]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/truncate.c
bpf: Wrap aux data inside bpf_sanitize_info container
[mirror_ubuntu-hirsute-kernel.git] / mm / truncate.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * mm/truncate.c - code for taking down pages from address_spaces
4 *
5 * Copyright (C) 2002, Linus Torvalds
6 *
e1f8e874 7 * 10Sep2002 Andrew Morton
1da177e4
LT
8 * Initial version.
9 */
10
11#include <linux/kernel.h>
4af3c9cc 12#include <linux/backing-dev.h>
f9fe48be 13#include <linux/dax.h>
5a0e3ad6 14#include <linux/gfp.h>
1da177e4 15#include <linux/mm.h>
0fd0e6b0 16#include <linux/swap.h>
b95f1b31 17#include <linux/export.h>
1da177e4 18#include <linux/pagemap.h>
01f2705d 19#include <linux/highmem.h>
1da177e4 20#include <linux/pagevec.h>
e08748ce 21#include <linux/task_io_accounting_ops.h>
1da177e4 22#include <linux/buffer_head.h> /* grr. try_to_release_page,
aaa4059b 23 do_invalidatepage */
3a4f8a0b 24#include <linux/shmem_fs.h>
c515e1fd 25#include <linux/cleancache.h>
90a80202 26#include <linux/rmap.h>
ba470de4 27#include "internal.h"
1da177e4 28
f2187599
MG
29/*
30 * Regular page slots are stabilized by the page lock even without the tree
31 * itself locked. These unlocked entries need verification under the tree
32 * lock.
33 */
34static inline void __clear_shadow_entry(struct address_space *mapping,
35 pgoff_t index, void *entry)
0cd6144a 36{
69b6c131 37 XA_STATE(xas, &mapping->i_pages, index);
449dd698 38
69b6c131
MW
39 xas_set_update(&xas, workingset_update_node);
40 if (xas_load(&xas) != entry)
f2187599 41 return;
69b6c131 42 xas_store(&xas, NULL);
ac401cc7 43 mapping->nrexceptional--;
f2187599
MG
44}
45
46static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
47 void *entry)
48{
b93b0163 49 xa_lock_irq(&mapping->i_pages);
f2187599 50 __clear_shadow_entry(mapping, index, entry);
b93b0163 51 xa_unlock_irq(&mapping->i_pages);
0cd6144a 52}
1da177e4 53
c6dcf52c 54/*
f2187599
MG
55 * Unconditionally remove exceptional entries. Usually called from truncate
56 * path. Note that the pagevec may be altered by this function by removing
57 * exceptional entries similar to what pagevec_remove_exceptionals does.
c6dcf52c 58 */
f2187599
MG
59static void truncate_exceptional_pvec_entries(struct address_space *mapping,
60 struct pagevec *pvec, pgoff_t *indices,
61 pgoff_t end)
c6dcf52c 62{
f2187599
MG
63 int i, j;
64 bool dax, lock;
65
c6dcf52c
JK
66 /* Handled by shmem itself */
67 if (shmem_mapping(mapping))
68 return;
69
f2187599 70 for (j = 0; j < pagevec_count(pvec); j++)
3159f943 71 if (xa_is_value(pvec->pages[j]))
f2187599
MG
72 break;
73
74 if (j == pagevec_count(pvec))
c6dcf52c 75 return;
f2187599
MG
76
77 dax = dax_mapping(mapping);
78 lock = !dax && indices[j] < end;
79 if (lock)
b93b0163 80 xa_lock_irq(&mapping->i_pages);
f2187599
MG
81
82 for (i = j; i < pagevec_count(pvec); i++) {
83 struct page *page = pvec->pages[i];
84 pgoff_t index = indices[i];
85
3159f943 86 if (!xa_is_value(page)) {
f2187599
MG
87 pvec->pages[j++] = page;
88 continue;
89 }
90
91 if (index >= end)
92 continue;
93
94 if (unlikely(dax)) {
95 dax_delete_mapping_entry(mapping, index);
96 continue;
97 }
98
99 __clear_shadow_entry(mapping, index, page);
c6dcf52c 100 }
f2187599
MG
101
102 if (lock)
b93b0163 103 xa_unlock_irq(&mapping->i_pages);
f2187599 104 pvec->nr = j;
c6dcf52c
JK
105}
106
107/*
108 * Invalidate exceptional entry if easily possible. This handles exceptional
4636e70b 109 * entries for invalidate_inode_pages().
c6dcf52c
JK
110 */
111static int invalidate_exceptional_entry(struct address_space *mapping,
112 pgoff_t index, void *entry)
113{
4636e70b
RZ
114 /* Handled by shmem itself, or for DAX we do nothing. */
115 if (shmem_mapping(mapping) || dax_mapping(mapping))
c6dcf52c 116 return 1;
c6dcf52c
JK
117 clear_shadow_entry(mapping, index, entry);
118 return 1;
119}
120
121/*
122 * Invalidate exceptional entry if clean. This handles exceptional entries for
123 * invalidate_inode_pages2() so for DAX it evicts only clean entries.
124 */
125static int invalidate_exceptional_entry2(struct address_space *mapping,
126 pgoff_t index, void *entry)
127{
128 /* Handled by shmem itself */
129 if (shmem_mapping(mapping))
130 return 1;
131 if (dax_mapping(mapping))
132 return dax_invalidate_mapping_entry_sync(mapping, index);
133 clear_shadow_entry(mapping, index, entry);
134 return 1;
135}
136
cf9a2ae8 137/**
28bc44d7 138 * do_invalidatepage - invalidate part or all of a page
cf9a2ae8 139 * @page: the page which is affected
d47992f8
LC
140 * @offset: start of the range to invalidate
141 * @length: length of the range to invalidate
cf9a2ae8
DH
142 *
143 * do_invalidatepage() is called when all or part of the page has become
144 * invalidated by a truncate operation.
145 *
146 * do_invalidatepage() does not have to release all buffers, but it must
147 * ensure that no dirty buffer is left outside @offset and that no I/O
148 * is underway against any of the blocks which are outside the truncation
149 * point. Because the caller is about to free (and possibly reuse) those
150 * blocks on-disk.
151 */
d47992f8
LC
152void do_invalidatepage(struct page *page, unsigned int offset,
153 unsigned int length)
cf9a2ae8 154{
d47992f8
LC
155 void (*invalidatepage)(struct page *, unsigned int, unsigned int);
156
cf9a2ae8 157 invalidatepage = page->mapping->a_ops->invalidatepage;
9361401e 158#ifdef CONFIG_BLOCK
cf9a2ae8
DH
159 if (!invalidatepage)
160 invalidatepage = block_invalidatepage;
9361401e 161#endif
cf9a2ae8 162 if (invalidatepage)
d47992f8 163 (*invalidatepage)(page, offset, length);
cf9a2ae8
DH
164}
165
1da177e4
LT
166/*
167 * If truncate cannot remove the fs-private metadata from the page, the page
62e1c553 168 * becomes orphaned. It will be left on the LRU and may even be mapped into
54cb8821 169 * user pagetables if we're racing with filemap_fault().
1da177e4 170 *
fc3a5ac5 171 * We need to bail out if page->mapping is no longer equal to the original
1da177e4 172 * mapping. This happens a) when the VM reclaimed the page while we waited on
fc0ecff6 173 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
1da177e4
LT
174 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
175 */
9f4e41f4
JK
176static void
177truncate_cleanup_page(struct address_space *mapping, struct page *page)
1da177e4 178{
9f4e41f4 179 if (page_mapped(page)) {
fc3a5ac5 180 unsigned int nr = thp_nr_pages(page);
977fbdcd 181 unmap_mapping_pages(mapping, page->index, nr, false);
9f4e41f4 182 }
1da177e4 183
266cf658 184 if (page_has_private(page))
fc3a5ac5 185 do_invalidatepage(page, 0, thp_size(page));
1da177e4 186
b9ea2515
KK
187 /*
188 * Some filesystems seem to re-dirty the page even after
189 * the VM has canceled the dirty bit (eg ext3 journaling).
190 * Hence dirty accounting check is placed after invalidation.
191 */
11f81bec 192 cancel_dirty_page(page);
1da177e4 193 ClearPageMappedToDisk(page);
1da177e4
LT
194}
195
196/*
fc0ecff6 197 * This is for invalidate_mapping_pages(). That function can be called at
1da177e4 198 * any time, and is not supposed to throw away dirty pages. But pages can
0fd0e6b0
NP
199 * be marked dirty at any time too, so use remove_mapping which safely
200 * discards clean, unused pages.
1da177e4
LT
201 *
202 * Returns non-zero if the page was successfully invalidated.
203 */
204static int
205invalidate_complete_page(struct address_space *mapping, struct page *page)
206{
0fd0e6b0
NP
207 int ret;
208
1da177e4
LT
209 if (page->mapping != mapping)
210 return 0;
211
266cf658 212 if (page_has_private(page) && !try_to_release_page(page, 0))
1da177e4
LT
213 return 0;
214
0fd0e6b0 215 ret = remove_mapping(mapping, page);
0fd0e6b0
NP
216
217 return ret;
1da177e4
LT
218}
219
750b4987
NP
220int truncate_inode_page(struct address_space *mapping, struct page *page)
221{
fc127da0
KS
222 VM_BUG_ON_PAGE(PageTail(page), page);
223
9f4e41f4
JK
224 if (page->mapping != mapping)
225 return -EIO;
226
227 truncate_cleanup_page(mapping, page);
228 delete_from_page_cache(page);
229 return 0;
750b4987
NP
230}
231
25718736
AK
232/*
233 * Used to get rid of pages on hardware memory corruption.
234 */
235int generic_error_remove_page(struct address_space *mapping, struct page *page)
236{
237 if (!mapping)
238 return -EINVAL;
239 /*
240 * Only punch for normal data pages for now.
241 * Handling other types like directories would need more auditing.
242 */
243 if (!S_ISREG(mapping->host->i_mode))
244 return -EIO;
245 return truncate_inode_page(mapping, page);
246}
247EXPORT_SYMBOL(generic_error_remove_page);
248
83f78668
WF
249/*
250 * Safely invalidate one page from its pagecache mapping.
251 * It only drops clean, unused pages. The page must be locked.
252 *
253 * Returns 1 if the page is successfully invalidated, otherwise 0.
254 */
255int invalidate_inode_page(struct page *page)
256{
257 struct address_space *mapping = page_mapping(page);
258 if (!mapping)
259 return 0;
260 if (PageDirty(page) || PageWriteback(page))
261 return 0;
262 if (page_mapped(page))
263 return 0;
264 return invalidate_complete_page(mapping, page);
265}
266
1da177e4 267/**
73c1e204 268 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
1da177e4
LT
269 * @mapping: mapping to truncate
270 * @lstart: offset from which to truncate
5a720394 271 * @lend: offset to which to truncate (inclusive)
1da177e4 272 *
d7339071 273 * Truncate the page cache, removing the pages that are between
5a720394
LC
274 * specified offsets (and zeroing out partial pages
275 * if lstart or lend + 1 is not page aligned).
1da177e4
LT
276 *
277 * Truncate takes two passes - the first pass is nonblocking. It will not
278 * block on page locks and it will not block on writeback. The second pass
279 * will wait. This is to prevent as much IO as possible in the affected region.
280 * The first pass will remove most pages, so the search cost of the second pass
281 * is low.
282 *
1da177e4
LT
283 * We pass down the cache-hot hint to the page freeing code. Even if the
284 * mapping is large, it is probably the case that the final pages are the most
285 * recently touched, and freeing happens in ascending file offset order.
5a720394
LC
286 *
287 * Note that since ->invalidatepage() accepts range to invalidate
288 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
289 * page aligned properly.
1da177e4 290 */
d7339071
HR
291void truncate_inode_pages_range(struct address_space *mapping,
292 loff_t lstart, loff_t lend)
1da177e4 293{
5a720394
LC
294 pgoff_t start; /* inclusive */
295 pgoff_t end; /* exclusive */
296 unsigned int partial_start; /* inclusive */
297 unsigned int partial_end; /* exclusive */
298 struct pagevec pvec;
0cd6144a 299 pgoff_t indices[PAGEVEC_SIZE];
5a720394
LC
300 pgoff_t index;
301 int i;
1da177e4 302
f9fe48be 303 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
34ccb69e 304 goto out;
1da177e4 305
5a720394 306 /* Offsets within partial pages */
09cbfeaf
KS
307 partial_start = lstart & (PAGE_SIZE - 1);
308 partial_end = (lend + 1) & (PAGE_SIZE - 1);
5a720394
LC
309
310 /*
311 * 'start' and 'end' always covers the range of pages to be fully
312 * truncated. Partial pages are covered with 'partial_start' at the
313 * start of the range and 'partial_end' at the end of the range.
314 * Note that 'end' is exclusive while 'lend' is inclusive.
315 */
09cbfeaf 316 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
5a720394
LC
317 if (lend == -1)
318 /*
319 * lend == -1 indicates end-of-file so we have to set 'end'
320 * to the highest possible pgoff_t and since the type is
321 * unsigned we're using -1.
322 */
323 end = -1;
324 else
09cbfeaf 325 end = (lend + 1) >> PAGE_SHIFT;
d7339071 326
86679820 327 pagevec_init(&pvec);
b85e0eff 328 index = start;
0cd6144a
JW
329 while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
330 min(end - index, (pgoff_t)PAGEVEC_SIZE),
331 indices)) {
aa65c29c
JK
332 /*
333 * Pagevec array has exceptional entries and we may also fail
334 * to lock some pages. So we store pages that can be deleted
335 * in a new pagevec.
336 */
337 struct pagevec locked_pvec;
338
86679820 339 pagevec_init(&locked_pvec);
1da177e4
LT
340 for (i = 0; i < pagevec_count(&pvec); i++) {
341 struct page *page = pvec.pages[i];
1da177e4 342
b85e0eff 343 /* We rely upon deletion not changing page->index */
0cd6144a 344 index = indices[i];
5a720394 345 if (index >= end)
d7339071 346 break;
d7339071 347
3159f943 348 if (xa_is_value(page))
0cd6144a 349 continue;
0cd6144a 350
529ae9aa 351 if (!trylock_page(page))
1da177e4 352 continue;
5cbc198a 353 WARN_ON(page_to_index(page) != index);
1da177e4
LT
354 if (PageWriteback(page)) {
355 unlock_page(page);
356 continue;
357 }
aa65c29c
JK
358 if (page->mapping != mapping) {
359 unlock_page(page);
360 continue;
361 }
362 pagevec_add(&locked_pvec, page);
1da177e4 363 }
aa65c29c
JK
364 for (i = 0; i < pagevec_count(&locked_pvec); i++)
365 truncate_cleanup_page(mapping, locked_pvec.pages[i]);
366 delete_from_page_cache_batch(mapping, &locked_pvec);
367 for (i = 0; i < pagevec_count(&locked_pvec); i++)
368 unlock_page(locked_pvec.pages[i]);
f2187599 369 truncate_exceptional_pvec_entries(mapping, &pvec, indices, end);
1da177e4
LT
370 pagevec_release(&pvec);
371 cond_resched();
b85e0eff 372 index++;
1da177e4 373 }
5a720394 374 if (partial_start) {
1da177e4
LT
375 struct page *page = find_lock_page(mapping, start - 1);
376 if (page) {
09cbfeaf 377 unsigned int top = PAGE_SIZE;
5a720394
LC
378 if (start > end) {
379 /* Truncation within a single page */
380 top = partial_end;
381 partial_end = 0;
382 }
1da177e4 383 wait_on_page_writeback(page);
5a720394
LC
384 zero_user_segment(page, partial_start, top);
385 cleancache_invalidate_page(mapping, page);
386 if (page_has_private(page))
387 do_invalidatepage(page, partial_start,
388 top - partial_start);
1da177e4 389 unlock_page(page);
09cbfeaf 390 put_page(page);
1da177e4
LT
391 }
392 }
5a720394
LC
393 if (partial_end) {
394 struct page *page = find_lock_page(mapping, end);
395 if (page) {
396 wait_on_page_writeback(page);
397 zero_user_segment(page, 0, partial_end);
398 cleancache_invalidate_page(mapping, page);
399 if (page_has_private(page))
400 do_invalidatepage(page, 0,
401 partial_end);
402 unlock_page(page);
09cbfeaf 403 put_page(page);
5a720394
LC
404 }
405 }
406 /*
407 * If the truncation happened within a single page no pages
408 * will be released, just zeroed, so we can bail out now.
409 */
410 if (start >= end)
34ccb69e 411 goto out;
1da177e4 412
b85e0eff 413 index = start;
1da177e4
LT
414 for ( ; ; ) {
415 cond_resched();
0cd6144a 416 if (!pagevec_lookup_entries(&pvec, mapping, index,
792ceaef
HD
417 min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
418 /* If all gone from start onwards, we're done */
b85e0eff 419 if (index == start)
1da177e4 420 break;
792ceaef 421 /* Otherwise restart to make sure all gone */
b85e0eff 422 index = start;
1da177e4
LT
423 continue;
424 }
0cd6144a 425 if (index == start && indices[0] >= end) {
792ceaef 426 /* All gone out of hole to be punched, we're done */
0cd6144a 427 pagevec_remove_exceptionals(&pvec);
d7339071
HR
428 pagevec_release(&pvec);
429 break;
430 }
f2187599 431
1da177e4
LT
432 for (i = 0; i < pagevec_count(&pvec); i++) {
433 struct page *page = pvec.pages[i];
434
b85e0eff 435 /* We rely upon deletion not changing page->index */
0cd6144a 436 index = indices[i];
792ceaef
HD
437 if (index >= end) {
438 /* Restart punch to make sure all gone */
439 index = start - 1;
d7339071 440 break;
792ceaef 441 }
b85e0eff 442
3159f943 443 if (xa_is_value(page))
0cd6144a 444 continue;
0cd6144a 445
1da177e4 446 lock_page(page);
5cbc198a 447 WARN_ON(page_to_index(page) != index);
1da177e4 448 wait_on_page_writeback(page);
750b4987 449 truncate_inode_page(mapping, page);
1da177e4
LT
450 unlock_page(page);
451 }
f2187599 452 truncate_exceptional_pvec_entries(mapping, &pvec, indices, end);
1da177e4 453 pagevec_release(&pvec);
b85e0eff 454 index++;
1da177e4 455 }
34ccb69e
AR
456
457out:
3167760f 458 cleancache_invalidate_inode(mapping);
1da177e4 459}
d7339071 460EXPORT_SYMBOL(truncate_inode_pages_range);
1da177e4 461
d7339071
HR
462/**
463 * truncate_inode_pages - truncate *all* the pages from an offset
464 * @mapping: mapping to truncate
465 * @lstart: offset from which to truncate
466 *
1b1dcc1b 467 * Called under (and serialised by) inode->i_mutex.
08142579
JK
468 *
469 * Note: When this function returns, there can be a page in the process of
470 * deletion (inside __delete_from_page_cache()) in the specified range. Thus
471 * mapping->nrpages can be non-zero when this function returns even after
472 * truncation of the whole mapping.
d7339071
HR
473 */
474void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
475{
476 truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
477}
1da177e4
LT
478EXPORT_SYMBOL(truncate_inode_pages);
479
91b0abe3
JW
480/**
481 * truncate_inode_pages_final - truncate *all* pages before inode dies
482 * @mapping: mapping to truncate
483 *
484 * Called under (and serialized by) inode->i_mutex.
485 *
486 * Filesystems have to use this in the .evict_inode path to inform the
487 * VM that this is the final truncate and the inode is going away.
488 */
489void truncate_inode_pages_final(struct address_space *mapping)
490{
f9fe48be 491 unsigned long nrexceptional;
91b0abe3
JW
492 unsigned long nrpages;
493
494 /*
495 * Page reclaim can not participate in regular inode lifetime
496 * management (can't call iput()) and thus can race with the
497 * inode teardown. Tell it when the address space is exiting,
498 * so that it does not install eviction information after the
499 * final truncate has begun.
500 */
501 mapping_set_exiting(mapping);
502
503 /*
504 * When reclaim installs eviction entries, it increases
f9fe48be 505 * nrexceptional first, then decreases nrpages. Make sure we see
91b0abe3
JW
506 * this in the right order or we might miss an entry.
507 */
508 nrpages = mapping->nrpages;
509 smp_rmb();
f9fe48be 510 nrexceptional = mapping->nrexceptional;
91b0abe3 511
f9fe48be 512 if (nrpages || nrexceptional) {
91b0abe3
JW
513 /*
514 * As truncation uses a lockless tree lookup, cycle
515 * the tree lock to make sure any ongoing tree
516 * modification that does not see AS_EXITING is
517 * completed before starting the final truncate.
518 */
b93b0163
MW
519 xa_lock_irq(&mapping->i_pages);
520 xa_unlock_irq(&mapping->i_pages);
91b0abe3 521 }
6ff38bd4
PT
522
523 /*
524 * Cleancache needs notification even if there are no pages or shadow
525 * entries.
526 */
527 truncate_inode_pages(mapping, 0);
91b0abe3
JW
528}
529EXPORT_SYMBOL(truncate_inode_pages_final);
530
a77eedbc 531static unsigned long __invalidate_mapping_pages(struct address_space *mapping,
eb1d7a65 532 pgoff_t start, pgoff_t end, unsigned long *nr_pagevec)
1da177e4 533{
0cd6144a 534 pgoff_t indices[PAGEVEC_SIZE];
1da177e4 535 struct pagevec pvec;
b85e0eff 536 pgoff_t index = start;
31560180
MK
537 unsigned long ret;
538 unsigned long count = 0;
1da177e4
LT
539 int i;
540
86679820 541 pagevec_init(&pvec);
0cd6144a
JW
542 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
543 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
544 indices)) {
1da177e4
LT
545 for (i = 0; i < pagevec_count(&pvec); i++) {
546 struct page *page = pvec.pages[i];
e0f23603 547
b85e0eff 548 /* We rely upon deletion not changing page->index */
0cd6144a 549 index = indices[i];
b85e0eff
HD
550 if (index > end)
551 break;
e0f23603 552
3159f943 553 if (xa_is_value(page)) {
c6dcf52c
JK
554 invalidate_exceptional_entry(mapping, index,
555 page);
0cd6144a
JW
556 continue;
557 }
558
b85e0eff
HD
559 if (!trylock_page(page))
560 continue;
fc127da0 561
5cbc198a 562 WARN_ON(page_to_index(page) != index);
fc127da0
KS
563
564 /* Middle of THP: skip */
565 if (PageTransTail(page)) {
566 unlock_page(page);
567 continue;
568 } else if (PageTransHuge(page)) {
569 index += HPAGE_PMD_NR - 1;
570 i += HPAGE_PMD_NR - 1;
76b6f9b7
JK
571 /*
572 * 'end' is in the middle of THP. Don't
573 * invalidate the page as the part outside of
574 * 'end' could be still useful.
575 */
576 if (index > end) {
577 unlock_page(page);
fc127da0 578 continue;
76b6f9b7 579 }
ef18a1ca
KS
580
581 /* Take a pin outside pagevec */
582 get_page(page);
583
584 /*
585 * Drop extra pins before trying to invalidate
586 * the huge page.
587 */
588 pagevec_remove_exceptionals(&pvec);
589 pagevec_release(&pvec);
fc127da0
KS
590 }
591
31560180 592 ret = invalidate_inode_page(page);
1da177e4 593 unlock_page(page);
31560180
MK
594 /*
595 * Invalidation is a hint that the page is no longer
596 * of interest and try to speed up its reclaim.
597 */
eb1d7a65 598 if (!ret) {
cc5993bd 599 deactivate_file_page(page);
eb1d7a65
YS
600 /* It is likely on the pagevec of a remote CPU */
601 if (nr_pagevec)
602 (*nr_pagevec)++;
603 }
604
ef18a1ca
KS
605 if (PageTransHuge(page))
606 put_page(page);
31560180 607 count += ret;
1da177e4 608 }
0cd6144a 609 pagevec_remove_exceptionals(&pvec);
1da177e4 610 pagevec_release(&pvec);
28697355 611 cond_resched();
b85e0eff 612 index++;
1da177e4 613 }
31560180 614 return count;
1da177e4 615}
eb1d7a65
YS
616
617/**
618 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
619 * @mapping: the address_space which holds the pages to invalidate
620 * @start: the offset 'from' which to invalidate
621 * @end: the offset 'to' which to invalidate (inclusive)
622 *
623 * This function only removes the unlocked pages, if you want to
624 * remove all the pages of one inode, you must call truncate_inode_pages.
625 *
626 * invalidate_mapping_pages() will not block on IO activity. It will not
627 * invalidate pages which are dirty, locked, under writeback or mapped into
628 * pagetables.
629 *
630 * Return: the number of the pages that were invalidated
631 */
632unsigned long invalidate_mapping_pages(struct address_space *mapping,
633 pgoff_t start, pgoff_t end)
634{
635 return __invalidate_mapping_pages(mapping, start, end, NULL);
636}
54bc4855 637EXPORT_SYMBOL(invalidate_mapping_pages);
1da177e4 638
eb1d7a65 639/**
649c6dfe
AS
640 * invalidate_mapping_pagevec - Invalidate all the unlocked pages of one inode
641 * @mapping: the address_space which holds the pages to invalidate
642 * @start: the offset 'from' which to invalidate
643 * @end: the offset 'to' which to invalidate (inclusive)
644 * @nr_pagevec: invalidate failed page number for caller
645 *
a00cda3f
MCC
646 * This helper is similar to invalidate_mapping_pages(), except that it accounts
647 * for pages that are likely on a pagevec and counts them in @nr_pagevec, which
648 * will be used by the caller.
eb1d7a65
YS
649 */
650void invalidate_mapping_pagevec(struct address_space *mapping,
651 pgoff_t start, pgoff_t end, unsigned long *nr_pagevec)
652{
653 __invalidate_mapping_pages(mapping, start, end, nr_pagevec);
654}
655
bd4c8ce4
AM
656/*
657 * This is like invalidate_complete_page(), except it ignores the page's
658 * refcount. We do this because invalidate_inode_pages2() needs stronger
659 * invalidation guarantees, and cannot afford to leave pages behind because
2706a1b8
AB
660 * shrink_page_list() has a temp ref on them, or because they're transiently
661 * sitting in the lru_cache_add() pagevecs.
bd4c8ce4
AM
662 */
663static int
664invalidate_complete_page2(struct address_space *mapping, struct page *page)
665{
c4843a75
GT
666 unsigned long flags;
667
bd4c8ce4
AM
668 if (page->mapping != mapping)
669 return 0;
670
266cf658 671 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
bd4c8ce4
AM
672 return 0;
673
b93b0163 674 xa_lock_irqsave(&mapping->i_pages, flags);
bd4c8ce4
AM
675 if (PageDirty(page))
676 goto failed;
677
266cf658 678 BUG_ON(page_has_private(page));
62cccb8c 679 __delete_from_page_cache(page, NULL);
b93b0163 680 xa_unlock_irqrestore(&mapping->i_pages, flags);
6072d13c
LT
681
682 if (mapping->a_ops->freepage)
683 mapping->a_ops->freepage(page);
684
09cbfeaf 685 put_page(page); /* pagecache ref */
bd4c8ce4
AM
686 return 1;
687failed:
b93b0163 688 xa_unlock_irqrestore(&mapping->i_pages, flags);
bd4c8ce4
AM
689 return 0;
690}
691
e3db7691
TM
692static int do_launder_page(struct address_space *mapping, struct page *page)
693{
694 if (!PageDirty(page))
695 return 0;
696 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
697 return 0;
698 return mapping->a_ops->launder_page(page);
699}
700
1da177e4
LT
701/**
702 * invalidate_inode_pages2_range - remove range of pages from an address_space
67be2dd1 703 * @mapping: the address_space
1da177e4
LT
704 * @start: the page offset 'from' which to invalidate
705 * @end: the page offset 'to' which to invalidate (inclusive)
706 *
707 * Any pages which are found to be mapped into pagetables are unmapped prior to
708 * invalidation.
709 *
a862f68a 710 * Return: -EBUSY if any pages could not be invalidated.
1da177e4
LT
711 */
712int invalidate_inode_pages2_range(struct address_space *mapping,
713 pgoff_t start, pgoff_t end)
714{
0cd6144a 715 pgoff_t indices[PAGEVEC_SIZE];
1da177e4 716 struct pagevec pvec;
b85e0eff 717 pgoff_t index;
1da177e4
LT
718 int i;
719 int ret = 0;
0dd1334f 720 int ret2 = 0;
1da177e4 721 int did_range_unmap = 0;
1da177e4 722
32691f0f 723 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
34ccb69e 724 goto out;
32691f0f 725
86679820 726 pagevec_init(&pvec);
b85e0eff 727 index = start;
0cd6144a
JW
728 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
729 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
730 indices)) {
7b965e08 731 for (i = 0; i < pagevec_count(&pvec); i++) {
1da177e4 732 struct page *page = pvec.pages[i];
b85e0eff
HD
733
734 /* We rely upon deletion not changing page->index */
0cd6144a 735 index = indices[i];
b85e0eff
HD
736 if (index > end)
737 break;
1da177e4 738
3159f943 739 if (xa_is_value(page)) {
c6dcf52c
JK
740 if (!invalidate_exceptional_entry2(mapping,
741 index, page))
742 ret = -EBUSY;
0cd6144a
JW
743 continue;
744 }
745
1da177e4 746 lock_page(page);
5cbc198a 747 WARN_ON(page_to_index(page) != index);
1da177e4
LT
748 if (page->mapping != mapping) {
749 unlock_page(page);
750 continue;
751 }
1da177e4 752 wait_on_page_writeback(page);
d00806b1 753 if (page_mapped(page)) {
1da177e4
LT
754 if (!did_range_unmap) {
755 /*
756 * Zap the rest of the file in one hit.
757 */
977fbdcd
MW
758 unmap_mapping_pages(mapping, index,
759 (1 + end - index), false);
1da177e4
LT
760 did_range_unmap = 1;
761 } else {
762 /*
763 * Just zap this page
764 */
977fbdcd
MW
765 unmap_mapping_pages(mapping, index,
766 1, false);
1da177e4
LT
767 }
768 }
d00806b1 769 BUG_ON(page_mapped(page));
0dd1334f
HH
770 ret2 = do_launder_page(mapping, page);
771 if (ret2 == 0) {
772 if (!invalidate_complete_page2(mapping, page))
6ccfa806 773 ret2 = -EBUSY;
0dd1334f
HH
774 }
775 if (ret2 < 0)
776 ret = ret2;
1da177e4
LT
777 unlock_page(page);
778 }
0cd6144a 779 pagevec_remove_exceptionals(&pvec);
1da177e4
LT
780 pagevec_release(&pvec);
781 cond_resched();
b85e0eff 782 index++;
1da177e4 783 }
cd656375 784 /*
69b6c131 785 * For DAX we invalidate page tables after invalidating page cache. We
cd656375
JK
786 * could invalidate page tables while invalidating each entry however
787 * that would be expensive. And doing range unmapping before doesn't
69b6c131 788 * work as we have no cheap way to find whether page cache entry didn't
cd656375
JK
789 * get remapped later.
790 */
791 if (dax_mapping(mapping)) {
977fbdcd 792 unmap_mapping_pages(mapping, start, end - start + 1, false);
cd656375 793 }
34ccb69e 794out:
3167760f 795 cleancache_invalidate_inode(mapping);
1da177e4
LT
796 return ret;
797}
798EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
799
800/**
801 * invalidate_inode_pages2 - remove all pages from an address_space
67be2dd1 802 * @mapping: the address_space
1da177e4
LT
803 *
804 * Any pages which are found to be mapped into pagetables are unmapped prior to
805 * invalidation.
806 *
a862f68a 807 * Return: -EBUSY if any pages could not be invalidated.
1da177e4
LT
808 */
809int invalidate_inode_pages2(struct address_space *mapping)
810{
811 return invalidate_inode_pages2_range(mapping, 0, -1);
812}
813EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
25d9e2d1 814
815/**
816 * truncate_pagecache - unmap and remove pagecache that has been truncated
817 * @inode: inode
8a549bea 818 * @newsize: new file size
25d9e2d1 819 *
820 * inode's new i_size must already be written before truncate_pagecache
821 * is called.
822 *
823 * This function should typically be called before the filesystem
824 * releases resources associated with the freed range (eg. deallocates
825 * blocks). This way, pagecache will always stay logically coherent
826 * with on-disk format, and the filesystem would not have to deal with
827 * situations such as writepage being called for a page that has already
828 * had its underlying blocks deallocated.
829 */
7caef267 830void truncate_pagecache(struct inode *inode, loff_t newsize)
25d9e2d1 831{
cedabed4 832 struct address_space *mapping = inode->i_mapping;
8a549bea 833 loff_t holebegin = round_up(newsize, PAGE_SIZE);
cedabed4
OH
834
835 /*
836 * unmap_mapping_range is called twice, first simply for
837 * efficiency so that truncate_inode_pages does fewer
838 * single-page unmaps. However after this first call, and
839 * before truncate_inode_pages finishes, it is possible for
840 * private pages to be COWed, which remain after
841 * truncate_inode_pages finishes, hence the second
842 * unmap_mapping_range call must be made for correctness.
843 */
8a549bea
HD
844 unmap_mapping_range(mapping, holebegin, 0, 1);
845 truncate_inode_pages(mapping, newsize);
846 unmap_mapping_range(mapping, holebegin, 0, 1);
25d9e2d1 847}
848EXPORT_SYMBOL(truncate_pagecache);
849
2c27c65e
CH
850/**
851 * truncate_setsize - update inode and pagecache for a new file size
852 * @inode: inode
853 * @newsize: new file size
854 *
382e27da
JK
855 * truncate_setsize updates i_size and performs pagecache truncation (if
856 * necessary) to @newsize. It will be typically be called from the filesystem's
857 * setattr function when ATTR_SIZE is passed in.
2c27c65e 858 *
77783d06
JK
859 * Must be called with a lock serializing truncates and writes (generally
860 * i_mutex but e.g. xfs uses a different lock) and before all filesystem
861 * specific block truncation has been performed.
2c27c65e
CH
862 */
863void truncate_setsize(struct inode *inode, loff_t newsize)
864{
90a80202
JK
865 loff_t oldsize = inode->i_size;
866
2c27c65e 867 i_size_write(inode, newsize);
90a80202
JK
868 if (newsize > oldsize)
869 pagecache_isize_extended(inode, oldsize, newsize);
7caef267 870 truncate_pagecache(inode, newsize);
2c27c65e
CH
871}
872EXPORT_SYMBOL(truncate_setsize);
873
90a80202
JK
874/**
875 * pagecache_isize_extended - update pagecache after extension of i_size
876 * @inode: inode for which i_size was extended
877 * @from: original inode size
878 * @to: new inode size
879 *
880 * Handle extension of inode size either caused by extending truncate or by
881 * write starting after current i_size. We mark the page straddling current
882 * i_size RO so that page_mkwrite() is called on the nearest write access to
883 * the page. This way filesystem can be sure that page_mkwrite() is called on
884 * the page before user writes to the page via mmap after the i_size has been
885 * changed.
886 *
887 * The function must be called after i_size is updated so that page fault
888 * coming after we unlock the page will already see the new i_size.
889 * The function must be called while we still hold i_mutex - this not only
890 * makes sure i_size is stable but also that userspace cannot observe new
891 * i_size value before we are prepared to store mmap writes at new inode size.
892 */
893void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
894{
93407472 895 int bsize = i_blocksize(inode);
90a80202
JK
896 loff_t rounded_from;
897 struct page *page;
898 pgoff_t index;
899
90a80202
JK
900 WARN_ON(to > inode->i_size);
901
09cbfeaf 902 if (from >= to || bsize == PAGE_SIZE)
90a80202
JK
903 return;
904 /* Page straddling @from will not have any hole block created? */
905 rounded_from = round_up(from, bsize);
09cbfeaf 906 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
90a80202
JK
907 return;
908
09cbfeaf 909 index = from >> PAGE_SHIFT;
90a80202
JK
910 page = find_lock_page(inode->i_mapping, index);
911 /* Page not cached? Nothing to do */
912 if (!page)
913 return;
914 /*
915 * See clear_page_dirty_for_io() for details why set_page_dirty()
916 * is needed.
917 */
918 if (page_mkclean(page))
919 set_page_dirty(page);
920 unlock_page(page);
09cbfeaf 921 put_page(page);
90a80202
JK
922}
923EXPORT_SYMBOL(pagecache_isize_extended);
924
623e3db9
HD
925/**
926 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
927 * @inode: inode
928 * @lstart: offset of beginning of hole
929 * @lend: offset of last byte of hole
930 *
931 * This function should typically be called before the filesystem
932 * releases resources associated with the freed range (eg. deallocates
933 * blocks). This way, pagecache will always stay logically coherent
934 * with on-disk format, and the filesystem would not have to deal with
935 * situations such as writepage being called for a page that has already
936 * had its underlying blocks deallocated.
937 */
938void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
939{
940 struct address_space *mapping = inode->i_mapping;
941 loff_t unmap_start = round_up(lstart, PAGE_SIZE);
942 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
943 /*
944 * This rounding is currently just for example: unmap_mapping_range
945 * expands its hole outwards, whereas we want it to contract the hole
946 * inwards. However, existing callers of truncate_pagecache_range are
5a720394
LC
947 * doing their own page rounding first. Note that unmap_mapping_range
948 * allows holelen 0 for all, and we allow lend -1 for end of file.
623e3db9
HD
949 */
950
951 /*
952 * Unlike in truncate_pagecache, unmap_mapping_range is called only
953 * once (before truncating pagecache), and without "even_cows" flag:
954 * hole-punching should not remove private COWed pages from the hole.
955 */
956 if ((u64)unmap_end > (u64)unmap_start)
957 unmap_mapping_range(mapping, unmap_start,
958 1 + unmap_end - unmap_start, 0);
959 truncate_inode_pages_range(mapping, lstart, lend);
960}
961EXPORT_SYMBOL(truncate_pagecache_range);