]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/swapfile.c
mm/swapfile.c: explicitly show ssd/non-ssd is handled mutually exclusive
[mirror_ubuntu-hirsute-kernel.git] / mm / swapfile.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
1da177e4 9#include <linux/mm.h>
6e84f315 10#include <linux/sched/mm.h>
29930025 11#include <linux/sched/task.h>
1da177e4
LT
12#include <linux/hugetlb.h>
13#include <linux/mman.h>
14#include <linux/slab.h>
15#include <linux/kernel_stat.h>
16#include <linux/swap.h>
17#include <linux/vmalloc.h>
18#include <linux/pagemap.h>
19#include <linux/namei.h>
072441e2 20#include <linux/shmem_fs.h>
1da177e4 21#include <linux/blkdev.h>
20137a49 22#include <linux/random.h>
1da177e4
LT
23#include <linux/writeback.h>
24#include <linux/proc_fs.h>
25#include <linux/seq_file.h>
26#include <linux/init.h>
5ad64688 27#include <linux/ksm.h>
1da177e4
LT
28#include <linux/rmap.h>
29#include <linux/security.h>
30#include <linux/backing-dev.h>
fc0abb14 31#include <linux/mutex.h>
c59ede7b 32#include <linux/capability.h>
1da177e4 33#include <linux/syscalls.h>
8a9f3ccd 34#include <linux/memcontrol.h>
66d7dd51 35#include <linux/poll.h>
72788c38 36#include <linux/oom.h>
38b5faf4
DM
37#include <linux/frontswap.h>
38#include <linux/swapfile.h>
f981c595 39#include <linux/export.h>
67afa38e 40#include <linux/swap_slots.h>
155b5f88 41#include <linux/sort.h>
1da177e4
LT
42
43#include <asm/pgtable.h>
44#include <asm/tlbflush.h>
45#include <linux/swapops.h>
5d1ea48b 46#include <linux/swap_cgroup.h>
1da177e4 47
570a335b
HD
48static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49 unsigned char);
50static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 51static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 52
38b5faf4 53DEFINE_SPINLOCK(swap_lock);
7c363b8c 54static unsigned int nr_swapfiles;
ec8acf20 55atomic_long_t nr_swap_pages;
fb0fec50
CW
56/*
57 * Some modules use swappable objects and may try to swap them out under
58 * memory pressure (via the shrinker). Before doing so, they may wish to
59 * check to see if any swap space is available.
60 */
61EXPORT_SYMBOL_GPL(nr_swap_pages);
ec8acf20 62/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 63long total_swap_pages;
a2468cc9 64static int least_priority = -1;
1da177e4 65
1da177e4
LT
66static const char Bad_file[] = "Bad swap file entry ";
67static const char Unused_file[] = "Unused swap file entry ";
68static const char Bad_offset[] = "Bad swap offset entry ";
69static const char Unused_offset[] = "Unused swap offset entry ";
70
adfab836
DS
71/*
72 * all active swap_info_structs
73 * protected with swap_lock, and ordered by priority.
74 */
18ab4d4c
DS
75PLIST_HEAD(swap_active_head);
76
77/*
78 * all available (active, not full) swap_info_structs
79 * protected with swap_avail_lock, ordered by priority.
80 * This is used by get_swap_page() instead of swap_active_head
81 * because swap_active_head includes all swap_info_structs,
82 * but get_swap_page() doesn't need to look at full ones.
83 * This uses its own lock instead of swap_lock because when a
84 * swap_info_struct changes between not-full/full, it needs to
85 * add/remove itself to/from this list, but the swap_info_struct->lock
86 * is held and the locking order requires swap_lock to be taken
87 * before any swap_info_struct->lock.
88 */
bfc6b1ca 89static struct plist_head *swap_avail_heads;
18ab4d4c 90static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 91
38b5faf4 92struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 93
fc0abb14 94static DEFINE_MUTEX(swapon_mutex);
1da177e4 95
66d7dd51
KS
96static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
97/* Activity counter to indicate that a swapon or swapoff has occurred */
98static atomic_t proc_poll_event = ATOMIC_INIT(0);
99
81a0298b
HY
100atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101
c10d38cc
DJ
102static struct swap_info_struct *swap_type_to_swap_info(int type)
103{
104 if (type >= READ_ONCE(nr_swapfiles))
105 return NULL;
106
107 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */
108 return READ_ONCE(swap_info[type]);
109}
110
8d69aaee 111static inline unsigned char swap_count(unsigned char ent)
355cfa73 112{
955c97f0 113 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
355cfa73
KH
114}
115
bcd49e86
HY
116/* Reclaim the swap entry anyway if possible */
117#define TTRS_ANYWAY 0x1
118/*
119 * Reclaim the swap entry if there are no more mappings of the
120 * corresponding page
121 */
122#define TTRS_UNMAPPED 0x2
123/* Reclaim the swap entry if swap is getting full*/
124#define TTRS_FULL 0x4
125
efa90a98 126/* returns 1 if swap entry is freed */
bcd49e86
HY
127static int __try_to_reclaim_swap(struct swap_info_struct *si,
128 unsigned long offset, unsigned long flags)
c9e44410 129{
efa90a98 130 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
131 struct page *page;
132 int ret = 0;
133
bcd49e86 134 page = find_get_page(swap_address_space(entry), offset);
c9e44410
KH
135 if (!page)
136 return 0;
137 /*
bcd49e86
HY
138 * When this function is called from scan_swap_map_slots() and it's
139 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
140 * here. We have to use trylock for avoiding deadlock. This is a special
c9e44410
KH
141 * case and you should use try_to_free_swap() with explicit lock_page()
142 * in usual operations.
143 */
144 if (trylock_page(page)) {
bcd49e86
HY
145 if ((flags & TTRS_ANYWAY) ||
146 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
147 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
148 ret = try_to_free_swap(page);
c9e44410
KH
149 unlock_page(page);
150 }
09cbfeaf 151 put_page(page);
c9e44410
KH
152 return ret;
153}
355cfa73 154
4efaceb1
AL
155static inline struct swap_extent *first_se(struct swap_info_struct *sis)
156{
157 struct rb_node *rb = rb_first(&sis->swap_extent_root);
158 return rb_entry(rb, struct swap_extent, rb_node);
159}
160
161static inline struct swap_extent *next_se(struct swap_extent *se)
162{
163 struct rb_node *rb = rb_next(&se->rb_node);
164 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
165}
166
6a6ba831
HD
167/*
168 * swapon tell device that all the old swap contents can be discarded,
169 * to allow the swap device to optimize its wear-levelling.
170 */
171static int discard_swap(struct swap_info_struct *si)
172{
173 struct swap_extent *se;
9625a5f2
HD
174 sector_t start_block;
175 sector_t nr_blocks;
6a6ba831
HD
176 int err = 0;
177
9625a5f2 178 /* Do not discard the swap header page! */
4efaceb1 179 se = first_se(si);
9625a5f2
HD
180 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
181 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
182 if (nr_blocks) {
183 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 184 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
185 if (err)
186 return err;
187 cond_resched();
188 }
6a6ba831 189
4efaceb1 190 for (se = next_se(se); se; se = next_se(se)) {
9625a5f2
HD
191 start_block = se->start_block << (PAGE_SHIFT - 9);
192 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
193
194 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 195 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
196 if (err)
197 break;
198
199 cond_resched();
200 }
201 return err; /* That will often be -EOPNOTSUPP */
202}
203
4efaceb1
AL
204static struct swap_extent *
205offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
206{
207 struct swap_extent *se;
208 struct rb_node *rb;
209
210 rb = sis->swap_extent_root.rb_node;
211 while (rb) {
212 se = rb_entry(rb, struct swap_extent, rb_node);
213 if (offset < se->start_page)
214 rb = rb->rb_left;
215 else if (offset >= se->start_page + se->nr_pages)
216 rb = rb->rb_right;
217 else
218 return se;
219 }
220 /* It *must* be present */
221 BUG();
222}
223
7992fde7
HD
224/*
225 * swap allocation tell device that a cluster of swap can now be discarded,
226 * to allow the swap device to optimize its wear-levelling.
227 */
228static void discard_swap_cluster(struct swap_info_struct *si,
229 pgoff_t start_page, pgoff_t nr_pages)
230{
4efaceb1 231 struct swap_extent *se = offset_to_swap_extent(si, start_page);
7992fde7
HD
232
233 while (nr_pages) {
4efaceb1
AL
234 pgoff_t offset = start_page - se->start_page;
235 sector_t start_block = se->start_block + offset;
236 sector_t nr_blocks = se->nr_pages - offset;
237
238 if (nr_blocks > nr_pages)
239 nr_blocks = nr_pages;
240 start_page += nr_blocks;
241 nr_pages -= nr_blocks;
242
243 start_block <<= PAGE_SHIFT - 9;
244 nr_blocks <<= PAGE_SHIFT - 9;
245 if (blkdev_issue_discard(si->bdev, start_block,
246 nr_blocks, GFP_NOIO, 0))
247 break;
7992fde7 248
4efaceb1 249 se = next_se(se);
7992fde7
HD
250 }
251}
252
38d8b4e6
HY
253#ifdef CONFIG_THP_SWAP
254#define SWAPFILE_CLUSTER HPAGE_PMD_NR
a448f2d0
HY
255
256#define swap_entry_size(size) (size)
38d8b4e6 257#else
048c27fd 258#define SWAPFILE_CLUSTER 256
a448f2d0
HY
259
260/*
261 * Define swap_entry_size() as constant to let compiler to optimize
262 * out some code if !CONFIG_THP_SWAP
263 */
264#define swap_entry_size(size) 1
38d8b4e6 265#endif
048c27fd
HD
266#define LATENCY_LIMIT 256
267
2a8f9449
SL
268static inline void cluster_set_flag(struct swap_cluster_info *info,
269 unsigned int flag)
270{
271 info->flags = flag;
272}
273
274static inline unsigned int cluster_count(struct swap_cluster_info *info)
275{
276 return info->data;
277}
278
279static inline void cluster_set_count(struct swap_cluster_info *info,
280 unsigned int c)
281{
282 info->data = c;
283}
284
285static inline void cluster_set_count_flag(struct swap_cluster_info *info,
286 unsigned int c, unsigned int f)
287{
288 info->flags = f;
289 info->data = c;
290}
291
292static inline unsigned int cluster_next(struct swap_cluster_info *info)
293{
294 return info->data;
295}
296
297static inline void cluster_set_next(struct swap_cluster_info *info,
298 unsigned int n)
299{
300 info->data = n;
301}
302
303static inline void cluster_set_next_flag(struct swap_cluster_info *info,
304 unsigned int n, unsigned int f)
305{
306 info->flags = f;
307 info->data = n;
308}
309
310static inline bool cluster_is_free(struct swap_cluster_info *info)
311{
312 return info->flags & CLUSTER_FLAG_FREE;
313}
314
315static inline bool cluster_is_null(struct swap_cluster_info *info)
316{
317 return info->flags & CLUSTER_FLAG_NEXT_NULL;
318}
319
320static inline void cluster_set_null(struct swap_cluster_info *info)
321{
322 info->flags = CLUSTER_FLAG_NEXT_NULL;
323 info->data = 0;
324}
325
e0709829
HY
326static inline bool cluster_is_huge(struct swap_cluster_info *info)
327{
33ee011e
HY
328 if (IS_ENABLED(CONFIG_THP_SWAP))
329 return info->flags & CLUSTER_FLAG_HUGE;
330 return false;
e0709829
HY
331}
332
333static inline void cluster_clear_huge(struct swap_cluster_info *info)
334{
335 info->flags &= ~CLUSTER_FLAG_HUGE;
336}
337
235b6217
HY
338static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
339 unsigned long offset)
340{
341 struct swap_cluster_info *ci;
342
343 ci = si->cluster_info;
344 if (ci) {
345 ci += offset / SWAPFILE_CLUSTER;
346 spin_lock(&ci->lock);
347 }
348 return ci;
349}
350
351static inline void unlock_cluster(struct swap_cluster_info *ci)
352{
353 if (ci)
354 spin_unlock(&ci->lock);
355}
356
59d98bf3
HY
357/*
358 * Determine the locking method in use for this device. Return
359 * swap_cluster_info if SSD-style cluster-based locking is in place.
360 */
235b6217 361static inline struct swap_cluster_info *lock_cluster_or_swap_info(
59d98bf3 362 struct swap_info_struct *si, unsigned long offset)
235b6217
HY
363{
364 struct swap_cluster_info *ci;
365
59d98bf3 366 /* Try to use fine-grained SSD-style locking if available: */
235b6217 367 ci = lock_cluster(si, offset);
59d98bf3 368 /* Otherwise, fall back to traditional, coarse locking: */
235b6217
HY
369 if (!ci)
370 spin_lock(&si->lock);
371
372 return ci;
373}
374
375static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
376 struct swap_cluster_info *ci)
377{
378 if (ci)
379 unlock_cluster(ci);
380 else
381 spin_unlock(&si->lock);
382}
383
6b534915
HY
384static inline bool cluster_list_empty(struct swap_cluster_list *list)
385{
386 return cluster_is_null(&list->head);
387}
388
389static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
390{
391 return cluster_next(&list->head);
392}
393
394static void cluster_list_init(struct swap_cluster_list *list)
395{
396 cluster_set_null(&list->head);
397 cluster_set_null(&list->tail);
398}
399
400static void cluster_list_add_tail(struct swap_cluster_list *list,
401 struct swap_cluster_info *ci,
402 unsigned int idx)
403{
404 if (cluster_list_empty(list)) {
405 cluster_set_next_flag(&list->head, idx, 0);
406 cluster_set_next_flag(&list->tail, idx, 0);
407 } else {
235b6217 408 struct swap_cluster_info *ci_tail;
6b534915
HY
409 unsigned int tail = cluster_next(&list->tail);
410
235b6217
HY
411 /*
412 * Nested cluster lock, but both cluster locks are
413 * only acquired when we held swap_info_struct->lock
414 */
415 ci_tail = ci + tail;
416 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
417 cluster_set_next(ci_tail, idx);
0ef017d1 418 spin_unlock(&ci_tail->lock);
6b534915
HY
419 cluster_set_next_flag(&list->tail, idx, 0);
420 }
421}
422
423static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
424 struct swap_cluster_info *ci)
425{
426 unsigned int idx;
427
428 idx = cluster_next(&list->head);
429 if (cluster_next(&list->tail) == idx) {
430 cluster_set_null(&list->head);
431 cluster_set_null(&list->tail);
432 } else
433 cluster_set_next_flag(&list->head,
434 cluster_next(&ci[idx]), 0);
435
436 return idx;
437}
438
815c2c54
SL
439/* Add a cluster to discard list and schedule it to do discard */
440static void swap_cluster_schedule_discard(struct swap_info_struct *si,
441 unsigned int idx)
442{
443 /*
444 * If scan_swap_map() can't find a free cluster, it will check
445 * si->swap_map directly. To make sure the discarding cluster isn't
446 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
447 * will be cleared after discard
448 */
449 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
450 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
451
6b534915 452 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
815c2c54
SL
453
454 schedule_work(&si->discard_work);
455}
456
38d8b4e6
HY
457static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
458{
459 struct swap_cluster_info *ci = si->cluster_info;
460
461 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
462 cluster_list_add_tail(&si->free_clusters, ci, idx);
463}
464
815c2c54
SL
465/*
466 * Doing discard actually. After a cluster discard is finished, the cluster
467 * will be added to free cluster list. caller should hold si->lock.
468*/
469static void swap_do_scheduled_discard(struct swap_info_struct *si)
470{
235b6217 471 struct swap_cluster_info *info, *ci;
815c2c54
SL
472 unsigned int idx;
473
474 info = si->cluster_info;
475
6b534915
HY
476 while (!cluster_list_empty(&si->discard_clusters)) {
477 idx = cluster_list_del_first(&si->discard_clusters, info);
815c2c54
SL
478 spin_unlock(&si->lock);
479
480 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
481 SWAPFILE_CLUSTER);
482
483 spin_lock(&si->lock);
235b6217 484 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
38d8b4e6 485 __free_cluster(si, idx);
815c2c54
SL
486 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
487 0, SWAPFILE_CLUSTER);
235b6217 488 unlock_cluster(ci);
815c2c54
SL
489 }
490}
491
492static void swap_discard_work(struct work_struct *work)
493{
494 struct swap_info_struct *si;
495
496 si = container_of(work, struct swap_info_struct, discard_work);
497
498 spin_lock(&si->lock);
499 swap_do_scheduled_discard(si);
500 spin_unlock(&si->lock);
501}
502
38d8b4e6
HY
503static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
504{
505 struct swap_cluster_info *ci = si->cluster_info;
506
507 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
508 cluster_list_del_first(&si->free_clusters, ci);
509 cluster_set_count_flag(ci + idx, 0, 0);
510}
511
512static void free_cluster(struct swap_info_struct *si, unsigned long idx)
513{
514 struct swap_cluster_info *ci = si->cluster_info + idx;
515
516 VM_BUG_ON(cluster_count(ci) != 0);
517 /*
518 * If the swap is discardable, prepare discard the cluster
519 * instead of free it immediately. The cluster will be freed
520 * after discard.
521 */
522 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
523 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
524 swap_cluster_schedule_discard(si, idx);
525 return;
526 }
527
528 __free_cluster(si, idx);
529}
530
2a8f9449
SL
531/*
532 * The cluster corresponding to page_nr will be used. The cluster will be
533 * removed from free cluster list and its usage counter will be increased.
534 */
535static void inc_cluster_info_page(struct swap_info_struct *p,
536 struct swap_cluster_info *cluster_info, unsigned long page_nr)
537{
538 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
539
540 if (!cluster_info)
541 return;
38d8b4e6
HY
542 if (cluster_is_free(&cluster_info[idx]))
543 alloc_cluster(p, idx);
2a8f9449
SL
544
545 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
546 cluster_set_count(&cluster_info[idx],
547 cluster_count(&cluster_info[idx]) + 1);
548}
549
550/*
551 * The cluster corresponding to page_nr decreases one usage. If the usage
552 * counter becomes 0, which means no page in the cluster is in using, we can
553 * optionally discard the cluster and add it to free cluster list.
554 */
555static void dec_cluster_info_page(struct swap_info_struct *p,
556 struct swap_cluster_info *cluster_info, unsigned long page_nr)
557{
558 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
559
560 if (!cluster_info)
561 return;
562
563 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
564 cluster_set_count(&cluster_info[idx],
565 cluster_count(&cluster_info[idx]) - 1);
566
38d8b4e6
HY
567 if (cluster_count(&cluster_info[idx]) == 0)
568 free_cluster(p, idx);
2a8f9449
SL
569}
570
571/*
572 * It's possible scan_swap_map() uses a free cluster in the middle of free
573 * cluster list. Avoiding such abuse to avoid list corruption.
574 */
ebc2a1a6
SL
575static bool
576scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
577 unsigned long offset)
578{
ebc2a1a6
SL
579 struct percpu_cluster *percpu_cluster;
580 bool conflict;
581
2a8f9449 582 offset /= SWAPFILE_CLUSTER;
6b534915
HY
583 conflict = !cluster_list_empty(&si->free_clusters) &&
584 offset != cluster_list_first(&si->free_clusters) &&
2a8f9449 585 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
586
587 if (!conflict)
588 return false;
589
590 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
591 cluster_set_null(&percpu_cluster->index);
592 return true;
593}
594
595/*
596 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
597 * might involve allocating a new cluster for current CPU too.
598 */
36005bae 599static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
ebc2a1a6
SL
600 unsigned long *offset, unsigned long *scan_base)
601{
602 struct percpu_cluster *cluster;
235b6217 603 struct swap_cluster_info *ci;
ebc2a1a6 604 bool found_free;
235b6217 605 unsigned long tmp, max;
ebc2a1a6
SL
606
607new_cluster:
608 cluster = this_cpu_ptr(si->percpu_cluster);
609 if (cluster_is_null(&cluster->index)) {
6b534915
HY
610 if (!cluster_list_empty(&si->free_clusters)) {
611 cluster->index = si->free_clusters.head;
ebc2a1a6
SL
612 cluster->next = cluster_next(&cluster->index) *
613 SWAPFILE_CLUSTER;
6b534915 614 } else if (!cluster_list_empty(&si->discard_clusters)) {
ebc2a1a6
SL
615 /*
616 * we don't have free cluster but have some clusters in
617 * discarding, do discard now and reclaim them
618 */
619 swap_do_scheduled_discard(si);
620 *scan_base = *offset = si->cluster_next;
621 goto new_cluster;
622 } else
36005bae 623 return false;
ebc2a1a6
SL
624 }
625
626 found_free = false;
627
628 /*
629 * Other CPUs can use our cluster if they can't find a free cluster,
630 * check if there is still free entry in the cluster
631 */
632 tmp = cluster->next;
235b6217
HY
633 max = min_t(unsigned long, si->max,
634 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
635 if (tmp >= max) {
636 cluster_set_null(&cluster->index);
637 goto new_cluster;
638 }
639 ci = lock_cluster(si, tmp);
640 while (tmp < max) {
ebc2a1a6
SL
641 if (!si->swap_map[tmp]) {
642 found_free = true;
643 break;
644 }
645 tmp++;
646 }
235b6217 647 unlock_cluster(ci);
ebc2a1a6
SL
648 if (!found_free) {
649 cluster_set_null(&cluster->index);
650 goto new_cluster;
651 }
652 cluster->next = tmp + 1;
653 *offset = tmp;
654 *scan_base = tmp;
36005bae 655 return found_free;
2a8f9449
SL
656}
657
a2468cc9
AL
658static void __del_from_avail_list(struct swap_info_struct *p)
659{
660 int nid;
661
662 for_each_node(nid)
663 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
664}
665
666static void del_from_avail_list(struct swap_info_struct *p)
667{
668 spin_lock(&swap_avail_lock);
669 __del_from_avail_list(p);
670 spin_unlock(&swap_avail_lock);
671}
672
38d8b4e6
HY
673static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
674 unsigned int nr_entries)
675{
676 unsigned int end = offset + nr_entries - 1;
677
678 if (offset == si->lowest_bit)
679 si->lowest_bit += nr_entries;
680 if (end == si->highest_bit)
681 si->highest_bit -= nr_entries;
682 si->inuse_pages += nr_entries;
683 if (si->inuse_pages == si->pages) {
684 si->lowest_bit = si->max;
685 si->highest_bit = 0;
a2468cc9 686 del_from_avail_list(si);
38d8b4e6
HY
687 }
688}
689
a2468cc9
AL
690static void add_to_avail_list(struct swap_info_struct *p)
691{
692 int nid;
693
694 spin_lock(&swap_avail_lock);
695 for_each_node(nid) {
696 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
697 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
698 }
699 spin_unlock(&swap_avail_lock);
700}
701
38d8b4e6
HY
702static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
703 unsigned int nr_entries)
704{
705 unsigned long end = offset + nr_entries - 1;
706 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
707
708 if (offset < si->lowest_bit)
709 si->lowest_bit = offset;
710 if (end > si->highest_bit) {
711 bool was_full = !si->highest_bit;
712
713 si->highest_bit = end;
a2468cc9
AL
714 if (was_full && (si->flags & SWP_WRITEOK))
715 add_to_avail_list(si);
38d8b4e6
HY
716 }
717 atomic_long_add(nr_entries, &nr_swap_pages);
718 si->inuse_pages -= nr_entries;
719 if (si->flags & SWP_BLKDEV)
720 swap_slot_free_notify =
721 si->bdev->bd_disk->fops->swap_slot_free_notify;
722 else
723 swap_slot_free_notify = NULL;
724 while (offset <= end) {
725 frontswap_invalidate_page(si->type, offset);
726 if (swap_slot_free_notify)
727 swap_slot_free_notify(si->bdev, offset);
728 offset++;
729 }
730}
731
36005bae
TC
732static int scan_swap_map_slots(struct swap_info_struct *si,
733 unsigned char usage, int nr,
734 swp_entry_t slots[])
1da177e4 735{
235b6217 736 struct swap_cluster_info *ci;
ebebbbe9 737 unsigned long offset;
c60aa176 738 unsigned long scan_base;
7992fde7 739 unsigned long last_in_cluster = 0;
048c27fd 740 int latency_ration = LATENCY_LIMIT;
36005bae
TC
741 int n_ret = 0;
742
743 if (nr > SWAP_BATCH)
744 nr = SWAP_BATCH;
7dfad418 745
886bb7e9 746 /*
7dfad418
HD
747 * We try to cluster swap pages by allocating them sequentially
748 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
749 * way, however, we resort to first-free allocation, starting
750 * a new cluster. This prevents us from scattering swap pages
751 * all over the entire swap partition, so that we reduce
752 * overall disk seek times between swap pages. -- sct
753 * But we do now try to find an empty cluster. -Andrea
c60aa176 754 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
755 */
756
52b7efdb 757 si->flags += SWP_SCANNING;
c60aa176 758 scan_base = offset = si->cluster_next;
ebebbbe9 759
ebc2a1a6
SL
760 /* SSD algorithm */
761 if (si->cluster_info) {
36005bae
TC
762 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
763 goto checks;
764 else
765 goto scan;
f4eaf51a 766 } else if (unlikely(!si->cluster_nr--)) {
ebebbbe9
HD
767 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
768 si->cluster_nr = SWAPFILE_CLUSTER - 1;
769 goto checks;
770 }
2a8f9449 771
ec8acf20 772 spin_unlock(&si->lock);
7dfad418 773
c60aa176
HD
774 /*
775 * If seek is expensive, start searching for new cluster from
776 * start of partition, to minimize the span of allocated swap.
50088c44
CY
777 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
778 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 779 */
50088c44 780 scan_base = offset = si->lowest_bit;
7dfad418
HD
781 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
782
783 /* Locate the first empty (unaligned) cluster */
784 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 785 if (si->swap_map[offset])
7dfad418
HD
786 last_in_cluster = offset + SWAPFILE_CLUSTER;
787 else if (offset == last_in_cluster) {
ec8acf20 788 spin_lock(&si->lock);
ebebbbe9
HD
789 offset -= SWAPFILE_CLUSTER - 1;
790 si->cluster_next = offset;
791 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
792 goto checks;
793 }
794 if (unlikely(--latency_ration < 0)) {
795 cond_resched();
796 latency_ration = LATENCY_LIMIT;
797 }
798 }
799
800 offset = scan_base;
ec8acf20 801 spin_lock(&si->lock);
ebebbbe9 802 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 803 }
7dfad418 804
ebebbbe9 805checks:
ebc2a1a6 806 if (si->cluster_info) {
36005bae
TC
807 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
808 /* take a break if we already got some slots */
809 if (n_ret)
810 goto done;
811 if (!scan_swap_map_try_ssd_cluster(si, &offset,
812 &scan_base))
813 goto scan;
814 }
ebc2a1a6 815 }
ebebbbe9 816 if (!(si->flags & SWP_WRITEOK))
52b7efdb 817 goto no_page;
7dfad418
HD
818 if (!si->highest_bit)
819 goto no_page;
ebebbbe9 820 if (offset > si->highest_bit)
c60aa176 821 scan_base = offset = si->lowest_bit;
c9e44410 822
235b6217 823 ci = lock_cluster(si, offset);
b73d7fce
HD
824 /* reuse swap entry of cache-only swap if not busy. */
825 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 826 int swap_was_freed;
235b6217 827 unlock_cluster(ci);
ec8acf20 828 spin_unlock(&si->lock);
bcd49e86 829 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
ec8acf20 830 spin_lock(&si->lock);
c9e44410
KH
831 /* entry was freed successfully, try to use this again */
832 if (swap_was_freed)
833 goto checks;
834 goto scan; /* check next one */
835 }
836
235b6217
HY
837 if (si->swap_map[offset]) {
838 unlock_cluster(ci);
36005bae
TC
839 if (!n_ret)
840 goto scan;
841 else
842 goto done;
235b6217 843 }
2872bb2d
HY
844 si->swap_map[offset] = usage;
845 inc_cluster_info_page(si, si->cluster_info, offset);
846 unlock_cluster(ci);
ebebbbe9 847
38d8b4e6 848 swap_range_alloc(si, offset, 1);
ebebbbe9 849 si->cluster_next = offset + 1;
36005bae
TC
850 slots[n_ret++] = swp_entry(si->type, offset);
851
852 /* got enough slots or reach max slots? */
853 if ((n_ret == nr) || (offset >= si->highest_bit))
854 goto done;
855
856 /* search for next available slot */
857
858 /* time to take a break? */
859 if (unlikely(--latency_ration < 0)) {
860 if (n_ret)
861 goto done;
862 spin_unlock(&si->lock);
863 cond_resched();
864 spin_lock(&si->lock);
865 latency_ration = LATENCY_LIMIT;
866 }
867
868 /* try to get more slots in cluster */
869 if (si->cluster_info) {
870 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
871 goto checks;
872 else
873 goto done;
f4eaf51a
WY
874 } else if (si->cluster_nr && !si->swap_map[++offset]) {
875 /* non-ssd case, still more slots in cluster? */
36005bae
TC
876 --si->cluster_nr;
877 goto checks;
878 }
7992fde7 879
36005bae
TC
880done:
881 si->flags -= SWP_SCANNING;
882 return n_ret;
7dfad418 883
ebebbbe9 884scan:
ec8acf20 885 spin_unlock(&si->lock);
7dfad418 886 while (++offset <= si->highest_bit) {
52b7efdb 887 if (!si->swap_map[offset]) {
ec8acf20 888 spin_lock(&si->lock);
52b7efdb
HD
889 goto checks;
890 }
c9e44410 891 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 892 spin_lock(&si->lock);
c9e44410
KH
893 goto checks;
894 }
048c27fd
HD
895 if (unlikely(--latency_ration < 0)) {
896 cond_resched();
897 latency_ration = LATENCY_LIMIT;
898 }
7dfad418 899 }
c60aa176 900 offset = si->lowest_bit;
a5998061 901 while (offset < scan_base) {
c60aa176 902 if (!si->swap_map[offset]) {
ec8acf20 903 spin_lock(&si->lock);
c60aa176
HD
904 goto checks;
905 }
c9e44410 906 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 907 spin_lock(&si->lock);
c9e44410
KH
908 goto checks;
909 }
c60aa176
HD
910 if (unlikely(--latency_ration < 0)) {
911 cond_resched();
912 latency_ration = LATENCY_LIMIT;
913 }
a5998061 914 offset++;
c60aa176 915 }
ec8acf20 916 spin_lock(&si->lock);
7dfad418
HD
917
918no_page:
52b7efdb 919 si->flags -= SWP_SCANNING;
36005bae 920 return n_ret;
1da177e4
LT
921}
922
38d8b4e6
HY
923static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
924{
925 unsigned long idx;
926 struct swap_cluster_info *ci;
927 unsigned long offset, i;
928 unsigned char *map;
929
fe5266d5
HY
930 /*
931 * Should not even be attempting cluster allocations when huge
932 * page swap is disabled. Warn and fail the allocation.
933 */
934 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
935 VM_WARN_ON_ONCE(1);
936 return 0;
937 }
938
38d8b4e6
HY
939 if (cluster_list_empty(&si->free_clusters))
940 return 0;
941
942 idx = cluster_list_first(&si->free_clusters);
943 offset = idx * SWAPFILE_CLUSTER;
944 ci = lock_cluster(si, offset);
945 alloc_cluster(si, idx);
e0709829 946 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
38d8b4e6
HY
947
948 map = si->swap_map + offset;
949 for (i = 0; i < SWAPFILE_CLUSTER; i++)
950 map[i] = SWAP_HAS_CACHE;
951 unlock_cluster(ci);
952 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
953 *slot = swp_entry(si->type, offset);
954
955 return 1;
956}
957
958static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
959{
960 unsigned long offset = idx * SWAPFILE_CLUSTER;
961 struct swap_cluster_info *ci;
962
963 ci = lock_cluster(si, offset);
979aafa5 964 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
38d8b4e6
HY
965 cluster_set_count_flag(ci, 0, 0);
966 free_cluster(si, idx);
967 unlock_cluster(ci);
968 swap_range_free(si, offset, SWAPFILE_CLUSTER);
969}
38d8b4e6 970
36005bae
TC
971static unsigned long scan_swap_map(struct swap_info_struct *si,
972 unsigned char usage)
973{
974 swp_entry_t entry;
975 int n_ret;
976
977 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
978
979 if (n_ret)
980 return swp_offset(entry);
981 else
982 return 0;
983
984}
985
5d5e8f19 986int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1da177e4 987{
5d5e8f19 988 unsigned long size = swap_entry_size(entry_size);
adfab836 989 struct swap_info_struct *si, *next;
36005bae
TC
990 long avail_pgs;
991 int n_ret = 0;
a2468cc9 992 int node;
1da177e4 993
38d8b4e6 994 /* Only single cluster request supported */
5d5e8f19 995 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
38d8b4e6 996
5d5e8f19 997 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
36005bae 998 if (avail_pgs <= 0)
fb4f88dc 999 goto noswap;
36005bae
TC
1000
1001 if (n_goal > SWAP_BATCH)
1002 n_goal = SWAP_BATCH;
1003
1004 if (n_goal > avail_pgs)
1005 n_goal = avail_pgs;
1006
5d5e8f19 1007 atomic_long_sub(n_goal * size, &nr_swap_pages);
fb4f88dc 1008
18ab4d4c
DS
1009 spin_lock(&swap_avail_lock);
1010
1011start_over:
a2468cc9
AL
1012 node = numa_node_id();
1013 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
18ab4d4c 1014 /* requeue si to after same-priority siblings */
a2468cc9 1015 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
18ab4d4c 1016 spin_unlock(&swap_avail_lock);
ec8acf20 1017 spin_lock(&si->lock);
adfab836 1018 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c 1019 spin_lock(&swap_avail_lock);
a2468cc9 1020 if (plist_node_empty(&si->avail_lists[node])) {
18ab4d4c
DS
1021 spin_unlock(&si->lock);
1022 goto nextsi;
1023 }
1024 WARN(!si->highest_bit,
1025 "swap_info %d in list but !highest_bit\n",
1026 si->type);
1027 WARN(!(si->flags & SWP_WRITEOK),
1028 "swap_info %d in list but !SWP_WRITEOK\n",
1029 si->type);
a2468cc9 1030 __del_from_avail_list(si);
ec8acf20 1031 spin_unlock(&si->lock);
18ab4d4c 1032 goto nextsi;
ec8acf20 1033 }
5d5e8f19 1034 if (size == SWAPFILE_CLUSTER) {
bc4ae27d 1035 if (!(si->flags & SWP_FS))
f0eea189
HY
1036 n_ret = swap_alloc_cluster(si, swp_entries);
1037 } else
38d8b4e6
HY
1038 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1039 n_goal, swp_entries);
ec8acf20 1040 spin_unlock(&si->lock);
5d5e8f19 1041 if (n_ret || size == SWAPFILE_CLUSTER)
36005bae 1042 goto check_out;
18ab4d4c 1043 pr_debug("scan_swap_map of si %d failed to find offset\n",
36005bae
TC
1044 si->type);
1045
18ab4d4c
DS
1046 spin_lock(&swap_avail_lock);
1047nextsi:
adfab836
DS
1048 /*
1049 * if we got here, it's likely that si was almost full before,
1050 * and since scan_swap_map() can drop the si->lock, multiple
1051 * callers probably all tried to get a page from the same si
18ab4d4c
DS
1052 * and it filled up before we could get one; or, the si filled
1053 * up between us dropping swap_avail_lock and taking si->lock.
1054 * Since we dropped the swap_avail_lock, the swap_avail_head
1055 * list may have been modified; so if next is still in the
36005bae
TC
1056 * swap_avail_head list then try it, otherwise start over
1057 * if we have not gotten any slots.
adfab836 1058 */
a2468cc9 1059 if (plist_node_empty(&next->avail_lists[node]))
18ab4d4c 1060 goto start_over;
1da177e4 1061 }
fb4f88dc 1062
18ab4d4c
DS
1063 spin_unlock(&swap_avail_lock);
1064
36005bae
TC
1065check_out:
1066 if (n_ret < n_goal)
5d5e8f19 1067 atomic_long_add((long)(n_goal - n_ret) * size,
38d8b4e6 1068 &nr_swap_pages);
fb4f88dc 1069noswap:
36005bae
TC
1070 return n_ret;
1071}
1072
2de1a7e4 1073/* The only caller of this function is now suspend routine */
910321ea
HD
1074swp_entry_t get_swap_page_of_type(int type)
1075{
c10d38cc 1076 struct swap_info_struct *si = swap_type_to_swap_info(type);
910321ea
HD
1077 pgoff_t offset;
1078
c10d38cc
DJ
1079 if (!si)
1080 goto fail;
1081
ec8acf20 1082 spin_lock(&si->lock);
c10d38cc 1083 if (si->flags & SWP_WRITEOK) {
ec8acf20 1084 atomic_long_dec(&nr_swap_pages);
910321ea
HD
1085 /* This is called for allocating swap entry, not cache */
1086 offset = scan_swap_map(si, 1);
1087 if (offset) {
ec8acf20 1088 spin_unlock(&si->lock);
910321ea
HD
1089 return swp_entry(type, offset);
1090 }
ec8acf20 1091 atomic_long_inc(&nr_swap_pages);
910321ea 1092 }
ec8acf20 1093 spin_unlock(&si->lock);
c10d38cc 1094fail:
910321ea
HD
1095 return (swp_entry_t) {0};
1096}
1097
e8c26ab6 1098static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1da177e4 1099{
73c34b6a 1100 struct swap_info_struct *p;
eb085574 1101 unsigned long offset;
1da177e4
LT
1102
1103 if (!entry.val)
1104 goto out;
eb085574 1105 p = swp_swap_info(entry);
c10d38cc 1106 if (!p)
1da177e4 1107 goto bad_nofile;
1da177e4
LT
1108 if (!(p->flags & SWP_USED))
1109 goto bad_device;
1110 offset = swp_offset(entry);
1111 if (offset >= p->max)
1112 goto bad_offset;
1da177e4
LT
1113 return p;
1114
1da177e4 1115bad_offset:
6a991fc7 1116 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
1117 goto out;
1118bad_device:
6a991fc7 1119 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
1120 goto out;
1121bad_nofile:
6a991fc7 1122 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
1123out:
1124 return NULL;
886bb7e9 1125}
1da177e4 1126
e8c26ab6
TC
1127static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1128{
1129 struct swap_info_struct *p;
1130
1131 p = __swap_info_get(entry);
1132 if (!p)
1133 goto out;
1134 if (!p->swap_map[swp_offset(entry)])
1135 goto bad_free;
1136 return p;
1137
1138bad_free:
1139 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1140 goto out;
1141out:
1142 return NULL;
1143}
1144
235b6217
HY
1145static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1146{
1147 struct swap_info_struct *p;
1148
1149 p = _swap_info_get(entry);
1150 if (p)
1151 spin_lock(&p->lock);
1152 return p;
1153}
1154
7c00bafe
TC
1155static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1156 struct swap_info_struct *q)
1157{
1158 struct swap_info_struct *p;
1159
1160 p = _swap_info_get(entry);
1161
1162 if (p != q) {
1163 if (q != NULL)
1164 spin_unlock(&q->lock);
1165 if (p != NULL)
1166 spin_lock(&p->lock);
1167 }
1168 return p;
1169}
1170
b32d5f32
HY
1171static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1172 unsigned long offset,
1173 unsigned char usage)
1da177e4 1174{
8d69aaee
HD
1175 unsigned char count;
1176 unsigned char has_cache;
235b6217 1177
253d553b 1178 count = p->swap_map[offset];
235b6217 1179
253d553b
HD
1180 has_cache = count & SWAP_HAS_CACHE;
1181 count &= ~SWAP_HAS_CACHE;
355cfa73 1182
253d553b 1183 if (usage == SWAP_HAS_CACHE) {
355cfa73 1184 VM_BUG_ON(!has_cache);
253d553b 1185 has_cache = 0;
aaa46865
HD
1186 } else if (count == SWAP_MAP_SHMEM) {
1187 /*
1188 * Or we could insist on shmem.c using a special
1189 * swap_shmem_free() and free_shmem_swap_and_cache()...
1190 */
1191 count = 0;
570a335b
HD
1192 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1193 if (count == COUNT_CONTINUED) {
1194 if (swap_count_continued(p, offset, count))
1195 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1196 else
1197 count = SWAP_MAP_MAX;
1198 } else
1199 count--;
1200 }
253d553b 1201
253d553b 1202 usage = count | has_cache;
7c00bafe
TC
1203 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1204
b32d5f32
HY
1205 return usage;
1206}
1207
eb085574
HY
1208/*
1209 * Check whether swap entry is valid in the swap device. If so,
1210 * return pointer to swap_info_struct, and keep the swap entry valid
1211 * via preventing the swap device from being swapoff, until
1212 * put_swap_device() is called. Otherwise return NULL.
1213 *
1214 * The entirety of the RCU read critical section must come before the
1215 * return from or after the call to synchronize_rcu() in
1216 * enable_swap_info() or swapoff(). So if "si->flags & SWP_VALID" is
1217 * true, the si->map, si->cluster_info, etc. must be valid in the
1218 * critical section.
1219 *
1220 * Notice that swapoff or swapoff+swapon can still happen before the
1221 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1222 * in put_swap_device() if there isn't any other way to prevent
1223 * swapoff, such as page lock, page table lock, etc. The caller must
1224 * be prepared for that. For example, the following situation is
1225 * possible.
1226 *
1227 * CPU1 CPU2
1228 * do_swap_page()
1229 * ... swapoff+swapon
1230 * __read_swap_cache_async()
1231 * swapcache_prepare()
1232 * __swap_duplicate()
1233 * // check swap_map
1234 * // verify PTE not changed
1235 *
1236 * In __swap_duplicate(), the swap_map need to be checked before
1237 * changing partly because the specified swap entry may be for another
1238 * swap device which has been swapoff. And in do_swap_page(), after
1239 * the page is read from the swap device, the PTE is verified not
1240 * changed with the page table locked to check whether the swap device
1241 * has been swapoff or swapoff+swapon.
1242 */
1243struct swap_info_struct *get_swap_device(swp_entry_t entry)
1244{
1245 struct swap_info_struct *si;
1246 unsigned long offset;
1247
1248 if (!entry.val)
1249 goto out;
1250 si = swp_swap_info(entry);
1251 if (!si)
1252 goto bad_nofile;
1253
1254 rcu_read_lock();
1255 if (!(si->flags & SWP_VALID))
1256 goto unlock_out;
1257 offset = swp_offset(entry);
1258 if (offset >= si->max)
1259 goto unlock_out;
1260
1261 return si;
1262bad_nofile:
1263 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1264out:
1265 return NULL;
1266unlock_out:
1267 rcu_read_unlock();
1268 return NULL;
1269}
1270
b32d5f32
HY
1271static unsigned char __swap_entry_free(struct swap_info_struct *p,
1272 swp_entry_t entry, unsigned char usage)
1273{
1274 struct swap_cluster_info *ci;
1275 unsigned long offset = swp_offset(entry);
1276
1277 ci = lock_cluster_or_swap_info(p, offset);
1278 usage = __swap_entry_free_locked(p, offset, usage);
7c00bafe 1279 unlock_cluster_or_swap_info(p, ci);
10e364da
HY
1280 if (!usage)
1281 free_swap_slot(entry);
7c00bafe
TC
1282
1283 return usage;
1284}
355cfa73 1285
7c00bafe
TC
1286static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1287{
1288 struct swap_cluster_info *ci;
1289 unsigned long offset = swp_offset(entry);
1290 unsigned char count;
1291
1292 ci = lock_cluster(p, offset);
1293 count = p->swap_map[offset];
1294 VM_BUG_ON(count != SWAP_HAS_CACHE);
1295 p->swap_map[offset] = 0;
1296 dec_cluster_info_page(p, p->cluster_info, offset);
235b6217
HY
1297 unlock_cluster(ci);
1298
38d8b4e6
HY
1299 mem_cgroup_uncharge_swap(entry, 1);
1300 swap_range_free(p, offset, 1);
1da177e4
LT
1301}
1302
1303/*
2de1a7e4 1304 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
1305 * is still around or has not been recycled.
1306 */
1307void swap_free(swp_entry_t entry)
1308{
73c34b6a 1309 struct swap_info_struct *p;
1da177e4 1310
235b6217 1311 p = _swap_info_get(entry);
10e364da
HY
1312 if (p)
1313 __swap_entry_free(p, entry, 1);
1da177e4
LT
1314}
1315
cb4b86ba
KH
1316/*
1317 * Called after dropping swapcache to decrease refcnt to swap entries.
1318 */
a448f2d0 1319void put_swap_page(struct page *page, swp_entry_t entry)
38d8b4e6
HY
1320{
1321 unsigned long offset = swp_offset(entry);
1322 unsigned long idx = offset / SWAPFILE_CLUSTER;
1323 struct swap_cluster_info *ci;
1324 struct swap_info_struct *si;
1325 unsigned char *map;
a3aea839
HY
1326 unsigned int i, free_entries = 0;
1327 unsigned char val;
a448f2d0 1328 int size = swap_entry_size(hpage_nr_pages(page));
fe5266d5 1329
a3aea839 1330 si = _swap_info_get(entry);
38d8b4e6
HY
1331 if (!si)
1332 return;
1333
c2343d27 1334 ci = lock_cluster_or_swap_info(si, offset);
a448f2d0 1335 if (size == SWAPFILE_CLUSTER) {
a448f2d0
HY
1336 VM_BUG_ON(!cluster_is_huge(ci));
1337 map = si->swap_map + offset;
1338 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1339 val = map[i];
1340 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1341 if (val == SWAP_HAS_CACHE)
1342 free_entries++;
1343 }
a448f2d0 1344 cluster_clear_huge(ci);
a448f2d0 1345 if (free_entries == SWAPFILE_CLUSTER) {
c2343d27 1346 unlock_cluster_or_swap_info(si, ci);
a448f2d0 1347 spin_lock(&si->lock);
a448f2d0
HY
1348 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1349 swap_free_cluster(si, idx);
1350 spin_unlock(&si->lock);
1351 return;
1352 }
1353 }
c2343d27
HY
1354 for (i = 0; i < size; i++, entry.val++) {
1355 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1356 unlock_cluster_or_swap_info(si, ci);
1357 free_swap_slot(entry);
1358 if (i == size - 1)
1359 return;
1360 lock_cluster_or_swap_info(si, offset);
a3aea839
HY
1361 }
1362 }
c2343d27 1363 unlock_cluster_or_swap_info(si, ci);
38d8b4e6 1364}
59807685 1365
fe5266d5 1366#ifdef CONFIG_THP_SWAP
59807685
HY
1367int split_swap_cluster(swp_entry_t entry)
1368{
1369 struct swap_info_struct *si;
1370 struct swap_cluster_info *ci;
1371 unsigned long offset = swp_offset(entry);
1372
1373 si = _swap_info_get(entry);
1374 if (!si)
1375 return -EBUSY;
1376 ci = lock_cluster(si, offset);
1377 cluster_clear_huge(ci);
1378 unlock_cluster(ci);
1379 return 0;
1380}
fe5266d5 1381#endif
38d8b4e6 1382
155b5f88
HY
1383static int swp_entry_cmp(const void *ent1, const void *ent2)
1384{
1385 const swp_entry_t *e1 = ent1, *e2 = ent2;
1386
1387 return (int)swp_type(*e1) - (int)swp_type(*e2);
1388}
1389
7c00bafe
TC
1390void swapcache_free_entries(swp_entry_t *entries, int n)
1391{
1392 struct swap_info_struct *p, *prev;
1393 int i;
1394
1395 if (n <= 0)
1396 return;
1397
1398 prev = NULL;
1399 p = NULL;
155b5f88
HY
1400
1401 /*
1402 * Sort swap entries by swap device, so each lock is only taken once.
1403 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1404 * so low that it isn't necessary to optimize further.
1405 */
1406 if (nr_swapfiles > 1)
1407 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
7c00bafe
TC
1408 for (i = 0; i < n; ++i) {
1409 p = swap_info_get_cont(entries[i], prev);
1410 if (p)
1411 swap_entry_free(p, entries[i]);
7c00bafe
TC
1412 prev = p;
1413 }
235b6217 1414 if (p)
7c00bafe 1415 spin_unlock(&p->lock);
cb4b86ba
KH
1416}
1417
1da177e4 1418/*
c475a8ab 1419 * How many references to page are currently swapped out?
570a335b
HD
1420 * This does not give an exact answer when swap count is continued,
1421 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 1422 */
bde05d1c 1423int page_swapcount(struct page *page)
1da177e4 1424{
c475a8ab
HD
1425 int count = 0;
1426 struct swap_info_struct *p;
235b6217 1427 struct swap_cluster_info *ci;
1da177e4 1428 swp_entry_t entry;
235b6217 1429 unsigned long offset;
1da177e4 1430
4c21e2f2 1431 entry.val = page_private(page);
235b6217 1432 p = _swap_info_get(entry);
1da177e4 1433 if (p) {
235b6217
HY
1434 offset = swp_offset(entry);
1435 ci = lock_cluster_or_swap_info(p, offset);
1436 count = swap_count(p->swap_map[offset]);
1437 unlock_cluster_or_swap_info(p, ci);
1da177e4 1438 }
c475a8ab 1439 return count;
1da177e4
LT
1440}
1441
eb085574 1442int __swap_count(swp_entry_t entry)
aa8d22a1 1443{
eb085574 1444 struct swap_info_struct *si;
aa8d22a1 1445 pgoff_t offset = swp_offset(entry);
eb085574 1446 int count = 0;
aa8d22a1 1447
eb085574
HY
1448 si = get_swap_device(entry);
1449 if (si) {
1450 count = swap_count(si->swap_map[offset]);
1451 put_swap_device(si);
1452 }
1453 return count;
aa8d22a1
MK
1454}
1455
322b8afe
HY
1456static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1457{
1458 int count = 0;
1459 pgoff_t offset = swp_offset(entry);
1460 struct swap_cluster_info *ci;
1461
1462 ci = lock_cluster_or_swap_info(si, offset);
1463 count = swap_count(si->swap_map[offset]);
1464 unlock_cluster_or_swap_info(si, ci);
1465 return count;
1466}
1467
e8c26ab6
TC
1468/*
1469 * How many references to @entry are currently swapped out?
1470 * This does not give an exact answer when swap count is continued,
1471 * but does include the high COUNT_CONTINUED flag to allow for that.
1472 */
1473int __swp_swapcount(swp_entry_t entry)
1474{
1475 int count = 0;
e8c26ab6 1476 struct swap_info_struct *si;
e8c26ab6 1477
eb085574
HY
1478 si = get_swap_device(entry);
1479 if (si) {
322b8afe 1480 count = swap_swapcount(si, entry);
eb085574
HY
1481 put_swap_device(si);
1482 }
e8c26ab6
TC
1483 return count;
1484}
1485
8334b962
MK
1486/*
1487 * How many references to @entry are currently swapped out?
1488 * This considers COUNT_CONTINUED so it returns exact answer.
1489 */
1490int swp_swapcount(swp_entry_t entry)
1491{
1492 int count, tmp_count, n;
1493 struct swap_info_struct *p;
235b6217 1494 struct swap_cluster_info *ci;
8334b962
MK
1495 struct page *page;
1496 pgoff_t offset;
1497 unsigned char *map;
1498
235b6217 1499 p = _swap_info_get(entry);
8334b962
MK
1500 if (!p)
1501 return 0;
1502
235b6217
HY
1503 offset = swp_offset(entry);
1504
1505 ci = lock_cluster_or_swap_info(p, offset);
1506
1507 count = swap_count(p->swap_map[offset]);
8334b962
MK
1508 if (!(count & COUNT_CONTINUED))
1509 goto out;
1510
1511 count &= ~COUNT_CONTINUED;
1512 n = SWAP_MAP_MAX + 1;
1513
8334b962
MK
1514 page = vmalloc_to_page(p->swap_map + offset);
1515 offset &= ~PAGE_MASK;
1516 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1517
1518 do {
a8ae4991 1519 page = list_next_entry(page, lru);
8334b962
MK
1520 map = kmap_atomic(page);
1521 tmp_count = map[offset];
1522 kunmap_atomic(map);
1523
1524 count += (tmp_count & ~COUNT_CONTINUED) * n;
1525 n *= (SWAP_CONT_MAX + 1);
1526 } while (tmp_count & COUNT_CONTINUED);
1527out:
235b6217 1528 unlock_cluster_or_swap_info(p, ci);
8334b962
MK
1529 return count;
1530}
1531
e0709829
HY
1532static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1533 swp_entry_t entry)
1534{
1535 struct swap_cluster_info *ci;
1536 unsigned char *map = si->swap_map;
1537 unsigned long roffset = swp_offset(entry);
1538 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1539 int i;
1540 bool ret = false;
1541
1542 ci = lock_cluster_or_swap_info(si, offset);
1543 if (!ci || !cluster_is_huge(ci)) {
afa4711e 1544 if (swap_count(map[roffset]))
e0709829
HY
1545 ret = true;
1546 goto unlock_out;
1547 }
1548 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
afa4711e 1549 if (swap_count(map[offset + i])) {
e0709829
HY
1550 ret = true;
1551 break;
1552 }
1553 }
1554unlock_out:
1555 unlock_cluster_or_swap_info(si, ci);
1556 return ret;
1557}
1558
1559static bool page_swapped(struct page *page)
1560{
1561 swp_entry_t entry;
1562 struct swap_info_struct *si;
1563
fe5266d5 1564 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
e0709829
HY
1565 return page_swapcount(page) != 0;
1566
1567 page = compound_head(page);
1568 entry.val = page_private(page);
1569 si = _swap_info_get(entry);
1570 if (si)
1571 return swap_page_trans_huge_swapped(si, entry);
1572 return false;
1573}
ba3c4ce6
HY
1574
1575static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1576 int *total_swapcount)
1577{
1578 int i, map_swapcount, _total_mapcount, _total_swapcount;
1579 unsigned long offset = 0;
1580 struct swap_info_struct *si;
1581 struct swap_cluster_info *ci = NULL;
1582 unsigned char *map = NULL;
1583 int mapcount, swapcount = 0;
1584
1585 /* hugetlbfs shouldn't call it */
1586 VM_BUG_ON_PAGE(PageHuge(page), page);
1587
fe5266d5
HY
1588 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1589 mapcount = page_trans_huge_mapcount(page, total_mapcount);
ba3c4ce6
HY
1590 if (PageSwapCache(page))
1591 swapcount = page_swapcount(page);
1592 if (total_swapcount)
1593 *total_swapcount = swapcount;
1594 return mapcount + swapcount;
1595 }
1596
1597 page = compound_head(page);
1598
1599 _total_mapcount = _total_swapcount = map_swapcount = 0;
1600 if (PageSwapCache(page)) {
1601 swp_entry_t entry;
1602
1603 entry.val = page_private(page);
1604 si = _swap_info_get(entry);
1605 if (si) {
1606 map = si->swap_map;
1607 offset = swp_offset(entry);
1608 }
1609 }
1610 if (map)
1611 ci = lock_cluster(si, offset);
1612 for (i = 0; i < HPAGE_PMD_NR; i++) {
1613 mapcount = atomic_read(&page[i]._mapcount) + 1;
1614 _total_mapcount += mapcount;
1615 if (map) {
1616 swapcount = swap_count(map[offset + i]);
1617 _total_swapcount += swapcount;
1618 }
1619 map_swapcount = max(map_swapcount, mapcount + swapcount);
1620 }
1621 unlock_cluster(ci);
1622 if (PageDoubleMap(page)) {
1623 map_swapcount -= 1;
1624 _total_mapcount -= HPAGE_PMD_NR;
1625 }
1626 mapcount = compound_mapcount(page);
1627 map_swapcount += mapcount;
1628 _total_mapcount += mapcount;
1629 if (total_mapcount)
1630 *total_mapcount = _total_mapcount;
1631 if (total_swapcount)
1632 *total_swapcount = _total_swapcount;
1633
1634 return map_swapcount;
1635}
e0709829 1636
1da177e4 1637/*
7b1fe597
HD
1638 * We can write to an anon page without COW if there are no other references
1639 * to it. And as a side-effect, free up its swap: because the old content
1640 * on disk will never be read, and seeking back there to write new content
1641 * later would only waste time away from clustering.
6d0a07ed 1642 *
ba3c4ce6 1643 * NOTE: total_map_swapcount should not be relied upon by the caller if
6d0a07ed
AA
1644 * reuse_swap_page() returns false, but it may be always overwritten
1645 * (see the other implementation for CONFIG_SWAP=n).
1da177e4 1646 */
ba3c4ce6 1647bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1da177e4 1648{
ba3c4ce6 1649 int count, total_mapcount, total_swapcount;
c475a8ab 1650
309381fe 1651 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688 1652 if (unlikely(PageKsm(page)))
6d0a07ed 1653 return false;
ba3c4ce6
HY
1654 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1655 &total_swapcount);
1656 if (total_map_swapcount)
1657 *total_map_swapcount = total_mapcount + total_swapcount;
1658 if (count == 1 && PageSwapCache(page) &&
1659 (likely(!PageTransCompound(page)) ||
1660 /* The remaining swap count will be freed soon */
1661 total_swapcount == page_swapcount(page))) {
f0571429 1662 if (!PageWriteback(page)) {
ba3c4ce6 1663 page = compound_head(page);
7b1fe597
HD
1664 delete_from_swap_cache(page);
1665 SetPageDirty(page);
f0571429
MK
1666 } else {
1667 swp_entry_t entry;
1668 struct swap_info_struct *p;
1669
1670 entry.val = page_private(page);
1671 p = swap_info_get(entry);
1672 if (p->flags & SWP_STABLE_WRITES) {
1673 spin_unlock(&p->lock);
1674 return false;
1675 }
1676 spin_unlock(&p->lock);
7b1fe597
HD
1677 }
1678 }
ba3c4ce6 1679
5ad64688 1680 return count <= 1;
1da177e4
LT
1681}
1682
1683/*
a2c43eed
HD
1684 * If swap is getting full, or if there are no more mappings of this page,
1685 * then try_to_free_swap is called to free its swap space.
1da177e4 1686 */
a2c43eed 1687int try_to_free_swap(struct page *page)
1da177e4 1688{
309381fe 1689 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
1690
1691 if (!PageSwapCache(page))
1692 return 0;
1693 if (PageWriteback(page))
1694 return 0;
e0709829 1695 if (page_swapped(page))
1da177e4
LT
1696 return 0;
1697
b73d7fce
HD
1698 /*
1699 * Once hibernation has begun to create its image of memory,
1700 * there's a danger that one of the calls to try_to_free_swap()
1701 * - most probably a call from __try_to_reclaim_swap() while
1702 * hibernation is allocating its own swap pages for the image,
1703 * but conceivably even a call from memory reclaim - will free
1704 * the swap from a page which has already been recorded in the
1705 * image as a clean swapcache page, and then reuse its swap for
1706 * another page of the image. On waking from hibernation, the
1707 * original page might be freed under memory pressure, then
1708 * later read back in from swap, now with the wrong data.
1709 *
2de1a7e4 1710 * Hibernation suspends storage while it is writing the image
f90ac398 1711 * to disk so check that here.
b73d7fce 1712 */
f90ac398 1713 if (pm_suspended_storage())
b73d7fce
HD
1714 return 0;
1715
e0709829 1716 page = compound_head(page);
a2c43eed
HD
1717 delete_from_swap_cache(page);
1718 SetPageDirty(page);
1719 return 1;
68a22394
RR
1720}
1721
1da177e4
LT
1722/*
1723 * Free the swap entry like above, but also try to
1724 * free the page cache entry if it is the last user.
1725 */
2509ef26 1726int free_swap_and_cache(swp_entry_t entry)
1da177e4 1727{
2509ef26 1728 struct swap_info_struct *p;
7c00bafe 1729 unsigned char count;
1da177e4 1730
a7420aa5 1731 if (non_swap_entry(entry))
2509ef26 1732 return 1;
0697212a 1733
7c00bafe 1734 p = _swap_info_get(entry);
1da177e4 1735 if (p) {
7c00bafe 1736 count = __swap_entry_free(p, entry, 1);
e0709829 1737 if (count == SWAP_HAS_CACHE &&
bcd49e86
HY
1738 !swap_page_trans_huge_swapped(p, entry))
1739 __try_to_reclaim_swap(p, swp_offset(entry),
1740 TTRS_UNMAPPED | TTRS_FULL);
1da177e4 1741 }
2509ef26 1742 return p != NULL;
1da177e4
LT
1743}
1744
b0cb1a19 1745#ifdef CONFIG_HIBERNATION
f577eb30 1746/*
915bae9e 1747 * Find the swap type that corresponds to given device (if any).
f577eb30 1748 *
915bae9e
RW
1749 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1750 * from 0, in which the swap header is expected to be located.
1751 *
1752 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1753 */
7bf23687 1754int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 1755{
915bae9e 1756 struct block_device *bdev = NULL;
efa90a98 1757 int type;
f577eb30 1758
915bae9e
RW
1759 if (device)
1760 bdev = bdget(device);
1761
f577eb30 1762 spin_lock(&swap_lock);
efa90a98
HD
1763 for (type = 0; type < nr_swapfiles; type++) {
1764 struct swap_info_struct *sis = swap_info[type];
f577eb30 1765
915bae9e 1766 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1767 continue;
b6b5bce3 1768
915bae9e 1769 if (!bdev) {
7bf23687 1770 if (bdev_p)
dddac6a7 1771 *bdev_p = bdgrab(sis->bdev);
7bf23687 1772
6e1819d6 1773 spin_unlock(&swap_lock);
efa90a98 1774 return type;
6e1819d6 1775 }
915bae9e 1776 if (bdev == sis->bdev) {
4efaceb1 1777 struct swap_extent *se = first_se(sis);
915bae9e 1778
915bae9e 1779 if (se->start_block == offset) {
7bf23687 1780 if (bdev_p)
dddac6a7 1781 *bdev_p = bdgrab(sis->bdev);
7bf23687 1782
915bae9e
RW
1783 spin_unlock(&swap_lock);
1784 bdput(bdev);
efa90a98 1785 return type;
915bae9e 1786 }
f577eb30
RW
1787 }
1788 }
1789 spin_unlock(&swap_lock);
915bae9e
RW
1790 if (bdev)
1791 bdput(bdev);
1792
f577eb30
RW
1793 return -ENODEV;
1794}
1795
73c34b6a
HD
1796/*
1797 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1798 * corresponding to given index in swap_info (swap type).
1799 */
1800sector_t swapdev_block(int type, pgoff_t offset)
1801{
1802 struct block_device *bdev;
c10d38cc 1803 struct swap_info_struct *si = swap_type_to_swap_info(type);
73c34b6a 1804
c10d38cc 1805 if (!si || !(si->flags & SWP_WRITEOK))
73c34b6a 1806 return 0;
d4906e1a 1807 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
1808}
1809
f577eb30
RW
1810/*
1811 * Return either the total number of swap pages of given type, or the number
1812 * of free pages of that type (depending on @free)
1813 *
1814 * This is needed for software suspend
1815 */
1816unsigned int count_swap_pages(int type, int free)
1817{
1818 unsigned int n = 0;
1819
efa90a98
HD
1820 spin_lock(&swap_lock);
1821 if ((unsigned int)type < nr_swapfiles) {
1822 struct swap_info_struct *sis = swap_info[type];
1823
ec8acf20 1824 spin_lock(&sis->lock);
efa90a98
HD
1825 if (sis->flags & SWP_WRITEOK) {
1826 n = sis->pages;
f577eb30 1827 if (free)
efa90a98 1828 n -= sis->inuse_pages;
f577eb30 1829 }
ec8acf20 1830 spin_unlock(&sis->lock);
f577eb30 1831 }
efa90a98 1832 spin_unlock(&swap_lock);
f577eb30
RW
1833 return n;
1834}
73c34b6a 1835#endif /* CONFIG_HIBERNATION */
f577eb30 1836
9f8bdb3f 1837static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
179ef71c 1838{
9f8bdb3f 1839 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
179ef71c
CG
1840}
1841
1da177e4 1842/*
72866f6f
HD
1843 * No need to decide whether this PTE shares the swap entry with others,
1844 * just let do_wp_page work it out if a write is requested later - to
1845 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1846 */
044d66c1 1847static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1848 unsigned long addr, swp_entry_t entry, struct page *page)
1849{
9e16b7fb 1850 struct page *swapcache;
72835c86 1851 struct mem_cgroup *memcg;
044d66c1
HD
1852 spinlock_t *ptl;
1853 pte_t *pte;
1854 int ret = 1;
1855
9e16b7fb
HD
1856 swapcache = page;
1857 page = ksm_might_need_to_copy(page, vma, addr);
1858 if (unlikely(!page))
1859 return -ENOMEM;
1860
f627c2f5
KS
1861 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1862 &memcg, false)) {
044d66c1 1863 ret = -ENOMEM;
85d9fc89
KH
1864 goto out_nolock;
1865 }
044d66c1
HD
1866
1867 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
9f8bdb3f 1868 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
f627c2f5 1869 mem_cgroup_cancel_charge(page, memcg, false);
044d66c1
HD
1870 ret = 0;
1871 goto out;
1872 }
8a9f3ccd 1873
b084d435 1874 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1875 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1876 get_page(page);
1877 set_pte_at(vma->vm_mm, addr, pte,
1878 pte_mkold(mk_pte(page, vma->vm_page_prot)));
00501b53 1879 if (page == swapcache) {
d281ee61 1880 page_add_anon_rmap(page, vma, addr, false);
f627c2f5 1881 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1882 } else { /* ksm created a completely new copy */
d281ee61 1883 page_add_new_anon_rmap(page, vma, addr, false);
f627c2f5 1884 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
1885 lru_cache_add_active_or_unevictable(page, vma);
1886 }
1da177e4
LT
1887 swap_free(entry);
1888 /*
1889 * Move the page to the active list so it is not
1890 * immediately swapped out again after swapon.
1891 */
1892 activate_page(page);
044d66c1
HD
1893out:
1894 pte_unmap_unlock(pte, ptl);
85d9fc89 1895out_nolock:
9e16b7fb
HD
1896 if (page != swapcache) {
1897 unlock_page(page);
1898 put_page(page);
1899 }
044d66c1 1900 return ret;
1da177e4
LT
1901}
1902
1903static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
b56a2d8a
VRP
1904 unsigned long addr, unsigned long end,
1905 unsigned int type, bool frontswap,
1906 unsigned long *fs_pages_to_unuse)
1da177e4 1907{
b56a2d8a
VRP
1908 struct page *page;
1909 swp_entry_t entry;
705e87c0 1910 pte_t *pte;
b56a2d8a
VRP
1911 struct swap_info_struct *si;
1912 unsigned long offset;
8a9f3ccd 1913 int ret = 0;
b56a2d8a 1914 volatile unsigned char *swap_map;
1da177e4 1915
b56a2d8a 1916 si = swap_info[type];
044d66c1 1917 pte = pte_offset_map(pmd, addr);
1da177e4 1918 do {
b56a2d8a
VRP
1919 struct vm_fault vmf;
1920
1921 if (!is_swap_pte(*pte))
1922 continue;
1923
1924 entry = pte_to_swp_entry(*pte);
1925 if (swp_type(entry) != type)
1926 continue;
1927
1928 offset = swp_offset(entry);
1929 if (frontswap && !frontswap_test(si, offset))
1930 continue;
1931
1932 pte_unmap(pte);
1933 swap_map = &si->swap_map[offset];
ebc5951e
AR
1934 page = lookup_swap_cache(entry, vma, addr);
1935 if (!page) {
1936 vmf.vma = vma;
1937 vmf.address = addr;
1938 vmf.pmd = pmd;
1939 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1940 &vmf);
1941 }
b56a2d8a
VRP
1942 if (!page) {
1943 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1944 goto try_next;
1945 return -ENOMEM;
1946 }
1947
1948 lock_page(page);
1949 wait_on_page_writeback(page);
1950 ret = unuse_pte(vma, pmd, addr, entry, page);
1951 if (ret < 0) {
1952 unlock_page(page);
1953 put_page(page);
1954 goto out;
1955 }
1956
1957 try_to_free_swap(page);
1958 unlock_page(page);
1959 put_page(page);
1960
1961 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1962 ret = FRONTSWAP_PAGES_UNUSED;
1963 goto out;
1da177e4 1964 }
b56a2d8a
VRP
1965try_next:
1966 pte = pte_offset_map(pmd, addr);
1da177e4 1967 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1 1968 pte_unmap(pte - 1);
b56a2d8a
VRP
1969
1970 ret = 0;
044d66c1 1971out:
8a9f3ccd 1972 return ret;
1da177e4
LT
1973}
1974
1975static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1976 unsigned long addr, unsigned long end,
b56a2d8a
VRP
1977 unsigned int type, bool frontswap,
1978 unsigned long *fs_pages_to_unuse)
1da177e4
LT
1979{
1980 pmd_t *pmd;
1981 unsigned long next;
8a9f3ccd 1982 int ret;
1da177e4
LT
1983
1984 pmd = pmd_offset(pud, addr);
1985 do {
dc644a07 1986 cond_resched();
1da177e4 1987 next = pmd_addr_end(addr, end);
1a5a9906 1988 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 1989 continue;
b56a2d8a
VRP
1990 ret = unuse_pte_range(vma, pmd, addr, next, type,
1991 frontswap, fs_pages_to_unuse);
8a9f3ccd
BS
1992 if (ret)
1993 return ret;
1da177e4
LT
1994 } while (pmd++, addr = next, addr != end);
1995 return 0;
1996}
1997
c2febafc 1998static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1999 unsigned long addr, unsigned long end,
b56a2d8a
VRP
2000 unsigned int type, bool frontswap,
2001 unsigned long *fs_pages_to_unuse)
1da177e4
LT
2002{
2003 pud_t *pud;
2004 unsigned long next;
8a9f3ccd 2005 int ret;
1da177e4 2006
c2febafc 2007 pud = pud_offset(p4d, addr);
1da177e4
LT
2008 do {
2009 next = pud_addr_end(addr, end);
2010 if (pud_none_or_clear_bad(pud))
2011 continue;
b56a2d8a
VRP
2012 ret = unuse_pmd_range(vma, pud, addr, next, type,
2013 frontswap, fs_pages_to_unuse);
8a9f3ccd
BS
2014 if (ret)
2015 return ret;
1da177e4
LT
2016 } while (pud++, addr = next, addr != end);
2017 return 0;
2018}
2019
c2febafc
KS
2020static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2021 unsigned long addr, unsigned long end,
b56a2d8a
VRP
2022 unsigned int type, bool frontswap,
2023 unsigned long *fs_pages_to_unuse)
c2febafc
KS
2024{
2025 p4d_t *p4d;
2026 unsigned long next;
2027 int ret;
2028
2029 p4d = p4d_offset(pgd, addr);
2030 do {
2031 next = p4d_addr_end(addr, end);
2032 if (p4d_none_or_clear_bad(p4d))
2033 continue;
b56a2d8a
VRP
2034 ret = unuse_pud_range(vma, p4d, addr, next, type,
2035 frontswap, fs_pages_to_unuse);
c2febafc
KS
2036 if (ret)
2037 return ret;
2038 } while (p4d++, addr = next, addr != end);
2039 return 0;
2040}
2041
b56a2d8a
VRP
2042static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2043 bool frontswap, unsigned long *fs_pages_to_unuse)
1da177e4
LT
2044{
2045 pgd_t *pgd;
2046 unsigned long addr, end, next;
8a9f3ccd 2047 int ret;
1da177e4 2048
b56a2d8a
VRP
2049 addr = vma->vm_start;
2050 end = vma->vm_end;
1da177e4
LT
2051
2052 pgd = pgd_offset(vma->vm_mm, addr);
2053 do {
2054 next = pgd_addr_end(addr, end);
2055 if (pgd_none_or_clear_bad(pgd))
2056 continue;
b56a2d8a
VRP
2057 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2058 frontswap, fs_pages_to_unuse);
8a9f3ccd
BS
2059 if (ret)
2060 return ret;
1da177e4
LT
2061 } while (pgd++, addr = next, addr != end);
2062 return 0;
2063}
2064
b56a2d8a
VRP
2065static int unuse_mm(struct mm_struct *mm, unsigned int type,
2066 bool frontswap, unsigned long *fs_pages_to_unuse)
1da177e4
LT
2067{
2068 struct vm_area_struct *vma;
8a9f3ccd 2069 int ret = 0;
1da177e4 2070
b56a2d8a 2071 down_read(&mm->mmap_sem);
1da177e4 2072 for (vma = mm->mmap; vma; vma = vma->vm_next) {
b56a2d8a
VRP
2073 if (vma->anon_vma) {
2074 ret = unuse_vma(vma, type, frontswap,
2075 fs_pages_to_unuse);
2076 if (ret)
2077 break;
2078 }
dc644a07 2079 cond_resched();
1da177e4 2080 }
1da177e4 2081 up_read(&mm->mmap_sem);
b56a2d8a 2082 return ret;
1da177e4
LT
2083}
2084
2085/*
38b5faf4 2086 * Scan swap_map (or frontswap_map if frontswap parameter is true)
b56a2d8a
VRP
2087 * from current position to next entry still in use. Return 0
2088 * if there are no inuse entries after prev till end of the map.
1da177e4 2089 */
6eb396dc 2090static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 2091 unsigned int prev, bool frontswap)
1da177e4 2092{
b56a2d8a 2093 unsigned int i;
8d69aaee 2094 unsigned char count;
1da177e4
LT
2095
2096 /*
5d337b91 2097 * No need for swap_lock here: we're just looking
1da177e4
LT
2098 * for whether an entry is in use, not modifying it; false
2099 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 2100 * allocations from this area (while holding swap_lock).
1da177e4 2101 */
b56a2d8a 2102 for (i = prev + 1; i < si->max; i++) {
4db0c3c2 2103 count = READ_ONCE(si->swap_map[i]);
355cfa73 2104 if (count && swap_count(count) != SWAP_MAP_BAD)
dc644a07
HD
2105 if (!frontswap || frontswap_test(si, i))
2106 break;
2107 if ((i % LATENCY_LIMIT) == 0)
2108 cond_resched();
1da177e4 2109 }
b56a2d8a
VRP
2110
2111 if (i == si->max)
2112 i = 0;
2113
1da177e4
LT
2114 return i;
2115}
2116
2117/*
b56a2d8a 2118 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
38b5faf4 2119 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 2120 */
38b5faf4
DM
2121int try_to_unuse(unsigned int type, bool frontswap,
2122 unsigned long pages_to_unuse)
1da177e4 2123{
b56a2d8a
VRP
2124 struct mm_struct *prev_mm;
2125 struct mm_struct *mm;
2126 struct list_head *p;
2127 int retval = 0;
efa90a98 2128 struct swap_info_struct *si = swap_info[type];
1da177e4
LT
2129 struct page *page;
2130 swp_entry_t entry;
b56a2d8a 2131 unsigned int i;
1da177e4 2132
21820948 2133 if (!READ_ONCE(si->inuse_pages))
b56a2d8a 2134 return 0;
1da177e4 2135
b56a2d8a
VRP
2136 if (!frontswap)
2137 pages_to_unuse = 0;
2138
2139retry:
2140 retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2141 if (retval)
2142 goto out;
2143
2144 prev_mm = &init_mm;
2145 mmget(prev_mm);
2146
2147 spin_lock(&mmlist_lock);
2148 p = &init_mm.mmlist;
21820948 2149 while (READ_ONCE(si->inuse_pages) &&
64165b1a
HD
2150 !signal_pending(current) &&
2151 (p = p->next) != &init_mm.mmlist) {
1da177e4 2152
b56a2d8a
VRP
2153 mm = list_entry(p, struct mm_struct, mmlist);
2154 if (!mmget_not_zero(mm))
2155 continue;
2156 spin_unlock(&mmlist_lock);
2157 mmput(prev_mm);
2158 prev_mm = mm;
2159 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
1da177e4 2160
b56a2d8a
VRP
2161 if (retval) {
2162 mmput(prev_mm);
2163 goto out;
1da177e4
LT
2164 }
2165
2166 /*
b56a2d8a
VRP
2167 * Make sure that we aren't completely killing
2168 * interactive performance.
1da177e4 2169 */
b56a2d8a
VRP
2170 cond_resched();
2171 spin_lock(&mmlist_lock);
2172 }
2173 spin_unlock(&mmlist_lock);
1da177e4 2174
b56a2d8a 2175 mmput(prev_mm);
1da177e4 2176
b56a2d8a 2177 i = 0;
21820948 2178 while (READ_ONCE(si->inuse_pages) &&
64165b1a
HD
2179 !signal_pending(current) &&
2180 (i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4 2181
b56a2d8a
VRP
2182 entry = swp_entry(type, i);
2183 page = find_get_page(swap_address_space(entry), i);
2184 if (!page)
2185 continue;
68bdc8d6
HD
2186
2187 /*
2188 * It is conceivable that a racing task removed this page from
b56a2d8a
VRP
2189 * swap cache just before we acquired the page lock. The page
2190 * might even be back in swap cache on another swap area. But
2191 * that is okay, try_to_free_swap() only removes stale pages.
1da177e4 2192 */
b56a2d8a
VRP
2193 lock_page(page);
2194 wait_on_page_writeback(page);
2195 try_to_free_swap(page);
1da177e4 2196 unlock_page(page);
09cbfeaf 2197 put_page(page);
1da177e4
LT
2198
2199 /*
b56a2d8a
VRP
2200 * For frontswap, we just need to unuse pages_to_unuse, if
2201 * it was specified. Need not check frontswap again here as
2202 * we already zeroed out pages_to_unuse if not frontswap.
1da177e4 2203 */
b56a2d8a
VRP
2204 if (pages_to_unuse && --pages_to_unuse == 0)
2205 goto out;
1da177e4
LT
2206 }
2207
b56a2d8a
VRP
2208 /*
2209 * Lets check again to see if there are still swap entries in the map.
2210 * If yes, we would need to do retry the unuse logic again.
2211 * Under global memory pressure, swap entries can be reinserted back
2212 * into process space after the mmlist loop above passes over them.
dd862deb 2213 *
af53d3e9
HD
2214 * Limit the number of retries? No: when mmget_not_zero() above fails,
2215 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2216 * at its own independent pace; and even shmem_writepage() could have
2217 * been preempted after get_swap_page(), temporarily hiding that swap.
2218 * It's easy and robust (though cpu-intensive) just to keep retrying.
b56a2d8a 2219 */
21820948 2220 if (READ_ONCE(si->inuse_pages)) {
64165b1a
HD
2221 if (!signal_pending(current))
2222 goto retry;
2223 retval = -EINTR;
2224 }
b56a2d8a
VRP
2225out:
2226 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
1da177e4
LT
2227}
2228
2229/*
5d337b91
HD
2230 * After a successful try_to_unuse, if no swap is now in use, we know
2231 * we can empty the mmlist. swap_lock must be held on entry and exit.
2232 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
2233 * added to the mmlist just after page_duplicate - before would be racy.
2234 */
2235static void drain_mmlist(void)
2236{
2237 struct list_head *p, *next;
efa90a98 2238 unsigned int type;
1da177e4 2239
efa90a98
HD
2240 for (type = 0; type < nr_swapfiles; type++)
2241 if (swap_info[type]->inuse_pages)
1da177e4
LT
2242 return;
2243 spin_lock(&mmlist_lock);
2244 list_for_each_safe(p, next, &init_mm.mmlist)
2245 list_del_init(p);
2246 spin_unlock(&mmlist_lock);
2247}
2248
2249/*
2250 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
2251 * corresponds to page offset for the specified swap entry.
2252 * Note that the type of this function is sector_t, but it returns page offset
2253 * into the bdev, not sector offset.
1da177e4 2254 */
d4906e1a 2255static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 2256{
f29ad6a9 2257 struct swap_info_struct *sis;
f29ad6a9
HD
2258 struct swap_extent *se;
2259 pgoff_t offset;
2260
c10d38cc 2261 sis = swp_swap_info(entry);
f29ad6a9
HD
2262 *bdev = sis->bdev;
2263
2264 offset = swp_offset(entry);
4efaceb1
AL
2265 se = offset_to_swap_extent(sis, offset);
2266 return se->start_block + (offset - se->start_page);
1da177e4
LT
2267}
2268
d4906e1a
LS
2269/*
2270 * Returns the page offset into bdev for the specified page's swap entry.
2271 */
2272sector_t map_swap_page(struct page *page, struct block_device **bdev)
2273{
2274 swp_entry_t entry;
2275 entry.val = page_private(page);
2276 return map_swap_entry(entry, bdev);
2277}
2278
1da177e4
LT
2279/*
2280 * Free all of a swapdev's extent information
2281 */
2282static void destroy_swap_extents(struct swap_info_struct *sis)
2283{
4efaceb1
AL
2284 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2285 struct rb_node *rb = sis->swap_extent_root.rb_node;
2286 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
1da177e4 2287
4efaceb1 2288 rb_erase(rb, &sis->swap_extent_root);
1da177e4
LT
2289 kfree(se);
2290 }
62c230bc 2291
bc4ae27d 2292 if (sis->flags & SWP_ACTIVATED) {
62c230bc
MG
2293 struct file *swap_file = sis->swap_file;
2294 struct address_space *mapping = swap_file->f_mapping;
2295
bc4ae27d
OS
2296 sis->flags &= ~SWP_ACTIVATED;
2297 if (mapping->a_ops->swap_deactivate)
2298 mapping->a_ops->swap_deactivate(swap_file);
62c230bc 2299 }
1da177e4
LT
2300}
2301
2302/*
2303 * Add a block range (and the corresponding page range) into this swapdev's
4efaceb1 2304 * extent tree.
1da177e4 2305 *
11d31886 2306 * This function rather assumes that it is called in ascending page order.
1da177e4 2307 */
a509bc1a 2308int
1da177e4
LT
2309add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2310 unsigned long nr_pages, sector_t start_block)
2311{
4efaceb1 2312 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
1da177e4
LT
2313 struct swap_extent *se;
2314 struct swap_extent *new_se;
4efaceb1
AL
2315
2316 /*
2317 * place the new node at the right most since the
2318 * function is called in ascending page order.
2319 */
2320 while (*link) {
2321 parent = *link;
2322 link = &parent->rb_right;
2323 }
2324
2325 if (parent) {
2326 se = rb_entry(parent, struct swap_extent, rb_node);
11d31886
HD
2327 BUG_ON(se->start_page + se->nr_pages != start_page);
2328 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
2329 /* Merge it */
2330 se->nr_pages += nr_pages;
2331 return 0;
2332 }
1da177e4
LT
2333 }
2334
4efaceb1 2335 /* No merge, insert a new extent. */
1da177e4
LT
2336 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2337 if (new_se == NULL)
2338 return -ENOMEM;
2339 new_se->start_page = start_page;
2340 new_se->nr_pages = nr_pages;
2341 new_se->start_block = start_block;
2342
4efaceb1
AL
2343 rb_link_node(&new_se->rb_node, parent, link);
2344 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
53092a74 2345 return 1;
1da177e4 2346}
aa8aa8a3 2347EXPORT_SYMBOL_GPL(add_swap_extent);
1da177e4
LT
2348
2349/*
2350 * A `swap extent' is a simple thing which maps a contiguous range of pages
2351 * onto a contiguous range of disk blocks. An ordered list of swap extents
2352 * is built at swapon time and is then used at swap_writepage/swap_readpage
2353 * time for locating where on disk a page belongs.
2354 *
2355 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2356 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2357 * swap files identically.
2358 *
2359 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2360 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2361 * swapfiles are handled *identically* after swapon time.
2362 *
2363 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2364 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2365 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2366 * requirements, they are simply tossed out - we will never use those blocks
2367 * for swapping.
2368 *
1638045c
DW
2369 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2370 * prevents users from writing to the swap device, which will corrupt memory.
1da177e4
LT
2371 *
2372 * The amount of disk space which a single swap extent represents varies.
2373 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2374 * extents in the list. To avoid much list walking, we cache the previous
2375 * search location in `curr_swap_extent', and start new searches from there.
2376 * This is extremely effective. The average number of iterations in
2377 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2378 */
53092a74 2379static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 2380{
62c230bc
MG
2381 struct file *swap_file = sis->swap_file;
2382 struct address_space *mapping = swap_file->f_mapping;
2383 struct inode *inode = mapping->host;
1da177e4
LT
2384 int ret;
2385
1da177e4
LT
2386 if (S_ISBLK(inode->i_mode)) {
2387 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 2388 *span = sis->pages;
a509bc1a 2389 return ret;
1da177e4
LT
2390 }
2391
62c230bc 2392 if (mapping->a_ops->swap_activate) {
a509bc1a 2393 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
bc4ae27d
OS
2394 if (ret >= 0)
2395 sis->flags |= SWP_ACTIVATED;
62c230bc 2396 if (!ret) {
bc4ae27d 2397 sis->flags |= SWP_FS;
62c230bc
MG
2398 ret = add_swap_extent(sis, 0, sis->max, 0);
2399 *span = sis->pages;
2400 }
a509bc1a 2401 return ret;
62c230bc
MG
2402 }
2403
a509bc1a 2404 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
2405}
2406
a2468cc9
AL
2407static int swap_node(struct swap_info_struct *p)
2408{
2409 struct block_device *bdev;
2410
2411 if (p->bdev)
2412 bdev = p->bdev;
2413 else
2414 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2415
2416 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2417}
2418
eb085574
HY
2419static void setup_swap_info(struct swap_info_struct *p, int prio,
2420 unsigned char *swap_map,
2421 struct swap_cluster_info *cluster_info)
40531542 2422{
a2468cc9
AL
2423 int i;
2424
40531542
CEB
2425 if (prio >= 0)
2426 p->prio = prio;
2427 else
2428 p->prio = --least_priority;
18ab4d4c
DS
2429 /*
2430 * the plist prio is negated because plist ordering is
2431 * low-to-high, while swap ordering is high-to-low
2432 */
2433 p->list.prio = -p->prio;
a2468cc9
AL
2434 for_each_node(i) {
2435 if (p->prio >= 0)
2436 p->avail_lists[i].prio = -p->prio;
2437 else {
2438 if (swap_node(p) == i)
2439 p->avail_lists[i].prio = 1;
2440 else
2441 p->avail_lists[i].prio = -p->prio;
2442 }
2443 }
40531542 2444 p->swap_map = swap_map;
2a8f9449 2445 p->cluster_info = cluster_info;
eb085574
HY
2446}
2447
2448static void _enable_swap_info(struct swap_info_struct *p)
2449{
2450 p->flags |= SWP_WRITEOK | SWP_VALID;
ec8acf20 2451 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
2452 total_swap_pages += p->pages;
2453
adfab836 2454 assert_spin_locked(&swap_lock);
adfab836 2455 /*
18ab4d4c
DS
2456 * both lists are plists, and thus priority ordered.
2457 * swap_active_head needs to be priority ordered for swapoff(),
2458 * which on removal of any swap_info_struct with an auto-assigned
2459 * (i.e. negative) priority increments the auto-assigned priority
2460 * of any lower-priority swap_info_structs.
2461 * swap_avail_head needs to be priority ordered for get_swap_page(),
2462 * which allocates swap pages from the highest available priority
2463 * swap_info_struct.
adfab836 2464 */
18ab4d4c 2465 plist_add(&p->list, &swap_active_head);
a2468cc9 2466 add_to_avail_list(p);
cf0cac0a
CEB
2467}
2468
2469static void enable_swap_info(struct swap_info_struct *p, int prio,
2470 unsigned char *swap_map,
2a8f9449 2471 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
2472 unsigned long *frontswap_map)
2473{
4f89849d 2474 frontswap_init(p->type, frontswap_map);
cf0cac0a 2475 spin_lock(&swap_lock);
ec8acf20 2476 spin_lock(&p->lock);
eb085574
HY
2477 setup_swap_info(p, prio, swap_map, cluster_info);
2478 spin_unlock(&p->lock);
2479 spin_unlock(&swap_lock);
2480 /*
2481 * Guarantee swap_map, cluster_info, etc. fields are valid
2482 * between get/put_swap_device() if SWP_VALID bit is set
2483 */
2484 synchronize_rcu();
2485 spin_lock(&swap_lock);
2486 spin_lock(&p->lock);
2487 _enable_swap_info(p);
ec8acf20 2488 spin_unlock(&p->lock);
cf0cac0a
CEB
2489 spin_unlock(&swap_lock);
2490}
2491
2492static void reinsert_swap_info(struct swap_info_struct *p)
2493{
2494 spin_lock(&swap_lock);
ec8acf20 2495 spin_lock(&p->lock);
eb085574
HY
2496 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2497 _enable_swap_info(p);
ec8acf20 2498 spin_unlock(&p->lock);
40531542
CEB
2499 spin_unlock(&swap_lock);
2500}
2501
67afa38e
TC
2502bool has_usable_swap(void)
2503{
2504 bool ret = true;
2505
2506 spin_lock(&swap_lock);
2507 if (plist_head_empty(&swap_active_head))
2508 ret = false;
2509 spin_unlock(&swap_lock);
2510 return ret;
2511}
2512
c4ea37c2 2513SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 2514{
73c34b6a 2515 struct swap_info_struct *p = NULL;
8d69aaee 2516 unsigned char *swap_map;
2a8f9449 2517 struct swap_cluster_info *cluster_info;
4f89849d 2518 unsigned long *frontswap_map;
1da177e4
LT
2519 struct file *swap_file, *victim;
2520 struct address_space *mapping;
2521 struct inode *inode;
91a27b2a 2522 struct filename *pathname;
adfab836 2523 int err, found = 0;
5b808a23 2524 unsigned int old_block_size;
886bb7e9 2525
1da177e4
LT
2526 if (!capable(CAP_SYS_ADMIN))
2527 return -EPERM;
2528
191c5424
AV
2529 BUG_ON(!current->mm);
2530
1da177e4 2531 pathname = getname(specialfile);
1da177e4 2532 if (IS_ERR(pathname))
f58b59c1 2533 return PTR_ERR(pathname);
1da177e4 2534
669abf4e 2535 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
2536 err = PTR_ERR(victim);
2537 if (IS_ERR(victim))
2538 goto out;
2539
2540 mapping = victim->f_mapping;
5d337b91 2541 spin_lock(&swap_lock);
18ab4d4c 2542 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 2543 if (p->flags & SWP_WRITEOK) {
adfab836
DS
2544 if (p->swap_file->f_mapping == mapping) {
2545 found = 1;
1da177e4 2546 break;
adfab836 2547 }
1da177e4 2548 }
1da177e4 2549 }
adfab836 2550 if (!found) {
1da177e4 2551 err = -EINVAL;
5d337b91 2552 spin_unlock(&swap_lock);
1da177e4
LT
2553 goto out_dput;
2554 }
191c5424 2555 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
2556 vm_unacct_memory(p->pages);
2557 else {
2558 err = -ENOMEM;
5d337b91 2559 spin_unlock(&swap_lock);
1da177e4
LT
2560 goto out_dput;
2561 }
a2468cc9 2562 del_from_avail_list(p);
ec8acf20 2563 spin_lock(&p->lock);
78ecba08 2564 if (p->prio < 0) {
adfab836 2565 struct swap_info_struct *si = p;
a2468cc9 2566 int nid;
adfab836 2567
18ab4d4c 2568 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 2569 si->prio++;
18ab4d4c 2570 si->list.prio--;
a2468cc9
AL
2571 for_each_node(nid) {
2572 if (si->avail_lists[nid].prio != 1)
2573 si->avail_lists[nid].prio--;
2574 }
adfab836 2575 }
78ecba08
HD
2576 least_priority++;
2577 }
18ab4d4c 2578 plist_del(&p->list, &swap_active_head);
ec8acf20 2579 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
2580 total_swap_pages -= p->pages;
2581 p->flags &= ~SWP_WRITEOK;
ec8acf20 2582 spin_unlock(&p->lock);
5d337b91 2583 spin_unlock(&swap_lock);
fb4f88dc 2584
039939a6
TC
2585 disable_swap_slots_cache_lock();
2586
e1e12d2f 2587 set_current_oom_origin();
adfab836 2588 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
e1e12d2f 2589 clear_current_oom_origin();
1da177e4 2590
1da177e4
LT
2591 if (err) {
2592 /* re-insert swap space back into swap_list */
cf0cac0a 2593 reinsert_swap_info(p);
039939a6 2594 reenable_swap_slots_cache_unlock();
1da177e4
LT
2595 goto out_dput;
2596 }
52b7efdb 2597
039939a6
TC
2598 reenable_swap_slots_cache_unlock();
2599
eb085574
HY
2600 spin_lock(&swap_lock);
2601 spin_lock(&p->lock);
2602 p->flags &= ~SWP_VALID; /* mark swap device as invalid */
2603 spin_unlock(&p->lock);
2604 spin_unlock(&swap_lock);
2605 /*
2606 * wait for swap operations protected by get/put_swap_device()
2607 * to complete
2608 */
2609 synchronize_rcu();
2610
815c2c54
SL
2611 flush_work(&p->discard_work);
2612
5d337b91 2613 destroy_swap_extents(p);
570a335b
HD
2614 if (p->flags & SWP_CONTINUED)
2615 free_swap_count_continuations(p);
2616
81a0298b
HY
2617 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2618 atomic_dec(&nr_rotate_swap);
2619
fc0abb14 2620 mutex_lock(&swapon_mutex);
5d337b91 2621 spin_lock(&swap_lock);
ec8acf20 2622 spin_lock(&p->lock);
5d337b91
HD
2623 drain_mmlist();
2624
52b7efdb 2625 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
2626 p->highest_bit = 0; /* cuts scans short */
2627 while (p->flags >= SWP_SCANNING) {
ec8acf20 2628 spin_unlock(&p->lock);
5d337b91 2629 spin_unlock(&swap_lock);
13e4b57f 2630 schedule_timeout_uninterruptible(1);
5d337b91 2631 spin_lock(&swap_lock);
ec8acf20 2632 spin_lock(&p->lock);
52b7efdb 2633 }
52b7efdb 2634
1da177e4 2635 swap_file = p->swap_file;
5b808a23 2636 old_block_size = p->old_block_size;
1da177e4
LT
2637 p->swap_file = NULL;
2638 p->max = 0;
2639 swap_map = p->swap_map;
2640 p->swap_map = NULL;
2a8f9449
SL
2641 cluster_info = p->cluster_info;
2642 p->cluster_info = NULL;
4f89849d 2643 frontswap_map = frontswap_map_get(p);
ec8acf20 2644 spin_unlock(&p->lock);
5d337b91 2645 spin_unlock(&swap_lock);
adfab836 2646 frontswap_invalidate_area(p->type);
58e97ba6 2647 frontswap_map_set(p, NULL);
fc0abb14 2648 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
2649 free_percpu(p->percpu_cluster);
2650 p->percpu_cluster = NULL;
1da177e4 2651 vfree(swap_map);
54f180d3
HY
2652 kvfree(cluster_info);
2653 kvfree(frontswap_map);
2de1a7e4 2654 /* Destroy swap account information */
adfab836 2655 swap_cgroup_swapoff(p->type);
4b3ef9da 2656 exit_swap_address_space(p->type);
27a7faa0 2657
1da177e4
LT
2658 inode = mapping->host;
2659 if (S_ISBLK(inode->i_mode)) {
2660 struct block_device *bdev = I_BDEV(inode);
1638045c 2661
5b808a23 2662 set_blocksize(bdev, old_block_size);
e525fd89 2663 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2664 }
1638045c
DW
2665
2666 inode_lock(inode);
2667 inode->i_flags &= ~S_SWAPFILE;
2668 inode_unlock(inode);
1da177e4 2669 filp_close(swap_file, NULL);
f893ab41
WY
2670
2671 /*
2672 * Clear the SWP_USED flag after all resources are freed so that swapon
2673 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2674 * not hold p->lock after we cleared its SWP_WRITEOK.
2675 */
2676 spin_lock(&swap_lock);
2677 p->flags = 0;
2678 spin_unlock(&swap_lock);
2679
1da177e4 2680 err = 0;
66d7dd51
KS
2681 atomic_inc(&proc_poll_event);
2682 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
2683
2684out_dput:
2685 filp_close(victim, NULL);
2686out:
f58b59c1 2687 putname(pathname);
1da177e4
LT
2688 return err;
2689}
2690
2691#ifdef CONFIG_PROC_FS
9dd95748 2692static __poll_t swaps_poll(struct file *file, poll_table *wait)
66d7dd51 2693{
f1514638 2694 struct seq_file *seq = file->private_data;
66d7dd51
KS
2695
2696 poll_wait(file, &proc_poll_wait, wait);
2697
f1514638
KS
2698 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2699 seq->poll_event = atomic_read(&proc_poll_event);
a9a08845 2700 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
66d7dd51
KS
2701 }
2702
a9a08845 2703 return EPOLLIN | EPOLLRDNORM;
66d7dd51
KS
2704}
2705
1da177e4
LT
2706/* iterator */
2707static void *swap_start(struct seq_file *swap, loff_t *pos)
2708{
efa90a98
HD
2709 struct swap_info_struct *si;
2710 int type;
1da177e4
LT
2711 loff_t l = *pos;
2712
fc0abb14 2713 mutex_lock(&swapon_mutex);
1da177e4 2714
881e4aab
SS
2715 if (!l)
2716 return SEQ_START_TOKEN;
2717
c10d38cc 2718 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
efa90a98 2719 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2720 continue;
881e4aab 2721 if (!--l)
efa90a98 2722 return si;
1da177e4
LT
2723 }
2724
2725 return NULL;
2726}
2727
2728static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2729{
efa90a98
HD
2730 struct swap_info_struct *si = v;
2731 int type;
1da177e4 2732
881e4aab 2733 if (v == SEQ_START_TOKEN)
efa90a98
HD
2734 type = 0;
2735 else
2736 type = si->type + 1;
881e4aab 2737
10c8d69f 2738 ++(*pos);
c10d38cc 2739 for (; (si = swap_type_to_swap_info(type)); type++) {
efa90a98 2740 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2741 continue;
efa90a98 2742 return si;
1da177e4
LT
2743 }
2744
2745 return NULL;
2746}
2747
2748static void swap_stop(struct seq_file *swap, void *v)
2749{
fc0abb14 2750 mutex_unlock(&swapon_mutex);
1da177e4
LT
2751}
2752
2753static int swap_show(struct seq_file *swap, void *v)
2754{
efa90a98 2755 struct swap_info_struct *si = v;
1da177e4
LT
2756 struct file *file;
2757 int len;
2758
efa90a98 2759 if (si == SEQ_START_TOKEN) {
881e4aab
SS
2760 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2761 return 0;
2762 }
1da177e4 2763
efa90a98 2764 file = si->swap_file;
2726d566 2765 len = seq_file_path(swap, file, " \t\n\\");
6eb396dc 2766 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9 2767 len < 40 ? 40 - len : 1, " ",
496ad9aa 2768 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2769 "partition" : "file\t",
efa90a98
HD
2770 si->pages << (PAGE_SHIFT - 10),
2771 si->inuse_pages << (PAGE_SHIFT - 10),
2772 si->prio);
1da177e4
LT
2773 return 0;
2774}
2775
15ad7cdc 2776static const struct seq_operations swaps_op = {
1da177e4
LT
2777 .start = swap_start,
2778 .next = swap_next,
2779 .stop = swap_stop,
2780 .show = swap_show
2781};
2782
2783static int swaps_open(struct inode *inode, struct file *file)
2784{
f1514638 2785 struct seq_file *seq;
66d7dd51
KS
2786 int ret;
2787
66d7dd51 2788 ret = seq_open(file, &swaps_op);
f1514638 2789 if (ret)
66d7dd51 2790 return ret;
66d7dd51 2791
f1514638
KS
2792 seq = file->private_data;
2793 seq->poll_event = atomic_read(&proc_poll_event);
2794 return 0;
1da177e4
LT
2795}
2796
97a32539 2797static const struct proc_ops swaps_proc_ops = {
d919b33d 2798 .proc_flags = PROC_ENTRY_PERMANENT,
97a32539
AD
2799 .proc_open = swaps_open,
2800 .proc_read = seq_read,
2801 .proc_lseek = seq_lseek,
2802 .proc_release = seq_release,
2803 .proc_poll = swaps_poll,
1da177e4
LT
2804};
2805
2806static int __init procswaps_init(void)
2807{
97a32539 2808 proc_create("swaps", 0, NULL, &swaps_proc_ops);
1da177e4
LT
2809 return 0;
2810}
2811__initcall(procswaps_init);
2812#endif /* CONFIG_PROC_FS */
2813
1796316a
JB
2814#ifdef MAX_SWAPFILES_CHECK
2815static int __init max_swapfiles_check(void)
2816{
2817 MAX_SWAPFILES_CHECK();
2818 return 0;
2819}
2820late_initcall(max_swapfiles_check);
2821#endif
2822
53cbb243 2823static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2824{
73c34b6a 2825 struct swap_info_struct *p;
1da177e4 2826 unsigned int type;
a2468cc9 2827 int i;
efa90a98 2828
96008744 2829 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
efa90a98 2830 if (!p)
53cbb243 2831 return ERR_PTR(-ENOMEM);
efa90a98 2832
5d337b91 2833 spin_lock(&swap_lock);
efa90a98
HD
2834 for (type = 0; type < nr_swapfiles; type++) {
2835 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2836 break;
efa90a98 2837 }
0697212a 2838 if (type >= MAX_SWAPFILES) {
5d337b91 2839 spin_unlock(&swap_lock);
873d7bcf 2840 kvfree(p);
730c0581 2841 return ERR_PTR(-EPERM);
1da177e4 2842 }
efa90a98
HD
2843 if (type >= nr_swapfiles) {
2844 p->type = type;
c10d38cc 2845 WRITE_ONCE(swap_info[type], p);
efa90a98
HD
2846 /*
2847 * Write swap_info[type] before nr_swapfiles, in case a
2848 * racing procfs swap_start() or swap_next() is reading them.
2849 * (We never shrink nr_swapfiles, we never free this entry.)
2850 */
2851 smp_wmb();
c10d38cc 2852 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
efa90a98 2853 } else {
873d7bcf 2854 kvfree(p);
efa90a98
HD
2855 p = swap_info[type];
2856 /*
2857 * Do not memset this entry: a racing procfs swap_next()
2858 * would be relying on p->type to remain valid.
2859 */
2860 }
4efaceb1 2861 p->swap_extent_root = RB_ROOT;
18ab4d4c 2862 plist_node_init(&p->list, 0);
a2468cc9
AL
2863 for_each_node(i)
2864 plist_node_init(&p->avail_lists[i], 0);
1da177e4 2865 p->flags = SWP_USED;
5d337b91 2866 spin_unlock(&swap_lock);
ec8acf20 2867 spin_lock_init(&p->lock);
2628bd6f 2868 spin_lock_init(&p->cont_lock);
efa90a98 2869
53cbb243 2870 return p;
53cbb243
CEB
2871}
2872
4d0e1e10
CEB
2873static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2874{
2875 int error;
2876
2877 if (S_ISBLK(inode->i_mode)) {
2878 p->bdev = bdgrab(I_BDEV(inode));
2879 error = blkdev_get(p->bdev,
6f179af8 2880 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
4d0e1e10
CEB
2881 if (error < 0) {
2882 p->bdev = NULL;
6f179af8 2883 return error;
4d0e1e10
CEB
2884 }
2885 p->old_block_size = block_size(p->bdev);
2886 error = set_blocksize(p->bdev, PAGE_SIZE);
2887 if (error < 0)
87ade72a 2888 return error;
12d2966d
NA
2889 /*
2890 * Zoned block devices contain zones that have a sequential
2891 * write only restriction. Hence zoned block devices are not
2892 * suitable for swapping. Disallow them here.
2893 */
2894 if (blk_queue_is_zoned(p->bdev->bd_queue))
2895 return -EINVAL;
4d0e1e10
CEB
2896 p->flags |= SWP_BLKDEV;
2897 } else if (S_ISREG(inode->i_mode)) {
2898 p->bdev = inode->i_sb->s_bdev;
1638045c
DW
2899 }
2900
4d0e1e10 2901 return 0;
4d0e1e10
CEB
2902}
2903
377eeaa8
AK
2904
2905/*
2906 * Find out how many pages are allowed for a single swap device. There
2907 * are two limiting factors:
2908 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2909 * 2) the number of bits in the swap pte, as defined by the different
2910 * architectures.
2911 *
2912 * In order to find the largest possible bit mask, a swap entry with
2913 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2914 * decoded to a swp_entry_t again, and finally the swap offset is
2915 * extracted.
2916 *
2917 * This will mask all the bits from the initial ~0UL mask that can't
2918 * be encoded in either the swp_entry_t or the architecture definition
2919 * of a swap pte.
2920 */
2921unsigned long generic_max_swapfile_size(void)
2922{
2923 return swp_offset(pte_to_swp_entry(
2924 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2925}
2926
2927/* Can be overridden by an architecture for additional checks. */
2928__weak unsigned long max_swapfile_size(void)
2929{
2930 return generic_max_swapfile_size();
2931}
2932
ca8bd38b
CEB
2933static unsigned long read_swap_header(struct swap_info_struct *p,
2934 union swap_header *swap_header,
2935 struct inode *inode)
2936{
2937 int i;
2938 unsigned long maxpages;
2939 unsigned long swapfilepages;
d6bbbd29 2940 unsigned long last_page;
ca8bd38b
CEB
2941
2942 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2943 pr_err("Unable to find swap-space signature\n");
38719025 2944 return 0;
ca8bd38b
CEB
2945 }
2946
2947 /* swap partition endianess hack... */
2948 if (swab32(swap_header->info.version) == 1) {
2949 swab32s(&swap_header->info.version);
2950 swab32s(&swap_header->info.last_page);
2951 swab32s(&swap_header->info.nr_badpages);
dd111be6
JH
2952 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2953 return 0;
ca8bd38b
CEB
2954 for (i = 0; i < swap_header->info.nr_badpages; i++)
2955 swab32s(&swap_header->info.badpages[i]);
2956 }
2957 /* Check the swap header's sub-version */
2958 if (swap_header->info.version != 1) {
465c47fd
AM
2959 pr_warn("Unable to handle swap header version %d\n",
2960 swap_header->info.version);
38719025 2961 return 0;
ca8bd38b
CEB
2962 }
2963
2964 p->lowest_bit = 1;
2965 p->cluster_next = 1;
2966 p->cluster_nr = 0;
2967
377eeaa8 2968 maxpages = max_swapfile_size();
d6bbbd29 2969 last_page = swap_header->info.last_page;
a06ad633
TA
2970 if (!last_page) {
2971 pr_warn("Empty swap-file\n");
2972 return 0;
2973 }
d6bbbd29 2974 if (last_page > maxpages) {
465c47fd 2975 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2976 maxpages << (PAGE_SHIFT - 10),
2977 last_page << (PAGE_SHIFT - 10));
2978 }
2979 if (maxpages > last_page) {
2980 maxpages = last_page + 1;
ca8bd38b
CEB
2981 /* p->max is an unsigned int: don't overflow it */
2982 if ((unsigned int)maxpages == 0)
2983 maxpages = UINT_MAX;
2984 }
2985 p->highest_bit = maxpages - 1;
2986
2987 if (!maxpages)
38719025 2988 return 0;
ca8bd38b
CEB
2989 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2990 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 2991 pr_warn("Swap area shorter than signature indicates\n");
38719025 2992 return 0;
ca8bd38b
CEB
2993 }
2994 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 2995 return 0;
ca8bd38b 2996 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 2997 return 0;
ca8bd38b
CEB
2998
2999 return maxpages;
ca8bd38b
CEB
3000}
3001
4b3ef9da 3002#define SWAP_CLUSTER_INFO_COLS \
235b6217 3003 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
4b3ef9da
HY
3004#define SWAP_CLUSTER_SPACE_COLS \
3005 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3006#define SWAP_CLUSTER_COLS \
3007 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
235b6217 3008
915d4d7b
CEB
3009static int setup_swap_map_and_extents(struct swap_info_struct *p,
3010 union swap_header *swap_header,
3011 unsigned char *swap_map,
2a8f9449 3012 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
3013 unsigned long maxpages,
3014 sector_t *span)
3015{
235b6217 3016 unsigned int j, k;
915d4d7b
CEB
3017 unsigned int nr_good_pages;
3018 int nr_extents;
2a8f9449 3019 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
235b6217
HY
3020 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3021 unsigned long i, idx;
915d4d7b
CEB
3022
3023 nr_good_pages = maxpages - 1; /* omit header page */
3024
6b534915
HY
3025 cluster_list_init(&p->free_clusters);
3026 cluster_list_init(&p->discard_clusters);
2a8f9449 3027
915d4d7b
CEB
3028 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3029 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
3030 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3031 return -EINVAL;
915d4d7b
CEB
3032 if (page_nr < maxpages) {
3033 swap_map[page_nr] = SWAP_MAP_BAD;
3034 nr_good_pages--;
2a8f9449
SL
3035 /*
3036 * Haven't marked the cluster free yet, no list
3037 * operation involved
3038 */
3039 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
3040 }
3041 }
3042
2a8f9449
SL
3043 /* Haven't marked the cluster free yet, no list operation involved */
3044 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3045 inc_cluster_info_page(p, cluster_info, i);
3046
915d4d7b
CEB
3047 if (nr_good_pages) {
3048 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
3049 /*
3050 * Not mark the cluster free yet, no list
3051 * operation involved
3052 */
3053 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
3054 p->max = maxpages;
3055 p->pages = nr_good_pages;
3056 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
3057 if (nr_extents < 0)
3058 return nr_extents;
915d4d7b
CEB
3059 nr_good_pages = p->pages;
3060 }
3061 if (!nr_good_pages) {
465c47fd 3062 pr_warn("Empty swap-file\n");
bdb8e3f6 3063 return -EINVAL;
915d4d7b
CEB
3064 }
3065
2a8f9449
SL
3066 if (!cluster_info)
3067 return nr_extents;
3068
235b6217 3069
4b3ef9da
HY
3070 /*
3071 * Reduce false cache line sharing between cluster_info and
3072 * sharing same address space.
3073 */
235b6217
HY
3074 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3075 j = (k + col) % SWAP_CLUSTER_COLS;
3076 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3077 idx = i * SWAP_CLUSTER_COLS + j;
3078 if (idx >= nr_clusters)
3079 continue;
3080 if (cluster_count(&cluster_info[idx]))
3081 continue;
2a8f9449 3082 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
6b534915
HY
3083 cluster_list_add_tail(&p->free_clusters, cluster_info,
3084 idx);
2a8f9449 3085 }
2a8f9449 3086 }
915d4d7b 3087 return nr_extents;
915d4d7b
CEB
3088}
3089
dcf6b7dd
RA
3090/*
3091 * Helper to sys_swapon determining if a given swap
3092 * backing device queue supports DISCARD operations.
3093 */
3094static bool swap_discardable(struct swap_info_struct *si)
3095{
3096 struct request_queue *q = bdev_get_queue(si->bdev);
3097
3098 if (!q || !blk_queue_discard(q))
3099 return false;
3100
3101 return true;
3102}
3103
53cbb243
CEB
3104SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3105{
3106 struct swap_info_struct *p;
91a27b2a 3107 struct filename *name;
53cbb243
CEB
3108 struct file *swap_file = NULL;
3109 struct address_space *mapping;
40531542 3110 int prio;
53cbb243
CEB
3111 int error;
3112 union swap_header *swap_header;
915d4d7b 3113 int nr_extents;
53cbb243
CEB
3114 sector_t span;
3115 unsigned long maxpages;
53cbb243 3116 unsigned char *swap_map = NULL;
2a8f9449 3117 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 3118 unsigned long *frontswap_map = NULL;
53cbb243
CEB
3119 struct page *page = NULL;
3120 struct inode *inode = NULL;
7cbf3192 3121 bool inced_nr_rotate_swap = false;
53cbb243 3122
d15cab97
HD
3123 if (swap_flags & ~SWAP_FLAGS_VALID)
3124 return -EINVAL;
3125
53cbb243
CEB
3126 if (!capable(CAP_SYS_ADMIN))
3127 return -EPERM;
3128
a2468cc9
AL
3129 if (!swap_avail_heads)
3130 return -ENOMEM;
3131
53cbb243 3132 p = alloc_swap_info();
2542e513
CEB
3133 if (IS_ERR(p))
3134 return PTR_ERR(p);
53cbb243 3135
815c2c54
SL
3136 INIT_WORK(&p->discard_work, swap_discard_work);
3137
1da177e4 3138 name = getname(specialfile);
1da177e4 3139 if (IS_ERR(name)) {
7de7fb6b 3140 error = PTR_ERR(name);
1da177e4 3141 name = NULL;
bd69010b 3142 goto bad_swap;
1da177e4 3143 }
669abf4e 3144 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 3145 if (IS_ERR(swap_file)) {
7de7fb6b 3146 error = PTR_ERR(swap_file);
1da177e4 3147 swap_file = NULL;
bd69010b 3148 goto bad_swap;
1da177e4
LT
3149 }
3150
3151 p->swap_file = swap_file;
3152 mapping = swap_file->f_mapping;
2130781e 3153 inode = mapping->host;
6f179af8 3154
4d0e1e10
CEB
3155 error = claim_swapfile(p, inode);
3156 if (unlikely(error))
1da177e4 3157 goto bad_swap;
1da177e4 3158
d795a90e
NA
3159 inode_lock(inode);
3160 if (IS_SWAPFILE(inode)) {
3161 error = -EBUSY;
3162 goto bad_swap_unlock_inode;
3163 }
3164
1da177e4
LT
3165 /*
3166 * Read the swap header.
3167 */
3168 if (!mapping->a_ops->readpage) {
3169 error = -EINVAL;
d795a90e 3170 goto bad_swap_unlock_inode;
1da177e4 3171 }
090d2b18 3172 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
3173 if (IS_ERR(page)) {
3174 error = PTR_ERR(page);
d795a90e 3175 goto bad_swap_unlock_inode;
1da177e4 3176 }
81e33971 3177 swap_header = kmap(page);
1da177e4 3178
ca8bd38b
CEB
3179 maxpages = read_swap_header(p, swap_header, inode);
3180 if (unlikely(!maxpages)) {
1da177e4 3181 error = -EINVAL;
d795a90e 3182 goto bad_swap_unlock_inode;
1da177e4 3183 }
886bb7e9 3184
81e33971 3185 /* OK, set up the swap map and apply the bad block list */
803d0c83 3186 swap_map = vzalloc(maxpages);
81e33971
HD
3187 if (!swap_map) {
3188 error = -ENOMEM;
d795a90e 3189 goto bad_swap_unlock_inode;
81e33971 3190 }
f0571429
MK
3191
3192 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3193 p->flags |= SWP_STABLE_WRITES;
3194
539a6fea
MK
3195 if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3196 p->flags |= SWP_SYNCHRONOUS_IO;
3197
2a8f9449 3198 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
6f179af8 3199 int cpu;
235b6217 3200 unsigned long ci, nr_cluster;
6f179af8 3201
2a8f9449
SL
3202 p->flags |= SWP_SOLIDSTATE;
3203 /*
3204 * select a random position to start with to help wear leveling
3205 * SSD
3206 */
3207 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
235b6217 3208 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2a8f9449 3209
778e1cdd 3210 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
54f180d3 3211 GFP_KERNEL);
2a8f9449
SL
3212 if (!cluster_info) {
3213 error = -ENOMEM;
d795a90e 3214 goto bad_swap_unlock_inode;
2a8f9449 3215 }
235b6217
HY
3216
3217 for (ci = 0; ci < nr_cluster; ci++)
3218 spin_lock_init(&((cluster_info + ci)->lock));
3219
ebc2a1a6
SL
3220 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3221 if (!p->percpu_cluster) {
3222 error = -ENOMEM;
d795a90e 3223 goto bad_swap_unlock_inode;
ebc2a1a6 3224 }
6f179af8 3225 for_each_possible_cpu(cpu) {
ebc2a1a6 3226 struct percpu_cluster *cluster;
6f179af8 3227 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
ebc2a1a6
SL
3228 cluster_set_null(&cluster->index);
3229 }
7cbf3192 3230 } else {
81a0298b 3231 atomic_inc(&nr_rotate_swap);
7cbf3192
OS
3232 inced_nr_rotate_swap = true;
3233 }
1da177e4 3234
1421ef3c
CEB
3235 error = swap_cgroup_swapon(p->type, maxpages);
3236 if (error)
d795a90e 3237 goto bad_swap_unlock_inode;
1421ef3c 3238
915d4d7b 3239 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 3240 cluster_info, maxpages, &span);
915d4d7b
CEB
3241 if (unlikely(nr_extents < 0)) {
3242 error = nr_extents;
d795a90e 3243 goto bad_swap_unlock_inode;
1da177e4 3244 }
38b5faf4 3245 /* frontswap enabled? set up bit-per-page map for frontswap */
8ea1d2a1 3246 if (IS_ENABLED(CONFIG_FRONTSWAP))
778e1cdd
KC
3247 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3248 sizeof(long),
54f180d3 3249 GFP_KERNEL);
1da177e4 3250
2a8f9449
SL
3251 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3252 /*
3253 * When discard is enabled for swap with no particular
3254 * policy flagged, we set all swap discard flags here in
3255 * order to sustain backward compatibility with older
3256 * swapon(8) releases.
3257 */
3258 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3259 SWP_PAGE_DISCARD);
dcf6b7dd 3260
2a8f9449
SL
3261 /*
3262 * By flagging sys_swapon, a sysadmin can tell us to
3263 * either do single-time area discards only, or to just
3264 * perform discards for released swap page-clusters.
3265 * Now it's time to adjust the p->flags accordingly.
3266 */
3267 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3268 p->flags &= ~SWP_PAGE_DISCARD;
3269 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3270 p->flags &= ~SWP_AREA_DISCARD;
3271
3272 /* issue a swapon-time discard if it's still required */
3273 if (p->flags & SWP_AREA_DISCARD) {
3274 int err = discard_swap(p);
3275 if (unlikely(err))
3276 pr_err("swapon: discard_swap(%p): %d\n",
3277 p, err);
dcf6b7dd 3278 }
20137a49 3279 }
6a6ba831 3280
4b3ef9da
HY
3281 error = init_swap_address_space(p->type, maxpages);
3282 if (error)
d795a90e 3283 goto bad_swap_unlock_inode;
4b3ef9da 3284
dc617f29
DW
3285 /*
3286 * Flush any pending IO and dirty mappings before we start using this
3287 * swap device.
3288 */
3289 inode->i_flags |= S_SWAPFILE;
3290 error = inode_drain_writes(inode);
3291 if (error) {
3292 inode->i_flags &= ~S_SWAPFILE;
d795a90e 3293 goto bad_swap_unlock_inode;
dc617f29
DW
3294 }
3295
fc0abb14 3296 mutex_lock(&swapon_mutex);
40531542 3297 prio = -1;
78ecba08 3298 if (swap_flags & SWAP_FLAG_PREFER)
40531542 3299 prio =
78ecba08 3300 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 3301 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 3302
756a025f 3303 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 3304 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
3305 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3306 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 3307 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
3308 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3309 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 3310 (frontswap_map) ? "FS" : "");
c69dbfb8 3311
fc0abb14 3312 mutex_unlock(&swapon_mutex);
66d7dd51
KS
3313 atomic_inc(&proc_poll_event);
3314 wake_up_interruptible(&proc_poll_wait);
3315
1da177e4
LT
3316 error = 0;
3317 goto out;
d795a90e
NA
3318bad_swap_unlock_inode:
3319 inode_unlock(inode);
1da177e4 3320bad_swap:
ebc2a1a6
SL
3321 free_percpu(p->percpu_cluster);
3322 p->percpu_cluster = NULL;
bd69010b 3323 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
3324 set_blocksize(p->bdev, p->old_block_size);
3325 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 3326 }
d795a90e 3327 inode = NULL;
4cd3bb10 3328 destroy_swap_extents(p);
e8e6c2ec 3329 swap_cgroup_swapoff(p->type);
5d337b91 3330 spin_lock(&swap_lock);
1da177e4 3331 p->swap_file = NULL;
1da177e4 3332 p->flags = 0;
5d337b91 3333 spin_unlock(&swap_lock);
1da177e4 3334 vfree(swap_map);
8606a1a9 3335 kvfree(cluster_info);
b6b1fd2a 3336 kvfree(frontswap_map);
7cbf3192
OS
3337 if (inced_nr_rotate_swap)
3338 atomic_dec(&nr_rotate_swap);
d795a90e 3339 if (swap_file)
1da177e4
LT
3340 filp_close(swap_file, NULL);
3341out:
3342 if (page && !IS_ERR(page)) {
3343 kunmap(page);
09cbfeaf 3344 put_page(page);
1da177e4
LT
3345 }
3346 if (name)
3347 putname(name);
1638045c 3348 if (inode)
5955102c 3349 inode_unlock(inode);
039939a6
TC
3350 if (!error)
3351 enable_swap_slots_cache();
1da177e4
LT
3352 return error;
3353}
3354
3355void si_swapinfo(struct sysinfo *val)
3356{
efa90a98 3357 unsigned int type;
1da177e4
LT
3358 unsigned long nr_to_be_unused = 0;
3359
5d337b91 3360 spin_lock(&swap_lock);
efa90a98
HD
3361 for (type = 0; type < nr_swapfiles; type++) {
3362 struct swap_info_struct *si = swap_info[type];
3363
3364 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3365 nr_to_be_unused += si->inuse_pages;
1da177e4 3366 }
ec8acf20 3367 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 3368 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 3369 spin_unlock(&swap_lock);
1da177e4
LT
3370}
3371
3372/*
3373 * Verify that a swap entry is valid and increment its swap map count.
3374 *
355cfa73
KH
3375 * Returns error code in following case.
3376 * - success -> 0
3377 * - swp_entry is invalid -> EINVAL
3378 * - swp_entry is migration entry -> EINVAL
3379 * - swap-cache reference is requested but there is already one. -> EEXIST
3380 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 3381 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 3382 */
8d69aaee 3383static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 3384{
73c34b6a 3385 struct swap_info_struct *p;
235b6217 3386 struct swap_cluster_info *ci;
c10d38cc 3387 unsigned long offset;
8d69aaee
HD
3388 unsigned char count;
3389 unsigned char has_cache;
253d553b 3390 int err = -EINVAL;
1da177e4 3391
eb085574 3392 p = get_swap_device(entry);
c10d38cc 3393 if (!p)
235b6217
HY
3394 goto out;
3395
eb085574 3396 offset = swp_offset(entry);
235b6217 3397 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 3398
253d553b 3399 count = p->swap_map[offset];
edfe23da
SL
3400
3401 /*
3402 * swapin_readahead() doesn't check if a swap entry is valid, so the
3403 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3404 */
3405 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3406 err = -ENOENT;
3407 goto unlock_out;
3408 }
3409
253d553b
HD
3410 has_cache = count & SWAP_HAS_CACHE;
3411 count &= ~SWAP_HAS_CACHE;
3412 err = 0;
355cfa73 3413
253d553b 3414 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
3415
3416 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
3417 if (!has_cache && count)
3418 has_cache = SWAP_HAS_CACHE;
3419 else if (has_cache) /* someone else added cache */
3420 err = -EEXIST;
3421 else /* no users remaining */
3422 err = -ENOENT;
355cfa73
KH
3423
3424 } else if (count || has_cache) {
253d553b 3425
570a335b
HD
3426 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3427 count += usage;
3428 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 3429 err = -EINVAL;
570a335b
HD
3430 else if (swap_count_continued(p, offset, count))
3431 count = COUNT_CONTINUED;
3432 else
3433 err = -ENOMEM;
355cfa73 3434 } else
253d553b
HD
3435 err = -ENOENT; /* unused swap entry */
3436
3437 p->swap_map[offset] = count | has_cache;
3438
355cfa73 3439unlock_out:
235b6217 3440 unlock_cluster_or_swap_info(p, ci);
1da177e4 3441out:
eb085574
HY
3442 if (p)
3443 put_swap_device(p);
253d553b 3444 return err;
1da177e4 3445}
253d553b 3446
aaa46865
HD
3447/*
3448 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3449 * (in which case its reference count is never incremented).
3450 */
3451void swap_shmem_alloc(swp_entry_t entry)
3452{
3453 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3454}
3455
355cfa73 3456/*
08259d58
HD
3457 * Increase reference count of swap entry by 1.
3458 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3459 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3460 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3461 * might occur if a page table entry has got corrupted.
355cfa73 3462 */
570a335b 3463int swap_duplicate(swp_entry_t entry)
355cfa73 3464{
570a335b
HD
3465 int err = 0;
3466
3467 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3468 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3469 return err;
355cfa73 3470}
1da177e4 3471
cb4b86ba 3472/*
355cfa73
KH
3473 * @entry: swap entry for which we allocate swap cache.
3474 *
73c34b6a 3475 * Called when allocating swap cache for existing swap entry,
355cfa73 3476 * This can return error codes. Returns 0 at success.
3eeba135 3477 * -EEXIST means there is a swap cache.
355cfa73 3478 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
3479 */
3480int swapcache_prepare(swp_entry_t entry)
3481{
253d553b 3482 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
3483}
3484
0bcac06f
MK
3485struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3486{
c10d38cc 3487 return swap_type_to_swap_info(swp_type(entry));
0bcac06f
MK
3488}
3489
f981c595
MG
3490struct swap_info_struct *page_swap_info(struct page *page)
3491{
0bcac06f
MK
3492 swp_entry_t entry = { .val = page_private(page) };
3493 return swp_swap_info(entry);
f981c595
MG
3494}
3495
3496/*
3497 * out-of-line __page_file_ methods to avoid include hell.
3498 */
3499struct address_space *__page_file_mapping(struct page *page)
3500{
f981c595
MG
3501 return page_swap_info(page)->swap_file->f_mapping;
3502}
3503EXPORT_SYMBOL_GPL(__page_file_mapping);
3504
3505pgoff_t __page_file_index(struct page *page)
3506{
3507 swp_entry_t swap = { .val = page_private(page) };
f981c595
MG
3508 return swp_offset(swap);
3509}
3510EXPORT_SYMBOL_GPL(__page_file_index);
3511
570a335b
HD
3512/*
3513 * add_swap_count_continuation - called when a swap count is duplicated
3514 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3515 * page of the original vmalloc'ed swap_map, to hold the continuation count
3516 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3517 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3518 *
3519 * These continuation pages are seldom referenced: the common paths all work
3520 * on the original swap_map, only referring to a continuation page when the
3521 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3522 *
3523 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3524 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3525 * can be called after dropping locks.
3526 */
3527int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3528{
3529 struct swap_info_struct *si;
235b6217 3530 struct swap_cluster_info *ci;
570a335b
HD
3531 struct page *head;
3532 struct page *page;
3533 struct page *list_page;
3534 pgoff_t offset;
3535 unsigned char count;
eb085574 3536 int ret = 0;
570a335b
HD
3537
3538 /*
3539 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3540 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3541 */
3542 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3543
eb085574 3544 si = get_swap_device(entry);
570a335b
HD
3545 if (!si) {
3546 /*
3547 * An acceptable race has occurred since the failing
eb085574 3548 * __swap_duplicate(): the swap device may be swapoff
570a335b
HD
3549 */
3550 goto outer;
3551 }
eb085574 3552 spin_lock(&si->lock);
570a335b
HD
3553
3554 offset = swp_offset(entry);
235b6217
HY
3555
3556 ci = lock_cluster(si, offset);
3557
570a335b
HD
3558 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3559
3560 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3561 /*
3562 * The higher the swap count, the more likely it is that tasks
3563 * will race to add swap count continuation: we need to avoid
3564 * over-provisioning.
3565 */
3566 goto out;
3567 }
3568
3569 if (!page) {
eb085574
HY
3570 ret = -ENOMEM;
3571 goto out;
570a335b
HD
3572 }
3573
3574 /*
3575 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
3576 * no architecture is using highmem pages for kernel page tables: so it
3577 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
3578 */
3579 head = vmalloc_to_page(si->swap_map + offset);
3580 offset &= ~PAGE_MASK;
3581
2628bd6f 3582 spin_lock(&si->cont_lock);
570a335b
HD
3583 /*
3584 * Page allocation does not initialize the page's lru field,
3585 * but it does always reset its private field.
3586 */
3587 if (!page_private(head)) {
3588 BUG_ON(count & COUNT_CONTINUED);
3589 INIT_LIST_HEAD(&head->lru);
3590 set_page_private(head, SWP_CONTINUED);
3591 si->flags |= SWP_CONTINUED;
3592 }
3593
3594 list_for_each_entry(list_page, &head->lru, lru) {
3595 unsigned char *map;
3596
3597 /*
3598 * If the previous map said no continuation, but we've found
3599 * a continuation page, free our allocation and use this one.
3600 */
3601 if (!(count & COUNT_CONTINUED))
2628bd6f 3602 goto out_unlock_cont;
570a335b 3603
9b04c5fe 3604 map = kmap_atomic(list_page) + offset;
570a335b 3605 count = *map;
9b04c5fe 3606 kunmap_atomic(map);
570a335b
HD
3607
3608 /*
3609 * If this continuation count now has some space in it,
3610 * free our allocation and use this one.
3611 */
3612 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2628bd6f 3613 goto out_unlock_cont;
570a335b
HD
3614 }
3615
3616 list_add_tail(&page->lru, &head->lru);
3617 page = NULL; /* now it's attached, don't free it */
2628bd6f
HY
3618out_unlock_cont:
3619 spin_unlock(&si->cont_lock);
570a335b 3620out:
235b6217 3621 unlock_cluster(ci);
ec8acf20 3622 spin_unlock(&si->lock);
eb085574 3623 put_swap_device(si);
570a335b
HD
3624outer:
3625 if (page)
3626 __free_page(page);
eb085574 3627 return ret;
570a335b
HD
3628}
3629
3630/*
3631 * swap_count_continued - when the original swap_map count is incremented
3632 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3633 * into, carry if so, or else fail until a new continuation page is allocated;
3634 * when the original swap_map count is decremented from 0 with continuation,
3635 * borrow from the continuation and report whether it still holds more.
235b6217
HY
3636 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3637 * lock.
570a335b
HD
3638 */
3639static bool swap_count_continued(struct swap_info_struct *si,
3640 pgoff_t offset, unsigned char count)
3641{
3642 struct page *head;
3643 struct page *page;
3644 unsigned char *map;
2628bd6f 3645 bool ret;
570a335b
HD
3646
3647 head = vmalloc_to_page(si->swap_map + offset);
3648 if (page_private(head) != SWP_CONTINUED) {
3649 BUG_ON(count & COUNT_CONTINUED);
3650 return false; /* need to add count continuation */
3651 }
3652
2628bd6f 3653 spin_lock(&si->cont_lock);
570a335b 3654 offset &= ~PAGE_MASK;
213516ac 3655 page = list_next_entry(head, lru);
9b04c5fe 3656 map = kmap_atomic(page) + offset;
570a335b
HD
3657
3658 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3659 goto init_map; /* jump over SWAP_CONT_MAX checks */
3660
3661 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3662 /*
3663 * Think of how you add 1 to 999
3664 */
3665 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 3666 kunmap_atomic(map);
213516ac 3667 page = list_next_entry(page, lru);
570a335b 3668 BUG_ON(page == head);
9b04c5fe 3669 map = kmap_atomic(page) + offset;
570a335b
HD
3670 }
3671 if (*map == SWAP_CONT_MAX) {
9b04c5fe 3672 kunmap_atomic(map);
213516ac 3673 page = list_next_entry(page, lru);
2628bd6f
HY
3674 if (page == head) {
3675 ret = false; /* add count continuation */
3676 goto out;
3677 }
9b04c5fe 3678 map = kmap_atomic(page) + offset;
570a335b
HD
3679init_map: *map = 0; /* we didn't zero the page */
3680 }
3681 *map += 1;
9b04c5fe 3682 kunmap_atomic(map);
213516ac 3683 while ((page = list_prev_entry(page, lru)) != head) {
9b04c5fe 3684 map = kmap_atomic(page) + offset;
570a335b 3685 *map = COUNT_CONTINUED;
9b04c5fe 3686 kunmap_atomic(map);
570a335b 3687 }
2628bd6f 3688 ret = true; /* incremented */
570a335b
HD
3689
3690 } else { /* decrementing */
3691 /*
3692 * Think of how you subtract 1 from 1000
3693 */
3694 BUG_ON(count != COUNT_CONTINUED);
3695 while (*map == COUNT_CONTINUED) {
9b04c5fe 3696 kunmap_atomic(map);
213516ac 3697 page = list_next_entry(page, lru);
570a335b 3698 BUG_ON(page == head);
9b04c5fe 3699 map = kmap_atomic(page) + offset;
570a335b
HD
3700 }
3701 BUG_ON(*map == 0);
3702 *map -= 1;
3703 if (*map == 0)
3704 count = 0;
9b04c5fe 3705 kunmap_atomic(map);
213516ac 3706 while ((page = list_prev_entry(page, lru)) != head) {
9b04c5fe 3707 map = kmap_atomic(page) + offset;
570a335b
HD
3708 *map = SWAP_CONT_MAX | count;
3709 count = COUNT_CONTINUED;
9b04c5fe 3710 kunmap_atomic(map);
570a335b 3711 }
2628bd6f 3712 ret = count == COUNT_CONTINUED;
570a335b 3713 }
2628bd6f
HY
3714out:
3715 spin_unlock(&si->cont_lock);
3716 return ret;
570a335b
HD
3717}
3718
3719/*
3720 * free_swap_count_continuations - swapoff free all the continuation pages
3721 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3722 */
3723static void free_swap_count_continuations(struct swap_info_struct *si)
3724{
3725 pgoff_t offset;
3726
3727 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3728 struct page *head;
3729 head = vmalloc_to_page(si->swap_map + offset);
3730 if (page_private(head)) {
0d576d20
GT
3731 struct page *page, *next;
3732
3733 list_for_each_entry_safe(page, next, &head->lru, lru) {
3734 list_del(&page->lru);
570a335b
HD
3735 __free_page(page);
3736 }
3737 }
3738 }
3739}
a2468cc9 3740
2cf85583
TH
3741#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3742void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3743 gfp_t gfp_mask)
3744{
3745 struct swap_info_struct *si, *next;
3746 if (!(gfp_mask & __GFP_IO) || !memcg)
3747 return;
3748
3749 if (!blk_cgroup_congested())
3750 return;
3751
3752 /*
3753 * We've already scheduled a throttle, avoid taking the global swap
3754 * lock.
3755 */
3756 if (current->throttle_queue)
3757 return;
3758
3759 spin_lock(&swap_avail_lock);
3760 plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3761 avail_lists[node]) {
3762 if (si->bdev) {
3763 blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3764 true);
3765 break;
3766 }
3767 }
3768 spin_unlock(&swap_avail_lock);
3769}
3770#endif
3771
a2468cc9
AL
3772static int __init swapfile_init(void)
3773{
3774 int nid;
3775
3776 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3777 GFP_KERNEL);
3778 if (!swap_avail_heads) {
3779 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3780 return -ENOMEM;
3781 }
3782
3783 for_each_node(nid)
3784 plist_head_init(&swap_avail_heads[nid]);
3785
3786 return 0;
3787}
3788subsys_initcall(swapfile_init);