]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/swapfile.c
mm/swap: skip readahead for unreferenced swap slots
[mirror_ubuntu-bionic-kernel.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
072441e2 17#include <linux/shmem_fs.h>
1da177e4 18#include <linux/blkdev.h>
20137a49 19#include <linux/random.h>
1da177e4
LT
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
5ad64688 24#include <linux/ksm.h>
1da177e4
LT
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
fc0abb14 28#include <linux/mutex.h>
c59ede7b 29#include <linux/capability.h>
1da177e4 30#include <linux/syscalls.h>
8a9f3ccd 31#include <linux/memcontrol.h>
66d7dd51 32#include <linux/poll.h>
72788c38 33#include <linux/oom.h>
38b5faf4
DM
34#include <linux/frontswap.h>
35#include <linux/swapfile.h>
f981c595 36#include <linux/export.h>
1da177e4
LT
37
38#include <asm/pgtable.h>
39#include <asm/tlbflush.h>
40#include <linux/swapops.h>
5d1ea48b 41#include <linux/swap_cgroup.h>
1da177e4 42
570a335b
HD
43static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 unsigned char);
45static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 46static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 47
38b5faf4 48DEFINE_SPINLOCK(swap_lock);
7c363b8c 49static unsigned int nr_swapfiles;
ec8acf20 50atomic_long_t nr_swap_pages;
fb0fec50
CW
51/*
52 * Some modules use swappable objects and may try to swap them out under
53 * memory pressure (via the shrinker). Before doing so, they may wish to
54 * check to see if any swap space is available.
55 */
56EXPORT_SYMBOL_GPL(nr_swap_pages);
ec8acf20 57/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 58long total_swap_pages;
78ecba08 59static int least_priority;
1da177e4 60
1da177e4
LT
61static const char Bad_file[] = "Bad swap file entry ";
62static const char Unused_file[] = "Unused swap file entry ";
63static const char Bad_offset[] = "Bad swap offset entry ";
64static const char Unused_offset[] = "Unused swap offset entry ";
65
adfab836
DS
66/*
67 * all active swap_info_structs
68 * protected with swap_lock, and ordered by priority.
69 */
18ab4d4c
DS
70PLIST_HEAD(swap_active_head);
71
72/*
73 * all available (active, not full) swap_info_structs
74 * protected with swap_avail_lock, ordered by priority.
75 * This is used by get_swap_page() instead of swap_active_head
76 * because swap_active_head includes all swap_info_structs,
77 * but get_swap_page() doesn't need to look at full ones.
78 * This uses its own lock instead of swap_lock because when a
79 * swap_info_struct changes between not-full/full, it needs to
80 * add/remove itself to/from this list, but the swap_info_struct->lock
81 * is held and the locking order requires swap_lock to be taken
82 * before any swap_info_struct->lock.
83 */
84static PLIST_HEAD(swap_avail_head);
85static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 86
38b5faf4 87struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 88
fc0abb14 89static DEFINE_MUTEX(swapon_mutex);
1da177e4 90
66d7dd51
KS
91static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
92/* Activity counter to indicate that a swapon or swapoff has occurred */
93static atomic_t proc_poll_event = ATOMIC_INIT(0);
94
8d69aaee 95static inline unsigned char swap_count(unsigned char ent)
355cfa73 96{
570a335b 97 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
355cfa73
KH
98}
99
efa90a98 100/* returns 1 if swap entry is freed */
c9e44410
KH
101static int
102__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
103{
efa90a98 104 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
105 struct page *page;
106 int ret = 0;
107
f6ab1f7f 108 page = find_get_page(swap_address_space(entry), swp_offset(entry));
c9e44410
KH
109 if (!page)
110 return 0;
111 /*
112 * This function is called from scan_swap_map() and it's called
113 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
114 * We have to use trylock for avoiding deadlock. This is a special
115 * case and you should use try_to_free_swap() with explicit lock_page()
116 * in usual operations.
117 */
118 if (trylock_page(page)) {
119 ret = try_to_free_swap(page);
120 unlock_page(page);
121 }
09cbfeaf 122 put_page(page);
c9e44410
KH
123 return ret;
124}
355cfa73 125
6a6ba831
HD
126/*
127 * swapon tell device that all the old swap contents can be discarded,
128 * to allow the swap device to optimize its wear-levelling.
129 */
130static int discard_swap(struct swap_info_struct *si)
131{
132 struct swap_extent *se;
9625a5f2
HD
133 sector_t start_block;
134 sector_t nr_blocks;
6a6ba831
HD
135 int err = 0;
136
9625a5f2
HD
137 /* Do not discard the swap header page! */
138 se = &si->first_swap_extent;
139 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
140 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
141 if (nr_blocks) {
142 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 143 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
144 if (err)
145 return err;
146 cond_resched();
147 }
6a6ba831 148
9625a5f2
HD
149 list_for_each_entry(se, &si->first_swap_extent.list, list) {
150 start_block = se->start_block << (PAGE_SHIFT - 9);
151 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
152
153 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 154 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
155 if (err)
156 break;
157
158 cond_resched();
159 }
160 return err; /* That will often be -EOPNOTSUPP */
161}
162
7992fde7
HD
163/*
164 * swap allocation tell device that a cluster of swap can now be discarded,
165 * to allow the swap device to optimize its wear-levelling.
166 */
167static void discard_swap_cluster(struct swap_info_struct *si,
168 pgoff_t start_page, pgoff_t nr_pages)
169{
170 struct swap_extent *se = si->curr_swap_extent;
171 int found_extent = 0;
172
173 while (nr_pages) {
7992fde7
HD
174 if (se->start_page <= start_page &&
175 start_page < se->start_page + se->nr_pages) {
176 pgoff_t offset = start_page - se->start_page;
177 sector_t start_block = se->start_block + offset;
858a2990 178 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
179
180 if (nr_blocks > nr_pages)
181 nr_blocks = nr_pages;
182 start_page += nr_blocks;
183 nr_pages -= nr_blocks;
184
185 if (!found_extent++)
186 si->curr_swap_extent = se;
187
188 start_block <<= PAGE_SHIFT - 9;
189 nr_blocks <<= PAGE_SHIFT - 9;
190 if (blkdev_issue_discard(si->bdev, start_block,
dd3932ed 191 nr_blocks, GFP_NOIO, 0))
7992fde7
HD
192 break;
193 }
194
a8ae4991 195 se = list_next_entry(se, list);
7992fde7
HD
196 }
197}
198
048c27fd
HD
199#define SWAPFILE_CLUSTER 256
200#define LATENCY_LIMIT 256
201
2a8f9449
SL
202static inline void cluster_set_flag(struct swap_cluster_info *info,
203 unsigned int flag)
204{
205 info->flags = flag;
206}
207
208static inline unsigned int cluster_count(struct swap_cluster_info *info)
209{
210 return info->data;
211}
212
213static inline void cluster_set_count(struct swap_cluster_info *info,
214 unsigned int c)
215{
216 info->data = c;
217}
218
219static inline void cluster_set_count_flag(struct swap_cluster_info *info,
220 unsigned int c, unsigned int f)
221{
222 info->flags = f;
223 info->data = c;
224}
225
226static inline unsigned int cluster_next(struct swap_cluster_info *info)
227{
228 return info->data;
229}
230
231static inline void cluster_set_next(struct swap_cluster_info *info,
232 unsigned int n)
233{
234 info->data = n;
235}
236
237static inline void cluster_set_next_flag(struct swap_cluster_info *info,
238 unsigned int n, unsigned int f)
239{
240 info->flags = f;
241 info->data = n;
242}
243
244static inline bool cluster_is_free(struct swap_cluster_info *info)
245{
246 return info->flags & CLUSTER_FLAG_FREE;
247}
248
249static inline bool cluster_is_null(struct swap_cluster_info *info)
250{
251 return info->flags & CLUSTER_FLAG_NEXT_NULL;
252}
253
254static inline void cluster_set_null(struct swap_cluster_info *info)
255{
256 info->flags = CLUSTER_FLAG_NEXT_NULL;
257 info->data = 0;
258}
259
235b6217
HY
260static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
261 unsigned long offset)
262{
263 struct swap_cluster_info *ci;
264
265 ci = si->cluster_info;
266 if (ci) {
267 ci += offset / SWAPFILE_CLUSTER;
268 spin_lock(&ci->lock);
269 }
270 return ci;
271}
272
273static inline void unlock_cluster(struct swap_cluster_info *ci)
274{
275 if (ci)
276 spin_unlock(&ci->lock);
277}
278
279static inline struct swap_cluster_info *lock_cluster_or_swap_info(
280 struct swap_info_struct *si,
281 unsigned long offset)
282{
283 struct swap_cluster_info *ci;
284
285 ci = lock_cluster(si, offset);
286 if (!ci)
287 spin_lock(&si->lock);
288
289 return ci;
290}
291
292static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
293 struct swap_cluster_info *ci)
294{
295 if (ci)
296 unlock_cluster(ci);
297 else
298 spin_unlock(&si->lock);
299}
300
6b534915
HY
301static inline bool cluster_list_empty(struct swap_cluster_list *list)
302{
303 return cluster_is_null(&list->head);
304}
305
306static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
307{
308 return cluster_next(&list->head);
309}
310
311static void cluster_list_init(struct swap_cluster_list *list)
312{
313 cluster_set_null(&list->head);
314 cluster_set_null(&list->tail);
315}
316
317static void cluster_list_add_tail(struct swap_cluster_list *list,
318 struct swap_cluster_info *ci,
319 unsigned int idx)
320{
321 if (cluster_list_empty(list)) {
322 cluster_set_next_flag(&list->head, idx, 0);
323 cluster_set_next_flag(&list->tail, idx, 0);
324 } else {
235b6217 325 struct swap_cluster_info *ci_tail;
6b534915
HY
326 unsigned int tail = cluster_next(&list->tail);
327
235b6217
HY
328 /*
329 * Nested cluster lock, but both cluster locks are
330 * only acquired when we held swap_info_struct->lock
331 */
332 ci_tail = ci + tail;
333 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
334 cluster_set_next(ci_tail, idx);
335 unlock_cluster(ci_tail);
6b534915
HY
336 cluster_set_next_flag(&list->tail, idx, 0);
337 }
338}
339
340static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
341 struct swap_cluster_info *ci)
342{
343 unsigned int idx;
344
345 idx = cluster_next(&list->head);
346 if (cluster_next(&list->tail) == idx) {
347 cluster_set_null(&list->head);
348 cluster_set_null(&list->tail);
349 } else
350 cluster_set_next_flag(&list->head,
351 cluster_next(&ci[idx]), 0);
352
353 return idx;
354}
355
815c2c54
SL
356/* Add a cluster to discard list and schedule it to do discard */
357static void swap_cluster_schedule_discard(struct swap_info_struct *si,
358 unsigned int idx)
359{
360 /*
361 * If scan_swap_map() can't find a free cluster, it will check
362 * si->swap_map directly. To make sure the discarding cluster isn't
363 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
364 * will be cleared after discard
365 */
366 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
367 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
368
6b534915 369 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
815c2c54
SL
370
371 schedule_work(&si->discard_work);
372}
373
374/*
375 * Doing discard actually. After a cluster discard is finished, the cluster
376 * will be added to free cluster list. caller should hold si->lock.
377*/
378static void swap_do_scheduled_discard(struct swap_info_struct *si)
379{
235b6217 380 struct swap_cluster_info *info, *ci;
815c2c54
SL
381 unsigned int idx;
382
383 info = si->cluster_info;
384
6b534915
HY
385 while (!cluster_list_empty(&si->discard_clusters)) {
386 idx = cluster_list_del_first(&si->discard_clusters, info);
815c2c54
SL
387 spin_unlock(&si->lock);
388
389 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
390 SWAPFILE_CLUSTER);
391
392 spin_lock(&si->lock);
235b6217
HY
393 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
394 cluster_set_flag(ci, CLUSTER_FLAG_FREE);
395 unlock_cluster(ci);
6b534915 396 cluster_list_add_tail(&si->free_clusters, info, idx);
235b6217 397 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
815c2c54
SL
398 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
399 0, SWAPFILE_CLUSTER);
235b6217 400 unlock_cluster(ci);
815c2c54
SL
401 }
402}
403
404static void swap_discard_work(struct work_struct *work)
405{
406 struct swap_info_struct *si;
407
408 si = container_of(work, struct swap_info_struct, discard_work);
409
410 spin_lock(&si->lock);
411 swap_do_scheduled_discard(si);
412 spin_unlock(&si->lock);
413}
414
2a8f9449
SL
415/*
416 * The cluster corresponding to page_nr will be used. The cluster will be
417 * removed from free cluster list and its usage counter will be increased.
418 */
419static void inc_cluster_info_page(struct swap_info_struct *p,
420 struct swap_cluster_info *cluster_info, unsigned long page_nr)
421{
422 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
423
424 if (!cluster_info)
425 return;
426 if (cluster_is_free(&cluster_info[idx])) {
6b534915
HY
427 VM_BUG_ON(cluster_list_first(&p->free_clusters) != idx);
428 cluster_list_del_first(&p->free_clusters, cluster_info);
2a8f9449
SL
429 cluster_set_count_flag(&cluster_info[idx], 0, 0);
430 }
431
432 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
433 cluster_set_count(&cluster_info[idx],
434 cluster_count(&cluster_info[idx]) + 1);
435}
436
437/*
438 * The cluster corresponding to page_nr decreases one usage. If the usage
439 * counter becomes 0, which means no page in the cluster is in using, we can
440 * optionally discard the cluster and add it to free cluster list.
441 */
442static void dec_cluster_info_page(struct swap_info_struct *p,
443 struct swap_cluster_info *cluster_info, unsigned long page_nr)
444{
445 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
446
447 if (!cluster_info)
448 return;
449
450 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
451 cluster_set_count(&cluster_info[idx],
452 cluster_count(&cluster_info[idx]) - 1);
453
454 if (cluster_count(&cluster_info[idx]) == 0) {
815c2c54
SL
455 /*
456 * If the swap is discardable, prepare discard the cluster
457 * instead of free it immediately. The cluster will be freed
458 * after discard.
459 */
edfe23da
SL
460 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
461 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
815c2c54
SL
462 swap_cluster_schedule_discard(p, idx);
463 return;
464 }
465
2a8f9449 466 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
6b534915 467 cluster_list_add_tail(&p->free_clusters, cluster_info, idx);
2a8f9449
SL
468 }
469}
470
471/*
472 * It's possible scan_swap_map() uses a free cluster in the middle of free
473 * cluster list. Avoiding such abuse to avoid list corruption.
474 */
ebc2a1a6
SL
475static bool
476scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
477 unsigned long offset)
478{
ebc2a1a6
SL
479 struct percpu_cluster *percpu_cluster;
480 bool conflict;
481
2a8f9449 482 offset /= SWAPFILE_CLUSTER;
6b534915
HY
483 conflict = !cluster_list_empty(&si->free_clusters) &&
484 offset != cluster_list_first(&si->free_clusters) &&
2a8f9449 485 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
486
487 if (!conflict)
488 return false;
489
490 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
491 cluster_set_null(&percpu_cluster->index);
492 return true;
493}
494
495/*
496 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
497 * might involve allocating a new cluster for current CPU too.
498 */
499static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
500 unsigned long *offset, unsigned long *scan_base)
501{
502 struct percpu_cluster *cluster;
235b6217 503 struct swap_cluster_info *ci;
ebc2a1a6 504 bool found_free;
235b6217 505 unsigned long tmp, max;
ebc2a1a6
SL
506
507new_cluster:
508 cluster = this_cpu_ptr(si->percpu_cluster);
509 if (cluster_is_null(&cluster->index)) {
6b534915
HY
510 if (!cluster_list_empty(&si->free_clusters)) {
511 cluster->index = si->free_clusters.head;
ebc2a1a6
SL
512 cluster->next = cluster_next(&cluster->index) *
513 SWAPFILE_CLUSTER;
6b534915 514 } else if (!cluster_list_empty(&si->discard_clusters)) {
ebc2a1a6
SL
515 /*
516 * we don't have free cluster but have some clusters in
517 * discarding, do discard now and reclaim them
518 */
519 swap_do_scheduled_discard(si);
520 *scan_base = *offset = si->cluster_next;
521 goto new_cluster;
522 } else
523 return;
524 }
525
526 found_free = false;
527
528 /*
529 * Other CPUs can use our cluster if they can't find a free cluster,
530 * check if there is still free entry in the cluster
531 */
532 tmp = cluster->next;
235b6217
HY
533 max = min_t(unsigned long, si->max,
534 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
535 if (tmp >= max) {
536 cluster_set_null(&cluster->index);
537 goto new_cluster;
538 }
539 ci = lock_cluster(si, tmp);
540 while (tmp < max) {
ebc2a1a6
SL
541 if (!si->swap_map[tmp]) {
542 found_free = true;
543 break;
544 }
545 tmp++;
546 }
235b6217 547 unlock_cluster(ci);
ebc2a1a6
SL
548 if (!found_free) {
549 cluster_set_null(&cluster->index);
550 goto new_cluster;
551 }
552 cluster->next = tmp + 1;
553 *offset = tmp;
554 *scan_base = tmp;
2a8f9449
SL
555}
556
24b8ff7c
CEB
557static unsigned long scan_swap_map(struct swap_info_struct *si,
558 unsigned char usage)
1da177e4 559{
235b6217 560 struct swap_cluster_info *ci;
ebebbbe9 561 unsigned long offset;
c60aa176 562 unsigned long scan_base;
7992fde7 563 unsigned long last_in_cluster = 0;
048c27fd 564 int latency_ration = LATENCY_LIMIT;
7dfad418 565
886bb7e9 566 /*
7dfad418
HD
567 * We try to cluster swap pages by allocating them sequentially
568 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
569 * way, however, we resort to first-free allocation, starting
570 * a new cluster. This prevents us from scattering swap pages
571 * all over the entire swap partition, so that we reduce
572 * overall disk seek times between swap pages. -- sct
573 * But we do now try to find an empty cluster. -Andrea
c60aa176 574 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
575 */
576
52b7efdb 577 si->flags += SWP_SCANNING;
c60aa176 578 scan_base = offset = si->cluster_next;
ebebbbe9 579
ebc2a1a6
SL
580 /* SSD algorithm */
581 if (si->cluster_info) {
582 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
583 goto checks;
584 }
585
ebebbbe9
HD
586 if (unlikely(!si->cluster_nr--)) {
587 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
588 si->cluster_nr = SWAPFILE_CLUSTER - 1;
589 goto checks;
590 }
2a8f9449 591
ec8acf20 592 spin_unlock(&si->lock);
7dfad418 593
c60aa176
HD
594 /*
595 * If seek is expensive, start searching for new cluster from
596 * start of partition, to minimize the span of allocated swap.
50088c44
CY
597 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
598 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 599 */
50088c44 600 scan_base = offset = si->lowest_bit;
7dfad418
HD
601 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
602
603 /* Locate the first empty (unaligned) cluster */
604 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 605 if (si->swap_map[offset])
7dfad418
HD
606 last_in_cluster = offset + SWAPFILE_CLUSTER;
607 else if (offset == last_in_cluster) {
ec8acf20 608 spin_lock(&si->lock);
ebebbbe9
HD
609 offset -= SWAPFILE_CLUSTER - 1;
610 si->cluster_next = offset;
611 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
612 goto checks;
613 }
614 if (unlikely(--latency_ration < 0)) {
615 cond_resched();
616 latency_ration = LATENCY_LIMIT;
617 }
618 }
619
620 offset = scan_base;
ec8acf20 621 spin_lock(&si->lock);
ebebbbe9 622 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 623 }
7dfad418 624
ebebbbe9 625checks:
ebc2a1a6
SL
626 if (si->cluster_info) {
627 while (scan_swap_map_ssd_cluster_conflict(si, offset))
628 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
629 }
ebebbbe9 630 if (!(si->flags & SWP_WRITEOK))
52b7efdb 631 goto no_page;
7dfad418
HD
632 if (!si->highest_bit)
633 goto no_page;
ebebbbe9 634 if (offset > si->highest_bit)
c60aa176 635 scan_base = offset = si->lowest_bit;
c9e44410 636
235b6217 637 ci = lock_cluster(si, offset);
b73d7fce
HD
638 /* reuse swap entry of cache-only swap if not busy. */
639 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 640 int swap_was_freed;
235b6217 641 unlock_cluster(ci);
ec8acf20 642 spin_unlock(&si->lock);
c9e44410 643 swap_was_freed = __try_to_reclaim_swap(si, offset);
ec8acf20 644 spin_lock(&si->lock);
c9e44410
KH
645 /* entry was freed successfully, try to use this again */
646 if (swap_was_freed)
647 goto checks;
648 goto scan; /* check next one */
649 }
650
235b6217
HY
651 if (si->swap_map[offset]) {
652 unlock_cluster(ci);
ebebbbe9 653 goto scan;
235b6217 654 }
ebebbbe9
HD
655
656 if (offset == si->lowest_bit)
657 si->lowest_bit++;
658 if (offset == si->highest_bit)
659 si->highest_bit--;
660 si->inuse_pages++;
661 if (si->inuse_pages == si->pages) {
662 si->lowest_bit = si->max;
663 si->highest_bit = 0;
18ab4d4c
DS
664 spin_lock(&swap_avail_lock);
665 plist_del(&si->avail_list, &swap_avail_head);
666 spin_unlock(&swap_avail_lock);
1da177e4 667 }
253d553b 668 si->swap_map[offset] = usage;
2a8f9449 669 inc_cluster_info_page(si, si->cluster_info, offset);
235b6217 670 unlock_cluster(ci);
ebebbbe9
HD
671 si->cluster_next = offset + 1;
672 si->flags -= SWP_SCANNING;
7992fde7 673
ebebbbe9 674 return offset;
7dfad418 675
ebebbbe9 676scan:
ec8acf20 677 spin_unlock(&si->lock);
7dfad418 678 while (++offset <= si->highest_bit) {
52b7efdb 679 if (!si->swap_map[offset]) {
ec8acf20 680 spin_lock(&si->lock);
52b7efdb
HD
681 goto checks;
682 }
c9e44410 683 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 684 spin_lock(&si->lock);
c9e44410
KH
685 goto checks;
686 }
048c27fd
HD
687 if (unlikely(--latency_ration < 0)) {
688 cond_resched();
689 latency_ration = LATENCY_LIMIT;
690 }
7dfad418 691 }
c60aa176 692 offset = si->lowest_bit;
a5998061 693 while (offset < scan_base) {
c60aa176 694 if (!si->swap_map[offset]) {
ec8acf20 695 spin_lock(&si->lock);
c60aa176
HD
696 goto checks;
697 }
c9e44410 698 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 699 spin_lock(&si->lock);
c9e44410
KH
700 goto checks;
701 }
c60aa176
HD
702 if (unlikely(--latency_ration < 0)) {
703 cond_resched();
704 latency_ration = LATENCY_LIMIT;
705 }
a5998061 706 offset++;
c60aa176 707 }
ec8acf20 708 spin_lock(&si->lock);
7dfad418
HD
709
710no_page:
52b7efdb 711 si->flags -= SWP_SCANNING;
1da177e4
LT
712 return 0;
713}
714
715swp_entry_t get_swap_page(void)
716{
adfab836 717 struct swap_info_struct *si, *next;
fb4f88dc 718 pgoff_t offset;
1da177e4 719
ec8acf20 720 if (atomic_long_read(&nr_swap_pages) <= 0)
fb4f88dc 721 goto noswap;
ec8acf20 722 atomic_long_dec(&nr_swap_pages);
fb4f88dc 723
18ab4d4c
DS
724 spin_lock(&swap_avail_lock);
725
726start_over:
727 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
728 /* requeue si to after same-priority siblings */
729 plist_requeue(&si->avail_list, &swap_avail_head);
730 spin_unlock(&swap_avail_lock);
ec8acf20 731 spin_lock(&si->lock);
adfab836 732 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c
DS
733 spin_lock(&swap_avail_lock);
734 if (plist_node_empty(&si->avail_list)) {
735 spin_unlock(&si->lock);
736 goto nextsi;
737 }
738 WARN(!si->highest_bit,
739 "swap_info %d in list but !highest_bit\n",
740 si->type);
741 WARN(!(si->flags & SWP_WRITEOK),
742 "swap_info %d in list but !SWP_WRITEOK\n",
743 si->type);
744 plist_del(&si->avail_list, &swap_avail_head);
ec8acf20 745 spin_unlock(&si->lock);
18ab4d4c 746 goto nextsi;
ec8acf20 747 }
fb4f88dc 748
355cfa73 749 /* This is called for allocating swap entry for cache */
253d553b 750 offset = scan_swap_map(si, SWAP_HAS_CACHE);
ec8acf20
SL
751 spin_unlock(&si->lock);
752 if (offset)
adfab836 753 return swp_entry(si->type, offset);
18ab4d4c
DS
754 pr_debug("scan_swap_map of si %d failed to find offset\n",
755 si->type);
756 spin_lock(&swap_avail_lock);
757nextsi:
adfab836
DS
758 /*
759 * if we got here, it's likely that si was almost full before,
760 * and since scan_swap_map() can drop the si->lock, multiple
761 * callers probably all tried to get a page from the same si
18ab4d4c
DS
762 * and it filled up before we could get one; or, the si filled
763 * up between us dropping swap_avail_lock and taking si->lock.
764 * Since we dropped the swap_avail_lock, the swap_avail_head
765 * list may have been modified; so if next is still in the
766 * swap_avail_head list then try it, otherwise start over.
adfab836 767 */
18ab4d4c
DS
768 if (plist_node_empty(&next->avail_list))
769 goto start_over;
1da177e4 770 }
fb4f88dc 771
18ab4d4c
DS
772 spin_unlock(&swap_avail_lock);
773
ec8acf20 774 atomic_long_inc(&nr_swap_pages);
fb4f88dc 775noswap:
fb4f88dc 776 return (swp_entry_t) {0};
1da177e4
LT
777}
778
2de1a7e4 779/* The only caller of this function is now suspend routine */
910321ea
HD
780swp_entry_t get_swap_page_of_type(int type)
781{
782 struct swap_info_struct *si;
783 pgoff_t offset;
784
910321ea 785 si = swap_info[type];
ec8acf20 786 spin_lock(&si->lock);
910321ea 787 if (si && (si->flags & SWP_WRITEOK)) {
ec8acf20 788 atomic_long_dec(&nr_swap_pages);
910321ea
HD
789 /* This is called for allocating swap entry, not cache */
790 offset = scan_swap_map(si, 1);
791 if (offset) {
ec8acf20 792 spin_unlock(&si->lock);
910321ea
HD
793 return swp_entry(type, offset);
794 }
ec8acf20 795 atomic_long_inc(&nr_swap_pages);
910321ea 796 }
ec8acf20 797 spin_unlock(&si->lock);
910321ea
HD
798 return (swp_entry_t) {0};
799}
800
e8c26ab6 801static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1da177e4 802{
73c34b6a 803 struct swap_info_struct *p;
1da177e4
LT
804 unsigned long offset, type;
805
806 if (!entry.val)
807 goto out;
808 type = swp_type(entry);
809 if (type >= nr_swapfiles)
810 goto bad_nofile;
efa90a98 811 p = swap_info[type];
1da177e4
LT
812 if (!(p->flags & SWP_USED))
813 goto bad_device;
814 offset = swp_offset(entry);
815 if (offset >= p->max)
816 goto bad_offset;
1da177e4
LT
817 return p;
818
1da177e4 819bad_offset:
6a991fc7 820 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
821 goto out;
822bad_device:
6a991fc7 823 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
824 goto out;
825bad_nofile:
6a991fc7 826 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
827out:
828 return NULL;
886bb7e9 829}
1da177e4 830
e8c26ab6
TC
831static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
832{
833 struct swap_info_struct *p;
834
835 p = __swap_info_get(entry);
836 if (!p)
837 goto out;
838 if (!p->swap_map[swp_offset(entry)])
839 goto bad_free;
840 return p;
841
842bad_free:
843 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
844 goto out;
845out:
846 return NULL;
847}
848
235b6217
HY
849static struct swap_info_struct *swap_info_get(swp_entry_t entry)
850{
851 struct swap_info_struct *p;
852
853 p = _swap_info_get(entry);
854 if (p)
855 spin_lock(&p->lock);
856 return p;
857}
858
8d69aaee 859static unsigned char swap_entry_free(struct swap_info_struct *p,
235b6217
HY
860 swp_entry_t entry, unsigned char usage,
861 bool swap_info_locked)
1da177e4 862{
235b6217 863 struct swap_cluster_info *ci;
253d553b 864 unsigned long offset = swp_offset(entry);
8d69aaee
HD
865 unsigned char count;
866 unsigned char has_cache;
235b6217
HY
867 bool lock_swap_info = false;
868
869 if (!swap_info_locked) {
870 count = p->swap_map[offset];
871 if (!p->cluster_info || count == usage || count == SWAP_MAP_SHMEM) {
872lock_swap_info:
873 swap_info_locked = true;
874 lock_swap_info = true;
875 spin_lock(&p->lock);
876 }
877 }
878
879 ci = lock_cluster(p, offset);
355cfa73 880
253d553b 881 count = p->swap_map[offset];
235b6217
HY
882
883 if (!swap_info_locked && (count == usage || count == SWAP_MAP_SHMEM)) {
884 unlock_cluster(ci);
885 goto lock_swap_info;
886 }
887
253d553b
HD
888 has_cache = count & SWAP_HAS_CACHE;
889 count &= ~SWAP_HAS_CACHE;
355cfa73 890
253d553b 891 if (usage == SWAP_HAS_CACHE) {
355cfa73 892 VM_BUG_ON(!has_cache);
253d553b 893 has_cache = 0;
aaa46865
HD
894 } else if (count == SWAP_MAP_SHMEM) {
895 /*
896 * Or we could insist on shmem.c using a special
897 * swap_shmem_free() and free_shmem_swap_and_cache()...
898 */
899 count = 0;
570a335b
HD
900 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
901 if (count == COUNT_CONTINUED) {
902 if (swap_count_continued(p, offset, count))
903 count = SWAP_MAP_MAX | COUNT_CONTINUED;
904 else
905 count = SWAP_MAP_MAX;
906 } else
907 count--;
908 }
253d553b 909
253d553b
HD
910 usage = count | has_cache;
911 p->swap_map[offset] = usage;
355cfa73 912
235b6217
HY
913 unlock_cluster(ci);
914
355cfa73 915 /* free if no reference */
253d553b 916 if (!usage) {
235b6217 917 VM_BUG_ON(!swap_info_locked);
37e84351 918 mem_cgroup_uncharge_swap(entry);
235b6217 919 ci = lock_cluster(p, offset);
2a8f9449 920 dec_cluster_info_page(p, p->cluster_info, offset);
235b6217 921 unlock_cluster(ci);
355cfa73
KH
922 if (offset < p->lowest_bit)
923 p->lowest_bit = offset;
18ab4d4c
DS
924 if (offset > p->highest_bit) {
925 bool was_full = !p->highest_bit;
355cfa73 926 p->highest_bit = offset;
18ab4d4c
DS
927 if (was_full && (p->flags & SWP_WRITEOK)) {
928 spin_lock(&swap_avail_lock);
929 WARN_ON(!plist_node_empty(&p->avail_list));
930 if (plist_node_empty(&p->avail_list))
931 plist_add(&p->avail_list,
932 &swap_avail_head);
933 spin_unlock(&swap_avail_lock);
934 }
935 }
ec8acf20 936 atomic_long_inc(&nr_swap_pages);
355cfa73 937 p->inuse_pages--;
38b5faf4 938 frontswap_invalidate_page(p->type, offset);
73744923
MG
939 if (p->flags & SWP_BLKDEV) {
940 struct gendisk *disk = p->bdev->bd_disk;
941 if (disk->fops->swap_slot_free_notify)
942 disk->fops->swap_slot_free_notify(p->bdev,
943 offset);
944 }
1da177e4 945 }
253d553b 946
235b6217
HY
947 if (lock_swap_info)
948 spin_unlock(&p->lock);
949
253d553b 950 return usage;
1da177e4
LT
951}
952
953/*
2de1a7e4 954 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
955 * is still around or has not been recycled.
956 */
957void swap_free(swp_entry_t entry)
958{
73c34b6a 959 struct swap_info_struct *p;
1da177e4 960
235b6217
HY
961 p = _swap_info_get(entry);
962 if (p)
963 swap_entry_free(p, entry, 1, false);
1da177e4
LT
964}
965
cb4b86ba
KH
966/*
967 * Called after dropping swapcache to decrease refcnt to swap entries.
968 */
0a31bc97 969void swapcache_free(swp_entry_t entry)
cb4b86ba 970{
355cfa73
KH
971 struct swap_info_struct *p;
972
235b6217
HY
973 p = _swap_info_get(entry);
974 if (p)
975 swap_entry_free(p, entry, SWAP_HAS_CACHE, false);
cb4b86ba
KH
976}
977
1da177e4 978/*
c475a8ab 979 * How many references to page are currently swapped out?
570a335b
HD
980 * This does not give an exact answer when swap count is continued,
981 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 982 */
bde05d1c 983int page_swapcount(struct page *page)
1da177e4 984{
c475a8ab
HD
985 int count = 0;
986 struct swap_info_struct *p;
235b6217 987 struct swap_cluster_info *ci;
1da177e4 988 swp_entry_t entry;
235b6217 989 unsigned long offset;
1da177e4 990
4c21e2f2 991 entry.val = page_private(page);
235b6217 992 p = _swap_info_get(entry);
1da177e4 993 if (p) {
235b6217
HY
994 offset = swp_offset(entry);
995 ci = lock_cluster_or_swap_info(p, offset);
996 count = swap_count(p->swap_map[offset]);
997 unlock_cluster_or_swap_info(p, ci);
1da177e4 998 }
c475a8ab 999 return count;
1da177e4
LT
1000}
1001
e8c26ab6
TC
1002/*
1003 * How many references to @entry are currently swapped out?
1004 * This does not give an exact answer when swap count is continued,
1005 * but does include the high COUNT_CONTINUED flag to allow for that.
1006 */
1007int __swp_swapcount(swp_entry_t entry)
1008{
1009 int count = 0;
1010 pgoff_t offset;
1011 struct swap_info_struct *si;
1012 struct swap_cluster_info *ci;
1013
1014 si = __swap_info_get(entry);
1015 if (si) {
1016 offset = swp_offset(entry);
1017 ci = lock_cluster_or_swap_info(si, offset);
1018 count = swap_count(si->swap_map[offset]);
1019 unlock_cluster_or_swap_info(si, ci);
1020 }
1021 return count;
1022}
1023
8334b962
MK
1024/*
1025 * How many references to @entry are currently swapped out?
1026 * This considers COUNT_CONTINUED so it returns exact answer.
1027 */
1028int swp_swapcount(swp_entry_t entry)
1029{
1030 int count, tmp_count, n;
1031 struct swap_info_struct *p;
235b6217 1032 struct swap_cluster_info *ci;
8334b962
MK
1033 struct page *page;
1034 pgoff_t offset;
1035 unsigned char *map;
1036
235b6217 1037 p = _swap_info_get(entry);
8334b962
MK
1038 if (!p)
1039 return 0;
1040
235b6217
HY
1041 offset = swp_offset(entry);
1042
1043 ci = lock_cluster_or_swap_info(p, offset);
1044
1045 count = swap_count(p->swap_map[offset]);
8334b962
MK
1046 if (!(count & COUNT_CONTINUED))
1047 goto out;
1048
1049 count &= ~COUNT_CONTINUED;
1050 n = SWAP_MAP_MAX + 1;
1051
8334b962
MK
1052 page = vmalloc_to_page(p->swap_map + offset);
1053 offset &= ~PAGE_MASK;
1054 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1055
1056 do {
a8ae4991 1057 page = list_next_entry(page, lru);
8334b962
MK
1058 map = kmap_atomic(page);
1059 tmp_count = map[offset];
1060 kunmap_atomic(map);
1061
1062 count += (tmp_count & ~COUNT_CONTINUED) * n;
1063 n *= (SWAP_CONT_MAX + 1);
1064 } while (tmp_count & COUNT_CONTINUED);
1065out:
235b6217 1066 unlock_cluster_or_swap_info(p, ci);
8334b962
MK
1067 return count;
1068}
1069
1da177e4 1070/*
7b1fe597
HD
1071 * We can write to an anon page without COW if there are no other references
1072 * to it. And as a side-effect, free up its swap: because the old content
1073 * on disk will never be read, and seeking back there to write new content
1074 * later would only waste time away from clustering.
6d0a07ed
AA
1075 *
1076 * NOTE: total_mapcount should not be relied upon by the caller if
1077 * reuse_swap_page() returns false, but it may be always overwritten
1078 * (see the other implementation for CONFIG_SWAP=n).
1da177e4 1079 */
6d0a07ed 1080bool reuse_swap_page(struct page *page, int *total_mapcount)
1da177e4 1081{
c475a8ab
HD
1082 int count;
1083
309381fe 1084 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688 1085 if (unlikely(PageKsm(page)))
6d0a07ed
AA
1086 return false;
1087 count = page_trans_huge_mapcount(page, total_mapcount);
7b1fe597 1088 if (count <= 1 && PageSwapCache(page)) {
c475a8ab 1089 count += page_swapcount(page);
f0571429
MK
1090 if (count != 1)
1091 goto out;
1092 if (!PageWriteback(page)) {
7b1fe597
HD
1093 delete_from_swap_cache(page);
1094 SetPageDirty(page);
f0571429
MK
1095 } else {
1096 swp_entry_t entry;
1097 struct swap_info_struct *p;
1098
1099 entry.val = page_private(page);
1100 p = swap_info_get(entry);
1101 if (p->flags & SWP_STABLE_WRITES) {
1102 spin_unlock(&p->lock);
1103 return false;
1104 }
1105 spin_unlock(&p->lock);
7b1fe597
HD
1106 }
1107 }
f0571429 1108out:
5ad64688 1109 return count <= 1;
1da177e4
LT
1110}
1111
1112/*
a2c43eed
HD
1113 * If swap is getting full, or if there are no more mappings of this page,
1114 * then try_to_free_swap is called to free its swap space.
1da177e4 1115 */
a2c43eed 1116int try_to_free_swap(struct page *page)
1da177e4 1117{
309381fe 1118 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
1119
1120 if (!PageSwapCache(page))
1121 return 0;
1122 if (PageWriteback(page))
1123 return 0;
a2c43eed 1124 if (page_swapcount(page))
1da177e4
LT
1125 return 0;
1126
b73d7fce
HD
1127 /*
1128 * Once hibernation has begun to create its image of memory,
1129 * there's a danger that one of the calls to try_to_free_swap()
1130 * - most probably a call from __try_to_reclaim_swap() while
1131 * hibernation is allocating its own swap pages for the image,
1132 * but conceivably even a call from memory reclaim - will free
1133 * the swap from a page which has already been recorded in the
1134 * image as a clean swapcache page, and then reuse its swap for
1135 * another page of the image. On waking from hibernation, the
1136 * original page might be freed under memory pressure, then
1137 * later read back in from swap, now with the wrong data.
1138 *
2de1a7e4 1139 * Hibernation suspends storage while it is writing the image
f90ac398 1140 * to disk so check that here.
b73d7fce 1141 */
f90ac398 1142 if (pm_suspended_storage())
b73d7fce
HD
1143 return 0;
1144
a2c43eed
HD
1145 delete_from_swap_cache(page);
1146 SetPageDirty(page);
1147 return 1;
68a22394
RR
1148}
1149
1da177e4
LT
1150/*
1151 * Free the swap entry like above, but also try to
1152 * free the page cache entry if it is the last user.
1153 */
2509ef26 1154int free_swap_and_cache(swp_entry_t entry)
1da177e4 1155{
2509ef26 1156 struct swap_info_struct *p;
1da177e4
LT
1157 struct page *page = NULL;
1158
a7420aa5 1159 if (non_swap_entry(entry))
2509ef26 1160 return 1;
0697212a 1161
1da177e4
LT
1162 p = swap_info_get(entry);
1163 if (p) {
235b6217 1164 if (swap_entry_free(p, entry, 1, true) == SWAP_HAS_CACHE) {
33806f06 1165 page = find_get_page(swap_address_space(entry),
f6ab1f7f 1166 swp_offset(entry));
8413ac9d 1167 if (page && !trylock_page(page)) {
09cbfeaf 1168 put_page(page);
93fac704
NP
1169 page = NULL;
1170 }
1171 }
ec8acf20 1172 spin_unlock(&p->lock);
1da177e4
LT
1173 }
1174 if (page) {
a2c43eed
HD
1175 /*
1176 * Not mapped elsewhere, or swap space full? Free it!
1177 * Also recheck PageSwapCache now page is locked (above).
1178 */
93fac704 1179 if (PageSwapCache(page) && !PageWriteback(page) &&
5ccc5aba 1180 (!page_mapped(page) || mem_cgroup_swap_full(page))) {
1da177e4
LT
1181 delete_from_swap_cache(page);
1182 SetPageDirty(page);
1183 }
1184 unlock_page(page);
09cbfeaf 1185 put_page(page);
1da177e4 1186 }
2509ef26 1187 return p != NULL;
1da177e4
LT
1188}
1189
b0cb1a19 1190#ifdef CONFIG_HIBERNATION
f577eb30 1191/*
915bae9e 1192 * Find the swap type that corresponds to given device (if any).
f577eb30 1193 *
915bae9e
RW
1194 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1195 * from 0, in which the swap header is expected to be located.
1196 *
1197 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1198 */
7bf23687 1199int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 1200{
915bae9e 1201 struct block_device *bdev = NULL;
efa90a98 1202 int type;
f577eb30 1203
915bae9e
RW
1204 if (device)
1205 bdev = bdget(device);
1206
f577eb30 1207 spin_lock(&swap_lock);
efa90a98
HD
1208 for (type = 0; type < nr_swapfiles; type++) {
1209 struct swap_info_struct *sis = swap_info[type];
f577eb30 1210
915bae9e 1211 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1212 continue;
b6b5bce3 1213
915bae9e 1214 if (!bdev) {
7bf23687 1215 if (bdev_p)
dddac6a7 1216 *bdev_p = bdgrab(sis->bdev);
7bf23687 1217
6e1819d6 1218 spin_unlock(&swap_lock);
efa90a98 1219 return type;
6e1819d6 1220 }
915bae9e 1221 if (bdev == sis->bdev) {
9625a5f2 1222 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 1223
915bae9e 1224 if (se->start_block == offset) {
7bf23687 1225 if (bdev_p)
dddac6a7 1226 *bdev_p = bdgrab(sis->bdev);
7bf23687 1227
915bae9e
RW
1228 spin_unlock(&swap_lock);
1229 bdput(bdev);
efa90a98 1230 return type;
915bae9e 1231 }
f577eb30
RW
1232 }
1233 }
1234 spin_unlock(&swap_lock);
915bae9e
RW
1235 if (bdev)
1236 bdput(bdev);
1237
f577eb30
RW
1238 return -ENODEV;
1239}
1240
73c34b6a
HD
1241/*
1242 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1243 * corresponding to given index in swap_info (swap type).
1244 */
1245sector_t swapdev_block(int type, pgoff_t offset)
1246{
1247 struct block_device *bdev;
1248
1249 if ((unsigned int)type >= nr_swapfiles)
1250 return 0;
1251 if (!(swap_info[type]->flags & SWP_WRITEOK))
1252 return 0;
d4906e1a 1253 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
1254}
1255
f577eb30
RW
1256/*
1257 * Return either the total number of swap pages of given type, or the number
1258 * of free pages of that type (depending on @free)
1259 *
1260 * This is needed for software suspend
1261 */
1262unsigned int count_swap_pages(int type, int free)
1263{
1264 unsigned int n = 0;
1265
efa90a98
HD
1266 spin_lock(&swap_lock);
1267 if ((unsigned int)type < nr_swapfiles) {
1268 struct swap_info_struct *sis = swap_info[type];
1269
ec8acf20 1270 spin_lock(&sis->lock);
efa90a98
HD
1271 if (sis->flags & SWP_WRITEOK) {
1272 n = sis->pages;
f577eb30 1273 if (free)
efa90a98 1274 n -= sis->inuse_pages;
f577eb30 1275 }
ec8acf20 1276 spin_unlock(&sis->lock);
f577eb30 1277 }
efa90a98 1278 spin_unlock(&swap_lock);
f577eb30
RW
1279 return n;
1280}
73c34b6a 1281#endif /* CONFIG_HIBERNATION */
f577eb30 1282
9f8bdb3f 1283static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
179ef71c 1284{
9f8bdb3f 1285 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
179ef71c
CG
1286}
1287
1da177e4 1288/*
72866f6f
HD
1289 * No need to decide whether this PTE shares the swap entry with others,
1290 * just let do_wp_page work it out if a write is requested later - to
1291 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1292 */
044d66c1 1293static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1294 unsigned long addr, swp_entry_t entry, struct page *page)
1295{
9e16b7fb 1296 struct page *swapcache;
72835c86 1297 struct mem_cgroup *memcg;
044d66c1
HD
1298 spinlock_t *ptl;
1299 pte_t *pte;
1300 int ret = 1;
1301
9e16b7fb
HD
1302 swapcache = page;
1303 page = ksm_might_need_to_copy(page, vma, addr);
1304 if (unlikely(!page))
1305 return -ENOMEM;
1306
f627c2f5
KS
1307 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1308 &memcg, false)) {
044d66c1 1309 ret = -ENOMEM;
85d9fc89
KH
1310 goto out_nolock;
1311 }
044d66c1
HD
1312
1313 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
9f8bdb3f 1314 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
f627c2f5 1315 mem_cgroup_cancel_charge(page, memcg, false);
044d66c1
HD
1316 ret = 0;
1317 goto out;
1318 }
8a9f3ccd 1319
b084d435 1320 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1321 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1322 get_page(page);
1323 set_pte_at(vma->vm_mm, addr, pte,
1324 pte_mkold(mk_pte(page, vma->vm_page_prot)));
00501b53 1325 if (page == swapcache) {
d281ee61 1326 page_add_anon_rmap(page, vma, addr, false);
f627c2f5 1327 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1328 } else { /* ksm created a completely new copy */
d281ee61 1329 page_add_new_anon_rmap(page, vma, addr, false);
f627c2f5 1330 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
1331 lru_cache_add_active_or_unevictable(page, vma);
1332 }
1da177e4
LT
1333 swap_free(entry);
1334 /*
1335 * Move the page to the active list so it is not
1336 * immediately swapped out again after swapon.
1337 */
1338 activate_page(page);
044d66c1
HD
1339out:
1340 pte_unmap_unlock(pte, ptl);
85d9fc89 1341out_nolock:
9e16b7fb
HD
1342 if (page != swapcache) {
1343 unlock_page(page);
1344 put_page(page);
1345 }
044d66c1 1346 return ret;
1da177e4
LT
1347}
1348
1349static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1350 unsigned long addr, unsigned long end,
1351 swp_entry_t entry, struct page *page)
1352{
1da177e4 1353 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 1354 pte_t *pte;
8a9f3ccd 1355 int ret = 0;
1da177e4 1356
044d66c1
HD
1357 /*
1358 * We don't actually need pte lock while scanning for swp_pte: since
1359 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1360 * page table while we're scanning; though it could get zapped, and on
1361 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1362 * of unmatched parts which look like swp_pte, so unuse_pte must
1363 * recheck under pte lock. Scanning without pte lock lets it be
2de1a7e4 1364 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
044d66c1
HD
1365 */
1366 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1367 do {
1368 /*
1369 * swapoff spends a _lot_ of time in this loop!
1370 * Test inline before going to call unuse_pte.
1371 */
9f8bdb3f 1372 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
044d66c1
HD
1373 pte_unmap(pte);
1374 ret = unuse_pte(vma, pmd, addr, entry, page);
1375 if (ret)
1376 goto out;
1377 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1378 }
1379 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
1380 pte_unmap(pte - 1);
1381out:
8a9f3ccd 1382 return ret;
1da177e4
LT
1383}
1384
1385static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1386 unsigned long addr, unsigned long end,
1387 swp_entry_t entry, struct page *page)
1388{
1389 pmd_t *pmd;
1390 unsigned long next;
8a9f3ccd 1391 int ret;
1da177e4
LT
1392
1393 pmd = pmd_offset(pud, addr);
1394 do {
dc644a07 1395 cond_resched();
1da177e4 1396 next = pmd_addr_end(addr, end);
1a5a9906 1397 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 1398 continue;
8a9f3ccd
BS
1399 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1400 if (ret)
1401 return ret;
1da177e4
LT
1402 } while (pmd++, addr = next, addr != end);
1403 return 0;
1404}
1405
1406static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1407 unsigned long addr, unsigned long end,
1408 swp_entry_t entry, struct page *page)
1409{
1410 pud_t *pud;
1411 unsigned long next;
8a9f3ccd 1412 int ret;
1da177e4
LT
1413
1414 pud = pud_offset(pgd, addr);
1415 do {
1416 next = pud_addr_end(addr, end);
1417 if (pud_none_or_clear_bad(pud))
1418 continue;
8a9f3ccd
BS
1419 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1420 if (ret)
1421 return ret;
1da177e4
LT
1422 } while (pud++, addr = next, addr != end);
1423 return 0;
1424}
1425
1426static int unuse_vma(struct vm_area_struct *vma,
1427 swp_entry_t entry, struct page *page)
1428{
1429 pgd_t *pgd;
1430 unsigned long addr, end, next;
8a9f3ccd 1431 int ret;
1da177e4 1432
3ca7b3c5 1433 if (page_anon_vma(page)) {
1da177e4
LT
1434 addr = page_address_in_vma(page, vma);
1435 if (addr == -EFAULT)
1436 return 0;
1437 else
1438 end = addr + PAGE_SIZE;
1439 } else {
1440 addr = vma->vm_start;
1441 end = vma->vm_end;
1442 }
1443
1444 pgd = pgd_offset(vma->vm_mm, addr);
1445 do {
1446 next = pgd_addr_end(addr, end);
1447 if (pgd_none_or_clear_bad(pgd))
1448 continue;
8a9f3ccd
BS
1449 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1450 if (ret)
1451 return ret;
1da177e4
LT
1452 } while (pgd++, addr = next, addr != end);
1453 return 0;
1454}
1455
1456static int unuse_mm(struct mm_struct *mm,
1457 swp_entry_t entry, struct page *page)
1458{
1459 struct vm_area_struct *vma;
8a9f3ccd 1460 int ret = 0;
1da177e4
LT
1461
1462 if (!down_read_trylock(&mm->mmap_sem)) {
1463 /*
7d03431c
FLVC
1464 * Activate page so shrink_inactive_list is unlikely to unmap
1465 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 1466 */
c475a8ab 1467 activate_page(page);
1da177e4
LT
1468 unlock_page(page);
1469 down_read(&mm->mmap_sem);
1470 lock_page(page);
1471 }
1da177e4 1472 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 1473 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4 1474 break;
dc644a07 1475 cond_resched();
1da177e4 1476 }
1da177e4 1477 up_read(&mm->mmap_sem);
8a9f3ccd 1478 return (ret < 0)? ret: 0;
1da177e4
LT
1479}
1480
1481/*
38b5faf4
DM
1482 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1483 * from current position to next entry still in use.
1da177e4
LT
1484 * Recycle to start on reaching the end, returning 0 when empty.
1485 */
6eb396dc 1486static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 1487 unsigned int prev, bool frontswap)
1da177e4 1488{
6eb396dc
HD
1489 unsigned int max = si->max;
1490 unsigned int i = prev;
8d69aaee 1491 unsigned char count;
1da177e4
LT
1492
1493 /*
5d337b91 1494 * No need for swap_lock here: we're just looking
1da177e4
LT
1495 * for whether an entry is in use, not modifying it; false
1496 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 1497 * allocations from this area (while holding swap_lock).
1da177e4
LT
1498 */
1499 for (;;) {
1500 if (++i >= max) {
1501 if (!prev) {
1502 i = 0;
1503 break;
1504 }
1505 /*
1506 * No entries in use at top of swap_map,
1507 * loop back to start and recheck there.
1508 */
1509 max = prev + 1;
1510 prev = 0;
1511 i = 1;
1512 }
4db0c3c2 1513 count = READ_ONCE(si->swap_map[i]);
355cfa73 1514 if (count && swap_count(count) != SWAP_MAP_BAD)
dc644a07
HD
1515 if (!frontswap || frontswap_test(si, i))
1516 break;
1517 if ((i % LATENCY_LIMIT) == 0)
1518 cond_resched();
1da177e4
LT
1519 }
1520 return i;
1521}
1522
1523/*
1524 * We completely avoid races by reading each swap page in advance,
1525 * and then search for the process using it. All the necessary
1526 * page table adjustments can then be made atomically.
38b5faf4
DM
1527 *
1528 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1529 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 1530 */
38b5faf4
DM
1531int try_to_unuse(unsigned int type, bool frontswap,
1532 unsigned long pages_to_unuse)
1da177e4 1533{
efa90a98 1534 struct swap_info_struct *si = swap_info[type];
1da177e4 1535 struct mm_struct *start_mm;
edfe23da
SL
1536 volatile unsigned char *swap_map; /* swap_map is accessed without
1537 * locking. Mark it as volatile
1538 * to prevent compiler doing
1539 * something odd.
1540 */
8d69aaee 1541 unsigned char swcount;
1da177e4
LT
1542 struct page *page;
1543 swp_entry_t entry;
6eb396dc 1544 unsigned int i = 0;
1da177e4 1545 int retval = 0;
1da177e4
LT
1546
1547 /*
1548 * When searching mms for an entry, a good strategy is to
1549 * start at the first mm we freed the previous entry from
1550 * (though actually we don't notice whether we or coincidence
1551 * freed the entry). Initialize this start_mm with a hold.
1552 *
1553 * A simpler strategy would be to start at the last mm we
1554 * freed the previous entry from; but that would take less
1555 * advantage of mmlist ordering, which clusters forked mms
1556 * together, child after parent. If we race with dup_mmap(), we
1557 * prefer to resolve parent before child, lest we miss entries
1558 * duplicated after we scanned child: using last mm would invert
570a335b 1559 * that.
1da177e4
LT
1560 */
1561 start_mm = &init_mm;
1562 atomic_inc(&init_mm.mm_users);
1563
1564 /*
1565 * Keep on scanning until all entries have gone. Usually,
1566 * one pass through swap_map is enough, but not necessarily:
1567 * there are races when an instance of an entry might be missed.
1568 */
38b5faf4 1569 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4
LT
1570 if (signal_pending(current)) {
1571 retval = -EINTR;
1572 break;
1573 }
1574
886bb7e9 1575 /*
1da177e4
LT
1576 * Get a page for the entry, using the existing swap
1577 * cache page if there is one. Otherwise, get a clean
886bb7e9 1578 * page and read the swap into it.
1da177e4
LT
1579 */
1580 swap_map = &si->swap_map[i];
1581 entry = swp_entry(type, i);
02098fea
HD
1582 page = read_swap_cache_async(entry,
1583 GFP_HIGHUSER_MOVABLE, NULL, 0);
1da177e4
LT
1584 if (!page) {
1585 /*
1586 * Either swap_duplicate() failed because entry
1587 * has been freed independently, and will not be
1588 * reused since sys_swapoff() already disabled
1589 * allocation from here, or alloc_page() failed.
1590 */
edfe23da
SL
1591 swcount = *swap_map;
1592 /*
1593 * We don't hold lock here, so the swap entry could be
1594 * SWAP_MAP_BAD (when the cluster is discarding).
1595 * Instead of fail out, We can just skip the swap
1596 * entry because swapoff will wait for discarding
1597 * finish anyway.
1598 */
1599 if (!swcount || swcount == SWAP_MAP_BAD)
1da177e4
LT
1600 continue;
1601 retval = -ENOMEM;
1602 break;
1603 }
1604
1605 /*
1606 * Don't hold on to start_mm if it looks like exiting.
1607 */
1608 if (atomic_read(&start_mm->mm_users) == 1) {
1609 mmput(start_mm);
1610 start_mm = &init_mm;
1611 atomic_inc(&init_mm.mm_users);
1612 }
1613
1614 /*
1615 * Wait for and lock page. When do_swap_page races with
1616 * try_to_unuse, do_swap_page can handle the fault much
1617 * faster than try_to_unuse can locate the entry. This
1618 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1619 * defer to do_swap_page in such a case - in some tests,
1620 * do_swap_page and try_to_unuse repeatedly compete.
1621 */
1622 wait_on_page_locked(page);
1623 wait_on_page_writeback(page);
1624 lock_page(page);
1625 wait_on_page_writeback(page);
1626
1627 /*
1628 * Remove all references to entry.
1da177e4 1629 */
1da177e4 1630 swcount = *swap_map;
aaa46865
HD
1631 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1632 retval = shmem_unuse(entry, page);
1633 /* page has already been unlocked and released */
1634 if (retval < 0)
1635 break;
1636 continue;
1da177e4 1637 }
aaa46865
HD
1638 if (swap_count(swcount) && start_mm != &init_mm)
1639 retval = unuse_mm(start_mm, entry, page);
1640
355cfa73 1641 if (swap_count(*swap_map)) {
1da177e4
LT
1642 int set_start_mm = (*swap_map >= swcount);
1643 struct list_head *p = &start_mm->mmlist;
1644 struct mm_struct *new_start_mm = start_mm;
1645 struct mm_struct *prev_mm = start_mm;
1646 struct mm_struct *mm;
1647
1648 atomic_inc(&new_start_mm->mm_users);
1649 atomic_inc(&prev_mm->mm_users);
1650 spin_lock(&mmlist_lock);
aaa46865 1651 while (swap_count(*swap_map) && !retval &&
1da177e4
LT
1652 (p = p->next) != &start_mm->mmlist) {
1653 mm = list_entry(p, struct mm_struct, mmlist);
70af7c5c 1654 if (!atomic_inc_not_zero(&mm->mm_users))
1da177e4 1655 continue;
1da177e4
LT
1656 spin_unlock(&mmlist_lock);
1657 mmput(prev_mm);
1658 prev_mm = mm;
1659
1660 cond_resched();
1661
1662 swcount = *swap_map;
355cfa73 1663 if (!swap_count(swcount)) /* any usage ? */
1da177e4 1664 ;
aaa46865 1665 else if (mm == &init_mm)
1da177e4 1666 set_start_mm = 1;
aaa46865 1667 else
1da177e4 1668 retval = unuse_mm(mm, entry, page);
355cfa73 1669
32c5fc10 1670 if (set_start_mm && *swap_map < swcount) {
1da177e4
LT
1671 mmput(new_start_mm);
1672 atomic_inc(&mm->mm_users);
1673 new_start_mm = mm;
1674 set_start_mm = 0;
1675 }
1676 spin_lock(&mmlist_lock);
1677 }
1678 spin_unlock(&mmlist_lock);
1679 mmput(prev_mm);
1680 mmput(start_mm);
1681 start_mm = new_start_mm;
1682 }
1683 if (retval) {
1684 unlock_page(page);
09cbfeaf 1685 put_page(page);
1da177e4
LT
1686 break;
1687 }
1688
1da177e4
LT
1689 /*
1690 * If a reference remains (rare), we would like to leave
1691 * the page in the swap cache; but try_to_unmap could
1692 * then re-duplicate the entry once we drop page lock,
1693 * so we might loop indefinitely; also, that page could
1694 * not be swapped out to other storage meanwhile. So:
1695 * delete from cache even if there's another reference,
1696 * after ensuring that the data has been saved to disk -
1697 * since if the reference remains (rarer), it will be
1698 * read from disk into another page. Splitting into two
1699 * pages would be incorrect if swap supported "shared
1700 * private" pages, but they are handled by tmpfs files.
5ad64688
HD
1701 *
1702 * Given how unuse_vma() targets one particular offset
1703 * in an anon_vma, once the anon_vma has been determined,
1704 * this splitting happens to be just what is needed to
1705 * handle where KSM pages have been swapped out: re-reading
1706 * is unnecessarily slow, but we can fix that later on.
1da177e4 1707 */
355cfa73
KH
1708 if (swap_count(*swap_map) &&
1709 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
1710 struct writeback_control wbc = {
1711 .sync_mode = WB_SYNC_NONE,
1712 };
1713
1714 swap_writepage(page, &wbc);
1715 lock_page(page);
1716 wait_on_page_writeback(page);
1717 }
68bdc8d6
HD
1718
1719 /*
1720 * It is conceivable that a racing task removed this page from
1721 * swap cache just before we acquired the page lock at the top,
1722 * or while we dropped it in unuse_mm(). The page might even
1723 * be back in swap cache on another swap area: that we must not
1724 * delete, since it may not have been written out to swap yet.
1725 */
1726 if (PageSwapCache(page) &&
1727 likely(page_private(page) == entry.val))
2e0e26c7 1728 delete_from_swap_cache(page);
1da177e4
LT
1729
1730 /*
1731 * So we could skip searching mms once swap count went
1732 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 1733 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
1734 */
1735 SetPageDirty(page);
1736 unlock_page(page);
09cbfeaf 1737 put_page(page);
1da177e4
LT
1738
1739 /*
1740 * Make sure that we aren't completely killing
1741 * interactive performance.
1742 */
1743 cond_resched();
38b5faf4
DM
1744 if (frontswap && pages_to_unuse > 0) {
1745 if (!--pages_to_unuse)
1746 break;
1747 }
1da177e4
LT
1748 }
1749
1750 mmput(start_mm);
1da177e4
LT
1751 return retval;
1752}
1753
1754/*
5d337b91
HD
1755 * After a successful try_to_unuse, if no swap is now in use, we know
1756 * we can empty the mmlist. swap_lock must be held on entry and exit.
1757 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
1758 * added to the mmlist just after page_duplicate - before would be racy.
1759 */
1760static void drain_mmlist(void)
1761{
1762 struct list_head *p, *next;
efa90a98 1763 unsigned int type;
1da177e4 1764
efa90a98
HD
1765 for (type = 0; type < nr_swapfiles; type++)
1766 if (swap_info[type]->inuse_pages)
1da177e4
LT
1767 return;
1768 spin_lock(&mmlist_lock);
1769 list_for_each_safe(p, next, &init_mm.mmlist)
1770 list_del_init(p);
1771 spin_unlock(&mmlist_lock);
1772}
1773
1774/*
1775 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
1776 * corresponds to page offset for the specified swap entry.
1777 * Note that the type of this function is sector_t, but it returns page offset
1778 * into the bdev, not sector offset.
1da177e4 1779 */
d4906e1a 1780static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 1781{
f29ad6a9
HD
1782 struct swap_info_struct *sis;
1783 struct swap_extent *start_se;
1784 struct swap_extent *se;
1785 pgoff_t offset;
1786
efa90a98 1787 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
1788 *bdev = sis->bdev;
1789
1790 offset = swp_offset(entry);
1791 start_se = sis->curr_swap_extent;
1792 se = start_se;
1da177e4
LT
1793
1794 for ( ; ; ) {
1da177e4
LT
1795 if (se->start_page <= offset &&
1796 offset < (se->start_page + se->nr_pages)) {
1797 return se->start_block + (offset - se->start_page);
1798 }
a8ae4991 1799 se = list_next_entry(se, list);
1da177e4
LT
1800 sis->curr_swap_extent = se;
1801 BUG_ON(se == start_se); /* It *must* be present */
1802 }
1803}
1804
d4906e1a
LS
1805/*
1806 * Returns the page offset into bdev for the specified page's swap entry.
1807 */
1808sector_t map_swap_page(struct page *page, struct block_device **bdev)
1809{
1810 swp_entry_t entry;
1811 entry.val = page_private(page);
1812 return map_swap_entry(entry, bdev);
1813}
1814
1da177e4
LT
1815/*
1816 * Free all of a swapdev's extent information
1817 */
1818static void destroy_swap_extents(struct swap_info_struct *sis)
1819{
9625a5f2 1820 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
1821 struct swap_extent *se;
1822
a8ae4991 1823 se = list_first_entry(&sis->first_swap_extent.list,
1da177e4
LT
1824 struct swap_extent, list);
1825 list_del(&se->list);
1826 kfree(se);
1827 }
62c230bc
MG
1828
1829 if (sis->flags & SWP_FILE) {
1830 struct file *swap_file = sis->swap_file;
1831 struct address_space *mapping = swap_file->f_mapping;
1832
1833 sis->flags &= ~SWP_FILE;
1834 mapping->a_ops->swap_deactivate(swap_file);
1835 }
1da177e4
LT
1836}
1837
1838/*
1839 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 1840 * extent list. The extent list is kept sorted in page order.
1da177e4 1841 *
11d31886 1842 * This function rather assumes that it is called in ascending page order.
1da177e4 1843 */
a509bc1a 1844int
1da177e4
LT
1845add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1846 unsigned long nr_pages, sector_t start_block)
1847{
1848 struct swap_extent *se;
1849 struct swap_extent *new_se;
1850 struct list_head *lh;
1851
9625a5f2
HD
1852 if (start_page == 0) {
1853 se = &sis->first_swap_extent;
1854 sis->curr_swap_extent = se;
1855 se->start_page = 0;
1856 se->nr_pages = nr_pages;
1857 se->start_block = start_block;
1858 return 1;
1859 } else {
1860 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 1861 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
1862 BUG_ON(se->start_page + se->nr_pages != start_page);
1863 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
1864 /* Merge it */
1865 se->nr_pages += nr_pages;
1866 return 0;
1867 }
1da177e4
LT
1868 }
1869
1870 /*
1871 * No merge. Insert a new extent, preserving ordering.
1872 */
1873 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1874 if (new_se == NULL)
1875 return -ENOMEM;
1876 new_se->start_page = start_page;
1877 new_se->nr_pages = nr_pages;
1878 new_se->start_block = start_block;
1879
9625a5f2 1880 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 1881 return 1;
1da177e4
LT
1882}
1883
1884/*
1885 * A `swap extent' is a simple thing which maps a contiguous range of pages
1886 * onto a contiguous range of disk blocks. An ordered list of swap extents
1887 * is built at swapon time and is then used at swap_writepage/swap_readpage
1888 * time for locating where on disk a page belongs.
1889 *
1890 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1891 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1892 * swap files identically.
1893 *
1894 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1895 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1896 * swapfiles are handled *identically* after swapon time.
1897 *
1898 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1899 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1900 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1901 * requirements, they are simply tossed out - we will never use those blocks
1902 * for swapping.
1903 *
b0d9bcd4 1904 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
1905 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1906 * which will scribble on the fs.
1907 *
1908 * The amount of disk space which a single swap extent represents varies.
1909 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1910 * extents in the list. To avoid much list walking, we cache the previous
1911 * search location in `curr_swap_extent', and start new searches from there.
1912 * This is extremely effective. The average number of iterations in
1913 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1914 */
53092a74 1915static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 1916{
62c230bc
MG
1917 struct file *swap_file = sis->swap_file;
1918 struct address_space *mapping = swap_file->f_mapping;
1919 struct inode *inode = mapping->host;
1da177e4
LT
1920 int ret;
1921
1da177e4
LT
1922 if (S_ISBLK(inode->i_mode)) {
1923 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 1924 *span = sis->pages;
a509bc1a 1925 return ret;
1da177e4
LT
1926 }
1927
62c230bc 1928 if (mapping->a_ops->swap_activate) {
a509bc1a 1929 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
62c230bc
MG
1930 if (!ret) {
1931 sis->flags |= SWP_FILE;
1932 ret = add_swap_extent(sis, 0, sis->max, 0);
1933 *span = sis->pages;
1934 }
a509bc1a 1935 return ret;
62c230bc
MG
1936 }
1937
a509bc1a 1938 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
1939}
1940
cf0cac0a 1941static void _enable_swap_info(struct swap_info_struct *p, int prio,
2a8f9449
SL
1942 unsigned char *swap_map,
1943 struct swap_cluster_info *cluster_info)
40531542 1944{
40531542
CEB
1945 if (prio >= 0)
1946 p->prio = prio;
1947 else
1948 p->prio = --least_priority;
18ab4d4c
DS
1949 /*
1950 * the plist prio is negated because plist ordering is
1951 * low-to-high, while swap ordering is high-to-low
1952 */
1953 p->list.prio = -p->prio;
1954 p->avail_list.prio = -p->prio;
40531542 1955 p->swap_map = swap_map;
2a8f9449 1956 p->cluster_info = cluster_info;
40531542 1957 p->flags |= SWP_WRITEOK;
ec8acf20 1958 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
1959 total_swap_pages += p->pages;
1960
adfab836 1961 assert_spin_locked(&swap_lock);
adfab836 1962 /*
18ab4d4c
DS
1963 * both lists are plists, and thus priority ordered.
1964 * swap_active_head needs to be priority ordered for swapoff(),
1965 * which on removal of any swap_info_struct with an auto-assigned
1966 * (i.e. negative) priority increments the auto-assigned priority
1967 * of any lower-priority swap_info_structs.
1968 * swap_avail_head needs to be priority ordered for get_swap_page(),
1969 * which allocates swap pages from the highest available priority
1970 * swap_info_struct.
adfab836 1971 */
18ab4d4c
DS
1972 plist_add(&p->list, &swap_active_head);
1973 spin_lock(&swap_avail_lock);
1974 plist_add(&p->avail_list, &swap_avail_head);
1975 spin_unlock(&swap_avail_lock);
cf0cac0a
CEB
1976}
1977
1978static void enable_swap_info(struct swap_info_struct *p, int prio,
1979 unsigned char *swap_map,
2a8f9449 1980 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
1981 unsigned long *frontswap_map)
1982{
4f89849d 1983 frontswap_init(p->type, frontswap_map);
cf0cac0a 1984 spin_lock(&swap_lock);
ec8acf20 1985 spin_lock(&p->lock);
2a8f9449 1986 _enable_swap_info(p, prio, swap_map, cluster_info);
ec8acf20 1987 spin_unlock(&p->lock);
cf0cac0a
CEB
1988 spin_unlock(&swap_lock);
1989}
1990
1991static void reinsert_swap_info(struct swap_info_struct *p)
1992{
1993 spin_lock(&swap_lock);
ec8acf20 1994 spin_lock(&p->lock);
2a8f9449 1995 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
ec8acf20 1996 spin_unlock(&p->lock);
40531542
CEB
1997 spin_unlock(&swap_lock);
1998}
1999
c4ea37c2 2000SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 2001{
73c34b6a 2002 struct swap_info_struct *p = NULL;
8d69aaee 2003 unsigned char *swap_map;
2a8f9449 2004 struct swap_cluster_info *cluster_info;
4f89849d 2005 unsigned long *frontswap_map;
1da177e4
LT
2006 struct file *swap_file, *victim;
2007 struct address_space *mapping;
2008 struct inode *inode;
91a27b2a 2009 struct filename *pathname;
adfab836 2010 int err, found = 0;
5b808a23 2011 unsigned int old_block_size;
886bb7e9 2012
1da177e4
LT
2013 if (!capable(CAP_SYS_ADMIN))
2014 return -EPERM;
2015
191c5424
AV
2016 BUG_ON(!current->mm);
2017
1da177e4 2018 pathname = getname(specialfile);
1da177e4 2019 if (IS_ERR(pathname))
f58b59c1 2020 return PTR_ERR(pathname);
1da177e4 2021
669abf4e 2022 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
2023 err = PTR_ERR(victim);
2024 if (IS_ERR(victim))
2025 goto out;
2026
2027 mapping = victim->f_mapping;
5d337b91 2028 spin_lock(&swap_lock);
18ab4d4c 2029 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 2030 if (p->flags & SWP_WRITEOK) {
adfab836
DS
2031 if (p->swap_file->f_mapping == mapping) {
2032 found = 1;
1da177e4 2033 break;
adfab836 2034 }
1da177e4 2035 }
1da177e4 2036 }
adfab836 2037 if (!found) {
1da177e4 2038 err = -EINVAL;
5d337b91 2039 spin_unlock(&swap_lock);
1da177e4
LT
2040 goto out_dput;
2041 }
191c5424 2042 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
2043 vm_unacct_memory(p->pages);
2044 else {
2045 err = -ENOMEM;
5d337b91 2046 spin_unlock(&swap_lock);
1da177e4
LT
2047 goto out_dput;
2048 }
18ab4d4c
DS
2049 spin_lock(&swap_avail_lock);
2050 plist_del(&p->avail_list, &swap_avail_head);
2051 spin_unlock(&swap_avail_lock);
ec8acf20 2052 spin_lock(&p->lock);
78ecba08 2053 if (p->prio < 0) {
adfab836
DS
2054 struct swap_info_struct *si = p;
2055
18ab4d4c 2056 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 2057 si->prio++;
18ab4d4c
DS
2058 si->list.prio--;
2059 si->avail_list.prio--;
adfab836 2060 }
78ecba08
HD
2061 least_priority++;
2062 }
18ab4d4c 2063 plist_del(&p->list, &swap_active_head);
ec8acf20 2064 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
2065 total_swap_pages -= p->pages;
2066 p->flags &= ~SWP_WRITEOK;
ec8acf20 2067 spin_unlock(&p->lock);
5d337b91 2068 spin_unlock(&swap_lock);
fb4f88dc 2069
e1e12d2f 2070 set_current_oom_origin();
adfab836 2071 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
e1e12d2f 2072 clear_current_oom_origin();
1da177e4 2073
1da177e4
LT
2074 if (err) {
2075 /* re-insert swap space back into swap_list */
cf0cac0a 2076 reinsert_swap_info(p);
1da177e4
LT
2077 goto out_dput;
2078 }
52b7efdb 2079
815c2c54
SL
2080 flush_work(&p->discard_work);
2081
5d337b91 2082 destroy_swap_extents(p);
570a335b
HD
2083 if (p->flags & SWP_CONTINUED)
2084 free_swap_count_continuations(p);
2085
fc0abb14 2086 mutex_lock(&swapon_mutex);
5d337b91 2087 spin_lock(&swap_lock);
ec8acf20 2088 spin_lock(&p->lock);
5d337b91
HD
2089 drain_mmlist();
2090
52b7efdb 2091 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
2092 p->highest_bit = 0; /* cuts scans short */
2093 while (p->flags >= SWP_SCANNING) {
ec8acf20 2094 spin_unlock(&p->lock);
5d337b91 2095 spin_unlock(&swap_lock);
13e4b57f 2096 schedule_timeout_uninterruptible(1);
5d337b91 2097 spin_lock(&swap_lock);
ec8acf20 2098 spin_lock(&p->lock);
52b7efdb 2099 }
52b7efdb 2100
1da177e4 2101 swap_file = p->swap_file;
5b808a23 2102 old_block_size = p->old_block_size;
1da177e4
LT
2103 p->swap_file = NULL;
2104 p->max = 0;
2105 swap_map = p->swap_map;
2106 p->swap_map = NULL;
2a8f9449
SL
2107 cluster_info = p->cluster_info;
2108 p->cluster_info = NULL;
4f89849d 2109 frontswap_map = frontswap_map_get(p);
ec8acf20 2110 spin_unlock(&p->lock);
5d337b91 2111 spin_unlock(&swap_lock);
adfab836 2112 frontswap_invalidate_area(p->type);
58e97ba6 2113 frontswap_map_set(p, NULL);
fc0abb14 2114 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
2115 free_percpu(p->percpu_cluster);
2116 p->percpu_cluster = NULL;
1da177e4 2117 vfree(swap_map);
2a8f9449 2118 vfree(cluster_info);
4f89849d 2119 vfree(frontswap_map);
2de1a7e4 2120 /* Destroy swap account information */
adfab836 2121 swap_cgroup_swapoff(p->type);
4b3ef9da 2122 exit_swap_address_space(p->type);
27a7faa0 2123
1da177e4
LT
2124 inode = mapping->host;
2125 if (S_ISBLK(inode->i_mode)) {
2126 struct block_device *bdev = I_BDEV(inode);
5b808a23 2127 set_blocksize(bdev, old_block_size);
e525fd89 2128 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2129 } else {
5955102c 2130 inode_lock(inode);
1da177e4 2131 inode->i_flags &= ~S_SWAPFILE;
5955102c 2132 inode_unlock(inode);
1da177e4
LT
2133 }
2134 filp_close(swap_file, NULL);
f893ab41
WY
2135
2136 /*
2137 * Clear the SWP_USED flag after all resources are freed so that swapon
2138 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2139 * not hold p->lock after we cleared its SWP_WRITEOK.
2140 */
2141 spin_lock(&swap_lock);
2142 p->flags = 0;
2143 spin_unlock(&swap_lock);
2144
1da177e4 2145 err = 0;
66d7dd51
KS
2146 atomic_inc(&proc_poll_event);
2147 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
2148
2149out_dput:
2150 filp_close(victim, NULL);
2151out:
f58b59c1 2152 putname(pathname);
1da177e4
LT
2153 return err;
2154}
2155
2156#ifdef CONFIG_PROC_FS
66d7dd51
KS
2157static unsigned swaps_poll(struct file *file, poll_table *wait)
2158{
f1514638 2159 struct seq_file *seq = file->private_data;
66d7dd51
KS
2160
2161 poll_wait(file, &proc_poll_wait, wait);
2162
f1514638
KS
2163 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2164 seq->poll_event = atomic_read(&proc_poll_event);
66d7dd51
KS
2165 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2166 }
2167
2168 return POLLIN | POLLRDNORM;
2169}
2170
1da177e4
LT
2171/* iterator */
2172static void *swap_start(struct seq_file *swap, loff_t *pos)
2173{
efa90a98
HD
2174 struct swap_info_struct *si;
2175 int type;
1da177e4
LT
2176 loff_t l = *pos;
2177
fc0abb14 2178 mutex_lock(&swapon_mutex);
1da177e4 2179
881e4aab
SS
2180 if (!l)
2181 return SEQ_START_TOKEN;
2182
efa90a98
HD
2183 for (type = 0; type < nr_swapfiles; type++) {
2184 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2185 si = swap_info[type];
2186 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2187 continue;
881e4aab 2188 if (!--l)
efa90a98 2189 return si;
1da177e4
LT
2190 }
2191
2192 return NULL;
2193}
2194
2195static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2196{
efa90a98
HD
2197 struct swap_info_struct *si = v;
2198 int type;
1da177e4 2199
881e4aab 2200 if (v == SEQ_START_TOKEN)
efa90a98
HD
2201 type = 0;
2202 else
2203 type = si->type + 1;
881e4aab 2204
efa90a98
HD
2205 for (; type < nr_swapfiles; type++) {
2206 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2207 si = swap_info[type];
2208 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
2209 continue;
2210 ++*pos;
efa90a98 2211 return si;
1da177e4
LT
2212 }
2213
2214 return NULL;
2215}
2216
2217static void swap_stop(struct seq_file *swap, void *v)
2218{
fc0abb14 2219 mutex_unlock(&swapon_mutex);
1da177e4
LT
2220}
2221
2222static int swap_show(struct seq_file *swap, void *v)
2223{
efa90a98 2224 struct swap_info_struct *si = v;
1da177e4
LT
2225 struct file *file;
2226 int len;
2227
efa90a98 2228 if (si == SEQ_START_TOKEN) {
881e4aab
SS
2229 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2230 return 0;
2231 }
1da177e4 2232
efa90a98 2233 file = si->swap_file;
2726d566 2234 len = seq_file_path(swap, file, " \t\n\\");
6eb396dc 2235 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9 2236 len < 40 ? 40 - len : 1, " ",
496ad9aa 2237 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2238 "partition" : "file\t",
efa90a98
HD
2239 si->pages << (PAGE_SHIFT - 10),
2240 si->inuse_pages << (PAGE_SHIFT - 10),
2241 si->prio);
1da177e4
LT
2242 return 0;
2243}
2244
15ad7cdc 2245static const struct seq_operations swaps_op = {
1da177e4
LT
2246 .start = swap_start,
2247 .next = swap_next,
2248 .stop = swap_stop,
2249 .show = swap_show
2250};
2251
2252static int swaps_open(struct inode *inode, struct file *file)
2253{
f1514638 2254 struct seq_file *seq;
66d7dd51
KS
2255 int ret;
2256
66d7dd51 2257 ret = seq_open(file, &swaps_op);
f1514638 2258 if (ret)
66d7dd51 2259 return ret;
66d7dd51 2260
f1514638
KS
2261 seq = file->private_data;
2262 seq->poll_event = atomic_read(&proc_poll_event);
2263 return 0;
1da177e4
LT
2264}
2265
15ad7cdc 2266static const struct file_operations proc_swaps_operations = {
1da177e4
LT
2267 .open = swaps_open,
2268 .read = seq_read,
2269 .llseek = seq_lseek,
2270 .release = seq_release,
66d7dd51 2271 .poll = swaps_poll,
1da177e4
LT
2272};
2273
2274static int __init procswaps_init(void)
2275{
3d71f86f 2276 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
2277 return 0;
2278}
2279__initcall(procswaps_init);
2280#endif /* CONFIG_PROC_FS */
2281
1796316a
JB
2282#ifdef MAX_SWAPFILES_CHECK
2283static int __init max_swapfiles_check(void)
2284{
2285 MAX_SWAPFILES_CHECK();
2286 return 0;
2287}
2288late_initcall(max_swapfiles_check);
2289#endif
2290
53cbb243 2291static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2292{
73c34b6a 2293 struct swap_info_struct *p;
1da177e4 2294 unsigned int type;
efa90a98
HD
2295
2296 p = kzalloc(sizeof(*p), GFP_KERNEL);
2297 if (!p)
53cbb243 2298 return ERR_PTR(-ENOMEM);
efa90a98 2299
5d337b91 2300 spin_lock(&swap_lock);
efa90a98
HD
2301 for (type = 0; type < nr_swapfiles; type++) {
2302 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2303 break;
efa90a98 2304 }
0697212a 2305 if (type >= MAX_SWAPFILES) {
5d337b91 2306 spin_unlock(&swap_lock);
efa90a98 2307 kfree(p);
730c0581 2308 return ERR_PTR(-EPERM);
1da177e4 2309 }
efa90a98
HD
2310 if (type >= nr_swapfiles) {
2311 p->type = type;
2312 swap_info[type] = p;
2313 /*
2314 * Write swap_info[type] before nr_swapfiles, in case a
2315 * racing procfs swap_start() or swap_next() is reading them.
2316 * (We never shrink nr_swapfiles, we never free this entry.)
2317 */
2318 smp_wmb();
2319 nr_swapfiles++;
2320 } else {
2321 kfree(p);
2322 p = swap_info[type];
2323 /*
2324 * Do not memset this entry: a racing procfs swap_next()
2325 * would be relying on p->type to remain valid.
2326 */
2327 }
9625a5f2 2328 INIT_LIST_HEAD(&p->first_swap_extent.list);
18ab4d4c
DS
2329 plist_node_init(&p->list, 0);
2330 plist_node_init(&p->avail_list, 0);
1da177e4 2331 p->flags = SWP_USED;
5d337b91 2332 spin_unlock(&swap_lock);
ec8acf20 2333 spin_lock_init(&p->lock);
efa90a98 2334
53cbb243 2335 return p;
53cbb243
CEB
2336}
2337
4d0e1e10
CEB
2338static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2339{
2340 int error;
2341
2342 if (S_ISBLK(inode->i_mode)) {
2343 p->bdev = bdgrab(I_BDEV(inode));
2344 error = blkdev_get(p->bdev,
6f179af8 2345 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
4d0e1e10
CEB
2346 if (error < 0) {
2347 p->bdev = NULL;
6f179af8 2348 return error;
4d0e1e10
CEB
2349 }
2350 p->old_block_size = block_size(p->bdev);
2351 error = set_blocksize(p->bdev, PAGE_SIZE);
2352 if (error < 0)
87ade72a 2353 return error;
4d0e1e10
CEB
2354 p->flags |= SWP_BLKDEV;
2355 } else if (S_ISREG(inode->i_mode)) {
2356 p->bdev = inode->i_sb->s_bdev;
5955102c 2357 inode_lock(inode);
87ade72a
CEB
2358 if (IS_SWAPFILE(inode))
2359 return -EBUSY;
2360 } else
2361 return -EINVAL;
4d0e1e10
CEB
2362
2363 return 0;
4d0e1e10
CEB
2364}
2365
ca8bd38b
CEB
2366static unsigned long read_swap_header(struct swap_info_struct *p,
2367 union swap_header *swap_header,
2368 struct inode *inode)
2369{
2370 int i;
2371 unsigned long maxpages;
2372 unsigned long swapfilepages;
d6bbbd29 2373 unsigned long last_page;
ca8bd38b
CEB
2374
2375 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2376 pr_err("Unable to find swap-space signature\n");
38719025 2377 return 0;
ca8bd38b
CEB
2378 }
2379
2380 /* swap partition endianess hack... */
2381 if (swab32(swap_header->info.version) == 1) {
2382 swab32s(&swap_header->info.version);
2383 swab32s(&swap_header->info.last_page);
2384 swab32s(&swap_header->info.nr_badpages);
dd111be6
JH
2385 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2386 return 0;
ca8bd38b
CEB
2387 for (i = 0; i < swap_header->info.nr_badpages; i++)
2388 swab32s(&swap_header->info.badpages[i]);
2389 }
2390 /* Check the swap header's sub-version */
2391 if (swap_header->info.version != 1) {
465c47fd
AM
2392 pr_warn("Unable to handle swap header version %d\n",
2393 swap_header->info.version);
38719025 2394 return 0;
ca8bd38b
CEB
2395 }
2396
2397 p->lowest_bit = 1;
2398 p->cluster_next = 1;
2399 p->cluster_nr = 0;
2400
2401 /*
2402 * Find out how many pages are allowed for a single swap
9b15b817 2403 * device. There are two limiting factors: 1) the number
a2c16d6c
HD
2404 * of bits for the swap offset in the swp_entry_t type, and
2405 * 2) the number of bits in the swap pte as defined by the
9b15b817 2406 * different architectures. In order to find the
a2c16d6c 2407 * largest possible bit mask, a swap entry with swap type 0
ca8bd38b 2408 * and swap offset ~0UL is created, encoded to a swap pte,
a2c16d6c 2409 * decoded to a swp_entry_t again, and finally the swap
ca8bd38b
CEB
2410 * offset is extracted. This will mask all the bits from
2411 * the initial ~0UL mask that can't be encoded in either
2412 * the swp_entry_t or the architecture definition of a
9b15b817 2413 * swap pte.
ca8bd38b
CEB
2414 */
2415 maxpages = swp_offset(pte_to_swp_entry(
9b15b817 2416 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
d6bbbd29
RJ
2417 last_page = swap_header->info.last_page;
2418 if (last_page > maxpages) {
465c47fd 2419 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2420 maxpages << (PAGE_SHIFT - 10),
2421 last_page << (PAGE_SHIFT - 10));
2422 }
2423 if (maxpages > last_page) {
2424 maxpages = last_page + 1;
ca8bd38b
CEB
2425 /* p->max is an unsigned int: don't overflow it */
2426 if ((unsigned int)maxpages == 0)
2427 maxpages = UINT_MAX;
2428 }
2429 p->highest_bit = maxpages - 1;
2430
2431 if (!maxpages)
38719025 2432 return 0;
ca8bd38b
CEB
2433 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2434 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 2435 pr_warn("Swap area shorter than signature indicates\n");
38719025 2436 return 0;
ca8bd38b
CEB
2437 }
2438 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 2439 return 0;
ca8bd38b 2440 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 2441 return 0;
ca8bd38b
CEB
2442
2443 return maxpages;
ca8bd38b
CEB
2444}
2445
4b3ef9da 2446#define SWAP_CLUSTER_INFO_COLS \
235b6217 2447 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
4b3ef9da
HY
2448#define SWAP_CLUSTER_SPACE_COLS \
2449 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2450#define SWAP_CLUSTER_COLS \
2451 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
235b6217 2452
915d4d7b
CEB
2453static int setup_swap_map_and_extents(struct swap_info_struct *p,
2454 union swap_header *swap_header,
2455 unsigned char *swap_map,
2a8f9449 2456 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
2457 unsigned long maxpages,
2458 sector_t *span)
2459{
235b6217 2460 unsigned int j, k;
915d4d7b
CEB
2461 unsigned int nr_good_pages;
2462 int nr_extents;
2a8f9449 2463 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
235b6217
HY
2464 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2465 unsigned long i, idx;
915d4d7b
CEB
2466
2467 nr_good_pages = maxpages - 1; /* omit header page */
2468
6b534915
HY
2469 cluster_list_init(&p->free_clusters);
2470 cluster_list_init(&p->discard_clusters);
2a8f9449 2471
915d4d7b
CEB
2472 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2473 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
2474 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2475 return -EINVAL;
915d4d7b
CEB
2476 if (page_nr < maxpages) {
2477 swap_map[page_nr] = SWAP_MAP_BAD;
2478 nr_good_pages--;
2a8f9449
SL
2479 /*
2480 * Haven't marked the cluster free yet, no list
2481 * operation involved
2482 */
2483 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
2484 }
2485 }
2486
2a8f9449
SL
2487 /* Haven't marked the cluster free yet, no list operation involved */
2488 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2489 inc_cluster_info_page(p, cluster_info, i);
2490
915d4d7b
CEB
2491 if (nr_good_pages) {
2492 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
2493 /*
2494 * Not mark the cluster free yet, no list
2495 * operation involved
2496 */
2497 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
2498 p->max = maxpages;
2499 p->pages = nr_good_pages;
2500 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
2501 if (nr_extents < 0)
2502 return nr_extents;
915d4d7b
CEB
2503 nr_good_pages = p->pages;
2504 }
2505 if (!nr_good_pages) {
465c47fd 2506 pr_warn("Empty swap-file\n");
bdb8e3f6 2507 return -EINVAL;
915d4d7b
CEB
2508 }
2509
2a8f9449
SL
2510 if (!cluster_info)
2511 return nr_extents;
2512
235b6217 2513
4b3ef9da
HY
2514 /*
2515 * Reduce false cache line sharing between cluster_info and
2516 * sharing same address space.
2517 */
235b6217
HY
2518 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2519 j = (k + col) % SWAP_CLUSTER_COLS;
2520 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2521 idx = i * SWAP_CLUSTER_COLS + j;
2522 if (idx >= nr_clusters)
2523 continue;
2524 if (cluster_count(&cluster_info[idx]))
2525 continue;
2a8f9449 2526 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
6b534915
HY
2527 cluster_list_add_tail(&p->free_clusters, cluster_info,
2528 idx);
2a8f9449 2529 }
2a8f9449 2530 }
915d4d7b 2531 return nr_extents;
915d4d7b
CEB
2532}
2533
dcf6b7dd
RA
2534/*
2535 * Helper to sys_swapon determining if a given swap
2536 * backing device queue supports DISCARD operations.
2537 */
2538static bool swap_discardable(struct swap_info_struct *si)
2539{
2540 struct request_queue *q = bdev_get_queue(si->bdev);
2541
2542 if (!q || !blk_queue_discard(q))
2543 return false;
2544
2545 return true;
2546}
2547
53cbb243
CEB
2548SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2549{
2550 struct swap_info_struct *p;
91a27b2a 2551 struct filename *name;
53cbb243
CEB
2552 struct file *swap_file = NULL;
2553 struct address_space *mapping;
40531542 2554 int prio;
53cbb243
CEB
2555 int error;
2556 union swap_header *swap_header;
915d4d7b 2557 int nr_extents;
53cbb243
CEB
2558 sector_t span;
2559 unsigned long maxpages;
53cbb243 2560 unsigned char *swap_map = NULL;
2a8f9449 2561 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 2562 unsigned long *frontswap_map = NULL;
53cbb243
CEB
2563 struct page *page = NULL;
2564 struct inode *inode = NULL;
53cbb243 2565
d15cab97
HD
2566 if (swap_flags & ~SWAP_FLAGS_VALID)
2567 return -EINVAL;
2568
53cbb243
CEB
2569 if (!capable(CAP_SYS_ADMIN))
2570 return -EPERM;
2571
2572 p = alloc_swap_info();
2542e513
CEB
2573 if (IS_ERR(p))
2574 return PTR_ERR(p);
53cbb243 2575
815c2c54
SL
2576 INIT_WORK(&p->discard_work, swap_discard_work);
2577
1da177e4 2578 name = getname(specialfile);
1da177e4 2579 if (IS_ERR(name)) {
7de7fb6b 2580 error = PTR_ERR(name);
1da177e4 2581 name = NULL;
bd69010b 2582 goto bad_swap;
1da177e4 2583 }
669abf4e 2584 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 2585 if (IS_ERR(swap_file)) {
7de7fb6b 2586 error = PTR_ERR(swap_file);
1da177e4 2587 swap_file = NULL;
bd69010b 2588 goto bad_swap;
1da177e4
LT
2589 }
2590
2591 p->swap_file = swap_file;
2592 mapping = swap_file->f_mapping;
2130781e 2593 inode = mapping->host;
6f179af8 2594
5955102c 2595 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
4d0e1e10
CEB
2596 error = claim_swapfile(p, inode);
2597 if (unlikely(error))
1da177e4 2598 goto bad_swap;
1da177e4 2599
1da177e4
LT
2600 /*
2601 * Read the swap header.
2602 */
2603 if (!mapping->a_ops->readpage) {
2604 error = -EINVAL;
2605 goto bad_swap;
2606 }
090d2b18 2607 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
2608 if (IS_ERR(page)) {
2609 error = PTR_ERR(page);
2610 goto bad_swap;
2611 }
81e33971 2612 swap_header = kmap(page);
1da177e4 2613
ca8bd38b
CEB
2614 maxpages = read_swap_header(p, swap_header, inode);
2615 if (unlikely(!maxpages)) {
1da177e4
LT
2616 error = -EINVAL;
2617 goto bad_swap;
2618 }
886bb7e9 2619
81e33971 2620 /* OK, set up the swap map and apply the bad block list */
803d0c83 2621 swap_map = vzalloc(maxpages);
81e33971
HD
2622 if (!swap_map) {
2623 error = -ENOMEM;
2624 goto bad_swap;
2625 }
f0571429
MK
2626
2627 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
2628 p->flags |= SWP_STABLE_WRITES;
2629
2a8f9449 2630 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
6f179af8 2631 int cpu;
235b6217 2632 unsigned long ci, nr_cluster;
6f179af8 2633
2a8f9449
SL
2634 p->flags |= SWP_SOLIDSTATE;
2635 /*
2636 * select a random position to start with to help wear leveling
2637 * SSD
2638 */
2639 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
235b6217 2640 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2a8f9449 2641
235b6217 2642 cluster_info = vzalloc(nr_cluster * sizeof(*cluster_info));
2a8f9449
SL
2643 if (!cluster_info) {
2644 error = -ENOMEM;
2645 goto bad_swap;
2646 }
235b6217
HY
2647
2648 for (ci = 0; ci < nr_cluster; ci++)
2649 spin_lock_init(&((cluster_info + ci)->lock));
2650
ebc2a1a6
SL
2651 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2652 if (!p->percpu_cluster) {
2653 error = -ENOMEM;
2654 goto bad_swap;
2655 }
6f179af8 2656 for_each_possible_cpu(cpu) {
ebc2a1a6 2657 struct percpu_cluster *cluster;
6f179af8 2658 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
ebc2a1a6
SL
2659 cluster_set_null(&cluster->index);
2660 }
2a8f9449 2661 }
1da177e4 2662
1421ef3c
CEB
2663 error = swap_cgroup_swapon(p->type, maxpages);
2664 if (error)
2665 goto bad_swap;
2666
915d4d7b 2667 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 2668 cluster_info, maxpages, &span);
915d4d7b
CEB
2669 if (unlikely(nr_extents < 0)) {
2670 error = nr_extents;
1da177e4
LT
2671 goto bad_swap;
2672 }
38b5faf4 2673 /* frontswap enabled? set up bit-per-page map for frontswap */
8ea1d2a1 2674 if (IS_ENABLED(CONFIG_FRONTSWAP))
7b57976d 2675 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
1da177e4 2676
2a8f9449
SL
2677 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2678 /*
2679 * When discard is enabled for swap with no particular
2680 * policy flagged, we set all swap discard flags here in
2681 * order to sustain backward compatibility with older
2682 * swapon(8) releases.
2683 */
2684 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2685 SWP_PAGE_DISCARD);
dcf6b7dd 2686
2a8f9449
SL
2687 /*
2688 * By flagging sys_swapon, a sysadmin can tell us to
2689 * either do single-time area discards only, or to just
2690 * perform discards for released swap page-clusters.
2691 * Now it's time to adjust the p->flags accordingly.
2692 */
2693 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2694 p->flags &= ~SWP_PAGE_DISCARD;
2695 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2696 p->flags &= ~SWP_AREA_DISCARD;
2697
2698 /* issue a swapon-time discard if it's still required */
2699 if (p->flags & SWP_AREA_DISCARD) {
2700 int err = discard_swap(p);
2701 if (unlikely(err))
2702 pr_err("swapon: discard_swap(%p): %d\n",
2703 p, err);
dcf6b7dd 2704 }
20137a49 2705 }
6a6ba831 2706
4b3ef9da
HY
2707 error = init_swap_address_space(p->type, maxpages);
2708 if (error)
2709 goto bad_swap;
2710
fc0abb14 2711 mutex_lock(&swapon_mutex);
40531542 2712 prio = -1;
78ecba08 2713 if (swap_flags & SWAP_FLAG_PREFER)
40531542 2714 prio =
78ecba08 2715 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 2716 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 2717
756a025f 2718 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 2719 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
2720 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2721 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 2722 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
2723 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2724 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 2725 (frontswap_map) ? "FS" : "");
c69dbfb8 2726
fc0abb14 2727 mutex_unlock(&swapon_mutex);
66d7dd51
KS
2728 atomic_inc(&proc_poll_event);
2729 wake_up_interruptible(&proc_poll_wait);
2730
9b01c350
CEB
2731 if (S_ISREG(inode->i_mode))
2732 inode->i_flags |= S_SWAPFILE;
1da177e4
LT
2733 error = 0;
2734 goto out;
2735bad_swap:
ebc2a1a6
SL
2736 free_percpu(p->percpu_cluster);
2737 p->percpu_cluster = NULL;
bd69010b 2738 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
2739 set_blocksize(p->bdev, p->old_block_size);
2740 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2741 }
4cd3bb10 2742 destroy_swap_extents(p);
e8e6c2ec 2743 swap_cgroup_swapoff(p->type);
5d337b91 2744 spin_lock(&swap_lock);
1da177e4 2745 p->swap_file = NULL;
1da177e4 2746 p->flags = 0;
5d337b91 2747 spin_unlock(&swap_lock);
1da177e4 2748 vfree(swap_map);
2a8f9449 2749 vfree(cluster_info);
52c50567 2750 if (swap_file) {
2130781e 2751 if (inode && S_ISREG(inode->i_mode)) {
5955102c 2752 inode_unlock(inode);
2130781e
CEB
2753 inode = NULL;
2754 }
1da177e4 2755 filp_close(swap_file, NULL);
52c50567 2756 }
1da177e4
LT
2757out:
2758 if (page && !IS_ERR(page)) {
2759 kunmap(page);
09cbfeaf 2760 put_page(page);
1da177e4
LT
2761 }
2762 if (name)
2763 putname(name);
9b01c350 2764 if (inode && S_ISREG(inode->i_mode))
5955102c 2765 inode_unlock(inode);
1da177e4
LT
2766 return error;
2767}
2768
2769void si_swapinfo(struct sysinfo *val)
2770{
efa90a98 2771 unsigned int type;
1da177e4
LT
2772 unsigned long nr_to_be_unused = 0;
2773
5d337b91 2774 spin_lock(&swap_lock);
efa90a98
HD
2775 for (type = 0; type < nr_swapfiles; type++) {
2776 struct swap_info_struct *si = swap_info[type];
2777
2778 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2779 nr_to_be_unused += si->inuse_pages;
1da177e4 2780 }
ec8acf20 2781 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 2782 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 2783 spin_unlock(&swap_lock);
1da177e4
LT
2784}
2785
2786/*
2787 * Verify that a swap entry is valid and increment its swap map count.
2788 *
355cfa73
KH
2789 * Returns error code in following case.
2790 * - success -> 0
2791 * - swp_entry is invalid -> EINVAL
2792 * - swp_entry is migration entry -> EINVAL
2793 * - swap-cache reference is requested but there is already one. -> EEXIST
2794 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 2795 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 2796 */
8d69aaee 2797static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 2798{
73c34b6a 2799 struct swap_info_struct *p;
235b6217 2800 struct swap_cluster_info *ci;
1da177e4 2801 unsigned long offset, type;
8d69aaee
HD
2802 unsigned char count;
2803 unsigned char has_cache;
253d553b 2804 int err = -EINVAL;
1da177e4 2805
a7420aa5 2806 if (non_swap_entry(entry))
253d553b 2807 goto out;
0697212a 2808
1da177e4
LT
2809 type = swp_type(entry);
2810 if (type >= nr_swapfiles)
2811 goto bad_file;
efa90a98 2812 p = swap_info[type];
1da177e4 2813 offset = swp_offset(entry);
355cfa73 2814 if (unlikely(offset >= p->max))
235b6217
HY
2815 goto out;
2816
2817 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 2818
253d553b 2819 count = p->swap_map[offset];
edfe23da
SL
2820
2821 /*
2822 * swapin_readahead() doesn't check if a swap entry is valid, so the
2823 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2824 */
2825 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2826 err = -ENOENT;
2827 goto unlock_out;
2828 }
2829
253d553b
HD
2830 has_cache = count & SWAP_HAS_CACHE;
2831 count &= ~SWAP_HAS_CACHE;
2832 err = 0;
355cfa73 2833
253d553b 2834 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
2835
2836 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
2837 if (!has_cache && count)
2838 has_cache = SWAP_HAS_CACHE;
2839 else if (has_cache) /* someone else added cache */
2840 err = -EEXIST;
2841 else /* no users remaining */
2842 err = -ENOENT;
355cfa73
KH
2843
2844 } else if (count || has_cache) {
253d553b 2845
570a335b
HD
2846 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2847 count += usage;
2848 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 2849 err = -EINVAL;
570a335b
HD
2850 else if (swap_count_continued(p, offset, count))
2851 count = COUNT_CONTINUED;
2852 else
2853 err = -ENOMEM;
355cfa73 2854 } else
253d553b
HD
2855 err = -ENOENT; /* unused swap entry */
2856
2857 p->swap_map[offset] = count | has_cache;
2858
355cfa73 2859unlock_out:
235b6217 2860 unlock_cluster_or_swap_info(p, ci);
1da177e4 2861out:
253d553b 2862 return err;
1da177e4
LT
2863
2864bad_file:
465c47fd 2865 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
2866 goto out;
2867}
253d553b 2868
aaa46865
HD
2869/*
2870 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2871 * (in which case its reference count is never incremented).
2872 */
2873void swap_shmem_alloc(swp_entry_t entry)
2874{
2875 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2876}
2877
355cfa73 2878/*
08259d58
HD
2879 * Increase reference count of swap entry by 1.
2880 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2881 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2882 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2883 * might occur if a page table entry has got corrupted.
355cfa73 2884 */
570a335b 2885int swap_duplicate(swp_entry_t entry)
355cfa73 2886{
570a335b
HD
2887 int err = 0;
2888
2889 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2890 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2891 return err;
355cfa73 2892}
1da177e4 2893
cb4b86ba 2894/*
355cfa73
KH
2895 * @entry: swap entry for which we allocate swap cache.
2896 *
73c34b6a 2897 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
2898 * This can return error codes. Returns 0 at success.
2899 * -EBUSY means there is a swap cache.
2900 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
2901 */
2902int swapcache_prepare(swp_entry_t entry)
2903{
253d553b 2904 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
2905}
2906
f981c595
MG
2907struct swap_info_struct *page_swap_info(struct page *page)
2908{
2909 swp_entry_t swap = { .val = page_private(page) };
f981c595
MG
2910 return swap_info[swp_type(swap)];
2911}
2912
2913/*
2914 * out-of-line __page_file_ methods to avoid include hell.
2915 */
2916struct address_space *__page_file_mapping(struct page *page)
2917{
309381fe 2918 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
2919 return page_swap_info(page)->swap_file->f_mapping;
2920}
2921EXPORT_SYMBOL_GPL(__page_file_mapping);
2922
2923pgoff_t __page_file_index(struct page *page)
2924{
2925 swp_entry_t swap = { .val = page_private(page) };
309381fe 2926 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
2927 return swp_offset(swap);
2928}
2929EXPORT_SYMBOL_GPL(__page_file_index);
2930
570a335b
HD
2931/*
2932 * add_swap_count_continuation - called when a swap count is duplicated
2933 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2934 * page of the original vmalloc'ed swap_map, to hold the continuation count
2935 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2936 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2937 *
2938 * These continuation pages are seldom referenced: the common paths all work
2939 * on the original swap_map, only referring to a continuation page when the
2940 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2941 *
2942 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2943 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2944 * can be called after dropping locks.
2945 */
2946int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2947{
2948 struct swap_info_struct *si;
235b6217 2949 struct swap_cluster_info *ci;
570a335b
HD
2950 struct page *head;
2951 struct page *page;
2952 struct page *list_page;
2953 pgoff_t offset;
2954 unsigned char count;
2955
2956 /*
2957 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2958 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2959 */
2960 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2961
2962 si = swap_info_get(entry);
2963 if (!si) {
2964 /*
2965 * An acceptable race has occurred since the failing
2966 * __swap_duplicate(): the swap entry has been freed,
2967 * perhaps even the whole swap_map cleared for swapoff.
2968 */
2969 goto outer;
2970 }
2971
2972 offset = swp_offset(entry);
235b6217
HY
2973
2974 ci = lock_cluster(si, offset);
2975
570a335b
HD
2976 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2977
2978 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2979 /*
2980 * The higher the swap count, the more likely it is that tasks
2981 * will race to add swap count continuation: we need to avoid
2982 * over-provisioning.
2983 */
2984 goto out;
2985 }
2986
2987 if (!page) {
235b6217 2988 unlock_cluster(ci);
ec8acf20 2989 spin_unlock(&si->lock);
570a335b
HD
2990 return -ENOMEM;
2991 }
2992
2993 /*
2994 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
2995 * no architecture is using highmem pages for kernel page tables: so it
2996 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
2997 */
2998 head = vmalloc_to_page(si->swap_map + offset);
2999 offset &= ~PAGE_MASK;
3000
3001 /*
3002 * Page allocation does not initialize the page's lru field,
3003 * but it does always reset its private field.
3004 */
3005 if (!page_private(head)) {
3006 BUG_ON(count & COUNT_CONTINUED);
3007 INIT_LIST_HEAD(&head->lru);
3008 set_page_private(head, SWP_CONTINUED);
3009 si->flags |= SWP_CONTINUED;
3010 }
3011
3012 list_for_each_entry(list_page, &head->lru, lru) {
3013 unsigned char *map;
3014
3015 /*
3016 * If the previous map said no continuation, but we've found
3017 * a continuation page, free our allocation and use this one.
3018 */
3019 if (!(count & COUNT_CONTINUED))
3020 goto out;
3021
9b04c5fe 3022 map = kmap_atomic(list_page) + offset;
570a335b 3023 count = *map;
9b04c5fe 3024 kunmap_atomic(map);
570a335b
HD
3025
3026 /*
3027 * If this continuation count now has some space in it,
3028 * free our allocation and use this one.
3029 */
3030 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3031 goto out;
3032 }
3033
3034 list_add_tail(&page->lru, &head->lru);
3035 page = NULL; /* now it's attached, don't free it */
3036out:
235b6217 3037 unlock_cluster(ci);
ec8acf20 3038 spin_unlock(&si->lock);
570a335b
HD
3039outer:
3040 if (page)
3041 __free_page(page);
3042 return 0;
3043}
3044
3045/*
3046 * swap_count_continued - when the original swap_map count is incremented
3047 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3048 * into, carry if so, or else fail until a new continuation page is allocated;
3049 * when the original swap_map count is decremented from 0 with continuation,
3050 * borrow from the continuation and report whether it still holds more.
235b6217
HY
3051 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3052 * lock.
570a335b
HD
3053 */
3054static bool swap_count_continued(struct swap_info_struct *si,
3055 pgoff_t offset, unsigned char count)
3056{
3057 struct page *head;
3058 struct page *page;
3059 unsigned char *map;
3060
3061 head = vmalloc_to_page(si->swap_map + offset);
3062 if (page_private(head) != SWP_CONTINUED) {
3063 BUG_ON(count & COUNT_CONTINUED);
3064 return false; /* need to add count continuation */
3065 }
3066
3067 offset &= ~PAGE_MASK;
3068 page = list_entry(head->lru.next, struct page, lru);
9b04c5fe 3069 map = kmap_atomic(page) + offset;
570a335b
HD
3070
3071 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3072 goto init_map; /* jump over SWAP_CONT_MAX checks */
3073
3074 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3075 /*
3076 * Think of how you add 1 to 999
3077 */
3078 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 3079 kunmap_atomic(map);
570a335b
HD
3080 page = list_entry(page->lru.next, struct page, lru);
3081 BUG_ON(page == head);
9b04c5fe 3082 map = kmap_atomic(page) + offset;
570a335b
HD
3083 }
3084 if (*map == SWAP_CONT_MAX) {
9b04c5fe 3085 kunmap_atomic(map);
570a335b
HD
3086 page = list_entry(page->lru.next, struct page, lru);
3087 if (page == head)
3088 return false; /* add count continuation */
9b04c5fe 3089 map = kmap_atomic(page) + offset;
570a335b
HD
3090init_map: *map = 0; /* we didn't zero the page */
3091 }
3092 *map += 1;
9b04c5fe 3093 kunmap_atomic(map);
570a335b
HD
3094 page = list_entry(page->lru.prev, struct page, lru);
3095 while (page != head) {
9b04c5fe 3096 map = kmap_atomic(page) + offset;
570a335b 3097 *map = COUNT_CONTINUED;
9b04c5fe 3098 kunmap_atomic(map);
570a335b
HD
3099 page = list_entry(page->lru.prev, struct page, lru);
3100 }
3101 return true; /* incremented */
3102
3103 } else { /* decrementing */
3104 /*
3105 * Think of how you subtract 1 from 1000
3106 */
3107 BUG_ON(count != COUNT_CONTINUED);
3108 while (*map == COUNT_CONTINUED) {
9b04c5fe 3109 kunmap_atomic(map);
570a335b
HD
3110 page = list_entry(page->lru.next, struct page, lru);
3111 BUG_ON(page == head);
9b04c5fe 3112 map = kmap_atomic(page) + offset;
570a335b
HD
3113 }
3114 BUG_ON(*map == 0);
3115 *map -= 1;
3116 if (*map == 0)
3117 count = 0;
9b04c5fe 3118 kunmap_atomic(map);
570a335b
HD
3119 page = list_entry(page->lru.prev, struct page, lru);
3120 while (page != head) {
9b04c5fe 3121 map = kmap_atomic(page) + offset;
570a335b
HD
3122 *map = SWAP_CONT_MAX | count;
3123 count = COUNT_CONTINUED;
9b04c5fe 3124 kunmap_atomic(map);
570a335b
HD
3125 page = list_entry(page->lru.prev, struct page, lru);
3126 }
3127 return count == COUNT_CONTINUED;
3128 }
3129}
3130
3131/*
3132 * free_swap_count_continuations - swapoff free all the continuation pages
3133 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3134 */
3135static void free_swap_count_continuations(struct swap_info_struct *si)
3136{
3137 pgoff_t offset;
3138
3139 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3140 struct page *head;
3141 head = vmalloc_to_page(si->swap_map + offset);
3142 if (page_private(head)) {
0d576d20
GT
3143 struct page *page, *next;
3144
3145 list_for_each_entry_safe(page, next, &head->lru, lru) {
3146 list_del(&page->lru);
570a335b
HD
3147 __free_page(page);
3148 }
3149 }
3150 }
3151}