]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/truncate.c
mm + fs: prepare for non-page entries in page cache radix trees
[mirror_ubuntu-artful-kernel.git] / mm / truncate.c
CommitLineData
1da177e4
LT
1/*
2 * mm/truncate.c - code for taking down pages from address_spaces
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
e1f8e874 6 * 10Sep2002 Andrew Morton
1da177e4
LT
7 * Initial version.
8 */
9
10#include <linux/kernel.h>
4af3c9cc 11#include <linux/backing-dev.h>
5a0e3ad6 12#include <linux/gfp.h>
1da177e4 13#include <linux/mm.h>
0fd0e6b0 14#include <linux/swap.h>
b95f1b31 15#include <linux/export.h>
1da177e4 16#include <linux/pagemap.h>
01f2705d 17#include <linux/highmem.h>
1da177e4 18#include <linux/pagevec.h>
e08748ce 19#include <linux/task_io_accounting_ops.h>
1da177e4 20#include <linux/buffer_head.h> /* grr. try_to_release_page,
aaa4059b 21 do_invalidatepage */
c515e1fd 22#include <linux/cleancache.h>
ba470de4 23#include "internal.h"
1da177e4 24
0cd6144a
JW
25static void clear_exceptional_entry(struct address_space *mapping,
26 pgoff_t index, void *entry)
27{
28 /* Handled by shmem itself */
29 if (shmem_mapping(mapping))
30 return;
31
32 spin_lock_irq(&mapping->tree_lock);
33 /*
34 * Regular page slots are stabilized by the page lock even
35 * without the tree itself locked. These unlocked entries
36 * need verification under the tree lock.
37 */
38 radix_tree_delete_item(&mapping->page_tree, index, entry);
39 spin_unlock_irq(&mapping->tree_lock);
40}
1da177e4 41
cf9a2ae8 42/**
28bc44d7 43 * do_invalidatepage - invalidate part or all of a page
cf9a2ae8 44 * @page: the page which is affected
d47992f8
LC
45 * @offset: start of the range to invalidate
46 * @length: length of the range to invalidate
cf9a2ae8
DH
47 *
48 * do_invalidatepage() is called when all or part of the page has become
49 * invalidated by a truncate operation.
50 *
51 * do_invalidatepage() does not have to release all buffers, but it must
52 * ensure that no dirty buffer is left outside @offset and that no I/O
53 * is underway against any of the blocks which are outside the truncation
54 * point. Because the caller is about to free (and possibly reuse) those
55 * blocks on-disk.
56 */
d47992f8
LC
57void do_invalidatepage(struct page *page, unsigned int offset,
58 unsigned int length)
cf9a2ae8 59{
d47992f8
LC
60 void (*invalidatepage)(struct page *, unsigned int, unsigned int);
61
cf9a2ae8 62 invalidatepage = page->mapping->a_ops->invalidatepage;
9361401e 63#ifdef CONFIG_BLOCK
cf9a2ae8
DH
64 if (!invalidatepage)
65 invalidatepage = block_invalidatepage;
9361401e 66#endif
cf9a2ae8 67 if (invalidatepage)
d47992f8 68 (*invalidatepage)(page, offset, length);
cf9a2ae8
DH
69}
70
ecdfc978
LT
71/*
72 * This cancels just the dirty bit on the kernel page itself, it
73 * does NOT actually remove dirty bits on any mmap's that may be
74 * around. It also leaves the page tagged dirty, so any sync
75 * activity will still find it on the dirty lists, and in particular,
76 * clear_page_dirty_for_io() will still look at the dirty bits in
77 * the VM.
78 *
79 * Doing this should *normally* only ever be done when a page
80 * is truncated, and is not actually mapped anywhere at all. However,
81 * fs/buffer.c does this when it notices that somebody has cleaned
82 * out all the buffers on a page without actually doing it through
83 * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
84 */
fba2591b
LT
85void cancel_dirty_page(struct page *page, unsigned int account_size)
86{
8368e328
LT
87 if (TestClearPageDirty(page)) {
88 struct address_space *mapping = page->mapping;
89 if (mapping && mapping_cap_account_dirty(mapping)) {
90 dec_zone_page_state(page, NR_FILE_DIRTY);
c9e51e41
PZ
91 dec_bdi_stat(mapping->backing_dev_info,
92 BDI_RECLAIMABLE);
8368e328
LT
93 if (account_size)
94 task_io_account_cancelled_write(account_size);
95 }
3e67c098 96 }
fba2591b 97}
8368e328 98EXPORT_SYMBOL(cancel_dirty_page);
fba2591b 99
1da177e4
LT
100/*
101 * If truncate cannot remove the fs-private metadata from the page, the page
62e1c553 102 * becomes orphaned. It will be left on the LRU and may even be mapped into
54cb8821 103 * user pagetables if we're racing with filemap_fault().
1da177e4
LT
104 *
105 * We need to bale out if page->mapping is no longer equal to the original
106 * mapping. This happens a) when the VM reclaimed the page while we waited on
fc0ecff6 107 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
1da177e4
LT
108 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
109 */
750b4987 110static int
1da177e4
LT
111truncate_complete_page(struct address_space *mapping, struct page *page)
112{
113 if (page->mapping != mapping)
750b4987 114 return -EIO;
1da177e4 115
266cf658 116 if (page_has_private(page))
d47992f8 117 do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1da177e4 118
a2b34564
BS
119 cancel_dirty_page(page, PAGE_CACHE_SIZE);
120
1da177e4 121 ClearPageMappedToDisk(page);
5adc7b51 122 delete_from_page_cache(page);
750b4987 123 return 0;
1da177e4
LT
124}
125
126/*
fc0ecff6 127 * This is for invalidate_mapping_pages(). That function can be called at
1da177e4 128 * any time, and is not supposed to throw away dirty pages. But pages can
0fd0e6b0
NP
129 * be marked dirty at any time too, so use remove_mapping which safely
130 * discards clean, unused pages.
1da177e4
LT
131 *
132 * Returns non-zero if the page was successfully invalidated.
133 */
134static int
135invalidate_complete_page(struct address_space *mapping, struct page *page)
136{
0fd0e6b0
NP
137 int ret;
138
1da177e4
LT
139 if (page->mapping != mapping)
140 return 0;
141
266cf658 142 if (page_has_private(page) && !try_to_release_page(page, 0))
1da177e4
LT
143 return 0;
144
0fd0e6b0 145 ret = remove_mapping(mapping, page);
0fd0e6b0
NP
146
147 return ret;
1da177e4
LT
148}
149
750b4987
NP
150int truncate_inode_page(struct address_space *mapping, struct page *page)
151{
152 if (page_mapped(page)) {
153 unmap_mapping_range(mapping,
154 (loff_t)page->index << PAGE_CACHE_SHIFT,
155 PAGE_CACHE_SIZE, 0);
156 }
157 return truncate_complete_page(mapping, page);
158}
159
25718736
AK
160/*
161 * Used to get rid of pages on hardware memory corruption.
162 */
163int generic_error_remove_page(struct address_space *mapping, struct page *page)
164{
165 if (!mapping)
166 return -EINVAL;
167 /*
168 * Only punch for normal data pages for now.
169 * Handling other types like directories would need more auditing.
170 */
171 if (!S_ISREG(mapping->host->i_mode))
172 return -EIO;
173 return truncate_inode_page(mapping, page);
174}
175EXPORT_SYMBOL(generic_error_remove_page);
176
83f78668
WF
177/*
178 * Safely invalidate one page from its pagecache mapping.
179 * It only drops clean, unused pages. The page must be locked.
180 *
181 * Returns 1 if the page is successfully invalidated, otherwise 0.
182 */
183int invalidate_inode_page(struct page *page)
184{
185 struct address_space *mapping = page_mapping(page);
186 if (!mapping)
187 return 0;
188 if (PageDirty(page) || PageWriteback(page))
189 return 0;
190 if (page_mapped(page))
191 return 0;
192 return invalidate_complete_page(mapping, page);
193}
194
1da177e4 195/**
73c1e204 196 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
1da177e4
LT
197 * @mapping: mapping to truncate
198 * @lstart: offset from which to truncate
5a720394 199 * @lend: offset to which to truncate (inclusive)
1da177e4 200 *
d7339071 201 * Truncate the page cache, removing the pages that are between
5a720394
LC
202 * specified offsets (and zeroing out partial pages
203 * if lstart or lend + 1 is not page aligned).
1da177e4
LT
204 *
205 * Truncate takes two passes - the first pass is nonblocking. It will not
206 * block on page locks and it will not block on writeback. The second pass
207 * will wait. This is to prevent as much IO as possible in the affected region.
208 * The first pass will remove most pages, so the search cost of the second pass
209 * is low.
210 *
1da177e4
LT
211 * We pass down the cache-hot hint to the page freeing code. Even if the
212 * mapping is large, it is probably the case that the final pages are the most
213 * recently touched, and freeing happens in ascending file offset order.
5a720394
LC
214 *
215 * Note that since ->invalidatepage() accepts range to invalidate
216 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
217 * page aligned properly.
1da177e4 218 */
d7339071
HR
219void truncate_inode_pages_range(struct address_space *mapping,
220 loff_t lstart, loff_t lend)
1da177e4 221{
5a720394
LC
222 pgoff_t start; /* inclusive */
223 pgoff_t end; /* exclusive */
224 unsigned int partial_start; /* inclusive */
225 unsigned int partial_end; /* exclusive */
226 struct pagevec pvec;
0cd6144a 227 pgoff_t indices[PAGEVEC_SIZE];
5a720394
LC
228 pgoff_t index;
229 int i;
1da177e4 230
3167760f 231 cleancache_invalidate_inode(mapping);
1da177e4
LT
232 if (mapping->nrpages == 0)
233 return;
234
5a720394
LC
235 /* Offsets within partial pages */
236 partial_start = lstart & (PAGE_CACHE_SIZE - 1);
237 partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
238
239 /*
240 * 'start' and 'end' always covers the range of pages to be fully
241 * truncated. Partial pages are covered with 'partial_start' at the
242 * start of the range and 'partial_end' at the end of the range.
243 * Note that 'end' is exclusive while 'lend' is inclusive.
244 */
245 start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
246 if (lend == -1)
247 /*
248 * lend == -1 indicates end-of-file so we have to set 'end'
249 * to the highest possible pgoff_t and since the type is
250 * unsigned we're using -1.
251 */
252 end = -1;
253 else
254 end = (lend + 1) >> PAGE_CACHE_SHIFT;
d7339071 255
1da177e4 256 pagevec_init(&pvec, 0);
b85e0eff 257 index = start;
0cd6144a
JW
258 while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
259 min(end - index, (pgoff_t)PAGEVEC_SIZE),
260 indices)) {
e5598f8b 261 mem_cgroup_uncharge_start();
1da177e4
LT
262 for (i = 0; i < pagevec_count(&pvec); i++) {
263 struct page *page = pvec.pages[i];
1da177e4 264
b85e0eff 265 /* We rely upon deletion not changing page->index */
0cd6144a 266 index = indices[i];
5a720394 267 if (index >= end)
d7339071 268 break;
d7339071 269
0cd6144a
JW
270 if (radix_tree_exceptional_entry(page)) {
271 clear_exceptional_entry(mapping, index, page);
272 continue;
273 }
274
529ae9aa 275 if (!trylock_page(page))
1da177e4 276 continue;
b85e0eff 277 WARN_ON(page->index != index);
1da177e4
LT
278 if (PageWriteback(page)) {
279 unlock_page(page);
280 continue;
281 }
750b4987 282 truncate_inode_page(mapping, page);
1da177e4
LT
283 unlock_page(page);
284 }
0cd6144a 285 pagevec_remove_exceptionals(&pvec);
1da177e4 286 pagevec_release(&pvec);
e5598f8b 287 mem_cgroup_uncharge_end();
1da177e4 288 cond_resched();
b85e0eff 289 index++;
1da177e4
LT
290 }
291
5a720394 292 if (partial_start) {
1da177e4
LT
293 struct page *page = find_lock_page(mapping, start - 1);
294 if (page) {
5a720394
LC
295 unsigned int top = PAGE_CACHE_SIZE;
296 if (start > end) {
297 /* Truncation within a single page */
298 top = partial_end;
299 partial_end = 0;
300 }
1da177e4 301 wait_on_page_writeback(page);
5a720394
LC
302 zero_user_segment(page, partial_start, top);
303 cleancache_invalidate_page(mapping, page);
304 if (page_has_private(page))
305 do_invalidatepage(page, partial_start,
306 top - partial_start);
1da177e4
LT
307 unlock_page(page);
308 page_cache_release(page);
309 }
310 }
5a720394
LC
311 if (partial_end) {
312 struct page *page = find_lock_page(mapping, end);
313 if (page) {
314 wait_on_page_writeback(page);
315 zero_user_segment(page, 0, partial_end);
316 cleancache_invalidate_page(mapping, page);
317 if (page_has_private(page))
318 do_invalidatepage(page, 0,
319 partial_end);
320 unlock_page(page);
321 page_cache_release(page);
322 }
323 }
324 /*
325 * If the truncation happened within a single page no pages
326 * will be released, just zeroed, so we can bail out now.
327 */
328 if (start >= end)
329 return;
1da177e4 330
b85e0eff 331 index = start;
1da177e4
LT
332 for ( ; ; ) {
333 cond_resched();
0cd6144a
JW
334 if (!pagevec_lookup_entries(&pvec, mapping, index,
335 min(end - index, (pgoff_t)PAGEVEC_SIZE),
336 indices)) {
b85e0eff 337 if (index == start)
1da177e4 338 break;
b85e0eff 339 index = start;
1da177e4
LT
340 continue;
341 }
0cd6144a
JW
342 if (index == start && indices[0] >= end) {
343 pagevec_remove_exceptionals(&pvec);
d7339071
HR
344 pagevec_release(&pvec);
345 break;
346 }
569b846d 347 mem_cgroup_uncharge_start();
1da177e4
LT
348 for (i = 0; i < pagevec_count(&pvec); i++) {
349 struct page *page = pvec.pages[i];
350
b85e0eff 351 /* We rely upon deletion not changing page->index */
0cd6144a 352 index = indices[i];
5a720394 353 if (index >= end)
d7339071 354 break;
b85e0eff 355
0cd6144a
JW
356 if (radix_tree_exceptional_entry(page)) {
357 clear_exceptional_entry(mapping, index, page);
358 continue;
359 }
360
1da177e4 361 lock_page(page);
b85e0eff 362 WARN_ON(page->index != index);
1da177e4 363 wait_on_page_writeback(page);
750b4987 364 truncate_inode_page(mapping, page);
1da177e4
LT
365 unlock_page(page);
366 }
0cd6144a 367 pagevec_remove_exceptionals(&pvec);
1da177e4 368 pagevec_release(&pvec);
569b846d 369 mem_cgroup_uncharge_end();
b85e0eff 370 index++;
1da177e4 371 }
3167760f 372 cleancache_invalidate_inode(mapping);
1da177e4 373}
d7339071 374EXPORT_SYMBOL(truncate_inode_pages_range);
1da177e4 375
d7339071
HR
376/**
377 * truncate_inode_pages - truncate *all* the pages from an offset
378 * @mapping: mapping to truncate
379 * @lstart: offset from which to truncate
380 *
1b1dcc1b 381 * Called under (and serialised by) inode->i_mutex.
08142579
JK
382 *
383 * Note: When this function returns, there can be a page in the process of
384 * deletion (inside __delete_from_page_cache()) in the specified range. Thus
385 * mapping->nrpages can be non-zero when this function returns even after
386 * truncation of the whole mapping.
d7339071
HR
387 */
388void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
389{
390 truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
391}
1da177e4
LT
392EXPORT_SYMBOL(truncate_inode_pages);
393
28697355
MW
394/**
395 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
396 * @mapping: the address_space which holds the pages to invalidate
397 * @start: the offset 'from' which to invalidate
398 * @end: the offset 'to' which to invalidate (inclusive)
399 *
400 * This function only removes the unlocked pages, if you want to
401 * remove all the pages of one inode, you must call truncate_inode_pages.
402 *
403 * invalidate_mapping_pages() will not block on IO activity. It will not
404 * invalidate pages which are dirty, locked, under writeback or mapped into
405 * pagetables.
406 */
407unsigned long invalidate_mapping_pages(struct address_space *mapping,
31560180 408 pgoff_t start, pgoff_t end)
1da177e4 409{
0cd6144a 410 pgoff_t indices[PAGEVEC_SIZE];
1da177e4 411 struct pagevec pvec;
b85e0eff 412 pgoff_t index = start;
31560180
MK
413 unsigned long ret;
414 unsigned long count = 0;
1da177e4
LT
415 int i;
416
31475dd6
HD
417 /*
418 * Note: this function may get called on a shmem/tmpfs mapping:
419 * pagevec_lookup() might then return 0 prematurely (because it
420 * got a gangful of swap entries); but it's hardly worth worrying
421 * about - it can rarely have anything to free from such a mapping
422 * (most pages are dirty), and already skips over any difficulties.
423 */
424
1da177e4 425 pagevec_init(&pvec, 0);
0cd6144a
JW
426 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
427 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
428 indices)) {
569b846d 429 mem_cgroup_uncharge_start();
1da177e4
LT
430 for (i = 0; i < pagevec_count(&pvec); i++) {
431 struct page *page = pvec.pages[i];
e0f23603 432
b85e0eff 433 /* We rely upon deletion not changing page->index */
0cd6144a 434 index = indices[i];
b85e0eff
HD
435 if (index > end)
436 break;
e0f23603 437
0cd6144a
JW
438 if (radix_tree_exceptional_entry(page)) {
439 clear_exceptional_entry(mapping, index, page);
440 continue;
441 }
442
b85e0eff
HD
443 if (!trylock_page(page))
444 continue;
445 WARN_ON(page->index != index);
31560180 446 ret = invalidate_inode_page(page);
1da177e4 447 unlock_page(page);
31560180
MK
448 /*
449 * Invalidation is a hint that the page is no longer
450 * of interest and try to speed up its reclaim.
451 */
452 if (!ret)
453 deactivate_page(page);
454 count += ret;
1da177e4 455 }
0cd6144a 456 pagevec_remove_exceptionals(&pvec);
1da177e4 457 pagevec_release(&pvec);
569b846d 458 mem_cgroup_uncharge_end();
28697355 459 cond_resched();
b85e0eff 460 index++;
1da177e4 461 }
31560180 462 return count;
1da177e4 463}
54bc4855 464EXPORT_SYMBOL(invalidate_mapping_pages);
1da177e4 465
bd4c8ce4
AM
466/*
467 * This is like invalidate_complete_page(), except it ignores the page's
468 * refcount. We do this because invalidate_inode_pages2() needs stronger
469 * invalidation guarantees, and cannot afford to leave pages behind because
2706a1b8
AB
470 * shrink_page_list() has a temp ref on them, or because they're transiently
471 * sitting in the lru_cache_add() pagevecs.
bd4c8ce4
AM
472 */
473static int
474invalidate_complete_page2(struct address_space *mapping, struct page *page)
475{
476 if (page->mapping != mapping)
477 return 0;
478
266cf658 479 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
bd4c8ce4
AM
480 return 0;
481
19fd6231 482 spin_lock_irq(&mapping->tree_lock);
bd4c8ce4
AM
483 if (PageDirty(page))
484 goto failed;
485
266cf658 486 BUG_ON(page_has_private(page));
e64a782f 487 __delete_from_page_cache(page);
19fd6231 488 spin_unlock_irq(&mapping->tree_lock);
e767e056 489 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
490
491 if (mapping->a_ops->freepage)
492 mapping->a_ops->freepage(page);
493
bd4c8ce4
AM
494 page_cache_release(page); /* pagecache ref */
495 return 1;
496failed:
19fd6231 497 spin_unlock_irq(&mapping->tree_lock);
bd4c8ce4
AM
498 return 0;
499}
500
e3db7691
TM
501static int do_launder_page(struct address_space *mapping, struct page *page)
502{
503 if (!PageDirty(page))
504 return 0;
505 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
506 return 0;
507 return mapping->a_ops->launder_page(page);
508}
509
1da177e4
LT
510/**
511 * invalidate_inode_pages2_range - remove range of pages from an address_space
67be2dd1 512 * @mapping: the address_space
1da177e4
LT
513 * @start: the page offset 'from' which to invalidate
514 * @end: the page offset 'to' which to invalidate (inclusive)
515 *
516 * Any pages which are found to be mapped into pagetables are unmapped prior to
517 * invalidation.
518 *
6ccfa806 519 * Returns -EBUSY if any pages could not be invalidated.
1da177e4
LT
520 */
521int invalidate_inode_pages2_range(struct address_space *mapping,
522 pgoff_t start, pgoff_t end)
523{
0cd6144a 524 pgoff_t indices[PAGEVEC_SIZE];
1da177e4 525 struct pagevec pvec;
b85e0eff 526 pgoff_t index;
1da177e4
LT
527 int i;
528 int ret = 0;
0dd1334f 529 int ret2 = 0;
1da177e4 530 int did_range_unmap = 0;
1da177e4 531
3167760f 532 cleancache_invalidate_inode(mapping);
1da177e4 533 pagevec_init(&pvec, 0);
b85e0eff 534 index = start;
0cd6144a
JW
535 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
536 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
537 indices)) {
569b846d 538 mem_cgroup_uncharge_start();
7b965e08 539 for (i = 0; i < pagevec_count(&pvec); i++) {
1da177e4 540 struct page *page = pvec.pages[i];
b85e0eff
HD
541
542 /* We rely upon deletion not changing page->index */
0cd6144a 543 index = indices[i];
b85e0eff
HD
544 if (index > end)
545 break;
1da177e4 546
0cd6144a
JW
547 if (radix_tree_exceptional_entry(page)) {
548 clear_exceptional_entry(mapping, index, page);
549 continue;
550 }
551
1da177e4 552 lock_page(page);
b85e0eff 553 WARN_ON(page->index != index);
1da177e4
LT
554 if (page->mapping != mapping) {
555 unlock_page(page);
556 continue;
557 }
1da177e4 558 wait_on_page_writeback(page);
d00806b1 559 if (page_mapped(page)) {
1da177e4
LT
560 if (!did_range_unmap) {
561 /*
562 * Zap the rest of the file in one hit.
563 */
564 unmap_mapping_range(mapping,
b85e0eff
HD
565 (loff_t)index << PAGE_CACHE_SHIFT,
566 (loff_t)(1 + end - index)
567 << PAGE_CACHE_SHIFT,
1da177e4
LT
568 0);
569 did_range_unmap = 1;
570 } else {
571 /*
572 * Just zap this page
573 */
574 unmap_mapping_range(mapping,
b85e0eff
HD
575 (loff_t)index << PAGE_CACHE_SHIFT,
576 PAGE_CACHE_SIZE, 0);
1da177e4
LT
577 }
578 }
d00806b1 579 BUG_ON(page_mapped(page));
0dd1334f
HH
580 ret2 = do_launder_page(mapping, page);
581 if (ret2 == 0) {
582 if (!invalidate_complete_page2(mapping, page))
6ccfa806 583 ret2 = -EBUSY;
0dd1334f
HH
584 }
585 if (ret2 < 0)
586 ret = ret2;
1da177e4
LT
587 unlock_page(page);
588 }
0cd6144a 589 pagevec_remove_exceptionals(&pvec);
1da177e4 590 pagevec_release(&pvec);
569b846d 591 mem_cgroup_uncharge_end();
1da177e4 592 cond_resched();
b85e0eff 593 index++;
1da177e4 594 }
3167760f 595 cleancache_invalidate_inode(mapping);
1da177e4
LT
596 return ret;
597}
598EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
599
600/**
601 * invalidate_inode_pages2 - remove all pages from an address_space
67be2dd1 602 * @mapping: the address_space
1da177e4
LT
603 *
604 * Any pages which are found to be mapped into pagetables are unmapped prior to
605 * invalidation.
606 *
e9de25dd 607 * Returns -EBUSY if any pages could not be invalidated.
1da177e4
LT
608 */
609int invalidate_inode_pages2(struct address_space *mapping)
610{
611 return invalidate_inode_pages2_range(mapping, 0, -1);
612}
613EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
25d9e2d1 614
615/**
616 * truncate_pagecache - unmap and remove pagecache that has been truncated
617 * @inode: inode
8a549bea 618 * @newsize: new file size
25d9e2d1 619 *
620 * inode's new i_size must already be written before truncate_pagecache
621 * is called.
622 *
623 * This function should typically be called before the filesystem
624 * releases resources associated with the freed range (eg. deallocates
625 * blocks). This way, pagecache will always stay logically coherent
626 * with on-disk format, and the filesystem would not have to deal with
627 * situations such as writepage being called for a page that has already
628 * had its underlying blocks deallocated.
629 */
7caef267 630void truncate_pagecache(struct inode *inode, loff_t newsize)
25d9e2d1 631{
cedabed4 632 struct address_space *mapping = inode->i_mapping;
8a549bea 633 loff_t holebegin = round_up(newsize, PAGE_SIZE);
cedabed4
OH
634
635 /*
636 * unmap_mapping_range is called twice, first simply for
637 * efficiency so that truncate_inode_pages does fewer
638 * single-page unmaps. However after this first call, and
639 * before truncate_inode_pages finishes, it is possible for
640 * private pages to be COWed, which remain after
641 * truncate_inode_pages finishes, hence the second
642 * unmap_mapping_range call must be made for correctness.
643 */
8a549bea
HD
644 unmap_mapping_range(mapping, holebegin, 0, 1);
645 truncate_inode_pages(mapping, newsize);
646 unmap_mapping_range(mapping, holebegin, 0, 1);
25d9e2d1 647}
648EXPORT_SYMBOL(truncate_pagecache);
649
2c27c65e
CH
650/**
651 * truncate_setsize - update inode and pagecache for a new file size
652 * @inode: inode
653 * @newsize: new file size
654 *
382e27da
JK
655 * truncate_setsize updates i_size and performs pagecache truncation (if
656 * necessary) to @newsize. It will be typically be called from the filesystem's
657 * setattr function when ATTR_SIZE is passed in.
2c27c65e 658 *
382e27da
JK
659 * Must be called with inode_mutex held and before all filesystem specific
660 * block truncation has been performed.
2c27c65e
CH
661 */
662void truncate_setsize(struct inode *inode, loff_t newsize)
663{
2c27c65e 664 i_size_write(inode, newsize);
7caef267 665 truncate_pagecache(inode, newsize);
2c27c65e
CH
666}
667EXPORT_SYMBOL(truncate_setsize);
668
623e3db9
HD
669/**
670 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
671 * @inode: inode
672 * @lstart: offset of beginning of hole
673 * @lend: offset of last byte of hole
674 *
675 * This function should typically be called before the filesystem
676 * releases resources associated with the freed range (eg. deallocates
677 * blocks). This way, pagecache will always stay logically coherent
678 * with on-disk format, and the filesystem would not have to deal with
679 * situations such as writepage being called for a page that has already
680 * had its underlying blocks deallocated.
681 */
682void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
683{
684 struct address_space *mapping = inode->i_mapping;
685 loff_t unmap_start = round_up(lstart, PAGE_SIZE);
686 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
687 /*
688 * This rounding is currently just for example: unmap_mapping_range
689 * expands its hole outwards, whereas we want it to contract the hole
690 * inwards. However, existing callers of truncate_pagecache_range are
5a720394
LC
691 * doing their own page rounding first. Note that unmap_mapping_range
692 * allows holelen 0 for all, and we allow lend -1 for end of file.
623e3db9
HD
693 */
694
695 /*
696 * Unlike in truncate_pagecache, unmap_mapping_range is called only
697 * once (before truncating pagecache), and without "even_cows" flag:
698 * hole-punching should not remove private COWed pages from the hole.
699 */
700 if ((u64)unmap_end > (u64)unmap_start)
701 unmap_mapping_range(mapping, unmap_start,
702 1 + unmap_end - unmap_start, 0);
703 truncate_inode_pages_range(mapping, lstart, lend);
704}
705EXPORT_SYMBOL(truncate_pagecache_range);