]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/vmalloc.c | |
3 | * | |
4 | * Copyright (C) 1993 Linus Torvalds | |
5 | * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | |
6 | * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 | |
7 | * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 | |
930fc45a | 8 | * Numa awareness, Christoph Lameter, SGI, June 2005 |
1da177e4 LT |
9 | */ |
10 | ||
db64fe02 | 11 | #include <linux/vmalloc.h> |
1da177e4 LT |
12 | #include <linux/mm.h> |
13 | #include <linux/module.h> | |
14 | #include <linux/highmem.h> | |
c3edc401 | 15 | #include <linux/sched/signal.h> |
1da177e4 LT |
16 | #include <linux/slab.h> |
17 | #include <linux/spinlock.h> | |
18 | #include <linux/interrupt.h> | |
5f6a6a9c | 19 | #include <linux/proc_fs.h> |
a10aa579 | 20 | #include <linux/seq_file.h> |
3ac7fe5a | 21 | #include <linux/debugobjects.h> |
23016969 | 22 | #include <linux/kallsyms.h> |
db64fe02 | 23 | #include <linux/list.h> |
4da56b99 | 24 | #include <linux/notifier.h> |
db64fe02 NP |
25 | #include <linux/rbtree.h> |
26 | #include <linux/radix-tree.h> | |
27 | #include <linux/rcupdate.h> | |
f0aa6617 | 28 | #include <linux/pfn.h> |
89219d37 | 29 | #include <linux/kmemleak.h> |
60063497 | 30 | #include <linux/atomic.h> |
3b32123d | 31 | #include <linux/compiler.h> |
32fcfd40 | 32 | #include <linux/llist.h> |
0f616be1 | 33 | #include <linux/bitops.h> |
3b32123d | 34 | |
7c0f6ba6 | 35 | #include <linux/uaccess.h> |
1da177e4 | 36 | #include <asm/tlbflush.h> |
2dca6999 | 37 | #include <asm/shmparam.h> |
1da177e4 | 38 | |
dd56b046 MG |
39 | #include "internal.h" |
40 | ||
32fcfd40 AV |
41 | struct vfree_deferred { |
42 | struct llist_head list; | |
43 | struct work_struct wq; | |
44 | }; | |
45 | static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); | |
46 | ||
47 | static void __vunmap(const void *, int); | |
48 | ||
49 | static void free_work(struct work_struct *w) | |
50 | { | |
51 | struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); | |
52 | struct llist_node *llnode = llist_del_all(&p->list); | |
53 | while (llnode) { | |
54 | void *p = llnode; | |
55 | llnode = llist_next(llnode); | |
56 | __vunmap(p, 1); | |
57 | } | |
58 | } | |
59 | ||
db64fe02 | 60 | /*** Page table manipulation functions ***/ |
b221385b | 61 | |
1da177e4 LT |
62 | static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) |
63 | { | |
64 | pte_t *pte; | |
65 | ||
66 | pte = pte_offset_kernel(pmd, addr); | |
67 | do { | |
68 | pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); | |
69 | WARN_ON(!pte_none(ptent) && !pte_present(ptent)); | |
70 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
71 | } | |
72 | ||
db64fe02 | 73 | static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) |
1da177e4 LT |
74 | { |
75 | pmd_t *pmd; | |
76 | unsigned long next; | |
77 | ||
78 | pmd = pmd_offset(pud, addr); | |
79 | do { | |
80 | next = pmd_addr_end(addr, end); | |
b9820d8f TK |
81 | if (pmd_clear_huge(pmd)) |
82 | continue; | |
1da177e4 LT |
83 | if (pmd_none_or_clear_bad(pmd)) |
84 | continue; | |
85 | vunmap_pte_range(pmd, addr, next); | |
86 | } while (pmd++, addr = next, addr != end); | |
87 | } | |
88 | ||
c2febafc | 89 | static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end) |
1da177e4 LT |
90 | { |
91 | pud_t *pud; | |
92 | unsigned long next; | |
93 | ||
c2febafc | 94 | pud = pud_offset(p4d, addr); |
1da177e4 LT |
95 | do { |
96 | next = pud_addr_end(addr, end); | |
b9820d8f TK |
97 | if (pud_clear_huge(pud)) |
98 | continue; | |
1da177e4 LT |
99 | if (pud_none_or_clear_bad(pud)) |
100 | continue; | |
101 | vunmap_pmd_range(pud, addr, next); | |
102 | } while (pud++, addr = next, addr != end); | |
103 | } | |
104 | ||
c2febafc KS |
105 | static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end) |
106 | { | |
107 | p4d_t *p4d; | |
108 | unsigned long next; | |
109 | ||
110 | p4d = p4d_offset(pgd, addr); | |
111 | do { | |
112 | next = p4d_addr_end(addr, end); | |
113 | if (p4d_clear_huge(p4d)) | |
114 | continue; | |
115 | if (p4d_none_or_clear_bad(p4d)) | |
116 | continue; | |
117 | vunmap_pud_range(p4d, addr, next); | |
118 | } while (p4d++, addr = next, addr != end); | |
119 | } | |
120 | ||
db64fe02 | 121 | static void vunmap_page_range(unsigned long addr, unsigned long end) |
1da177e4 LT |
122 | { |
123 | pgd_t *pgd; | |
124 | unsigned long next; | |
1da177e4 LT |
125 | |
126 | BUG_ON(addr >= end); | |
127 | pgd = pgd_offset_k(addr); | |
1da177e4 LT |
128 | do { |
129 | next = pgd_addr_end(addr, end); | |
130 | if (pgd_none_or_clear_bad(pgd)) | |
131 | continue; | |
c2febafc | 132 | vunmap_p4d_range(pgd, addr, next); |
1da177e4 | 133 | } while (pgd++, addr = next, addr != end); |
1da177e4 LT |
134 | } |
135 | ||
136 | static int vmap_pte_range(pmd_t *pmd, unsigned long addr, | |
db64fe02 | 137 | unsigned long end, pgprot_t prot, struct page **pages, int *nr) |
1da177e4 LT |
138 | { |
139 | pte_t *pte; | |
140 | ||
db64fe02 NP |
141 | /* |
142 | * nr is a running index into the array which helps higher level | |
143 | * callers keep track of where we're up to. | |
144 | */ | |
145 | ||
872fec16 | 146 | pte = pte_alloc_kernel(pmd, addr); |
1da177e4 LT |
147 | if (!pte) |
148 | return -ENOMEM; | |
149 | do { | |
db64fe02 NP |
150 | struct page *page = pages[*nr]; |
151 | ||
152 | if (WARN_ON(!pte_none(*pte))) | |
153 | return -EBUSY; | |
154 | if (WARN_ON(!page)) | |
1da177e4 LT |
155 | return -ENOMEM; |
156 | set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); | |
db64fe02 | 157 | (*nr)++; |
1da177e4 LT |
158 | } while (pte++, addr += PAGE_SIZE, addr != end); |
159 | return 0; | |
160 | } | |
161 | ||
db64fe02 NP |
162 | static int vmap_pmd_range(pud_t *pud, unsigned long addr, |
163 | unsigned long end, pgprot_t prot, struct page **pages, int *nr) | |
1da177e4 LT |
164 | { |
165 | pmd_t *pmd; | |
166 | unsigned long next; | |
167 | ||
168 | pmd = pmd_alloc(&init_mm, pud, addr); | |
169 | if (!pmd) | |
170 | return -ENOMEM; | |
171 | do { | |
172 | next = pmd_addr_end(addr, end); | |
db64fe02 | 173 | if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) |
1da177e4 LT |
174 | return -ENOMEM; |
175 | } while (pmd++, addr = next, addr != end); | |
176 | return 0; | |
177 | } | |
178 | ||
c2febafc | 179 | static int vmap_pud_range(p4d_t *p4d, unsigned long addr, |
db64fe02 | 180 | unsigned long end, pgprot_t prot, struct page **pages, int *nr) |
1da177e4 LT |
181 | { |
182 | pud_t *pud; | |
183 | unsigned long next; | |
184 | ||
c2febafc | 185 | pud = pud_alloc(&init_mm, p4d, addr); |
1da177e4 LT |
186 | if (!pud) |
187 | return -ENOMEM; | |
188 | do { | |
189 | next = pud_addr_end(addr, end); | |
db64fe02 | 190 | if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) |
1da177e4 LT |
191 | return -ENOMEM; |
192 | } while (pud++, addr = next, addr != end); | |
193 | return 0; | |
194 | } | |
195 | ||
c2febafc KS |
196 | static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, |
197 | unsigned long end, pgprot_t prot, struct page **pages, int *nr) | |
198 | { | |
199 | p4d_t *p4d; | |
200 | unsigned long next; | |
201 | ||
202 | p4d = p4d_alloc(&init_mm, pgd, addr); | |
203 | if (!p4d) | |
204 | return -ENOMEM; | |
205 | do { | |
206 | next = p4d_addr_end(addr, end); | |
207 | if (vmap_pud_range(p4d, addr, next, prot, pages, nr)) | |
208 | return -ENOMEM; | |
209 | } while (p4d++, addr = next, addr != end); | |
210 | return 0; | |
211 | } | |
212 | ||
db64fe02 NP |
213 | /* |
214 | * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and | |
215 | * will have pfns corresponding to the "pages" array. | |
216 | * | |
217 | * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] | |
218 | */ | |
8fc48985 TH |
219 | static int vmap_page_range_noflush(unsigned long start, unsigned long end, |
220 | pgprot_t prot, struct page **pages) | |
1da177e4 LT |
221 | { |
222 | pgd_t *pgd; | |
223 | unsigned long next; | |
2e4e27c7 | 224 | unsigned long addr = start; |
db64fe02 NP |
225 | int err = 0; |
226 | int nr = 0; | |
1da177e4 LT |
227 | |
228 | BUG_ON(addr >= end); | |
229 | pgd = pgd_offset_k(addr); | |
1da177e4 LT |
230 | do { |
231 | next = pgd_addr_end(addr, end); | |
c2febafc | 232 | err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr); |
1da177e4 | 233 | if (err) |
bf88c8c8 | 234 | return err; |
1da177e4 | 235 | } while (pgd++, addr = next, addr != end); |
db64fe02 | 236 | |
db64fe02 | 237 | return nr; |
1da177e4 LT |
238 | } |
239 | ||
8fc48985 TH |
240 | static int vmap_page_range(unsigned long start, unsigned long end, |
241 | pgprot_t prot, struct page **pages) | |
242 | { | |
243 | int ret; | |
244 | ||
245 | ret = vmap_page_range_noflush(start, end, prot, pages); | |
246 | flush_cache_vmap(start, end); | |
247 | return ret; | |
248 | } | |
249 | ||
81ac3ad9 | 250 | int is_vmalloc_or_module_addr(const void *x) |
73bdf0a6 LT |
251 | { |
252 | /* | |
ab4f2ee1 | 253 | * ARM, x86-64 and sparc64 put modules in a special place, |
73bdf0a6 LT |
254 | * and fall back on vmalloc() if that fails. Others |
255 | * just put it in the vmalloc space. | |
256 | */ | |
257 | #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) | |
258 | unsigned long addr = (unsigned long)x; | |
259 | if (addr >= MODULES_VADDR && addr < MODULES_END) | |
260 | return 1; | |
261 | #endif | |
262 | return is_vmalloc_addr(x); | |
263 | } | |
264 | ||
48667e7a | 265 | /* |
add688fb | 266 | * Walk a vmap address to the struct page it maps. |
48667e7a | 267 | */ |
add688fb | 268 | struct page *vmalloc_to_page(const void *vmalloc_addr) |
48667e7a CL |
269 | { |
270 | unsigned long addr = (unsigned long) vmalloc_addr; | |
add688fb | 271 | struct page *page = NULL; |
48667e7a | 272 | pgd_t *pgd = pgd_offset_k(addr); |
c2febafc KS |
273 | p4d_t *p4d; |
274 | pud_t *pud; | |
275 | pmd_t *pmd; | |
276 | pte_t *ptep, pte; | |
48667e7a | 277 | |
7aa413de IM |
278 | /* |
279 | * XXX we might need to change this if we add VIRTUAL_BUG_ON for | |
280 | * architectures that do not vmalloc module space | |
281 | */ | |
73bdf0a6 | 282 | VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); |
59ea7463 | 283 | |
c2febafc KS |
284 | if (pgd_none(*pgd)) |
285 | return NULL; | |
286 | p4d = p4d_offset(pgd, addr); | |
287 | if (p4d_none(*p4d)) | |
288 | return NULL; | |
289 | pud = pud_offset(p4d, addr); | |
290 | if (pud_none(*pud)) | |
291 | return NULL; | |
292 | pmd = pmd_offset(pud, addr); | |
293 | if (pmd_none(*pmd)) | |
294 | return NULL; | |
295 | ||
296 | ptep = pte_offset_map(pmd, addr); | |
297 | pte = *ptep; | |
298 | if (pte_present(pte)) | |
299 | page = pte_page(pte); | |
300 | pte_unmap(ptep); | |
add688fb | 301 | return page; |
48667e7a | 302 | } |
add688fb | 303 | EXPORT_SYMBOL(vmalloc_to_page); |
48667e7a CL |
304 | |
305 | /* | |
add688fb | 306 | * Map a vmalloc()-space virtual address to the physical page frame number. |
48667e7a | 307 | */ |
add688fb | 308 | unsigned long vmalloc_to_pfn(const void *vmalloc_addr) |
48667e7a | 309 | { |
add688fb | 310 | return page_to_pfn(vmalloc_to_page(vmalloc_addr)); |
48667e7a | 311 | } |
add688fb | 312 | EXPORT_SYMBOL(vmalloc_to_pfn); |
48667e7a | 313 | |
db64fe02 NP |
314 | |
315 | /*** Global kva allocator ***/ | |
316 | ||
db64fe02 NP |
317 | #define VM_VM_AREA 0x04 |
318 | ||
db64fe02 | 319 | static DEFINE_SPINLOCK(vmap_area_lock); |
f1c4069e JK |
320 | /* Export for kexec only */ |
321 | LIST_HEAD(vmap_area_list); | |
80c4bd7a | 322 | static LLIST_HEAD(vmap_purge_list); |
89699605 NP |
323 | static struct rb_root vmap_area_root = RB_ROOT; |
324 | ||
325 | /* The vmap cache globals are protected by vmap_area_lock */ | |
326 | static struct rb_node *free_vmap_cache; | |
327 | static unsigned long cached_hole_size; | |
328 | static unsigned long cached_vstart; | |
329 | static unsigned long cached_align; | |
330 | ||
ca23e405 | 331 | static unsigned long vmap_area_pcpu_hole; |
db64fe02 NP |
332 | |
333 | static struct vmap_area *__find_vmap_area(unsigned long addr) | |
1da177e4 | 334 | { |
db64fe02 NP |
335 | struct rb_node *n = vmap_area_root.rb_node; |
336 | ||
337 | while (n) { | |
338 | struct vmap_area *va; | |
339 | ||
340 | va = rb_entry(n, struct vmap_area, rb_node); | |
341 | if (addr < va->va_start) | |
342 | n = n->rb_left; | |
cef2ac3f | 343 | else if (addr >= va->va_end) |
db64fe02 NP |
344 | n = n->rb_right; |
345 | else | |
346 | return va; | |
347 | } | |
348 | ||
349 | return NULL; | |
350 | } | |
351 | ||
352 | static void __insert_vmap_area(struct vmap_area *va) | |
353 | { | |
354 | struct rb_node **p = &vmap_area_root.rb_node; | |
355 | struct rb_node *parent = NULL; | |
356 | struct rb_node *tmp; | |
357 | ||
358 | while (*p) { | |
170168d0 | 359 | struct vmap_area *tmp_va; |
db64fe02 NP |
360 | |
361 | parent = *p; | |
170168d0 NK |
362 | tmp_va = rb_entry(parent, struct vmap_area, rb_node); |
363 | if (va->va_start < tmp_va->va_end) | |
db64fe02 | 364 | p = &(*p)->rb_left; |
170168d0 | 365 | else if (va->va_end > tmp_va->va_start) |
db64fe02 NP |
366 | p = &(*p)->rb_right; |
367 | else | |
368 | BUG(); | |
369 | } | |
370 | ||
371 | rb_link_node(&va->rb_node, parent, p); | |
372 | rb_insert_color(&va->rb_node, &vmap_area_root); | |
373 | ||
4341fa45 | 374 | /* address-sort this list */ |
db64fe02 NP |
375 | tmp = rb_prev(&va->rb_node); |
376 | if (tmp) { | |
377 | struct vmap_area *prev; | |
378 | prev = rb_entry(tmp, struct vmap_area, rb_node); | |
379 | list_add_rcu(&va->list, &prev->list); | |
380 | } else | |
381 | list_add_rcu(&va->list, &vmap_area_list); | |
382 | } | |
383 | ||
384 | static void purge_vmap_area_lazy(void); | |
385 | ||
4da56b99 CW |
386 | static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); |
387 | ||
db64fe02 NP |
388 | /* |
389 | * Allocate a region of KVA of the specified size and alignment, within the | |
390 | * vstart and vend. | |
391 | */ | |
392 | static struct vmap_area *alloc_vmap_area(unsigned long size, | |
393 | unsigned long align, | |
394 | unsigned long vstart, unsigned long vend, | |
395 | int node, gfp_t gfp_mask) | |
396 | { | |
397 | struct vmap_area *va; | |
398 | struct rb_node *n; | |
1da177e4 | 399 | unsigned long addr; |
db64fe02 | 400 | int purged = 0; |
89699605 | 401 | struct vmap_area *first; |
db64fe02 | 402 | |
7766970c | 403 | BUG_ON(!size); |
891c49ab | 404 | BUG_ON(offset_in_page(size)); |
89699605 | 405 | BUG_ON(!is_power_of_2(align)); |
db64fe02 | 406 | |
5803ed29 | 407 | might_sleep(); |
4da56b99 | 408 | |
db64fe02 NP |
409 | va = kmalloc_node(sizeof(struct vmap_area), |
410 | gfp_mask & GFP_RECLAIM_MASK, node); | |
411 | if (unlikely(!va)) | |
412 | return ERR_PTR(-ENOMEM); | |
413 | ||
7f88f88f CM |
414 | /* |
415 | * Only scan the relevant parts containing pointers to other objects | |
416 | * to avoid false negatives. | |
417 | */ | |
418 | kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK); | |
419 | ||
db64fe02 NP |
420 | retry: |
421 | spin_lock(&vmap_area_lock); | |
89699605 NP |
422 | /* |
423 | * Invalidate cache if we have more permissive parameters. | |
424 | * cached_hole_size notes the largest hole noticed _below_ | |
425 | * the vmap_area cached in free_vmap_cache: if size fits | |
426 | * into that hole, we want to scan from vstart to reuse | |
427 | * the hole instead of allocating above free_vmap_cache. | |
428 | * Note that __free_vmap_area may update free_vmap_cache | |
429 | * without updating cached_hole_size or cached_align. | |
430 | */ | |
431 | if (!free_vmap_cache || | |
432 | size < cached_hole_size || | |
433 | vstart < cached_vstart || | |
434 | align < cached_align) { | |
435 | nocache: | |
436 | cached_hole_size = 0; | |
437 | free_vmap_cache = NULL; | |
438 | } | |
439 | /* record if we encounter less permissive parameters */ | |
440 | cached_vstart = vstart; | |
441 | cached_align = align; | |
442 | ||
443 | /* find starting point for our search */ | |
444 | if (free_vmap_cache) { | |
445 | first = rb_entry(free_vmap_cache, struct vmap_area, rb_node); | |
248ac0e1 | 446 | addr = ALIGN(first->va_end, align); |
89699605 NP |
447 | if (addr < vstart) |
448 | goto nocache; | |
bcb615a8 | 449 | if (addr + size < addr) |
89699605 NP |
450 | goto overflow; |
451 | ||
452 | } else { | |
453 | addr = ALIGN(vstart, align); | |
bcb615a8 | 454 | if (addr + size < addr) |
89699605 NP |
455 | goto overflow; |
456 | ||
457 | n = vmap_area_root.rb_node; | |
458 | first = NULL; | |
459 | ||
460 | while (n) { | |
db64fe02 NP |
461 | struct vmap_area *tmp; |
462 | tmp = rb_entry(n, struct vmap_area, rb_node); | |
463 | if (tmp->va_end >= addr) { | |
db64fe02 | 464 | first = tmp; |
89699605 NP |
465 | if (tmp->va_start <= addr) |
466 | break; | |
467 | n = n->rb_left; | |
468 | } else | |
db64fe02 | 469 | n = n->rb_right; |
89699605 | 470 | } |
db64fe02 NP |
471 | |
472 | if (!first) | |
473 | goto found; | |
db64fe02 | 474 | } |
89699605 NP |
475 | |
476 | /* from the starting point, walk areas until a suitable hole is found */ | |
248ac0e1 | 477 | while (addr + size > first->va_start && addr + size <= vend) { |
89699605 NP |
478 | if (addr + cached_hole_size < first->va_start) |
479 | cached_hole_size = first->va_start - addr; | |
248ac0e1 | 480 | addr = ALIGN(first->va_end, align); |
bcb615a8 | 481 | if (addr + size < addr) |
89699605 NP |
482 | goto overflow; |
483 | ||
92ca922f | 484 | if (list_is_last(&first->list, &vmap_area_list)) |
89699605 | 485 | goto found; |
92ca922f | 486 | |
6219c2a2 | 487 | first = list_next_entry(first, list); |
db64fe02 NP |
488 | } |
489 | ||
89699605 NP |
490 | found: |
491 | if (addr + size > vend) | |
492 | goto overflow; | |
db64fe02 NP |
493 | |
494 | va->va_start = addr; | |
495 | va->va_end = addr + size; | |
496 | va->flags = 0; | |
497 | __insert_vmap_area(va); | |
89699605 | 498 | free_vmap_cache = &va->rb_node; |
db64fe02 NP |
499 | spin_unlock(&vmap_area_lock); |
500 | ||
61e16557 | 501 | BUG_ON(!IS_ALIGNED(va->va_start, align)); |
89699605 NP |
502 | BUG_ON(va->va_start < vstart); |
503 | BUG_ON(va->va_end > vend); | |
504 | ||
db64fe02 | 505 | return va; |
89699605 NP |
506 | |
507 | overflow: | |
508 | spin_unlock(&vmap_area_lock); | |
509 | if (!purged) { | |
510 | purge_vmap_area_lazy(); | |
511 | purged = 1; | |
512 | goto retry; | |
513 | } | |
4da56b99 CW |
514 | |
515 | if (gfpflags_allow_blocking(gfp_mask)) { | |
516 | unsigned long freed = 0; | |
517 | blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); | |
518 | if (freed > 0) { | |
519 | purged = 0; | |
520 | goto retry; | |
521 | } | |
522 | } | |
523 | ||
89699605 | 524 | if (printk_ratelimit()) |
756a025f JP |
525 | pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", |
526 | size); | |
89699605 NP |
527 | kfree(va); |
528 | return ERR_PTR(-EBUSY); | |
db64fe02 NP |
529 | } |
530 | ||
4da56b99 CW |
531 | int register_vmap_purge_notifier(struct notifier_block *nb) |
532 | { | |
533 | return blocking_notifier_chain_register(&vmap_notify_list, nb); | |
534 | } | |
535 | EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); | |
536 | ||
537 | int unregister_vmap_purge_notifier(struct notifier_block *nb) | |
538 | { | |
539 | return blocking_notifier_chain_unregister(&vmap_notify_list, nb); | |
540 | } | |
541 | EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); | |
542 | ||
db64fe02 NP |
543 | static void __free_vmap_area(struct vmap_area *va) |
544 | { | |
545 | BUG_ON(RB_EMPTY_NODE(&va->rb_node)); | |
89699605 NP |
546 | |
547 | if (free_vmap_cache) { | |
548 | if (va->va_end < cached_vstart) { | |
549 | free_vmap_cache = NULL; | |
550 | } else { | |
551 | struct vmap_area *cache; | |
552 | cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node); | |
553 | if (va->va_start <= cache->va_start) { | |
554 | free_vmap_cache = rb_prev(&va->rb_node); | |
555 | /* | |
556 | * We don't try to update cached_hole_size or | |
557 | * cached_align, but it won't go very wrong. | |
558 | */ | |
559 | } | |
560 | } | |
561 | } | |
db64fe02 NP |
562 | rb_erase(&va->rb_node, &vmap_area_root); |
563 | RB_CLEAR_NODE(&va->rb_node); | |
564 | list_del_rcu(&va->list); | |
565 | ||
ca23e405 TH |
566 | /* |
567 | * Track the highest possible candidate for pcpu area | |
568 | * allocation. Areas outside of vmalloc area can be returned | |
569 | * here too, consider only end addresses which fall inside | |
570 | * vmalloc area proper. | |
571 | */ | |
572 | if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) | |
573 | vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); | |
574 | ||
14769de9 | 575 | kfree_rcu(va, rcu_head); |
db64fe02 NP |
576 | } |
577 | ||
578 | /* | |
579 | * Free a region of KVA allocated by alloc_vmap_area | |
580 | */ | |
581 | static void free_vmap_area(struct vmap_area *va) | |
582 | { | |
583 | spin_lock(&vmap_area_lock); | |
584 | __free_vmap_area(va); | |
585 | spin_unlock(&vmap_area_lock); | |
586 | } | |
587 | ||
588 | /* | |
589 | * Clear the pagetable entries of a given vmap_area | |
590 | */ | |
591 | static void unmap_vmap_area(struct vmap_area *va) | |
592 | { | |
593 | vunmap_page_range(va->va_start, va->va_end); | |
594 | } | |
595 | ||
cd52858c NP |
596 | static void vmap_debug_free_range(unsigned long start, unsigned long end) |
597 | { | |
598 | /* | |
f48d97f3 JK |
599 | * Unmap page tables and force a TLB flush immediately if pagealloc |
600 | * debugging is enabled. This catches use after free bugs similarly to | |
601 | * those in linear kernel virtual address space after a page has been | |
602 | * freed. | |
cd52858c | 603 | * |
f48d97f3 JK |
604 | * All the lazy freeing logic is still retained, in order to minimise |
605 | * intrusiveness of this debugging feature. | |
cd52858c | 606 | * |
f48d97f3 JK |
607 | * This is going to be *slow* (linear kernel virtual address debugging |
608 | * doesn't do a broadcast TLB flush so it is a lot faster). | |
cd52858c | 609 | */ |
f48d97f3 JK |
610 | if (debug_pagealloc_enabled()) { |
611 | vunmap_page_range(start, end); | |
612 | flush_tlb_kernel_range(start, end); | |
613 | } | |
cd52858c NP |
614 | } |
615 | ||
db64fe02 NP |
616 | /* |
617 | * lazy_max_pages is the maximum amount of virtual address space we gather up | |
618 | * before attempting to purge with a TLB flush. | |
619 | * | |
620 | * There is a tradeoff here: a larger number will cover more kernel page tables | |
621 | * and take slightly longer to purge, but it will linearly reduce the number of | |
622 | * global TLB flushes that must be performed. It would seem natural to scale | |
623 | * this number up linearly with the number of CPUs (because vmapping activity | |
624 | * could also scale linearly with the number of CPUs), however it is likely | |
625 | * that in practice, workloads might be constrained in other ways that mean | |
626 | * vmap activity will not scale linearly with CPUs. Also, I want to be | |
627 | * conservative and not introduce a big latency on huge systems, so go with | |
628 | * a less aggressive log scale. It will still be an improvement over the old | |
629 | * code, and it will be simple to change the scale factor if we find that it | |
630 | * becomes a problem on bigger systems. | |
631 | */ | |
632 | static unsigned long lazy_max_pages(void) | |
633 | { | |
634 | unsigned int log; | |
635 | ||
636 | log = fls(num_online_cpus()); | |
637 | ||
638 | return log * (32UL * 1024 * 1024 / PAGE_SIZE); | |
639 | } | |
640 | ||
641 | static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); | |
642 | ||
0574ecd1 CH |
643 | /* |
644 | * Serialize vmap purging. There is no actual criticial section protected | |
645 | * by this look, but we want to avoid concurrent calls for performance | |
646 | * reasons and to make the pcpu_get_vm_areas more deterministic. | |
647 | */ | |
f9e09977 | 648 | static DEFINE_MUTEX(vmap_purge_lock); |
0574ecd1 | 649 | |
02b709df NP |
650 | /* for per-CPU blocks */ |
651 | static void purge_fragmented_blocks_allcpus(void); | |
652 | ||
3ee48b6a CW |
653 | /* |
654 | * called before a call to iounmap() if the caller wants vm_area_struct's | |
655 | * immediately freed. | |
656 | */ | |
657 | void set_iounmap_nonlazy(void) | |
658 | { | |
659 | atomic_set(&vmap_lazy_nr, lazy_max_pages()+1); | |
660 | } | |
661 | ||
db64fe02 NP |
662 | /* |
663 | * Purges all lazily-freed vmap areas. | |
db64fe02 | 664 | */ |
0574ecd1 | 665 | static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) |
db64fe02 | 666 | { |
80c4bd7a | 667 | struct llist_node *valist; |
db64fe02 | 668 | struct vmap_area *va; |
cbb76676 | 669 | struct vmap_area *n_va; |
763b218d | 670 | bool do_free = false; |
db64fe02 | 671 | |
0574ecd1 | 672 | lockdep_assert_held(&vmap_purge_lock); |
02b709df | 673 | |
80c4bd7a CW |
674 | valist = llist_del_all(&vmap_purge_list); |
675 | llist_for_each_entry(va, valist, purge_list) { | |
0574ecd1 CH |
676 | if (va->va_start < start) |
677 | start = va->va_start; | |
678 | if (va->va_end > end) | |
679 | end = va->va_end; | |
763b218d | 680 | do_free = true; |
db64fe02 | 681 | } |
db64fe02 | 682 | |
763b218d | 683 | if (!do_free) |
0574ecd1 | 684 | return false; |
db64fe02 | 685 | |
0574ecd1 | 686 | flush_tlb_kernel_range(start, end); |
db64fe02 | 687 | |
0574ecd1 | 688 | spin_lock(&vmap_area_lock); |
763b218d JF |
689 | llist_for_each_entry_safe(va, n_va, valist, purge_list) { |
690 | int nr = (va->va_end - va->va_start) >> PAGE_SHIFT; | |
691 | ||
0574ecd1 | 692 | __free_vmap_area(va); |
763b218d JF |
693 | atomic_sub(nr, &vmap_lazy_nr); |
694 | cond_resched_lock(&vmap_area_lock); | |
695 | } | |
0574ecd1 CH |
696 | spin_unlock(&vmap_area_lock); |
697 | return true; | |
db64fe02 NP |
698 | } |
699 | ||
496850e5 NP |
700 | /* |
701 | * Kick off a purge of the outstanding lazy areas. Don't bother if somebody | |
702 | * is already purging. | |
703 | */ | |
704 | static void try_purge_vmap_area_lazy(void) | |
705 | { | |
f9e09977 | 706 | if (mutex_trylock(&vmap_purge_lock)) { |
0574ecd1 | 707 | __purge_vmap_area_lazy(ULONG_MAX, 0); |
f9e09977 | 708 | mutex_unlock(&vmap_purge_lock); |
0574ecd1 | 709 | } |
496850e5 NP |
710 | } |
711 | ||
db64fe02 NP |
712 | /* |
713 | * Kick off a purge of the outstanding lazy areas. | |
714 | */ | |
715 | static void purge_vmap_area_lazy(void) | |
716 | { | |
f9e09977 | 717 | mutex_lock(&vmap_purge_lock); |
0574ecd1 CH |
718 | purge_fragmented_blocks_allcpus(); |
719 | __purge_vmap_area_lazy(ULONG_MAX, 0); | |
f9e09977 | 720 | mutex_unlock(&vmap_purge_lock); |
db64fe02 NP |
721 | } |
722 | ||
723 | /* | |
64141da5 JF |
724 | * Free a vmap area, caller ensuring that the area has been unmapped |
725 | * and flush_cache_vunmap had been called for the correct range | |
726 | * previously. | |
db64fe02 | 727 | */ |
64141da5 | 728 | static void free_vmap_area_noflush(struct vmap_area *va) |
db64fe02 | 729 | { |
80c4bd7a CW |
730 | int nr_lazy; |
731 | ||
732 | nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT, | |
733 | &vmap_lazy_nr); | |
734 | ||
735 | /* After this point, we may free va at any time */ | |
736 | llist_add(&va->purge_list, &vmap_purge_list); | |
737 | ||
738 | if (unlikely(nr_lazy > lazy_max_pages())) | |
496850e5 | 739 | try_purge_vmap_area_lazy(); |
db64fe02 NP |
740 | } |
741 | ||
b29acbdc NP |
742 | /* |
743 | * Free and unmap a vmap area | |
744 | */ | |
745 | static void free_unmap_vmap_area(struct vmap_area *va) | |
746 | { | |
747 | flush_cache_vunmap(va->va_start, va->va_end); | |
c8eef01e CH |
748 | unmap_vmap_area(va); |
749 | free_vmap_area_noflush(va); | |
b29acbdc NP |
750 | } |
751 | ||
db64fe02 NP |
752 | static struct vmap_area *find_vmap_area(unsigned long addr) |
753 | { | |
754 | struct vmap_area *va; | |
755 | ||
756 | spin_lock(&vmap_area_lock); | |
757 | va = __find_vmap_area(addr); | |
758 | spin_unlock(&vmap_area_lock); | |
759 | ||
760 | return va; | |
761 | } | |
762 | ||
db64fe02 NP |
763 | /*** Per cpu kva allocator ***/ |
764 | ||
765 | /* | |
766 | * vmap space is limited especially on 32 bit architectures. Ensure there is | |
767 | * room for at least 16 percpu vmap blocks per CPU. | |
768 | */ | |
769 | /* | |
770 | * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able | |
771 | * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess | |
772 | * instead (we just need a rough idea) | |
773 | */ | |
774 | #if BITS_PER_LONG == 32 | |
775 | #define VMALLOC_SPACE (128UL*1024*1024) | |
776 | #else | |
777 | #define VMALLOC_SPACE (128UL*1024*1024*1024) | |
778 | #endif | |
779 | ||
780 | #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) | |
781 | #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ | |
782 | #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ | |
783 | #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) | |
784 | #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ | |
785 | #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ | |
f982f915 CL |
786 | #define VMAP_BBMAP_BITS \ |
787 | VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ | |
788 | VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ | |
789 | VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) | |
db64fe02 NP |
790 | |
791 | #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) | |
792 | ||
9b463334 JF |
793 | static bool vmap_initialized __read_mostly = false; |
794 | ||
db64fe02 NP |
795 | struct vmap_block_queue { |
796 | spinlock_t lock; | |
797 | struct list_head free; | |
db64fe02 NP |
798 | }; |
799 | ||
800 | struct vmap_block { | |
801 | spinlock_t lock; | |
802 | struct vmap_area *va; | |
db64fe02 | 803 | unsigned long free, dirty; |
7d61bfe8 | 804 | unsigned long dirty_min, dirty_max; /*< dirty range */ |
de560423 NP |
805 | struct list_head free_list; |
806 | struct rcu_head rcu_head; | |
02b709df | 807 | struct list_head purge; |
db64fe02 NP |
808 | }; |
809 | ||
810 | /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ | |
811 | static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); | |
812 | ||
813 | /* | |
814 | * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block | |
815 | * in the free path. Could get rid of this if we change the API to return a | |
816 | * "cookie" from alloc, to be passed to free. But no big deal yet. | |
817 | */ | |
818 | static DEFINE_SPINLOCK(vmap_block_tree_lock); | |
819 | static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); | |
820 | ||
821 | /* | |
822 | * We should probably have a fallback mechanism to allocate virtual memory | |
823 | * out of partially filled vmap blocks. However vmap block sizing should be | |
824 | * fairly reasonable according to the vmalloc size, so it shouldn't be a | |
825 | * big problem. | |
826 | */ | |
827 | ||
828 | static unsigned long addr_to_vb_idx(unsigned long addr) | |
829 | { | |
830 | addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); | |
831 | addr /= VMAP_BLOCK_SIZE; | |
832 | return addr; | |
833 | } | |
834 | ||
cf725ce2 RP |
835 | static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) |
836 | { | |
837 | unsigned long addr; | |
838 | ||
839 | addr = va_start + (pages_off << PAGE_SHIFT); | |
840 | BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); | |
841 | return (void *)addr; | |
842 | } | |
843 | ||
844 | /** | |
845 | * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this | |
846 | * block. Of course pages number can't exceed VMAP_BBMAP_BITS | |
847 | * @order: how many 2^order pages should be occupied in newly allocated block | |
848 | * @gfp_mask: flags for the page level allocator | |
849 | * | |
850 | * Returns: virtual address in a newly allocated block or ERR_PTR(-errno) | |
851 | */ | |
852 | static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) | |
db64fe02 NP |
853 | { |
854 | struct vmap_block_queue *vbq; | |
855 | struct vmap_block *vb; | |
856 | struct vmap_area *va; | |
857 | unsigned long vb_idx; | |
858 | int node, err; | |
cf725ce2 | 859 | void *vaddr; |
db64fe02 NP |
860 | |
861 | node = numa_node_id(); | |
862 | ||
863 | vb = kmalloc_node(sizeof(struct vmap_block), | |
864 | gfp_mask & GFP_RECLAIM_MASK, node); | |
865 | if (unlikely(!vb)) | |
866 | return ERR_PTR(-ENOMEM); | |
867 | ||
868 | va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, | |
869 | VMALLOC_START, VMALLOC_END, | |
870 | node, gfp_mask); | |
ddf9c6d4 | 871 | if (IS_ERR(va)) { |
db64fe02 | 872 | kfree(vb); |
e7d86340 | 873 | return ERR_CAST(va); |
db64fe02 NP |
874 | } |
875 | ||
876 | err = radix_tree_preload(gfp_mask); | |
877 | if (unlikely(err)) { | |
878 | kfree(vb); | |
879 | free_vmap_area(va); | |
880 | return ERR_PTR(err); | |
881 | } | |
882 | ||
cf725ce2 | 883 | vaddr = vmap_block_vaddr(va->va_start, 0); |
db64fe02 NP |
884 | spin_lock_init(&vb->lock); |
885 | vb->va = va; | |
cf725ce2 RP |
886 | /* At least something should be left free */ |
887 | BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); | |
888 | vb->free = VMAP_BBMAP_BITS - (1UL << order); | |
db64fe02 | 889 | vb->dirty = 0; |
7d61bfe8 RP |
890 | vb->dirty_min = VMAP_BBMAP_BITS; |
891 | vb->dirty_max = 0; | |
db64fe02 | 892 | INIT_LIST_HEAD(&vb->free_list); |
db64fe02 NP |
893 | |
894 | vb_idx = addr_to_vb_idx(va->va_start); | |
895 | spin_lock(&vmap_block_tree_lock); | |
896 | err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); | |
897 | spin_unlock(&vmap_block_tree_lock); | |
898 | BUG_ON(err); | |
899 | radix_tree_preload_end(); | |
900 | ||
901 | vbq = &get_cpu_var(vmap_block_queue); | |
db64fe02 | 902 | spin_lock(&vbq->lock); |
68ac546f | 903 | list_add_tail_rcu(&vb->free_list, &vbq->free); |
db64fe02 | 904 | spin_unlock(&vbq->lock); |
3f04ba85 | 905 | put_cpu_var(vmap_block_queue); |
db64fe02 | 906 | |
cf725ce2 | 907 | return vaddr; |
db64fe02 NP |
908 | } |
909 | ||
db64fe02 NP |
910 | static void free_vmap_block(struct vmap_block *vb) |
911 | { | |
912 | struct vmap_block *tmp; | |
913 | unsigned long vb_idx; | |
914 | ||
db64fe02 NP |
915 | vb_idx = addr_to_vb_idx(vb->va->va_start); |
916 | spin_lock(&vmap_block_tree_lock); | |
917 | tmp = radix_tree_delete(&vmap_block_tree, vb_idx); | |
918 | spin_unlock(&vmap_block_tree_lock); | |
919 | BUG_ON(tmp != vb); | |
920 | ||
64141da5 | 921 | free_vmap_area_noflush(vb->va); |
22a3c7d1 | 922 | kfree_rcu(vb, rcu_head); |
db64fe02 NP |
923 | } |
924 | ||
02b709df NP |
925 | static void purge_fragmented_blocks(int cpu) |
926 | { | |
927 | LIST_HEAD(purge); | |
928 | struct vmap_block *vb; | |
929 | struct vmap_block *n_vb; | |
930 | struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); | |
931 | ||
932 | rcu_read_lock(); | |
933 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | |
934 | ||
935 | if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) | |
936 | continue; | |
937 | ||
938 | spin_lock(&vb->lock); | |
939 | if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { | |
940 | vb->free = 0; /* prevent further allocs after releasing lock */ | |
941 | vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ | |
7d61bfe8 RP |
942 | vb->dirty_min = 0; |
943 | vb->dirty_max = VMAP_BBMAP_BITS; | |
02b709df NP |
944 | spin_lock(&vbq->lock); |
945 | list_del_rcu(&vb->free_list); | |
946 | spin_unlock(&vbq->lock); | |
947 | spin_unlock(&vb->lock); | |
948 | list_add_tail(&vb->purge, &purge); | |
949 | } else | |
950 | spin_unlock(&vb->lock); | |
951 | } | |
952 | rcu_read_unlock(); | |
953 | ||
954 | list_for_each_entry_safe(vb, n_vb, &purge, purge) { | |
955 | list_del(&vb->purge); | |
956 | free_vmap_block(vb); | |
957 | } | |
958 | } | |
959 | ||
02b709df NP |
960 | static void purge_fragmented_blocks_allcpus(void) |
961 | { | |
962 | int cpu; | |
963 | ||
964 | for_each_possible_cpu(cpu) | |
965 | purge_fragmented_blocks(cpu); | |
966 | } | |
967 | ||
db64fe02 NP |
968 | static void *vb_alloc(unsigned long size, gfp_t gfp_mask) |
969 | { | |
970 | struct vmap_block_queue *vbq; | |
971 | struct vmap_block *vb; | |
cf725ce2 | 972 | void *vaddr = NULL; |
db64fe02 NP |
973 | unsigned int order; |
974 | ||
891c49ab | 975 | BUG_ON(offset_in_page(size)); |
db64fe02 | 976 | BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); |
aa91c4d8 JK |
977 | if (WARN_ON(size == 0)) { |
978 | /* | |
979 | * Allocating 0 bytes isn't what caller wants since | |
980 | * get_order(0) returns funny result. Just warn and terminate | |
981 | * early. | |
982 | */ | |
983 | return NULL; | |
984 | } | |
db64fe02 NP |
985 | order = get_order(size); |
986 | ||
db64fe02 NP |
987 | rcu_read_lock(); |
988 | vbq = &get_cpu_var(vmap_block_queue); | |
989 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | |
cf725ce2 | 990 | unsigned long pages_off; |
db64fe02 NP |
991 | |
992 | spin_lock(&vb->lock); | |
cf725ce2 RP |
993 | if (vb->free < (1UL << order)) { |
994 | spin_unlock(&vb->lock); | |
995 | continue; | |
996 | } | |
02b709df | 997 | |
cf725ce2 RP |
998 | pages_off = VMAP_BBMAP_BITS - vb->free; |
999 | vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); | |
02b709df NP |
1000 | vb->free -= 1UL << order; |
1001 | if (vb->free == 0) { | |
1002 | spin_lock(&vbq->lock); | |
1003 | list_del_rcu(&vb->free_list); | |
1004 | spin_unlock(&vbq->lock); | |
1005 | } | |
cf725ce2 | 1006 | |
02b709df NP |
1007 | spin_unlock(&vb->lock); |
1008 | break; | |
db64fe02 | 1009 | } |
02b709df | 1010 | |
3f04ba85 | 1011 | put_cpu_var(vmap_block_queue); |
db64fe02 NP |
1012 | rcu_read_unlock(); |
1013 | ||
cf725ce2 RP |
1014 | /* Allocate new block if nothing was found */ |
1015 | if (!vaddr) | |
1016 | vaddr = new_vmap_block(order, gfp_mask); | |
db64fe02 | 1017 | |
cf725ce2 | 1018 | return vaddr; |
db64fe02 NP |
1019 | } |
1020 | ||
1021 | static void vb_free(const void *addr, unsigned long size) | |
1022 | { | |
1023 | unsigned long offset; | |
1024 | unsigned long vb_idx; | |
1025 | unsigned int order; | |
1026 | struct vmap_block *vb; | |
1027 | ||
891c49ab | 1028 | BUG_ON(offset_in_page(size)); |
db64fe02 | 1029 | BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); |
b29acbdc NP |
1030 | |
1031 | flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); | |
1032 | ||
db64fe02 NP |
1033 | order = get_order(size); |
1034 | ||
1035 | offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); | |
7d61bfe8 | 1036 | offset >>= PAGE_SHIFT; |
db64fe02 NP |
1037 | |
1038 | vb_idx = addr_to_vb_idx((unsigned long)addr); | |
1039 | rcu_read_lock(); | |
1040 | vb = radix_tree_lookup(&vmap_block_tree, vb_idx); | |
1041 | rcu_read_unlock(); | |
1042 | BUG_ON(!vb); | |
1043 | ||
64141da5 JF |
1044 | vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); |
1045 | ||
db64fe02 | 1046 | spin_lock(&vb->lock); |
7d61bfe8 RP |
1047 | |
1048 | /* Expand dirty range */ | |
1049 | vb->dirty_min = min(vb->dirty_min, offset); | |
1050 | vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); | |
d086817d | 1051 | |
db64fe02 NP |
1052 | vb->dirty += 1UL << order; |
1053 | if (vb->dirty == VMAP_BBMAP_BITS) { | |
de560423 | 1054 | BUG_ON(vb->free); |
db64fe02 NP |
1055 | spin_unlock(&vb->lock); |
1056 | free_vmap_block(vb); | |
1057 | } else | |
1058 | spin_unlock(&vb->lock); | |
1059 | } | |
1060 | ||
1061 | /** | |
1062 | * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer | |
1063 | * | |
1064 | * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily | |
1065 | * to amortize TLB flushing overheads. What this means is that any page you | |
1066 | * have now, may, in a former life, have been mapped into kernel virtual | |
1067 | * address by the vmap layer and so there might be some CPUs with TLB entries | |
1068 | * still referencing that page (additional to the regular 1:1 kernel mapping). | |
1069 | * | |
1070 | * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can | |
1071 | * be sure that none of the pages we have control over will have any aliases | |
1072 | * from the vmap layer. | |
1073 | */ | |
1074 | void vm_unmap_aliases(void) | |
1075 | { | |
1076 | unsigned long start = ULONG_MAX, end = 0; | |
1077 | int cpu; | |
1078 | int flush = 0; | |
1079 | ||
9b463334 JF |
1080 | if (unlikely(!vmap_initialized)) |
1081 | return; | |
1082 | ||
5803ed29 CH |
1083 | might_sleep(); |
1084 | ||
db64fe02 NP |
1085 | for_each_possible_cpu(cpu) { |
1086 | struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); | |
1087 | struct vmap_block *vb; | |
1088 | ||
1089 | rcu_read_lock(); | |
1090 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | |
db64fe02 | 1091 | spin_lock(&vb->lock); |
7d61bfe8 RP |
1092 | if (vb->dirty) { |
1093 | unsigned long va_start = vb->va->va_start; | |
db64fe02 | 1094 | unsigned long s, e; |
b136be5e | 1095 | |
7d61bfe8 RP |
1096 | s = va_start + (vb->dirty_min << PAGE_SHIFT); |
1097 | e = va_start + (vb->dirty_max << PAGE_SHIFT); | |
db64fe02 | 1098 | |
7d61bfe8 RP |
1099 | start = min(s, start); |
1100 | end = max(e, end); | |
db64fe02 | 1101 | |
7d61bfe8 | 1102 | flush = 1; |
db64fe02 NP |
1103 | } |
1104 | spin_unlock(&vb->lock); | |
1105 | } | |
1106 | rcu_read_unlock(); | |
1107 | } | |
1108 | ||
f9e09977 | 1109 | mutex_lock(&vmap_purge_lock); |
0574ecd1 CH |
1110 | purge_fragmented_blocks_allcpus(); |
1111 | if (!__purge_vmap_area_lazy(start, end) && flush) | |
1112 | flush_tlb_kernel_range(start, end); | |
f9e09977 | 1113 | mutex_unlock(&vmap_purge_lock); |
db64fe02 NP |
1114 | } |
1115 | EXPORT_SYMBOL_GPL(vm_unmap_aliases); | |
1116 | ||
1117 | /** | |
1118 | * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram | |
1119 | * @mem: the pointer returned by vm_map_ram | |
1120 | * @count: the count passed to that vm_map_ram call (cannot unmap partial) | |
1121 | */ | |
1122 | void vm_unmap_ram(const void *mem, unsigned int count) | |
1123 | { | |
65ee03c4 | 1124 | unsigned long size = (unsigned long)count << PAGE_SHIFT; |
db64fe02 | 1125 | unsigned long addr = (unsigned long)mem; |
9c3acf60 | 1126 | struct vmap_area *va; |
db64fe02 | 1127 | |
5803ed29 | 1128 | might_sleep(); |
db64fe02 NP |
1129 | BUG_ON(!addr); |
1130 | BUG_ON(addr < VMALLOC_START); | |
1131 | BUG_ON(addr > VMALLOC_END); | |
a1c0b1a0 | 1132 | BUG_ON(!PAGE_ALIGNED(addr)); |
db64fe02 NP |
1133 | |
1134 | debug_check_no_locks_freed(mem, size); | |
cd52858c | 1135 | vmap_debug_free_range(addr, addr+size); |
db64fe02 | 1136 | |
9c3acf60 | 1137 | if (likely(count <= VMAP_MAX_ALLOC)) { |
db64fe02 | 1138 | vb_free(mem, size); |
9c3acf60 CH |
1139 | return; |
1140 | } | |
1141 | ||
1142 | va = find_vmap_area(addr); | |
1143 | BUG_ON(!va); | |
1144 | free_unmap_vmap_area(va); | |
db64fe02 NP |
1145 | } |
1146 | EXPORT_SYMBOL(vm_unmap_ram); | |
1147 | ||
1148 | /** | |
1149 | * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) | |
1150 | * @pages: an array of pointers to the pages to be mapped | |
1151 | * @count: number of pages | |
1152 | * @node: prefer to allocate data structures on this node | |
1153 | * @prot: memory protection to use. PAGE_KERNEL for regular RAM | |
e99c97ad | 1154 | * |
36437638 GK |
1155 | * If you use this function for less than VMAP_MAX_ALLOC pages, it could be |
1156 | * faster than vmap so it's good. But if you mix long-life and short-life | |
1157 | * objects with vm_map_ram(), it could consume lots of address space through | |
1158 | * fragmentation (especially on a 32bit machine). You could see failures in | |
1159 | * the end. Please use this function for short-lived objects. | |
1160 | * | |
e99c97ad | 1161 | * Returns: a pointer to the address that has been mapped, or %NULL on failure |
db64fe02 NP |
1162 | */ |
1163 | void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) | |
1164 | { | |
65ee03c4 | 1165 | unsigned long size = (unsigned long)count << PAGE_SHIFT; |
db64fe02 NP |
1166 | unsigned long addr; |
1167 | void *mem; | |
1168 | ||
1169 | if (likely(count <= VMAP_MAX_ALLOC)) { | |
1170 | mem = vb_alloc(size, GFP_KERNEL); | |
1171 | if (IS_ERR(mem)) | |
1172 | return NULL; | |
1173 | addr = (unsigned long)mem; | |
1174 | } else { | |
1175 | struct vmap_area *va; | |
1176 | va = alloc_vmap_area(size, PAGE_SIZE, | |
1177 | VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); | |
1178 | if (IS_ERR(va)) | |
1179 | return NULL; | |
1180 | ||
1181 | addr = va->va_start; | |
1182 | mem = (void *)addr; | |
1183 | } | |
1184 | if (vmap_page_range(addr, addr + size, prot, pages) < 0) { | |
1185 | vm_unmap_ram(mem, count); | |
1186 | return NULL; | |
1187 | } | |
1188 | return mem; | |
1189 | } | |
1190 | EXPORT_SYMBOL(vm_map_ram); | |
1191 | ||
4341fa45 | 1192 | static struct vm_struct *vmlist __initdata; |
be9b7335 NP |
1193 | /** |
1194 | * vm_area_add_early - add vmap area early during boot | |
1195 | * @vm: vm_struct to add | |
1196 | * | |
1197 | * This function is used to add fixed kernel vm area to vmlist before | |
1198 | * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags | |
1199 | * should contain proper values and the other fields should be zero. | |
1200 | * | |
1201 | * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. | |
1202 | */ | |
1203 | void __init vm_area_add_early(struct vm_struct *vm) | |
1204 | { | |
1205 | struct vm_struct *tmp, **p; | |
1206 | ||
1207 | BUG_ON(vmap_initialized); | |
1208 | for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { | |
1209 | if (tmp->addr >= vm->addr) { | |
1210 | BUG_ON(tmp->addr < vm->addr + vm->size); | |
1211 | break; | |
1212 | } else | |
1213 | BUG_ON(tmp->addr + tmp->size > vm->addr); | |
1214 | } | |
1215 | vm->next = *p; | |
1216 | *p = vm; | |
1217 | } | |
1218 | ||
f0aa6617 TH |
1219 | /** |
1220 | * vm_area_register_early - register vmap area early during boot | |
1221 | * @vm: vm_struct to register | |
c0c0a293 | 1222 | * @align: requested alignment |
f0aa6617 TH |
1223 | * |
1224 | * This function is used to register kernel vm area before | |
1225 | * vmalloc_init() is called. @vm->size and @vm->flags should contain | |
1226 | * proper values on entry and other fields should be zero. On return, | |
1227 | * vm->addr contains the allocated address. | |
1228 | * | |
1229 | * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. | |
1230 | */ | |
c0c0a293 | 1231 | void __init vm_area_register_early(struct vm_struct *vm, size_t align) |
f0aa6617 TH |
1232 | { |
1233 | static size_t vm_init_off __initdata; | |
c0c0a293 TH |
1234 | unsigned long addr; |
1235 | ||
1236 | addr = ALIGN(VMALLOC_START + vm_init_off, align); | |
1237 | vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; | |
f0aa6617 | 1238 | |
c0c0a293 | 1239 | vm->addr = (void *)addr; |
f0aa6617 | 1240 | |
be9b7335 | 1241 | vm_area_add_early(vm); |
f0aa6617 TH |
1242 | } |
1243 | ||
db64fe02 NP |
1244 | void __init vmalloc_init(void) |
1245 | { | |
822c18f2 IK |
1246 | struct vmap_area *va; |
1247 | struct vm_struct *tmp; | |
db64fe02 NP |
1248 | int i; |
1249 | ||
1250 | for_each_possible_cpu(i) { | |
1251 | struct vmap_block_queue *vbq; | |
32fcfd40 | 1252 | struct vfree_deferred *p; |
db64fe02 NP |
1253 | |
1254 | vbq = &per_cpu(vmap_block_queue, i); | |
1255 | spin_lock_init(&vbq->lock); | |
1256 | INIT_LIST_HEAD(&vbq->free); | |
32fcfd40 AV |
1257 | p = &per_cpu(vfree_deferred, i); |
1258 | init_llist_head(&p->list); | |
1259 | INIT_WORK(&p->wq, free_work); | |
db64fe02 | 1260 | } |
9b463334 | 1261 | |
822c18f2 IK |
1262 | /* Import existing vmlist entries. */ |
1263 | for (tmp = vmlist; tmp; tmp = tmp->next) { | |
43ebdac4 | 1264 | va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); |
dbda591d | 1265 | va->flags = VM_VM_AREA; |
822c18f2 IK |
1266 | va->va_start = (unsigned long)tmp->addr; |
1267 | va->va_end = va->va_start + tmp->size; | |
dbda591d | 1268 | va->vm = tmp; |
822c18f2 IK |
1269 | __insert_vmap_area(va); |
1270 | } | |
ca23e405 TH |
1271 | |
1272 | vmap_area_pcpu_hole = VMALLOC_END; | |
1273 | ||
9b463334 | 1274 | vmap_initialized = true; |
db64fe02 NP |
1275 | } |
1276 | ||
8fc48985 TH |
1277 | /** |
1278 | * map_kernel_range_noflush - map kernel VM area with the specified pages | |
1279 | * @addr: start of the VM area to map | |
1280 | * @size: size of the VM area to map | |
1281 | * @prot: page protection flags to use | |
1282 | * @pages: pages to map | |
1283 | * | |
1284 | * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size | |
1285 | * specify should have been allocated using get_vm_area() and its | |
1286 | * friends. | |
1287 | * | |
1288 | * NOTE: | |
1289 | * This function does NOT do any cache flushing. The caller is | |
1290 | * responsible for calling flush_cache_vmap() on to-be-mapped areas | |
1291 | * before calling this function. | |
1292 | * | |
1293 | * RETURNS: | |
1294 | * The number of pages mapped on success, -errno on failure. | |
1295 | */ | |
1296 | int map_kernel_range_noflush(unsigned long addr, unsigned long size, | |
1297 | pgprot_t prot, struct page **pages) | |
1298 | { | |
1299 | return vmap_page_range_noflush(addr, addr + size, prot, pages); | |
1300 | } | |
1301 | ||
1302 | /** | |
1303 | * unmap_kernel_range_noflush - unmap kernel VM area | |
1304 | * @addr: start of the VM area to unmap | |
1305 | * @size: size of the VM area to unmap | |
1306 | * | |
1307 | * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size | |
1308 | * specify should have been allocated using get_vm_area() and its | |
1309 | * friends. | |
1310 | * | |
1311 | * NOTE: | |
1312 | * This function does NOT do any cache flushing. The caller is | |
1313 | * responsible for calling flush_cache_vunmap() on to-be-mapped areas | |
1314 | * before calling this function and flush_tlb_kernel_range() after. | |
1315 | */ | |
1316 | void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) | |
1317 | { | |
1318 | vunmap_page_range(addr, addr + size); | |
1319 | } | |
81e88fdc | 1320 | EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); |
8fc48985 TH |
1321 | |
1322 | /** | |
1323 | * unmap_kernel_range - unmap kernel VM area and flush cache and TLB | |
1324 | * @addr: start of the VM area to unmap | |
1325 | * @size: size of the VM area to unmap | |
1326 | * | |
1327 | * Similar to unmap_kernel_range_noflush() but flushes vcache before | |
1328 | * the unmapping and tlb after. | |
1329 | */ | |
db64fe02 NP |
1330 | void unmap_kernel_range(unsigned long addr, unsigned long size) |
1331 | { | |
1332 | unsigned long end = addr + size; | |
f6fcba70 TH |
1333 | |
1334 | flush_cache_vunmap(addr, end); | |
db64fe02 NP |
1335 | vunmap_page_range(addr, end); |
1336 | flush_tlb_kernel_range(addr, end); | |
1337 | } | |
93ef6d6c | 1338 | EXPORT_SYMBOL_GPL(unmap_kernel_range); |
db64fe02 | 1339 | |
f6f8ed47 | 1340 | int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages) |
db64fe02 NP |
1341 | { |
1342 | unsigned long addr = (unsigned long)area->addr; | |
762216ab | 1343 | unsigned long end = addr + get_vm_area_size(area); |
db64fe02 NP |
1344 | int err; |
1345 | ||
f6f8ed47 | 1346 | err = vmap_page_range(addr, end, prot, pages); |
db64fe02 | 1347 | |
f6f8ed47 | 1348 | return err > 0 ? 0 : err; |
db64fe02 NP |
1349 | } |
1350 | EXPORT_SYMBOL_GPL(map_vm_area); | |
1351 | ||
f5252e00 | 1352 | static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, |
5e6cafc8 | 1353 | unsigned long flags, const void *caller) |
cf88c790 | 1354 | { |
c69480ad | 1355 | spin_lock(&vmap_area_lock); |
cf88c790 TH |
1356 | vm->flags = flags; |
1357 | vm->addr = (void *)va->va_start; | |
1358 | vm->size = va->va_end - va->va_start; | |
1359 | vm->caller = caller; | |
db1aecaf | 1360 | va->vm = vm; |
cf88c790 | 1361 | va->flags |= VM_VM_AREA; |
c69480ad | 1362 | spin_unlock(&vmap_area_lock); |
f5252e00 | 1363 | } |
cf88c790 | 1364 | |
20fc02b4 | 1365 | static void clear_vm_uninitialized_flag(struct vm_struct *vm) |
f5252e00 | 1366 | { |
d4033afd | 1367 | /* |
20fc02b4 | 1368 | * Before removing VM_UNINITIALIZED, |
d4033afd JK |
1369 | * we should make sure that vm has proper values. |
1370 | * Pair with smp_rmb() in show_numa_info(). | |
1371 | */ | |
1372 | smp_wmb(); | |
20fc02b4 | 1373 | vm->flags &= ~VM_UNINITIALIZED; |
cf88c790 TH |
1374 | } |
1375 | ||
db64fe02 | 1376 | static struct vm_struct *__get_vm_area_node(unsigned long size, |
2dca6999 | 1377 | unsigned long align, unsigned long flags, unsigned long start, |
5e6cafc8 | 1378 | unsigned long end, int node, gfp_t gfp_mask, const void *caller) |
db64fe02 | 1379 | { |
0006526d | 1380 | struct vmap_area *va; |
db64fe02 | 1381 | struct vm_struct *area; |
1da177e4 | 1382 | |
52fd24ca | 1383 | BUG_ON(in_interrupt()); |
1da177e4 | 1384 | size = PAGE_ALIGN(size); |
31be8309 OH |
1385 | if (unlikely(!size)) |
1386 | return NULL; | |
1da177e4 | 1387 | |
252e5c6e | 1388 | if (flags & VM_IOREMAP) |
1389 | align = 1ul << clamp_t(int, get_count_order_long(size), | |
1390 | PAGE_SHIFT, IOREMAP_MAX_ORDER); | |
1391 | ||
cf88c790 | 1392 | area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); |
1da177e4 LT |
1393 | if (unlikely(!area)) |
1394 | return NULL; | |
1395 | ||
71394fe5 AR |
1396 | if (!(flags & VM_NO_GUARD)) |
1397 | size += PAGE_SIZE; | |
1da177e4 | 1398 | |
db64fe02 NP |
1399 | va = alloc_vmap_area(size, align, start, end, node, gfp_mask); |
1400 | if (IS_ERR(va)) { | |
1401 | kfree(area); | |
1402 | return NULL; | |
1da177e4 | 1403 | } |
1da177e4 | 1404 | |
d82b1d85 | 1405 | setup_vmalloc_vm(area, va, flags, caller); |
f5252e00 | 1406 | |
1da177e4 | 1407 | return area; |
1da177e4 LT |
1408 | } |
1409 | ||
930fc45a CL |
1410 | struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, |
1411 | unsigned long start, unsigned long end) | |
1412 | { | |
00ef2d2f DR |
1413 | return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, |
1414 | GFP_KERNEL, __builtin_return_address(0)); | |
930fc45a | 1415 | } |
5992b6da | 1416 | EXPORT_SYMBOL_GPL(__get_vm_area); |
930fc45a | 1417 | |
c2968612 BH |
1418 | struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, |
1419 | unsigned long start, unsigned long end, | |
5e6cafc8 | 1420 | const void *caller) |
c2968612 | 1421 | { |
00ef2d2f DR |
1422 | return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, |
1423 | GFP_KERNEL, caller); | |
c2968612 BH |
1424 | } |
1425 | ||
1da177e4 | 1426 | /** |
183ff22b | 1427 | * get_vm_area - reserve a contiguous kernel virtual area |
1da177e4 LT |
1428 | * @size: size of the area |
1429 | * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC | |
1430 | * | |
1431 | * Search an area of @size in the kernel virtual mapping area, | |
1432 | * and reserved it for out purposes. Returns the area descriptor | |
1433 | * on success or %NULL on failure. | |
1434 | */ | |
1435 | struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) | |
1436 | { | |
2dca6999 | 1437 | return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, |
00ef2d2f DR |
1438 | NUMA_NO_NODE, GFP_KERNEL, |
1439 | __builtin_return_address(0)); | |
23016969 CL |
1440 | } |
1441 | ||
1442 | struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, | |
5e6cafc8 | 1443 | const void *caller) |
23016969 | 1444 | { |
2dca6999 | 1445 | return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, |
00ef2d2f | 1446 | NUMA_NO_NODE, GFP_KERNEL, caller); |
1da177e4 LT |
1447 | } |
1448 | ||
e9da6e99 MS |
1449 | /** |
1450 | * find_vm_area - find a continuous kernel virtual area | |
1451 | * @addr: base address | |
1452 | * | |
1453 | * Search for the kernel VM area starting at @addr, and return it. | |
1454 | * It is up to the caller to do all required locking to keep the returned | |
1455 | * pointer valid. | |
1456 | */ | |
1457 | struct vm_struct *find_vm_area(const void *addr) | |
83342314 | 1458 | { |
db64fe02 | 1459 | struct vmap_area *va; |
83342314 | 1460 | |
db64fe02 NP |
1461 | va = find_vmap_area((unsigned long)addr); |
1462 | if (va && va->flags & VM_VM_AREA) | |
db1aecaf | 1463 | return va->vm; |
1da177e4 | 1464 | |
1da177e4 | 1465 | return NULL; |
1da177e4 LT |
1466 | } |
1467 | ||
7856dfeb | 1468 | /** |
183ff22b | 1469 | * remove_vm_area - find and remove a continuous kernel virtual area |
7856dfeb AK |
1470 | * @addr: base address |
1471 | * | |
1472 | * Search for the kernel VM area starting at @addr, and remove it. | |
1473 | * This function returns the found VM area, but using it is NOT safe | |
1474 | * on SMP machines, except for its size or flags. | |
1475 | */ | |
b3bdda02 | 1476 | struct vm_struct *remove_vm_area(const void *addr) |
7856dfeb | 1477 | { |
db64fe02 NP |
1478 | struct vmap_area *va; |
1479 | ||
5803ed29 CH |
1480 | might_sleep(); |
1481 | ||
db64fe02 NP |
1482 | va = find_vmap_area((unsigned long)addr); |
1483 | if (va && va->flags & VM_VM_AREA) { | |
db1aecaf | 1484 | struct vm_struct *vm = va->vm; |
f5252e00 | 1485 | |
c69480ad JK |
1486 | spin_lock(&vmap_area_lock); |
1487 | va->vm = NULL; | |
1488 | va->flags &= ~VM_VM_AREA; | |
1489 | spin_unlock(&vmap_area_lock); | |
1490 | ||
dd32c279 | 1491 | vmap_debug_free_range(va->va_start, va->va_end); |
a5af5aa8 | 1492 | kasan_free_shadow(vm); |
dd32c279 | 1493 | free_unmap_vmap_area(va); |
dd32c279 | 1494 | |
db64fe02 NP |
1495 | return vm; |
1496 | } | |
1497 | return NULL; | |
7856dfeb AK |
1498 | } |
1499 | ||
b3bdda02 | 1500 | static void __vunmap(const void *addr, int deallocate_pages) |
1da177e4 LT |
1501 | { |
1502 | struct vm_struct *area; | |
1503 | ||
1504 | if (!addr) | |
1505 | return; | |
1506 | ||
e69e9d4a | 1507 | if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", |
ab15d9b4 | 1508 | addr)) |
1da177e4 | 1509 | return; |
1da177e4 LT |
1510 | |
1511 | area = remove_vm_area(addr); | |
1512 | if (unlikely(!area)) { | |
4c8573e2 | 1513 | WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", |
1da177e4 | 1514 | addr); |
1da177e4 LT |
1515 | return; |
1516 | } | |
1517 | ||
7511c3ed JM |
1518 | debug_check_no_locks_freed(addr, get_vm_area_size(area)); |
1519 | debug_check_no_obj_freed(addr, get_vm_area_size(area)); | |
9a11b49a | 1520 | |
1da177e4 LT |
1521 | if (deallocate_pages) { |
1522 | int i; | |
1523 | ||
1524 | for (i = 0; i < area->nr_pages; i++) { | |
bf53d6f8 CL |
1525 | struct page *page = area->pages[i]; |
1526 | ||
1527 | BUG_ON(!page); | |
4949148a | 1528 | __free_pages(page, 0); |
1da177e4 LT |
1529 | } |
1530 | ||
244d63ee | 1531 | kvfree(area->pages); |
1da177e4 LT |
1532 | } |
1533 | ||
1534 | kfree(area); | |
1535 | return; | |
1536 | } | |
bf22e37a AR |
1537 | |
1538 | static inline void __vfree_deferred(const void *addr) | |
1539 | { | |
1540 | /* | |
1541 | * Use raw_cpu_ptr() because this can be called from preemptible | |
1542 | * context. Preemption is absolutely fine here, because the llist_add() | |
1543 | * implementation is lockless, so it works even if we are adding to | |
1544 | * nother cpu's list. schedule_work() should be fine with this too. | |
1545 | */ | |
1546 | struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); | |
1547 | ||
1548 | if (llist_add((struct llist_node *)addr, &p->list)) | |
1549 | schedule_work(&p->wq); | |
1550 | } | |
1551 | ||
1552 | /** | |
1553 | * vfree_atomic - release memory allocated by vmalloc() | |
1554 | * @addr: memory base address | |
1555 | * | |
1556 | * This one is just like vfree() but can be called in any atomic context | |
1557 | * except NMIs. | |
1558 | */ | |
1559 | void vfree_atomic(const void *addr) | |
1560 | { | |
1561 | BUG_ON(in_nmi()); | |
1562 | ||
1563 | kmemleak_free(addr); | |
1564 | ||
1565 | if (!addr) | |
1566 | return; | |
1567 | __vfree_deferred(addr); | |
1568 | } | |
1569 | ||
1da177e4 LT |
1570 | /** |
1571 | * vfree - release memory allocated by vmalloc() | |
1da177e4 LT |
1572 | * @addr: memory base address |
1573 | * | |
183ff22b | 1574 | * Free the virtually continuous memory area starting at @addr, as |
80e93eff PE |
1575 | * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is |
1576 | * NULL, no operation is performed. | |
1da177e4 | 1577 | * |
32fcfd40 AV |
1578 | * Must not be called in NMI context (strictly speaking, only if we don't |
1579 | * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling | |
1580 | * conventions for vfree() arch-depenedent would be a really bad idea) | |
c9fcee51 AM |
1581 | * |
1582 | * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node) | |
1da177e4 | 1583 | */ |
b3bdda02 | 1584 | void vfree(const void *addr) |
1da177e4 | 1585 | { |
32fcfd40 | 1586 | BUG_ON(in_nmi()); |
89219d37 CM |
1587 | |
1588 | kmemleak_free(addr); | |
1589 | ||
32fcfd40 AV |
1590 | if (!addr) |
1591 | return; | |
bf22e37a AR |
1592 | if (unlikely(in_interrupt())) |
1593 | __vfree_deferred(addr); | |
1594 | else | |
32fcfd40 | 1595 | __vunmap(addr, 1); |
1da177e4 | 1596 | } |
1da177e4 LT |
1597 | EXPORT_SYMBOL(vfree); |
1598 | ||
1599 | /** | |
1600 | * vunmap - release virtual mapping obtained by vmap() | |
1da177e4 LT |
1601 | * @addr: memory base address |
1602 | * | |
1603 | * Free the virtually contiguous memory area starting at @addr, | |
1604 | * which was created from the page array passed to vmap(). | |
1605 | * | |
80e93eff | 1606 | * Must not be called in interrupt context. |
1da177e4 | 1607 | */ |
b3bdda02 | 1608 | void vunmap(const void *addr) |
1da177e4 LT |
1609 | { |
1610 | BUG_ON(in_interrupt()); | |
34754b69 | 1611 | might_sleep(); |
32fcfd40 AV |
1612 | if (addr) |
1613 | __vunmap(addr, 0); | |
1da177e4 | 1614 | } |
1da177e4 LT |
1615 | EXPORT_SYMBOL(vunmap); |
1616 | ||
1617 | /** | |
1618 | * vmap - map an array of pages into virtually contiguous space | |
1da177e4 LT |
1619 | * @pages: array of page pointers |
1620 | * @count: number of pages to map | |
1621 | * @flags: vm_area->flags | |
1622 | * @prot: page protection for the mapping | |
1623 | * | |
1624 | * Maps @count pages from @pages into contiguous kernel virtual | |
1625 | * space. | |
1626 | */ | |
1627 | void *vmap(struct page **pages, unsigned int count, | |
1628 | unsigned long flags, pgprot_t prot) | |
1629 | { | |
1630 | struct vm_struct *area; | |
65ee03c4 | 1631 | unsigned long size; /* In bytes */ |
1da177e4 | 1632 | |
34754b69 PZ |
1633 | might_sleep(); |
1634 | ||
4481374c | 1635 | if (count > totalram_pages) |
1da177e4 LT |
1636 | return NULL; |
1637 | ||
65ee03c4 GJM |
1638 | size = (unsigned long)count << PAGE_SHIFT; |
1639 | area = get_vm_area_caller(size, flags, __builtin_return_address(0)); | |
1da177e4 LT |
1640 | if (!area) |
1641 | return NULL; | |
23016969 | 1642 | |
f6f8ed47 | 1643 | if (map_vm_area(area, prot, pages)) { |
1da177e4 LT |
1644 | vunmap(area->addr); |
1645 | return NULL; | |
1646 | } | |
1647 | ||
1648 | return area->addr; | |
1649 | } | |
1da177e4 LT |
1650 | EXPORT_SYMBOL(vmap); |
1651 | ||
2dca6999 DM |
1652 | static void *__vmalloc_node(unsigned long size, unsigned long align, |
1653 | gfp_t gfp_mask, pgprot_t prot, | |
5e6cafc8 | 1654 | int node, const void *caller); |
e31d9eb5 | 1655 | static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, |
3722e13c | 1656 | pgprot_t prot, int node) |
1da177e4 LT |
1657 | { |
1658 | struct page **pages; | |
1659 | unsigned int nr_pages, array_size, i; | |
930f036b DR |
1660 | const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; |
1661 | const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN; | |
1da177e4 | 1662 | |
762216ab | 1663 | nr_pages = get_vm_area_size(area) >> PAGE_SHIFT; |
1da177e4 LT |
1664 | array_size = (nr_pages * sizeof(struct page *)); |
1665 | ||
1666 | area->nr_pages = nr_pages; | |
1667 | /* Please note that the recursion is strictly bounded. */ | |
8757d5fa | 1668 | if (array_size > PAGE_SIZE) { |
976d6dfb | 1669 | pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM, |
3722e13c | 1670 | PAGE_KERNEL, node, area->caller); |
286e1ea3 | 1671 | } else { |
976d6dfb | 1672 | pages = kmalloc_node(array_size, nested_gfp, node); |
286e1ea3 | 1673 | } |
1da177e4 LT |
1674 | area->pages = pages; |
1675 | if (!area->pages) { | |
1676 | remove_vm_area(area->addr); | |
1677 | kfree(area); | |
1678 | return NULL; | |
1679 | } | |
1da177e4 LT |
1680 | |
1681 | for (i = 0; i < area->nr_pages; i++) { | |
bf53d6f8 CL |
1682 | struct page *page; |
1683 | ||
5d17a73a MH |
1684 | if (fatal_signal_pending(current)) { |
1685 | area->nr_pages = i; | |
171012f5 | 1686 | goto fail_no_warn; |
5d17a73a MH |
1687 | } |
1688 | ||
4b90951c | 1689 | if (node == NUMA_NO_NODE) |
7877cdcc | 1690 | page = alloc_page(alloc_mask); |
930fc45a | 1691 | else |
7877cdcc | 1692 | page = alloc_pages_node(node, alloc_mask, 0); |
bf53d6f8 CL |
1693 | |
1694 | if (unlikely(!page)) { | |
1da177e4 LT |
1695 | /* Successfully allocated i pages, free them in __vunmap() */ |
1696 | area->nr_pages = i; | |
1697 | goto fail; | |
1698 | } | |
bf53d6f8 | 1699 | area->pages[i] = page; |
d0164adc | 1700 | if (gfpflags_allow_blocking(gfp_mask)) |
660654f9 | 1701 | cond_resched(); |
1da177e4 LT |
1702 | } |
1703 | ||
f6f8ed47 | 1704 | if (map_vm_area(area, prot, pages)) |
1da177e4 LT |
1705 | goto fail; |
1706 | return area->addr; | |
1707 | ||
1708 | fail: | |
a8e99259 | 1709 | warn_alloc(gfp_mask, NULL, |
7877cdcc | 1710 | "vmalloc: allocation failure, allocated %ld of %ld bytes", |
22943ab1 | 1711 | (area->nr_pages*PAGE_SIZE), area->size); |
171012f5 | 1712 | fail_no_warn: |
1da177e4 LT |
1713 | vfree(area->addr); |
1714 | return NULL; | |
1715 | } | |
1716 | ||
1717 | /** | |
d0a21265 | 1718 | * __vmalloc_node_range - allocate virtually contiguous memory |
1da177e4 | 1719 | * @size: allocation size |
2dca6999 | 1720 | * @align: desired alignment |
d0a21265 DR |
1721 | * @start: vm area range start |
1722 | * @end: vm area range end | |
1da177e4 LT |
1723 | * @gfp_mask: flags for the page level allocator |
1724 | * @prot: protection mask for the allocated pages | |
cb9e3c29 | 1725 | * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) |
00ef2d2f | 1726 | * @node: node to use for allocation or NUMA_NO_NODE |
c85d194b | 1727 | * @caller: caller's return address |
1da177e4 LT |
1728 | * |
1729 | * Allocate enough pages to cover @size from the page level | |
1730 | * allocator with @gfp_mask flags. Map them into contiguous | |
1731 | * kernel virtual space, using a pagetable protection of @prot. | |
1732 | */ | |
d0a21265 DR |
1733 | void *__vmalloc_node_range(unsigned long size, unsigned long align, |
1734 | unsigned long start, unsigned long end, gfp_t gfp_mask, | |
cb9e3c29 AR |
1735 | pgprot_t prot, unsigned long vm_flags, int node, |
1736 | const void *caller) | |
1da177e4 LT |
1737 | { |
1738 | struct vm_struct *area; | |
89219d37 CM |
1739 | void *addr; |
1740 | unsigned long real_size = size; | |
1da177e4 LT |
1741 | |
1742 | size = PAGE_ALIGN(size); | |
4481374c | 1743 | if (!size || (size >> PAGE_SHIFT) > totalram_pages) |
de7d2b56 | 1744 | goto fail; |
1da177e4 | 1745 | |
cb9e3c29 AR |
1746 | area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED | |
1747 | vm_flags, start, end, node, gfp_mask, caller); | |
1da177e4 | 1748 | if (!area) |
de7d2b56 | 1749 | goto fail; |
1da177e4 | 1750 | |
3722e13c | 1751 | addr = __vmalloc_area_node(area, gfp_mask, prot, node); |
1368edf0 | 1752 | if (!addr) |
b82225f3 | 1753 | return NULL; |
89219d37 | 1754 | |
f5252e00 | 1755 | /* |
20fc02b4 ZY |
1756 | * In this function, newly allocated vm_struct has VM_UNINITIALIZED |
1757 | * flag. It means that vm_struct is not fully initialized. | |
4341fa45 | 1758 | * Now, it is fully initialized, so remove this flag here. |
f5252e00 | 1759 | */ |
20fc02b4 | 1760 | clear_vm_uninitialized_flag(area); |
f5252e00 | 1761 | |
89219d37 | 1762 | /* |
7f88f88f CM |
1763 | * A ref_count = 2 is needed because vm_struct allocated in |
1764 | * __get_vm_area_node() contains a reference to the virtual address of | |
1765 | * the vmalloc'ed block. | |
89219d37 | 1766 | */ |
7f88f88f | 1767 | kmemleak_alloc(addr, real_size, 2, gfp_mask); |
89219d37 CM |
1768 | |
1769 | return addr; | |
de7d2b56 JP |
1770 | |
1771 | fail: | |
a8e99259 | 1772 | warn_alloc(gfp_mask, NULL, |
7877cdcc | 1773 | "vmalloc: allocation failure: %lu bytes", real_size); |
de7d2b56 | 1774 | return NULL; |
1da177e4 LT |
1775 | } |
1776 | ||
d0a21265 DR |
1777 | /** |
1778 | * __vmalloc_node - allocate virtually contiguous memory | |
1779 | * @size: allocation size | |
1780 | * @align: desired alignment | |
1781 | * @gfp_mask: flags for the page level allocator | |
1782 | * @prot: protection mask for the allocated pages | |
00ef2d2f | 1783 | * @node: node to use for allocation or NUMA_NO_NODE |
d0a21265 DR |
1784 | * @caller: caller's return address |
1785 | * | |
1786 | * Allocate enough pages to cover @size from the page level | |
1787 | * allocator with @gfp_mask flags. Map them into contiguous | |
1788 | * kernel virtual space, using a pagetable protection of @prot. | |
1789 | */ | |
1790 | static void *__vmalloc_node(unsigned long size, unsigned long align, | |
1791 | gfp_t gfp_mask, pgprot_t prot, | |
5e6cafc8 | 1792 | int node, const void *caller) |
d0a21265 DR |
1793 | { |
1794 | return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, | |
cb9e3c29 | 1795 | gfp_mask, prot, 0, node, caller); |
d0a21265 DR |
1796 | } |
1797 | ||
930fc45a CL |
1798 | void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) |
1799 | { | |
00ef2d2f | 1800 | return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE, |
23016969 | 1801 | __builtin_return_address(0)); |
930fc45a | 1802 | } |
1da177e4 LT |
1803 | EXPORT_SYMBOL(__vmalloc); |
1804 | ||
e1ca7788 DY |
1805 | static inline void *__vmalloc_node_flags(unsigned long size, |
1806 | int node, gfp_t flags) | |
1807 | { | |
1808 | return __vmalloc_node(size, 1, flags, PAGE_KERNEL, | |
1809 | node, __builtin_return_address(0)); | |
1810 | } | |
1811 | ||
1da177e4 LT |
1812 | /** |
1813 | * vmalloc - allocate virtually contiguous memory | |
1da177e4 | 1814 | * @size: allocation size |
1da177e4 LT |
1815 | * Allocate enough pages to cover @size from the page level |
1816 | * allocator and map them into contiguous kernel virtual space. | |
1817 | * | |
c1c8897f | 1818 | * For tight control over page level allocator and protection flags |
1da177e4 LT |
1819 | * use __vmalloc() instead. |
1820 | */ | |
1821 | void *vmalloc(unsigned long size) | |
1822 | { | |
00ef2d2f DR |
1823 | return __vmalloc_node_flags(size, NUMA_NO_NODE, |
1824 | GFP_KERNEL | __GFP_HIGHMEM); | |
1da177e4 | 1825 | } |
1da177e4 LT |
1826 | EXPORT_SYMBOL(vmalloc); |
1827 | ||
e1ca7788 DY |
1828 | /** |
1829 | * vzalloc - allocate virtually contiguous memory with zero fill | |
1830 | * @size: allocation size | |
1831 | * Allocate enough pages to cover @size from the page level | |
1832 | * allocator and map them into contiguous kernel virtual space. | |
1833 | * The memory allocated is set to zero. | |
1834 | * | |
1835 | * For tight control over page level allocator and protection flags | |
1836 | * use __vmalloc() instead. | |
1837 | */ | |
1838 | void *vzalloc(unsigned long size) | |
1839 | { | |
00ef2d2f | 1840 | return __vmalloc_node_flags(size, NUMA_NO_NODE, |
e1ca7788 DY |
1841 | GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); |
1842 | } | |
1843 | EXPORT_SYMBOL(vzalloc); | |
1844 | ||
83342314 | 1845 | /** |
ead04089 REB |
1846 | * vmalloc_user - allocate zeroed virtually contiguous memory for userspace |
1847 | * @size: allocation size | |
83342314 | 1848 | * |
ead04089 REB |
1849 | * The resulting memory area is zeroed so it can be mapped to userspace |
1850 | * without leaking data. | |
83342314 NP |
1851 | */ |
1852 | void *vmalloc_user(unsigned long size) | |
1853 | { | |
1854 | struct vm_struct *area; | |
1855 | void *ret; | |
1856 | ||
2dca6999 DM |
1857 | ret = __vmalloc_node(size, SHMLBA, |
1858 | GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, | |
00ef2d2f DR |
1859 | PAGE_KERNEL, NUMA_NO_NODE, |
1860 | __builtin_return_address(0)); | |
2b4ac44e | 1861 | if (ret) { |
db64fe02 | 1862 | area = find_vm_area(ret); |
2b4ac44e | 1863 | area->flags |= VM_USERMAP; |
2b4ac44e | 1864 | } |
83342314 NP |
1865 | return ret; |
1866 | } | |
1867 | EXPORT_SYMBOL(vmalloc_user); | |
1868 | ||
930fc45a CL |
1869 | /** |
1870 | * vmalloc_node - allocate memory on a specific node | |
930fc45a | 1871 | * @size: allocation size |
d44e0780 | 1872 | * @node: numa node |
930fc45a CL |
1873 | * |
1874 | * Allocate enough pages to cover @size from the page level | |
1875 | * allocator and map them into contiguous kernel virtual space. | |
1876 | * | |
c1c8897f | 1877 | * For tight control over page level allocator and protection flags |
930fc45a CL |
1878 | * use __vmalloc() instead. |
1879 | */ | |
1880 | void *vmalloc_node(unsigned long size, int node) | |
1881 | { | |
2dca6999 | 1882 | return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, |
23016969 | 1883 | node, __builtin_return_address(0)); |
930fc45a CL |
1884 | } |
1885 | EXPORT_SYMBOL(vmalloc_node); | |
1886 | ||
e1ca7788 DY |
1887 | /** |
1888 | * vzalloc_node - allocate memory on a specific node with zero fill | |
1889 | * @size: allocation size | |
1890 | * @node: numa node | |
1891 | * | |
1892 | * Allocate enough pages to cover @size from the page level | |
1893 | * allocator and map them into contiguous kernel virtual space. | |
1894 | * The memory allocated is set to zero. | |
1895 | * | |
1896 | * For tight control over page level allocator and protection flags | |
1897 | * use __vmalloc_node() instead. | |
1898 | */ | |
1899 | void *vzalloc_node(unsigned long size, int node) | |
1900 | { | |
1901 | return __vmalloc_node_flags(size, node, | |
1902 | GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); | |
1903 | } | |
1904 | EXPORT_SYMBOL(vzalloc_node); | |
1905 | ||
4dc3b16b PP |
1906 | #ifndef PAGE_KERNEL_EXEC |
1907 | # define PAGE_KERNEL_EXEC PAGE_KERNEL | |
1908 | #endif | |
1909 | ||
1da177e4 LT |
1910 | /** |
1911 | * vmalloc_exec - allocate virtually contiguous, executable memory | |
1da177e4 LT |
1912 | * @size: allocation size |
1913 | * | |
1914 | * Kernel-internal function to allocate enough pages to cover @size | |
1915 | * the page level allocator and map them into contiguous and | |
1916 | * executable kernel virtual space. | |
1917 | * | |
c1c8897f | 1918 | * For tight control over page level allocator and protection flags |
1da177e4 LT |
1919 | * use __vmalloc() instead. |
1920 | */ | |
1921 | ||
1da177e4 LT |
1922 | void *vmalloc_exec(unsigned long size) |
1923 | { | |
2dca6999 | 1924 | return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, |
00ef2d2f | 1925 | NUMA_NO_NODE, __builtin_return_address(0)); |
1da177e4 LT |
1926 | } |
1927 | ||
0d08e0d3 | 1928 | #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) |
7ac674f5 | 1929 | #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL |
0d08e0d3 | 1930 | #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) |
7ac674f5 | 1931 | #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL |
0d08e0d3 AK |
1932 | #else |
1933 | #define GFP_VMALLOC32 GFP_KERNEL | |
1934 | #endif | |
1935 | ||
1da177e4 LT |
1936 | /** |
1937 | * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) | |
1da177e4 LT |
1938 | * @size: allocation size |
1939 | * | |
1940 | * Allocate enough 32bit PA addressable pages to cover @size from the | |
1941 | * page level allocator and map them into contiguous kernel virtual space. | |
1942 | */ | |
1943 | void *vmalloc_32(unsigned long size) | |
1944 | { | |
2dca6999 | 1945 | return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, |
00ef2d2f | 1946 | NUMA_NO_NODE, __builtin_return_address(0)); |
1da177e4 | 1947 | } |
1da177e4 LT |
1948 | EXPORT_SYMBOL(vmalloc_32); |
1949 | ||
83342314 | 1950 | /** |
ead04089 | 1951 | * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory |
83342314 | 1952 | * @size: allocation size |
ead04089 REB |
1953 | * |
1954 | * The resulting memory area is 32bit addressable and zeroed so it can be | |
1955 | * mapped to userspace without leaking data. | |
83342314 NP |
1956 | */ |
1957 | void *vmalloc_32_user(unsigned long size) | |
1958 | { | |
1959 | struct vm_struct *area; | |
1960 | void *ret; | |
1961 | ||
2dca6999 | 1962 | ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, |
00ef2d2f | 1963 | NUMA_NO_NODE, __builtin_return_address(0)); |
2b4ac44e | 1964 | if (ret) { |
db64fe02 | 1965 | area = find_vm_area(ret); |
2b4ac44e | 1966 | area->flags |= VM_USERMAP; |
2b4ac44e | 1967 | } |
83342314 NP |
1968 | return ret; |
1969 | } | |
1970 | EXPORT_SYMBOL(vmalloc_32_user); | |
1971 | ||
d0107eb0 KH |
1972 | /* |
1973 | * small helper routine , copy contents to buf from addr. | |
1974 | * If the page is not present, fill zero. | |
1975 | */ | |
1976 | ||
1977 | static int aligned_vread(char *buf, char *addr, unsigned long count) | |
1978 | { | |
1979 | struct page *p; | |
1980 | int copied = 0; | |
1981 | ||
1982 | while (count) { | |
1983 | unsigned long offset, length; | |
1984 | ||
891c49ab | 1985 | offset = offset_in_page(addr); |
d0107eb0 KH |
1986 | length = PAGE_SIZE - offset; |
1987 | if (length > count) | |
1988 | length = count; | |
1989 | p = vmalloc_to_page(addr); | |
1990 | /* | |
1991 | * To do safe access to this _mapped_ area, we need | |
1992 | * lock. But adding lock here means that we need to add | |
1993 | * overhead of vmalloc()/vfree() calles for this _debug_ | |
1994 | * interface, rarely used. Instead of that, we'll use | |
1995 | * kmap() and get small overhead in this access function. | |
1996 | */ | |
1997 | if (p) { | |
1998 | /* | |
1999 | * we can expect USER0 is not used (see vread/vwrite's | |
2000 | * function description) | |
2001 | */ | |
9b04c5fe | 2002 | void *map = kmap_atomic(p); |
d0107eb0 | 2003 | memcpy(buf, map + offset, length); |
9b04c5fe | 2004 | kunmap_atomic(map); |
d0107eb0 KH |
2005 | } else |
2006 | memset(buf, 0, length); | |
2007 | ||
2008 | addr += length; | |
2009 | buf += length; | |
2010 | copied += length; | |
2011 | count -= length; | |
2012 | } | |
2013 | return copied; | |
2014 | } | |
2015 | ||
2016 | static int aligned_vwrite(char *buf, char *addr, unsigned long count) | |
2017 | { | |
2018 | struct page *p; | |
2019 | int copied = 0; | |
2020 | ||
2021 | while (count) { | |
2022 | unsigned long offset, length; | |
2023 | ||
891c49ab | 2024 | offset = offset_in_page(addr); |
d0107eb0 KH |
2025 | length = PAGE_SIZE - offset; |
2026 | if (length > count) | |
2027 | length = count; | |
2028 | p = vmalloc_to_page(addr); | |
2029 | /* | |
2030 | * To do safe access to this _mapped_ area, we need | |
2031 | * lock. But adding lock here means that we need to add | |
2032 | * overhead of vmalloc()/vfree() calles for this _debug_ | |
2033 | * interface, rarely used. Instead of that, we'll use | |
2034 | * kmap() and get small overhead in this access function. | |
2035 | */ | |
2036 | if (p) { | |
2037 | /* | |
2038 | * we can expect USER0 is not used (see vread/vwrite's | |
2039 | * function description) | |
2040 | */ | |
9b04c5fe | 2041 | void *map = kmap_atomic(p); |
d0107eb0 | 2042 | memcpy(map + offset, buf, length); |
9b04c5fe | 2043 | kunmap_atomic(map); |
d0107eb0 KH |
2044 | } |
2045 | addr += length; | |
2046 | buf += length; | |
2047 | copied += length; | |
2048 | count -= length; | |
2049 | } | |
2050 | return copied; | |
2051 | } | |
2052 | ||
2053 | /** | |
2054 | * vread() - read vmalloc area in a safe way. | |
2055 | * @buf: buffer for reading data | |
2056 | * @addr: vm address. | |
2057 | * @count: number of bytes to be read. | |
2058 | * | |
2059 | * Returns # of bytes which addr and buf should be increased. | |
2060 | * (same number to @count). Returns 0 if [addr...addr+count) doesn't | |
2061 | * includes any intersect with alive vmalloc area. | |
2062 | * | |
2063 | * This function checks that addr is a valid vmalloc'ed area, and | |
2064 | * copy data from that area to a given buffer. If the given memory range | |
2065 | * of [addr...addr+count) includes some valid address, data is copied to | |
2066 | * proper area of @buf. If there are memory holes, they'll be zero-filled. | |
2067 | * IOREMAP area is treated as memory hole and no copy is done. | |
2068 | * | |
2069 | * If [addr...addr+count) doesn't includes any intersects with alive | |
a8e5202d | 2070 | * vm_struct area, returns 0. @buf should be kernel's buffer. |
d0107eb0 KH |
2071 | * |
2072 | * Note: In usual ops, vread() is never necessary because the caller | |
2073 | * should know vmalloc() area is valid and can use memcpy(). | |
2074 | * This is for routines which have to access vmalloc area without | |
2075 | * any informaion, as /dev/kmem. | |
2076 | * | |
2077 | */ | |
2078 | ||
1da177e4 LT |
2079 | long vread(char *buf, char *addr, unsigned long count) |
2080 | { | |
e81ce85f JK |
2081 | struct vmap_area *va; |
2082 | struct vm_struct *vm; | |
1da177e4 | 2083 | char *vaddr, *buf_start = buf; |
d0107eb0 | 2084 | unsigned long buflen = count; |
1da177e4 LT |
2085 | unsigned long n; |
2086 | ||
2087 | /* Don't allow overflow */ | |
2088 | if ((unsigned long) addr + count < count) | |
2089 | count = -(unsigned long) addr; | |
2090 | ||
e81ce85f JK |
2091 | spin_lock(&vmap_area_lock); |
2092 | list_for_each_entry(va, &vmap_area_list, list) { | |
2093 | if (!count) | |
2094 | break; | |
2095 | ||
2096 | if (!(va->flags & VM_VM_AREA)) | |
2097 | continue; | |
2098 | ||
2099 | vm = va->vm; | |
2100 | vaddr = (char *) vm->addr; | |
762216ab | 2101 | if (addr >= vaddr + get_vm_area_size(vm)) |
1da177e4 LT |
2102 | continue; |
2103 | while (addr < vaddr) { | |
2104 | if (count == 0) | |
2105 | goto finished; | |
2106 | *buf = '\0'; | |
2107 | buf++; | |
2108 | addr++; | |
2109 | count--; | |
2110 | } | |
762216ab | 2111 | n = vaddr + get_vm_area_size(vm) - addr; |
d0107eb0 KH |
2112 | if (n > count) |
2113 | n = count; | |
e81ce85f | 2114 | if (!(vm->flags & VM_IOREMAP)) |
d0107eb0 KH |
2115 | aligned_vread(buf, addr, n); |
2116 | else /* IOREMAP area is treated as memory hole */ | |
2117 | memset(buf, 0, n); | |
2118 | buf += n; | |
2119 | addr += n; | |
2120 | count -= n; | |
1da177e4 LT |
2121 | } |
2122 | finished: | |
e81ce85f | 2123 | spin_unlock(&vmap_area_lock); |
d0107eb0 KH |
2124 | |
2125 | if (buf == buf_start) | |
2126 | return 0; | |
2127 | /* zero-fill memory holes */ | |
2128 | if (buf != buf_start + buflen) | |
2129 | memset(buf, 0, buflen - (buf - buf_start)); | |
2130 | ||
2131 | return buflen; | |
1da177e4 LT |
2132 | } |
2133 | ||
d0107eb0 KH |
2134 | /** |
2135 | * vwrite() - write vmalloc area in a safe way. | |
2136 | * @buf: buffer for source data | |
2137 | * @addr: vm address. | |
2138 | * @count: number of bytes to be read. | |
2139 | * | |
2140 | * Returns # of bytes which addr and buf should be incresed. | |
2141 | * (same number to @count). | |
2142 | * If [addr...addr+count) doesn't includes any intersect with valid | |
2143 | * vmalloc area, returns 0. | |
2144 | * | |
2145 | * This function checks that addr is a valid vmalloc'ed area, and | |
2146 | * copy data from a buffer to the given addr. If specified range of | |
2147 | * [addr...addr+count) includes some valid address, data is copied from | |
2148 | * proper area of @buf. If there are memory holes, no copy to hole. | |
2149 | * IOREMAP area is treated as memory hole and no copy is done. | |
2150 | * | |
2151 | * If [addr...addr+count) doesn't includes any intersects with alive | |
a8e5202d | 2152 | * vm_struct area, returns 0. @buf should be kernel's buffer. |
d0107eb0 KH |
2153 | * |
2154 | * Note: In usual ops, vwrite() is never necessary because the caller | |
2155 | * should know vmalloc() area is valid and can use memcpy(). | |
2156 | * This is for routines which have to access vmalloc area without | |
2157 | * any informaion, as /dev/kmem. | |
d0107eb0 KH |
2158 | */ |
2159 | ||
1da177e4 LT |
2160 | long vwrite(char *buf, char *addr, unsigned long count) |
2161 | { | |
e81ce85f JK |
2162 | struct vmap_area *va; |
2163 | struct vm_struct *vm; | |
d0107eb0 KH |
2164 | char *vaddr; |
2165 | unsigned long n, buflen; | |
2166 | int copied = 0; | |
1da177e4 LT |
2167 | |
2168 | /* Don't allow overflow */ | |
2169 | if ((unsigned long) addr + count < count) | |
2170 | count = -(unsigned long) addr; | |
d0107eb0 | 2171 | buflen = count; |
1da177e4 | 2172 | |
e81ce85f JK |
2173 | spin_lock(&vmap_area_lock); |
2174 | list_for_each_entry(va, &vmap_area_list, list) { | |
2175 | if (!count) | |
2176 | break; | |
2177 | ||
2178 | if (!(va->flags & VM_VM_AREA)) | |
2179 | continue; | |
2180 | ||
2181 | vm = va->vm; | |
2182 | vaddr = (char *) vm->addr; | |
762216ab | 2183 | if (addr >= vaddr + get_vm_area_size(vm)) |
1da177e4 LT |
2184 | continue; |
2185 | while (addr < vaddr) { | |
2186 | if (count == 0) | |
2187 | goto finished; | |
2188 | buf++; | |
2189 | addr++; | |
2190 | count--; | |
2191 | } | |
762216ab | 2192 | n = vaddr + get_vm_area_size(vm) - addr; |
d0107eb0 KH |
2193 | if (n > count) |
2194 | n = count; | |
e81ce85f | 2195 | if (!(vm->flags & VM_IOREMAP)) { |
d0107eb0 KH |
2196 | aligned_vwrite(buf, addr, n); |
2197 | copied++; | |
2198 | } | |
2199 | buf += n; | |
2200 | addr += n; | |
2201 | count -= n; | |
1da177e4 LT |
2202 | } |
2203 | finished: | |
e81ce85f | 2204 | spin_unlock(&vmap_area_lock); |
d0107eb0 KH |
2205 | if (!copied) |
2206 | return 0; | |
2207 | return buflen; | |
1da177e4 | 2208 | } |
83342314 NP |
2209 | |
2210 | /** | |
e69e9d4a HD |
2211 | * remap_vmalloc_range_partial - map vmalloc pages to userspace |
2212 | * @vma: vma to cover | |
2213 | * @uaddr: target user address to start at | |
2214 | * @kaddr: virtual address of vmalloc kernel memory | |
2215 | * @size: size of map area | |
7682486b RD |
2216 | * |
2217 | * Returns: 0 for success, -Exxx on failure | |
83342314 | 2218 | * |
e69e9d4a HD |
2219 | * This function checks that @kaddr is a valid vmalloc'ed area, |
2220 | * and that it is big enough to cover the range starting at | |
2221 | * @uaddr in @vma. Will return failure if that criteria isn't | |
2222 | * met. | |
83342314 | 2223 | * |
72fd4a35 | 2224 | * Similar to remap_pfn_range() (see mm/memory.c) |
83342314 | 2225 | */ |
e69e9d4a HD |
2226 | int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, |
2227 | void *kaddr, unsigned long size) | |
83342314 NP |
2228 | { |
2229 | struct vm_struct *area; | |
83342314 | 2230 | |
e69e9d4a HD |
2231 | size = PAGE_ALIGN(size); |
2232 | ||
2233 | if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) | |
83342314 NP |
2234 | return -EINVAL; |
2235 | ||
e69e9d4a | 2236 | area = find_vm_area(kaddr); |
83342314 | 2237 | if (!area) |
db64fe02 | 2238 | return -EINVAL; |
83342314 NP |
2239 | |
2240 | if (!(area->flags & VM_USERMAP)) | |
db64fe02 | 2241 | return -EINVAL; |
83342314 | 2242 | |
e69e9d4a | 2243 | if (kaddr + size > area->addr + area->size) |
db64fe02 | 2244 | return -EINVAL; |
83342314 | 2245 | |
83342314 | 2246 | do { |
e69e9d4a | 2247 | struct page *page = vmalloc_to_page(kaddr); |
db64fe02 NP |
2248 | int ret; |
2249 | ||
83342314 NP |
2250 | ret = vm_insert_page(vma, uaddr, page); |
2251 | if (ret) | |
2252 | return ret; | |
2253 | ||
2254 | uaddr += PAGE_SIZE; | |
e69e9d4a HD |
2255 | kaddr += PAGE_SIZE; |
2256 | size -= PAGE_SIZE; | |
2257 | } while (size > 0); | |
83342314 | 2258 | |
314e51b9 | 2259 | vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; |
83342314 | 2260 | |
db64fe02 | 2261 | return 0; |
83342314 | 2262 | } |
e69e9d4a HD |
2263 | EXPORT_SYMBOL(remap_vmalloc_range_partial); |
2264 | ||
2265 | /** | |
2266 | * remap_vmalloc_range - map vmalloc pages to userspace | |
2267 | * @vma: vma to cover (map full range of vma) | |
2268 | * @addr: vmalloc memory | |
2269 | * @pgoff: number of pages into addr before first page to map | |
2270 | * | |
2271 | * Returns: 0 for success, -Exxx on failure | |
2272 | * | |
2273 | * This function checks that addr is a valid vmalloc'ed area, and | |
2274 | * that it is big enough to cover the vma. Will return failure if | |
2275 | * that criteria isn't met. | |
2276 | * | |
2277 | * Similar to remap_pfn_range() (see mm/memory.c) | |
2278 | */ | |
2279 | int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, | |
2280 | unsigned long pgoff) | |
2281 | { | |
2282 | return remap_vmalloc_range_partial(vma, vma->vm_start, | |
2283 | addr + (pgoff << PAGE_SHIFT), | |
2284 | vma->vm_end - vma->vm_start); | |
2285 | } | |
83342314 NP |
2286 | EXPORT_SYMBOL(remap_vmalloc_range); |
2287 | ||
1eeb66a1 CH |
2288 | /* |
2289 | * Implement a stub for vmalloc_sync_all() if the architecture chose not to | |
2290 | * have one. | |
2291 | */ | |
3b32123d | 2292 | void __weak vmalloc_sync_all(void) |
1eeb66a1 CH |
2293 | { |
2294 | } | |
5f4352fb JF |
2295 | |
2296 | ||
2f569afd | 2297 | static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) |
5f4352fb | 2298 | { |
cd12909c DV |
2299 | pte_t ***p = data; |
2300 | ||
2301 | if (p) { | |
2302 | *(*p) = pte; | |
2303 | (*p)++; | |
2304 | } | |
5f4352fb JF |
2305 | return 0; |
2306 | } | |
2307 | ||
2308 | /** | |
2309 | * alloc_vm_area - allocate a range of kernel address space | |
2310 | * @size: size of the area | |
cd12909c | 2311 | * @ptes: returns the PTEs for the address space |
7682486b RD |
2312 | * |
2313 | * Returns: NULL on failure, vm_struct on success | |
5f4352fb JF |
2314 | * |
2315 | * This function reserves a range of kernel address space, and | |
2316 | * allocates pagetables to map that range. No actual mappings | |
cd12909c DV |
2317 | * are created. |
2318 | * | |
2319 | * If @ptes is non-NULL, pointers to the PTEs (in init_mm) | |
2320 | * allocated for the VM area are returned. | |
5f4352fb | 2321 | */ |
cd12909c | 2322 | struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) |
5f4352fb JF |
2323 | { |
2324 | struct vm_struct *area; | |
2325 | ||
23016969 CL |
2326 | area = get_vm_area_caller(size, VM_IOREMAP, |
2327 | __builtin_return_address(0)); | |
5f4352fb JF |
2328 | if (area == NULL) |
2329 | return NULL; | |
2330 | ||
2331 | /* | |
2332 | * This ensures that page tables are constructed for this region | |
2333 | * of kernel virtual address space and mapped into init_mm. | |
2334 | */ | |
2335 | if (apply_to_page_range(&init_mm, (unsigned long)area->addr, | |
cd12909c | 2336 | size, f, ptes ? &ptes : NULL)) { |
5f4352fb JF |
2337 | free_vm_area(area); |
2338 | return NULL; | |
2339 | } | |
2340 | ||
5f4352fb JF |
2341 | return area; |
2342 | } | |
2343 | EXPORT_SYMBOL_GPL(alloc_vm_area); | |
2344 | ||
2345 | void free_vm_area(struct vm_struct *area) | |
2346 | { | |
2347 | struct vm_struct *ret; | |
2348 | ret = remove_vm_area(area->addr); | |
2349 | BUG_ON(ret != area); | |
2350 | kfree(area); | |
2351 | } | |
2352 | EXPORT_SYMBOL_GPL(free_vm_area); | |
a10aa579 | 2353 | |
4f8b02b4 | 2354 | #ifdef CONFIG_SMP |
ca23e405 TH |
2355 | static struct vmap_area *node_to_va(struct rb_node *n) |
2356 | { | |
4583e773 | 2357 | return rb_entry_safe(n, struct vmap_area, rb_node); |
ca23e405 TH |
2358 | } |
2359 | ||
2360 | /** | |
2361 | * pvm_find_next_prev - find the next and prev vmap_area surrounding @end | |
2362 | * @end: target address | |
2363 | * @pnext: out arg for the next vmap_area | |
2364 | * @pprev: out arg for the previous vmap_area | |
2365 | * | |
2366 | * Returns: %true if either or both of next and prev are found, | |
2367 | * %false if no vmap_area exists | |
2368 | * | |
2369 | * Find vmap_areas end addresses of which enclose @end. ie. if not | |
2370 | * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. | |
2371 | */ | |
2372 | static bool pvm_find_next_prev(unsigned long end, | |
2373 | struct vmap_area **pnext, | |
2374 | struct vmap_area **pprev) | |
2375 | { | |
2376 | struct rb_node *n = vmap_area_root.rb_node; | |
2377 | struct vmap_area *va = NULL; | |
2378 | ||
2379 | while (n) { | |
2380 | va = rb_entry(n, struct vmap_area, rb_node); | |
2381 | if (end < va->va_end) | |
2382 | n = n->rb_left; | |
2383 | else if (end > va->va_end) | |
2384 | n = n->rb_right; | |
2385 | else | |
2386 | break; | |
2387 | } | |
2388 | ||
2389 | if (!va) | |
2390 | return false; | |
2391 | ||
2392 | if (va->va_end > end) { | |
2393 | *pnext = va; | |
2394 | *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); | |
2395 | } else { | |
2396 | *pprev = va; | |
2397 | *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); | |
2398 | } | |
2399 | return true; | |
2400 | } | |
2401 | ||
2402 | /** | |
2403 | * pvm_determine_end - find the highest aligned address between two vmap_areas | |
2404 | * @pnext: in/out arg for the next vmap_area | |
2405 | * @pprev: in/out arg for the previous vmap_area | |
2406 | * @align: alignment | |
2407 | * | |
2408 | * Returns: determined end address | |
2409 | * | |
2410 | * Find the highest aligned address between *@pnext and *@pprev below | |
2411 | * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned | |
2412 | * down address is between the end addresses of the two vmap_areas. | |
2413 | * | |
2414 | * Please note that the address returned by this function may fall | |
2415 | * inside *@pnext vmap_area. The caller is responsible for checking | |
2416 | * that. | |
2417 | */ | |
2418 | static unsigned long pvm_determine_end(struct vmap_area **pnext, | |
2419 | struct vmap_area **pprev, | |
2420 | unsigned long align) | |
2421 | { | |
2422 | const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); | |
2423 | unsigned long addr; | |
2424 | ||
2425 | if (*pnext) | |
2426 | addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); | |
2427 | else | |
2428 | addr = vmalloc_end; | |
2429 | ||
2430 | while (*pprev && (*pprev)->va_end > addr) { | |
2431 | *pnext = *pprev; | |
2432 | *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); | |
2433 | } | |
2434 | ||
2435 | return addr; | |
2436 | } | |
2437 | ||
2438 | /** | |
2439 | * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator | |
2440 | * @offsets: array containing offset of each area | |
2441 | * @sizes: array containing size of each area | |
2442 | * @nr_vms: the number of areas to allocate | |
2443 | * @align: alignment, all entries in @offsets and @sizes must be aligned to this | |
ca23e405 TH |
2444 | * |
2445 | * Returns: kmalloc'd vm_struct pointer array pointing to allocated | |
2446 | * vm_structs on success, %NULL on failure | |
2447 | * | |
2448 | * Percpu allocator wants to use congruent vm areas so that it can | |
2449 | * maintain the offsets among percpu areas. This function allocates | |
ec3f64fc DR |
2450 | * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to |
2451 | * be scattered pretty far, distance between two areas easily going up | |
2452 | * to gigabytes. To avoid interacting with regular vmallocs, these | |
2453 | * areas are allocated from top. | |
ca23e405 TH |
2454 | * |
2455 | * Despite its complicated look, this allocator is rather simple. It | |
2456 | * does everything top-down and scans areas from the end looking for | |
2457 | * matching slot. While scanning, if any of the areas overlaps with | |
2458 | * existing vmap_area, the base address is pulled down to fit the | |
2459 | * area. Scanning is repeated till all the areas fit and then all | |
2460 | * necessary data structres are inserted and the result is returned. | |
2461 | */ | |
2462 | struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, | |
2463 | const size_t *sizes, int nr_vms, | |
ec3f64fc | 2464 | size_t align) |
ca23e405 TH |
2465 | { |
2466 | const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); | |
2467 | const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); | |
2468 | struct vmap_area **vas, *prev, *next; | |
2469 | struct vm_struct **vms; | |
2470 | int area, area2, last_area, term_area; | |
2471 | unsigned long base, start, end, last_end; | |
2472 | bool purged = false; | |
2473 | ||
ca23e405 | 2474 | /* verify parameters and allocate data structures */ |
891c49ab | 2475 | BUG_ON(offset_in_page(align) || !is_power_of_2(align)); |
ca23e405 TH |
2476 | for (last_area = 0, area = 0; area < nr_vms; area++) { |
2477 | start = offsets[area]; | |
2478 | end = start + sizes[area]; | |
2479 | ||
2480 | /* is everything aligned properly? */ | |
2481 | BUG_ON(!IS_ALIGNED(offsets[area], align)); | |
2482 | BUG_ON(!IS_ALIGNED(sizes[area], align)); | |
2483 | ||
2484 | /* detect the area with the highest address */ | |
2485 | if (start > offsets[last_area]) | |
2486 | last_area = area; | |
2487 | ||
2488 | for (area2 = 0; area2 < nr_vms; area2++) { | |
2489 | unsigned long start2 = offsets[area2]; | |
2490 | unsigned long end2 = start2 + sizes[area2]; | |
2491 | ||
2492 | if (area2 == area) | |
2493 | continue; | |
2494 | ||
2495 | BUG_ON(start2 >= start && start2 < end); | |
2496 | BUG_ON(end2 <= end && end2 > start); | |
2497 | } | |
2498 | } | |
2499 | last_end = offsets[last_area] + sizes[last_area]; | |
2500 | ||
2501 | if (vmalloc_end - vmalloc_start < last_end) { | |
2502 | WARN_ON(true); | |
2503 | return NULL; | |
2504 | } | |
2505 | ||
4d67d860 TM |
2506 | vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); |
2507 | vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); | |
ca23e405 | 2508 | if (!vas || !vms) |
f1db7afd | 2509 | goto err_free2; |
ca23e405 TH |
2510 | |
2511 | for (area = 0; area < nr_vms; area++) { | |
ec3f64fc DR |
2512 | vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL); |
2513 | vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); | |
ca23e405 TH |
2514 | if (!vas[area] || !vms[area]) |
2515 | goto err_free; | |
2516 | } | |
2517 | retry: | |
2518 | spin_lock(&vmap_area_lock); | |
2519 | ||
2520 | /* start scanning - we scan from the top, begin with the last area */ | |
2521 | area = term_area = last_area; | |
2522 | start = offsets[area]; | |
2523 | end = start + sizes[area]; | |
2524 | ||
2525 | if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { | |
2526 | base = vmalloc_end - last_end; | |
2527 | goto found; | |
2528 | } | |
2529 | base = pvm_determine_end(&next, &prev, align) - end; | |
2530 | ||
2531 | while (true) { | |
2532 | BUG_ON(next && next->va_end <= base + end); | |
2533 | BUG_ON(prev && prev->va_end > base + end); | |
2534 | ||
2535 | /* | |
2536 | * base might have underflowed, add last_end before | |
2537 | * comparing. | |
2538 | */ | |
2539 | if (base + last_end < vmalloc_start + last_end) { | |
2540 | spin_unlock(&vmap_area_lock); | |
2541 | if (!purged) { | |
2542 | purge_vmap_area_lazy(); | |
2543 | purged = true; | |
2544 | goto retry; | |
2545 | } | |
2546 | goto err_free; | |
2547 | } | |
2548 | ||
2549 | /* | |
2550 | * If next overlaps, move base downwards so that it's | |
2551 | * right below next and then recheck. | |
2552 | */ | |
2553 | if (next && next->va_start < base + end) { | |
2554 | base = pvm_determine_end(&next, &prev, align) - end; | |
2555 | term_area = area; | |
2556 | continue; | |
2557 | } | |
2558 | ||
2559 | /* | |
2560 | * If prev overlaps, shift down next and prev and move | |
2561 | * base so that it's right below new next and then | |
2562 | * recheck. | |
2563 | */ | |
2564 | if (prev && prev->va_end > base + start) { | |
2565 | next = prev; | |
2566 | prev = node_to_va(rb_prev(&next->rb_node)); | |
2567 | base = pvm_determine_end(&next, &prev, align) - end; | |
2568 | term_area = area; | |
2569 | continue; | |
2570 | } | |
2571 | ||
2572 | /* | |
2573 | * This area fits, move on to the previous one. If | |
2574 | * the previous one is the terminal one, we're done. | |
2575 | */ | |
2576 | area = (area + nr_vms - 1) % nr_vms; | |
2577 | if (area == term_area) | |
2578 | break; | |
2579 | start = offsets[area]; | |
2580 | end = start + sizes[area]; | |
2581 | pvm_find_next_prev(base + end, &next, &prev); | |
2582 | } | |
2583 | found: | |
2584 | /* we've found a fitting base, insert all va's */ | |
2585 | for (area = 0; area < nr_vms; area++) { | |
2586 | struct vmap_area *va = vas[area]; | |
2587 | ||
2588 | va->va_start = base + offsets[area]; | |
2589 | va->va_end = va->va_start + sizes[area]; | |
2590 | __insert_vmap_area(va); | |
2591 | } | |
2592 | ||
2593 | vmap_area_pcpu_hole = base + offsets[last_area]; | |
2594 | ||
2595 | spin_unlock(&vmap_area_lock); | |
2596 | ||
2597 | /* insert all vm's */ | |
2598 | for (area = 0; area < nr_vms; area++) | |
3645cb4a ZY |
2599 | setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, |
2600 | pcpu_get_vm_areas); | |
ca23e405 TH |
2601 | |
2602 | kfree(vas); | |
2603 | return vms; | |
2604 | ||
2605 | err_free: | |
2606 | for (area = 0; area < nr_vms; area++) { | |
f1db7afd KC |
2607 | kfree(vas[area]); |
2608 | kfree(vms[area]); | |
ca23e405 | 2609 | } |
f1db7afd | 2610 | err_free2: |
ca23e405 TH |
2611 | kfree(vas); |
2612 | kfree(vms); | |
2613 | return NULL; | |
2614 | } | |
2615 | ||
2616 | /** | |
2617 | * pcpu_free_vm_areas - free vmalloc areas for percpu allocator | |
2618 | * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() | |
2619 | * @nr_vms: the number of allocated areas | |
2620 | * | |
2621 | * Free vm_structs and the array allocated by pcpu_get_vm_areas(). | |
2622 | */ | |
2623 | void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) | |
2624 | { | |
2625 | int i; | |
2626 | ||
2627 | for (i = 0; i < nr_vms; i++) | |
2628 | free_vm_area(vms[i]); | |
2629 | kfree(vms); | |
2630 | } | |
4f8b02b4 | 2631 | #endif /* CONFIG_SMP */ |
a10aa579 CL |
2632 | |
2633 | #ifdef CONFIG_PROC_FS | |
2634 | static void *s_start(struct seq_file *m, loff_t *pos) | |
d4033afd | 2635 | __acquires(&vmap_area_lock) |
a10aa579 | 2636 | { |
d4033afd | 2637 | spin_lock(&vmap_area_lock); |
3f500069 | 2638 | return seq_list_start(&vmap_area_list, *pos); |
a10aa579 CL |
2639 | } |
2640 | ||
2641 | static void *s_next(struct seq_file *m, void *p, loff_t *pos) | |
2642 | { | |
3f500069 | 2643 | return seq_list_next(p, &vmap_area_list, pos); |
a10aa579 CL |
2644 | } |
2645 | ||
2646 | static void s_stop(struct seq_file *m, void *p) | |
d4033afd | 2647 | __releases(&vmap_area_lock) |
a10aa579 | 2648 | { |
d4033afd | 2649 | spin_unlock(&vmap_area_lock); |
a10aa579 CL |
2650 | } |
2651 | ||
a47a126a ED |
2652 | static void show_numa_info(struct seq_file *m, struct vm_struct *v) |
2653 | { | |
e5adfffc | 2654 | if (IS_ENABLED(CONFIG_NUMA)) { |
a47a126a ED |
2655 | unsigned int nr, *counters = m->private; |
2656 | ||
2657 | if (!counters) | |
2658 | return; | |
2659 | ||
af12346c WL |
2660 | if (v->flags & VM_UNINITIALIZED) |
2661 | return; | |
7e5b528b DV |
2662 | /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ |
2663 | smp_rmb(); | |
af12346c | 2664 | |
a47a126a ED |
2665 | memset(counters, 0, nr_node_ids * sizeof(unsigned int)); |
2666 | ||
2667 | for (nr = 0; nr < v->nr_pages; nr++) | |
2668 | counters[page_to_nid(v->pages[nr])]++; | |
2669 | ||
2670 | for_each_node_state(nr, N_HIGH_MEMORY) | |
2671 | if (counters[nr]) | |
2672 | seq_printf(m, " N%u=%u", nr, counters[nr]); | |
2673 | } | |
2674 | } | |
2675 | ||
a10aa579 CL |
2676 | static int s_show(struct seq_file *m, void *p) |
2677 | { | |
3f500069 | 2678 | struct vmap_area *va; |
d4033afd JK |
2679 | struct vm_struct *v; |
2680 | ||
3f500069 | 2681 | va = list_entry(p, struct vmap_area, list); |
2682 | ||
c2ce8c14 WL |
2683 | /* |
2684 | * s_show can encounter race with remove_vm_area, !VM_VM_AREA on | |
2685 | * behalf of vmap area is being tear down or vm_map_ram allocation. | |
2686 | */ | |
2687 | if (!(va->flags & VM_VM_AREA)) | |
d4033afd | 2688 | return 0; |
d4033afd JK |
2689 | |
2690 | v = va->vm; | |
a10aa579 | 2691 | |
45ec1690 | 2692 | seq_printf(m, "0x%pK-0x%pK %7ld", |
a10aa579 CL |
2693 | v->addr, v->addr + v->size, v->size); |
2694 | ||
62c70bce JP |
2695 | if (v->caller) |
2696 | seq_printf(m, " %pS", v->caller); | |
23016969 | 2697 | |
a10aa579 CL |
2698 | if (v->nr_pages) |
2699 | seq_printf(m, " pages=%d", v->nr_pages); | |
2700 | ||
2701 | if (v->phys_addr) | |
199eaa05 | 2702 | seq_printf(m, " phys=%pa", &v->phys_addr); |
a10aa579 CL |
2703 | |
2704 | if (v->flags & VM_IOREMAP) | |
f4527c90 | 2705 | seq_puts(m, " ioremap"); |
a10aa579 CL |
2706 | |
2707 | if (v->flags & VM_ALLOC) | |
f4527c90 | 2708 | seq_puts(m, " vmalloc"); |
a10aa579 CL |
2709 | |
2710 | if (v->flags & VM_MAP) | |
f4527c90 | 2711 | seq_puts(m, " vmap"); |
a10aa579 CL |
2712 | |
2713 | if (v->flags & VM_USERMAP) | |
f4527c90 | 2714 | seq_puts(m, " user"); |
a10aa579 | 2715 | |
244d63ee | 2716 | if (is_vmalloc_addr(v->pages)) |
f4527c90 | 2717 | seq_puts(m, " vpages"); |
a10aa579 | 2718 | |
a47a126a | 2719 | show_numa_info(m, v); |
a10aa579 CL |
2720 | seq_putc(m, '\n'); |
2721 | return 0; | |
2722 | } | |
2723 | ||
5f6a6a9c | 2724 | static const struct seq_operations vmalloc_op = { |
a10aa579 CL |
2725 | .start = s_start, |
2726 | .next = s_next, | |
2727 | .stop = s_stop, | |
2728 | .show = s_show, | |
2729 | }; | |
5f6a6a9c AD |
2730 | |
2731 | static int vmalloc_open(struct inode *inode, struct file *file) | |
2732 | { | |
703394c1 RJ |
2733 | if (IS_ENABLED(CONFIG_NUMA)) |
2734 | return seq_open_private(file, &vmalloc_op, | |
2735 | nr_node_ids * sizeof(unsigned int)); | |
2736 | else | |
2737 | return seq_open(file, &vmalloc_op); | |
5f6a6a9c AD |
2738 | } |
2739 | ||
2740 | static const struct file_operations proc_vmalloc_operations = { | |
2741 | .open = vmalloc_open, | |
2742 | .read = seq_read, | |
2743 | .llseek = seq_lseek, | |
2744 | .release = seq_release_private, | |
2745 | }; | |
2746 | ||
2747 | static int __init proc_vmalloc_init(void) | |
2748 | { | |
2749 | proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); | |
2750 | return 0; | |
2751 | } | |
2752 | module_init(proc_vmalloc_init); | |
db3808c1 | 2753 | |
a10aa579 CL |
2754 | #endif |
2755 |