]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/swapfile.c
swap: add per-partition lock for swapfile
[mirror_ubuntu-jammy-kernel.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
072441e2 17#include <linux/shmem_fs.h>
1da177e4 18#include <linux/blkdev.h>
20137a49 19#include <linux/random.h>
1da177e4
LT
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
5ad64688 24#include <linux/ksm.h>
1da177e4
LT
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
fc0abb14 28#include <linux/mutex.h>
c59ede7b 29#include <linux/capability.h>
1da177e4 30#include <linux/syscalls.h>
8a9f3ccd 31#include <linux/memcontrol.h>
66d7dd51 32#include <linux/poll.h>
72788c38 33#include <linux/oom.h>
38b5faf4
DM
34#include <linux/frontswap.h>
35#include <linux/swapfile.h>
f981c595 36#include <linux/export.h>
1da177e4
LT
37
38#include <asm/pgtable.h>
39#include <asm/tlbflush.h>
40#include <linux/swapops.h>
27a7faa0 41#include <linux/page_cgroup.h>
1da177e4 42
570a335b
HD
43static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 unsigned char);
45static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 46static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 47
38b5faf4 48DEFINE_SPINLOCK(swap_lock);
7c363b8c 49static unsigned int nr_swapfiles;
ec8acf20
SL
50atomic_long_t nr_swap_pages;
51/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 52long total_swap_pages;
78ecba08 53static int least_priority;
ec8acf20 54static atomic_t highest_priority_index = ATOMIC_INIT(-1);
1da177e4 55
1da177e4
LT
56static const char Bad_file[] = "Bad swap file entry ";
57static const char Unused_file[] = "Unused swap file entry ";
58static const char Bad_offset[] = "Bad swap offset entry ";
59static const char Unused_offset[] = "Unused swap offset entry ";
60
38b5faf4 61struct swap_list_t swap_list = {-1, -1};
1da177e4 62
38b5faf4 63struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 64
fc0abb14 65static DEFINE_MUTEX(swapon_mutex);
1da177e4 66
66d7dd51
KS
67static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
68/* Activity counter to indicate that a swapon or swapoff has occurred */
69static atomic_t proc_poll_event = ATOMIC_INIT(0);
70
8d69aaee 71static inline unsigned char swap_count(unsigned char ent)
355cfa73 72{
570a335b 73 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
355cfa73
KH
74}
75
efa90a98 76/* returns 1 if swap entry is freed */
c9e44410
KH
77static int
78__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
79{
efa90a98 80 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
81 struct page *page;
82 int ret = 0;
83
33806f06 84 page = find_get_page(swap_address_space(entry), entry.val);
c9e44410
KH
85 if (!page)
86 return 0;
87 /*
88 * This function is called from scan_swap_map() and it's called
89 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
90 * We have to use trylock for avoiding deadlock. This is a special
91 * case and you should use try_to_free_swap() with explicit lock_page()
92 * in usual operations.
93 */
94 if (trylock_page(page)) {
95 ret = try_to_free_swap(page);
96 unlock_page(page);
97 }
98 page_cache_release(page);
99 return ret;
100}
355cfa73 101
6a6ba831
HD
102/*
103 * swapon tell device that all the old swap contents can be discarded,
104 * to allow the swap device to optimize its wear-levelling.
105 */
106static int discard_swap(struct swap_info_struct *si)
107{
108 struct swap_extent *se;
9625a5f2
HD
109 sector_t start_block;
110 sector_t nr_blocks;
6a6ba831
HD
111 int err = 0;
112
9625a5f2
HD
113 /* Do not discard the swap header page! */
114 se = &si->first_swap_extent;
115 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
116 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
117 if (nr_blocks) {
118 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 119 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
120 if (err)
121 return err;
122 cond_resched();
123 }
6a6ba831 124
9625a5f2
HD
125 list_for_each_entry(se, &si->first_swap_extent.list, list) {
126 start_block = se->start_block << (PAGE_SHIFT - 9);
127 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
128
129 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 130 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
131 if (err)
132 break;
133
134 cond_resched();
135 }
136 return err; /* That will often be -EOPNOTSUPP */
137}
138
7992fde7
HD
139/*
140 * swap allocation tell device that a cluster of swap can now be discarded,
141 * to allow the swap device to optimize its wear-levelling.
142 */
143static void discard_swap_cluster(struct swap_info_struct *si,
144 pgoff_t start_page, pgoff_t nr_pages)
145{
146 struct swap_extent *se = si->curr_swap_extent;
147 int found_extent = 0;
148
149 while (nr_pages) {
150 struct list_head *lh;
151
152 if (se->start_page <= start_page &&
153 start_page < se->start_page + se->nr_pages) {
154 pgoff_t offset = start_page - se->start_page;
155 sector_t start_block = se->start_block + offset;
858a2990 156 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
157
158 if (nr_blocks > nr_pages)
159 nr_blocks = nr_pages;
160 start_page += nr_blocks;
161 nr_pages -= nr_blocks;
162
163 if (!found_extent++)
164 si->curr_swap_extent = se;
165
166 start_block <<= PAGE_SHIFT - 9;
167 nr_blocks <<= PAGE_SHIFT - 9;
168 if (blkdev_issue_discard(si->bdev, start_block,
dd3932ed 169 nr_blocks, GFP_NOIO, 0))
7992fde7
HD
170 break;
171 }
172
173 lh = se->list.next;
7992fde7
HD
174 se = list_entry(lh, struct swap_extent, list);
175 }
176}
177
178static int wait_for_discard(void *word)
179{
180 schedule();
181 return 0;
182}
183
048c27fd
HD
184#define SWAPFILE_CLUSTER 256
185#define LATENCY_LIMIT 256
186
24b8ff7c
CEB
187static unsigned long scan_swap_map(struct swap_info_struct *si,
188 unsigned char usage)
1da177e4 189{
ebebbbe9 190 unsigned long offset;
c60aa176 191 unsigned long scan_base;
7992fde7 192 unsigned long last_in_cluster = 0;
048c27fd 193 int latency_ration = LATENCY_LIMIT;
7992fde7 194 int found_free_cluster = 0;
7dfad418 195
886bb7e9 196 /*
7dfad418
HD
197 * We try to cluster swap pages by allocating them sequentially
198 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
199 * way, however, we resort to first-free allocation, starting
200 * a new cluster. This prevents us from scattering swap pages
201 * all over the entire swap partition, so that we reduce
202 * overall disk seek times between swap pages. -- sct
203 * But we do now try to find an empty cluster. -Andrea
c60aa176 204 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
205 */
206
52b7efdb 207 si->flags += SWP_SCANNING;
c60aa176 208 scan_base = offset = si->cluster_next;
ebebbbe9
HD
209
210 if (unlikely(!si->cluster_nr--)) {
211 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
212 si->cluster_nr = SWAPFILE_CLUSTER - 1;
213 goto checks;
214 }
7992fde7
HD
215 if (si->flags & SWP_DISCARDABLE) {
216 /*
217 * Start range check on racing allocations, in case
218 * they overlap the cluster we eventually decide on
219 * (we scan without swap_lock to allow preemption).
220 * It's hardly conceivable that cluster_nr could be
221 * wrapped during our scan, but don't depend on it.
222 */
223 if (si->lowest_alloc)
224 goto checks;
225 si->lowest_alloc = si->max;
226 si->highest_alloc = 0;
227 }
ec8acf20 228 spin_unlock(&si->lock);
7dfad418 229
c60aa176
HD
230 /*
231 * If seek is expensive, start searching for new cluster from
232 * start of partition, to minimize the span of allocated swap.
233 * But if seek is cheap, search from our current position, so
234 * that swap is allocated from all over the partition: if the
235 * Flash Translation Layer only remaps within limited zones,
236 * we don't want to wear out the first zone too quickly.
237 */
238 if (!(si->flags & SWP_SOLIDSTATE))
239 scan_base = offset = si->lowest_bit;
7dfad418
HD
240 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
241
242 /* Locate the first empty (unaligned) cluster */
243 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 244 if (si->swap_map[offset])
7dfad418
HD
245 last_in_cluster = offset + SWAPFILE_CLUSTER;
246 else if (offset == last_in_cluster) {
ec8acf20 247 spin_lock(&si->lock);
ebebbbe9
HD
248 offset -= SWAPFILE_CLUSTER - 1;
249 si->cluster_next = offset;
250 si->cluster_nr = SWAPFILE_CLUSTER - 1;
7992fde7 251 found_free_cluster = 1;
ebebbbe9 252 goto checks;
1da177e4 253 }
048c27fd
HD
254 if (unlikely(--latency_ration < 0)) {
255 cond_resched();
256 latency_ration = LATENCY_LIMIT;
257 }
7dfad418 258 }
ebebbbe9
HD
259
260 offset = si->lowest_bit;
c60aa176
HD
261 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
262
263 /* Locate the first empty (unaligned) cluster */
264 for (; last_in_cluster < scan_base; offset++) {
265 if (si->swap_map[offset])
266 last_in_cluster = offset + SWAPFILE_CLUSTER;
267 else if (offset == last_in_cluster) {
ec8acf20 268 spin_lock(&si->lock);
c60aa176
HD
269 offset -= SWAPFILE_CLUSTER - 1;
270 si->cluster_next = offset;
271 si->cluster_nr = SWAPFILE_CLUSTER - 1;
272 found_free_cluster = 1;
273 goto checks;
274 }
275 if (unlikely(--latency_ration < 0)) {
276 cond_resched();
277 latency_ration = LATENCY_LIMIT;
278 }
279 }
280
281 offset = scan_base;
ec8acf20 282 spin_lock(&si->lock);
ebebbbe9 283 si->cluster_nr = SWAPFILE_CLUSTER - 1;
7992fde7 284 si->lowest_alloc = 0;
1da177e4 285 }
7dfad418 286
ebebbbe9
HD
287checks:
288 if (!(si->flags & SWP_WRITEOK))
52b7efdb 289 goto no_page;
7dfad418
HD
290 if (!si->highest_bit)
291 goto no_page;
ebebbbe9 292 if (offset > si->highest_bit)
c60aa176 293 scan_base = offset = si->lowest_bit;
c9e44410 294
b73d7fce
HD
295 /* reuse swap entry of cache-only swap if not busy. */
296 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 297 int swap_was_freed;
ec8acf20 298 spin_unlock(&si->lock);
c9e44410 299 swap_was_freed = __try_to_reclaim_swap(si, offset);
ec8acf20 300 spin_lock(&si->lock);
c9e44410
KH
301 /* entry was freed successfully, try to use this again */
302 if (swap_was_freed)
303 goto checks;
304 goto scan; /* check next one */
305 }
306
ebebbbe9
HD
307 if (si->swap_map[offset])
308 goto scan;
309
310 if (offset == si->lowest_bit)
311 si->lowest_bit++;
312 if (offset == si->highest_bit)
313 si->highest_bit--;
314 si->inuse_pages++;
315 if (si->inuse_pages == si->pages) {
316 si->lowest_bit = si->max;
317 si->highest_bit = 0;
1da177e4 318 }
253d553b 319 si->swap_map[offset] = usage;
ebebbbe9
HD
320 si->cluster_next = offset + 1;
321 si->flags -= SWP_SCANNING;
7992fde7
HD
322
323 if (si->lowest_alloc) {
324 /*
325 * Only set when SWP_DISCARDABLE, and there's a scan
326 * for a free cluster in progress or just completed.
327 */
328 if (found_free_cluster) {
329 /*
330 * To optimize wear-levelling, discard the
331 * old data of the cluster, taking care not to
332 * discard any of its pages that have already
333 * been allocated by racing tasks (offset has
334 * already stepped over any at the beginning).
335 */
336 if (offset < si->highest_alloc &&
337 si->lowest_alloc <= last_in_cluster)
338 last_in_cluster = si->lowest_alloc - 1;
339 si->flags |= SWP_DISCARDING;
ec8acf20 340 spin_unlock(&si->lock);
7992fde7
HD
341
342 if (offset < last_in_cluster)
343 discard_swap_cluster(si, offset,
344 last_in_cluster - offset + 1);
345
ec8acf20 346 spin_lock(&si->lock);
7992fde7
HD
347 si->lowest_alloc = 0;
348 si->flags &= ~SWP_DISCARDING;
349
350 smp_mb(); /* wake_up_bit advises this */
351 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
352
353 } else if (si->flags & SWP_DISCARDING) {
354 /*
355 * Delay using pages allocated by racing tasks
356 * until the whole discard has been issued. We
357 * could defer that delay until swap_writepage,
358 * but it's easier to keep this self-contained.
359 */
ec8acf20 360 spin_unlock(&si->lock);
7992fde7
HD
361 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
362 wait_for_discard, TASK_UNINTERRUPTIBLE);
ec8acf20 363 spin_lock(&si->lock);
7992fde7
HD
364 } else {
365 /*
366 * Note pages allocated by racing tasks while
367 * scan for a free cluster is in progress, so
368 * that its final discard can exclude them.
369 */
370 if (offset < si->lowest_alloc)
371 si->lowest_alloc = offset;
372 if (offset > si->highest_alloc)
373 si->highest_alloc = offset;
374 }
375 }
ebebbbe9 376 return offset;
7dfad418 377
ebebbbe9 378scan:
ec8acf20 379 spin_unlock(&si->lock);
7dfad418 380 while (++offset <= si->highest_bit) {
52b7efdb 381 if (!si->swap_map[offset]) {
ec8acf20 382 spin_lock(&si->lock);
52b7efdb
HD
383 goto checks;
384 }
c9e44410 385 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 386 spin_lock(&si->lock);
c9e44410
KH
387 goto checks;
388 }
048c27fd
HD
389 if (unlikely(--latency_ration < 0)) {
390 cond_resched();
391 latency_ration = LATENCY_LIMIT;
392 }
7dfad418 393 }
c60aa176
HD
394 offset = si->lowest_bit;
395 while (++offset < scan_base) {
396 if (!si->swap_map[offset]) {
ec8acf20 397 spin_lock(&si->lock);
c60aa176
HD
398 goto checks;
399 }
c9e44410 400 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 401 spin_lock(&si->lock);
c9e44410
KH
402 goto checks;
403 }
c60aa176
HD
404 if (unlikely(--latency_ration < 0)) {
405 cond_resched();
406 latency_ration = LATENCY_LIMIT;
407 }
408 }
ec8acf20 409 spin_lock(&si->lock);
7dfad418
HD
410
411no_page:
52b7efdb 412 si->flags -= SWP_SCANNING;
1da177e4
LT
413 return 0;
414}
415
416swp_entry_t get_swap_page(void)
417{
fb4f88dc
HD
418 struct swap_info_struct *si;
419 pgoff_t offset;
420 int type, next;
421 int wrapped = 0;
ec8acf20 422 int hp_index;
1da177e4 423
5d337b91 424 spin_lock(&swap_lock);
ec8acf20 425 if (atomic_long_read(&nr_swap_pages) <= 0)
fb4f88dc 426 goto noswap;
ec8acf20 427 atomic_long_dec(&nr_swap_pages);
fb4f88dc
HD
428
429 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
ec8acf20
SL
430 hp_index = atomic_xchg(&highest_priority_index, -1);
431 /*
432 * highest_priority_index records current highest priority swap
433 * type which just frees swap entries. If its priority is
434 * higher than that of swap_list.next swap type, we use it. It
435 * isn't protected by swap_lock, so it can be an invalid value
436 * if the corresponding swap type is swapoff. We double check
437 * the flags here. It's even possible the swap type is swapoff
438 * and swapon again and its priority is changed. In such rare
439 * case, low prority swap type might be used, but eventually
440 * high priority swap will be used after several rounds of
441 * swap.
442 */
443 if (hp_index != -1 && hp_index != type &&
444 swap_info[type]->prio < swap_info[hp_index]->prio &&
445 (swap_info[hp_index]->flags & SWP_WRITEOK)) {
446 type = hp_index;
447 swap_list.next = type;
448 }
449
efa90a98 450 si = swap_info[type];
fb4f88dc
HD
451 next = si->next;
452 if (next < 0 ||
efa90a98 453 (!wrapped && si->prio != swap_info[next]->prio)) {
fb4f88dc
HD
454 next = swap_list.head;
455 wrapped++;
1da177e4 456 }
fb4f88dc 457
ec8acf20
SL
458 spin_lock(&si->lock);
459 if (!si->highest_bit) {
460 spin_unlock(&si->lock);
fb4f88dc 461 continue;
ec8acf20
SL
462 }
463 if (!(si->flags & SWP_WRITEOK)) {
464 spin_unlock(&si->lock);
fb4f88dc 465 continue;
ec8acf20 466 }
fb4f88dc
HD
467
468 swap_list.next = next;
ec8acf20
SL
469
470 spin_unlock(&swap_lock);
355cfa73 471 /* This is called for allocating swap entry for cache */
253d553b 472 offset = scan_swap_map(si, SWAP_HAS_CACHE);
ec8acf20
SL
473 spin_unlock(&si->lock);
474 if (offset)
fb4f88dc 475 return swp_entry(type, offset);
ec8acf20 476 spin_lock(&swap_lock);
fb4f88dc 477 next = swap_list.next;
1da177e4 478 }
fb4f88dc 479
ec8acf20 480 atomic_long_inc(&nr_swap_pages);
fb4f88dc 481noswap:
5d337b91 482 spin_unlock(&swap_lock);
fb4f88dc 483 return (swp_entry_t) {0};
1da177e4
LT
484}
485
910321ea
HD
486/* The only caller of this function is now susupend routine */
487swp_entry_t get_swap_page_of_type(int type)
488{
489 struct swap_info_struct *si;
490 pgoff_t offset;
491
910321ea 492 si = swap_info[type];
ec8acf20 493 spin_lock(&si->lock);
910321ea 494 if (si && (si->flags & SWP_WRITEOK)) {
ec8acf20 495 atomic_long_dec(&nr_swap_pages);
910321ea
HD
496 /* This is called for allocating swap entry, not cache */
497 offset = scan_swap_map(si, 1);
498 if (offset) {
ec8acf20 499 spin_unlock(&si->lock);
910321ea
HD
500 return swp_entry(type, offset);
501 }
ec8acf20 502 atomic_long_inc(&nr_swap_pages);
910321ea 503 }
ec8acf20 504 spin_unlock(&si->lock);
910321ea
HD
505 return (swp_entry_t) {0};
506}
507
73c34b6a 508static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1da177e4 509{
73c34b6a 510 struct swap_info_struct *p;
1da177e4
LT
511 unsigned long offset, type;
512
513 if (!entry.val)
514 goto out;
515 type = swp_type(entry);
516 if (type >= nr_swapfiles)
517 goto bad_nofile;
efa90a98 518 p = swap_info[type];
1da177e4
LT
519 if (!(p->flags & SWP_USED))
520 goto bad_device;
521 offset = swp_offset(entry);
522 if (offset >= p->max)
523 goto bad_offset;
524 if (!p->swap_map[offset])
525 goto bad_free;
ec8acf20 526 spin_lock(&p->lock);
1da177e4
LT
527 return p;
528
529bad_free:
530 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
531 goto out;
532bad_offset:
533 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
534 goto out;
535bad_device:
536 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
537 goto out;
538bad_nofile:
539 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
540out:
541 return NULL;
886bb7e9 542}
1da177e4 543
ec8acf20
SL
544/*
545 * This swap type frees swap entry, check if it is the highest priority swap
546 * type which just frees swap entry. get_swap_page() uses
547 * highest_priority_index to search highest priority swap type. The
548 * swap_info_struct.lock can't protect us if there are multiple swap types
549 * active, so we use atomic_cmpxchg.
550 */
551static void set_highest_priority_index(int type)
552{
553 int old_hp_index, new_hp_index;
554
555 do {
556 old_hp_index = atomic_read(&highest_priority_index);
557 if (old_hp_index != -1 &&
558 swap_info[old_hp_index]->prio >= swap_info[type]->prio)
559 break;
560 new_hp_index = type;
561 } while (atomic_cmpxchg(&highest_priority_index,
562 old_hp_index, new_hp_index) != old_hp_index);
563}
564
8d69aaee
HD
565static unsigned char swap_entry_free(struct swap_info_struct *p,
566 swp_entry_t entry, unsigned char usage)
1da177e4 567{
253d553b 568 unsigned long offset = swp_offset(entry);
8d69aaee
HD
569 unsigned char count;
570 unsigned char has_cache;
355cfa73 571
253d553b
HD
572 count = p->swap_map[offset];
573 has_cache = count & SWAP_HAS_CACHE;
574 count &= ~SWAP_HAS_CACHE;
355cfa73 575
253d553b 576 if (usage == SWAP_HAS_CACHE) {
355cfa73 577 VM_BUG_ON(!has_cache);
253d553b 578 has_cache = 0;
aaa46865
HD
579 } else if (count == SWAP_MAP_SHMEM) {
580 /*
581 * Or we could insist on shmem.c using a special
582 * swap_shmem_free() and free_shmem_swap_and_cache()...
583 */
584 count = 0;
570a335b
HD
585 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
586 if (count == COUNT_CONTINUED) {
587 if (swap_count_continued(p, offset, count))
588 count = SWAP_MAP_MAX | COUNT_CONTINUED;
589 else
590 count = SWAP_MAP_MAX;
591 } else
592 count--;
593 }
253d553b
HD
594
595 if (!count)
596 mem_cgroup_uncharge_swap(entry);
597
598 usage = count | has_cache;
599 p->swap_map[offset] = usage;
355cfa73 600
355cfa73 601 /* free if no reference */
253d553b 602 if (!usage) {
355cfa73
KH
603 if (offset < p->lowest_bit)
604 p->lowest_bit = offset;
605 if (offset > p->highest_bit)
606 p->highest_bit = offset;
ec8acf20
SL
607 set_highest_priority_index(p->type);
608 atomic_long_inc(&nr_swap_pages);
355cfa73 609 p->inuse_pages--;
38b5faf4 610 frontswap_invalidate_page(p->type, offset);
73744923
MG
611 if (p->flags & SWP_BLKDEV) {
612 struct gendisk *disk = p->bdev->bd_disk;
613 if (disk->fops->swap_slot_free_notify)
614 disk->fops->swap_slot_free_notify(p->bdev,
615 offset);
616 }
1da177e4 617 }
253d553b
HD
618
619 return usage;
1da177e4
LT
620}
621
622/*
623 * Caller has made sure that the swapdevice corresponding to entry
624 * is still around or has not been recycled.
625 */
626void swap_free(swp_entry_t entry)
627{
73c34b6a 628 struct swap_info_struct *p;
1da177e4
LT
629
630 p = swap_info_get(entry);
631 if (p) {
253d553b 632 swap_entry_free(p, entry, 1);
ec8acf20 633 spin_unlock(&p->lock);
1da177e4
LT
634 }
635}
636
cb4b86ba
KH
637/*
638 * Called after dropping swapcache to decrease refcnt to swap entries.
639 */
640void swapcache_free(swp_entry_t entry, struct page *page)
641{
355cfa73 642 struct swap_info_struct *p;
8d69aaee 643 unsigned char count;
355cfa73 644
355cfa73
KH
645 p = swap_info_get(entry);
646 if (p) {
253d553b
HD
647 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
648 if (page)
649 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
ec8acf20 650 spin_unlock(&p->lock);
355cfa73 651 }
cb4b86ba
KH
652}
653
1da177e4 654/*
c475a8ab 655 * How many references to page are currently swapped out?
570a335b
HD
656 * This does not give an exact answer when swap count is continued,
657 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 658 */
bde05d1c 659int page_swapcount(struct page *page)
1da177e4 660{
c475a8ab
HD
661 int count = 0;
662 struct swap_info_struct *p;
1da177e4
LT
663 swp_entry_t entry;
664
4c21e2f2 665 entry.val = page_private(page);
1da177e4
LT
666 p = swap_info_get(entry);
667 if (p) {
355cfa73 668 count = swap_count(p->swap_map[swp_offset(entry)]);
ec8acf20 669 spin_unlock(&p->lock);
1da177e4 670 }
c475a8ab 671 return count;
1da177e4
LT
672}
673
674/*
7b1fe597
HD
675 * We can write to an anon page without COW if there are no other references
676 * to it. And as a side-effect, free up its swap: because the old content
677 * on disk will never be read, and seeking back there to write new content
678 * later would only waste time away from clustering.
1da177e4 679 */
7b1fe597 680int reuse_swap_page(struct page *page)
1da177e4 681{
c475a8ab
HD
682 int count;
683
51726b12 684 VM_BUG_ON(!PageLocked(page));
5ad64688
HD
685 if (unlikely(PageKsm(page)))
686 return 0;
c475a8ab 687 count = page_mapcount(page);
7b1fe597 688 if (count <= 1 && PageSwapCache(page)) {
c475a8ab 689 count += page_swapcount(page);
7b1fe597
HD
690 if (count == 1 && !PageWriteback(page)) {
691 delete_from_swap_cache(page);
692 SetPageDirty(page);
693 }
694 }
5ad64688 695 return count <= 1;
1da177e4
LT
696}
697
698/*
a2c43eed
HD
699 * If swap is getting full, or if there are no more mappings of this page,
700 * then try_to_free_swap is called to free its swap space.
1da177e4 701 */
a2c43eed 702int try_to_free_swap(struct page *page)
1da177e4 703{
51726b12 704 VM_BUG_ON(!PageLocked(page));
1da177e4
LT
705
706 if (!PageSwapCache(page))
707 return 0;
708 if (PageWriteback(page))
709 return 0;
a2c43eed 710 if (page_swapcount(page))
1da177e4
LT
711 return 0;
712
b73d7fce
HD
713 /*
714 * Once hibernation has begun to create its image of memory,
715 * there's a danger that one of the calls to try_to_free_swap()
716 * - most probably a call from __try_to_reclaim_swap() while
717 * hibernation is allocating its own swap pages for the image,
718 * but conceivably even a call from memory reclaim - will free
719 * the swap from a page which has already been recorded in the
720 * image as a clean swapcache page, and then reuse its swap for
721 * another page of the image. On waking from hibernation, the
722 * original page might be freed under memory pressure, then
723 * later read back in from swap, now with the wrong data.
724 *
f90ac398
MG
725 * Hibration suspends storage while it is writing the image
726 * to disk so check that here.
b73d7fce 727 */
f90ac398 728 if (pm_suspended_storage())
b73d7fce
HD
729 return 0;
730
a2c43eed
HD
731 delete_from_swap_cache(page);
732 SetPageDirty(page);
733 return 1;
68a22394
RR
734}
735
1da177e4
LT
736/*
737 * Free the swap entry like above, but also try to
738 * free the page cache entry if it is the last user.
739 */
2509ef26 740int free_swap_and_cache(swp_entry_t entry)
1da177e4 741{
2509ef26 742 struct swap_info_struct *p;
1da177e4
LT
743 struct page *page = NULL;
744
a7420aa5 745 if (non_swap_entry(entry))
2509ef26 746 return 1;
0697212a 747
1da177e4
LT
748 p = swap_info_get(entry);
749 if (p) {
253d553b 750 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
33806f06
SL
751 page = find_get_page(swap_address_space(entry),
752 entry.val);
8413ac9d 753 if (page && !trylock_page(page)) {
93fac704
NP
754 page_cache_release(page);
755 page = NULL;
756 }
757 }
ec8acf20 758 spin_unlock(&p->lock);
1da177e4
LT
759 }
760 if (page) {
a2c43eed
HD
761 /*
762 * Not mapped elsewhere, or swap space full? Free it!
763 * Also recheck PageSwapCache now page is locked (above).
764 */
93fac704 765 if (PageSwapCache(page) && !PageWriteback(page) &&
a2c43eed 766 (!page_mapped(page) || vm_swap_full())) {
1da177e4
LT
767 delete_from_swap_cache(page);
768 SetPageDirty(page);
769 }
770 unlock_page(page);
771 page_cache_release(page);
772 }
2509ef26 773 return p != NULL;
1da177e4
LT
774}
775
b0cb1a19 776#ifdef CONFIG_HIBERNATION
f577eb30 777/*
915bae9e 778 * Find the swap type that corresponds to given device (if any).
f577eb30 779 *
915bae9e
RW
780 * @offset - number of the PAGE_SIZE-sized block of the device, starting
781 * from 0, in which the swap header is expected to be located.
782 *
783 * This is needed for the suspend to disk (aka swsusp).
f577eb30 784 */
7bf23687 785int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 786{
915bae9e 787 struct block_device *bdev = NULL;
efa90a98 788 int type;
f577eb30 789
915bae9e
RW
790 if (device)
791 bdev = bdget(device);
792
f577eb30 793 spin_lock(&swap_lock);
efa90a98
HD
794 for (type = 0; type < nr_swapfiles; type++) {
795 struct swap_info_struct *sis = swap_info[type];
f577eb30 796
915bae9e 797 if (!(sis->flags & SWP_WRITEOK))
f577eb30 798 continue;
b6b5bce3 799
915bae9e 800 if (!bdev) {
7bf23687 801 if (bdev_p)
dddac6a7 802 *bdev_p = bdgrab(sis->bdev);
7bf23687 803
6e1819d6 804 spin_unlock(&swap_lock);
efa90a98 805 return type;
6e1819d6 806 }
915bae9e 807 if (bdev == sis->bdev) {
9625a5f2 808 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 809
915bae9e 810 if (se->start_block == offset) {
7bf23687 811 if (bdev_p)
dddac6a7 812 *bdev_p = bdgrab(sis->bdev);
7bf23687 813
915bae9e
RW
814 spin_unlock(&swap_lock);
815 bdput(bdev);
efa90a98 816 return type;
915bae9e 817 }
f577eb30
RW
818 }
819 }
820 spin_unlock(&swap_lock);
915bae9e
RW
821 if (bdev)
822 bdput(bdev);
823
f577eb30
RW
824 return -ENODEV;
825}
826
73c34b6a
HD
827/*
828 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
829 * corresponding to given index in swap_info (swap type).
830 */
831sector_t swapdev_block(int type, pgoff_t offset)
832{
833 struct block_device *bdev;
834
835 if ((unsigned int)type >= nr_swapfiles)
836 return 0;
837 if (!(swap_info[type]->flags & SWP_WRITEOK))
838 return 0;
d4906e1a 839 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
840}
841
f577eb30
RW
842/*
843 * Return either the total number of swap pages of given type, or the number
844 * of free pages of that type (depending on @free)
845 *
846 * This is needed for software suspend
847 */
848unsigned int count_swap_pages(int type, int free)
849{
850 unsigned int n = 0;
851
efa90a98
HD
852 spin_lock(&swap_lock);
853 if ((unsigned int)type < nr_swapfiles) {
854 struct swap_info_struct *sis = swap_info[type];
855
ec8acf20 856 spin_lock(&sis->lock);
efa90a98
HD
857 if (sis->flags & SWP_WRITEOK) {
858 n = sis->pages;
f577eb30 859 if (free)
efa90a98 860 n -= sis->inuse_pages;
f577eb30 861 }
ec8acf20 862 spin_unlock(&sis->lock);
f577eb30 863 }
efa90a98 864 spin_unlock(&swap_lock);
f577eb30
RW
865 return n;
866}
73c34b6a 867#endif /* CONFIG_HIBERNATION */
f577eb30 868
1da177e4 869/*
72866f6f
HD
870 * No need to decide whether this PTE shares the swap entry with others,
871 * just let do_wp_page work it out if a write is requested later - to
872 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 873 */
044d66c1 874static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
875 unsigned long addr, swp_entry_t entry, struct page *page)
876{
72835c86 877 struct mem_cgroup *memcg;
044d66c1
HD
878 spinlock_t *ptl;
879 pte_t *pte;
880 int ret = 1;
881
72835c86
JW
882 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
883 GFP_KERNEL, &memcg)) {
044d66c1 884 ret = -ENOMEM;
85d9fc89
KH
885 goto out_nolock;
886 }
044d66c1
HD
887
888 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
889 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
5d84c776 890 mem_cgroup_cancel_charge_swapin(memcg);
044d66c1
HD
891 ret = 0;
892 goto out;
893 }
8a9f3ccd 894
b084d435 895 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 896 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
897 get_page(page);
898 set_pte_at(vma->vm_mm, addr, pte,
899 pte_mkold(mk_pte(page, vma->vm_page_prot)));
900 page_add_anon_rmap(page, vma, addr);
72835c86 901 mem_cgroup_commit_charge_swapin(page, memcg);
1da177e4
LT
902 swap_free(entry);
903 /*
904 * Move the page to the active list so it is not
905 * immediately swapped out again after swapon.
906 */
907 activate_page(page);
044d66c1
HD
908out:
909 pte_unmap_unlock(pte, ptl);
85d9fc89 910out_nolock:
044d66c1 911 return ret;
1da177e4
LT
912}
913
914static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
915 unsigned long addr, unsigned long end,
916 swp_entry_t entry, struct page *page)
917{
1da177e4 918 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 919 pte_t *pte;
8a9f3ccd 920 int ret = 0;
1da177e4 921
044d66c1
HD
922 /*
923 * We don't actually need pte lock while scanning for swp_pte: since
924 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
925 * page table while we're scanning; though it could get zapped, and on
926 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
927 * of unmatched parts which look like swp_pte, so unuse_pte must
928 * recheck under pte lock. Scanning without pte lock lets it be
929 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
930 */
931 pte = pte_offset_map(pmd, addr);
1da177e4
LT
932 do {
933 /*
934 * swapoff spends a _lot_ of time in this loop!
935 * Test inline before going to call unuse_pte.
936 */
937 if (unlikely(pte_same(*pte, swp_pte))) {
044d66c1
HD
938 pte_unmap(pte);
939 ret = unuse_pte(vma, pmd, addr, entry, page);
940 if (ret)
941 goto out;
942 pte = pte_offset_map(pmd, addr);
1da177e4
LT
943 }
944 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
945 pte_unmap(pte - 1);
946out:
8a9f3ccd 947 return ret;
1da177e4
LT
948}
949
950static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
951 unsigned long addr, unsigned long end,
952 swp_entry_t entry, struct page *page)
953{
954 pmd_t *pmd;
955 unsigned long next;
8a9f3ccd 956 int ret;
1da177e4
LT
957
958 pmd = pmd_offset(pud, addr);
959 do {
960 next = pmd_addr_end(addr, end);
1a5a9906 961 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 962 continue;
8a9f3ccd
BS
963 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
964 if (ret)
965 return ret;
1da177e4
LT
966 } while (pmd++, addr = next, addr != end);
967 return 0;
968}
969
970static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
971 unsigned long addr, unsigned long end,
972 swp_entry_t entry, struct page *page)
973{
974 pud_t *pud;
975 unsigned long next;
8a9f3ccd 976 int ret;
1da177e4
LT
977
978 pud = pud_offset(pgd, addr);
979 do {
980 next = pud_addr_end(addr, end);
981 if (pud_none_or_clear_bad(pud))
982 continue;
8a9f3ccd
BS
983 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
984 if (ret)
985 return ret;
1da177e4
LT
986 } while (pud++, addr = next, addr != end);
987 return 0;
988}
989
990static int unuse_vma(struct vm_area_struct *vma,
991 swp_entry_t entry, struct page *page)
992{
993 pgd_t *pgd;
994 unsigned long addr, end, next;
8a9f3ccd 995 int ret;
1da177e4 996
3ca7b3c5 997 if (page_anon_vma(page)) {
1da177e4
LT
998 addr = page_address_in_vma(page, vma);
999 if (addr == -EFAULT)
1000 return 0;
1001 else
1002 end = addr + PAGE_SIZE;
1003 } else {
1004 addr = vma->vm_start;
1005 end = vma->vm_end;
1006 }
1007
1008 pgd = pgd_offset(vma->vm_mm, addr);
1009 do {
1010 next = pgd_addr_end(addr, end);
1011 if (pgd_none_or_clear_bad(pgd))
1012 continue;
8a9f3ccd
BS
1013 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1014 if (ret)
1015 return ret;
1da177e4
LT
1016 } while (pgd++, addr = next, addr != end);
1017 return 0;
1018}
1019
1020static int unuse_mm(struct mm_struct *mm,
1021 swp_entry_t entry, struct page *page)
1022{
1023 struct vm_area_struct *vma;
8a9f3ccd 1024 int ret = 0;
1da177e4
LT
1025
1026 if (!down_read_trylock(&mm->mmap_sem)) {
1027 /*
7d03431c
FLVC
1028 * Activate page so shrink_inactive_list is unlikely to unmap
1029 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 1030 */
c475a8ab 1031 activate_page(page);
1da177e4
LT
1032 unlock_page(page);
1033 down_read(&mm->mmap_sem);
1034 lock_page(page);
1035 }
1da177e4 1036 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 1037 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4
LT
1038 break;
1039 }
1da177e4 1040 up_read(&mm->mmap_sem);
8a9f3ccd 1041 return (ret < 0)? ret: 0;
1da177e4
LT
1042}
1043
1044/*
38b5faf4
DM
1045 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1046 * from current position to next entry still in use.
1da177e4
LT
1047 * Recycle to start on reaching the end, returning 0 when empty.
1048 */
6eb396dc 1049static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 1050 unsigned int prev, bool frontswap)
1da177e4 1051{
6eb396dc
HD
1052 unsigned int max = si->max;
1053 unsigned int i = prev;
8d69aaee 1054 unsigned char count;
1da177e4
LT
1055
1056 /*
5d337b91 1057 * No need for swap_lock here: we're just looking
1da177e4
LT
1058 * for whether an entry is in use, not modifying it; false
1059 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 1060 * allocations from this area (while holding swap_lock).
1da177e4
LT
1061 */
1062 for (;;) {
1063 if (++i >= max) {
1064 if (!prev) {
1065 i = 0;
1066 break;
1067 }
1068 /*
1069 * No entries in use at top of swap_map,
1070 * loop back to start and recheck there.
1071 */
1072 max = prev + 1;
1073 prev = 0;
1074 i = 1;
1075 }
38b5faf4
DM
1076 if (frontswap) {
1077 if (frontswap_test(si, i))
1078 break;
1079 else
1080 continue;
1081 }
1da177e4 1082 count = si->swap_map[i];
355cfa73 1083 if (count && swap_count(count) != SWAP_MAP_BAD)
1da177e4
LT
1084 break;
1085 }
1086 return i;
1087}
1088
1089/*
1090 * We completely avoid races by reading each swap page in advance,
1091 * and then search for the process using it. All the necessary
1092 * page table adjustments can then be made atomically.
38b5faf4
DM
1093 *
1094 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1095 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 1096 */
38b5faf4
DM
1097int try_to_unuse(unsigned int type, bool frontswap,
1098 unsigned long pages_to_unuse)
1da177e4 1099{
efa90a98 1100 struct swap_info_struct *si = swap_info[type];
1da177e4 1101 struct mm_struct *start_mm;
8d69aaee
HD
1102 unsigned char *swap_map;
1103 unsigned char swcount;
1da177e4
LT
1104 struct page *page;
1105 swp_entry_t entry;
6eb396dc 1106 unsigned int i = 0;
1da177e4 1107 int retval = 0;
1da177e4
LT
1108
1109 /*
1110 * When searching mms for an entry, a good strategy is to
1111 * start at the first mm we freed the previous entry from
1112 * (though actually we don't notice whether we or coincidence
1113 * freed the entry). Initialize this start_mm with a hold.
1114 *
1115 * A simpler strategy would be to start at the last mm we
1116 * freed the previous entry from; but that would take less
1117 * advantage of mmlist ordering, which clusters forked mms
1118 * together, child after parent. If we race with dup_mmap(), we
1119 * prefer to resolve parent before child, lest we miss entries
1120 * duplicated after we scanned child: using last mm would invert
570a335b 1121 * that.
1da177e4
LT
1122 */
1123 start_mm = &init_mm;
1124 atomic_inc(&init_mm.mm_users);
1125
1126 /*
1127 * Keep on scanning until all entries have gone. Usually,
1128 * one pass through swap_map is enough, but not necessarily:
1129 * there are races when an instance of an entry might be missed.
1130 */
38b5faf4 1131 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4
LT
1132 if (signal_pending(current)) {
1133 retval = -EINTR;
1134 break;
1135 }
1136
886bb7e9 1137 /*
1da177e4
LT
1138 * Get a page for the entry, using the existing swap
1139 * cache page if there is one. Otherwise, get a clean
886bb7e9 1140 * page and read the swap into it.
1da177e4
LT
1141 */
1142 swap_map = &si->swap_map[i];
1143 entry = swp_entry(type, i);
02098fea
HD
1144 page = read_swap_cache_async(entry,
1145 GFP_HIGHUSER_MOVABLE, NULL, 0);
1da177e4
LT
1146 if (!page) {
1147 /*
1148 * Either swap_duplicate() failed because entry
1149 * has been freed independently, and will not be
1150 * reused since sys_swapoff() already disabled
1151 * allocation from here, or alloc_page() failed.
1152 */
1153 if (!*swap_map)
1154 continue;
1155 retval = -ENOMEM;
1156 break;
1157 }
1158
1159 /*
1160 * Don't hold on to start_mm if it looks like exiting.
1161 */
1162 if (atomic_read(&start_mm->mm_users) == 1) {
1163 mmput(start_mm);
1164 start_mm = &init_mm;
1165 atomic_inc(&init_mm.mm_users);
1166 }
1167
1168 /*
1169 * Wait for and lock page. When do_swap_page races with
1170 * try_to_unuse, do_swap_page can handle the fault much
1171 * faster than try_to_unuse can locate the entry. This
1172 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1173 * defer to do_swap_page in such a case - in some tests,
1174 * do_swap_page and try_to_unuse repeatedly compete.
1175 */
1176 wait_on_page_locked(page);
1177 wait_on_page_writeback(page);
1178 lock_page(page);
1179 wait_on_page_writeback(page);
1180
1181 /*
1182 * Remove all references to entry.
1da177e4 1183 */
1da177e4 1184 swcount = *swap_map;
aaa46865
HD
1185 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1186 retval = shmem_unuse(entry, page);
1187 /* page has already been unlocked and released */
1188 if (retval < 0)
1189 break;
1190 continue;
1da177e4 1191 }
aaa46865
HD
1192 if (swap_count(swcount) && start_mm != &init_mm)
1193 retval = unuse_mm(start_mm, entry, page);
1194
355cfa73 1195 if (swap_count(*swap_map)) {
1da177e4
LT
1196 int set_start_mm = (*swap_map >= swcount);
1197 struct list_head *p = &start_mm->mmlist;
1198 struct mm_struct *new_start_mm = start_mm;
1199 struct mm_struct *prev_mm = start_mm;
1200 struct mm_struct *mm;
1201
1202 atomic_inc(&new_start_mm->mm_users);
1203 atomic_inc(&prev_mm->mm_users);
1204 spin_lock(&mmlist_lock);
aaa46865 1205 while (swap_count(*swap_map) && !retval &&
1da177e4
LT
1206 (p = p->next) != &start_mm->mmlist) {
1207 mm = list_entry(p, struct mm_struct, mmlist);
70af7c5c 1208 if (!atomic_inc_not_zero(&mm->mm_users))
1da177e4 1209 continue;
1da177e4
LT
1210 spin_unlock(&mmlist_lock);
1211 mmput(prev_mm);
1212 prev_mm = mm;
1213
1214 cond_resched();
1215
1216 swcount = *swap_map;
355cfa73 1217 if (!swap_count(swcount)) /* any usage ? */
1da177e4 1218 ;
aaa46865 1219 else if (mm == &init_mm)
1da177e4 1220 set_start_mm = 1;
aaa46865 1221 else
1da177e4 1222 retval = unuse_mm(mm, entry, page);
355cfa73 1223
32c5fc10 1224 if (set_start_mm && *swap_map < swcount) {
1da177e4
LT
1225 mmput(new_start_mm);
1226 atomic_inc(&mm->mm_users);
1227 new_start_mm = mm;
1228 set_start_mm = 0;
1229 }
1230 spin_lock(&mmlist_lock);
1231 }
1232 spin_unlock(&mmlist_lock);
1233 mmput(prev_mm);
1234 mmput(start_mm);
1235 start_mm = new_start_mm;
1236 }
1237 if (retval) {
1238 unlock_page(page);
1239 page_cache_release(page);
1240 break;
1241 }
1242
1da177e4
LT
1243 /*
1244 * If a reference remains (rare), we would like to leave
1245 * the page in the swap cache; but try_to_unmap could
1246 * then re-duplicate the entry once we drop page lock,
1247 * so we might loop indefinitely; also, that page could
1248 * not be swapped out to other storage meanwhile. So:
1249 * delete from cache even if there's another reference,
1250 * after ensuring that the data has been saved to disk -
1251 * since if the reference remains (rarer), it will be
1252 * read from disk into another page. Splitting into two
1253 * pages would be incorrect if swap supported "shared
1254 * private" pages, but they are handled by tmpfs files.
5ad64688
HD
1255 *
1256 * Given how unuse_vma() targets one particular offset
1257 * in an anon_vma, once the anon_vma has been determined,
1258 * this splitting happens to be just what is needed to
1259 * handle where KSM pages have been swapped out: re-reading
1260 * is unnecessarily slow, but we can fix that later on.
1da177e4 1261 */
355cfa73
KH
1262 if (swap_count(*swap_map) &&
1263 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
1264 struct writeback_control wbc = {
1265 .sync_mode = WB_SYNC_NONE,
1266 };
1267
1268 swap_writepage(page, &wbc);
1269 lock_page(page);
1270 wait_on_page_writeback(page);
1271 }
68bdc8d6
HD
1272
1273 /*
1274 * It is conceivable that a racing task removed this page from
1275 * swap cache just before we acquired the page lock at the top,
1276 * or while we dropped it in unuse_mm(). The page might even
1277 * be back in swap cache on another swap area: that we must not
1278 * delete, since it may not have been written out to swap yet.
1279 */
1280 if (PageSwapCache(page) &&
1281 likely(page_private(page) == entry.val))
2e0e26c7 1282 delete_from_swap_cache(page);
1da177e4
LT
1283
1284 /*
1285 * So we could skip searching mms once swap count went
1286 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 1287 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
1288 */
1289 SetPageDirty(page);
1290 unlock_page(page);
1291 page_cache_release(page);
1292
1293 /*
1294 * Make sure that we aren't completely killing
1295 * interactive performance.
1296 */
1297 cond_resched();
38b5faf4
DM
1298 if (frontswap && pages_to_unuse > 0) {
1299 if (!--pages_to_unuse)
1300 break;
1301 }
1da177e4
LT
1302 }
1303
1304 mmput(start_mm);
1da177e4
LT
1305 return retval;
1306}
1307
1308/*
5d337b91
HD
1309 * After a successful try_to_unuse, if no swap is now in use, we know
1310 * we can empty the mmlist. swap_lock must be held on entry and exit.
1311 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
1312 * added to the mmlist just after page_duplicate - before would be racy.
1313 */
1314static void drain_mmlist(void)
1315{
1316 struct list_head *p, *next;
efa90a98 1317 unsigned int type;
1da177e4 1318
efa90a98
HD
1319 for (type = 0; type < nr_swapfiles; type++)
1320 if (swap_info[type]->inuse_pages)
1da177e4
LT
1321 return;
1322 spin_lock(&mmlist_lock);
1323 list_for_each_safe(p, next, &init_mm.mmlist)
1324 list_del_init(p);
1325 spin_unlock(&mmlist_lock);
1326}
1327
1328/*
1329 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
1330 * corresponds to page offset for the specified swap entry.
1331 * Note that the type of this function is sector_t, but it returns page offset
1332 * into the bdev, not sector offset.
1da177e4 1333 */
d4906e1a 1334static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 1335{
f29ad6a9
HD
1336 struct swap_info_struct *sis;
1337 struct swap_extent *start_se;
1338 struct swap_extent *se;
1339 pgoff_t offset;
1340
efa90a98 1341 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
1342 *bdev = sis->bdev;
1343
1344 offset = swp_offset(entry);
1345 start_se = sis->curr_swap_extent;
1346 se = start_se;
1da177e4
LT
1347
1348 for ( ; ; ) {
1349 struct list_head *lh;
1350
1351 if (se->start_page <= offset &&
1352 offset < (se->start_page + se->nr_pages)) {
1353 return se->start_block + (offset - se->start_page);
1354 }
11d31886 1355 lh = se->list.next;
1da177e4
LT
1356 se = list_entry(lh, struct swap_extent, list);
1357 sis->curr_swap_extent = se;
1358 BUG_ON(se == start_se); /* It *must* be present */
1359 }
1360}
1361
d4906e1a
LS
1362/*
1363 * Returns the page offset into bdev for the specified page's swap entry.
1364 */
1365sector_t map_swap_page(struct page *page, struct block_device **bdev)
1366{
1367 swp_entry_t entry;
1368 entry.val = page_private(page);
1369 return map_swap_entry(entry, bdev);
1370}
1371
1da177e4
LT
1372/*
1373 * Free all of a swapdev's extent information
1374 */
1375static void destroy_swap_extents(struct swap_info_struct *sis)
1376{
9625a5f2 1377 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
1378 struct swap_extent *se;
1379
9625a5f2 1380 se = list_entry(sis->first_swap_extent.list.next,
1da177e4
LT
1381 struct swap_extent, list);
1382 list_del(&se->list);
1383 kfree(se);
1384 }
62c230bc
MG
1385
1386 if (sis->flags & SWP_FILE) {
1387 struct file *swap_file = sis->swap_file;
1388 struct address_space *mapping = swap_file->f_mapping;
1389
1390 sis->flags &= ~SWP_FILE;
1391 mapping->a_ops->swap_deactivate(swap_file);
1392 }
1da177e4
LT
1393}
1394
1395/*
1396 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 1397 * extent list. The extent list is kept sorted in page order.
1da177e4 1398 *
11d31886 1399 * This function rather assumes that it is called in ascending page order.
1da177e4 1400 */
a509bc1a 1401int
1da177e4
LT
1402add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1403 unsigned long nr_pages, sector_t start_block)
1404{
1405 struct swap_extent *se;
1406 struct swap_extent *new_se;
1407 struct list_head *lh;
1408
9625a5f2
HD
1409 if (start_page == 0) {
1410 se = &sis->first_swap_extent;
1411 sis->curr_swap_extent = se;
1412 se->start_page = 0;
1413 se->nr_pages = nr_pages;
1414 se->start_block = start_block;
1415 return 1;
1416 } else {
1417 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 1418 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
1419 BUG_ON(se->start_page + se->nr_pages != start_page);
1420 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
1421 /* Merge it */
1422 se->nr_pages += nr_pages;
1423 return 0;
1424 }
1da177e4
LT
1425 }
1426
1427 /*
1428 * No merge. Insert a new extent, preserving ordering.
1429 */
1430 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1431 if (new_se == NULL)
1432 return -ENOMEM;
1433 new_se->start_page = start_page;
1434 new_se->nr_pages = nr_pages;
1435 new_se->start_block = start_block;
1436
9625a5f2 1437 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 1438 return 1;
1da177e4
LT
1439}
1440
1441/*
1442 * A `swap extent' is a simple thing which maps a contiguous range of pages
1443 * onto a contiguous range of disk blocks. An ordered list of swap extents
1444 * is built at swapon time and is then used at swap_writepage/swap_readpage
1445 * time for locating where on disk a page belongs.
1446 *
1447 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1448 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1449 * swap files identically.
1450 *
1451 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1452 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1453 * swapfiles are handled *identically* after swapon time.
1454 *
1455 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1456 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1457 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1458 * requirements, they are simply tossed out - we will never use those blocks
1459 * for swapping.
1460 *
b0d9bcd4 1461 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
1462 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1463 * which will scribble on the fs.
1464 *
1465 * The amount of disk space which a single swap extent represents varies.
1466 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1467 * extents in the list. To avoid much list walking, we cache the previous
1468 * search location in `curr_swap_extent', and start new searches from there.
1469 * This is extremely effective. The average number of iterations in
1470 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1471 */
53092a74 1472static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 1473{
62c230bc
MG
1474 struct file *swap_file = sis->swap_file;
1475 struct address_space *mapping = swap_file->f_mapping;
1476 struct inode *inode = mapping->host;
1da177e4
LT
1477 int ret;
1478
1da177e4
LT
1479 if (S_ISBLK(inode->i_mode)) {
1480 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 1481 *span = sis->pages;
a509bc1a 1482 return ret;
1da177e4
LT
1483 }
1484
62c230bc 1485 if (mapping->a_ops->swap_activate) {
a509bc1a 1486 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
62c230bc
MG
1487 if (!ret) {
1488 sis->flags |= SWP_FILE;
1489 ret = add_swap_extent(sis, 0, sis->max, 0);
1490 *span = sis->pages;
1491 }
a509bc1a 1492 return ret;
62c230bc
MG
1493 }
1494
a509bc1a 1495 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
1496}
1497
cf0cac0a 1498static void _enable_swap_info(struct swap_info_struct *p, int prio,
38b5faf4
DM
1499 unsigned char *swap_map,
1500 unsigned long *frontswap_map)
40531542
CEB
1501{
1502 int i, prev;
1503
40531542
CEB
1504 if (prio >= 0)
1505 p->prio = prio;
1506 else
1507 p->prio = --least_priority;
1508 p->swap_map = swap_map;
38b5faf4 1509 frontswap_map_set(p, frontswap_map);
40531542 1510 p->flags |= SWP_WRITEOK;
ec8acf20 1511 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
1512 total_swap_pages += p->pages;
1513
1514 /* insert swap space into swap_list: */
1515 prev = -1;
1516 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1517 if (p->prio >= swap_info[i]->prio)
1518 break;
1519 prev = i;
1520 }
1521 p->next = i;
1522 if (prev < 0)
1523 swap_list.head = swap_list.next = p->type;
1524 else
1525 swap_info[prev]->next = p->type;
cf0cac0a
CEB
1526}
1527
1528static void enable_swap_info(struct swap_info_struct *p, int prio,
1529 unsigned char *swap_map,
1530 unsigned long *frontswap_map)
1531{
1532 spin_lock(&swap_lock);
ec8acf20 1533 spin_lock(&p->lock);
cf0cac0a 1534 _enable_swap_info(p, prio, swap_map, frontswap_map);
6555bc03 1535 frontswap_init(p->type);
ec8acf20 1536 spin_unlock(&p->lock);
cf0cac0a
CEB
1537 spin_unlock(&swap_lock);
1538}
1539
1540static void reinsert_swap_info(struct swap_info_struct *p)
1541{
1542 spin_lock(&swap_lock);
ec8acf20 1543 spin_lock(&p->lock);
cf0cac0a 1544 _enable_swap_info(p, p->prio, p->swap_map, frontswap_map_get(p));
ec8acf20 1545 spin_unlock(&p->lock);
40531542
CEB
1546 spin_unlock(&swap_lock);
1547}
1548
c4ea37c2 1549SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 1550{
73c34b6a 1551 struct swap_info_struct *p = NULL;
8d69aaee 1552 unsigned char *swap_map;
1da177e4
LT
1553 struct file *swap_file, *victim;
1554 struct address_space *mapping;
1555 struct inode *inode;
91a27b2a 1556 struct filename *pathname;
1da177e4
LT
1557 int i, type, prev;
1558 int err;
886bb7e9 1559
1da177e4
LT
1560 if (!capable(CAP_SYS_ADMIN))
1561 return -EPERM;
1562
191c5424
AV
1563 BUG_ON(!current->mm);
1564
1da177e4 1565 pathname = getname(specialfile);
1da177e4 1566 if (IS_ERR(pathname))
f58b59c1 1567 return PTR_ERR(pathname);
1da177e4 1568
669abf4e 1569 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
1570 err = PTR_ERR(victim);
1571 if (IS_ERR(victim))
1572 goto out;
1573
1574 mapping = victim->f_mapping;
1575 prev = -1;
5d337b91 1576 spin_lock(&swap_lock);
efa90a98
HD
1577 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1578 p = swap_info[type];
22c6f8fd 1579 if (p->flags & SWP_WRITEOK) {
1da177e4
LT
1580 if (p->swap_file->f_mapping == mapping)
1581 break;
1582 }
1583 prev = type;
1584 }
1585 if (type < 0) {
1586 err = -EINVAL;
5d337b91 1587 spin_unlock(&swap_lock);
1da177e4
LT
1588 goto out_dput;
1589 }
191c5424 1590 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
1591 vm_unacct_memory(p->pages);
1592 else {
1593 err = -ENOMEM;
5d337b91 1594 spin_unlock(&swap_lock);
1da177e4
LT
1595 goto out_dput;
1596 }
efa90a98 1597 if (prev < 0)
1da177e4 1598 swap_list.head = p->next;
efa90a98
HD
1599 else
1600 swap_info[prev]->next = p->next;
1da177e4
LT
1601 if (type == swap_list.next) {
1602 /* just pick something that's safe... */
1603 swap_list.next = swap_list.head;
1604 }
ec8acf20 1605 spin_lock(&p->lock);
78ecba08 1606 if (p->prio < 0) {
efa90a98
HD
1607 for (i = p->next; i >= 0; i = swap_info[i]->next)
1608 swap_info[i]->prio = p->prio--;
78ecba08
HD
1609 least_priority++;
1610 }
ec8acf20 1611 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
1612 total_swap_pages -= p->pages;
1613 p->flags &= ~SWP_WRITEOK;
ec8acf20 1614 spin_unlock(&p->lock);
5d337b91 1615 spin_unlock(&swap_lock);
fb4f88dc 1616
e1e12d2f 1617 set_current_oom_origin();
38b5faf4 1618 err = try_to_unuse(type, false, 0); /* force all pages to be unused */
e1e12d2f 1619 clear_current_oom_origin();
1da177e4 1620
1da177e4
LT
1621 if (err) {
1622 /* re-insert swap space back into swap_list */
cf0cac0a 1623 reinsert_swap_info(p);
1da177e4
LT
1624 goto out_dput;
1625 }
52b7efdb 1626
5d337b91 1627 destroy_swap_extents(p);
570a335b
HD
1628 if (p->flags & SWP_CONTINUED)
1629 free_swap_count_continuations(p);
1630
fc0abb14 1631 mutex_lock(&swapon_mutex);
5d337b91 1632 spin_lock(&swap_lock);
ec8acf20 1633 spin_lock(&p->lock);
5d337b91
HD
1634 drain_mmlist();
1635
52b7efdb 1636 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
1637 p->highest_bit = 0; /* cuts scans short */
1638 while (p->flags >= SWP_SCANNING) {
ec8acf20 1639 spin_unlock(&p->lock);
5d337b91 1640 spin_unlock(&swap_lock);
13e4b57f 1641 schedule_timeout_uninterruptible(1);
5d337b91 1642 spin_lock(&swap_lock);
ec8acf20 1643 spin_lock(&p->lock);
52b7efdb 1644 }
52b7efdb 1645
1da177e4
LT
1646 swap_file = p->swap_file;
1647 p->swap_file = NULL;
1648 p->max = 0;
1649 swap_map = p->swap_map;
1650 p->swap_map = NULL;
1651 p->flags = 0;
38b5faf4 1652 frontswap_invalidate_area(type);
ec8acf20 1653 spin_unlock(&p->lock);
5d337b91 1654 spin_unlock(&swap_lock);
fc0abb14 1655 mutex_unlock(&swapon_mutex);
1da177e4 1656 vfree(swap_map);
38b5faf4 1657 vfree(frontswap_map_get(p));
27a7faa0
KH
1658 /* Destroy swap account informatin */
1659 swap_cgroup_swapoff(type);
1660
1da177e4
LT
1661 inode = mapping->host;
1662 if (S_ISBLK(inode->i_mode)) {
1663 struct block_device *bdev = I_BDEV(inode);
1664 set_blocksize(bdev, p->old_block_size);
e525fd89 1665 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 1666 } else {
1b1dcc1b 1667 mutex_lock(&inode->i_mutex);
1da177e4 1668 inode->i_flags &= ~S_SWAPFILE;
1b1dcc1b 1669 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1670 }
1671 filp_close(swap_file, NULL);
1672 err = 0;
66d7dd51
KS
1673 atomic_inc(&proc_poll_event);
1674 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
1675
1676out_dput:
1677 filp_close(victim, NULL);
1678out:
f58b59c1 1679 putname(pathname);
1da177e4
LT
1680 return err;
1681}
1682
1683#ifdef CONFIG_PROC_FS
66d7dd51
KS
1684static unsigned swaps_poll(struct file *file, poll_table *wait)
1685{
f1514638 1686 struct seq_file *seq = file->private_data;
66d7dd51
KS
1687
1688 poll_wait(file, &proc_poll_wait, wait);
1689
f1514638
KS
1690 if (seq->poll_event != atomic_read(&proc_poll_event)) {
1691 seq->poll_event = atomic_read(&proc_poll_event);
66d7dd51
KS
1692 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1693 }
1694
1695 return POLLIN | POLLRDNORM;
1696}
1697
1da177e4
LT
1698/* iterator */
1699static void *swap_start(struct seq_file *swap, loff_t *pos)
1700{
efa90a98
HD
1701 struct swap_info_struct *si;
1702 int type;
1da177e4
LT
1703 loff_t l = *pos;
1704
fc0abb14 1705 mutex_lock(&swapon_mutex);
1da177e4 1706
881e4aab
SS
1707 if (!l)
1708 return SEQ_START_TOKEN;
1709
efa90a98
HD
1710 for (type = 0; type < nr_swapfiles; type++) {
1711 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1712 si = swap_info[type];
1713 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 1714 continue;
881e4aab 1715 if (!--l)
efa90a98 1716 return si;
1da177e4
LT
1717 }
1718
1719 return NULL;
1720}
1721
1722static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1723{
efa90a98
HD
1724 struct swap_info_struct *si = v;
1725 int type;
1da177e4 1726
881e4aab 1727 if (v == SEQ_START_TOKEN)
efa90a98
HD
1728 type = 0;
1729 else
1730 type = si->type + 1;
881e4aab 1731
efa90a98
HD
1732 for (; type < nr_swapfiles; type++) {
1733 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1734 si = swap_info[type];
1735 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
1736 continue;
1737 ++*pos;
efa90a98 1738 return si;
1da177e4
LT
1739 }
1740
1741 return NULL;
1742}
1743
1744static void swap_stop(struct seq_file *swap, void *v)
1745{
fc0abb14 1746 mutex_unlock(&swapon_mutex);
1da177e4
LT
1747}
1748
1749static int swap_show(struct seq_file *swap, void *v)
1750{
efa90a98 1751 struct swap_info_struct *si = v;
1da177e4
LT
1752 struct file *file;
1753 int len;
1754
efa90a98 1755 if (si == SEQ_START_TOKEN) {
881e4aab
SS
1756 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1757 return 0;
1758 }
1da177e4 1759
efa90a98 1760 file = si->swap_file;
c32c2f63 1761 len = seq_path(swap, &file->f_path, " \t\n\\");
6eb396dc 1762 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9
HD
1763 len < 40 ? 40 - len : 1, " ",
1764 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1da177e4 1765 "partition" : "file\t",
efa90a98
HD
1766 si->pages << (PAGE_SHIFT - 10),
1767 si->inuse_pages << (PAGE_SHIFT - 10),
1768 si->prio);
1da177e4
LT
1769 return 0;
1770}
1771
15ad7cdc 1772static const struct seq_operations swaps_op = {
1da177e4
LT
1773 .start = swap_start,
1774 .next = swap_next,
1775 .stop = swap_stop,
1776 .show = swap_show
1777};
1778
1779static int swaps_open(struct inode *inode, struct file *file)
1780{
f1514638 1781 struct seq_file *seq;
66d7dd51
KS
1782 int ret;
1783
66d7dd51 1784 ret = seq_open(file, &swaps_op);
f1514638 1785 if (ret)
66d7dd51 1786 return ret;
66d7dd51 1787
f1514638
KS
1788 seq = file->private_data;
1789 seq->poll_event = atomic_read(&proc_poll_event);
1790 return 0;
1da177e4
LT
1791}
1792
15ad7cdc 1793static const struct file_operations proc_swaps_operations = {
1da177e4
LT
1794 .open = swaps_open,
1795 .read = seq_read,
1796 .llseek = seq_lseek,
1797 .release = seq_release,
66d7dd51 1798 .poll = swaps_poll,
1da177e4
LT
1799};
1800
1801static int __init procswaps_init(void)
1802{
3d71f86f 1803 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
1804 return 0;
1805}
1806__initcall(procswaps_init);
1807#endif /* CONFIG_PROC_FS */
1808
1796316a
JB
1809#ifdef MAX_SWAPFILES_CHECK
1810static int __init max_swapfiles_check(void)
1811{
1812 MAX_SWAPFILES_CHECK();
1813 return 0;
1814}
1815late_initcall(max_swapfiles_check);
1816#endif
1817
53cbb243 1818static struct swap_info_struct *alloc_swap_info(void)
1da177e4 1819{
73c34b6a 1820 struct swap_info_struct *p;
1da177e4 1821 unsigned int type;
efa90a98
HD
1822
1823 p = kzalloc(sizeof(*p), GFP_KERNEL);
1824 if (!p)
53cbb243 1825 return ERR_PTR(-ENOMEM);
efa90a98 1826
5d337b91 1827 spin_lock(&swap_lock);
efa90a98
HD
1828 for (type = 0; type < nr_swapfiles; type++) {
1829 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 1830 break;
efa90a98 1831 }
0697212a 1832 if (type >= MAX_SWAPFILES) {
5d337b91 1833 spin_unlock(&swap_lock);
efa90a98 1834 kfree(p);
730c0581 1835 return ERR_PTR(-EPERM);
1da177e4 1836 }
efa90a98
HD
1837 if (type >= nr_swapfiles) {
1838 p->type = type;
1839 swap_info[type] = p;
1840 /*
1841 * Write swap_info[type] before nr_swapfiles, in case a
1842 * racing procfs swap_start() or swap_next() is reading them.
1843 * (We never shrink nr_swapfiles, we never free this entry.)
1844 */
1845 smp_wmb();
1846 nr_swapfiles++;
1847 } else {
1848 kfree(p);
1849 p = swap_info[type];
1850 /*
1851 * Do not memset this entry: a racing procfs swap_next()
1852 * would be relying on p->type to remain valid.
1853 */
1854 }
9625a5f2 1855 INIT_LIST_HEAD(&p->first_swap_extent.list);
1da177e4 1856 p->flags = SWP_USED;
1da177e4 1857 p->next = -1;
5d337b91 1858 spin_unlock(&swap_lock);
ec8acf20 1859 spin_lock_init(&p->lock);
efa90a98 1860
53cbb243 1861 return p;
53cbb243
CEB
1862}
1863
4d0e1e10
CEB
1864static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
1865{
1866 int error;
1867
1868 if (S_ISBLK(inode->i_mode)) {
1869 p->bdev = bdgrab(I_BDEV(inode));
1870 error = blkdev_get(p->bdev,
1871 FMODE_READ | FMODE_WRITE | FMODE_EXCL,
1872 sys_swapon);
1873 if (error < 0) {
1874 p->bdev = NULL;
87ade72a 1875 return -EINVAL;
4d0e1e10
CEB
1876 }
1877 p->old_block_size = block_size(p->bdev);
1878 error = set_blocksize(p->bdev, PAGE_SIZE);
1879 if (error < 0)
87ade72a 1880 return error;
4d0e1e10
CEB
1881 p->flags |= SWP_BLKDEV;
1882 } else if (S_ISREG(inode->i_mode)) {
1883 p->bdev = inode->i_sb->s_bdev;
1884 mutex_lock(&inode->i_mutex);
87ade72a
CEB
1885 if (IS_SWAPFILE(inode))
1886 return -EBUSY;
1887 } else
1888 return -EINVAL;
4d0e1e10
CEB
1889
1890 return 0;
4d0e1e10
CEB
1891}
1892
ca8bd38b
CEB
1893static unsigned long read_swap_header(struct swap_info_struct *p,
1894 union swap_header *swap_header,
1895 struct inode *inode)
1896{
1897 int i;
1898 unsigned long maxpages;
1899 unsigned long swapfilepages;
1900
1901 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1902 printk(KERN_ERR "Unable to find swap-space signature\n");
38719025 1903 return 0;
ca8bd38b
CEB
1904 }
1905
1906 /* swap partition endianess hack... */
1907 if (swab32(swap_header->info.version) == 1) {
1908 swab32s(&swap_header->info.version);
1909 swab32s(&swap_header->info.last_page);
1910 swab32s(&swap_header->info.nr_badpages);
1911 for (i = 0; i < swap_header->info.nr_badpages; i++)
1912 swab32s(&swap_header->info.badpages[i]);
1913 }
1914 /* Check the swap header's sub-version */
1915 if (swap_header->info.version != 1) {
1916 printk(KERN_WARNING
1917 "Unable to handle swap header version %d\n",
1918 swap_header->info.version);
38719025 1919 return 0;
ca8bd38b
CEB
1920 }
1921
1922 p->lowest_bit = 1;
1923 p->cluster_next = 1;
1924 p->cluster_nr = 0;
1925
1926 /*
1927 * Find out how many pages are allowed for a single swap
9b15b817 1928 * device. There are two limiting factors: 1) the number
a2c16d6c
HD
1929 * of bits for the swap offset in the swp_entry_t type, and
1930 * 2) the number of bits in the swap pte as defined by the
9b15b817 1931 * different architectures. In order to find the
a2c16d6c 1932 * largest possible bit mask, a swap entry with swap type 0
ca8bd38b 1933 * and swap offset ~0UL is created, encoded to a swap pte,
a2c16d6c 1934 * decoded to a swp_entry_t again, and finally the swap
ca8bd38b
CEB
1935 * offset is extracted. This will mask all the bits from
1936 * the initial ~0UL mask that can't be encoded in either
1937 * the swp_entry_t or the architecture definition of a
9b15b817 1938 * swap pte.
ca8bd38b
CEB
1939 */
1940 maxpages = swp_offset(pte_to_swp_entry(
9b15b817 1941 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
ca8bd38b
CEB
1942 if (maxpages > swap_header->info.last_page) {
1943 maxpages = swap_header->info.last_page + 1;
1944 /* p->max is an unsigned int: don't overflow it */
1945 if ((unsigned int)maxpages == 0)
1946 maxpages = UINT_MAX;
1947 }
1948 p->highest_bit = maxpages - 1;
1949
1950 if (!maxpages)
38719025 1951 return 0;
ca8bd38b
CEB
1952 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1953 if (swapfilepages && maxpages > swapfilepages) {
1954 printk(KERN_WARNING
1955 "Swap area shorter than signature indicates\n");
38719025 1956 return 0;
ca8bd38b
CEB
1957 }
1958 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 1959 return 0;
ca8bd38b 1960 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 1961 return 0;
ca8bd38b
CEB
1962
1963 return maxpages;
ca8bd38b
CEB
1964}
1965
915d4d7b
CEB
1966static int setup_swap_map_and_extents(struct swap_info_struct *p,
1967 union swap_header *swap_header,
1968 unsigned char *swap_map,
1969 unsigned long maxpages,
1970 sector_t *span)
1971{
1972 int i;
915d4d7b
CEB
1973 unsigned int nr_good_pages;
1974 int nr_extents;
1975
1976 nr_good_pages = maxpages - 1; /* omit header page */
1977
1978 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1979 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
1980 if (page_nr == 0 || page_nr > swap_header->info.last_page)
1981 return -EINVAL;
915d4d7b
CEB
1982 if (page_nr < maxpages) {
1983 swap_map[page_nr] = SWAP_MAP_BAD;
1984 nr_good_pages--;
1985 }
1986 }
1987
1988 if (nr_good_pages) {
1989 swap_map[0] = SWAP_MAP_BAD;
1990 p->max = maxpages;
1991 p->pages = nr_good_pages;
1992 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
1993 if (nr_extents < 0)
1994 return nr_extents;
915d4d7b
CEB
1995 nr_good_pages = p->pages;
1996 }
1997 if (!nr_good_pages) {
1998 printk(KERN_WARNING "Empty swap-file\n");
bdb8e3f6 1999 return -EINVAL;
915d4d7b
CEB
2000 }
2001
2002 return nr_extents;
915d4d7b
CEB
2003}
2004
53cbb243
CEB
2005SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2006{
2007 struct swap_info_struct *p;
91a27b2a 2008 struct filename *name;
53cbb243
CEB
2009 struct file *swap_file = NULL;
2010 struct address_space *mapping;
40531542
CEB
2011 int i;
2012 int prio;
53cbb243
CEB
2013 int error;
2014 union swap_header *swap_header;
915d4d7b 2015 int nr_extents;
53cbb243
CEB
2016 sector_t span;
2017 unsigned long maxpages;
53cbb243 2018 unsigned char *swap_map = NULL;
38b5faf4 2019 unsigned long *frontswap_map = NULL;
53cbb243
CEB
2020 struct page *page = NULL;
2021 struct inode *inode = NULL;
53cbb243 2022
d15cab97
HD
2023 if (swap_flags & ~SWAP_FLAGS_VALID)
2024 return -EINVAL;
2025
53cbb243
CEB
2026 if (!capable(CAP_SYS_ADMIN))
2027 return -EPERM;
2028
2029 p = alloc_swap_info();
2542e513
CEB
2030 if (IS_ERR(p))
2031 return PTR_ERR(p);
53cbb243 2032
1da177e4 2033 name = getname(specialfile);
1da177e4 2034 if (IS_ERR(name)) {
7de7fb6b 2035 error = PTR_ERR(name);
1da177e4 2036 name = NULL;
bd69010b 2037 goto bad_swap;
1da177e4 2038 }
669abf4e 2039 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 2040 if (IS_ERR(swap_file)) {
7de7fb6b 2041 error = PTR_ERR(swap_file);
1da177e4 2042 swap_file = NULL;
bd69010b 2043 goto bad_swap;
1da177e4
LT
2044 }
2045
2046 p->swap_file = swap_file;
2047 mapping = swap_file->f_mapping;
1da177e4 2048
1da177e4 2049 for (i = 0; i < nr_swapfiles; i++) {
efa90a98 2050 struct swap_info_struct *q = swap_info[i];
1da177e4 2051
e8e6c2ec 2052 if (q == p || !q->swap_file)
1da177e4 2053 continue;
7de7fb6b
CEB
2054 if (mapping == q->swap_file->f_mapping) {
2055 error = -EBUSY;
1da177e4 2056 goto bad_swap;
7de7fb6b 2057 }
1da177e4
LT
2058 }
2059
2130781e
CEB
2060 inode = mapping->host;
2061 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
4d0e1e10
CEB
2062 error = claim_swapfile(p, inode);
2063 if (unlikely(error))
1da177e4 2064 goto bad_swap;
1da177e4 2065
1da177e4
LT
2066 /*
2067 * Read the swap header.
2068 */
2069 if (!mapping->a_ops->readpage) {
2070 error = -EINVAL;
2071 goto bad_swap;
2072 }
090d2b18 2073 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
2074 if (IS_ERR(page)) {
2075 error = PTR_ERR(page);
2076 goto bad_swap;
2077 }
81e33971 2078 swap_header = kmap(page);
1da177e4 2079
ca8bd38b
CEB
2080 maxpages = read_swap_header(p, swap_header, inode);
2081 if (unlikely(!maxpages)) {
1da177e4
LT
2082 error = -EINVAL;
2083 goto bad_swap;
2084 }
886bb7e9 2085
81e33971 2086 /* OK, set up the swap map and apply the bad block list */
803d0c83 2087 swap_map = vzalloc(maxpages);
81e33971
HD
2088 if (!swap_map) {
2089 error = -ENOMEM;
2090 goto bad_swap;
2091 }
1da177e4 2092
1421ef3c
CEB
2093 error = swap_cgroup_swapon(p->type, maxpages);
2094 if (error)
2095 goto bad_swap;
2096
915d4d7b
CEB
2097 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2098 maxpages, &span);
2099 if (unlikely(nr_extents < 0)) {
2100 error = nr_extents;
1da177e4
LT
2101 goto bad_swap;
2102 }
38b5faf4
DM
2103 /* frontswap enabled? set up bit-per-page map for frontswap */
2104 if (frontswap_enabled)
2105 frontswap_map = vzalloc(maxpages / sizeof(long));
1da177e4 2106
3bd0f0c7
SJ
2107 if (p->bdev) {
2108 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2109 p->flags |= SWP_SOLIDSTATE;
2110 p->cluster_next = 1 + (random32() % p->highest_bit);
2111 }
052b1987 2112 if ((swap_flags & SWAP_FLAG_DISCARD) && discard_swap(p) == 0)
3bd0f0c7 2113 p->flags |= SWP_DISCARDABLE;
20137a49 2114 }
6a6ba831 2115
fc0abb14 2116 mutex_lock(&swapon_mutex);
40531542 2117 prio = -1;
78ecba08 2118 if (swap_flags & SWAP_FLAG_PREFER)
40531542 2119 prio =
78ecba08 2120 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
38b5faf4 2121 enable_swap_info(p, prio, swap_map, frontswap_map);
c69dbfb8
CEB
2122
2123 printk(KERN_INFO "Adding %uk swap on %s. "
38b5faf4 2124 "Priority:%d extents:%d across:%lluk %s%s%s\n",
91a27b2a 2125 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
2126 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2127 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4
DM
2128 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2129 (frontswap_map) ? "FS" : "");
c69dbfb8 2130
fc0abb14 2131 mutex_unlock(&swapon_mutex);
66d7dd51
KS
2132 atomic_inc(&proc_poll_event);
2133 wake_up_interruptible(&proc_poll_wait);
2134
9b01c350
CEB
2135 if (S_ISREG(inode->i_mode))
2136 inode->i_flags |= S_SWAPFILE;
1da177e4
LT
2137 error = 0;
2138 goto out;
2139bad_swap:
bd69010b 2140 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
2141 set_blocksize(p->bdev, p->old_block_size);
2142 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2143 }
4cd3bb10 2144 destroy_swap_extents(p);
e8e6c2ec 2145 swap_cgroup_swapoff(p->type);
5d337b91 2146 spin_lock(&swap_lock);
1da177e4 2147 p->swap_file = NULL;
1da177e4 2148 p->flags = 0;
5d337b91 2149 spin_unlock(&swap_lock);
1da177e4 2150 vfree(swap_map);
52c50567 2151 if (swap_file) {
2130781e 2152 if (inode && S_ISREG(inode->i_mode)) {
52c50567 2153 mutex_unlock(&inode->i_mutex);
2130781e
CEB
2154 inode = NULL;
2155 }
1da177e4 2156 filp_close(swap_file, NULL);
52c50567 2157 }
1da177e4
LT
2158out:
2159 if (page && !IS_ERR(page)) {
2160 kunmap(page);
2161 page_cache_release(page);
2162 }
2163 if (name)
2164 putname(name);
9b01c350 2165 if (inode && S_ISREG(inode->i_mode))
1b1dcc1b 2166 mutex_unlock(&inode->i_mutex);
1da177e4
LT
2167 return error;
2168}
2169
2170void si_swapinfo(struct sysinfo *val)
2171{
efa90a98 2172 unsigned int type;
1da177e4
LT
2173 unsigned long nr_to_be_unused = 0;
2174
5d337b91 2175 spin_lock(&swap_lock);
efa90a98
HD
2176 for (type = 0; type < nr_swapfiles; type++) {
2177 struct swap_info_struct *si = swap_info[type];
2178
2179 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2180 nr_to_be_unused += si->inuse_pages;
1da177e4 2181 }
ec8acf20 2182 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 2183 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 2184 spin_unlock(&swap_lock);
1da177e4
LT
2185}
2186
2187/*
2188 * Verify that a swap entry is valid and increment its swap map count.
2189 *
355cfa73
KH
2190 * Returns error code in following case.
2191 * - success -> 0
2192 * - swp_entry is invalid -> EINVAL
2193 * - swp_entry is migration entry -> EINVAL
2194 * - swap-cache reference is requested but there is already one. -> EEXIST
2195 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 2196 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 2197 */
8d69aaee 2198static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 2199{
73c34b6a 2200 struct swap_info_struct *p;
1da177e4 2201 unsigned long offset, type;
8d69aaee
HD
2202 unsigned char count;
2203 unsigned char has_cache;
253d553b 2204 int err = -EINVAL;
1da177e4 2205
a7420aa5 2206 if (non_swap_entry(entry))
253d553b 2207 goto out;
0697212a 2208
1da177e4
LT
2209 type = swp_type(entry);
2210 if (type >= nr_swapfiles)
2211 goto bad_file;
efa90a98 2212 p = swap_info[type];
1da177e4
LT
2213 offset = swp_offset(entry);
2214
ec8acf20 2215 spin_lock(&p->lock);
355cfa73
KH
2216 if (unlikely(offset >= p->max))
2217 goto unlock_out;
2218
253d553b
HD
2219 count = p->swap_map[offset];
2220 has_cache = count & SWAP_HAS_CACHE;
2221 count &= ~SWAP_HAS_CACHE;
2222 err = 0;
355cfa73 2223
253d553b 2224 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
2225
2226 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
2227 if (!has_cache && count)
2228 has_cache = SWAP_HAS_CACHE;
2229 else if (has_cache) /* someone else added cache */
2230 err = -EEXIST;
2231 else /* no users remaining */
2232 err = -ENOENT;
355cfa73
KH
2233
2234 } else if (count || has_cache) {
253d553b 2235
570a335b
HD
2236 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2237 count += usage;
2238 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 2239 err = -EINVAL;
570a335b
HD
2240 else if (swap_count_continued(p, offset, count))
2241 count = COUNT_CONTINUED;
2242 else
2243 err = -ENOMEM;
355cfa73 2244 } else
253d553b
HD
2245 err = -ENOENT; /* unused swap entry */
2246
2247 p->swap_map[offset] = count | has_cache;
2248
355cfa73 2249unlock_out:
ec8acf20 2250 spin_unlock(&p->lock);
1da177e4 2251out:
253d553b 2252 return err;
1da177e4
LT
2253
2254bad_file:
2255 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2256 goto out;
2257}
253d553b 2258
aaa46865
HD
2259/*
2260 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2261 * (in which case its reference count is never incremented).
2262 */
2263void swap_shmem_alloc(swp_entry_t entry)
2264{
2265 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2266}
2267
355cfa73 2268/*
08259d58
HD
2269 * Increase reference count of swap entry by 1.
2270 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2271 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2272 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2273 * might occur if a page table entry has got corrupted.
355cfa73 2274 */
570a335b 2275int swap_duplicate(swp_entry_t entry)
355cfa73 2276{
570a335b
HD
2277 int err = 0;
2278
2279 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2280 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2281 return err;
355cfa73 2282}
1da177e4 2283
cb4b86ba 2284/*
355cfa73
KH
2285 * @entry: swap entry for which we allocate swap cache.
2286 *
73c34b6a 2287 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
2288 * This can return error codes. Returns 0 at success.
2289 * -EBUSY means there is a swap cache.
2290 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
2291 */
2292int swapcache_prepare(swp_entry_t entry)
2293{
253d553b 2294 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
2295}
2296
f981c595
MG
2297struct swap_info_struct *page_swap_info(struct page *page)
2298{
2299 swp_entry_t swap = { .val = page_private(page) };
2300 BUG_ON(!PageSwapCache(page));
2301 return swap_info[swp_type(swap)];
2302}
2303
2304/*
2305 * out-of-line __page_file_ methods to avoid include hell.
2306 */
2307struct address_space *__page_file_mapping(struct page *page)
2308{
2309 VM_BUG_ON(!PageSwapCache(page));
2310 return page_swap_info(page)->swap_file->f_mapping;
2311}
2312EXPORT_SYMBOL_GPL(__page_file_mapping);
2313
2314pgoff_t __page_file_index(struct page *page)
2315{
2316 swp_entry_t swap = { .val = page_private(page) };
2317 VM_BUG_ON(!PageSwapCache(page));
2318 return swp_offset(swap);
2319}
2320EXPORT_SYMBOL_GPL(__page_file_index);
2321
570a335b
HD
2322/*
2323 * add_swap_count_continuation - called when a swap count is duplicated
2324 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2325 * page of the original vmalloc'ed swap_map, to hold the continuation count
2326 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2327 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2328 *
2329 * These continuation pages are seldom referenced: the common paths all work
2330 * on the original swap_map, only referring to a continuation page when the
2331 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2332 *
2333 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2334 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2335 * can be called after dropping locks.
2336 */
2337int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2338{
2339 struct swap_info_struct *si;
2340 struct page *head;
2341 struct page *page;
2342 struct page *list_page;
2343 pgoff_t offset;
2344 unsigned char count;
2345
2346 /*
2347 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2348 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2349 */
2350 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2351
2352 si = swap_info_get(entry);
2353 if (!si) {
2354 /*
2355 * An acceptable race has occurred since the failing
2356 * __swap_duplicate(): the swap entry has been freed,
2357 * perhaps even the whole swap_map cleared for swapoff.
2358 */
2359 goto outer;
2360 }
2361
2362 offset = swp_offset(entry);
2363 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2364
2365 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2366 /*
2367 * The higher the swap count, the more likely it is that tasks
2368 * will race to add swap count continuation: we need to avoid
2369 * over-provisioning.
2370 */
2371 goto out;
2372 }
2373
2374 if (!page) {
ec8acf20 2375 spin_unlock(&si->lock);
570a335b
HD
2376 return -ENOMEM;
2377 }
2378
2379 /*
2380 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2381 * no architecture is using highmem pages for kernel pagetables: so it
2382 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2383 */
2384 head = vmalloc_to_page(si->swap_map + offset);
2385 offset &= ~PAGE_MASK;
2386
2387 /*
2388 * Page allocation does not initialize the page's lru field,
2389 * but it does always reset its private field.
2390 */
2391 if (!page_private(head)) {
2392 BUG_ON(count & COUNT_CONTINUED);
2393 INIT_LIST_HEAD(&head->lru);
2394 set_page_private(head, SWP_CONTINUED);
2395 si->flags |= SWP_CONTINUED;
2396 }
2397
2398 list_for_each_entry(list_page, &head->lru, lru) {
2399 unsigned char *map;
2400
2401 /*
2402 * If the previous map said no continuation, but we've found
2403 * a continuation page, free our allocation and use this one.
2404 */
2405 if (!(count & COUNT_CONTINUED))
2406 goto out;
2407
9b04c5fe 2408 map = kmap_atomic(list_page) + offset;
570a335b 2409 count = *map;
9b04c5fe 2410 kunmap_atomic(map);
570a335b
HD
2411
2412 /*
2413 * If this continuation count now has some space in it,
2414 * free our allocation and use this one.
2415 */
2416 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2417 goto out;
2418 }
2419
2420 list_add_tail(&page->lru, &head->lru);
2421 page = NULL; /* now it's attached, don't free it */
2422out:
ec8acf20 2423 spin_unlock(&si->lock);
570a335b
HD
2424outer:
2425 if (page)
2426 __free_page(page);
2427 return 0;
2428}
2429
2430/*
2431 * swap_count_continued - when the original swap_map count is incremented
2432 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2433 * into, carry if so, or else fail until a new continuation page is allocated;
2434 * when the original swap_map count is decremented from 0 with continuation,
2435 * borrow from the continuation and report whether it still holds more.
2436 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2437 */
2438static bool swap_count_continued(struct swap_info_struct *si,
2439 pgoff_t offset, unsigned char count)
2440{
2441 struct page *head;
2442 struct page *page;
2443 unsigned char *map;
2444
2445 head = vmalloc_to_page(si->swap_map + offset);
2446 if (page_private(head) != SWP_CONTINUED) {
2447 BUG_ON(count & COUNT_CONTINUED);
2448 return false; /* need to add count continuation */
2449 }
2450
2451 offset &= ~PAGE_MASK;
2452 page = list_entry(head->lru.next, struct page, lru);
9b04c5fe 2453 map = kmap_atomic(page) + offset;
570a335b
HD
2454
2455 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2456 goto init_map; /* jump over SWAP_CONT_MAX checks */
2457
2458 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2459 /*
2460 * Think of how you add 1 to 999
2461 */
2462 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 2463 kunmap_atomic(map);
570a335b
HD
2464 page = list_entry(page->lru.next, struct page, lru);
2465 BUG_ON(page == head);
9b04c5fe 2466 map = kmap_atomic(page) + offset;
570a335b
HD
2467 }
2468 if (*map == SWAP_CONT_MAX) {
9b04c5fe 2469 kunmap_atomic(map);
570a335b
HD
2470 page = list_entry(page->lru.next, struct page, lru);
2471 if (page == head)
2472 return false; /* add count continuation */
9b04c5fe 2473 map = kmap_atomic(page) + offset;
570a335b
HD
2474init_map: *map = 0; /* we didn't zero the page */
2475 }
2476 *map += 1;
9b04c5fe 2477 kunmap_atomic(map);
570a335b
HD
2478 page = list_entry(page->lru.prev, struct page, lru);
2479 while (page != head) {
9b04c5fe 2480 map = kmap_atomic(page) + offset;
570a335b 2481 *map = COUNT_CONTINUED;
9b04c5fe 2482 kunmap_atomic(map);
570a335b
HD
2483 page = list_entry(page->lru.prev, struct page, lru);
2484 }
2485 return true; /* incremented */
2486
2487 } else { /* decrementing */
2488 /*
2489 * Think of how you subtract 1 from 1000
2490 */
2491 BUG_ON(count != COUNT_CONTINUED);
2492 while (*map == COUNT_CONTINUED) {
9b04c5fe 2493 kunmap_atomic(map);
570a335b
HD
2494 page = list_entry(page->lru.next, struct page, lru);
2495 BUG_ON(page == head);
9b04c5fe 2496 map = kmap_atomic(page) + offset;
570a335b
HD
2497 }
2498 BUG_ON(*map == 0);
2499 *map -= 1;
2500 if (*map == 0)
2501 count = 0;
9b04c5fe 2502 kunmap_atomic(map);
570a335b
HD
2503 page = list_entry(page->lru.prev, struct page, lru);
2504 while (page != head) {
9b04c5fe 2505 map = kmap_atomic(page) + offset;
570a335b
HD
2506 *map = SWAP_CONT_MAX | count;
2507 count = COUNT_CONTINUED;
9b04c5fe 2508 kunmap_atomic(map);
570a335b
HD
2509 page = list_entry(page->lru.prev, struct page, lru);
2510 }
2511 return count == COUNT_CONTINUED;
2512 }
2513}
2514
2515/*
2516 * free_swap_count_continuations - swapoff free all the continuation pages
2517 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2518 */
2519static void free_swap_count_continuations(struct swap_info_struct *si)
2520{
2521 pgoff_t offset;
2522
2523 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2524 struct page *head;
2525 head = vmalloc_to_page(si->swap_map + offset);
2526 if (page_private(head)) {
2527 struct list_head *this, *next;
2528 list_for_each_safe(this, next, &head->lru) {
2529 struct page *page;
2530 page = list_entry(this, struct page, lru);
2531 list_del(this);
2532 __free_page(page);
2533 }
2534 }
2535 }
2536}