]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/swapfile.c
sys_swapon: remove bdev variable
[mirror_ubuntu-bionic-kernel.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
17#include <linux/shm.h>
18#include <linux/blkdev.h>
20137a49 19#include <linux/random.h>
1da177e4
LT
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
24#include <linux/module.h>
5ad64688 25#include <linux/ksm.h>
1da177e4
LT
26#include <linux/rmap.h>
27#include <linux/security.h>
28#include <linux/backing-dev.h>
fc0abb14 29#include <linux/mutex.h>
c59ede7b 30#include <linux/capability.h>
1da177e4 31#include <linux/syscalls.h>
8a9f3ccd 32#include <linux/memcontrol.h>
66d7dd51 33#include <linux/poll.h>
1da177e4
LT
34
35#include <asm/pgtable.h>
36#include <asm/tlbflush.h>
37#include <linux/swapops.h>
27a7faa0 38#include <linux/page_cgroup.h>
1da177e4 39
570a335b
HD
40static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
41 unsigned char);
42static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 43static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 44
7c363b8c
AB
45static DEFINE_SPINLOCK(swap_lock);
46static unsigned int nr_swapfiles;
b962716b 47long nr_swap_pages;
1da177e4 48long total_swap_pages;
78ecba08 49static int least_priority;
1da177e4 50
1da177e4
LT
51static const char Bad_file[] = "Bad swap file entry ";
52static const char Unused_file[] = "Unused swap file entry ";
53static const char Bad_offset[] = "Bad swap offset entry ";
54static const char Unused_offset[] = "Unused swap offset entry ";
55
7c363b8c 56static struct swap_list_t swap_list = {-1, -1};
1da177e4 57
efa90a98 58static struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 59
fc0abb14 60static DEFINE_MUTEX(swapon_mutex);
1da177e4 61
66d7dd51
KS
62static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
63/* Activity counter to indicate that a swapon or swapoff has occurred */
64static atomic_t proc_poll_event = ATOMIC_INIT(0);
65
8d69aaee 66static inline unsigned char swap_count(unsigned char ent)
355cfa73 67{
570a335b 68 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
355cfa73
KH
69}
70
efa90a98 71/* returns 1 if swap entry is freed */
c9e44410
KH
72static int
73__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
74{
efa90a98 75 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
76 struct page *page;
77 int ret = 0;
78
79 page = find_get_page(&swapper_space, entry.val);
80 if (!page)
81 return 0;
82 /*
83 * This function is called from scan_swap_map() and it's called
84 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
85 * We have to use trylock for avoiding deadlock. This is a special
86 * case and you should use try_to_free_swap() with explicit lock_page()
87 * in usual operations.
88 */
89 if (trylock_page(page)) {
90 ret = try_to_free_swap(page);
91 unlock_page(page);
92 }
93 page_cache_release(page);
94 return ret;
95}
355cfa73 96
1da177e4
LT
97/*
98 * We need this because the bdev->unplug_fn can sleep and we cannot
5d337b91 99 * hold swap_lock while calling the unplug_fn. And swap_lock
fc0abb14 100 * cannot be turned into a mutex.
1da177e4
LT
101 */
102static DECLARE_RWSEM(swap_unplug_sem);
103
1da177e4
LT
104void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
105{
106 swp_entry_t entry;
107
108 down_read(&swap_unplug_sem);
4c21e2f2 109 entry.val = page_private(page);
1da177e4 110 if (PageSwapCache(page)) {
efa90a98 111 struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
1da177e4
LT
112 struct backing_dev_info *bdi;
113
114 /*
115 * If the page is removed from swapcache from under us (with a
116 * racy try_to_unuse/swapoff) we need an additional reference
4c21e2f2
HD
117 * count to avoid reading garbage from page_private(page) above.
118 * If the WARN_ON triggers during a swapoff it maybe the race
1da177e4
LT
119 * condition and it's harmless. However if it triggers without
120 * swapoff it signals a problem.
121 */
122 WARN_ON(page_count(page) <= 1);
123
124 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
ba32311e 125 blk_run_backing_dev(bdi, page);
1da177e4
LT
126 }
127 up_read(&swap_unplug_sem);
128}
129
6a6ba831
HD
130/*
131 * swapon tell device that all the old swap contents can be discarded,
132 * to allow the swap device to optimize its wear-levelling.
133 */
134static int discard_swap(struct swap_info_struct *si)
135{
136 struct swap_extent *se;
9625a5f2
HD
137 sector_t start_block;
138 sector_t nr_blocks;
6a6ba831
HD
139 int err = 0;
140
9625a5f2
HD
141 /* Do not discard the swap header page! */
142 se = &si->first_swap_extent;
143 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
144 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
145 if (nr_blocks) {
146 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 147 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
148 if (err)
149 return err;
150 cond_resched();
151 }
6a6ba831 152
9625a5f2
HD
153 list_for_each_entry(se, &si->first_swap_extent.list, list) {
154 start_block = se->start_block << (PAGE_SHIFT - 9);
155 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
156
157 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 158 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
159 if (err)
160 break;
161
162 cond_resched();
163 }
164 return err; /* That will often be -EOPNOTSUPP */
165}
166
7992fde7
HD
167/*
168 * swap allocation tell device that a cluster of swap can now be discarded,
169 * to allow the swap device to optimize its wear-levelling.
170 */
171static void discard_swap_cluster(struct swap_info_struct *si,
172 pgoff_t start_page, pgoff_t nr_pages)
173{
174 struct swap_extent *se = si->curr_swap_extent;
175 int found_extent = 0;
176
177 while (nr_pages) {
178 struct list_head *lh;
179
180 if (se->start_page <= start_page &&
181 start_page < se->start_page + se->nr_pages) {
182 pgoff_t offset = start_page - se->start_page;
183 sector_t start_block = se->start_block + offset;
858a2990 184 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
185
186 if (nr_blocks > nr_pages)
187 nr_blocks = nr_pages;
188 start_page += nr_blocks;
189 nr_pages -= nr_blocks;
190
191 if (!found_extent++)
192 si->curr_swap_extent = se;
193
194 start_block <<= PAGE_SHIFT - 9;
195 nr_blocks <<= PAGE_SHIFT - 9;
196 if (blkdev_issue_discard(si->bdev, start_block,
dd3932ed 197 nr_blocks, GFP_NOIO, 0))
7992fde7
HD
198 break;
199 }
200
201 lh = se->list.next;
7992fde7
HD
202 se = list_entry(lh, struct swap_extent, list);
203 }
204}
205
206static int wait_for_discard(void *word)
207{
208 schedule();
209 return 0;
210}
211
048c27fd
HD
212#define SWAPFILE_CLUSTER 256
213#define LATENCY_LIMIT 256
214
355cfa73 215static inline unsigned long scan_swap_map(struct swap_info_struct *si,
8d69aaee 216 unsigned char usage)
1da177e4 217{
ebebbbe9 218 unsigned long offset;
c60aa176 219 unsigned long scan_base;
7992fde7 220 unsigned long last_in_cluster = 0;
048c27fd 221 int latency_ration = LATENCY_LIMIT;
7992fde7 222 int found_free_cluster = 0;
7dfad418 223
886bb7e9 224 /*
7dfad418
HD
225 * We try to cluster swap pages by allocating them sequentially
226 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
227 * way, however, we resort to first-free allocation, starting
228 * a new cluster. This prevents us from scattering swap pages
229 * all over the entire swap partition, so that we reduce
230 * overall disk seek times between swap pages. -- sct
231 * But we do now try to find an empty cluster. -Andrea
c60aa176 232 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
233 */
234
52b7efdb 235 si->flags += SWP_SCANNING;
c60aa176 236 scan_base = offset = si->cluster_next;
ebebbbe9
HD
237
238 if (unlikely(!si->cluster_nr--)) {
239 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
240 si->cluster_nr = SWAPFILE_CLUSTER - 1;
241 goto checks;
242 }
7992fde7
HD
243 if (si->flags & SWP_DISCARDABLE) {
244 /*
245 * Start range check on racing allocations, in case
246 * they overlap the cluster we eventually decide on
247 * (we scan without swap_lock to allow preemption).
248 * It's hardly conceivable that cluster_nr could be
249 * wrapped during our scan, but don't depend on it.
250 */
251 if (si->lowest_alloc)
252 goto checks;
253 si->lowest_alloc = si->max;
254 si->highest_alloc = 0;
255 }
5d337b91 256 spin_unlock(&swap_lock);
7dfad418 257
c60aa176
HD
258 /*
259 * If seek is expensive, start searching for new cluster from
260 * start of partition, to minimize the span of allocated swap.
261 * But if seek is cheap, search from our current position, so
262 * that swap is allocated from all over the partition: if the
263 * Flash Translation Layer only remaps within limited zones,
264 * we don't want to wear out the first zone too quickly.
265 */
266 if (!(si->flags & SWP_SOLIDSTATE))
267 scan_base = offset = si->lowest_bit;
7dfad418
HD
268 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
269
270 /* Locate the first empty (unaligned) cluster */
271 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 272 if (si->swap_map[offset])
7dfad418
HD
273 last_in_cluster = offset + SWAPFILE_CLUSTER;
274 else if (offset == last_in_cluster) {
5d337b91 275 spin_lock(&swap_lock);
ebebbbe9
HD
276 offset -= SWAPFILE_CLUSTER - 1;
277 si->cluster_next = offset;
278 si->cluster_nr = SWAPFILE_CLUSTER - 1;
7992fde7 279 found_free_cluster = 1;
ebebbbe9 280 goto checks;
1da177e4 281 }
048c27fd
HD
282 if (unlikely(--latency_ration < 0)) {
283 cond_resched();
284 latency_ration = LATENCY_LIMIT;
285 }
7dfad418 286 }
ebebbbe9
HD
287
288 offset = si->lowest_bit;
c60aa176
HD
289 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
290
291 /* Locate the first empty (unaligned) cluster */
292 for (; last_in_cluster < scan_base; offset++) {
293 if (si->swap_map[offset])
294 last_in_cluster = offset + SWAPFILE_CLUSTER;
295 else if (offset == last_in_cluster) {
296 spin_lock(&swap_lock);
297 offset -= SWAPFILE_CLUSTER - 1;
298 si->cluster_next = offset;
299 si->cluster_nr = SWAPFILE_CLUSTER - 1;
300 found_free_cluster = 1;
301 goto checks;
302 }
303 if (unlikely(--latency_ration < 0)) {
304 cond_resched();
305 latency_ration = LATENCY_LIMIT;
306 }
307 }
308
309 offset = scan_base;
5d337b91 310 spin_lock(&swap_lock);
ebebbbe9 311 si->cluster_nr = SWAPFILE_CLUSTER - 1;
7992fde7 312 si->lowest_alloc = 0;
1da177e4 313 }
7dfad418 314
ebebbbe9
HD
315checks:
316 if (!(si->flags & SWP_WRITEOK))
52b7efdb 317 goto no_page;
7dfad418
HD
318 if (!si->highest_bit)
319 goto no_page;
ebebbbe9 320 if (offset > si->highest_bit)
c60aa176 321 scan_base = offset = si->lowest_bit;
c9e44410 322
b73d7fce
HD
323 /* reuse swap entry of cache-only swap if not busy. */
324 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410
KH
325 int swap_was_freed;
326 spin_unlock(&swap_lock);
327 swap_was_freed = __try_to_reclaim_swap(si, offset);
328 spin_lock(&swap_lock);
329 /* entry was freed successfully, try to use this again */
330 if (swap_was_freed)
331 goto checks;
332 goto scan; /* check next one */
333 }
334
ebebbbe9
HD
335 if (si->swap_map[offset])
336 goto scan;
337
338 if (offset == si->lowest_bit)
339 si->lowest_bit++;
340 if (offset == si->highest_bit)
341 si->highest_bit--;
342 si->inuse_pages++;
343 if (si->inuse_pages == si->pages) {
344 si->lowest_bit = si->max;
345 si->highest_bit = 0;
1da177e4 346 }
253d553b 347 si->swap_map[offset] = usage;
ebebbbe9
HD
348 si->cluster_next = offset + 1;
349 si->flags -= SWP_SCANNING;
7992fde7
HD
350
351 if (si->lowest_alloc) {
352 /*
353 * Only set when SWP_DISCARDABLE, and there's a scan
354 * for a free cluster in progress or just completed.
355 */
356 if (found_free_cluster) {
357 /*
358 * To optimize wear-levelling, discard the
359 * old data of the cluster, taking care not to
360 * discard any of its pages that have already
361 * been allocated by racing tasks (offset has
362 * already stepped over any at the beginning).
363 */
364 if (offset < si->highest_alloc &&
365 si->lowest_alloc <= last_in_cluster)
366 last_in_cluster = si->lowest_alloc - 1;
367 si->flags |= SWP_DISCARDING;
368 spin_unlock(&swap_lock);
369
370 if (offset < last_in_cluster)
371 discard_swap_cluster(si, offset,
372 last_in_cluster - offset + 1);
373
374 spin_lock(&swap_lock);
375 si->lowest_alloc = 0;
376 si->flags &= ~SWP_DISCARDING;
377
378 smp_mb(); /* wake_up_bit advises this */
379 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
380
381 } else if (si->flags & SWP_DISCARDING) {
382 /*
383 * Delay using pages allocated by racing tasks
384 * until the whole discard has been issued. We
385 * could defer that delay until swap_writepage,
386 * but it's easier to keep this self-contained.
387 */
388 spin_unlock(&swap_lock);
389 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
390 wait_for_discard, TASK_UNINTERRUPTIBLE);
391 spin_lock(&swap_lock);
392 } else {
393 /*
394 * Note pages allocated by racing tasks while
395 * scan for a free cluster is in progress, so
396 * that its final discard can exclude them.
397 */
398 if (offset < si->lowest_alloc)
399 si->lowest_alloc = offset;
400 if (offset > si->highest_alloc)
401 si->highest_alloc = offset;
402 }
403 }
ebebbbe9 404 return offset;
7dfad418 405
ebebbbe9 406scan:
5d337b91 407 spin_unlock(&swap_lock);
7dfad418 408 while (++offset <= si->highest_bit) {
52b7efdb 409 if (!si->swap_map[offset]) {
5d337b91 410 spin_lock(&swap_lock);
52b7efdb
HD
411 goto checks;
412 }
c9e44410
KH
413 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
414 spin_lock(&swap_lock);
415 goto checks;
416 }
048c27fd
HD
417 if (unlikely(--latency_ration < 0)) {
418 cond_resched();
419 latency_ration = LATENCY_LIMIT;
420 }
7dfad418 421 }
c60aa176
HD
422 offset = si->lowest_bit;
423 while (++offset < scan_base) {
424 if (!si->swap_map[offset]) {
425 spin_lock(&swap_lock);
426 goto checks;
427 }
c9e44410
KH
428 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
429 spin_lock(&swap_lock);
430 goto checks;
431 }
c60aa176
HD
432 if (unlikely(--latency_ration < 0)) {
433 cond_resched();
434 latency_ration = LATENCY_LIMIT;
435 }
436 }
5d337b91 437 spin_lock(&swap_lock);
7dfad418
HD
438
439no_page:
52b7efdb 440 si->flags -= SWP_SCANNING;
1da177e4
LT
441 return 0;
442}
443
444swp_entry_t get_swap_page(void)
445{
fb4f88dc
HD
446 struct swap_info_struct *si;
447 pgoff_t offset;
448 int type, next;
449 int wrapped = 0;
1da177e4 450
5d337b91 451 spin_lock(&swap_lock);
1da177e4 452 if (nr_swap_pages <= 0)
fb4f88dc
HD
453 goto noswap;
454 nr_swap_pages--;
455
456 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
efa90a98 457 si = swap_info[type];
fb4f88dc
HD
458 next = si->next;
459 if (next < 0 ||
efa90a98 460 (!wrapped && si->prio != swap_info[next]->prio)) {
fb4f88dc
HD
461 next = swap_list.head;
462 wrapped++;
1da177e4 463 }
fb4f88dc
HD
464
465 if (!si->highest_bit)
466 continue;
467 if (!(si->flags & SWP_WRITEOK))
468 continue;
469
470 swap_list.next = next;
355cfa73 471 /* This is called for allocating swap entry for cache */
253d553b 472 offset = scan_swap_map(si, SWAP_HAS_CACHE);
5d337b91
HD
473 if (offset) {
474 spin_unlock(&swap_lock);
fb4f88dc 475 return swp_entry(type, offset);
5d337b91 476 }
fb4f88dc 477 next = swap_list.next;
1da177e4 478 }
fb4f88dc
HD
479
480 nr_swap_pages++;
481noswap:
5d337b91 482 spin_unlock(&swap_lock);
fb4f88dc 483 return (swp_entry_t) {0};
1da177e4
LT
484}
485
910321ea
HD
486/* The only caller of this function is now susupend routine */
487swp_entry_t get_swap_page_of_type(int type)
488{
489 struct swap_info_struct *si;
490 pgoff_t offset;
491
492 spin_lock(&swap_lock);
493 si = swap_info[type];
494 if (si && (si->flags & SWP_WRITEOK)) {
495 nr_swap_pages--;
496 /* This is called for allocating swap entry, not cache */
497 offset = scan_swap_map(si, 1);
498 if (offset) {
499 spin_unlock(&swap_lock);
500 return swp_entry(type, offset);
501 }
502 nr_swap_pages++;
503 }
504 spin_unlock(&swap_lock);
505 return (swp_entry_t) {0};
506}
507
73c34b6a 508static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1da177e4 509{
73c34b6a 510 struct swap_info_struct *p;
1da177e4
LT
511 unsigned long offset, type;
512
513 if (!entry.val)
514 goto out;
515 type = swp_type(entry);
516 if (type >= nr_swapfiles)
517 goto bad_nofile;
efa90a98 518 p = swap_info[type];
1da177e4
LT
519 if (!(p->flags & SWP_USED))
520 goto bad_device;
521 offset = swp_offset(entry);
522 if (offset >= p->max)
523 goto bad_offset;
524 if (!p->swap_map[offset])
525 goto bad_free;
5d337b91 526 spin_lock(&swap_lock);
1da177e4
LT
527 return p;
528
529bad_free:
530 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
531 goto out;
532bad_offset:
533 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
534 goto out;
535bad_device:
536 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
537 goto out;
538bad_nofile:
539 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
540out:
541 return NULL;
886bb7e9 542}
1da177e4 543
8d69aaee
HD
544static unsigned char swap_entry_free(struct swap_info_struct *p,
545 swp_entry_t entry, unsigned char usage)
1da177e4 546{
253d553b 547 unsigned long offset = swp_offset(entry);
8d69aaee
HD
548 unsigned char count;
549 unsigned char has_cache;
355cfa73 550
253d553b
HD
551 count = p->swap_map[offset];
552 has_cache = count & SWAP_HAS_CACHE;
553 count &= ~SWAP_HAS_CACHE;
355cfa73 554
253d553b 555 if (usage == SWAP_HAS_CACHE) {
355cfa73 556 VM_BUG_ON(!has_cache);
253d553b 557 has_cache = 0;
aaa46865
HD
558 } else if (count == SWAP_MAP_SHMEM) {
559 /*
560 * Or we could insist on shmem.c using a special
561 * swap_shmem_free() and free_shmem_swap_and_cache()...
562 */
563 count = 0;
570a335b
HD
564 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
565 if (count == COUNT_CONTINUED) {
566 if (swap_count_continued(p, offset, count))
567 count = SWAP_MAP_MAX | COUNT_CONTINUED;
568 else
569 count = SWAP_MAP_MAX;
570 } else
571 count--;
572 }
253d553b
HD
573
574 if (!count)
575 mem_cgroup_uncharge_swap(entry);
576
577 usage = count | has_cache;
578 p->swap_map[offset] = usage;
355cfa73 579
355cfa73 580 /* free if no reference */
253d553b 581 if (!usage) {
b3a27d05 582 struct gendisk *disk = p->bdev->bd_disk;
355cfa73
KH
583 if (offset < p->lowest_bit)
584 p->lowest_bit = offset;
585 if (offset > p->highest_bit)
586 p->highest_bit = offset;
efa90a98
HD
587 if (swap_list.next >= 0 &&
588 p->prio > swap_info[swap_list.next]->prio)
589 swap_list.next = p->type;
355cfa73
KH
590 nr_swap_pages++;
591 p->inuse_pages--;
b3a27d05
NG
592 if ((p->flags & SWP_BLKDEV) &&
593 disk->fops->swap_slot_free_notify)
594 disk->fops->swap_slot_free_notify(p->bdev, offset);
1da177e4 595 }
253d553b
HD
596
597 return usage;
1da177e4
LT
598}
599
600/*
601 * Caller has made sure that the swapdevice corresponding to entry
602 * is still around or has not been recycled.
603 */
604void swap_free(swp_entry_t entry)
605{
73c34b6a 606 struct swap_info_struct *p;
1da177e4
LT
607
608 p = swap_info_get(entry);
609 if (p) {
253d553b 610 swap_entry_free(p, entry, 1);
5d337b91 611 spin_unlock(&swap_lock);
1da177e4
LT
612 }
613}
614
cb4b86ba
KH
615/*
616 * Called after dropping swapcache to decrease refcnt to swap entries.
617 */
618void swapcache_free(swp_entry_t entry, struct page *page)
619{
355cfa73 620 struct swap_info_struct *p;
8d69aaee 621 unsigned char count;
355cfa73 622
355cfa73
KH
623 p = swap_info_get(entry);
624 if (p) {
253d553b
HD
625 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
626 if (page)
627 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
355cfa73
KH
628 spin_unlock(&swap_lock);
629 }
cb4b86ba
KH
630}
631
1da177e4 632/*
c475a8ab 633 * How many references to page are currently swapped out?
570a335b
HD
634 * This does not give an exact answer when swap count is continued,
635 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 636 */
c475a8ab 637static inline int page_swapcount(struct page *page)
1da177e4 638{
c475a8ab
HD
639 int count = 0;
640 struct swap_info_struct *p;
1da177e4
LT
641 swp_entry_t entry;
642
4c21e2f2 643 entry.val = page_private(page);
1da177e4
LT
644 p = swap_info_get(entry);
645 if (p) {
355cfa73 646 count = swap_count(p->swap_map[swp_offset(entry)]);
5d337b91 647 spin_unlock(&swap_lock);
1da177e4 648 }
c475a8ab 649 return count;
1da177e4
LT
650}
651
652/*
7b1fe597
HD
653 * We can write to an anon page without COW if there are no other references
654 * to it. And as a side-effect, free up its swap: because the old content
655 * on disk will never be read, and seeking back there to write new content
656 * later would only waste time away from clustering.
1da177e4 657 */
7b1fe597 658int reuse_swap_page(struct page *page)
1da177e4 659{
c475a8ab
HD
660 int count;
661
51726b12 662 VM_BUG_ON(!PageLocked(page));
5ad64688
HD
663 if (unlikely(PageKsm(page)))
664 return 0;
c475a8ab 665 count = page_mapcount(page);
7b1fe597 666 if (count <= 1 && PageSwapCache(page)) {
c475a8ab 667 count += page_swapcount(page);
7b1fe597
HD
668 if (count == 1 && !PageWriteback(page)) {
669 delete_from_swap_cache(page);
670 SetPageDirty(page);
671 }
672 }
5ad64688 673 return count <= 1;
1da177e4
LT
674}
675
676/*
a2c43eed
HD
677 * If swap is getting full, or if there are no more mappings of this page,
678 * then try_to_free_swap is called to free its swap space.
1da177e4 679 */
a2c43eed 680int try_to_free_swap(struct page *page)
1da177e4 681{
51726b12 682 VM_BUG_ON(!PageLocked(page));
1da177e4
LT
683
684 if (!PageSwapCache(page))
685 return 0;
686 if (PageWriteback(page))
687 return 0;
a2c43eed 688 if (page_swapcount(page))
1da177e4
LT
689 return 0;
690
b73d7fce
HD
691 /*
692 * Once hibernation has begun to create its image of memory,
693 * there's a danger that one of the calls to try_to_free_swap()
694 * - most probably a call from __try_to_reclaim_swap() while
695 * hibernation is allocating its own swap pages for the image,
696 * but conceivably even a call from memory reclaim - will free
697 * the swap from a page which has already been recorded in the
698 * image as a clean swapcache page, and then reuse its swap for
699 * another page of the image. On waking from hibernation, the
700 * original page might be freed under memory pressure, then
701 * later read back in from swap, now with the wrong data.
702 *
703 * Hibernation clears bits from gfp_allowed_mask to prevent
704 * memory reclaim from writing to disk, so check that here.
705 */
706 if (!(gfp_allowed_mask & __GFP_IO))
707 return 0;
708
a2c43eed
HD
709 delete_from_swap_cache(page);
710 SetPageDirty(page);
711 return 1;
68a22394
RR
712}
713
1da177e4
LT
714/*
715 * Free the swap entry like above, but also try to
716 * free the page cache entry if it is the last user.
717 */
2509ef26 718int free_swap_and_cache(swp_entry_t entry)
1da177e4 719{
2509ef26 720 struct swap_info_struct *p;
1da177e4
LT
721 struct page *page = NULL;
722
a7420aa5 723 if (non_swap_entry(entry))
2509ef26 724 return 1;
0697212a 725
1da177e4
LT
726 p = swap_info_get(entry);
727 if (p) {
253d553b 728 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
93fac704 729 page = find_get_page(&swapper_space, entry.val);
8413ac9d 730 if (page && !trylock_page(page)) {
93fac704
NP
731 page_cache_release(page);
732 page = NULL;
733 }
734 }
5d337b91 735 spin_unlock(&swap_lock);
1da177e4
LT
736 }
737 if (page) {
a2c43eed
HD
738 /*
739 * Not mapped elsewhere, or swap space full? Free it!
740 * Also recheck PageSwapCache now page is locked (above).
741 */
93fac704 742 if (PageSwapCache(page) && !PageWriteback(page) &&
a2c43eed 743 (!page_mapped(page) || vm_swap_full())) {
1da177e4
LT
744 delete_from_swap_cache(page);
745 SetPageDirty(page);
746 }
747 unlock_page(page);
748 page_cache_release(page);
749 }
2509ef26 750 return p != NULL;
1da177e4
LT
751}
752
02491447
DN
753#ifdef CONFIG_CGROUP_MEM_RES_CTLR
754/**
755 * mem_cgroup_count_swap_user - count the user of a swap entry
756 * @ent: the swap entry to be checked
757 * @pagep: the pointer for the swap cache page of the entry to be stored
758 *
759 * Returns the number of the user of the swap entry. The number is valid only
760 * for swaps of anonymous pages.
761 * If the entry is found on swap cache, the page is stored to pagep with
762 * refcount of it being incremented.
763 */
764int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
765{
766 struct page *page;
767 struct swap_info_struct *p;
768 int count = 0;
769
770 page = find_get_page(&swapper_space, ent.val);
771 if (page)
772 count += page_mapcount(page);
773 p = swap_info_get(ent);
774 if (p) {
775 count += swap_count(p->swap_map[swp_offset(ent)]);
776 spin_unlock(&swap_lock);
777 }
778
779 *pagep = page;
780 return count;
781}
782#endif
783
b0cb1a19 784#ifdef CONFIG_HIBERNATION
f577eb30 785/*
915bae9e 786 * Find the swap type that corresponds to given device (if any).
f577eb30 787 *
915bae9e
RW
788 * @offset - number of the PAGE_SIZE-sized block of the device, starting
789 * from 0, in which the swap header is expected to be located.
790 *
791 * This is needed for the suspend to disk (aka swsusp).
f577eb30 792 */
7bf23687 793int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 794{
915bae9e 795 struct block_device *bdev = NULL;
efa90a98 796 int type;
f577eb30 797
915bae9e
RW
798 if (device)
799 bdev = bdget(device);
800
f577eb30 801 spin_lock(&swap_lock);
efa90a98
HD
802 for (type = 0; type < nr_swapfiles; type++) {
803 struct swap_info_struct *sis = swap_info[type];
f577eb30 804
915bae9e 805 if (!(sis->flags & SWP_WRITEOK))
f577eb30 806 continue;
b6b5bce3 807
915bae9e 808 if (!bdev) {
7bf23687 809 if (bdev_p)
dddac6a7 810 *bdev_p = bdgrab(sis->bdev);
7bf23687 811
6e1819d6 812 spin_unlock(&swap_lock);
efa90a98 813 return type;
6e1819d6 814 }
915bae9e 815 if (bdev == sis->bdev) {
9625a5f2 816 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 817
915bae9e 818 if (se->start_block == offset) {
7bf23687 819 if (bdev_p)
dddac6a7 820 *bdev_p = bdgrab(sis->bdev);
7bf23687 821
915bae9e
RW
822 spin_unlock(&swap_lock);
823 bdput(bdev);
efa90a98 824 return type;
915bae9e 825 }
f577eb30
RW
826 }
827 }
828 spin_unlock(&swap_lock);
915bae9e
RW
829 if (bdev)
830 bdput(bdev);
831
f577eb30
RW
832 return -ENODEV;
833}
834
73c34b6a
HD
835/*
836 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
837 * corresponding to given index in swap_info (swap type).
838 */
839sector_t swapdev_block(int type, pgoff_t offset)
840{
841 struct block_device *bdev;
842
843 if ((unsigned int)type >= nr_swapfiles)
844 return 0;
845 if (!(swap_info[type]->flags & SWP_WRITEOK))
846 return 0;
d4906e1a 847 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
848}
849
f577eb30
RW
850/*
851 * Return either the total number of swap pages of given type, or the number
852 * of free pages of that type (depending on @free)
853 *
854 * This is needed for software suspend
855 */
856unsigned int count_swap_pages(int type, int free)
857{
858 unsigned int n = 0;
859
efa90a98
HD
860 spin_lock(&swap_lock);
861 if ((unsigned int)type < nr_swapfiles) {
862 struct swap_info_struct *sis = swap_info[type];
863
864 if (sis->flags & SWP_WRITEOK) {
865 n = sis->pages;
f577eb30 866 if (free)
efa90a98 867 n -= sis->inuse_pages;
f577eb30 868 }
f577eb30 869 }
efa90a98 870 spin_unlock(&swap_lock);
f577eb30
RW
871 return n;
872}
73c34b6a 873#endif /* CONFIG_HIBERNATION */
f577eb30 874
1da177e4 875/*
72866f6f
HD
876 * No need to decide whether this PTE shares the swap entry with others,
877 * just let do_wp_page work it out if a write is requested later - to
878 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 879 */
044d66c1 880static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
881 unsigned long addr, swp_entry_t entry, struct page *page)
882{
7a81b88c 883 struct mem_cgroup *ptr = NULL;
044d66c1
HD
884 spinlock_t *ptl;
885 pte_t *pte;
886 int ret = 1;
887
85d9fc89 888 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
044d66c1 889 ret = -ENOMEM;
85d9fc89
KH
890 goto out_nolock;
891 }
044d66c1
HD
892
893 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
894 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
895 if (ret > 0)
7a81b88c 896 mem_cgroup_cancel_charge_swapin(ptr);
044d66c1
HD
897 ret = 0;
898 goto out;
899 }
8a9f3ccd 900
b084d435 901 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 902 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
903 get_page(page);
904 set_pte_at(vma->vm_mm, addr, pte,
905 pte_mkold(mk_pte(page, vma->vm_page_prot)));
906 page_add_anon_rmap(page, vma, addr);
7a81b88c 907 mem_cgroup_commit_charge_swapin(page, ptr);
1da177e4
LT
908 swap_free(entry);
909 /*
910 * Move the page to the active list so it is not
911 * immediately swapped out again after swapon.
912 */
913 activate_page(page);
044d66c1
HD
914out:
915 pte_unmap_unlock(pte, ptl);
85d9fc89 916out_nolock:
044d66c1 917 return ret;
1da177e4
LT
918}
919
920static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
921 unsigned long addr, unsigned long end,
922 swp_entry_t entry, struct page *page)
923{
1da177e4 924 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 925 pte_t *pte;
8a9f3ccd 926 int ret = 0;
1da177e4 927
044d66c1
HD
928 /*
929 * We don't actually need pte lock while scanning for swp_pte: since
930 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
931 * page table while we're scanning; though it could get zapped, and on
932 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
933 * of unmatched parts which look like swp_pte, so unuse_pte must
934 * recheck under pte lock. Scanning without pte lock lets it be
935 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
936 */
937 pte = pte_offset_map(pmd, addr);
1da177e4
LT
938 do {
939 /*
940 * swapoff spends a _lot_ of time in this loop!
941 * Test inline before going to call unuse_pte.
942 */
943 if (unlikely(pte_same(*pte, swp_pte))) {
044d66c1
HD
944 pte_unmap(pte);
945 ret = unuse_pte(vma, pmd, addr, entry, page);
946 if (ret)
947 goto out;
948 pte = pte_offset_map(pmd, addr);
1da177e4
LT
949 }
950 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
951 pte_unmap(pte - 1);
952out:
8a9f3ccd 953 return ret;
1da177e4
LT
954}
955
956static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
957 unsigned long addr, unsigned long end,
958 swp_entry_t entry, struct page *page)
959{
960 pmd_t *pmd;
961 unsigned long next;
8a9f3ccd 962 int ret;
1da177e4
LT
963
964 pmd = pmd_offset(pud, addr);
965 do {
966 next = pmd_addr_end(addr, end);
3f04f62f
AA
967 if (unlikely(pmd_trans_huge(*pmd)))
968 continue;
1da177e4
LT
969 if (pmd_none_or_clear_bad(pmd))
970 continue;
8a9f3ccd
BS
971 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
972 if (ret)
973 return ret;
1da177e4
LT
974 } while (pmd++, addr = next, addr != end);
975 return 0;
976}
977
978static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
979 unsigned long addr, unsigned long end,
980 swp_entry_t entry, struct page *page)
981{
982 pud_t *pud;
983 unsigned long next;
8a9f3ccd 984 int ret;
1da177e4
LT
985
986 pud = pud_offset(pgd, addr);
987 do {
988 next = pud_addr_end(addr, end);
989 if (pud_none_or_clear_bad(pud))
990 continue;
8a9f3ccd
BS
991 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
992 if (ret)
993 return ret;
1da177e4
LT
994 } while (pud++, addr = next, addr != end);
995 return 0;
996}
997
998static int unuse_vma(struct vm_area_struct *vma,
999 swp_entry_t entry, struct page *page)
1000{
1001 pgd_t *pgd;
1002 unsigned long addr, end, next;
8a9f3ccd 1003 int ret;
1da177e4 1004
3ca7b3c5 1005 if (page_anon_vma(page)) {
1da177e4
LT
1006 addr = page_address_in_vma(page, vma);
1007 if (addr == -EFAULT)
1008 return 0;
1009 else
1010 end = addr + PAGE_SIZE;
1011 } else {
1012 addr = vma->vm_start;
1013 end = vma->vm_end;
1014 }
1015
1016 pgd = pgd_offset(vma->vm_mm, addr);
1017 do {
1018 next = pgd_addr_end(addr, end);
1019 if (pgd_none_or_clear_bad(pgd))
1020 continue;
8a9f3ccd
BS
1021 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1022 if (ret)
1023 return ret;
1da177e4
LT
1024 } while (pgd++, addr = next, addr != end);
1025 return 0;
1026}
1027
1028static int unuse_mm(struct mm_struct *mm,
1029 swp_entry_t entry, struct page *page)
1030{
1031 struct vm_area_struct *vma;
8a9f3ccd 1032 int ret = 0;
1da177e4
LT
1033
1034 if (!down_read_trylock(&mm->mmap_sem)) {
1035 /*
7d03431c
FLVC
1036 * Activate page so shrink_inactive_list is unlikely to unmap
1037 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 1038 */
c475a8ab 1039 activate_page(page);
1da177e4
LT
1040 unlock_page(page);
1041 down_read(&mm->mmap_sem);
1042 lock_page(page);
1043 }
1da177e4 1044 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 1045 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4
LT
1046 break;
1047 }
1da177e4 1048 up_read(&mm->mmap_sem);
8a9f3ccd 1049 return (ret < 0)? ret: 0;
1da177e4
LT
1050}
1051
1052/*
1053 * Scan swap_map from current position to next entry still in use.
1054 * Recycle to start on reaching the end, returning 0 when empty.
1055 */
6eb396dc
HD
1056static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1057 unsigned int prev)
1da177e4 1058{
6eb396dc
HD
1059 unsigned int max = si->max;
1060 unsigned int i = prev;
8d69aaee 1061 unsigned char count;
1da177e4
LT
1062
1063 /*
5d337b91 1064 * No need for swap_lock here: we're just looking
1da177e4
LT
1065 * for whether an entry is in use, not modifying it; false
1066 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 1067 * allocations from this area (while holding swap_lock).
1da177e4
LT
1068 */
1069 for (;;) {
1070 if (++i >= max) {
1071 if (!prev) {
1072 i = 0;
1073 break;
1074 }
1075 /*
1076 * No entries in use at top of swap_map,
1077 * loop back to start and recheck there.
1078 */
1079 max = prev + 1;
1080 prev = 0;
1081 i = 1;
1082 }
1083 count = si->swap_map[i];
355cfa73 1084 if (count && swap_count(count) != SWAP_MAP_BAD)
1da177e4
LT
1085 break;
1086 }
1087 return i;
1088}
1089
1090/*
1091 * We completely avoid races by reading each swap page in advance,
1092 * and then search for the process using it. All the necessary
1093 * page table adjustments can then be made atomically.
1094 */
1095static int try_to_unuse(unsigned int type)
1096{
efa90a98 1097 struct swap_info_struct *si = swap_info[type];
1da177e4 1098 struct mm_struct *start_mm;
8d69aaee
HD
1099 unsigned char *swap_map;
1100 unsigned char swcount;
1da177e4
LT
1101 struct page *page;
1102 swp_entry_t entry;
6eb396dc 1103 unsigned int i = 0;
1da177e4 1104 int retval = 0;
1da177e4
LT
1105
1106 /*
1107 * When searching mms for an entry, a good strategy is to
1108 * start at the first mm we freed the previous entry from
1109 * (though actually we don't notice whether we or coincidence
1110 * freed the entry). Initialize this start_mm with a hold.
1111 *
1112 * A simpler strategy would be to start at the last mm we
1113 * freed the previous entry from; but that would take less
1114 * advantage of mmlist ordering, which clusters forked mms
1115 * together, child after parent. If we race with dup_mmap(), we
1116 * prefer to resolve parent before child, lest we miss entries
1117 * duplicated after we scanned child: using last mm would invert
570a335b 1118 * that.
1da177e4
LT
1119 */
1120 start_mm = &init_mm;
1121 atomic_inc(&init_mm.mm_users);
1122
1123 /*
1124 * Keep on scanning until all entries have gone. Usually,
1125 * one pass through swap_map is enough, but not necessarily:
1126 * there are races when an instance of an entry might be missed.
1127 */
1128 while ((i = find_next_to_unuse(si, i)) != 0) {
1129 if (signal_pending(current)) {
1130 retval = -EINTR;
1131 break;
1132 }
1133
886bb7e9 1134 /*
1da177e4
LT
1135 * Get a page for the entry, using the existing swap
1136 * cache page if there is one. Otherwise, get a clean
886bb7e9 1137 * page and read the swap into it.
1da177e4
LT
1138 */
1139 swap_map = &si->swap_map[i];
1140 entry = swp_entry(type, i);
02098fea
HD
1141 page = read_swap_cache_async(entry,
1142 GFP_HIGHUSER_MOVABLE, NULL, 0);
1da177e4
LT
1143 if (!page) {
1144 /*
1145 * Either swap_duplicate() failed because entry
1146 * has been freed independently, and will not be
1147 * reused since sys_swapoff() already disabled
1148 * allocation from here, or alloc_page() failed.
1149 */
1150 if (!*swap_map)
1151 continue;
1152 retval = -ENOMEM;
1153 break;
1154 }
1155
1156 /*
1157 * Don't hold on to start_mm if it looks like exiting.
1158 */
1159 if (atomic_read(&start_mm->mm_users) == 1) {
1160 mmput(start_mm);
1161 start_mm = &init_mm;
1162 atomic_inc(&init_mm.mm_users);
1163 }
1164
1165 /*
1166 * Wait for and lock page. When do_swap_page races with
1167 * try_to_unuse, do_swap_page can handle the fault much
1168 * faster than try_to_unuse can locate the entry. This
1169 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1170 * defer to do_swap_page in such a case - in some tests,
1171 * do_swap_page and try_to_unuse repeatedly compete.
1172 */
1173 wait_on_page_locked(page);
1174 wait_on_page_writeback(page);
1175 lock_page(page);
1176 wait_on_page_writeback(page);
1177
1178 /*
1179 * Remove all references to entry.
1da177e4 1180 */
1da177e4 1181 swcount = *swap_map;
aaa46865
HD
1182 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1183 retval = shmem_unuse(entry, page);
1184 /* page has already been unlocked and released */
1185 if (retval < 0)
1186 break;
1187 continue;
1da177e4 1188 }
aaa46865
HD
1189 if (swap_count(swcount) && start_mm != &init_mm)
1190 retval = unuse_mm(start_mm, entry, page);
1191
355cfa73 1192 if (swap_count(*swap_map)) {
1da177e4
LT
1193 int set_start_mm = (*swap_map >= swcount);
1194 struct list_head *p = &start_mm->mmlist;
1195 struct mm_struct *new_start_mm = start_mm;
1196 struct mm_struct *prev_mm = start_mm;
1197 struct mm_struct *mm;
1198
1199 atomic_inc(&new_start_mm->mm_users);
1200 atomic_inc(&prev_mm->mm_users);
1201 spin_lock(&mmlist_lock);
aaa46865 1202 while (swap_count(*swap_map) && !retval &&
1da177e4
LT
1203 (p = p->next) != &start_mm->mmlist) {
1204 mm = list_entry(p, struct mm_struct, mmlist);
70af7c5c 1205 if (!atomic_inc_not_zero(&mm->mm_users))
1da177e4 1206 continue;
1da177e4
LT
1207 spin_unlock(&mmlist_lock);
1208 mmput(prev_mm);
1209 prev_mm = mm;
1210
1211 cond_resched();
1212
1213 swcount = *swap_map;
355cfa73 1214 if (!swap_count(swcount)) /* any usage ? */
1da177e4 1215 ;
aaa46865 1216 else if (mm == &init_mm)
1da177e4 1217 set_start_mm = 1;
aaa46865 1218 else
1da177e4 1219 retval = unuse_mm(mm, entry, page);
355cfa73 1220
32c5fc10 1221 if (set_start_mm && *swap_map < swcount) {
1da177e4
LT
1222 mmput(new_start_mm);
1223 atomic_inc(&mm->mm_users);
1224 new_start_mm = mm;
1225 set_start_mm = 0;
1226 }
1227 spin_lock(&mmlist_lock);
1228 }
1229 spin_unlock(&mmlist_lock);
1230 mmput(prev_mm);
1231 mmput(start_mm);
1232 start_mm = new_start_mm;
1233 }
1234 if (retval) {
1235 unlock_page(page);
1236 page_cache_release(page);
1237 break;
1238 }
1239
1da177e4
LT
1240 /*
1241 * If a reference remains (rare), we would like to leave
1242 * the page in the swap cache; but try_to_unmap could
1243 * then re-duplicate the entry once we drop page lock,
1244 * so we might loop indefinitely; also, that page could
1245 * not be swapped out to other storage meanwhile. So:
1246 * delete from cache even if there's another reference,
1247 * after ensuring that the data has been saved to disk -
1248 * since if the reference remains (rarer), it will be
1249 * read from disk into another page. Splitting into two
1250 * pages would be incorrect if swap supported "shared
1251 * private" pages, but they are handled by tmpfs files.
5ad64688
HD
1252 *
1253 * Given how unuse_vma() targets one particular offset
1254 * in an anon_vma, once the anon_vma has been determined,
1255 * this splitting happens to be just what is needed to
1256 * handle where KSM pages have been swapped out: re-reading
1257 * is unnecessarily slow, but we can fix that later on.
1da177e4 1258 */
355cfa73
KH
1259 if (swap_count(*swap_map) &&
1260 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
1261 struct writeback_control wbc = {
1262 .sync_mode = WB_SYNC_NONE,
1263 };
1264
1265 swap_writepage(page, &wbc);
1266 lock_page(page);
1267 wait_on_page_writeback(page);
1268 }
68bdc8d6
HD
1269
1270 /*
1271 * It is conceivable that a racing task removed this page from
1272 * swap cache just before we acquired the page lock at the top,
1273 * or while we dropped it in unuse_mm(). The page might even
1274 * be back in swap cache on another swap area: that we must not
1275 * delete, since it may not have been written out to swap yet.
1276 */
1277 if (PageSwapCache(page) &&
1278 likely(page_private(page) == entry.val))
2e0e26c7 1279 delete_from_swap_cache(page);
1da177e4
LT
1280
1281 /*
1282 * So we could skip searching mms once swap count went
1283 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 1284 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
1285 */
1286 SetPageDirty(page);
1287 unlock_page(page);
1288 page_cache_release(page);
1289
1290 /*
1291 * Make sure that we aren't completely killing
1292 * interactive performance.
1293 */
1294 cond_resched();
1295 }
1296
1297 mmput(start_mm);
1da177e4
LT
1298 return retval;
1299}
1300
1301/*
5d337b91
HD
1302 * After a successful try_to_unuse, if no swap is now in use, we know
1303 * we can empty the mmlist. swap_lock must be held on entry and exit.
1304 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
1305 * added to the mmlist just after page_duplicate - before would be racy.
1306 */
1307static void drain_mmlist(void)
1308{
1309 struct list_head *p, *next;
efa90a98 1310 unsigned int type;
1da177e4 1311
efa90a98
HD
1312 for (type = 0; type < nr_swapfiles; type++)
1313 if (swap_info[type]->inuse_pages)
1da177e4
LT
1314 return;
1315 spin_lock(&mmlist_lock);
1316 list_for_each_safe(p, next, &init_mm.mmlist)
1317 list_del_init(p);
1318 spin_unlock(&mmlist_lock);
1319}
1320
1321/*
1322 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
1323 * corresponds to page offset for the specified swap entry.
1324 * Note that the type of this function is sector_t, but it returns page offset
1325 * into the bdev, not sector offset.
1da177e4 1326 */
d4906e1a 1327static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 1328{
f29ad6a9
HD
1329 struct swap_info_struct *sis;
1330 struct swap_extent *start_se;
1331 struct swap_extent *se;
1332 pgoff_t offset;
1333
efa90a98 1334 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
1335 *bdev = sis->bdev;
1336
1337 offset = swp_offset(entry);
1338 start_se = sis->curr_swap_extent;
1339 se = start_se;
1da177e4
LT
1340
1341 for ( ; ; ) {
1342 struct list_head *lh;
1343
1344 if (se->start_page <= offset &&
1345 offset < (se->start_page + se->nr_pages)) {
1346 return se->start_block + (offset - se->start_page);
1347 }
11d31886 1348 lh = se->list.next;
1da177e4
LT
1349 se = list_entry(lh, struct swap_extent, list);
1350 sis->curr_swap_extent = se;
1351 BUG_ON(se == start_se); /* It *must* be present */
1352 }
1353}
1354
d4906e1a
LS
1355/*
1356 * Returns the page offset into bdev for the specified page's swap entry.
1357 */
1358sector_t map_swap_page(struct page *page, struct block_device **bdev)
1359{
1360 swp_entry_t entry;
1361 entry.val = page_private(page);
1362 return map_swap_entry(entry, bdev);
1363}
1364
1da177e4
LT
1365/*
1366 * Free all of a swapdev's extent information
1367 */
1368static void destroy_swap_extents(struct swap_info_struct *sis)
1369{
9625a5f2 1370 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
1371 struct swap_extent *se;
1372
9625a5f2 1373 se = list_entry(sis->first_swap_extent.list.next,
1da177e4
LT
1374 struct swap_extent, list);
1375 list_del(&se->list);
1376 kfree(se);
1377 }
1da177e4
LT
1378}
1379
1380/*
1381 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 1382 * extent list. The extent list is kept sorted in page order.
1da177e4 1383 *
11d31886 1384 * This function rather assumes that it is called in ascending page order.
1da177e4
LT
1385 */
1386static int
1387add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1388 unsigned long nr_pages, sector_t start_block)
1389{
1390 struct swap_extent *se;
1391 struct swap_extent *new_se;
1392 struct list_head *lh;
1393
9625a5f2
HD
1394 if (start_page == 0) {
1395 se = &sis->first_swap_extent;
1396 sis->curr_swap_extent = se;
1397 se->start_page = 0;
1398 se->nr_pages = nr_pages;
1399 se->start_block = start_block;
1400 return 1;
1401 } else {
1402 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 1403 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
1404 BUG_ON(se->start_page + se->nr_pages != start_page);
1405 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
1406 /* Merge it */
1407 se->nr_pages += nr_pages;
1408 return 0;
1409 }
1da177e4
LT
1410 }
1411
1412 /*
1413 * No merge. Insert a new extent, preserving ordering.
1414 */
1415 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1416 if (new_se == NULL)
1417 return -ENOMEM;
1418 new_se->start_page = start_page;
1419 new_se->nr_pages = nr_pages;
1420 new_se->start_block = start_block;
1421
9625a5f2 1422 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 1423 return 1;
1da177e4
LT
1424}
1425
1426/*
1427 * A `swap extent' is a simple thing which maps a contiguous range of pages
1428 * onto a contiguous range of disk blocks. An ordered list of swap extents
1429 * is built at swapon time and is then used at swap_writepage/swap_readpage
1430 * time for locating where on disk a page belongs.
1431 *
1432 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1433 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1434 * swap files identically.
1435 *
1436 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1437 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1438 * swapfiles are handled *identically* after swapon time.
1439 *
1440 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1441 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1442 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1443 * requirements, they are simply tossed out - we will never use those blocks
1444 * for swapping.
1445 *
b0d9bcd4 1446 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
1447 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1448 * which will scribble on the fs.
1449 *
1450 * The amount of disk space which a single swap extent represents varies.
1451 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1452 * extents in the list. To avoid much list walking, we cache the previous
1453 * search location in `curr_swap_extent', and start new searches from there.
1454 * This is extremely effective. The average number of iterations in
1455 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1456 */
53092a74 1457static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4
LT
1458{
1459 struct inode *inode;
1460 unsigned blocks_per_page;
1461 unsigned long page_no;
1462 unsigned blkbits;
1463 sector_t probe_block;
1464 sector_t last_block;
53092a74
HD
1465 sector_t lowest_block = -1;
1466 sector_t highest_block = 0;
1467 int nr_extents = 0;
1da177e4
LT
1468 int ret;
1469
1470 inode = sis->swap_file->f_mapping->host;
1471 if (S_ISBLK(inode->i_mode)) {
1472 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 1473 *span = sis->pages;
9625a5f2 1474 goto out;
1da177e4
LT
1475 }
1476
1477 blkbits = inode->i_blkbits;
1478 blocks_per_page = PAGE_SIZE >> blkbits;
1479
1480 /*
1481 * Map all the blocks into the extent list. This code doesn't try
1482 * to be very smart.
1483 */
1484 probe_block = 0;
1485 page_no = 0;
1486 last_block = i_size_read(inode) >> blkbits;
1487 while ((probe_block + blocks_per_page) <= last_block &&
1488 page_no < sis->max) {
1489 unsigned block_in_page;
1490 sector_t first_block;
1491
1492 first_block = bmap(inode, probe_block);
1493 if (first_block == 0)
1494 goto bad_bmap;
1495
1496 /*
1497 * It must be PAGE_SIZE aligned on-disk
1498 */
1499 if (first_block & (blocks_per_page - 1)) {
1500 probe_block++;
1501 goto reprobe;
1502 }
1503
1504 for (block_in_page = 1; block_in_page < blocks_per_page;
1505 block_in_page++) {
1506 sector_t block;
1507
1508 block = bmap(inode, probe_block + block_in_page);
1509 if (block == 0)
1510 goto bad_bmap;
1511 if (block != first_block + block_in_page) {
1512 /* Discontiguity */
1513 probe_block++;
1514 goto reprobe;
1515 }
1516 }
1517
53092a74
HD
1518 first_block >>= (PAGE_SHIFT - blkbits);
1519 if (page_no) { /* exclude the header page */
1520 if (first_block < lowest_block)
1521 lowest_block = first_block;
1522 if (first_block > highest_block)
1523 highest_block = first_block;
1524 }
1525
1da177e4
LT
1526 /*
1527 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1528 */
53092a74
HD
1529 ret = add_swap_extent(sis, page_no, 1, first_block);
1530 if (ret < 0)
1da177e4 1531 goto out;
53092a74 1532 nr_extents += ret;
1da177e4
LT
1533 page_no++;
1534 probe_block += blocks_per_page;
1535reprobe:
1536 continue;
1537 }
53092a74
HD
1538 ret = nr_extents;
1539 *span = 1 + highest_block - lowest_block;
1da177e4 1540 if (page_no == 0)
e2244ec2 1541 page_no = 1; /* force Empty message */
1da177e4 1542 sis->max = page_no;
e2244ec2 1543 sis->pages = page_no - 1;
1da177e4 1544 sis->highest_bit = page_no - 1;
9625a5f2
HD
1545out:
1546 return ret;
1da177e4
LT
1547bad_bmap:
1548 printk(KERN_ERR "swapon: swapfile has holes\n");
1549 ret = -EINVAL;
9625a5f2 1550 goto out;
1da177e4
LT
1551}
1552
c4ea37c2 1553SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 1554{
73c34b6a 1555 struct swap_info_struct *p = NULL;
8d69aaee 1556 unsigned char *swap_map;
1da177e4
LT
1557 struct file *swap_file, *victim;
1558 struct address_space *mapping;
1559 struct inode *inode;
73c34b6a 1560 char *pathname;
1da177e4
LT
1561 int i, type, prev;
1562 int err;
886bb7e9 1563
1da177e4
LT
1564 if (!capable(CAP_SYS_ADMIN))
1565 return -EPERM;
1566
1567 pathname = getname(specialfile);
1568 err = PTR_ERR(pathname);
1569 if (IS_ERR(pathname))
1570 goto out;
1571
1572 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1573 putname(pathname);
1574 err = PTR_ERR(victim);
1575 if (IS_ERR(victim))
1576 goto out;
1577
1578 mapping = victim->f_mapping;
1579 prev = -1;
5d337b91 1580 spin_lock(&swap_lock);
efa90a98
HD
1581 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1582 p = swap_info[type];
22c6f8fd 1583 if (p->flags & SWP_WRITEOK) {
1da177e4
LT
1584 if (p->swap_file->f_mapping == mapping)
1585 break;
1586 }
1587 prev = type;
1588 }
1589 if (type < 0) {
1590 err = -EINVAL;
5d337b91 1591 spin_unlock(&swap_lock);
1da177e4
LT
1592 goto out_dput;
1593 }
1594 if (!security_vm_enough_memory(p->pages))
1595 vm_unacct_memory(p->pages);
1596 else {
1597 err = -ENOMEM;
5d337b91 1598 spin_unlock(&swap_lock);
1da177e4
LT
1599 goto out_dput;
1600 }
efa90a98 1601 if (prev < 0)
1da177e4 1602 swap_list.head = p->next;
efa90a98
HD
1603 else
1604 swap_info[prev]->next = p->next;
1da177e4
LT
1605 if (type == swap_list.next) {
1606 /* just pick something that's safe... */
1607 swap_list.next = swap_list.head;
1608 }
78ecba08 1609 if (p->prio < 0) {
efa90a98
HD
1610 for (i = p->next; i >= 0; i = swap_info[i]->next)
1611 swap_info[i]->prio = p->prio--;
78ecba08
HD
1612 least_priority++;
1613 }
1da177e4
LT
1614 nr_swap_pages -= p->pages;
1615 total_swap_pages -= p->pages;
1616 p->flags &= ~SWP_WRITEOK;
5d337b91 1617 spin_unlock(&swap_lock);
fb4f88dc 1618
35451bee 1619 current->flags |= PF_OOM_ORIGIN;
1da177e4 1620 err = try_to_unuse(type);
35451bee 1621 current->flags &= ~PF_OOM_ORIGIN;
1da177e4 1622
1da177e4
LT
1623 if (err) {
1624 /* re-insert swap space back into swap_list */
5d337b91 1625 spin_lock(&swap_lock);
78ecba08
HD
1626 if (p->prio < 0)
1627 p->prio = --least_priority;
1628 prev = -1;
efa90a98
HD
1629 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1630 if (p->prio >= swap_info[i]->prio)
1da177e4 1631 break;
78ecba08
HD
1632 prev = i;
1633 }
1da177e4
LT
1634 p->next = i;
1635 if (prev < 0)
efa90a98 1636 swap_list.head = swap_list.next = type;
1da177e4 1637 else
efa90a98 1638 swap_info[prev]->next = type;
1da177e4
LT
1639 nr_swap_pages += p->pages;
1640 total_swap_pages += p->pages;
1641 p->flags |= SWP_WRITEOK;
5d337b91 1642 spin_unlock(&swap_lock);
1da177e4
LT
1643 goto out_dput;
1644 }
52b7efdb
HD
1645
1646 /* wait for any unplug function to finish */
1647 down_write(&swap_unplug_sem);
1648 up_write(&swap_unplug_sem);
1649
5d337b91 1650 destroy_swap_extents(p);
570a335b
HD
1651 if (p->flags & SWP_CONTINUED)
1652 free_swap_count_continuations(p);
1653
fc0abb14 1654 mutex_lock(&swapon_mutex);
5d337b91
HD
1655 spin_lock(&swap_lock);
1656 drain_mmlist();
1657
52b7efdb 1658 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
1659 p->highest_bit = 0; /* cuts scans short */
1660 while (p->flags >= SWP_SCANNING) {
5d337b91 1661 spin_unlock(&swap_lock);
13e4b57f 1662 schedule_timeout_uninterruptible(1);
5d337b91 1663 spin_lock(&swap_lock);
52b7efdb 1664 }
52b7efdb 1665
1da177e4
LT
1666 swap_file = p->swap_file;
1667 p->swap_file = NULL;
1668 p->max = 0;
1669 swap_map = p->swap_map;
1670 p->swap_map = NULL;
1671 p->flags = 0;
5d337b91 1672 spin_unlock(&swap_lock);
fc0abb14 1673 mutex_unlock(&swapon_mutex);
1da177e4 1674 vfree(swap_map);
27a7faa0
KH
1675 /* Destroy swap account informatin */
1676 swap_cgroup_swapoff(type);
1677
1da177e4
LT
1678 inode = mapping->host;
1679 if (S_ISBLK(inode->i_mode)) {
1680 struct block_device *bdev = I_BDEV(inode);
1681 set_blocksize(bdev, p->old_block_size);
e525fd89 1682 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 1683 } else {
1b1dcc1b 1684 mutex_lock(&inode->i_mutex);
1da177e4 1685 inode->i_flags &= ~S_SWAPFILE;
1b1dcc1b 1686 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1687 }
1688 filp_close(swap_file, NULL);
1689 err = 0;
66d7dd51
KS
1690 atomic_inc(&proc_poll_event);
1691 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
1692
1693out_dput:
1694 filp_close(victim, NULL);
1695out:
1696 return err;
1697}
1698
1699#ifdef CONFIG_PROC_FS
66d7dd51
KS
1700struct proc_swaps {
1701 struct seq_file seq;
1702 int event;
1703};
1704
1705static unsigned swaps_poll(struct file *file, poll_table *wait)
1706{
1707 struct proc_swaps *s = file->private_data;
1708
1709 poll_wait(file, &proc_poll_wait, wait);
1710
1711 if (s->event != atomic_read(&proc_poll_event)) {
1712 s->event = atomic_read(&proc_poll_event);
1713 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1714 }
1715
1716 return POLLIN | POLLRDNORM;
1717}
1718
1da177e4
LT
1719/* iterator */
1720static void *swap_start(struct seq_file *swap, loff_t *pos)
1721{
efa90a98
HD
1722 struct swap_info_struct *si;
1723 int type;
1da177e4
LT
1724 loff_t l = *pos;
1725
fc0abb14 1726 mutex_lock(&swapon_mutex);
1da177e4 1727
881e4aab
SS
1728 if (!l)
1729 return SEQ_START_TOKEN;
1730
efa90a98
HD
1731 for (type = 0; type < nr_swapfiles; type++) {
1732 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1733 si = swap_info[type];
1734 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 1735 continue;
881e4aab 1736 if (!--l)
efa90a98 1737 return si;
1da177e4
LT
1738 }
1739
1740 return NULL;
1741}
1742
1743static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1744{
efa90a98
HD
1745 struct swap_info_struct *si = v;
1746 int type;
1da177e4 1747
881e4aab 1748 if (v == SEQ_START_TOKEN)
efa90a98
HD
1749 type = 0;
1750 else
1751 type = si->type + 1;
881e4aab 1752
efa90a98
HD
1753 for (; type < nr_swapfiles; type++) {
1754 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1755 si = swap_info[type];
1756 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
1757 continue;
1758 ++*pos;
efa90a98 1759 return si;
1da177e4
LT
1760 }
1761
1762 return NULL;
1763}
1764
1765static void swap_stop(struct seq_file *swap, void *v)
1766{
fc0abb14 1767 mutex_unlock(&swapon_mutex);
1da177e4
LT
1768}
1769
1770static int swap_show(struct seq_file *swap, void *v)
1771{
efa90a98 1772 struct swap_info_struct *si = v;
1da177e4
LT
1773 struct file *file;
1774 int len;
1775
efa90a98 1776 if (si == SEQ_START_TOKEN) {
881e4aab
SS
1777 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1778 return 0;
1779 }
1da177e4 1780
efa90a98 1781 file = si->swap_file;
c32c2f63 1782 len = seq_path(swap, &file->f_path, " \t\n\\");
6eb396dc 1783 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9
HD
1784 len < 40 ? 40 - len : 1, " ",
1785 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1da177e4 1786 "partition" : "file\t",
efa90a98
HD
1787 si->pages << (PAGE_SHIFT - 10),
1788 si->inuse_pages << (PAGE_SHIFT - 10),
1789 si->prio);
1da177e4
LT
1790 return 0;
1791}
1792
15ad7cdc 1793static const struct seq_operations swaps_op = {
1da177e4
LT
1794 .start = swap_start,
1795 .next = swap_next,
1796 .stop = swap_stop,
1797 .show = swap_show
1798};
1799
1800static int swaps_open(struct inode *inode, struct file *file)
1801{
66d7dd51
KS
1802 struct proc_swaps *s;
1803 int ret;
1804
1805 s = kmalloc(sizeof(struct proc_swaps), GFP_KERNEL);
1806 if (!s)
1807 return -ENOMEM;
1808
1809 file->private_data = s;
1810
1811 ret = seq_open(file, &swaps_op);
1812 if (ret) {
1813 kfree(s);
1814 return ret;
1815 }
1816
1817 s->seq.private = s;
1818 s->event = atomic_read(&proc_poll_event);
1819 return ret;
1da177e4
LT
1820}
1821
15ad7cdc 1822static const struct file_operations proc_swaps_operations = {
1da177e4
LT
1823 .open = swaps_open,
1824 .read = seq_read,
1825 .llseek = seq_lseek,
1826 .release = seq_release,
66d7dd51 1827 .poll = swaps_poll,
1da177e4
LT
1828};
1829
1830static int __init procswaps_init(void)
1831{
3d71f86f 1832 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
1833 return 0;
1834}
1835__initcall(procswaps_init);
1836#endif /* CONFIG_PROC_FS */
1837
1796316a
JB
1838#ifdef MAX_SWAPFILES_CHECK
1839static int __init max_swapfiles_check(void)
1840{
1841 MAX_SWAPFILES_CHECK();
1842 return 0;
1843}
1844late_initcall(max_swapfiles_check);
1845#endif
1846
53cbb243 1847static struct swap_info_struct *alloc_swap_info(void)
1da177e4 1848{
73c34b6a 1849 struct swap_info_struct *p;
1da177e4 1850 unsigned int type;
efa90a98
HD
1851
1852 p = kzalloc(sizeof(*p), GFP_KERNEL);
1853 if (!p)
53cbb243 1854 return ERR_PTR(-ENOMEM);
efa90a98 1855
5d337b91 1856 spin_lock(&swap_lock);
efa90a98
HD
1857 for (type = 0; type < nr_swapfiles; type++) {
1858 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 1859 break;
efa90a98 1860 }
0697212a 1861 if (type >= MAX_SWAPFILES) {
5d337b91 1862 spin_unlock(&swap_lock);
efa90a98 1863 kfree(p);
730c0581 1864 return ERR_PTR(-EPERM);
1da177e4 1865 }
efa90a98
HD
1866 if (type >= nr_swapfiles) {
1867 p->type = type;
1868 swap_info[type] = p;
1869 /*
1870 * Write swap_info[type] before nr_swapfiles, in case a
1871 * racing procfs swap_start() or swap_next() is reading them.
1872 * (We never shrink nr_swapfiles, we never free this entry.)
1873 */
1874 smp_wmb();
1875 nr_swapfiles++;
1876 } else {
1877 kfree(p);
1878 p = swap_info[type];
1879 /*
1880 * Do not memset this entry: a racing procfs swap_next()
1881 * would be relying on p->type to remain valid.
1882 */
1883 }
9625a5f2 1884 INIT_LIST_HEAD(&p->first_swap_extent.list);
1da177e4 1885 p->flags = SWP_USED;
1da177e4 1886 p->next = -1;
5d337b91 1887 spin_unlock(&swap_lock);
efa90a98 1888
53cbb243 1889 return p;
53cbb243
CEB
1890}
1891
1892SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1893{
1894 struct swap_info_struct *p;
28b36bd7 1895 char *name;
53cbb243
CEB
1896 struct file *swap_file = NULL;
1897 struct address_space *mapping;
1898 int i, prev;
1899 int error;
1900 union swap_header *swap_header;
1901 unsigned int nr_good_pages;
1902 int nr_extents = 0;
1903 sector_t span;
1904 unsigned long maxpages;
1905 unsigned long swapfilepages;
1906 unsigned char *swap_map = NULL;
1907 struct page *page = NULL;
1908 struct inode *inode = NULL;
53cbb243
CEB
1909
1910 if (!capable(CAP_SYS_ADMIN))
1911 return -EPERM;
1912
1913 p = alloc_swap_info();
2542e513
CEB
1914 if (IS_ERR(p))
1915 return PTR_ERR(p);
53cbb243 1916
1da177e4 1917 name = getname(specialfile);
1da177e4 1918 if (IS_ERR(name)) {
7de7fb6b 1919 error = PTR_ERR(name);
1da177e4
LT
1920 name = NULL;
1921 goto bad_swap_2;
1922 }
1923 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 1924 if (IS_ERR(swap_file)) {
7de7fb6b 1925 error = PTR_ERR(swap_file);
1da177e4
LT
1926 swap_file = NULL;
1927 goto bad_swap_2;
1928 }
1929
1930 p->swap_file = swap_file;
1931 mapping = swap_file->f_mapping;
1932 inode = mapping->host;
1933
1da177e4 1934 for (i = 0; i < nr_swapfiles; i++) {
efa90a98 1935 struct swap_info_struct *q = swap_info[i];
1da177e4 1936
e8e6c2ec 1937 if (q == p || !q->swap_file)
1da177e4 1938 continue;
7de7fb6b
CEB
1939 if (mapping == q->swap_file->f_mapping) {
1940 error = -EBUSY;
1da177e4 1941 goto bad_swap;
7de7fb6b 1942 }
1da177e4
LT
1943 }
1944
1da177e4 1945 if (S_ISBLK(inode->i_mode)) {
f2090d2d
CEB
1946 p->bdev = bdgrab(I_BDEV(inode));
1947 error = blkdev_get(p->bdev,
1948 FMODE_READ | FMODE_WRITE | FMODE_EXCL,
e525fd89 1949 sys_swapon);
1da177e4 1950 if (error < 0) {
f2090d2d 1951 p->bdev = NULL;
f7b3a435 1952 error = -EINVAL;
1da177e4
LT
1953 goto bad_swap;
1954 }
f2090d2d
CEB
1955 p->old_block_size = block_size(p->bdev);
1956 error = set_blocksize(p->bdev, PAGE_SIZE);
1da177e4
LT
1957 if (error < 0)
1958 goto bad_swap;
b2725643 1959 p->flags |= SWP_BLKDEV;
1da177e4
LT
1960 } else if (S_ISREG(inode->i_mode)) {
1961 p->bdev = inode->i_sb->s_bdev;
1b1dcc1b 1962 mutex_lock(&inode->i_mutex);
1da177e4
LT
1963 if (IS_SWAPFILE(inode)) {
1964 error = -EBUSY;
1965 goto bad_swap;
1966 }
1967 } else {
7de7fb6b 1968 error = -EINVAL;
1da177e4
LT
1969 goto bad_swap;
1970 }
1971
73fd8748 1972 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1da177e4
LT
1973
1974 /*
1975 * Read the swap header.
1976 */
1977 if (!mapping->a_ops->readpage) {
1978 error = -EINVAL;
1979 goto bad_swap;
1980 }
090d2b18 1981 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
1982 if (IS_ERR(page)) {
1983 error = PTR_ERR(page);
1984 goto bad_swap;
1985 }
81e33971 1986 swap_header = kmap(page);
1da177e4 1987
81e33971 1988 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
e97a3111 1989 printk(KERN_ERR "Unable to find swap-space signature\n");
1da177e4
LT
1990 error = -EINVAL;
1991 goto bad_swap;
1992 }
886bb7e9 1993
81e33971
HD
1994 /* swap partition endianess hack... */
1995 if (swab32(swap_header->info.version) == 1) {
1996 swab32s(&swap_header->info.version);
1997 swab32s(&swap_header->info.last_page);
1998 swab32s(&swap_header->info.nr_badpages);
1999 for (i = 0; i < swap_header->info.nr_badpages; i++)
2000 swab32s(&swap_header->info.badpages[i]);
2001 }
2002 /* Check the swap header's sub-version */
2003 if (swap_header->info.version != 1) {
2004 printk(KERN_WARNING
2005 "Unable to handle swap header version %d\n",
2006 swap_header->info.version);
1da177e4
LT
2007 error = -EINVAL;
2008 goto bad_swap;
81e33971 2009 }
1da177e4 2010
81e33971
HD
2011 p->lowest_bit = 1;
2012 p->cluster_next = 1;
efa90a98 2013 p->cluster_nr = 0;
52b7efdb 2014
81e33971
HD
2015 /*
2016 * Find out how many pages are allowed for a single swap
2017 * device. There are two limiting factors: 1) the number of
2018 * bits for the swap offset in the swp_entry_t type and
2019 * 2) the number of bits in the a swap pte as defined by
2020 * the different architectures. In order to find the
2021 * largest possible bit mask a swap entry with swap type 0
2022 * and swap offset ~0UL is created, encoded to a swap pte,
2023 * decoded to a swp_entry_t again and finally the swap
2024 * offset is extracted. This will mask all the bits from
2025 * the initial ~0UL mask that can't be encoded in either
2026 * the swp_entry_t or the architecture definition of a
2027 * swap pte.
2028 */
2029 maxpages = swp_offset(pte_to_swp_entry(
ad2bd7e0
HD
2030 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2031 if (maxpages > swap_header->info.last_page) {
2032 maxpages = swap_header->info.last_page + 1;
2033 /* p->max is an unsigned int: don't overflow it */
2034 if ((unsigned int)maxpages == 0)
2035 maxpages = UINT_MAX;
2036 }
81e33971 2037 p->highest_bit = maxpages - 1;
1da177e4 2038
81e33971
HD
2039 error = -EINVAL;
2040 if (!maxpages)
2041 goto bad_swap;
2042 if (swapfilepages && maxpages > swapfilepages) {
2043 printk(KERN_WARNING
2044 "Swap area shorter than signature indicates\n");
2045 goto bad_swap;
2046 }
2047 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2048 goto bad_swap;
2049 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2050 goto bad_swap;
cd105df4 2051
81e33971 2052 /* OK, set up the swap map and apply the bad block list */
803d0c83 2053 swap_map = vzalloc(maxpages);
81e33971
HD
2054 if (!swap_map) {
2055 error = -ENOMEM;
2056 goto bad_swap;
2057 }
1da177e4 2058
ad2bd7e0
HD
2059 nr_good_pages = maxpages - 1; /* omit header page */
2060
81e33971 2061 for (i = 0; i < swap_header->info.nr_badpages; i++) {
ad2bd7e0
HD
2062 unsigned int page_nr = swap_header->info.badpages[i];
2063 if (page_nr == 0 || page_nr > swap_header->info.last_page) {
81e33971 2064 error = -EINVAL;
1da177e4 2065 goto bad_swap;
81e33971 2066 }
ad2bd7e0
HD
2067 if (page_nr < maxpages) {
2068 swap_map[page_nr] = SWAP_MAP_BAD;
2069 nr_good_pages--;
2070 }
1da177e4 2071 }
27a7faa0 2072
e8e6c2ec 2073 error = swap_cgroup_swapon(p->type, maxpages);
27a7faa0
KH
2074 if (error)
2075 goto bad_swap;
2076
e2244ec2 2077 if (nr_good_pages) {
78ecba08 2078 swap_map[0] = SWAP_MAP_BAD;
e2244ec2
HD
2079 p->max = maxpages;
2080 p->pages = nr_good_pages;
53092a74
HD
2081 nr_extents = setup_swap_extents(p, &span);
2082 if (nr_extents < 0) {
2083 error = nr_extents;
e2244ec2 2084 goto bad_swap;
53092a74 2085 }
e2244ec2
HD
2086 nr_good_pages = p->pages;
2087 }
1da177e4
LT
2088 if (!nr_good_pages) {
2089 printk(KERN_WARNING "Empty swap-file\n");
2090 error = -EINVAL;
2091 goto bad_swap;
2092 }
1da177e4 2093
3bd0f0c7
SJ
2094 if (p->bdev) {
2095 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2096 p->flags |= SWP_SOLIDSTATE;
2097 p->cluster_next = 1 + (random32() % p->highest_bit);
2098 }
33994466 2099 if (discard_swap(p) == 0 && (swap_flags & SWAP_FLAG_DISCARD))
3bd0f0c7 2100 p->flags |= SWP_DISCARDABLE;
20137a49 2101 }
6a6ba831 2102
fc0abb14 2103 mutex_lock(&swapon_mutex);
5d337b91 2104 spin_lock(&swap_lock);
78ecba08
HD
2105 if (swap_flags & SWAP_FLAG_PREFER)
2106 p->prio =
2107 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2108 else
2109 p->prio = --least_priority;
2110 p->swap_map = swap_map;
22c6f8fd 2111 p->flags |= SWP_WRITEOK;
1da177e4
LT
2112 nr_swap_pages += nr_good_pages;
2113 total_swap_pages += nr_good_pages;
53092a74 2114
6eb396dc 2115 printk(KERN_INFO "Adding %uk swap on %s. "
20137a49 2116 "Priority:%d extents:%d across:%lluk %s%s\n",
53092a74 2117 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
6a6ba831 2118 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
20137a49
HD
2119 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2120 (p->flags & SWP_DISCARDABLE) ? "D" : "");
1da177e4
LT
2121
2122 /* insert swap space into swap_list: */
2123 prev = -1;
efa90a98
HD
2124 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
2125 if (p->prio >= swap_info[i]->prio)
1da177e4 2126 break;
1da177e4
LT
2127 prev = i;
2128 }
2129 p->next = i;
efa90a98 2130 if (prev < 0)
e8e6c2ec 2131 swap_list.head = swap_list.next = p->type;
efa90a98 2132 else
e8e6c2ec 2133 swap_info[prev]->next = p->type;
5d337b91 2134 spin_unlock(&swap_lock);
fc0abb14 2135 mutex_unlock(&swapon_mutex);
66d7dd51
KS
2136 atomic_inc(&proc_poll_event);
2137 wake_up_interruptible(&proc_poll_wait);
2138
1da177e4
LT
2139 error = 0;
2140 goto out;
2141bad_swap:
f2090d2d
CEB
2142 if (S_ISBLK(inode->i_mode) && p->bdev) {
2143 set_blocksize(p->bdev, p->old_block_size);
2144 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2145 }
4cd3bb10 2146 destroy_swap_extents(p);
e8e6c2ec 2147 swap_cgroup_swapoff(p->type);
1da177e4 2148bad_swap_2:
5d337b91 2149 spin_lock(&swap_lock);
1da177e4 2150 p->swap_file = NULL;
1da177e4 2151 p->flags = 0;
5d337b91 2152 spin_unlock(&swap_lock);
1da177e4 2153 vfree(swap_map);
52c50567 2154 if (swap_file) {
83ef99be 2155 if (inode && S_ISREG(inode->i_mode))
52c50567 2156 mutex_unlock(&inode->i_mutex);
1da177e4 2157 filp_close(swap_file, NULL);
52c50567 2158 }
1da177e4
LT
2159out:
2160 if (page && !IS_ERR(page)) {
2161 kunmap(page);
2162 page_cache_release(page);
2163 }
2164 if (name)
2165 putname(name);
83ef99be 2166 if (inode && S_ISREG(inode->i_mode)) {
1da177e4
LT
2167 if (!error)
2168 inode->i_flags |= S_SWAPFILE;
1b1dcc1b 2169 mutex_unlock(&inode->i_mutex);
1da177e4
LT
2170 }
2171 return error;
2172}
2173
2174void si_swapinfo(struct sysinfo *val)
2175{
efa90a98 2176 unsigned int type;
1da177e4
LT
2177 unsigned long nr_to_be_unused = 0;
2178
5d337b91 2179 spin_lock(&swap_lock);
efa90a98
HD
2180 for (type = 0; type < nr_swapfiles; type++) {
2181 struct swap_info_struct *si = swap_info[type];
2182
2183 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2184 nr_to_be_unused += si->inuse_pages;
1da177e4
LT
2185 }
2186 val->freeswap = nr_swap_pages + nr_to_be_unused;
2187 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 2188 spin_unlock(&swap_lock);
1da177e4
LT
2189}
2190
2191/*
2192 * Verify that a swap entry is valid and increment its swap map count.
2193 *
355cfa73
KH
2194 * Returns error code in following case.
2195 * - success -> 0
2196 * - swp_entry is invalid -> EINVAL
2197 * - swp_entry is migration entry -> EINVAL
2198 * - swap-cache reference is requested but there is already one. -> EEXIST
2199 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 2200 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 2201 */
8d69aaee 2202static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 2203{
73c34b6a 2204 struct swap_info_struct *p;
1da177e4 2205 unsigned long offset, type;
8d69aaee
HD
2206 unsigned char count;
2207 unsigned char has_cache;
253d553b 2208 int err = -EINVAL;
1da177e4 2209
a7420aa5 2210 if (non_swap_entry(entry))
253d553b 2211 goto out;
0697212a 2212
1da177e4
LT
2213 type = swp_type(entry);
2214 if (type >= nr_swapfiles)
2215 goto bad_file;
efa90a98 2216 p = swap_info[type];
1da177e4
LT
2217 offset = swp_offset(entry);
2218
5d337b91 2219 spin_lock(&swap_lock);
355cfa73
KH
2220 if (unlikely(offset >= p->max))
2221 goto unlock_out;
2222
253d553b
HD
2223 count = p->swap_map[offset];
2224 has_cache = count & SWAP_HAS_CACHE;
2225 count &= ~SWAP_HAS_CACHE;
2226 err = 0;
355cfa73 2227
253d553b 2228 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
2229
2230 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
2231 if (!has_cache && count)
2232 has_cache = SWAP_HAS_CACHE;
2233 else if (has_cache) /* someone else added cache */
2234 err = -EEXIST;
2235 else /* no users remaining */
2236 err = -ENOENT;
355cfa73
KH
2237
2238 } else if (count || has_cache) {
253d553b 2239
570a335b
HD
2240 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2241 count += usage;
2242 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 2243 err = -EINVAL;
570a335b
HD
2244 else if (swap_count_continued(p, offset, count))
2245 count = COUNT_CONTINUED;
2246 else
2247 err = -ENOMEM;
355cfa73 2248 } else
253d553b
HD
2249 err = -ENOENT; /* unused swap entry */
2250
2251 p->swap_map[offset] = count | has_cache;
2252
355cfa73 2253unlock_out:
5d337b91 2254 spin_unlock(&swap_lock);
1da177e4 2255out:
253d553b 2256 return err;
1da177e4
LT
2257
2258bad_file:
2259 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2260 goto out;
2261}
253d553b 2262
aaa46865
HD
2263/*
2264 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2265 * (in which case its reference count is never incremented).
2266 */
2267void swap_shmem_alloc(swp_entry_t entry)
2268{
2269 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2270}
2271
355cfa73 2272/*
08259d58
HD
2273 * Increase reference count of swap entry by 1.
2274 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2275 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2276 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2277 * might occur if a page table entry has got corrupted.
355cfa73 2278 */
570a335b 2279int swap_duplicate(swp_entry_t entry)
355cfa73 2280{
570a335b
HD
2281 int err = 0;
2282
2283 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2284 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2285 return err;
355cfa73 2286}
1da177e4 2287
cb4b86ba 2288/*
355cfa73
KH
2289 * @entry: swap entry for which we allocate swap cache.
2290 *
73c34b6a 2291 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
2292 * This can return error codes. Returns 0 at success.
2293 * -EBUSY means there is a swap cache.
2294 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
2295 */
2296int swapcache_prepare(swp_entry_t entry)
2297{
253d553b 2298 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
2299}
2300
1da177e4 2301/*
5d337b91 2302 * swap_lock prevents swap_map being freed. Don't grab an extra
1da177e4
LT
2303 * reference on the swaphandle, it doesn't matter if it becomes unused.
2304 */
2305int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2306{
8952898b 2307 struct swap_info_struct *si;
3f9e7949 2308 int our_page_cluster = page_cluster;
8952898b
HD
2309 pgoff_t target, toff;
2310 pgoff_t base, end;
2311 int nr_pages = 0;
1da177e4 2312
3f9e7949 2313 if (!our_page_cluster) /* no readahead */
1da177e4 2314 return 0;
8952898b 2315
efa90a98 2316 si = swap_info[swp_type(entry)];
8952898b
HD
2317 target = swp_offset(entry);
2318 base = (target >> our_page_cluster) << our_page_cluster;
2319 end = base + (1 << our_page_cluster);
2320 if (!base) /* first page is swap header */
2321 base++;
1da177e4 2322
5d337b91 2323 spin_lock(&swap_lock);
8952898b
HD
2324 if (end > si->max) /* don't go beyond end of map */
2325 end = si->max;
2326
2327 /* Count contiguous allocated slots above our target */
2328 for (toff = target; ++toff < end; nr_pages++) {
2329 /* Don't read in free or bad pages */
2330 if (!si->swap_map[toff])
2331 break;
355cfa73 2332 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
1da177e4 2333 break;
8952898b
HD
2334 }
2335 /* Count contiguous allocated slots below our target */
2336 for (toff = target; --toff >= base; nr_pages++) {
1da177e4 2337 /* Don't read in free or bad pages */
8952898b 2338 if (!si->swap_map[toff])
1da177e4 2339 break;
355cfa73 2340 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
1da177e4 2341 break;
8952898b 2342 }
5d337b91 2343 spin_unlock(&swap_lock);
8952898b
HD
2344
2345 /*
2346 * Indicate starting offset, and return number of pages to get:
2347 * if only 1, say 0, since there's then no readahead to be done.
2348 */
2349 *offset = ++toff;
2350 return nr_pages? ++nr_pages: 0;
1da177e4 2351}
570a335b
HD
2352
2353/*
2354 * add_swap_count_continuation - called when a swap count is duplicated
2355 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2356 * page of the original vmalloc'ed swap_map, to hold the continuation count
2357 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2358 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2359 *
2360 * These continuation pages are seldom referenced: the common paths all work
2361 * on the original swap_map, only referring to a continuation page when the
2362 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2363 *
2364 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2365 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2366 * can be called after dropping locks.
2367 */
2368int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2369{
2370 struct swap_info_struct *si;
2371 struct page *head;
2372 struct page *page;
2373 struct page *list_page;
2374 pgoff_t offset;
2375 unsigned char count;
2376
2377 /*
2378 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2379 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2380 */
2381 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2382
2383 si = swap_info_get(entry);
2384 if (!si) {
2385 /*
2386 * An acceptable race has occurred since the failing
2387 * __swap_duplicate(): the swap entry has been freed,
2388 * perhaps even the whole swap_map cleared for swapoff.
2389 */
2390 goto outer;
2391 }
2392
2393 offset = swp_offset(entry);
2394 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2395
2396 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2397 /*
2398 * The higher the swap count, the more likely it is that tasks
2399 * will race to add swap count continuation: we need to avoid
2400 * over-provisioning.
2401 */
2402 goto out;
2403 }
2404
2405 if (!page) {
2406 spin_unlock(&swap_lock);
2407 return -ENOMEM;
2408 }
2409
2410 /*
2411 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2412 * no architecture is using highmem pages for kernel pagetables: so it
2413 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2414 */
2415 head = vmalloc_to_page(si->swap_map + offset);
2416 offset &= ~PAGE_MASK;
2417
2418 /*
2419 * Page allocation does not initialize the page's lru field,
2420 * but it does always reset its private field.
2421 */
2422 if (!page_private(head)) {
2423 BUG_ON(count & COUNT_CONTINUED);
2424 INIT_LIST_HEAD(&head->lru);
2425 set_page_private(head, SWP_CONTINUED);
2426 si->flags |= SWP_CONTINUED;
2427 }
2428
2429 list_for_each_entry(list_page, &head->lru, lru) {
2430 unsigned char *map;
2431
2432 /*
2433 * If the previous map said no continuation, but we've found
2434 * a continuation page, free our allocation and use this one.
2435 */
2436 if (!(count & COUNT_CONTINUED))
2437 goto out;
2438
2439 map = kmap_atomic(list_page, KM_USER0) + offset;
2440 count = *map;
2441 kunmap_atomic(map, KM_USER0);
2442
2443 /*
2444 * If this continuation count now has some space in it,
2445 * free our allocation and use this one.
2446 */
2447 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2448 goto out;
2449 }
2450
2451 list_add_tail(&page->lru, &head->lru);
2452 page = NULL; /* now it's attached, don't free it */
2453out:
2454 spin_unlock(&swap_lock);
2455outer:
2456 if (page)
2457 __free_page(page);
2458 return 0;
2459}
2460
2461/*
2462 * swap_count_continued - when the original swap_map count is incremented
2463 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2464 * into, carry if so, or else fail until a new continuation page is allocated;
2465 * when the original swap_map count is decremented from 0 with continuation,
2466 * borrow from the continuation and report whether it still holds more.
2467 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2468 */
2469static bool swap_count_continued(struct swap_info_struct *si,
2470 pgoff_t offset, unsigned char count)
2471{
2472 struct page *head;
2473 struct page *page;
2474 unsigned char *map;
2475
2476 head = vmalloc_to_page(si->swap_map + offset);
2477 if (page_private(head) != SWP_CONTINUED) {
2478 BUG_ON(count & COUNT_CONTINUED);
2479 return false; /* need to add count continuation */
2480 }
2481
2482 offset &= ~PAGE_MASK;
2483 page = list_entry(head->lru.next, struct page, lru);
2484 map = kmap_atomic(page, KM_USER0) + offset;
2485
2486 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2487 goto init_map; /* jump over SWAP_CONT_MAX checks */
2488
2489 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2490 /*
2491 * Think of how you add 1 to 999
2492 */
2493 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2494 kunmap_atomic(map, KM_USER0);
2495 page = list_entry(page->lru.next, struct page, lru);
2496 BUG_ON(page == head);
2497 map = kmap_atomic(page, KM_USER0) + offset;
2498 }
2499 if (*map == SWAP_CONT_MAX) {
2500 kunmap_atomic(map, KM_USER0);
2501 page = list_entry(page->lru.next, struct page, lru);
2502 if (page == head)
2503 return false; /* add count continuation */
2504 map = kmap_atomic(page, KM_USER0) + offset;
2505init_map: *map = 0; /* we didn't zero the page */
2506 }
2507 *map += 1;
2508 kunmap_atomic(map, KM_USER0);
2509 page = list_entry(page->lru.prev, struct page, lru);
2510 while (page != head) {
2511 map = kmap_atomic(page, KM_USER0) + offset;
2512 *map = COUNT_CONTINUED;
2513 kunmap_atomic(map, KM_USER0);
2514 page = list_entry(page->lru.prev, struct page, lru);
2515 }
2516 return true; /* incremented */
2517
2518 } else { /* decrementing */
2519 /*
2520 * Think of how you subtract 1 from 1000
2521 */
2522 BUG_ON(count != COUNT_CONTINUED);
2523 while (*map == COUNT_CONTINUED) {
2524 kunmap_atomic(map, KM_USER0);
2525 page = list_entry(page->lru.next, struct page, lru);
2526 BUG_ON(page == head);
2527 map = kmap_atomic(page, KM_USER0) + offset;
2528 }
2529 BUG_ON(*map == 0);
2530 *map -= 1;
2531 if (*map == 0)
2532 count = 0;
2533 kunmap_atomic(map, KM_USER0);
2534 page = list_entry(page->lru.prev, struct page, lru);
2535 while (page != head) {
2536 map = kmap_atomic(page, KM_USER0) + offset;
2537 *map = SWAP_CONT_MAX | count;
2538 count = COUNT_CONTINUED;
2539 kunmap_atomic(map, KM_USER0);
2540 page = list_entry(page->lru.prev, struct page, lru);
2541 }
2542 return count == COUNT_CONTINUED;
2543 }
2544}
2545
2546/*
2547 * free_swap_count_continuations - swapoff free all the continuation pages
2548 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2549 */
2550static void free_swap_count_continuations(struct swap_info_struct *si)
2551{
2552 pgoff_t offset;
2553
2554 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2555 struct page *head;
2556 head = vmalloc_to_page(si->swap_map + offset);
2557 if (page_private(head)) {
2558 struct list_head *this, *next;
2559 list_for_each_safe(this, next, &head->lru) {
2560 struct page *page;
2561 page = list_entry(this, struct page, lru);
2562 list_del(this);
2563 __free_page(page);
2564 }
2565 }
2566 }
2567}