page);
a2c43eed
HD
1489 delete_from_swap_cache(page);
1490 SetPageDirty(page);
1491 return 1;
68a22394
RR
1492}
1493
1da177e4
LT
1494/*
1495 * Free the swap entry like above, but also try to
1496 * free the page cache entry if it is the last user.
1497 */
2509ef26 1498int free_swap_and_cache(swp_entry_t entry)
1da177e4 1499{
2509ef26 1500 struct swap_info_struct *p;
1da177e4 1501 struct page *page = NULL;
7c00bafe 1502 unsigned char count;
1da177e4 1503
a7420aa5 1504 if (non_swap_entry(entry))
2509ef26 1505 return 1;
0697212a 1506
7c00bafe 1507 p = _swap_info_get(entry);
1da177e4 1508 if (p) {
7c00bafe 1509 count = __swap_entry_free(p, entry, 1);
e0709829
HY
1510 if (count == SWAP_HAS_CACHE &&
1511 !swap_page_trans_huge_swapped(p, entry)) {
33806f06 1512 page = find_get_page(swap_address_space(entry),
f6ab1f7f 1513 swp_offset(entry));
8413ac9d 1514 if (page && !trylock_page(page)) {
09cbfeaf 1515 put_page(page);
93fac704
NP
1516 page = NULL;
1517 }
7c00bafe 1518 } else if (!count)
67afa38e 1519 free_swap_slot(entry);
1da177e4
LT
1520 }
1521 if (page) {
a2c43eed
HD
1522 /*
1523 * Not mapped elsewhere, or swap space full? Free it!
1524 * Also recheck PageSwapCache now page is locked (above).
1525 */
93fac704 1526 if (PageSwapCache(page) && !PageWriteback(page) &&
322b8afe 1527 (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
e0709829
HY
1528 !swap_page_trans_huge_swapped(p, entry)) {
1529 page = compound_head(page);
1da177e4
LT
1530 delete_from_swap_cache(page);
1531 SetPageDirty(page);
1532 }
1533 unlock_page(page);
09cbfeaf 1534 put_page(page);
1da177e4 1535 }
2509ef26 1536 return p != NULL;
1da177e4
LT
1537}
1538
b0cb1a19 1539#ifdef CONFIG_HIBERNATION
f577eb30 1540/*
915bae9e 1541 * Find the swap type that corresponds to given device (if any).
f577eb30 1542 *
915bae9e
RW
1543 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1544 * from 0, in which the swap header is expected to be located.
1545 *
1546 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1547 */
7bf23687 1548int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 1549{
915bae9e 1550 struct block_device *bdev = NULL;
efa90a98 1551 int type;
f577eb30 1552
915bae9e
RW
1553 if (device)
1554 bdev = bdget(device);
1555
f577eb30 1556 spin_lock(&swap_lock);
efa90a98
HD
1557 for (type = 0; type < nr_swapfiles; type++) {
1558 struct swap_info_struct *sis = swap_info[type];
f577eb30 1559
915bae9e 1560 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1561 continue;
b6b5bce3 1562
915bae9e 1563 if (!bdev) {
7bf23687 1564 if (bdev_p)
dddac6a7 1565 *bdev_p = bdgrab(sis->bdev);
7bf23687 1566
6e1819d6 1567 spin_unlock(&swap_lock);
efa90a98 1568 return type;
6e1819d6 1569 }
915bae9e 1570 if (bdev == sis->bdev) {
9625a5f2 1571 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 1572
915bae9e 1573 if (se->start_block == offset) {
7bf23687 1574 if (bdev_p)
dddac6a7 1575 *bdev_p = bdgrab(sis->bdev);
7bf23687 1576
915bae9e
RW
1577 spin_unlock(&swap_lock);
1578 bdput(bdev);
efa90a98 1579 return type;
915bae9e 1580 }
f577eb30
RW
1581 }
1582 }
1583 spin_unlock(&swap_lock);
915bae9e
RW
1584 if (bdev)
1585 bdput(bdev);
1586
f577eb30
RW
1587 return -ENODEV;
1588}
1589
73c34b6a
HD
1590/*
1591 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1592 * corresponding to given index in swap_info (swap type).
1593 */
1594sector_t swapdev_block(int type, pgoff_t offset)
1595{
1596 struct block_device *bdev;
1597
1598 if ((unsigned int)type >= nr_swapfiles)
1599 return 0;
1600 if (!(swap_info[type]->flags & SWP_WRITEOK))
1601 return 0;
d4906e1a 1602 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
1603}
1604
f577eb30
RW
1605/*
1606 * Return either the total number of swap pages of given type, or the number
1607 * of free pages of that type (depending on @free)
1608 *
1609 * This is needed for software suspend
1610 */
1611unsigned int count_swap_pages(int type, int free)
1612{
1613 unsigned int n = 0;
1614
efa90a98
HD
1615 spin_lock(&swap_lock);
1616 if ((unsigned int)type < nr_swapfiles) {
1617 struct swap_info_struct *sis = swap_info[type];
1618
ec8acf20 1619 spin_lock(&sis->lock);
efa90a98
HD
1620 if (sis->flags & SWP_WRITEOK) {
1621 n = sis->pages;
f577eb30 1622 if (free)
efa90a98 1623 n -= sis->inuse_pages;
f577eb30 1624 }
ec8acf20 1625 spin_unlock(&sis->lock);
f577eb30 1626 }
efa90a98 1627 spin_unlock(&swap_lock);
f577eb30
RW
1628 return n;
1629}
73c34b6a 1630#endif /* CONFIG_HIBERNATION */
f577eb30 1631
9f8bdb3f 1632static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
179ef71c 1633{
9f8bdb3f 1634 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
179ef71c
CG
1635}
1636
1da177e4 1637/*
72866f6f
HD
1638 * No need to decide whether this PTE shares the swap entry with others,
1639 * just let do_wp_page work it out if a write is requested later - to
1640 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1641 */
044d66c1 1642static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1643 unsigned long addr, swp_entry_t entry, struct page *page)
1644{
9e16b7fb 1645 struct page *swapcache;
72835c86 1646 struct mem_cgroup *memcg;
044d66c1
HD
1647 spinlock_t *ptl;
1648 pte_t *pte;
1649 int ret = 1;
1650
9e16b7fb
HD
1651 swapcache = page;
1652 page = ksm_might_need_to_copy(page, vma, addr);
1653 if (unlikely(!page))
1654 return -ENOMEM;
1655
f627c2f5
KS
1656 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1657 &memcg, false)) {
044d66c1 1658 ret = -ENOMEM;
85d9fc89
KH
1659 goto out_nolock;
1660 }
044d66c1
HD
1661
1662 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
9f8bdb3f 1663 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
f627c2f5 1664 mem_cgroup_cancel_charge(page, memcg, false);
044d66c1
HD
1665 ret = 0;
1666 goto out;
1667 }
8a9f3ccd 1668
b084d435 1669 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1670 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1671 get_page(page);
1672 set_pte_at(vma->vm_mm, addr, pte,
1673 pte_mkold(mk_pte(page, vma->vm_page_prot)));
00501b53 1674 if (page == swapcache) {
d281ee61 1675 page_add_anon_rmap(page, vma, addr, false);
f627c2f5 1676 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1677 } else { /* ksm created a completely new copy */
d281ee61 1678 page_add_new_anon_rmap(page, vma, addr, false);
f627c2f5 1679 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
1680 lru_cache_add_active_or_unevictable(page, vma);
1681 }
1da177e4
LT
1682 swap_free(entry);
1683 /*
1684 * Move the page to the active list so it is not
1685 * immediately swapped out again after swapon.
1686 */
1687 activate_page(page);
044d66c1
HD
1688out:
1689 pte_unmap_unlock(pte, ptl);
85d9fc89 1690out_nolock:
9e16b7fb
HD
1691 if (page != swapcache) {
1692 unlock_page(page);
1693 put_page(page);
1694 }
044d66c1 1695 return ret;
1da177e4
LT
1696}
1697
1698static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1699 unsigned long addr, unsigned long end,
1700 swp_entry_t entry, struct page *page)
1701{
1da177e4 1702 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 1703 pte_t *pte;
8a9f3ccd 1704 int ret = 0;
1da177e4 1705
044d66c1
HD
1706 /*
1707 * We don't actually need pte lock while scanning for swp_pte: since
1708 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1709 * page table while we're scanning; though it could get zapped, and on
1710 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1711 * of unmatched parts which look like swp_pte, so unuse_pte must
1712 * recheck under pte lock. Scanning without pte lock lets it be
2de1a7e4 1713 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
044d66c1
HD
1714 */
1715 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1716 do {
1717 /*
1718 * swapoff spends a _lot_ of time in this loop!
1719 * Test inline before going to call unuse_pte.
1720 */
9f8bdb3f 1721 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
044d66c1
HD
1722 pte_unmap(pte);
1723 ret = unuse_pte(vma, pmd, addr, entry, page);
1724 if (ret)
1725 goto out;
1726 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1727 }
1728 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
1729 pte_unmap(pte - 1);
1730out:
8a9f3ccd 1731 return ret;
1da177e4
LT
1732}
1733
1734static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1735 unsigned long addr, unsigned long end,
1736 swp_entry_t entry, struct page *page)
1737{
1738 pmd_t *pmd;
1739 unsigned long next;
8a9f3ccd 1740 int ret;
1da177e4
LT
1741
1742 pmd = pmd_offset(pud, addr);
1743 do {
dc644a07 1744 cond_resched();
1da177e4 1745 next = pmd_addr_end(addr, end);
1a5a9906 1746 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 1747 continue;
8a9f3ccd
BS
1748 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1749 if (ret)
1750 return ret;
1da177e4
LT
1751 } while (pmd++, addr = next, addr != end);
1752 return 0;
1753}
1754
c2febafc 1755static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1da177e4
LT
1756 unsigned long addr, unsigned long end,
1757 swp_entry_t entry, struct page *page)
1758{
1759 pud_t *pud;
1760 unsigned long next;
8a9f3ccd 1761 int ret;
1da177e4 1762
c2febafc 1763 pud = pud_offset(p4d, addr);
1da177e4
LT
1764 do {
1765 next = pud_addr_end(addr, end);
1766 if (pud_none_or_clear_bad(pud))
1767 continue;
8a9f3ccd
BS
1768 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1769 if (ret)
1770 return ret;
1da177e4
LT
1771 } while (pud++, addr = next, addr != end);
1772 return 0;
1773}
1774
c2febafc
KS
1775static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1776 unsigned long addr, unsigned long end,
1777 swp_entry_t entry, struct page *page)
1778{
1779 p4d_t *p4d;
1780 unsigned long next;
1781 int ret;
1782
1783 p4d = p4d_offset(pgd, addr);
1784 do {
1785 next = p4d_addr_end(addr, end);
1786 if (p4d_none_or_clear_bad(p4d))
1787 continue;
1788 ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1789 if (ret)
1790 return ret;
1791 } while (p4d++, addr = next, addr != end);
1792 return 0;
1793}
1794
1da177e4
LT
1795static int unuse_vma(struct vm_area_struct *vma,
1796 swp_entry_t entry, struct page *page)
1797{
1798 pgd_t *pgd;
1799 unsigned long addr, end, next;
8a9f3ccd 1800 int ret;
1da177e4 1801
3ca7b3c5 1802 if (page_anon_vma(page)) {
1da177e4
LT
1803 addr = page_address_in_vma(page, vma);
1804 if (addr == -EFAULT)
1805 return 0;
1806 else
1807 end = addr + PAGE_SIZE;
1808 } else {
1809 addr = vma->vm_start;
1810 end = vma->vm_end;
1811 }
1812
1813 pgd = pgd_offset(vma->vm_mm, addr);
1814 do {
1815 next = pgd_addr_end(addr, end);
1816 if (pgd_none_or_clear_bad(pgd))
1817 continue;
c2febafc 1818 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
8a9f3ccd
BS
1819 if (ret)
1820 return ret;
1da177e4
LT
1821 } while (pgd++, addr = next, addr != end);
1822 return 0;
1823}
1824
1825static int unuse_mm(struct mm_struct *mm,
1826 swp_entry_t entry, struct page *page)
1827{
1828 struct vm_area_struct *vma;
8a9f3ccd 1829 int ret = 0;
1da177e4
LT
1830
1831 if (!down_read_trylock(&mm->mmap_sem)) {
1832 /*
7d03431c
FLVC
1833 * Activate page so shrink_inactive_list is unlikely to unmap
1834 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 1835 */
c475a8ab 1836 activate_page(page);
1da177e4
LT
1837 unlock_page(page);
1838 down_read(&mm->mmap_sem);
1839 lock_page(page);
1840 }
1da177e4 1841 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 1842 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4 1843 break;
dc644a07 1844 cond_resched();
1da177e4 1845 }
1da177e4 1846 up_read(&mm->mmap_sem);
8a9f3ccd 1847 return (ret < 0)? ret: 0;
1da177e4
LT
1848}
1849
1850/*
38b5faf4
DM
1851 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1852 * from current position to next entry still in use.
1da177e4
LT
1853 * Recycle to start on reaching the end, returning 0 when empty.
1854 */
6eb396dc 1855static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 1856 unsigned int prev, bool frontswap)
1da177e4 1857{
6eb396dc
HD
1858 unsigned int max = si->max;
1859 unsigned int i = prev;
8d69aaee 1860 unsigned char count;
1da177e4
LT
1861
1862 /*
5d337b91 1863 * No need for swap_lock here: we're just looking
1da177e4
LT
1864 * for whether an entry is in use, not modifying it; false
1865 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 1866 * allocations from this area (while holding swap_lock).
1da177e4
LT
1867 */
1868 for (;;) {
1869 if (++i >= max) {
1870 if (!prev) {
1871 i = 0;
1872 break;
1873 }
1874 /*
1875 * No entries in use at top of swap_map,
1876 * loop back to start and recheck there.
1877 */
1878 max = prev + 1;
1879 prev = 0;
1880 i = 1;
1881 }
4db0c3c2 1882 count = READ_ONCE(si->swap_map[i]);
355cfa73 1883 if (count && swap_count(count) != SWAP_MAP_BAD)
dc644a07
HD
1884 if (!frontswap || frontswap_test(si, i))
1885 break;
1886 if ((i % LATENCY_LIMIT) == 0)
1887 cond_resched();
1da177e4
LT
1888 }
1889 return i;
1890}
1891
1892/*
1893 * We completely avoid races by reading each swap page in advance,
1894 * and then search for the process using it. All the necessary
1895 * page table adjustments can then be made atomically.
38b5faf4
DM
1896 *
1897 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1898 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 1899 */
38b5faf4
DM
1900int try_to_unuse(unsigned int type, bool frontswap,
1901 unsigned long pages_to_unuse)
1da177e4 1902{
efa90a98 1903 struct swap_info_struct *si = swap_info[type];
1da177e4 1904 struct mm_struct *start_mm;
edfe23da
SL
1905 volatile unsigned char *swap_map; /* swap_map is accessed without
1906 * locking. Mark it as volatile
1907 * to prevent compiler doing
1908 * something odd.
1909 */
8d69aaee 1910 unsigned char swcount;
1da177e4
LT
1911 struct page *page;
1912 swp_entry_t entry;
6eb396dc 1913 unsigned int i = 0;
1da177e4 1914 int retval = 0;
1da177e4
LT
1915
1916 /*
1917 * When searching mms for an entry, a good strategy is to
1918 * start at the first mm we freed the previous entry from
1919 * (though actually we don't notice whether we or coincidence
1920 * freed the entry). Initialize this start_mm with a hold.
1921 *
1922 * A simpler strategy would be to start at the last mm we
1923 * freed the previous entry from; but that would take less
1924 * advantage of mmlist ordering, which clusters forked mms
1925 * together, child after parent. If we race with dup_mmap(), we
1926 * prefer to resolve parent before child, lest we miss entries
1927 * duplicated after we scanned child: using last mm would invert
570a335b 1928 * that.
1da177e4
LT
1929 */
1930 start_mm = &init_mm;
3fce371b 1931 mmget(&init_mm);
1da177e4
LT
1932
1933 /*
1934 * Keep on scanning until all entries have gone. Usually,
1935 * one pass through swap_map is enough, but not necessarily:
1936 * there are races when an instance of an entry might be missed.
1937 */
38b5faf4 1938 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4
LT
1939 if (signal_pending(current)) {
1940 retval = -EINTR;
1941 break;
1942 }
1943
886bb7e9 1944 /*
1da177e4
LT
1945 * Get a page for the entry, using the existing swap
1946 * cache page if there is one. Otherwise, get a clean
886bb7e9 1947 * page and read the swap into it.
1da177e4
LT
1948 */
1949 swap_map = &si->swap_map[i];
1950 entry = swp_entry(type, i);
02098fea 1951 page = read_swap_cache_async(entry,
23955622 1952 GFP_HIGHUSER_MOVABLE, NULL, 0, false);
1da177e4
LT
1953 if (!page) {
1954 /*
1955 * Either swap_duplicate() failed because entry
1956 * has been freed independently, and will not be
1957 * reused since sys_swapoff() already disabled
1958 * allocation from here, or alloc_page() failed.
1959 */
edfe23da
SL
1960 swcount = *swap_map;
1961 /*
1962 * We don't hold lock here, so the swap entry could be
1963 * SWAP_MAP_BAD (when the cluster is discarding).
1964 * Instead of fail out, We can just skip the swap
1965 * entry because swapoff will wait for discarding
1966 * finish anyway.
1967 */
1968 if (!swcount || swcount == SWAP_MAP_BAD)
1da177e4
LT
1969 continue;
1970 retval = -ENOMEM;
1971 break;
1972 }
1973
1974 /*
1975 * Don't hold on to start_mm if it looks like exiting.
1976 */
1977 if (atomic_read(&start_mm->mm_users) == 1) {
1978 mmput(start_mm);
1979 start_mm = &init_mm;
3fce371b 1980 mmget(&init_mm);
1da177e4
LT
1981 }
1982
1983 /*
1984 * Wait for and lock page. When do_swap_page races with
1985 * try_to_unuse, do_swap_page can handle the fault much
1986 * faster than try_to_unuse can locate the entry. This
1987 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1988 * defer to do_swap_page in such a case - in some tests,
1989 * do_swap_page and try_to_unuse repeatedly compete.
1990 */
1991 wait_on_page_locked(page);
1992 wait_on_page_writeback(page);
1993 lock_page(page);
1994 wait_on_page_writeback(page);
1995
1996 /*
1997 * Remove all references to entry.
1da177e4 1998 */
1da177e4 1999 swcount = *swap_map;
aaa46865
HD
2000 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
2001 retval = shmem_unuse(entry, page);
2002 /* page has already been unlocked and released */
2003 if (retval < 0)
2004 break;
2005 continue;
1da177e4 2006 }
aaa46865
HD
2007 if (swap_count(swcount) && start_mm != &init_mm)
2008 retval = unuse_mm(start_mm, entry, page);
2009
355cfa73 2010 if (swap_count(*swap_map)) {
1da177e4
LT
2011 int set_start_mm = (*swap_map >= swcount);
2012 struct list_head *p = &start_mm->mmlist;
2013 struct mm_struct *new_start_mm = start_mm;
2014 struct mm_struct *prev_mm = start_mm;
2015 struct mm_struct *mm;
2016
3fce371b
VN
2017 mmget(new_start_mm);
2018 mmget(prev_mm);
1da177e4 2019 spin_lock(&mmlist_lock);
aaa46865 2020 while (swap_count(*swap_map) && !retval &&
1da177e4
LT
2021 (p = p->next) != &start_mm->mmlist) {
2022 mm = list_entry(p, struct mm_struct, mmlist);
388f7934 2023 if (!mmget_not_zero(mm))
1da177e4 2024 continue;
1da177e4
LT
2025 spin_unlock(&mmlist_lock);
2026 mmput(prev_mm);
2027 prev_mm = mm;
2028
2029 cond_resched();
2030
2031 swcount = *swap_map;
355cfa73 2032 if (!swap_count(swcount)) /* any usage ? */
1da177e4 2033 ;
aaa46865 2034 else if (mm == &init_mm)
1da177e4 2035 set_start_mm = 1;
aaa46865 2036 else
1da177e4 2037 retval = unuse_mm(mm, entry, page);
355cfa73 2038
32c5fc10 2039 if (set_start_mm && *swap_map < swcount) {
1da177e4 2040 mmput(new_start_mm);
3fce371b 2041 mmget(mm);
1da177e4
LT
2042 new_start_mm = mm;
2043 set_start_mm = 0;
2044 }
2045 spin_lock(&mmlist_lock);
2046 }
2047 spin_unlock(&mmlist_lock);
2048 mmput(prev_mm);
2049 mmput(start_mm);
2050 start_mm = new_start_mm;
2051 }
2052 if (retval) {
2053 unlock_page(page);
09cbfeaf 2054 put_page(page);
1da177e4
LT
2055 break;
2056 }
2057
1da177e4
LT
2058 /*
2059 * If a reference remains (rare), we would like to leave
2060 * the page in the swap cache; but try_to_unmap could
2061 * then re-duplicate the entry once we drop page lock,
2062 * so we might loop indefinitely; also, that page could
2063 * not be swapped out to other storage meanwhile. So:
2064 * delete from cache even if there's another reference,
2065 * after ensuring that the data has been saved to disk -
2066 * since if the reference remains (rarer), it will be
2067 * read from disk into another page. Splitting into two
2068 * pages would be incorrect if swap supported "shared
2069 * private" pages, but they are handled by tmpfs files.
5ad64688
HD
2070 *
2071 * Given how unuse_vma() targets one particular offset
2072 * in an anon_vma, once the anon_vma has been determined,
2073 * this splitting happens to be just what is needed to
2074 * handle where KSM pages have been swapped out: re-reading
2075 * is unnecessarily slow, but we can fix that later on.
1da177e4 2076 */
355cfa73
KH
2077 if (swap_count(*swap_map) &&
2078 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
2079 struct writeback_control wbc = {
2080 .sync_mode = WB_SYNC_NONE,
2081 };
2082
e0709829 2083 swap_writepage(compound_head(page), &wbc);
1da177e4
LT
2084 lock_page(page);
2085 wait_on_page_writeback(page);
2086 }
68bdc8d6
HD
2087
2088 /*
2089 * It is conceivable that a racing task removed this page from
2090 * swap cache just before we acquired the page lock at the top,
2091 * or while we dropped it in unuse_mm(). The page might even
2092 * be back in swap cache on another swap area: that we must not
2093 * delete, since it may not have been written out to swap yet.
2094 */
2095 if (PageSwapCache(page) &&
e0709829
HY
2096 likely(page_private(page) == entry.val) &&
2097 !page_swapped(page))
2098 delete_from_swap_cache(compound_head(page));
1da177e4
LT
2099
2100 /*
2101 * So we could skip searching mms once swap count went
2102 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 2103 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
2104 */
2105 SetPageDirty(page);
2106 unlock_page(page);
09cbfeaf 2107 put_page(page);
1da177e4
LT
2108
2109 /*
2110 * Make sure that we aren't completely killing
2111 * interactive performance.
2112 */
2113 cond_resched();
38b5faf4
DM
2114 if (frontswap && pages_to_unuse > 0) {
2115 if (!--pages_to_unuse)
2116 break;
2117 }
1da177e4
LT
2118 }
2119
2120 mmput(start_mm);
1da177e4
LT
2121 return retval;
2122}
2123
2124/*
5d337b91
HD
2125 * After a successful try_to_unuse, if no swap is now in use, we know
2126 * we can empty the mmlist. swap_lock must be held on entry and exit.
2127 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
2128 * added to the mmlist just after page_duplicate - before would be racy.
2129 */
2130static void drain_mmlist(void)
2131{
2132 struct list_head *p, *next;
efa90a98 2133 unsigned int type;
1da177e4 2134
efa90a98
HD
2135 for (type = 0; type < nr_swapfiles; type++)
2136 if (swap_info[type]->inuse_pages)
1da177e4
LT
2137 return;
2138 spin_lock(&mmlist_lock);
2139 list_for_each_safe(p, next, &init_mm.mmlist)
2140 list_del_init(p);
2141 spin_unlock(&mmlist_lock);
2142}
2143
2144/*
2145 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
2146 * corresponds to page offset for the specified swap entry.
2147 * Note that the type of this function is sector_t, but it returns page offset
2148 * into the bdev, not sector offset.
1da177e4 2149 */
d4906e1a 2150static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 2151{
f29ad6a9
HD
2152 struct swap_info_struct *sis;
2153 struct swap_extent *start_se;
2154 struct swap_extent *se;
2155 pgoff_t offset;
2156
efa90a98 2157 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
2158 *bdev = sis->bdev;
2159
2160 offset = swp_offset(entry);
2161 start_se = sis->curr_swap_extent;
2162 se = start_se;
1da177e4
LT
2163
2164 for ( ; ; ) {
1da177e4
LT
2165 if (se->start_page <= offset &&
2166 offset < (se->start_page + se->nr_pages)) {
2167 return se->start_block + (offset - se->start_page);
2168 }
a8ae4991 2169 se = list_next_entry(se, list);
1da177e4
LT
2170 sis->curr_swap_extent = se;
2171 BUG_ON(se == start_se); /* It *must* be present */
2172 }
2173}
2174
d4906e1a
LS
2175/*
2176 * Returns the page offset into bdev for the specified page's swap entry.
2177 */
2178sector_t map_swap_page(struct page *page, struct block_device **bdev)
2179{
2180 swp_entry_t entry;
2181 entry.val = page_private(page);
2182 return map_swap_entry(entry, bdev);
2183}
2184
1da177e4
LT
2185/*
2186 * Free all of a swapdev's extent information
2187 */
2188static void destroy_swap_extents(struct swap_info_struct *sis)
2189{
9625a5f2 2190 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
2191 struct swap_extent *se;
2192
a8ae4991 2193 se = list_first_entry(&sis->first_swap_extent.list,
1da177e4
LT
2194 struct swap_extent, list);
2195 list_del(&se->list);
2196 kfree(se);
2197 }
62c230bc
MG
2198
2199 if (sis->flags & SWP_FILE) {
2200 struct file *swap_file = sis->swap_file;
2201 struct address_space *mapping = swap_file->f_mapping;
2202
2203 sis->flags &= ~SWP_FILE;
2204 mapping->a_ops->swap_deactivate(swap_file);
2205 }
1da177e4
LT
2206}
2207
2208/*
2209 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 2210 * extent list. The extent list is kept sorted in page order.
1da177e4 2211 *
11d31886 2212 * This function rather assumes that it is called in ascending page order.
1da177e4 2213 */
a509bc1a 2214int
1da177e4
LT
2215add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2216 unsigned long nr_pages, sector_t start_block)
2217{
2218 struct swap_extent *se;
2219 struct swap_extent *new_se;
2220 struct list_head *lh;
2221
9625a5f2
HD
2222 if (start_page == 0) {
2223 se = &sis->first_swap_extent;
2224 sis->curr_swap_extent = se;
2225 se->start_page = 0;
2226 se->nr_pages = nr_pages;
2227 se->start_block = start_block;
2228 return 1;
2229 } else {
2230 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 2231 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
2232 BUG_ON(se->start_page + se->nr_pages != start_page);
2233 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
2234 /* Merge it */
2235 se->nr_pages += nr_pages;
2236 return 0;
2237 }
1da177e4
LT
2238 }
2239
2240 /*
2241 * No merge. Insert a new extent, preserving ordering.
2242 */
2243 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2244 if (new_se == NULL)
2245 return -ENOMEM;
2246 new_se->start_page = start_page;
2247 new_se->nr_pages = nr_pages;
2248 new_se->start_block = start_block;
2249
9625a5f2 2250 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 2251 return 1;
1da177e4
LT
2252}
2253
2254/*
2255 * A `swap extent' is a simple thing which maps a contiguous range of pages
2256 * onto a contiguous range of disk blocks. An ordered list of swap extents
2257 * is built at swapon time and is then used at swap_writepage/swap_readpage
2258 * time for locating where on disk a page belongs.
2259 *
2260 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2261 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2262 * swap files identically.
2263 *
2264 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2265 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2266 * swapfiles are handled *identically* after swapon time.
2267 *
2268 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2269 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2270 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2271 * requirements, they are simply tossed out - we will never use those blocks
2272 * for swapping.
2273 *
b0d9bcd4 2274 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
2275 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2276 * which will scribble on the fs.
2277 *
2278 * The amount of disk space which a single swap extent represents varies.
2279 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2280 * extents in the list. To avoid much list walking, we cache the previous
2281 * search location in `curr_swap_extent', and start new searches from there.
2282 * This is extremely effective. The average number of iterations in
2283 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2284 */
53092a74 2285static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 2286{
62c230bc
MG
2287 struct file *swap_file = sis->swap_file;
2288 struct address_space *mapping = swap_file->f_mapping;
2289 struct inode *inode = mapping->host;
1da177e4
LT
2290 int ret;
2291
1da177e4
LT
2292 if (S_ISBLK(inode->i_mode)) {
2293 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 2294 *span = sis->pages;
a509bc1a 2295 return ret;
1da177e4
LT
2296 }
2297
62c230bc 2298 if (mapping->a_ops->swap_activate) {
a509bc1a 2299 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
62c230bc
MG
2300 if (!ret) {
2301 sis->flags |= SWP_FILE;
2302 ret = add_swap_extent(sis, 0, sis->max, 0);
2303 *span = sis->pages;
2304 }
a509bc1a 2305 return ret;
62c230bc
MG
2306 }
2307
a509bc1a 2308 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
2309}
2310
cf0cac0a 2311static void _enable_swap_info(struct swap_info_struct *p, int prio,
2a8f9449
SL
2312 unsigned char *swap_map,
2313 struct swap_cluster_info *cluster_info)
40531542 2314{
40531542
CEB
2315 if (prio >= 0)
2316 p->prio = prio;
2317 else
2318 p->prio = --least_priority;
18ab4d4c
DS
2319 /*
2320 * the plist prio is negated because plist ordering is
2321 * low-to-high, while swap ordering is high-to-low
2322 */
2323 p->list.prio = -p->prio;
2324 p->avail_list.prio = -p->prio;
40531542 2325 p->swap_map = swap_map;
2a8f9449 2326 p->cluster_info = cluster_info;
40531542 2327 p->flags |= SWP_WRITEOK;
ec8acf20 2328 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
2329 total_swap_pages += p->pages;
2330
adfab836 2331 assert_spin_locked(&swap_lock);
adfab836 2332 /*
18ab4d4c
DS
2333 * both lists are plists, and thus priority ordered.
2334 * swap_active_head needs to be priority ordered for swapoff(),
2335 * which on removal of any swap_info_struct with an auto-assigned
2336 * (i.e. negative) priority increments the auto-assigned priority
2337 * of any lower-priority swap_info_structs.
2338 * swap_avail_head needs to be priority ordered for get_swap_page(),
2339 * which allocates swap pages from the highest available priority
2340 * swap_info_struct.
adfab836 2341 */
18ab4d4c
DS
2342 plist_add(&p->list, &swap_active_head);
2343 spin_lock(&swap_avail_lock);
2344 plist_add(&p->avail_list, &swap_avail_head);
2345 spin_unlock(&swap_avail_lock);
cf0cac0a
CEB
2346}
2347
2348static void enable_swap_info(struct swap_info_struct *p, int prio,
2349 unsigned char *swap_map,
2a8f9449 2350 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
2351 unsigned long *frontswap_map)
2352{
4f89849d 2353 frontswap_init(p->type, frontswap_map);
cf0cac0a 2354 spin_lock(&swap_lock);
ec8acf20 2355 spin_lock(&p->lock);
2a8f9449 2356 _enable_swap_info(p, prio, swap_map, cluster_info);
ec8acf20 2357 spin_unlock(&p->lock);
cf0cac0a
CEB
2358 spin_unlock(&swap_lock);
2359}
2360
2361static void reinsert_swap_info(struct swap_info_struct *p)
2362{
2363 spin_lock(&swap_lock);
ec8acf20 2364 spin_lock(&p->lock);
2a8f9449 2365 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
ec8acf20 2366 spin_unlock(&p->lock);
40531542
CEB
2367 spin_unlock(&swap_lock);
2368}
2369
67afa38e
TC
2370bool has_usable_swap(void)
2371{
2372 bool ret = true;
2373
2374 spin_lock(&swap_lock);
2375 if (plist_head_empty(&swap_active_head))
2376 ret = false;
2377 spin_unlock(&swap_lock);
2378 return ret;
2379}
2380
c4ea37c2 2381SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 2382{
73c34b6a 2383 struct swap_info_struct *p = NULL;
8d69aaee 2384 unsigned char *swap_map;
2a8f9449 2385 struct swap_cluster_info *cluster_info;
4f89849d 2386 unsigned long *frontswap_map;
1da177e4
LT
2387 struct file *swap_file, *victim;
2388 struct address_space *mapping;
2389 struct inode *inode;
91a27b2a 2390 struct filename *pathname;
adfab836 2391 int err, found = 0;
5b808a23 2392 unsigned int old_block_size;
886bb7e9 2393
1da177e4
LT
2394 if (!capable(CAP_SYS_ADMIN))
2395 return -EPERM;
2396
191c5424
AV
2397 BUG_ON(!current->mm);
2398
1da177e4 2399 pathname = getname(specialfile);
1da177e4 2400 if (IS_ERR(pathname))
f58b59c1 2401 return PTR_ERR(pathname);
1da177e4 2402
669abf4e 2403 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
2404 err = PTR_ERR(victim);
2405 if (IS_ERR(victim))
2406 goto out;
2407
2408 mapping = victim->f_mapping;
5d337b91 2409 spin_lock(&swap_lock);
18ab4d4c 2410 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 2411 if (p->flags & SWP_WRITEOK) {
adfab836
DS
2412 if (p->swap_file->f_mapping == mapping) {
2413 found = 1;
1da177e4 2414 break;
adfab836 2415 }
1da177e4 2416 }
1da177e4 2417 }
adfab836 2418 if (!found) {
1da177e4 2419 err = -EINVAL;
5d337b91 2420 spin_unlock(&swap_lock);
1da177e4
LT
2421 goto out_dput;
2422 }
191c5424 2423 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
2424 vm_unacct_memory(p->pages);
2425 else {
2426 err = -ENOMEM;
5d337b91 2427 spin_unlock(&swap_lock);
1da177e4
LT
2428 goto out_dput;
2429 }
18ab4d4c
DS
2430 spin_lock(&swap_avail_lock);
2431 plist_del(&p->avail_list, &swap_avail_head);
2432 spin_unlock(&swap_avail_lock);
ec8acf20 2433 spin_lock(&p->lock);
78ecba08 2434 if (p->prio < 0) {
adfab836
DS
2435 struct swap_info_struct *si = p;
2436
18ab4d4c 2437 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 2438 si->prio++;
18ab4d4c
DS
2439 si->list.prio--;
2440 si->avail_list.prio--;
adfab836 2441 }
78ecba08
HD
2442 least_priority++;
2443 }
18ab4d4c 2444 plist_del(&p->list, &swap_active_head);
ec8acf20 2445 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
2446 total_swap_pages -= p->pages;
2447 p->flags &= ~SWP_WRITEOK;
ec8acf20 2448 spin_unlock(&p->lock);
5d337b91 2449 spin_unlock(&swap_lock);
fb4f88dc 2450
039939a6
TC
2451 disable_swap_slots_cache_lock();
2452
e1e12d2f 2453 set_current_oom_origin();
adfab836 2454 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
e1e12d2f 2455 clear_current_oom_origin();
1da177e4 2456
1da177e4
LT
2457 if (err) {
2458 /* re-insert swap space back into swap_list */
cf0cac0a 2459 reinsert_swap_info(p);
039939a6 2460 reenable_swap_slots_cache_unlock();
1da177e4
LT
2461 goto out_dput;
2462 }
52b7efdb 2463
039939a6
TC
2464 reenable_swap_slots_cache_unlock();
2465
815c2c54
SL
2466 flush_work(&p->discard_work);
2467
5d337b91 2468 destroy_swap_extents(p);
570a335b
HD
2469 if (p->flags & SWP_CONTINUED)
2470 free_swap_count_continuations(p);
2471
fc0abb14 2472 mutex_lock(&swapon_mutex);
5d337b91 2473 spin_lock(&swap_lock);
ec8acf20 2474 spin_lock(&p->lock);
5d337b91
HD
2475 drain_mmlist();
2476
52b7efdb 2477 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
2478 p->highest_bit = 0; /* cuts scans short */
2479 while (p->flags >= SWP_SCANNING) {
ec8acf20 2480 spin_unlock(&p->lock);
5d337b91 2481 spin_unlock(&swap_lock);
13e4b57f 2482 schedule_timeout_uninterruptible(1);
5d337b91 2483 spin_lock(&swap_lock);
ec8acf20 2484 spin_lock(&p->lock);
52b7efdb 2485 }
52b7efdb 2486
1da177e4 2487 swap_file = p->swap_file;
5b808a23 2488 old_block_size = p->old_block_size;
1da177e4
LT
2489 p->swap_file = NULL;
2490 p->max = 0;
2491 swap_map = p->swap_map;
2492 p->swap_map = NULL;
2a8f9449
SL
2493 cluster_info = p->cluster_info;
2494 p->cluster_info = NULL;
4f89849d 2495 frontswap_map = frontswap_map_get(p);
ec8acf20 2496 spin_unlock(&p->lock);
5d337b91 2497 spin_unlock(&swap_lock);
adfab836 2498 frontswap_invalidate_area(p->type);
58e97ba6 2499 frontswap_map_set(p, NULL);
fc0abb14 2500 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
2501 free_percpu(p->percpu_cluster);
2502 p->percpu_cluster = NULL;
1da177e4 2503 vfree(swap_map);
54f180d3
HY
2504 kvfree(cluster_info);
2505 kvfree(frontswap_map);
2de1a7e4 2506 /* Destroy swap account information */
adfab836 2507 swap_cgroup_swapoff(p->type);
4b3ef9da 2508 exit_swap_address_space(p->type);
27a7faa0 2509
1da177e4
LT
2510 inode = mapping->host;
2511 if (S_ISBLK(inode->i_mode)) {
2512 struct block_device *bdev = I_BDEV(inode);
5b808a23 2513 set_blocksize(bdev, old_block_size);
e525fd89 2514 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2515 } else {
5955102c 2516 inode_lock(inode);
1da177e4 2517 inode->i_flags &= ~S_SWAPFILE;
5955102c 2518 inode_unlock(inode);
1da177e4
LT
2519 }
2520 filp_close(swap_file, NULL);
f893ab41
WY
2521
2522 /*
2523 * Clear the SWP_USED flag after all resources are freed so that swapon
2524 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2525 * not hold p->lock after we cleared its SWP_WRITEOK.
2526 */
2527 spin_lock(&swap_lock);
2528 p->flags = 0;
2529 spin_unlock(&swap_lock);
2530
1da177e4 2531 err = 0;
66d7dd51
KS
2532 atomic_inc(&proc_poll_event);
2533 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
2534
2535out_dput:
2536 filp_close(victim, NULL);
2537out:
f58b59c1 2538 putname(pathname);
1da177e4
LT
2539 return err;
2540}
2541
2542#ifdef CONFIG_PROC_FS
66d7dd51
KS
2543static unsigned swaps_poll(struct file *file, poll_table *wait)
2544{
f1514638 2545 struct seq_file *seq = file->private_data;
66d7dd51
KS
2546
2547 poll_wait(file, &proc_poll_wait, wait);
2548
f1514638
KS
2549 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2550 seq->poll_event = atomic_read(&proc_poll_event);
66d7dd51
KS
2551 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2552 }
2553
2554 return POLLIN | POLLRDNORM;
2555}
2556
1da177e4
LT
2557/* iterator */
2558static void *swap_start(struct seq_file *swap, loff_t *pos)
2559{
efa90a98
HD
2560 struct swap_info_struct *si;
2561 int type;
1da177e4
LT
2562 loff_t l = *pos;
2563
fc0abb14 2564 mutex_lock(&swapon_mutex);
1da177e4 2565
881e4aab
SS
2566 if (!l)
2567 return SEQ_START_TOKEN;
2568
efa90a98
HD
2569 for (type = 0; type < nr_swapfiles; type++) {
2570 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2571 si = swap_info[type];
2572 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2573 continue;
881e4aab 2574 if (!--l)
efa90a98 2575 return si;
1da177e4
LT
2576 }
2577
2578 return NULL;
2579}
2580
2581static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2582{
efa90a98
HD
2583 struct swap_info_struct *si = v;
2584 int type;
1da177e4 2585
881e4aab 2586 if (v == SEQ_START_TOKEN)
efa90a98
HD
2587 type = 0;
2588 else
2589 type = si->type + 1;
881e4aab 2590
efa90a98
HD
2591 for (; type < nr_swapfiles; type++) {
2592 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2593 si = swap_info[type];
2594 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
2595 continue;
2596 ++*pos;
efa90a98 2597 return si;
1da177e4
LT
2598 }
2599
2600 return NULL;
2601}
2602
2603static void swap_stop(struct seq_file *swap, void *v)
2604{
fc0abb14 2605 mutex_unlock(&swapon_mutex);
1da177e4
LT
2606}
2607
2608static int swap_show(struct seq_file *swap, void *v)
2609{
efa90a98 2610 struct swap_info_struct *si = v;
1da177e4
LT
2611 struct file *file;
2612 int len;
2613
efa90a98 2614 if (si == SEQ_START_TOKEN) {
881e4aab
SS
2615 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2616 return 0;
2617 }
1da177e4 2618
efa90a98 2619 file = si->swap_file;
2726d566 2620 len = seq_file_path(swap, file, " \t\n\\");
6eb396dc 2621 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9 2622 len < 40 ? 40 - len : 1, " ",
496ad9aa 2623 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2624 "partition" : "file\t",
efa90a98
HD
2625 si->pages << (PAGE_SHIFT - 10),
2626 si->inuse_pages << (PAGE_SHIFT - 10),
2627 si->prio);
1da177e4
LT
2628 return 0;
2629}
2630
15ad7cdc 2631static const struct seq_operations swaps_op = {
1da177e4
LT
2632 .start = swap_start,
2633 .next = swap_next,
2634 .stop = swap_stop,
2635 .show = swap_show
2636};
2637
2638static int swaps_open(struct inode *inode, struct file *file)
2639{
f1514638 2640 struct seq_file *seq;
66d7dd51
KS
2641 int ret;
2642
66d7dd51 2643 ret = seq_open(file, &swaps_op);
f1514638 2644 if (ret)
66d7dd51 2645 return ret;
66d7dd51 2646
f1514638
KS
2647 seq = file->private_data;
2648 seq->poll_event = atomic_read(&proc_poll_event);
2649 return 0;
1da177e4
LT
2650}
2651
15ad7cdc 2652static const struct file_operations proc_swaps_operations = {
1da177e4
LT
2653 .open = swaps_open,
2654 .read = seq_read,
2655 .llseek = seq_lseek,
2656 .release = seq_release,
66d7dd51 2657 .poll = swaps_poll,
1da177e4
LT
2658};
2659
2660static int __init procswaps_init(void)
2661{
3d71f86f 2662 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
2663 return 0;
2664}
2665__initcall(procswaps_init);
2666#endif /* CONFIG_PROC_FS */
2667
1796316a
JB
2668#ifdef MAX_SWAPFILES_CHECK
2669static int __init max_swapfiles_check(void)
2670{
2671 MAX_SWAPFILES_CHECK();
2672 return 0;
2673}
2674late_initcall(max_swapfiles_check);
2675#endif
2676
53cbb243 2677static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2678{
73c34b6a 2679 struct swap_info_struct *p;
1da177e4 2680 unsigned int type;
efa90a98
HD
2681
2682 p = kzalloc(sizeof(*p), GFP_KERNEL);
2683 if (!p)
53cbb243 2684 return ERR_PTR(-ENOMEM);
efa90a98 2685
5d337b91 2686 spin_lock(&swap_lock);
efa90a98
HD
2687 for (type = 0; type < nr_swapfiles; type++) {
2688 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2689 break;
efa90a98 2690 }
0697212a 2691 if (type >= MAX_SWAPFILES) {
5d337b91 2692 spin_unlock(&swap_lock);
efa90a98 2693 kfree(p);
730c0581 2694 return ERR_PTR(-EPERM);
1da177e4 2695 }
efa90a98
HD
2696 if (type >= nr_swapfiles) {
2697 p->type = type;
2698 swap_info[type] = p;
2699 /*
2700 * Write swap_info[type] before nr_swapfiles, in case a
2701 * racing procfs swap_start() or swap_next() is reading them.
2702 * (We never shrink nr_swapfiles, we never free this entry.)
2703 */
2704 smp_wmb();
2705 nr_swapfiles++;
2706 } else {
2707 kfree(p);
2708 p = swap_info[type];
2709 /*
2710 * Do not memset this entry: a racing procfs swap_next()
2711 * would be relying on p->type to remain valid.
2712 */
2713 }
9625a5f2 2714 INIT_LIST_HEAD(&p->first_swap_extent.list);
18ab4d4c
DS
2715 plist_node_init(&p->list, 0);
2716 plist_node_init(&p->avail_list, 0);
1da177e4 2717 p->flags = SWP_USED;
5d337b91 2718 spin_unlock(&swap_lock);
ec8acf20 2719 spin_lock_init(&p->lock);
efa90a98 2720
53cbb243 2721 return p;
53cbb243
CEB
2722}
2723
4d0e1e10
CEB
2724static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2725{
2726 int error;
2727
2728 if (S_ISBLK(inode->i_mode)) {
2729 p->bdev = bdgrab(I_BDEV(inode));
2730 error = blkdev_get(p->bdev,
6f179af8 2731 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
4d0e1e10
CEB
2732 if (error < 0) {
2733 p->bdev = NULL;
6f179af8 2734 return error;
4d0e1e10
CEB
2735 }
2736 p->old_block_size = block_size(p->bdev);
2737 error = set_blocksize(p->bdev, PAGE_SIZE);
2738 if (error < 0)
87ade72a 2739 return error;
4d0e1e10
CEB
2740 p->flags |= SWP_BLKDEV;
2741 } else if (S_ISREG(inode->i_mode)) {
2742 p->bdev = inode->i_sb->s_bdev;
5955102c 2743 inode_lock(inode);
87ade72a
CEB
2744 if (IS_SWAPFILE(inode))
2745 return -EBUSY;
2746 } else
2747 return -EINVAL;
4d0e1e10
CEB
2748
2749 return 0;
4d0e1e10
CEB
2750}
2751
ca8bd38b
CEB
2752static unsigned long read_swap_header(struct swap_info_struct *p,
2753 union swap_header *swap_header,
2754 struct inode *inode)
2755{
2756 int i;
2757 unsigned long maxpages;
2758 unsigned long swapfilepages;
d6bbbd29 2759 unsigned long last_page;
ca8bd38b
CEB
2760
2761 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2762 pr_err("Unable to find swap-space signature\n");
38719025 2763 return 0;
ca8bd38b
CEB
2764 }
2765
2766 /* swap partition endianess hack... */
2767 if (swab32(swap_header->info.version) == 1) {
2768 swab32s(&swap_header->info.version);
2769 swab32s(&swap_header->info.last_page);
2770 swab32s(&swap_header->info.nr_badpages);
dd111be6
JH
2771 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2772 return 0;
ca8bd38b
CEB
2773 for (i = 0; i < swap_header->info.nr_badpages; i++)
2774 swab32s(&swap_header->info.badpages[i]);
2775 }
2776 /* Check the swap header's sub-version */
2777 if (swap_header->info.version != 1) {
465c47fd
AM
2778 pr_warn("Unable to handle swap header version %d\n",
2779 swap_header->info.version);
38719025 2780 return 0;
ca8bd38b
CEB
2781 }
2782
2783 p->lowest_bit = 1;
2784 p->cluster_next = 1;
2785 p->cluster_nr = 0;
2786
2787 /*
2788 * Find out how many pages are allowed for a single swap
9b15b817 2789 * device. There are two limiting factors: 1) the number
a2c16d6c
HD
2790 * of bits for the swap offset in the swp_entry_t type, and
2791 * 2) the number of bits in the swap pte as defined by the
9b15b817 2792 * different architectures. In order to find the
a2c16d6c 2793 * largest possible bit mask, a swap entry with swap type 0
ca8bd38b 2794 * and swap offset ~0UL is created, encoded to a swap pte,
a2c16d6c 2795 * decoded to a swp_entry_t again, and finally the swap
ca8bd38b
CEB
2796 * offset is extracted. This will mask all the bits from
2797 * the initial ~0UL mask that can't be encoded in either
2798 * the swp_entry_t or the architecture definition of a
9b15b817 2799 * swap pte.
ca8bd38b
CEB
2800 */
2801 maxpages = swp_offset(pte_to_swp_entry(
9b15b817 2802 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
d6bbbd29
RJ
2803 last_page = swap_header->info.last_page;
2804 if (last_page > maxpages) {
465c47fd 2805 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2806 maxpages << (PAGE_SHIFT - 10),
2807 last_page << (PAGE_SHIFT - 10));
2808 }
2809 if (maxpages > last_page) {
2810 maxpages = last_page + 1;
ca8bd38b
CEB
2811 /* p->max is an unsigned int: don't overflow it */
2812 if ((unsigned int)maxpages == 0)
2813 maxpages = UINT_MAX;
2814 }
2815 p->highest_bit = maxpages - 1;
2816
2817 if (!maxpages)
38719025 2818 return 0;
ca8bd38b
CEB
2819 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2820 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 2821 pr_warn("Swap area shorter than signature indicates\n");
38719025 2822 return 0;
ca8bd38b
CEB
2823 }
2824 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 2825 return 0;
ca8bd38b 2826 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 2827 return 0;
ca8bd38b
CEB
2828
2829 return maxpages;
ca8bd38b
CEB
2830}
2831
4b3ef9da 2832#define SWAP_CLUSTER_INFO_COLS \
235b6217 2833 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
4b3ef9da
HY
2834#define SWAP_CLUSTER_SPACE_COLS \
2835 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2836#define SWAP_CLUSTER_COLS \
2837 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
235b6217 2838
915d4d7b
CEB
2839static int setup_swap_map_and_extents(struct swap_info_struct *p,
2840 union swap_header *swap_header,
2841 unsigned char *swap_map,
2a8f9449 2842 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
2843 unsigned long maxpages,
2844 sector_t *span)
2845{
235b6217 2846 unsigned int j, k;
915d4d7b
CEB
2847 unsigned int nr_good_pages;
2848 int nr_extents;
2a8f9449 2849 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
235b6217
HY
2850 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2851 unsigned long i, idx;
915d4d7b
CEB
2852
2853 nr_good_pages = maxpages - 1; /* omit header page */
2854
6b534915
HY
2855 cluster_list_init(&p->free_clusters);
2856 cluster_list_init(&p->discard_clusters);
2a8f9449 2857
915d4d7b
CEB
2858 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2859 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
2860 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2861 return -EINVAL;
915d4d7b
CEB
2862 if (page_nr < maxpages) {
2863 swap_map[page_nr] = SWAP_MAP_BAD;
2864 nr_good_pages--;
2a8f9449
SL
2865 /*
2866 * Haven't marked the cluster free yet, no list
2867 * operation involved
2868 */
2869 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
2870 }
2871 }
2872
2a8f9449
SL
2873 /* Haven't marked the cluster free yet, no list operation involved */
2874 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2875 inc_cluster_info_page(p, cluster_info, i);
2876
915d4d7b
CEB
2877 if (nr_good_pages) {
2878 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
2879 /*
2880 * Not mark the cluster free yet, no list
2881 * operation involved
2882 */
2883 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
2884 p->max = maxpages;
2885 p->pages = nr_good_pages;
2886 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
2887 if (nr_extents < 0)
2888 return nr_extents;
915d4d7b
CEB
2889 nr_good_pages = p->pages;
2890 }
2891 if (!nr_good_pages) {
465c47fd 2892 pr_warn("Empty swap-file\n");
bdb8e3f6 2893 return -EINVAL;
915d4d7b
CEB
2894 }
2895
2a8f9449
SL
2896 if (!cluster_info)
2897 return nr_extents;
2898
235b6217 2899
4b3ef9da
HY
2900 /*
2901 * Reduce false cache line sharing between cluster_info and
2902 * sharing same address space.
2903 */
235b6217
HY
2904 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2905 j = (k + col) % SWAP_CLUSTER_COLS;
2906 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2907 idx = i * SWAP_CLUSTER_COLS + j;
2908 if (idx >= nr_clusters)
2909 continue;
2910 if (cluster_count(&cluster_info[idx]))
2911 continue;
2a8f9449 2912 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
6b534915
HY
2913 cluster_list_add_tail(&p->free_clusters, cluster_info,
2914 idx);
2a8f9449 2915 }
2a8f9449 2916 }
915d4d7b 2917 return nr_extents;
915d4d7b
CEB
2918}
2919
dcf6b7dd
RA
2920/*
2921 * Helper to sys_swapon determining if a given swap
2922 * backing device queue supports DISCARD operations.
2923 */
2924static bool swap_discardable(struct swap_info_struct *si)
2925{
2926 struct request_queue *q = bdev_get_queue(si->bdev);
2927
2928 if (!q || !blk_queue_discard(q))
2929 return false;
2930
2931 return true;
2932}
2933
53cbb243
CEB
2934SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2935{
2936 struct swap_info_struct *p;
91a27b2a 2937 struct filename *name;
53cbb243
CEB
2938 struct file *swap_file = NULL;
2939 struct address_space *mapping;
40531542 2940 int prio;
53cbb243
CEB
2941 int error;
2942 union swap_header *swap_header;
915d4d7b 2943 int nr_extents;
53cbb243
CEB
2944 sector_t span;
2945 unsigned long maxpages;
53cbb243 2946 unsigned char *swap_map = NULL;
2a8f9449 2947 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 2948 unsigned long *frontswap_map = NULL;
53cbb243
CEB
2949 struct page *page = NULL;
2950 struct inode *inode = NULL;
53cbb243 2951
d15cab97
HD
2952 if (swap_flags & ~SWAP_FLAGS_VALID)
2953 return -EINVAL;
2954
53cbb243
CEB
2955 if (!capable(CAP_SYS_ADMIN))
2956 return -EPERM;
2957
2958 p = alloc_swap_info();
2542e513
CEB
2959 if (IS_ERR(p))
2960 return PTR_ERR(p);
53cbb243 2961
815c2c54
SL
2962 INIT_WORK(&p->discard_work, swap_discard_work);
2963
1da177e4 2964 name = getname(specialfile);
1da177e4 2965 if (IS_ERR(name)) {
7de7fb6b 2966 error = PTR_ERR(name);
1da177e4 2967 name = NULL;
bd69010b 2968 goto bad_swap;
1da177e4 2969 }
669abf4e 2970 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 2971 if (IS_ERR(swap_file)) {
7de7fb6b 2972 error = PTR_ERR(swap_file);
1da177e4 2973 swap_file = NULL;
bd69010b 2974 goto bad_swap;
1da177e4
LT
2975 }
2976
2977 p->swap_file = swap_file;
2978 mapping = swap_file->f_mapping;
2130781e 2979 inode = mapping->host;
6f179af8 2980
5955102c 2981 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
4d0e1e10
CEB
2982 error = claim_swapfile(p, inode);
2983 if (unlikely(error))
1da177e4 2984 goto bad_swap;
1da177e4 2985
1da177e4
LT
2986 /*
2987 * Read the swap header.
2988 */
2989 if (!mapping->a_ops->readpage) {
2990 error = -EINVAL;
2991 goto bad_swap;
2992 }
090d2b18 2993 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
2994 if (IS_ERR(page)) {
2995 error = PTR_ERR(page);
2996 goto bad_swap;
2997 }
81e33971 2998 swap_header = kmap(page);
1da177e4 2999
ca8bd38b
CEB
3000 maxpages = read_swap_header(p, swap_header, inode);
3001 if (unlikely(!maxpages)) {
1da177e4
LT
3002 error = -EINVAL;
3003 goto bad_swap;
3004 }
886bb7e9 3005
81e33971 3006 /* OK, set up the swap map and apply the bad block list */
803d0c83 3007 swap_map = vzalloc(maxpages);
81e33971
HD
3008 if (!swap_map) {
3009 error = -ENOMEM;
3010 goto bad_swap;
3011 }
f0571429
MK
3012
3013 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3014 p->flags |= SWP_STABLE_WRITES;
3015
2a8f9449 3016 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
6f179af8 3017 int cpu;
235b6217 3018 unsigned long ci, nr_cluster;
6f179af8 3019
2a8f9449
SL
3020 p->flags |= SWP_SOLIDSTATE;
3021 /*
3022 * select a random position to start with to help wear leveling
3023 * SSD
3024 */
3025 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
235b6217 3026 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2a8f9449 3027
54f180d3
HY
3028 cluster_info = kvzalloc(nr_cluster * sizeof(*cluster_info),
3029 GFP_KERNEL);
2a8f9449
SL
3030 if (!cluster_info) {
3031 error = -ENOMEM;
3032 goto bad_swap;
3033 }
235b6217
HY
3034
3035 for (ci = 0; ci < nr_cluster; ci++)
3036 spin_lock_init(&((cluster_info + ci)->lock));
3037
ebc2a1a6
SL
3038 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3039 if (!p->percpu_cluster) {
3040 error = -ENOMEM;
3041 goto bad_swap;
3042 }
6f179af8 3043 for_each_possible_cpu(cpu) {
ebc2a1a6 3044 struct percpu_cluster *cluster;
6f179af8 3045 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
ebc2a1a6
SL
3046 cluster_set_null(&cluster->index);
3047 }
2a8f9449 3048 }
1da177e4 3049
1421ef3c
CEB
3050 error = swap_cgroup_swapon(p->type, maxpages);
3051 if (error)
3052 goto bad_swap;
3053
915d4d7b 3054 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 3055 cluster_info, maxpages, &span);
915d4d7b
CEB
3056 if (unlikely(nr_extents < 0)) {
3057 error = nr_extents;
1da177e4
LT
3058 goto bad_swap;
3059 }
38b5faf4 3060 /* frontswap enabled? set up bit-per-page map for frontswap */
8ea1d2a1 3061 if (IS_ENABLED(CONFIG_FRONTSWAP))
54f180d3
HY
3062 frontswap_map = kvzalloc(BITS_TO_LONGS(maxpages) * sizeof(long),
3063 GFP_KERNEL);
1da177e4 3064
2a8f9449
SL
3065 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3066 /*
3067 * When discard is enabled for swap with no particular
3068 * policy flagged, we set all swap discard flags here in
3069 * order to sustain backward compatibility with older
3070 * swapon(8) releases.
3071 */
3072 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3073 SWP_PAGE_DISCARD);
dcf6b7dd 3074
2a8f9449
SL
3075 /*
3076 * By flagging sys_swapon, a sysadmin can tell us to
3077 * either do single-time area discards only, or to just
3078 * perform discards for released swap page-clusters.
3079 * Now it's time to adjust the p->flags accordingly.
3080 */
3081 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3082 p->flags &= ~SWP_PAGE_DISCARD;
3083 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3084 p->flags &= ~SWP_AREA_DISCARD;
3085
3086 /* issue a swapon-time discard if it's still required */
3087 if (p->flags & SWP_AREA_DISCARD) {
3088 int err = discard_swap(p);
3089 if (unlikely(err))
3090 pr_err("swapon: discard_swap(%p): %d\n",
3091 p, err);
dcf6b7dd 3092 }
20137a49 3093 }
6a6ba831 3094
4b3ef9da
HY
3095 error = init_swap_address_space(p->type, maxpages);
3096 if (error)
3097 goto bad_swap;
3098
fc0abb14 3099 mutex_lock(&swapon_mutex);
40531542 3100 prio = -1;
78ecba08 3101 if (swap_flags & SWAP_FLAG_PREFER)
40531542 3102 prio =
78ecba08 3103 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 3104 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 3105
756a025f 3106 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 3107 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
3108 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3109 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 3110 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
3111 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3112 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 3113 (frontswap_map) ? "FS" : "");
c69dbfb8 3114
fc0abb14 3115 mutex_unlock(&swapon_mutex);
66d7dd51
KS
3116 atomic_inc(&proc_poll_event);
3117 wake_up_interruptible(&proc_poll_wait);
3118
9b01c350
CEB
3119 if (S_ISREG(inode->i_mode))
3120 inode->i_flags |= S_SWAPFILE;
1da177e4
LT
3121 error = 0;
3122 goto out;
3123bad_swap:
ebc2a1a6
SL
3124 free_percpu(p->percpu_cluster);
3125 p->percpu_cluster = NULL;
bd69010b 3126 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
3127 set_blocksize(p->bdev, p->old_block_size);
3128 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 3129 }
4cd3bb10 3130 destroy_swap_extents(p);
e8e6c2ec 3131 swap_cgroup_swapoff(p->type);
5d337b91 3132 spin_lock(&swap_lock);
1da177e4 3133 p->swap_file = NULL;
1da177e4 3134 p->flags = 0;
5d337b91 3135 spin_unlock(&swap_lock);
1da177e4 3136 vfree(swap_map);
2a8f9449 3137 vfree(cluster_info);
52c50567 3138 if (swap_file) {
2130781e 3139 if (inode && S_ISREG(inode->i_mode)) {
5955102c 3140 inode_unlock(inode);
2130781e
CEB
3141 inode = NULL;
3142 }
1da177e4 3143 filp_close(swap_file, NULL);
52c50567 3144 }
1da177e4
LT
3145out:
3146 if (page && !IS_ERR(page)) {
3147 kunmap(page);
09cbfeaf 3148 put_page(page);
1da177e4
LT
3149 }
3150 if (name)
3151 putname(name);
9b01c350 3152 if (inode && S_ISREG(inode->i_mode))
5955102c 3153 inode_unlock(inode);
039939a6
TC
3154 if (!error)
3155 enable_swap_slots_cache();
1da177e4
LT
3156 return error;
3157}
3158
3159void si_swapinfo(struct sysinfo *val)
3160{
efa90a98 3161 unsigned int type;
1da177e4
LT
3162 unsigned long nr_to_be_unused = 0;
3163
5d337b91 3164 spin_lock(&swap_lock);
efa90a98
HD
3165 for (type = 0; type < nr_swapfiles; type++) {
3166 struct swap_info_struct *si = swap_info[type];
3167
3168 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3169 nr_to_be_unused += si->inuse_pages;
1da177e4 3170 }
ec8acf20 3171 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 3172 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 3173 spin_unlock(&swap_lock);
1da177e4
LT
3174}
3175
3176/*
3177 * Verify that a swap entry is valid and increment its swap map count.
3178 *
355cfa73
KH
3179 * Returns error code in following case.
3180 * - success -> 0
3181 * - swp_entry is invalid -> EINVAL
3182 * - swp_entry is migration entry -> EINVAL
3183 * - swap-cache reference is requested but there is already one. -> EEXIST
3184 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 3185 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 3186 */
8d69aaee 3187static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 3188{
73c34b6a 3189 struct swap_info_struct *p;
235b6217 3190 struct swap_cluster_info *ci;
1da177e4 3191 unsigned long offset, type;
8d69aaee
HD
3192 unsigned char count;
3193 unsigned char has_cache;
253d553b 3194 int err = -EINVAL;
1da177e4 3195
a7420aa5 3196 if (non_swap_entry(entry))
253d553b 3197 goto out;
0697212a 3198
1da177e4
LT
3199 type = swp_type(entry);
3200 if (type >= nr_swapfiles)
3201 goto bad_file;
efa90a98 3202 p = swap_info[type];
1da177e4 3203 offset = swp_offset(entry);
355cfa73 3204 if (unlikely(offset >= p->max))
235b6217
HY
3205 goto out;
3206
3207 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 3208
253d553b 3209 count = p->swap_map[offset];
edfe23da
SL
3210
3211 /*
3212 * swapin_readahead() doesn't check if a swap entry is valid, so the
3213 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3214 */
3215 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3216 err = -ENOENT;
3217 goto unlock_out;
3218 }
3219
253d553b
HD
3220 has_cache = count & SWAP_HAS_CACHE;
3221 count &= ~SWAP_HAS_CACHE;
3222 err = 0;
355cfa73 3223
253d553b 3224 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
3225
3226 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
3227 if (!has_cache && count)
3228 has_cache = SWAP_HAS_CACHE;
3229 else if (has_cache) /* someone else added cache */
3230 err = -EEXIST;
3231 else /* no users remaining */
3232 err = -ENOENT;
355cfa73
KH
3233
3234 } else if (count || has_cache) {
253d553b 3235
570a335b
HD
3236 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3237 count += usage;
3238 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 3239 err = -EINVAL;
570a335b
HD
3240 else if (swap_count_continued(p, offset, count))
3241 count = COUNT_CONTINUED;
3242 else
3243 err = -ENOMEM;
355cfa73 3244 } else
253d553b
HD
3245 err = -ENOENT; /* unused swap entry */
3246
3247 p->swap_map[offset] = count | has_cache;
3248
355cfa73 3249unlock_out:
235b6217 3250 unlock_cluster_or_swap_info(p, ci);
1da177e4 3251out:
253d553b 3252 return err;
1da177e4
LT
3253
3254bad_file:
465c47fd 3255 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
3256 goto out;
3257}
253d553b 3258
aaa46865
HD
3259/*
3260 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3261 * (in which case its reference count is never incremented).
3262 */
3263void swap_shmem_alloc(swp_entry_t entry)
3264{
3265 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3266}
3267
355cfa73 3268/*
08259d58
HD
3269 * Increase reference count of swap entry by 1.
3270 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3271 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3272 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3273 * might occur if a page table entry has got corrupted.
355cfa73 3274 */
570a335b 3275int swap_duplicate(swp_entry_t entry)
355cfa73 3276{
570a335b
HD
3277 int err = 0;
3278
3279 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3280 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3281 return err;
355cfa73 3282}
1da177e4 3283
cb4b86ba 3284/*
355cfa73
KH
3285 * @entry: swap entry for which we allocate swap cache.
3286 *
73c34b6a 3287 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
3288 * This can return error codes. Returns 0 at success.
3289 * -EBUSY means there is a swap cache.
3290 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
3291 */
3292int swapcache_prepare(swp_entry_t entry)
3293{
253d553b 3294 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
3295}
3296
f981c595
MG
3297struct swap_info_struct *page_swap_info(struct page *page)
3298{
3299 swp_entry_t swap = { .val = page_private(page) };
f981c595
MG
3300 return swap_info[swp_type(swap)];
3301}
3302
3303/*
3304 * out-of-line __page_file_ methods to avoid include hell.
3305 */
3306struct address_space *__page_file_mapping(struct page *page)
3307{
309381fe 3308 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
3309 return page_swap_info(page)->swap_file->f_mapping;
3310}
3311EXPORT_SYMBOL_GPL(__page_file_mapping);
3312
3313pgoff_t __page_file_index(struct page *page)
3314{
3315 swp_entry_t swap = { .val = page_private(page) };
309381fe 3316 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
3317 return swp_offset(swap);
3318}
3319EXPORT_SYMBOL_GPL(__page_file_index);
3320
570a335b
HD
3321/*
3322 * add_swap_count_continuation - called when a swap count is duplicated
3323 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3324 * page of the original vmalloc'ed swap_map, to hold the continuation count
3325 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3326 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3327 *
3328 * These continuation pages are seldom referenced: the common paths all work
3329 * on the original swap_map, only referring to a continuation page when the
3330 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3331 *
3332 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3333 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3334 * can be called after dropping locks.
3335 */
3336int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3337{
3338 struct swap_info_struct *si;
235b6217 3339 struct swap_cluster_info *ci;
570a335b
HD
3340 struct page *head;
3341 struct page *page;
3342 struct page *list_page;
3343 pgoff_t offset;
3344 unsigned char count;
3345
3346 /*
3347 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3348 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3349 */
3350 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3351
3352 si = swap_info_get(entry);
3353 if (!si) {
3354 /*
3355 * An acceptable race has occurred since the failing
3356 * __swap_duplicate(): the swap entry has been freed,
3357 * perhaps even the whole swap_map cleared for swapoff.
3358 */
3359 goto outer;
3360 }
3361
3362 offset = swp_offset(entry);
235b6217
HY
3363
3364 ci = lock_cluster(si, offset);
3365
570a335b
HD
3366 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3367
3368 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3369 /*
3370 * The higher the swap count, the more likely it is that tasks
3371 * will race to add swap count continuation: we need to avoid
3372 * over-provisioning.
3373 */
3374 goto out;
3375 }
3376
3377 if (!page) {
235b6217 3378 unlock_cluster(ci);
ec8acf20 3379 spin_unlock(&si->lock);
570a335b
HD
3380 return -ENOMEM;
3381 }
3382
3383 /*
3384 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
3385 * no architecture is using highmem pages for kernel page tables: so it
3386 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
3387 */
3388 head = vmalloc_to_page(si->swap_map + offset);
3389 offset &= ~PAGE_MASK;
3390
3391 /*
3392 * Page allocation does not initialize the page's lru field,
3393 * but it does always reset its private field.
3394 */
3395 if (!page_private(head)) {
3396 BUG_ON(count & COUNT_CONTINUED);
3397 INIT_LIST_HEAD(&head->lru);
3398 set_page_private(head, SWP_CONTINUED);
3399 si->flags |= SWP_CONTINUED;
3400 }
3401
3402 list_for_each_entry(list_page, &head->lru, lru) {
3403 unsigned char *map;
3404
3405 /*
3406 * If the previous map said no continuation, but we've found
3407 * a continuation page, free our allocation and use this one.
3408 */
3409 if (!(count & COUNT_CONTINUED))
3410 goto out;
3411
9b04c5fe 3412 map = kmap_atomic(list_page) + offset;
570a335b 3413 count = *map;
9b04c5fe 3414 kunmap_atomic(map);
570a335b
HD
3415
3416 /*
3417 * If this continuation count now has some space in it,
3418 * free our allocation and use this one.
3419 */
3420 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3421 goto out;
3422 }
3423
3424 list_add_tail(&page->lru, &head->lru);
3425 page = NULL; /* now it's attached, don't free it */
3426out:
235b6217 3427 unlock_cluster(ci);
ec8acf20 3428 spin_unlock(&si->lock);
570a335b
HD
3429outer:
3430 if (page)
3431 __free_page(page);
3432 return 0;
3433}
3434
3435/*
3436 * swap_count_continued - when the original swap_map count is incremented
3437 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3438 * into, carry if so, or else fail until a new continuation page is allocated;
3439 * when the original swap_map count is decremented from 0 with continuation,
3440 * borrow from the continuation and report whether it still holds more.
235b6217
HY
3441 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3442 * lock.
570a335b
HD
3443 */
3444static bool swap_count_continued(struct swap_info_struct *si,
3445 pgoff_t offset, unsigned char count)
3446{
3447 struct page *head;
3448 struct page *page;
3449 unsigned char *map;
3450
3451 head = vmalloc_to_page(si->swap_map + offset);
3452 if (page_private(head) != SWP_CONTINUED) {
3453 BUG_ON(count & COUNT_CONTINUED);
3454 return false; /* need to add count continuation */
3455 }
3456
3457 offset &= ~PAGE_MASK;
3458 page = list_entry(head->lru.next, struct page, lru);
9b04c5fe 3459 map = kmap_atomic(page) + offset;
570a335b
HD
3460
3461 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3462 goto init_map; /* jump over SWAP_CONT_MAX checks */
3463
3464 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3465 /*
3466 * Think of how you add 1 to 999
3467 */
3468 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 3469 kunmap_atomic(map);
570a335b
HD
3470 page = list_entry(page->lru.next, struct page, lru);
3471 BUG_ON(page == head);
9b04c5fe 3472 map = kmap_atomic(page) + offset;
570a335b
HD
3473 }
3474 if (*map == SWAP_CONT_MAX) {
9b04c5fe 3475 kunmap_atomic(map);
570a335b
HD
3476 page = list_entry(page->lru.next, struct page, lru);
3477 if (page == head)
3478 return false; /* add count continuation */
9b04c5fe 3479 map = kmap_atomic(page) + offset;
570a335b
HD
3480init_map: *map = 0; /* we didn't zero the page */
3481 }
3482 *map += 1;
9b04c5fe 3483 kunmap_atomic(map);
570a335b
HD
3484 page = list_entry(page->lru.prev, struct page, lru);
3485 while (page != head) {
9b04c5fe 3486 map = kmap_atomic(page) + offset;
570a335b 3487 *map = COUNT_CONTINUED;
9b04c5fe 3488 kunmap_atomic(map);
570a335b
HD
3489 page = list_entry(page->lru.prev, struct page, lru);
3490 }
3491 return true; /* incremented */
3492
3493 } else { /* decrementing */
3494 /*
3495 * Think of how you subtract 1 from 1000
3496 */
3497 BUG_ON(count != COUNT_CONTINUED);
3498 while (*map == COUNT_CONTINUED) {
9b04c5fe 3499 kunmap_atomic(map);
570a335b
HD
3500 page = list_entry(page->lru.next, struct page, lru);
3501 BUG_ON(page == head);
9b04c5fe 3502 map = kmap_atomic(page) + offset;
570a335b
HD
3503 }
3504 BUG_ON(*map == 0);
3505 *map -= 1;
3506 if (*map == 0)
3507 count = 0;
9b04c5fe 3508 kunmap_atomic(map);
570a335b
HD
3509 page = list_entry(page->lru.prev, struct page, lru);
3510 while (page != head) {
9b04c5fe 3511 map = kmap_atomic(page) + offset;
570a335b
HD
3512 *map = SWAP_CONT_MAX | count;
3513 count = COUNT_CONTINUED;
9b04c5fe 3514 kunmap_atomic(map);
570a335b
HD
3515 page = list_entry(page->lru.prev, struct page, lru);
3516 }
3517 return count == COUNT_CONTINUED;
3518 }
3519}
3520
3521/*
3522 * free_swap_count_continuations - swapoff free all the continuation pages
3523 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3524 */
3525static void free_swap_count_continuations(struct swap_info_struct *si)
3526{
3527 pgoff_t offset;
3528
3529 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3530 struct page *head;
3531 head = vmalloc_to_page(si->swap_map + offset);
3532 if (page_private(head)) {
0d576d20
GT
3533 struct page *page, *next;
3534
3535 list_for_each_entry_safe(page, next, &head->lru, lru) {
3536 list_del(&page->lru);
570a335b
HD
3537 __free_page(page);
3538 }
3539 }
3540 }
3541}