]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/vmalloc.c
mm/damon/dbgfs: export kdamond pid to the user space
[mirror_ubuntu-kernels.git] / mm / vmalloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1993 Linus Torvalds
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 7 * Numa awareness, Christoph Lameter, SGI, June 2005
d758ffe6 8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
c3edc401 15#include <linux/sched/signal.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
868b104d 21#include <linux/set_memory.h>
3ac7fe5a 22#include <linux/debugobjects.h>
23016969 23#include <linux/kallsyms.h>
db64fe02 24#include <linux/list.h>
4da56b99 25#include <linux/notifier.h>
db64fe02 26#include <linux/rbtree.h>
0f14599c 27#include <linux/xarray.h>
5da96bdd 28#include <linux/io.h>
db64fe02 29#include <linux/rcupdate.h>
f0aa6617 30#include <linux/pfn.h>
89219d37 31#include <linux/kmemleak.h>
60063497 32#include <linux/atomic.h>
3b32123d 33#include <linux/compiler.h>
32fcfd40 34#include <linux/llist.h>
0f616be1 35#include <linux/bitops.h>
68ad4a33 36#include <linux/rbtree_augmented.h>
bdebd6a2 37#include <linux/overflow.h>
c0eb315a 38#include <linux/pgtable.h>
7c0f6ba6 39#include <linux/uaccess.h>
f7ee1f13 40#include <linux/hugetlb.h>
1da177e4 41#include <asm/tlbflush.h>
2dca6999 42#include <asm/shmparam.h>
1da177e4 43
dd56b046 44#include "internal.h"
2a681cfa 45#include "pgalloc-track.h"
dd56b046 46
82a70ce0
CH
47#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
48static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
49
50static int __init set_nohugeiomap(char *str)
51{
52 ioremap_max_page_shift = PAGE_SHIFT;
53 return 0;
54}
55early_param("nohugeiomap", set_nohugeiomap);
56#else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
57static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
58#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
59
121e6f32
NP
60#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
61static bool __ro_after_init vmap_allow_huge = true;
62
63static int __init set_nohugevmalloc(char *str)
64{
65 vmap_allow_huge = false;
66 return 0;
67}
68early_param("nohugevmalloc", set_nohugevmalloc);
69#else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
70static const bool vmap_allow_huge = false;
71#endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
72
186525bd
IM
73bool is_vmalloc_addr(const void *x)
74{
75 unsigned long addr = (unsigned long)x;
76
77 return addr >= VMALLOC_START && addr < VMALLOC_END;
78}
79EXPORT_SYMBOL(is_vmalloc_addr);
80
32fcfd40
AV
81struct vfree_deferred {
82 struct llist_head list;
83 struct work_struct wq;
84};
85static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
86
87static void __vunmap(const void *, int);
88
89static void free_work(struct work_struct *w)
90{
91 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
894e58c1
BP
92 struct llist_node *t, *llnode;
93
94 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
95 __vunmap((void *)llnode, 1);
32fcfd40
AV
96}
97
db64fe02 98/*** Page table manipulation functions ***/
5e9e3d77
NP
99static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
100 phys_addr_t phys_addr, pgprot_t prot,
f7ee1f13 101 unsigned int max_page_shift, pgtbl_mod_mask *mask)
5e9e3d77
NP
102{
103 pte_t *pte;
104 u64 pfn;
f7ee1f13 105 unsigned long size = PAGE_SIZE;
5e9e3d77
NP
106
107 pfn = phys_addr >> PAGE_SHIFT;
108 pte = pte_alloc_kernel_track(pmd, addr, mask);
109 if (!pte)
110 return -ENOMEM;
111 do {
112 BUG_ON(!pte_none(*pte));
f7ee1f13
CL
113
114#ifdef CONFIG_HUGETLB_PAGE
115 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
116 if (size != PAGE_SIZE) {
117 pte_t entry = pfn_pte(pfn, prot);
118
119 entry = pte_mkhuge(entry);
120 entry = arch_make_huge_pte(entry, ilog2(size), 0);
121 set_huge_pte_at(&init_mm, addr, pte, entry);
122 pfn += PFN_DOWN(size);
123 continue;
124 }
125#endif
5e9e3d77
NP
126 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
127 pfn++;
f7ee1f13 128 } while (pte += PFN_DOWN(size), addr += size, addr != end);
5e9e3d77
NP
129 *mask |= PGTBL_PTE_MODIFIED;
130 return 0;
131}
132
133static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
134 phys_addr_t phys_addr, pgprot_t prot,
135 unsigned int max_page_shift)
136{
137 if (max_page_shift < PMD_SHIFT)
138 return 0;
139
140 if (!arch_vmap_pmd_supported(prot))
141 return 0;
142
143 if ((end - addr) != PMD_SIZE)
144 return 0;
145
146 if (!IS_ALIGNED(addr, PMD_SIZE))
147 return 0;
148
149 if (!IS_ALIGNED(phys_addr, PMD_SIZE))
150 return 0;
151
152 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
153 return 0;
154
155 return pmd_set_huge(pmd, phys_addr, prot);
156}
157
158static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
159 phys_addr_t phys_addr, pgprot_t prot,
160 unsigned int max_page_shift, pgtbl_mod_mask *mask)
161{
162 pmd_t *pmd;
163 unsigned long next;
164
165 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
166 if (!pmd)
167 return -ENOMEM;
168 do {
169 next = pmd_addr_end(addr, end);
170
171 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
172 max_page_shift)) {
173 *mask |= PGTBL_PMD_MODIFIED;
174 continue;
175 }
176
f7ee1f13 177 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
5e9e3d77
NP
178 return -ENOMEM;
179 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
180 return 0;
181}
182
183static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
184 phys_addr_t phys_addr, pgprot_t prot,
185 unsigned int max_page_shift)
186{
187 if (max_page_shift < PUD_SHIFT)
188 return 0;
189
190 if (!arch_vmap_pud_supported(prot))
191 return 0;
192
193 if ((end - addr) != PUD_SIZE)
194 return 0;
195
196 if (!IS_ALIGNED(addr, PUD_SIZE))
197 return 0;
198
199 if (!IS_ALIGNED(phys_addr, PUD_SIZE))
200 return 0;
201
202 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
203 return 0;
204
205 return pud_set_huge(pud, phys_addr, prot);
206}
207
208static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
209 phys_addr_t phys_addr, pgprot_t prot,
210 unsigned int max_page_shift, pgtbl_mod_mask *mask)
211{
212 pud_t *pud;
213 unsigned long next;
214
215 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
216 if (!pud)
217 return -ENOMEM;
218 do {
219 next = pud_addr_end(addr, end);
220
221 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
222 max_page_shift)) {
223 *mask |= PGTBL_PUD_MODIFIED;
224 continue;
225 }
226
227 if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
228 max_page_shift, mask))
229 return -ENOMEM;
230 } while (pud++, phys_addr += (next - addr), addr = next, addr != end);
231 return 0;
232}
233
234static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
235 phys_addr_t phys_addr, pgprot_t prot,
236 unsigned int max_page_shift)
237{
238 if (max_page_shift < P4D_SHIFT)
239 return 0;
240
241 if (!arch_vmap_p4d_supported(prot))
242 return 0;
243
244 if ((end - addr) != P4D_SIZE)
245 return 0;
246
247 if (!IS_ALIGNED(addr, P4D_SIZE))
248 return 0;
249
250 if (!IS_ALIGNED(phys_addr, P4D_SIZE))
251 return 0;
252
253 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
254 return 0;
255
256 return p4d_set_huge(p4d, phys_addr, prot);
257}
258
259static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
260 phys_addr_t phys_addr, pgprot_t prot,
261 unsigned int max_page_shift, pgtbl_mod_mask *mask)
262{
263 p4d_t *p4d;
264 unsigned long next;
265
266 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
267 if (!p4d)
268 return -ENOMEM;
269 do {
270 next = p4d_addr_end(addr, end);
271
272 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
273 max_page_shift)) {
274 *mask |= PGTBL_P4D_MODIFIED;
275 continue;
276 }
277
278 if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
279 max_page_shift, mask))
280 return -ENOMEM;
281 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
282 return 0;
283}
284
5d87510d 285static int vmap_range_noflush(unsigned long addr, unsigned long end,
5e9e3d77
NP
286 phys_addr_t phys_addr, pgprot_t prot,
287 unsigned int max_page_shift)
288{
289 pgd_t *pgd;
290 unsigned long start;
291 unsigned long next;
292 int err;
293 pgtbl_mod_mask mask = 0;
294
295 might_sleep();
296 BUG_ON(addr >= end);
297
298 start = addr;
299 pgd = pgd_offset_k(addr);
300 do {
301 next = pgd_addr_end(addr, end);
302 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
303 max_page_shift, &mask);
304 if (err)
305 break;
306 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
307
5e9e3d77
NP
308 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
309 arch_sync_kernel_mappings(start, end);
310
311 return err;
312}
b221385b 313
82a70ce0
CH
314int ioremap_page_range(unsigned long addr, unsigned long end,
315 phys_addr_t phys_addr, pgprot_t prot)
5d87510d
NP
316{
317 int err;
318
8491502f 319 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
82a70ce0 320 ioremap_max_page_shift);
5d87510d 321 flush_cache_vmap(addr, end);
5d87510d
NP
322 return err;
323}
324
2ba3e694
JR
325static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
326 pgtbl_mod_mask *mask)
1da177e4
LT
327{
328 pte_t *pte;
329
330 pte = pte_offset_kernel(pmd, addr);
331 do {
332 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
333 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
334 } while (pte++, addr += PAGE_SIZE, addr != end);
2ba3e694 335 *mask |= PGTBL_PTE_MODIFIED;
1da177e4
LT
336}
337
2ba3e694
JR
338static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
339 pgtbl_mod_mask *mask)
1da177e4
LT
340{
341 pmd_t *pmd;
342 unsigned long next;
2ba3e694 343 int cleared;
1da177e4
LT
344
345 pmd = pmd_offset(pud, addr);
346 do {
347 next = pmd_addr_end(addr, end);
2ba3e694
JR
348
349 cleared = pmd_clear_huge(pmd);
350 if (cleared || pmd_bad(*pmd))
351 *mask |= PGTBL_PMD_MODIFIED;
352
353 if (cleared)
b9820d8f 354 continue;
1da177e4
LT
355 if (pmd_none_or_clear_bad(pmd))
356 continue;
2ba3e694 357 vunmap_pte_range(pmd, addr, next, mask);
e47110e9
AK
358
359 cond_resched();
1da177e4
LT
360 } while (pmd++, addr = next, addr != end);
361}
362
2ba3e694
JR
363static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
364 pgtbl_mod_mask *mask)
1da177e4
LT
365{
366 pud_t *pud;
367 unsigned long next;
2ba3e694 368 int cleared;
1da177e4 369
c2febafc 370 pud = pud_offset(p4d, addr);
1da177e4
LT
371 do {
372 next = pud_addr_end(addr, end);
2ba3e694
JR
373
374 cleared = pud_clear_huge(pud);
375 if (cleared || pud_bad(*pud))
376 *mask |= PGTBL_PUD_MODIFIED;
377
378 if (cleared)
b9820d8f 379 continue;
1da177e4
LT
380 if (pud_none_or_clear_bad(pud))
381 continue;
2ba3e694 382 vunmap_pmd_range(pud, addr, next, mask);
1da177e4
LT
383 } while (pud++, addr = next, addr != end);
384}
385
2ba3e694
JR
386static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
387 pgtbl_mod_mask *mask)
c2febafc
KS
388{
389 p4d_t *p4d;
390 unsigned long next;
2ba3e694 391 int cleared;
c2febafc
KS
392
393 p4d = p4d_offset(pgd, addr);
394 do {
395 next = p4d_addr_end(addr, end);
2ba3e694
JR
396
397 cleared = p4d_clear_huge(p4d);
398 if (cleared || p4d_bad(*p4d))
399 *mask |= PGTBL_P4D_MODIFIED;
400
401 if (cleared)
c2febafc
KS
402 continue;
403 if (p4d_none_or_clear_bad(p4d))
404 continue;
2ba3e694 405 vunmap_pud_range(p4d, addr, next, mask);
c2febafc
KS
406 } while (p4d++, addr = next, addr != end);
407}
408
4ad0ae8c
NP
409/*
410 * vunmap_range_noflush is similar to vunmap_range, but does not
411 * flush caches or TLBs.
b521c43f 412 *
4ad0ae8c
NP
413 * The caller is responsible for calling flush_cache_vmap() before calling
414 * this function, and flush_tlb_kernel_range after it has returned
415 * successfully (and before the addresses are expected to cause a page fault
416 * or be re-mapped for something else, if TLB flushes are being delayed or
417 * coalesced).
b521c43f 418 *
4ad0ae8c 419 * This is an internal function only. Do not use outside mm/.
b521c43f 420 */
4ad0ae8c 421void vunmap_range_noflush(unsigned long start, unsigned long end)
1da177e4 422{
1da177e4 423 unsigned long next;
b521c43f 424 pgd_t *pgd;
2ba3e694
JR
425 unsigned long addr = start;
426 pgtbl_mod_mask mask = 0;
1da177e4
LT
427
428 BUG_ON(addr >= end);
429 pgd = pgd_offset_k(addr);
1da177e4
LT
430 do {
431 next = pgd_addr_end(addr, end);
2ba3e694
JR
432 if (pgd_bad(*pgd))
433 mask |= PGTBL_PGD_MODIFIED;
1da177e4
LT
434 if (pgd_none_or_clear_bad(pgd))
435 continue;
2ba3e694 436 vunmap_p4d_range(pgd, addr, next, &mask);
1da177e4 437 } while (pgd++, addr = next, addr != end);
2ba3e694
JR
438
439 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
440 arch_sync_kernel_mappings(start, end);
1da177e4
LT
441}
442
4ad0ae8c
NP
443/**
444 * vunmap_range - unmap kernel virtual addresses
445 * @addr: start of the VM area to unmap
446 * @end: end of the VM area to unmap (non-inclusive)
447 *
448 * Clears any present PTEs in the virtual address range, flushes TLBs and
449 * caches. Any subsequent access to the address before it has been re-mapped
450 * is a kernel bug.
451 */
452void vunmap_range(unsigned long addr, unsigned long end)
453{
454 flush_cache_vunmap(addr, end);
455 vunmap_range_noflush(addr, end);
456 flush_tlb_kernel_range(addr, end);
457}
458
0a264884 459static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
2ba3e694
JR
460 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
461 pgtbl_mod_mask *mask)
1da177e4
LT
462{
463 pte_t *pte;
464
db64fe02
NP
465 /*
466 * nr is a running index into the array which helps higher level
467 * callers keep track of where we're up to.
468 */
469
2ba3e694 470 pte = pte_alloc_kernel_track(pmd, addr, mask);
1da177e4
LT
471 if (!pte)
472 return -ENOMEM;
473 do {
db64fe02
NP
474 struct page *page = pages[*nr];
475
476 if (WARN_ON(!pte_none(*pte)))
477 return -EBUSY;
478 if (WARN_ON(!page))
1da177e4
LT
479 return -ENOMEM;
480 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 481 (*nr)++;
1da177e4 482 } while (pte++, addr += PAGE_SIZE, addr != end);
2ba3e694 483 *mask |= PGTBL_PTE_MODIFIED;
1da177e4
LT
484 return 0;
485}
486
0a264884 487static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
2ba3e694
JR
488 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
489 pgtbl_mod_mask *mask)
1da177e4
LT
490{
491 pmd_t *pmd;
492 unsigned long next;
493
2ba3e694 494 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
1da177e4
LT
495 if (!pmd)
496 return -ENOMEM;
497 do {
498 next = pmd_addr_end(addr, end);
0a264884 499 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
1da177e4
LT
500 return -ENOMEM;
501 } while (pmd++, addr = next, addr != end);
502 return 0;
503}
504
0a264884 505static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
2ba3e694
JR
506 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
507 pgtbl_mod_mask *mask)
1da177e4
LT
508{
509 pud_t *pud;
510 unsigned long next;
511
2ba3e694 512 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
1da177e4
LT
513 if (!pud)
514 return -ENOMEM;
515 do {
516 next = pud_addr_end(addr, end);
0a264884 517 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
1da177e4
LT
518 return -ENOMEM;
519 } while (pud++, addr = next, addr != end);
520 return 0;
521}
522
0a264884 523static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
2ba3e694
JR
524 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
525 pgtbl_mod_mask *mask)
c2febafc
KS
526{
527 p4d_t *p4d;
528 unsigned long next;
529
2ba3e694 530 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
c2febafc
KS
531 if (!p4d)
532 return -ENOMEM;
533 do {
534 next = p4d_addr_end(addr, end);
0a264884 535 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
c2febafc
KS
536 return -ENOMEM;
537 } while (p4d++, addr = next, addr != end);
538 return 0;
539}
540
121e6f32
NP
541static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
542 pgprot_t prot, struct page **pages)
1da177e4 543{
2ba3e694 544 unsigned long start = addr;
b521c43f 545 pgd_t *pgd;
121e6f32 546 unsigned long next;
db64fe02
NP
547 int err = 0;
548 int nr = 0;
2ba3e694 549 pgtbl_mod_mask mask = 0;
1da177e4
LT
550
551 BUG_ON(addr >= end);
552 pgd = pgd_offset_k(addr);
1da177e4
LT
553 do {
554 next = pgd_addr_end(addr, end);
2ba3e694
JR
555 if (pgd_bad(*pgd))
556 mask |= PGTBL_PGD_MODIFIED;
0a264884 557 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
1da177e4 558 if (err)
bf88c8c8 559 return err;
1da177e4 560 } while (pgd++, addr = next, addr != end);
db64fe02 561
2ba3e694
JR
562 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
563 arch_sync_kernel_mappings(start, end);
564
60bb4465 565 return 0;
1da177e4
LT
566}
567
b67177ec
NP
568/*
569 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
570 * flush caches.
571 *
572 * The caller is responsible for calling flush_cache_vmap() after this
573 * function returns successfully and before the addresses are accessed.
574 *
575 * This is an internal function only. Do not use outside mm/.
576 */
577int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
121e6f32
NP
578 pgprot_t prot, struct page **pages, unsigned int page_shift)
579{
580 unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
581
582 WARN_ON(page_shift < PAGE_SHIFT);
583
584 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
585 page_shift == PAGE_SHIFT)
586 return vmap_small_pages_range_noflush(addr, end, prot, pages);
587
588 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
589 int err;
590
591 err = vmap_range_noflush(addr, addr + (1UL << page_shift),
592 __pa(page_address(pages[i])), prot,
593 page_shift);
594 if (err)
595 return err;
596
597 addr += 1UL << page_shift;
598 }
599
600 return 0;
601}
602
121e6f32 603/**
b67177ec 604 * vmap_pages_range - map pages to a kernel virtual address
121e6f32 605 * @addr: start of the VM area to map
b67177ec 606 * @end: end of the VM area to map (non-inclusive)
121e6f32 607 * @prot: page protection flags to use
b67177ec
NP
608 * @pages: pages to map (always PAGE_SIZE pages)
609 * @page_shift: maximum shift that the pages may be mapped with, @pages must
610 * be aligned and contiguous up to at least this shift.
121e6f32
NP
611 *
612 * RETURNS:
613 * 0 on success, -errno on failure.
614 */
b67177ec
NP
615static int vmap_pages_range(unsigned long addr, unsigned long end,
616 pgprot_t prot, struct page **pages, unsigned int page_shift)
8fc48985 617{
b67177ec 618 int err;
8fc48985 619
b67177ec
NP
620 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
621 flush_cache_vmap(addr, end);
622 return err;
8fc48985
TH
623}
624
81ac3ad9 625int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
626{
627 /*
ab4f2ee1 628 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
629 * and fall back on vmalloc() if that fails. Others
630 * just put it in the vmalloc space.
631 */
632#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
633 unsigned long addr = (unsigned long)x;
634 if (addr >= MODULES_VADDR && addr < MODULES_END)
635 return 1;
636#endif
637 return is_vmalloc_addr(x);
638}
639
48667e7a 640/*
c0eb315a
NP
641 * Walk a vmap address to the struct page it maps. Huge vmap mappings will
642 * return the tail page that corresponds to the base page address, which
643 * matches small vmap mappings.
48667e7a 644 */
add688fb 645struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
646{
647 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 648 struct page *page = NULL;
48667e7a 649 pgd_t *pgd = pgd_offset_k(addr);
c2febafc
KS
650 p4d_t *p4d;
651 pud_t *pud;
652 pmd_t *pmd;
653 pte_t *ptep, pte;
48667e7a 654
7aa413de
IM
655 /*
656 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
657 * architectures that do not vmalloc module space
658 */
73bdf0a6 659 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 660
c2febafc
KS
661 if (pgd_none(*pgd))
662 return NULL;
c0eb315a
NP
663 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
664 return NULL; /* XXX: no allowance for huge pgd */
665 if (WARN_ON_ONCE(pgd_bad(*pgd)))
666 return NULL;
667
c2febafc
KS
668 p4d = p4d_offset(pgd, addr);
669 if (p4d_none(*p4d))
670 return NULL;
c0eb315a
NP
671 if (p4d_leaf(*p4d))
672 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
673 if (WARN_ON_ONCE(p4d_bad(*p4d)))
674 return NULL;
029c54b0 675
c0eb315a
NP
676 pud = pud_offset(p4d, addr);
677 if (pud_none(*pud))
678 return NULL;
679 if (pud_leaf(*pud))
680 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
681 if (WARN_ON_ONCE(pud_bad(*pud)))
c2febafc 682 return NULL;
c0eb315a 683
c2febafc 684 pmd = pmd_offset(pud, addr);
c0eb315a
NP
685 if (pmd_none(*pmd))
686 return NULL;
687 if (pmd_leaf(*pmd))
688 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
689 if (WARN_ON_ONCE(pmd_bad(*pmd)))
c2febafc
KS
690 return NULL;
691
692 ptep = pte_offset_map(pmd, addr);
693 pte = *ptep;
694 if (pte_present(pte))
695 page = pte_page(pte);
696 pte_unmap(ptep);
c0eb315a 697
add688fb 698 return page;
48667e7a 699}
add688fb 700EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
701
702/*
add688fb 703 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 704 */
add688fb 705unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 706{
add688fb 707 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 708}
add688fb 709EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 710
db64fe02
NP
711
712/*** Global kva allocator ***/
713
bb850f4d 714#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
a6cf4e0f 715#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
bb850f4d 716
db64fe02 717
db64fe02 718static DEFINE_SPINLOCK(vmap_area_lock);
e36176be 719static DEFINE_SPINLOCK(free_vmap_area_lock);
f1c4069e
JK
720/* Export for kexec only */
721LIST_HEAD(vmap_area_list);
89699605 722static struct rb_root vmap_area_root = RB_ROOT;
68ad4a33 723static bool vmap_initialized __read_mostly;
89699605 724
96e2db45
URS
725static struct rb_root purge_vmap_area_root = RB_ROOT;
726static LIST_HEAD(purge_vmap_area_list);
727static DEFINE_SPINLOCK(purge_vmap_area_lock);
728
68ad4a33
URS
729/*
730 * This kmem_cache is used for vmap_area objects. Instead of
731 * allocating from slab we reuse an object from this cache to
732 * make things faster. Especially in "no edge" splitting of
733 * free block.
734 */
735static struct kmem_cache *vmap_area_cachep;
736
737/*
738 * This linked list is used in pair with free_vmap_area_root.
739 * It gives O(1) access to prev/next to perform fast coalescing.
740 */
741static LIST_HEAD(free_vmap_area_list);
742
743/*
744 * This augment red-black tree represents the free vmap space.
745 * All vmap_area objects in this tree are sorted by va->va_start
746 * address. It is used for allocation and merging when a vmap
747 * object is released.
748 *
749 * Each vmap_area node contains a maximum available free block
750 * of its sub-tree, right or left. Therefore it is possible to
751 * find a lowest match of free area.
752 */
753static struct rb_root free_vmap_area_root = RB_ROOT;
754
82dd23e8
URS
755/*
756 * Preload a CPU with one object for "no edge" split case. The
757 * aim is to get rid of allocations from the atomic context, thus
758 * to use more permissive allocation masks.
759 */
760static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
761
68ad4a33
URS
762static __always_inline unsigned long
763va_size(struct vmap_area *va)
764{
765 return (va->va_end - va->va_start);
766}
767
768static __always_inline unsigned long
769get_subtree_max_size(struct rb_node *node)
770{
771 struct vmap_area *va;
772
773 va = rb_entry_safe(node, struct vmap_area, rb_node);
774 return va ? va->subtree_max_size : 0;
775}
89699605 776
68ad4a33
URS
777/*
778 * Gets called when remove the node and rotate.
779 */
780static __always_inline unsigned long
781compute_subtree_max_size(struct vmap_area *va)
782{
783 return max3(va_size(va),
784 get_subtree_max_size(va->rb_node.rb_left),
785 get_subtree_max_size(va->rb_node.rb_right));
786}
787
315cc066
ML
788RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
789 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
68ad4a33
URS
790
791static void purge_vmap_area_lazy(void);
792static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
793static unsigned long lazy_max_pages(void);
db64fe02 794
97105f0a
RG
795static atomic_long_t nr_vmalloc_pages;
796
797unsigned long vmalloc_nr_pages(void)
798{
799 return atomic_long_read(&nr_vmalloc_pages);
800}
801
db64fe02 802static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 803{
db64fe02
NP
804 struct rb_node *n = vmap_area_root.rb_node;
805
806 while (n) {
807 struct vmap_area *va;
808
809 va = rb_entry(n, struct vmap_area, rb_node);
810 if (addr < va->va_start)
811 n = n->rb_left;
cef2ac3f 812 else if (addr >= va->va_end)
db64fe02
NP
813 n = n->rb_right;
814 else
815 return va;
816 }
817
818 return NULL;
819}
820
68ad4a33
URS
821/*
822 * This function returns back addresses of parent node
823 * and its left or right link for further processing.
9c801f61
URS
824 *
825 * Otherwise NULL is returned. In that case all further
826 * steps regarding inserting of conflicting overlap range
827 * have to be declined and actually considered as a bug.
68ad4a33
URS
828 */
829static __always_inline struct rb_node **
830find_va_links(struct vmap_area *va,
831 struct rb_root *root, struct rb_node *from,
832 struct rb_node **parent)
833{
834 struct vmap_area *tmp_va;
835 struct rb_node **link;
836
837 if (root) {
838 link = &root->rb_node;
839 if (unlikely(!*link)) {
840 *parent = NULL;
841 return link;
842 }
843 } else {
844 link = &from;
845 }
db64fe02 846
68ad4a33
URS
847 /*
848 * Go to the bottom of the tree. When we hit the last point
849 * we end up with parent rb_node and correct direction, i name
850 * it link, where the new va->rb_node will be attached to.
851 */
852 do {
853 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
db64fe02 854
68ad4a33
URS
855 /*
856 * During the traversal we also do some sanity check.
857 * Trigger the BUG() if there are sides(left/right)
858 * or full overlaps.
859 */
860 if (va->va_start < tmp_va->va_end &&
861 va->va_end <= tmp_va->va_start)
862 link = &(*link)->rb_left;
863 else if (va->va_end > tmp_va->va_start &&
864 va->va_start >= tmp_va->va_end)
865 link = &(*link)->rb_right;
9c801f61
URS
866 else {
867 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
868 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
869
870 return NULL;
871 }
68ad4a33
URS
872 } while (*link);
873
874 *parent = &tmp_va->rb_node;
875 return link;
876}
877
878static __always_inline struct list_head *
879get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
880{
881 struct list_head *list;
882
883 if (unlikely(!parent))
884 /*
885 * The red-black tree where we try to find VA neighbors
886 * before merging or inserting is empty, i.e. it means
887 * there is no free vmap space. Normally it does not
888 * happen but we handle this case anyway.
889 */
890 return NULL;
891
892 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
893 return (&parent->rb_right == link ? list->next : list);
894}
895
896static __always_inline void
897link_va(struct vmap_area *va, struct rb_root *root,
898 struct rb_node *parent, struct rb_node **link, struct list_head *head)
899{
900 /*
901 * VA is still not in the list, but we can
902 * identify its future previous list_head node.
903 */
904 if (likely(parent)) {
905 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
906 if (&parent->rb_right != link)
907 head = head->prev;
db64fe02
NP
908 }
909
68ad4a33
URS
910 /* Insert to the rb-tree */
911 rb_link_node(&va->rb_node, parent, link);
912 if (root == &free_vmap_area_root) {
913 /*
914 * Some explanation here. Just perform simple insertion
915 * to the tree. We do not set va->subtree_max_size to
916 * its current size before calling rb_insert_augmented().
917 * It is because of we populate the tree from the bottom
918 * to parent levels when the node _is_ in the tree.
919 *
920 * Therefore we set subtree_max_size to zero after insertion,
921 * to let __augment_tree_propagate_from() puts everything to
922 * the correct order later on.
923 */
924 rb_insert_augmented(&va->rb_node,
925 root, &free_vmap_area_rb_augment_cb);
926 va->subtree_max_size = 0;
927 } else {
928 rb_insert_color(&va->rb_node, root);
929 }
db64fe02 930
68ad4a33
URS
931 /* Address-sort this list */
932 list_add(&va->list, head);
db64fe02
NP
933}
934
68ad4a33
URS
935static __always_inline void
936unlink_va(struct vmap_area *va, struct rb_root *root)
937{
460e42d1
URS
938 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
939 return;
db64fe02 940
460e42d1
URS
941 if (root == &free_vmap_area_root)
942 rb_erase_augmented(&va->rb_node,
943 root, &free_vmap_area_rb_augment_cb);
944 else
945 rb_erase(&va->rb_node, root);
946
947 list_del(&va->list);
948 RB_CLEAR_NODE(&va->rb_node);
68ad4a33
URS
949}
950
bb850f4d
URS
951#if DEBUG_AUGMENT_PROPAGATE_CHECK
952static void
da27c9ed 953augment_tree_propagate_check(void)
bb850f4d
URS
954{
955 struct vmap_area *va;
da27c9ed 956 unsigned long computed_size;
bb850f4d 957
da27c9ed
URS
958 list_for_each_entry(va, &free_vmap_area_list, list) {
959 computed_size = compute_subtree_max_size(va);
960 if (computed_size != va->subtree_max_size)
961 pr_emerg("tree is corrupted: %lu, %lu\n",
962 va_size(va), va->subtree_max_size);
bb850f4d 963 }
bb850f4d
URS
964}
965#endif
966
68ad4a33
URS
967/*
968 * This function populates subtree_max_size from bottom to upper
969 * levels starting from VA point. The propagation must be done
970 * when VA size is modified by changing its va_start/va_end. Or
971 * in case of newly inserting of VA to the tree.
972 *
973 * It means that __augment_tree_propagate_from() must be called:
974 * - After VA has been inserted to the tree(free path);
975 * - After VA has been shrunk(allocation path);
976 * - After VA has been increased(merging path).
977 *
978 * Please note that, it does not mean that upper parent nodes
979 * and their subtree_max_size are recalculated all the time up
980 * to the root node.
981 *
982 * 4--8
983 * /\
984 * / \
985 * / \
986 * 2--2 8--8
987 *
988 * For example if we modify the node 4, shrinking it to 2, then
989 * no any modification is required. If we shrink the node 2 to 1
990 * its subtree_max_size is updated only, and set to 1. If we shrink
991 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
992 * node becomes 4--6.
993 */
994static __always_inline void
995augment_tree_propagate_from(struct vmap_area *va)
996{
15ae144f
URS
997 /*
998 * Populate the tree from bottom towards the root until
999 * the calculated maximum available size of checked node
1000 * is equal to its current one.
1001 */
1002 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
bb850f4d
URS
1003
1004#if DEBUG_AUGMENT_PROPAGATE_CHECK
da27c9ed 1005 augment_tree_propagate_check();
bb850f4d 1006#endif
68ad4a33
URS
1007}
1008
1009static void
1010insert_vmap_area(struct vmap_area *va,
1011 struct rb_root *root, struct list_head *head)
1012{
1013 struct rb_node **link;
1014 struct rb_node *parent;
1015
1016 link = find_va_links(va, root, NULL, &parent);
9c801f61
URS
1017 if (link)
1018 link_va(va, root, parent, link, head);
68ad4a33
URS
1019}
1020
1021static void
1022insert_vmap_area_augment(struct vmap_area *va,
1023 struct rb_node *from, struct rb_root *root,
1024 struct list_head *head)
1025{
1026 struct rb_node **link;
1027 struct rb_node *parent;
1028
1029 if (from)
1030 link = find_va_links(va, NULL, from, &parent);
1031 else
1032 link = find_va_links(va, root, NULL, &parent);
1033
9c801f61
URS
1034 if (link) {
1035 link_va(va, root, parent, link, head);
1036 augment_tree_propagate_from(va);
1037 }
68ad4a33
URS
1038}
1039
1040/*
1041 * Merge de-allocated chunk of VA memory with previous
1042 * and next free blocks. If coalesce is not done a new
1043 * free area is inserted. If VA has been merged, it is
1044 * freed.
9c801f61
URS
1045 *
1046 * Please note, it can return NULL in case of overlap
1047 * ranges, followed by WARN() report. Despite it is a
1048 * buggy behaviour, a system can be alive and keep
1049 * ongoing.
68ad4a33 1050 */
3c5c3cfb 1051static __always_inline struct vmap_area *
68ad4a33
URS
1052merge_or_add_vmap_area(struct vmap_area *va,
1053 struct rb_root *root, struct list_head *head)
1054{
1055 struct vmap_area *sibling;
1056 struct list_head *next;
1057 struct rb_node **link;
1058 struct rb_node *parent;
1059 bool merged = false;
1060
1061 /*
1062 * Find a place in the tree where VA potentially will be
1063 * inserted, unless it is merged with its sibling/siblings.
1064 */
1065 link = find_va_links(va, root, NULL, &parent);
9c801f61
URS
1066 if (!link)
1067 return NULL;
68ad4a33
URS
1068
1069 /*
1070 * Get next node of VA to check if merging can be done.
1071 */
1072 next = get_va_next_sibling(parent, link);
1073 if (unlikely(next == NULL))
1074 goto insert;
1075
1076 /*
1077 * start end
1078 * | |
1079 * |<------VA------>|<-----Next----->|
1080 * | |
1081 * start end
1082 */
1083 if (next != head) {
1084 sibling = list_entry(next, struct vmap_area, list);
1085 if (sibling->va_start == va->va_end) {
1086 sibling->va_start = va->va_start;
1087
68ad4a33
URS
1088 /* Free vmap_area object. */
1089 kmem_cache_free(vmap_area_cachep, va);
1090
1091 /* Point to the new merged area. */
1092 va = sibling;
1093 merged = true;
1094 }
1095 }
1096
1097 /*
1098 * start end
1099 * | |
1100 * |<-----Prev----->|<------VA------>|
1101 * | |
1102 * start end
1103 */
1104 if (next->prev != head) {
1105 sibling = list_entry(next->prev, struct vmap_area, list);
1106 if (sibling->va_end == va->va_start) {
5dd78640
URS
1107 /*
1108 * If both neighbors are coalesced, it is important
1109 * to unlink the "next" node first, followed by merging
1110 * with "previous" one. Otherwise the tree might not be
1111 * fully populated if a sibling's augmented value is
1112 * "normalized" because of rotation operations.
1113 */
54f63d9d
URS
1114 if (merged)
1115 unlink_va(va, root);
68ad4a33 1116
5dd78640
URS
1117 sibling->va_end = va->va_end;
1118
68ad4a33
URS
1119 /* Free vmap_area object. */
1120 kmem_cache_free(vmap_area_cachep, va);
3c5c3cfb
DA
1121
1122 /* Point to the new merged area. */
1123 va = sibling;
1124 merged = true;
68ad4a33
URS
1125 }
1126 }
1127
1128insert:
5dd78640 1129 if (!merged)
68ad4a33 1130 link_va(va, root, parent, link, head);
3c5c3cfb 1131
96e2db45
URS
1132 return va;
1133}
1134
1135static __always_inline struct vmap_area *
1136merge_or_add_vmap_area_augment(struct vmap_area *va,
1137 struct rb_root *root, struct list_head *head)
1138{
1139 va = merge_or_add_vmap_area(va, root, head);
1140 if (va)
1141 augment_tree_propagate_from(va);
1142
3c5c3cfb 1143 return va;
68ad4a33
URS
1144}
1145
1146static __always_inline bool
1147is_within_this_va(struct vmap_area *va, unsigned long size,
1148 unsigned long align, unsigned long vstart)
1149{
1150 unsigned long nva_start_addr;
1151
1152 if (va->va_start > vstart)
1153 nva_start_addr = ALIGN(va->va_start, align);
1154 else
1155 nva_start_addr = ALIGN(vstart, align);
1156
1157 /* Can be overflowed due to big size or alignment. */
1158 if (nva_start_addr + size < nva_start_addr ||
1159 nva_start_addr < vstart)
1160 return false;
1161
1162 return (nva_start_addr + size <= va->va_end);
1163}
1164
1165/*
1166 * Find the first free block(lowest start address) in the tree,
1167 * that will accomplish the request corresponding to passing
1168 * parameters.
1169 */
1170static __always_inline struct vmap_area *
1171find_vmap_lowest_match(unsigned long size,
1172 unsigned long align, unsigned long vstart)
1173{
1174 struct vmap_area *va;
1175 struct rb_node *node;
1176 unsigned long length;
1177
1178 /* Start from the root. */
1179 node = free_vmap_area_root.rb_node;
1180
1181 /* Adjust the search size for alignment overhead. */
1182 length = size + align - 1;
1183
1184 while (node) {
1185 va = rb_entry(node, struct vmap_area, rb_node);
1186
1187 if (get_subtree_max_size(node->rb_left) >= length &&
1188 vstart < va->va_start) {
1189 node = node->rb_left;
1190 } else {
1191 if (is_within_this_va(va, size, align, vstart))
1192 return va;
1193
1194 /*
1195 * Does not make sense to go deeper towards the right
1196 * sub-tree if it does not have a free block that is
1197 * equal or bigger to the requested search length.
1198 */
1199 if (get_subtree_max_size(node->rb_right) >= length) {
1200 node = node->rb_right;
1201 continue;
1202 }
1203
1204 /*
3806b041 1205 * OK. We roll back and find the first right sub-tree,
68ad4a33
URS
1206 * that will satisfy the search criteria. It can happen
1207 * only once due to "vstart" restriction.
1208 */
1209 while ((node = rb_parent(node))) {
1210 va = rb_entry(node, struct vmap_area, rb_node);
1211 if (is_within_this_va(va, size, align, vstart))
1212 return va;
1213
1214 if (get_subtree_max_size(node->rb_right) >= length &&
1215 vstart <= va->va_start) {
1216 node = node->rb_right;
1217 break;
1218 }
1219 }
1220 }
1221 }
1222
1223 return NULL;
1224}
1225
a6cf4e0f
URS
1226#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1227#include <linux/random.h>
1228
1229static struct vmap_area *
1230find_vmap_lowest_linear_match(unsigned long size,
1231 unsigned long align, unsigned long vstart)
1232{
1233 struct vmap_area *va;
1234
1235 list_for_each_entry(va, &free_vmap_area_list, list) {
1236 if (!is_within_this_va(va, size, align, vstart))
1237 continue;
1238
1239 return va;
1240 }
1241
1242 return NULL;
1243}
1244
1245static void
1246find_vmap_lowest_match_check(unsigned long size)
1247{
1248 struct vmap_area *va_1, *va_2;
1249 unsigned long vstart;
1250 unsigned int rnd;
1251
1252 get_random_bytes(&rnd, sizeof(rnd));
1253 vstart = VMALLOC_START + rnd;
1254
1255 va_1 = find_vmap_lowest_match(size, 1, vstart);
1256 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
1257
1258 if (va_1 != va_2)
1259 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1260 va_1, va_2, vstart);
1261}
1262#endif
1263
68ad4a33
URS
1264enum fit_type {
1265 NOTHING_FIT = 0,
1266 FL_FIT_TYPE = 1, /* full fit */
1267 LE_FIT_TYPE = 2, /* left edge fit */
1268 RE_FIT_TYPE = 3, /* right edge fit */
1269 NE_FIT_TYPE = 4 /* no edge fit */
1270};
1271
1272static __always_inline enum fit_type
1273classify_va_fit_type(struct vmap_area *va,
1274 unsigned long nva_start_addr, unsigned long size)
1275{
1276 enum fit_type type;
1277
1278 /* Check if it is within VA. */
1279 if (nva_start_addr < va->va_start ||
1280 nva_start_addr + size > va->va_end)
1281 return NOTHING_FIT;
1282
1283 /* Now classify. */
1284 if (va->va_start == nva_start_addr) {
1285 if (va->va_end == nva_start_addr + size)
1286 type = FL_FIT_TYPE;
1287 else
1288 type = LE_FIT_TYPE;
1289 } else if (va->va_end == nva_start_addr + size) {
1290 type = RE_FIT_TYPE;
1291 } else {
1292 type = NE_FIT_TYPE;
1293 }
1294
1295 return type;
1296}
1297
1298static __always_inline int
1299adjust_va_to_fit_type(struct vmap_area *va,
1300 unsigned long nva_start_addr, unsigned long size,
1301 enum fit_type type)
1302{
2c929233 1303 struct vmap_area *lva = NULL;
68ad4a33
URS
1304
1305 if (type == FL_FIT_TYPE) {
1306 /*
1307 * No need to split VA, it fully fits.
1308 *
1309 * | |
1310 * V NVA V
1311 * |---------------|
1312 */
1313 unlink_va(va, &free_vmap_area_root);
1314 kmem_cache_free(vmap_area_cachep, va);
1315 } else if (type == LE_FIT_TYPE) {
1316 /*
1317 * Split left edge of fit VA.
1318 *
1319 * | |
1320 * V NVA V R
1321 * |-------|-------|
1322 */
1323 va->va_start += size;
1324 } else if (type == RE_FIT_TYPE) {
1325 /*
1326 * Split right edge of fit VA.
1327 *
1328 * | |
1329 * L V NVA V
1330 * |-------|-------|
1331 */
1332 va->va_end = nva_start_addr;
1333 } else if (type == NE_FIT_TYPE) {
1334 /*
1335 * Split no edge of fit VA.
1336 *
1337 * | |
1338 * L V NVA V R
1339 * |---|-------|---|
1340 */
82dd23e8
URS
1341 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1342 if (unlikely(!lva)) {
1343 /*
1344 * For percpu allocator we do not do any pre-allocation
1345 * and leave it as it is. The reason is it most likely
1346 * never ends up with NE_FIT_TYPE splitting. In case of
1347 * percpu allocations offsets and sizes are aligned to
1348 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1349 * are its main fitting cases.
1350 *
1351 * There are a few exceptions though, as an example it is
1352 * a first allocation (early boot up) when we have "one"
1353 * big free space that has to be split.
060650a2
URS
1354 *
1355 * Also we can hit this path in case of regular "vmap"
1356 * allocations, if "this" current CPU was not preloaded.
1357 * See the comment in alloc_vmap_area() why. If so, then
1358 * GFP_NOWAIT is used instead to get an extra object for
1359 * split purpose. That is rare and most time does not
1360 * occur.
1361 *
1362 * What happens if an allocation gets failed. Basically,
1363 * an "overflow" path is triggered to purge lazily freed
1364 * areas to free some memory, then, the "retry" path is
1365 * triggered to repeat one more time. See more details
1366 * in alloc_vmap_area() function.
82dd23e8
URS
1367 */
1368 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1369 if (!lva)
1370 return -1;
1371 }
68ad4a33
URS
1372
1373 /*
1374 * Build the remainder.
1375 */
1376 lva->va_start = va->va_start;
1377 lva->va_end = nva_start_addr;
1378
1379 /*
1380 * Shrink this VA to remaining size.
1381 */
1382 va->va_start = nva_start_addr + size;
1383 } else {
1384 return -1;
1385 }
1386
1387 if (type != FL_FIT_TYPE) {
1388 augment_tree_propagate_from(va);
1389
2c929233 1390 if (lva) /* type == NE_FIT_TYPE */
68ad4a33
URS
1391 insert_vmap_area_augment(lva, &va->rb_node,
1392 &free_vmap_area_root, &free_vmap_area_list);
1393 }
1394
1395 return 0;
1396}
1397
1398/*
1399 * Returns a start address of the newly allocated area, if success.
1400 * Otherwise a vend is returned that indicates failure.
1401 */
1402static __always_inline unsigned long
1403__alloc_vmap_area(unsigned long size, unsigned long align,
cacca6ba 1404 unsigned long vstart, unsigned long vend)
68ad4a33
URS
1405{
1406 unsigned long nva_start_addr;
1407 struct vmap_area *va;
1408 enum fit_type type;
1409 int ret;
1410
1411 va = find_vmap_lowest_match(size, align, vstart);
1412 if (unlikely(!va))
1413 return vend;
1414
1415 if (va->va_start > vstart)
1416 nva_start_addr = ALIGN(va->va_start, align);
1417 else
1418 nva_start_addr = ALIGN(vstart, align);
1419
1420 /* Check the "vend" restriction. */
1421 if (nva_start_addr + size > vend)
1422 return vend;
1423
1424 /* Classify what we have found. */
1425 type = classify_va_fit_type(va, nva_start_addr, size);
1426 if (WARN_ON_ONCE(type == NOTHING_FIT))
1427 return vend;
1428
1429 /* Update the free vmap_area. */
1430 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1431 if (ret)
1432 return vend;
1433
a6cf4e0f
URS
1434#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1435 find_vmap_lowest_match_check(size);
1436#endif
1437
68ad4a33
URS
1438 return nva_start_addr;
1439}
4da56b99 1440
d98c9e83
AR
1441/*
1442 * Free a region of KVA allocated by alloc_vmap_area
1443 */
1444static void free_vmap_area(struct vmap_area *va)
1445{
1446 /*
1447 * Remove from the busy tree/list.
1448 */
1449 spin_lock(&vmap_area_lock);
1450 unlink_va(va, &vmap_area_root);
1451 spin_unlock(&vmap_area_lock);
1452
1453 /*
1454 * Insert/Merge it back to the free tree/list.
1455 */
1456 spin_lock(&free_vmap_area_lock);
96e2db45 1457 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
d98c9e83
AR
1458 spin_unlock(&free_vmap_area_lock);
1459}
1460
187f8cc4
URS
1461static inline void
1462preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1463{
1464 struct vmap_area *va = NULL;
1465
1466 /*
1467 * Preload this CPU with one extra vmap_area object. It is used
1468 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1469 * a CPU that does an allocation is preloaded.
1470 *
1471 * We do it in non-atomic context, thus it allows us to use more
1472 * permissive allocation masks to be more stable under low memory
1473 * condition and high memory pressure.
1474 */
1475 if (!this_cpu_read(ne_fit_preload_node))
1476 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1477
1478 spin_lock(lock);
1479
1480 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1481 kmem_cache_free(vmap_area_cachep, va);
1482}
1483
db64fe02
NP
1484/*
1485 * Allocate a region of KVA of the specified size and alignment, within the
1486 * vstart and vend.
1487 */
1488static struct vmap_area *alloc_vmap_area(unsigned long size,
1489 unsigned long align,
1490 unsigned long vstart, unsigned long vend,
1491 int node, gfp_t gfp_mask)
1492{
187f8cc4 1493 struct vmap_area *va;
1da177e4 1494 unsigned long addr;
db64fe02 1495 int purged = 0;
d98c9e83 1496 int ret;
db64fe02 1497
7766970c 1498 BUG_ON(!size);
891c49ab 1499 BUG_ON(offset_in_page(size));
89699605 1500 BUG_ON(!is_power_of_2(align));
db64fe02 1501
68ad4a33
URS
1502 if (unlikely(!vmap_initialized))
1503 return ERR_PTR(-EBUSY);
1504
5803ed29 1505 might_sleep();
f07116d7 1506 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
4da56b99 1507
f07116d7 1508 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
db64fe02
NP
1509 if (unlikely(!va))
1510 return ERR_PTR(-ENOMEM);
1511
7f88f88f
CM
1512 /*
1513 * Only scan the relevant parts containing pointers to other objects
1514 * to avoid false negatives.
1515 */
f07116d7 1516 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
7f88f88f 1517
db64fe02 1518retry:
187f8cc4
URS
1519 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1520 addr = __alloc_vmap_area(size, align, vstart, vend);
1521 spin_unlock(&free_vmap_area_lock);
89699605 1522
afd07389 1523 /*
68ad4a33
URS
1524 * If an allocation fails, the "vend" address is
1525 * returned. Therefore trigger the overflow path.
afd07389 1526 */
68ad4a33 1527 if (unlikely(addr == vend))
89699605 1528 goto overflow;
db64fe02
NP
1529
1530 va->va_start = addr;
1531 va->va_end = addr + size;
688fcbfc 1532 va->vm = NULL;
68ad4a33 1533
e36176be
URS
1534 spin_lock(&vmap_area_lock);
1535 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
db64fe02
NP
1536 spin_unlock(&vmap_area_lock);
1537
61e16557 1538 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
1539 BUG_ON(va->va_start < vstart);
1540 BUG_ON(va->va_end > vend);
1541
d98c9e83
AR
1542 ret = kasan_populate_vmalloc(addr, size);
1543 if (ret) {
1544 free_vmap_area(va);
1545 return ERR_PTR(ret);
1546 }
1547
db64fe02 1548 return va;
89699605
NP
1549
1550overflow:
89699605
NP
1551 if (!purged) {
1552 purge_vmap_area_lazy();
1553 purged = 1;
1554 goto retry;
1555 }
4da56b99
CW
1556
1557 if (gfpflags_allow_blocking(gfp_mask)) {
1558 unsigned long freed = 0;
1559 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1560 if (freed > 0) {
1561 purged = 0;
1562 goto retry;
1563 }
1564 }
1565
03497d76 1566 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
756a025f
JP
1567 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1568 size);
68ad4a33
URS
1569
1570 kmem_cache_free(vmap_area_cachep, va);
89699605 1571 return ERR_PTR(-EBUSY);
db64fe02
NP
1572}
1573
4da56b99
CW
1574int register_vmap_purge_notifier(struct notifier_block *nb)
1575{
1576 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1577}
1578EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1579
1580int unregister_vmap_purge_notifier(struct notifier_block *nb)
1581{
1582 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1583}
1584EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1585
db64fe02
NP
1586/*
1587 * lazy_max_pages is the maximum amount of virtual address space we gather up
1588 * before attempting to purge with a TLB flush.
1589 *
1590 * There is a tradeoff here: a larger number will cover more kernel page tables
1591 * and take slightly longer to purge, but it will linearly reduce the number of
1592 * global TLB flushes that must be performed. It would seem natural to scale
1593 * this number up linearly with the number of CPUs (because vmapping activity
1594 * could also scale linearly with the number of CPUs), however it is likely
1595 * that in practice, workloads might be constrained in other ways that mean
1596 * vmap activity will not scale linearly with CPUs. Also, I want to be
1597 * conservative and not introduce a big latency on huge systems, so go with
1598 * a less aggressive log scale. It will still be an improvement over the old
1599 * code, and it will be simple to change the scale factor if we find that it
1600 * becomes a problem on bigger systems.
1601 */
1602static unsigned long lazy_max_pages(void)
1603{
1604 unsigned int log;
1605
1606 log = fls(num_online_cpus());
1607
1608 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1609}
1610
4d36e6f8 1611static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
db64fe02 1612
0574ecd1 1613/*
f0953a1b 1614 * Serialize vmap purging. There is no actual critical section protected
0574ecd1
CH
1615 * by this look, but we want to avoid concurrent calls for performance
1616 * reasons and to make the pcpu_get_vm_areas more deterministic.
1617 */
f9e09977 1618static DEFINE_MUTEX(vmap_purge_lock);
0574ecd1 1619
02b709df
NP
1620/* for per-CPU blocks */
1621static void purge_fragmented_blocks_allcpus(void);
1622
5da96bdd 1623#ifdef CONFIG_X86_64
3ee48b6a
CW
1624/*
1625 * called before a call to iounmap() if the caller wants vm_area_struct's
1626 * immediately freed.
1627 */
1628void set_iounmap_nonlazy(void)
1629{
4d36e6f8 1630 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
3ee48b6a 1631}
5da96bdd 1632#endif /* CONFIG_X86_64 */
3ee48b6a 1633
db64fe02
NP
1634/*
1635 * Purges all lazily-freed vmap areas.
db64fe02 1636 */
0574ecd1 1637static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
db64fe02 1638{
4d36e6f8 1639 unsigned long resched_threshold;
96e2db45
URS
1640 struct list_head local_pure_list;
1641 struct vmap_area *va, *n_va;
db64fe02 1642
0574ecd1 1643 lockdep_assert_held(&vmap_purge_lock);
02b709df 1644
96e2db45
URS
1645 spin_lock(&purge_vmap_area_lock);
1646 purge_vmap_area_root = RB_ROOT;
1647 list_replace_init(&purge_vmap_area_list, &local_pure_list);
1648 spin_unlock(&purge_vmap_area_lock);
1649
1650 if (unlikely(list_empty(&local_pure_list)))
68571be9
URS
1651 return false;
1652
96e2db45
URS
1653 start = min(start,
1654 list_first_entry(&local_pure_list,
1655 struct vmap_area, list)->va_start);
1656
1657 end = max(end,
1658 list_last_entry(&local_pure_list,
1659 struct vmap_area, list)->va_end);
db64fe02 1660
0574ecd1 1661 flush_tlb_kernel_range(start, end);
4d36e6f8 1662 resched_threshold = lazy_max_pages() << 1;
db64fe02 1663
e36176be 1664 spin_lock(&free_vmap_area_lock);
96e2db45 1665 list_for_each_entry_safe(va, n_va, &local_pure_list, list) {
4d36e6f8 1666 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
3c5c3cfb
DA
1667 unsigned long orig_start = va->va_start;
1668 unsigned long orig_end = va->va_end;
763b218d 1669
dd3b8353
URS
1670 /*
1671 * Finally insert or merge lazily-freed area. It is
1672 * detached and there is no need to "unlink" it from
1673 * anything.
1674 */
96e2db45
URS
1675 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1676 &free_vmap_area_list);
3c5c3cfb 1677
9c801f61
URS
1678 if (!va)
1679 continue;
1680
3c5c3cfb
DA
1681 if (is_vmalloc_or_module_addr((void *)orig_start))
1682 kasan_release_vmalloc(orig_start, orig_end,
1683 va->va_start, va->va_end);
dd3b8353 1684
4d36e6f8 1685 atomic_long_sub(nr, &vmap_lazy_nr);
68571be9 1686
4d36e6f8 1687 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
e36176be 1688 cond_resched_lock(&free_vmap_area_lock);
763b218d 1689 }
e36176be 1690 spin_unlock(&free_vmap_area_lock);
0574ecd1 1691 return true;
db64fe02
NP
1692}
1693
496850e5
NP
1694/*
1695 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1696 * is already purging.
1697 */
1698static void try_purge_vmap_area_lazy(void)
1699{
f9e09977 1700 if (mutex_trylock(&vmap_purge_lock)) {
0574ecd1 1701 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1702 mutex_unlock(&vmap_purge_lock);
0574ecd1 1703 }
496850e5
NP
1704}
1705
db64fe02
NP
1706/*
1707 * Kick off a purge of the outstanding lazy areas.
1708 */
1709static void purge_vmap_area_lazy(void)
1710{
f9e09977 1711 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1712 purge_fragmented_blocks_allcpus();
1713 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1714 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
1715}
1716
1717/*
64141da5
JF
1718 * Free a vmap area, caller ensuring that the area has been unmapped
1719 * and flush_cache_vunmap had been called for the correct range
1720 * previously.
db64fe02 1721 */
64141da5 1722static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02 1723{
4d36e6f8 1724 unsigned long nr_lazy;
80c4bd7a 1725
dd3b8353
URS
1726 spin_lock(&vmap_area_lock);
1727 unlink_va(va, &vmap_area_root);
1728 spin_unlock(&vmap_area_lock);
1729
4d36e6f8
URS
1730 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1731 PAGE_SHIFT, &vmap_lazy_nr);
80c4bd7a 1732
96e2db45
URS
1733 /*
1734 * Merge or place it to the purge tree/list.
1735 */
1736 spin_lock(&purge_vmap_area_lock);
1737 merge_or_add_vmap_area(va,
1738 &purge_vmap_area_root, &purge_vmap_area_list);
1739 spin_unlock(&purge_vmap_area_lock);
80c4bd7a 1740
96e2db45 1741 /* After this point, we may free va at any time */
80c4bd7a 1742 if (unlikely(nr_lazy > lazy_max_pages()))
496850e5 1743 try_purge_vmap_area_lazy();
db64fe02
NP
1744}
1745
b29acbdc
NP
1746/*
1747 * Free and unmap a vmap area
1748 */
1749static void free_unmap_vmap_area(struct vmap_area *va)
1750{
1751 flush_cache_vunmap(va->va_start, va->va_end);
4ad0ae8c 1752 vunmap_range_noflush(va->va_start, va->va_end);
8e57f8ac 1753 if (debug_pagealloc_enabled_static())
82a2e924
CP
1754 flush_tlb_kernel_range(va->va_start, va->va_end);
1755
c8eef01e 1756 free_vmap_area_noflush(va);
b29acbdc
NP
1757}
1758
db64fe02
NP
1759static struct vmap_area *find_vmap_area(unsigned long addr)
1760{
1761 struct vmap_area *va;
1762
1763 spin_lock(&vmap_area_lock);
1764 va = __find_vmap_area(addr);
1765 spin_unlock(&vmap_area_lock);
1766
1767 return va;
1768}
1769
db64fe02
NP
1770/*** Per cpu kva allocator ***/
1771
1772/*
1773 * vmap space is limited especially on 32 bit architectures. Ensure there is
1774 * room for at least 16 percpu vmap blocks per CPU.
1775 */
1776/*
1777 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1778 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1779 * instead (we just need a rough idea)
1780 */
1781#if BITS_PER_LONG == 32
1782#define VMALLOC_SPACE (128UL*1024*1024)
1783#else
1784#define VMALLOC_SPACE (128UL*1024*1024*1024)
1785#endif
1786
1787#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1788#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1789#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1790#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1791#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1792#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
1793#define VMAP_BBMAP_BITS \
1794 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1795 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1796 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
1797
1798#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1799
1800struct vmap_block_queue {
1801 spinlock_t lock;
1802 struct list_head free;
db64fe02
NP
1803};
1804
1805struct vmap_block {
1806 spinlock_t lock;
1807 struct vmap_area *va;
db64fe02 1808 unsigned long free, dirty;
7d61bfe8 1809 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
1810 struct list_head free_list;
1811 struct rcu_head rcu_head;
02b709df 1812 struct list_head purge;
db64fe02
NP
1813};
1814
1815/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1816static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1817
1818/*
0f14599c 1819 * XArray of vmap blocks, indexed by address, to quickly find a vmap block
db64fe02
NP
1820 * in the free path. Could get rid of this if we change the API to return a
1821 * "cookie" from alloc, to be passed to free. But no big deal yet.
1822 */
0f14599c 1823static DEFINE_XARRAY(vmap_blocks);
db64fe02
NP
1824
1825/*
1826 * We should probably have a fallback mechanism to allocate virtual memory
1827 * out of partially filled vmap blocks. However vmap block sizing should be
1828 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1829 * big problem.
1830 */
1831
1832static unsigned long addr_to_vb_idx(unsigned long addr)
1833{
1834 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1835 addr /= VMAP_BLOCK_SIZE;
1836 return addr;
1837}
1838
cf725ce2
RP
1839static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1840{
1841 unsigned long addr;
1842
1843 addr = va_start + (pages_off << PAGE_SHIFT);
1844 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1845 return (void *)addr;
1846}
1847
1848/**
1849 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1850 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1851 * @order: how many 2^order pages should be occupied in newly allocated block
1852 * @gfp_mask: flags for the page level allocator
1853 *
a862f68a 1854 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
cf725ce2
RP
1855 */
1856static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
1857{
1858 struct vmap_block_queue *vbq;
1859 struct vmap_block *vb;
1860 struct vmap_area *va;
1861 unsigned long vb_idx;
1862 int node, err;
cf725ce2 1863 void *vaddr;
db64fe02
NP
1864
1865 node = numa_node_id();
1866
1867 vb = kmalloc_node(sizeof(struct vmap_block),
1868 gfp_mask & GFP_RECLAIM_MASK, node);
1869 if (unlikely(!vb))
1870 return ERR_PTR(-ENOMEM);
1871
1872 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1873 VMALLOC_START, VMALLOC_END,
1874 node, gfp_mask);
ddf9c6d4 1875 if (IS_ERR(va)) {
db64fe02 1876 kfree(vb);
e7d86340 1877 return ERR_CAST(va);
db64fe02
NP
1878 }
1879
cf725ce2 1880 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
1881 spin_lock_init(&vb->lock);
1882 vb->va = va;
cf725ce2
RP
1883 /* At least something should be left free */
1884 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1885 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 1886 vb->dirty = 0;
7d61bfe8
RP
1887 vb->dirty_min = VMAP_BBMAP_BITS;
1888 vb->dirty_max = 0;
db64fe02 1889 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
1890
1891 vb_idx = addr_to_vb_idx(va->va_start);
0f14599c
MWO
1892 err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1893 if (err) {
1894 kfree(vb);
1895 free_vmap_area(va);
1896 return ERR_PTR(err);
1897 }
db64fe02
NP
1898
1899 vbq = &get_cpu_var(vmap_block_queue);
db64fe02 1900 spin_lock(&vbq->lock);
68ac546f 1901 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 1902 spin_unlock(&vbq->lock);
3f04ba85 1903 put_cpu_var(vmap_block_queue);
db64fe02 1904
cf725ce2 1905 return vaddr;
db64fe02
NP
1906}
1907
db64fe02
NP
1908static void free_vmap_block(struct vmap_block *vb)
1909{
1910 struct vmap_block *tmp;
db64fe02 1911
0f14599c 1912 tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
db64fe02
NP
1913 BUG_ON(tmp != vb);
1914
64141da5 1915 free_vmap_area_noflush(vb->va);
22a3c7d1 1916 kfree_rcu(vb, rcu_head);
db64fe02
NP
1917}
1918
02b709df
NP
1919static void purge_fragmented_blocks(int cpu)
1920{
1921 LIST_HEAD(purge);
1922 struct vmap_block *vb;
1923 struct vmap_block *n_vb;
1924 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1925
1926 rcu_read_lock();
1927 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1928
1929 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1930 continue;
1931
1932 spin_lock(&vb->lock);
1933 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1934 vb->free = 0; /* prevent further allocs after releasing lock */
1935 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
1936 vb->dirty_min = 0;
1937 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
1938 spin_lock(&vbq->lock);
1939 list_del_rcu(&vb->free_list);
1940 spin_unlock(&vbq->lock);
1941 spin_unlock(&vb->lock);
1942 list_add_tail(&vb->purge, &purge);
1943 } else
1944 spin_unlock(&vb->lock);
1945 }
1946 rcu_read_unlock();
1947
1948 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1949 list_del(&vb->purge);
1950 free_vmap_block(vb);
1951 }
1952}
1953
02b709df
NP
1954static void purge_fragmented_blocks_allcpus(void)
1955{
1956 int cpu;
1957
1958 for_each_possible_cpu(cpu)
1959 purge_fragmented_blocks(cpu);
1960}
1961
db64fe02
NP
1962static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1963{
1964 struct vmap_block_queue *vbq;
1965 struct vmap_block *vb;
cf725ce2 1966 void *vaddr = NULL;
db64fe02
NP
1967 unsigned int order;
1968
891c49ab 1969 BUG_ON(offset_in_page(size));
db64fe02 1970 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
1971 if (WARN_ON(size == 0)) {
1972 /*
1973 * Allocating 0 bytes isn't what caller wants since
1974 * get_order(0) returns funny result. Just warn and terminate
1975 * early.
1976 */
1977 return NULL;
1978 }
db64fe02
NP
1979 order = get_order(size);
1980
db64fe02
NP
1981 rcu_read_lock();
1982 vbq = &get_cpu_var(vmap_block_queue);
1983 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 1984 unsigned long pages_off;
db64fe02
NP
1985
1986 spin_lock(&vb->lock);
cf725ce2
RP
1987 if (vb->free < (1UL << order)) {
1988 spin_unlock(&vb->lock);
1989 continue;
1990 }
02b709df 1991
cf725ce2
RP
1992 pages_off = VMAP_BBMAP_BITS - vb->free;
1993 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df
NP
1994 vb->free -= 1UL << order;
1995 if (vb->free == 0) {
1996 spin_lock(&vbq->lock);
1997 list_del_rcu(&vb->free_list);
1998 spin_unlock(&vbq->lock);
1999 }
cf725ce2 2000
02b709df
NP
2001 spin_unlock(&vb->lock);
2002 break;
db64fe02 2003 }
02b709df 2004
3f04ba85 2005 put_cpu_var(vmap_block_queue);
db64fe02
NP
2006 rcu_read_unlock();
2007
cf725ce2
RP
2008 /* Allocate new block if nothing was found */
2009 if (!vaddr)
2010 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 2011
cf725ce2 2012 return vaddr;
db64fe02
NP
2013}
2014
78a0e8c4 2015static void vb_free(unsigned long addr, unsigned long size)
db64fe02
NP
2016{
2017 unsigned long offset;
db64fe02
NP
2018 unsigned int order;
2019 struct vmap_block *vb;
2020
891c49ab 2021 BUG_ON(offset_in_page(size));
db64fe02 2022 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc 2023
78a0e8c4 2024 flush_cache_vunmap(addr, addr + size);
b29acbdc 2025
db64fe02 2026 order = get_order(size);
78a0e8c4 2027 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
0f14599c 2028 vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
db64fe02 2029
4ad0ae8c 2030 vunmap_range_noflush(addr, addr + size);
64141da5 2031
8e57f8ac 2032 if (debug_pagealloc_enabled_static())
78a0e8c4 2033 flush_tlb_kernel_range(addr, addr + size);
82a2e924 2034
db64fe02 2035 spin_lock(&vb->lock);
7d61bfe8
RP
2036
2037 /* Expand dirty range */
2038 vb->dirty_min = min(vb->dirty_min, offset);
2039 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 2040
db64fe02
NP
2041 vb->dirty += 1UL << order;
2042 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 2043 BUG_ON(vb->free);
db64fe02
NP
2044 spin_unlock(&vb->lock);
2045 free_vmap_block(vb);
2046 } else
2047 spin_unlock(&vb->lock);
2048}
2049
868b104d 2050static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
db64fe02 2051{
db64fe02 2052 int cpu;
db64fe02 2053
9b463334
JF
2054 if (unlikely(!vmap_initialized))
2055 return;
2056
5803ed29
CH
2057 might_sleep();
2058
db64fe02
NP
2059 for_each_possible_cpu(cpu) {
2060 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2061 struct vmap_block *vb;
2062
2063 rcu_read_lock();
2064 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
db64fe02 2065 spin_lock(&vb->lock);
ad216c03 2066 if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
7d61bfe8 2067 unsigned long va_start = vb->va->va_start;
db64fe02 2068 unsigned long s, e;
b136be5e 2069
7d61bfe8
RP
2070 s = va_start + (vb->dirty_min << PAGE_SHIFT);
2071 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 2072
7d61bfe8
RP
2073 start = min(s, start);
2074 end = max(e, end);
db64fe02 2075
7d61bfe8 2076 flush = 1;
db64fe02
NP
2077 }
2078 spin_unlock(&vb->lock);
2079 }
2080 rcu_read_unlock();
2081 }
2082
f9e09977 2083 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
2084 purge_fragmented_blocks_allcpus();
2085 if (!__purge_vmap_area_lazy(start, end) && flush)
2086 flush_tlb_kernel_range(start, end);
f9e09977 2087 mutex_unlock(&vmap_purge_lock);
db64fe02 2088}
868b104d
RE
2089
2090/**
2091 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2092 *
2093 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2094 * to amortize TLB flushing overheads. What this means is that any page you
2095 * have now, may, in a former life, have been mapped into kernel virtual
2096 * address by the vmap layer and so there might be some CPUs with TLB entries
2097 * still referencing that page (additional to the regular 1:1 kernel mapping).
2098 *
2099 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2100 * be sure that none of the pages we have control over will have any aliases
2101 * from the vmap layer.
2102 */
2103void vm_unmap_aliases(void)
2104{
2105 unsigned long start = ULONG_MAX, end = 0;
2106 int flush = 0;
2107
2108 _vm_unmap_aliases(start, end, flush);
2109}
db64fe02
NP
2110EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2111
2112/**
2113 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2114 * @mem: the pointer returned by vm_map_ram
2115 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2116 */
2117void vm_unmap_ram(const void *mem, unsigned int count)
2118{
65ee03c4 2119 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02 2120 unsigned long addr = (unsigned long)mem;
9c3acf60 2121 struct vmap_area *va;
db64fe02 2122
5803ed29 2123 might_sleep();
db64fe02
NP
2124 BUG_ON(!addr);
2125 BUG_ON(addr < VMALLOC_START);
2126 BUG_ON(addr > VMALLOC_END);
a1c0b1a0 2127 BUG_ON(!PAGE_ALIGNED(addr));
db64fe02 2128
d98c9e83
AR
2129 kasan_poison_vmalloc(mem, size);
2130
9c3acf60 2131 if (likely(count <= VMAP_MAX_ALLOC)) {
05e3ff95 2132 debug_check_no_locks_freed(mem, size);
78a0e8c4 2133 vb_free(addr, size);
9c3acf60
CH
2134 return;
2135 }
2136
2137 va = find_vmap_area(addr);
2138 BUG_ON(!va);
05e3ff95
CP
2139 debug_check_no_locks_freed((void *)va->va_start,
2140 (va->va_end - va->va_start));
9c3acf60 2141 free_unmap_vmap_area(va);
db64fe02
NP
2142}
2143EXPORT_SYMBOL(vm_unmap_ram);
2144
2145/**
2146 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2147 * @pages: an array of pointers to the pages to be mapped
2148 * @count: number of pages
2149 * @node: prefer to allocate data structures on this node
e99c97ad 2150 *
36437638
GK
2151 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2152 * faster than vmap so it's good. But if you mix long-life and short-life
2153 * objects with vm_map_ram(), it could consume lots of address space through
2154 * fragmentation (especially on a 32bit machine). You could see failures in
2155 * the end. Please use this function for short-lived objects.
2156 *
e99c97ad 2157 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02 2158 */
d4efd79a 2159void *vm_map_ram(struct page **pages, unsigned int count, int node)
db64fe02 2160{
65ee03c4 2161 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
2162 unsigned long addr;
2163 void *mem;
2164
2165 if (likely(count <= VMAP_MAX_ALLOC)) {
2166 mem = vb_alloc(size, GFP_KERNEL);
2167 if (IS_ERR(mem))
2168 return NULL;
2169 addr = (unsigned long)mem;
2170 } else {
2171 struct vmap_area *va;
2172 va = alloc_vmap_area(size, PAGE_SIZE,
2173 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
2174 if (IS_ERR(va))
2175 return NULL;
2176
2177 addr = va->va_start;
2178 mem = (void *)addr;
2179 }
d98c9e83
AR
2180
2181 kasan_unpoison_vmalloc(mem, size);
2182
b67177ec
NP
2183 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2184 pages, PAGE_SHIFT) < 0) {
db64fe02
NP
2185 vm_unmap_ram(mem, count);
2186 return NULL;
2187 }
b67177ec 2188
db64fe02
NP
2189 return mem;
2190}
2191EXPORT_SYMBOL(vm_map_ram);
2192
4341fa45 2193static struct vm_struct *vmlist __initdata;
92eac168 2194
121e6f32
NP
2195static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2196{
2197#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2198 return vm->page_order;
2199#else
2200 return 0;
2201#endif
2202}
2203
2204static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2205{
2206#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2207 vm->page_order = order;
2208#else
2209 BUG_ON(order != 0);
2210#endif
2211}
2212
be9b7335
NP
2213/**
2214 * vm_area_add_early - add vmap area early during boot
2215 * @vm: vm_struct to add
2216 *
2217 * This function is used to add fixed kernel vm area to vmlist before
2218 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
2219 * should contain proper values and the other fields should be zero.
2220 *
2221 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2222 */
2223void __init vm_area_add_early(struct vm_struct *vm)
2224{
2225 struct vm_struct *tmp, **p;
2226
2227 BUG_ON(vmap_initialized);
2228 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2229 if (tmp->addr >= vm->addr) {
2230 BUG_ON(tmp->addr < vm->addr + vm->size);
2231 break;
2232 } else
2233 BUG_ON(tmp->addr + tmp->size > vm->addr);
2234 }
2235 vm->next = *p;
2236 *p = vm;
2237}
2238
f0aa6617
TH
2239/**
2240 * vm_area_register_early - register vmap area early during boot
2241 * @vm: vm_struct to register
c0c0a293 2242 * @align: requested alignment
f0aa6617
TH
2243 *
2244 * This function is used to register kernel vm area before
2245 * vmalloc_init() is called. @vm->size and @vm->flags should contain
2246 * proper values on entry and other fields should be zero. On return,
2247 * vm->addr contains the allocated address.
2248 *
2249 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2250 */
c0c0a293 2251void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
2252{
2253 static size_t vm_init_off __initdata;
c0c0a293
TH
2254 unsigned long addr;
2255
2256 addr = ALIGN(VMALLOC_START + vm_init_off, align);
2257 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 2258
c0c0a293 2259 vm->addr = (void *)addr;
f0aa6617 2260
be9b7335 2261 vm_area_add_early(vm);
f0aa6617
TH
2262}
2263
68ad4a33
URS
2264static void vmap_init_free_space(void)
2265{
2266 unsigned long vmap_start = 1;
2267 const unsigned long vmap_end = ULONG_MAX;
2268 struct vmap_area *busy, *free;
2269
2270 /*
2271 * B F B B B F
2272 * -|-----|.....|-----|-----|-----|.....|-
2273 * | The KVA space |
2274 * |<--------------------------------->|
2275 */
2276 list_for_each_entry(busy, &vmap_area_list, list) {
2277 if (busy->va_start - vmap_start > 0) {
2278 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2279 if (!WARN_ON_ONCE(!free)) {
2280 free->va_start = vmap_start;
2281 free->va_end = busy->va_start;
2282
2283 insert_vmap_area_augment(free, NULL,
2284 &free_vmap_area_root,
2285 &free_vmap_area_list);
2286 }
2287 }
2288
2289 vmap_start = busy->va_end;
2290 }
2291
2292 if (vmap_end - vmap_start > 0) {
2293 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2294 if (!WARN_ON_ONCE(!free)) {
2295 free->va_start = vmap_start;
2296 free->va_end = vmap_end;
2297
2298 insert_vmap_area_augment(free, NULL,
2299 &free_vmap_area_root,
2300 &free_vmap_area_list);
2301 }
2302 }
2303}
2304
db64fe02
NP
2305void __init vmalloc_init(void)
2306{
822c18f2
IK
2307 struct vmap_area *va;
2308 struct vm_struct *tmp;
db64fe02
NP
2309 int i;
2310
68ad4a33
URS
2311 /*
2312 * Create the cache for vmap_area objects.
2313 */
2314 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
2315
db64fe02
NP
2316 for_each_possible_cpu(i) {
2317 struct vmap_block_queue *vbq;
32fcfd40 2318 struct vfree_deferred *p;
db64fe02
NP
2319
2320 vbq = &per_cpu(vmap_block_queue, i);
2321 spin_lock_init(&vbq->lock);
2322 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
2323 p = &per_cpu(vfree_deferred, i);
2324 init_llist_head(&p->list);
2325 INIT_WORK(&p->wq, free_work);
db64fe02 2326 }
9b463334 2327
822c18f2
IK
2328 /* Import existing vmlist entries. */
2329 for (tmp = vmlist; tmp; tmp = tmp->next) {
68ad4a33
URS
2330 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2331 if (WARN_ON_ONCE(!va))
2332 continue;
2333
822c18f2
IK
2334 va->va_start = (unsigned long)tmp->addr;
2335 va->va_end = va->va_start + tmp->size;
dbda591d 2336 va->vm = tmp;
68ad4a33 2337 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
822c18f2 2338 }
ca23e405 2339
68ad4a33
URS
2340 /*
2341 * Now we can initialize a free vmap space.
2342 */
2343 vmap_init_free_space();
9b463334 2344 vmap_initialized = true;
db64fe02
NP
2345}
2346
e36176be
URS
2347static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2348 struct vmap_area *va, unsigned long flags, const void *caller)
cf88c790 2349{
cf88c790
TH
2350 vm->flags = flags;
2351 vm->addr = (void *)va->va_start;
2352 vm->size = va->va_end - va->va_start;
2353 vm->caller = caller;
db1aecaf 2354 va->vm = vm;
e36176be
URS
2355}
2356
2357static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2358 unsigned long flags, const void *caller)
2359{
2360 spin_lock(&vmap_area_lock);
2361 setup_vmalloc_vm_locked(vm, va, flags, caller);
c69480ad 2362 spin_unlock(&vmap_area_lock);
f5252e00 2363}
cf88c790 2364
20fc02b4 2365static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 2366{
d4033afd 2367 /*
20fc02b4 2368 * Before removing VM_UNINITIALIZED,
d4033afd
JK
2369 * we should make sure that vm has proper values.
2370 * Pair with smp_rmb() in show_numa_info().
2371 */
2372 smp_wmb();
20fc02b4 2373 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
2374}
2375
db64fe02 2376static struct vm_struct *__get_vm_area_node(unsigned long size,
7ca3027b
DA
2377 unsigned long align, unsigned long shift, unsigned long flags,
2378 unsigned long start, unsigned long end, int node,
2379 gfp_t gfp_mask, const void *caller)
db64fe02 2380{
0006526d 2381 struct vmap_area *va;
db64fe02 2382 struct vm_struct *area;
d98c9e83 2383 unsigned long requested_size = size;
1da177e4 2384
52fd24ca 2385 BUG_ON(in_interrupt());
7ca3027b 2386 size = ALIGN(size, 1ul << shift);
31be8309
OH
2387 if (unlikely(!size))
2388 return NULL;
1da177e4 2389
252e5c6e 2390 if (flags & VM_IOREMAP)
2391 align = 1ul << clamp_t(int, get_count_order_long(size),
2392 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2393
cf88c790 2394 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
2395 if (unlikely(!area))
2396 return NULL;
2397
71394fe5
AR
2398 if (!(flags & VM_NO_GUARD))
2399 size += PAGE_SIZE;
1da177e4 2400
db64fe02
NP
2401 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2402 if (IS_ERR(va)) {
2403 kfree(area);
2404 return NULL;
1da177e4 2405 }
1da177e4 2406
d98c9e83 2407 kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
f5252e00 2408
d98c9e83 2409 setup_vmalloc_vm(area, va, flags, caller);
3c5c3cfb 2410
1da177e4 2411 return area;
1da177e4
LT
2412}
2413
c2968612
BH
2414struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2415 unsigned long start, unsigned long end,
5e6cafc8 2416 const void *caller)
c2968612 2417{
7ca3027b
DA
2418 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2419 NUMA_NO_NODE, GFP_KERNEL, caller);
c2968612
BH
2420}
2421
1da177e4 2422/**
92eac168
MR
2423 * get_vm_area - reserve a contiguous kernel virtual area
2424 * @size: size of the area
2425 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1da177e4 2426 *
92eac168
MR
2427 * Search an area of @size in the kernel virtual mapping area,
2428 * and reserved it for out purposes. Returns the area descriptor
2429 * on success or %NULL on failure.
a862f68a
MR
2430 *
2431 * Return: the area descriptor on success or %NULL on failure.
1da177e4
LT
2432 */
2433struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2434{
7ca3027b
DA
2435 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2436 VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
2437 NUMA_NO_NODE, GFP_KERNEL,
2438 __builtin_return_address(0));
23016969
CL
2439}
2440
2441struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 2442 const void *caller)
23016969 2443{
7ca3027b
DA
2444 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2445 VMALLOC_START, VMALLOC_END,
00ef2d2f 2446 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
2447}
2448
e9da6e99 2449/**
92eac168
MR
2450 * find_vm_area - find a continuous kernel virtual area
2451 * @addr: base address
e9da6e99 2452 *
92eac168
MR
2453 * Search for the kernel VM area starting at @addr, and return it.
2454 * It is up to the caller to do all required locking to keep the returned
2455 * pointer valid.
a862f68a 2456 *
74640617 2457 * Return: the area descriptor on success or %NULL on failure.
e9da6e99
MS
2458 */
2459struct vm_struct *find_vm_area(const void *addr)
83342314 2460{
db64fe02 2461 struct vmap_area *va;
83342314 2462
db64fe02 2463 va = find_vmap_area((unsigned long)addr);
688fcbfc
PL
2464 if (!va)
2465 return NULL;
1da177e4 2466
688fcbfc 2467 return va->vm;
1da177e4
LT
2468}
2469
7856dfeb 2470/**
92eac168
MR
2471 * remove_vm_area - find and remove a continuous kernel virtual area
2472 * @addr: base address
7856dfeb 2473 *
92eac168
MR
2474 * Search for the kernel VM area starting at @addr, and remove it.
2475 * This function returns the found VM area, but using it is NOT safe
2476 * on SMP machines, except for its size or flags.
a862f68a 2477 *
74640617 2478 * Return: the area descriptor on success or %NULL on failure.
7856dfeb 2479 */
b3bdda02 2480struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 2481{
db64fe02
NP
2482 struct vmap_area *va;
2483
5803ed29
CH
2484 might_sleep();
2485
dd3b8353
URS
2486 spin_lock(&vmap_area_lock);
2487 va = __find_vmap_area((unsigned long)addr);
688fcbfc 2488 if (va && va->vm) {
db1aecaf 2489 struct vm_struct *vm = va->vm;
f5252e00 2490
c69480ad 2491 va->vm = NULL;
c69480ad
JK
2492 spin_unlock(&vmap_area_lock);
2493
a5af5aa8 2494 kasan_free_shadow(vm);
dd32c279 2495 free_unmap_vmap_area(va);
dd32c279 2496
db64fe02
NP
2497 return vm;
2498 }
dd3b8353
URS
2499
2500 spin_unlock(&vmap_area_lock);
db64fe02 2501 return NULL;
7856dfeb
AK
2502}
2503
868b104d
RE
2504static inline void set_area_direct_map(const struct vm_struct *area,
2505 int (*set_direct_map)(struct page *page))
2506{
2507 int i;
2508
121e6f32 2509 /* HUGE_VMALLOC passes small pages to set_direct_map */
868b104d
RE
2510 for (i = 0; i < area->nr_pages; i++)
2511 if (page_address(area->pages[i]))
2512 set_direct_map(area->pages[i]);
2513}
2514
2515/* Handle removing and resetting vm mappings related to the vm_struct. */
2516static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2517{
868b104d 2518 unsigned long start = ULONG_MAX, end = 0;
121e6f32 2519 unsigned int page_order = vm_area_page_order(area);
868b104d 2520 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
31e67340 2521 int flush_dmap = 0;
868b104d
RE
2522 int i;
2523
868b104d
RE
2524 remove_vm_area(area->addr);
2525
2526 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2527 if (!flush_reset)
2528 return;
2529
2530 /*
2531 * If not deallocating pages, just do the flush of the VM area and
2532 * return.
2533 */
2534 if (!deallocate_pages) {
2535 vm_unmap_aliases();
2536 return;
2537 }
2538
2539 /*
2540 * If execution gets here, flush the vm mapping and reset the direct
2541 * map. Find the start and end range of the direct mappings to make sure
2542 * the vm_unmap_aliases() flush includes the direct map.
2543 */
121e6f32 2544 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
8e41f872
RE
2545 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2546 if (addr) {
121e6f32
NP
2547 unsigned long page_size;
2548
2549 page_size = PAGE_SIZE << page_order;
868b104d 2550 start = min(addr, start);
121e6f32 2551 end = max(addr + page_size, end);
31e67340 2552 flush_dmap = 1;
868b104d
RE
2553 }
2554 }
2555
2556 /*
2557 * Set direct map to something invalid so that it won't be cached if
2558 * there are any accesses after the TLB flush, then flush the TLB and
2559 * reset the direct map permissions to the default.
2560 */
2561 set_area_direct_map(area, set_direct_map_invalid_noflush);
31e67340 2562 _vm_unmap_aliases(start, end, flush_dmap);
868b104d
RE
2563 set_area_direct_map(area, set_direct_map_default_noflush);
2564}
2565
b3bdda02 2566static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
2567{
2568 struct vm_struct *area;
2569
2570 if (!addr)
2571 return;
2572
e69e9d4a 2573 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 2574 addr))
1da177e4 2575 return;
1da177e4 2576
6ade2032 2577 area = find_vm_area(addr);
1da177e4 2578 if (unlikely(!area)) {
4c8573e2 2579 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 2580 addr);
1da177e4
LT
2581 return;
2582 }
2583
05e3ff95
CP
2584 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2585 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
9a11b49a 2586
c041098c 2587 kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
3c5c3cfb 2588
868b104d
RE
2589 vm_remove_mappings(area, deallocate_pages);
2590
1da177e4 2591 if (deallocate_pages) {
121e6f32 2592 unsigned int page_order = vm_area_page_order(area);
1da177e4
LT
2593 int i;
2594
121e6f32 2595 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
bf53d6f8
CL
2596 struct page *page = area->pages[i];
2597
2598 BUG_ON(!page);
121e6f32 2599 __free_pages(page, page_order);
a850e932 2600 cond_resched();
1da177e4 2601 }
97105f0a 2602 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2603
244d63ee 2604 kvfree(area->pages);
1da177e4
LT
2605 }
2606
2607 kfree(area);
1da177e4 2608}
bf22e37a
AR
2609
2610static inline void __vfree_deferred(const void *addr)
2611{
2612 /*
2613 * Use raw_cpu_ptr() because this can be called from preemptible
2614 * context. Preemption is absolutely fine here, because the llist_add()
2615 * implementation is lockless, so it works even if we are adding to
73221d88 2616 * another cpu's list. schedule_work() should be fine with this too.
bf22e37a
AR
2617 */
2618 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2619
2620 if (llist_add((struct llist_node *)addr, &p->list))
2621 schedule_work(&p->wq);
2622}
2623
2624/**
92eac168
MR
2625 * vfree_atomic - release memory allocated by vmalloc()
2626 * @addr: memory base address
bf22e37a 2627 *
92eac168
MR
2628 * This one is just like vfree() but can be called in any atomic context
2629 * except NMIs.
bf22e37a
AR
2630 */
2631void vfree_atomic(const void *addr)
2632{
2633 BUG_ON(in_nmi());
2634
2635 kmemleak_free(addr);
2636
2637 if (!addr)
2638 return;
2639 __vfree_deferred(addr);
2640}
2641
c67dc624
RP
2642static void __vfree(const void *addr)
2643{
2644 if (unlikely(in_interrupt()))
2645 __vfree_deferred(addr);
2646 else
2647 __vunmap(addr, 1);
2648}
2649
1da177e4 2650/**
fa307474
MWO
2651 * vfree - Release memory allocated by vmalloc()
2652 * @addr: Memory base address
1da177e4 2653 *
fa307474
MWO
2654 * Free the virtually continuous memory area starting at @addr, as obtained
2655 * from one of the vmalloc() family of APIs. This will usually also free the
2656 * physical memory underlying the virtual allocation, but that memory is
2657 * reference counted, so it will not be freed until the last user goes away.
1da177e4 2658 *
fa307474 2659 * If @addr is NULL, no operation is performed.
c9fcee51 2660 *
fa307474 2661 * Context:
92eac168 2662 * May sleep if called *not* from interrupt context.
fa307474
MWO
2663 * Must not be called in NMI context (strictly speaking, it could be
2664 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
f0953a1b 2665 * conventions for vfree() arch-dependent would be a really bad idea).
1da177e4 2666 */
b3bdda02 2667void vfree(const void *addr)
1da177e4 2668{
32fcfd40 2669 BUG_ON(in_nmi());
89219d37
CM
2670
2671 kmemleak_free(addr);
2672
a8dda165
AR
2673 might_sleep_if(!in_interrupt());
2674
32fcfd40
AV
2675 if (!addr)
2676 return;
c67dc624
RP
2677
2678 __vfree(addr);
1da177e4 2679}
1da177e4
LT
2680EXPORT_SYMBOL(vfree);
2681
2682/**
92eac168
MR
2683 * vunmap - release virtual mapping obtained by vmap()
2684 * @addr: memory base address
1da177e4 2685 *
92eac168
MR
2686 * Free the virtually contiguous memory area starting at @addr,
2687 * which was created from the page array passed to vmap().
1da177e4 2688 *
92eac168 2689 * Must not be called in interrupt context.
1da177e4 2690 */
b3bdda02 2691void vunmap(const void *addr)
1da177e4
LT
2692{
2693 BUG_ON(in_interrupt());
34754b69 2694 might_sleep();
32fcfd40
AV
2695 if (addr)
2696 __vunmap(addr, 0);
1da177e4 2697}
1da177e4
LT
2698EXPORT_SYMBOL(vunmap);
2699
2700/**
92eac168
MR
2701 * vmap - map an array of pages into virtually contiguous space
2702 * @pages: array of page pointers
2703 * @count: number of pages to map
2704 * @flags: vm_area->flags
2705 * @prot: page protection for the mapping
2706 *
b944afc9
CH
2707 * Maps @count pages from @pages into contiguous kernel virtual space.
2708 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2709 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2710 * are transferred from the caller to vmap(), and will be freed / dropped when
2711 * vfree() is called on the return value.
a862f68a
MR
2712 *
2713 * Return: the address of the area or %NULL on failure
1da177e4
LT
2714 */
2715void *vmap(struct page **pages, unsigned int count,
92eac168 2716 unsigned long flags, pgprot_t prot)
1da177e4
LT
2717{
2718 struct vm_struct *area;
b67177ec 2719 unsigned long addr;
65ee03c4 2720 unsigned long size; /* In bytes */
1da177e4 2721
34754b69
PZ
2722 might_sleep();
2723
ca79b0c2 2724 if (count > totalram_pages())
1da177e4
LT
2725 return NULL;
2726
65ee03c4
GJM
2727 size = (unsigned long)count << PAGE_SHIFT;
2728 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1da177e4
LT
2729 if (!area)
2730 return NULL;
23016969 2731
b67177ec
NP
2732 addr = (unsigned long)area->addr;
2733 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2734 pages, PAGE_SHIFT) < 0) {
1da177e4
LT
2735 vunmap(area->addr);
2736 return NULL;
2737 }
2738
c22ee528 2739 if (flags & VM_MAP_PUT_PAGES) {
b944afc9 2740 area->pages = pages;
c22ee528
ML
2741 area->nr_pages = count;
2742 }
1da177e4
LT
2743 return area->addr;
2744}
1da177e4
LT
2745EXPORT_SYMBOL(vmap);
2746
3e9a9e25
CH
2747#ifdef CONFIG_VMAP_PFN
2748struct vmap_pfn_data {
2749 unsigned long *pfns;
2750 pgprot_t prot;
2751 unsigned int idx;
2752};
2753
2754static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2755{
2756 struct vmap_pfn_data *data = private;
2757
2758 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2759 return -EINVAL;
2760 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2761 return 0;
2762}
2763
2764/**
2765 * vmap_pfn - map an array of PFNs into virtually contiguous space
2766 * @pfns: array of PFNs
2767 * @count: number of pages to map
2768 * @prot: page protection for the mapping
2769 *
2770 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2771 * the start address of the mapping.
2772 */
2773void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2774{
2775 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2776 struct vm_struct *area;
2777
2778 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2779 __builtin_return_address(0));
2780 if (!area)
2781 return NULL;
2782 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2783 count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2784 free_vm_area(area);
2785 return NULL;
2786 }
2787 return area->addr;
2788}
2789EXPORT_SYMBOL_GPL(vmap_pfn);
2790#endif /* CONFIG_VMAP_PFN */
2791
12b9f873
UR
2792static inline unsigned int
2793vm_area_alloc_pages(gfp_t gfp, int nid,
2794 unsigned int order, unsigned long nr_pages, struct page **pages)
2795{
2796 unsigned int nr_allocated = 0;
2797
2798 /*
2799 * For order-0 pages we make use of bulk allocator, if
2800 * the page array is partly or not at all populated due
2801 * to fails, fallback to a single page allocator that is
2802 * more permissive.
2803 */
2804 if (!order)
2805 nr_allocated = alloc_pages_bulk_array_node(
2806 gfp, nid, nr_pages, pages);
2807 else
2808 /*
2809 * Compound pages required for remap_vmalloc_page if
2810 * high-order pages.
2811 */
2812 gfp |= __GFP_COMP;
2813
2814 /* High-order pages or fallback path if "bulk" fails. */
2815 while (nr_allocated < nr_pages) {
2816 struct page *page;
2817 int i;
2818
2819 page = alloc_pages_node(nid, gfp, order);
2820 if (unlikely(!page))
2821 break;
2822
2823 /*
2824 * Careful, we allocate and map page-order pages, but
2825 * tracking is done per PAGE_SIZE page so as to keep the
2826 * vm_struct APIs independent of the physical/mapped size.
2827 */
2828 for (i = 0; i < (1U << order); i++)
2829 pages[nr_allocated + i] = page + i;
2830
2831 if (gfpflags_allow_blocking(gfp))
2832 cond_resched();
2833
2834 nr_allocated += 1U << order;
2835 }
2836
2837 return nr_allocated;
2838}
2839
e31d9eb5 2840static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
121e6f32
NP
2841 pgprot_t prot, unsigned int page_shift,
2842 int node)
1da177e4 2843{
930f036b 2844 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
121e6f32
NP
2845 unsigned long addr = (unsigned long)area->addr;
2846 unsigned long size = get_vm_area_size(area);
34fe6537 2847 unsigned long array_size;
121e6f32
NP
2848 unsigned int nr_small_pages = size >> PAGE_SHIFT;
2849 unsigned int page_order;
1da177e4 2850
121e6f32 2851 array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
f255935b
CH
2852 gfp_mask |= __GFP_NOWARN;
2853 if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
2854 gfp_mask |= __GFP_HIGHMEM;
1da177e4 2855
1da177e4 2856 /* Please note that the recursion is strictly bounded. */
8757d5fa 2857 if (array_size > PAGE_SIZE) {
5c1f4e69 2858 area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
f255935b 2859 area->caller);
286e1ea3 2860 } else {
5c1f4e69 2861 area->pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 2862 }
7ea36242 2863
5c1f4e69 2864 if (!area->pages) {
d70bec8c 2865 warn_alloc(gfp_mask, NULL,
f4bdfeaf
URS
2866 "vmalloc error: size %lu, failed to allocated page array size %lu",
2867 nr_small_pages * PAGE_SIZE, array_size);
cd61413b 2868 free_vm_area(area);
1da177e4
LT
2869 return NULL;
2870 }
1da177e4 2871
121e6f32 2872 set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
121e6f32 2873 page_order = vm_area_page_order(area);
bf53d6f8 2874
12b9f873
UR
2875 area->nr_pages = vm_area_alloc_pages(gfp_mask, node,
2876 page_order, nr_small_pages, area->pages);
5c1f4e69 2877
97105f0a 2878 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2879
5c1f4e69
URS
2880 /*
2881 * If not enough pages were obtained to accomplish an
2882 * allocation request, free them via __vfree() if any.
2883 */
2884 if (area->nr_pages != nr_small_pages) {
2885 warn_alloc(gfp_mask, NULL,
f4bdfeaf 2886 "vmalloc error: size %lu, page order %u, failed to allocate pages",
5c1f4e69
URS
2887 area->nr_pages * PAGE_SIZE, page_order);
2888 goto fail;
2889 }
2890
12b9f873
UR
2891 if (vmap_pages_range(addr, addr + size, prot, area->pages,
2892 page_shift) < 0) {
d70bec8c 2893 warn_alloc(gfp_mask, NULL,
f4bdfeaf
URS
2894 "vmalloc error: size %lu, failed to map pages",
2895 area->nr_pages * PAGE_SIZE);
1da177e4 2896 goto fail;
d70bec8c 2897 }
ed1f324c 2898
1da177e4
LT
2899 return area->addr;
2900
2901fail:
c67dc624 2902 __vfree(area->addr);
1da177e4
LT
2903 return NULL;
2904}
2905
2906/**
92eac168
MR
2907 * __vmalloc_node_range - allocate virtually contiguous memory
2908 * @size: allocation size
2909 * @align: desired alignment
2910 * @start: vm area range start
2911 * @end: vm area range end
2912 * @gfp_mask: flags for the page level allocator
2913 * @prot: protection mask for the allocated pages
2914 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2915 * @node: node to use for allocation or NUMA_NO_NODE
2916 * @caller: caller's return address
2917 *
2918 * Allocate enough pages to cover @size from the page level
2919 * allocator with @gfp_mask flags. Map them into contiguous
2920 * kernel virtual space, using a pagetable protection of @prot.
a862f68a
MR
2921 *
2922 * Return: the address of the area or %NULL on failure
1da177e4 2923 */
d0a21265
DR
2924void *__vmalloc_node_range(unsigned long size, unsigned long align,
2925 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
2926 pgprot_t prot, unsigned long vm_flags, int node,
2927 const void *caller)
1da177e4
LT
2928{
2929 struct vm_struct *area;
89219d37
CM
2930 void *addr;
2931 unsigned long real_size = size;
121e6f32
NP
2932 unsigned long real_align = align;
2933 unsigned int shift = PAGE_SHIFT;
1da177e4 2934
d70bec8c
NP
2935 if (WARN_ON_ONCE(!size))
2936 return NULL;
2937
2938 if ((size >> PAGE_SHIFT) > totalram_pages()) {
2939 warn_alloc(gfp_mask, NULL,
f4bdfeaf
URS
2940 "vmalloc error: size %lu, exceeds total pages",
2941 real_size);
d70bec8c 2942 return NULL;
121e6f32
NP
2943 }
2944
3382bbee 2945 if (vmap_allow_huge && !(vm_flags & VM_NO_HUGE_VMAP)) {
121e6f32 2946 unsigned long size_per_node;
1da177e4 2947
121e6f32
NP
2948 /*
2949 * Try huge pages. Only try for PAGE_KERNEL allocations,
2950 * others like modules don't yet expect huge pages in
2951 * their allocations due to apply_to_page_range not
2952 * supporting them.
2953 */
2954
2955 size_per_node = size;
2956 if (node == NUMA_NO_NODE)
2957 size_per_node /= num_online_nodes();
3382bbee 2958 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
121e6f32 2959 shift = PMD_SHIFT;
3382bbee
CL
2960 else
2961 shift = arch_vmap_pte_supported_shift(size_per_node);
2962
2963 align = max(real_align, 1UL << shift);
2964 size = ALIGN(real_size, 1UL << shift);
121e6f32
NP
2965 }
2966
2967again:
7ca3027b
DA
2968 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
2969 VM_UNINITIALIZED | vm_flags, start, end, node,
2970 gfp_mask, caller);
d70bec8c
NP
2971 if (!area) {
2972 warn_alloc(gfp_mask, NULL,
f4bdfeaf
URS
2973 "vmalloc error: size %lu, vm_struct allocation failed",
2974 real_size);
de7d2b56 2975 goto fail;
d70bec8c 2976 }
1da177e4 2977
121e6f32 2978 addr = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
1368edf0 2979 if (!addr)
121e6f32 2980 goto fail;
89219d37 2981
f5252e00 2982 /*
20fc02b4
ZY
2983 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2984 * flag. It means that vm_struct is not fully initialized.
4341fa45 2985 * Now, it is fully initialized, so remove this flag here.
f5252e00 2986 */
20fc02b4 2987 clear_vm_uninitialized_flag(area);
f5252e00 2988
7ca3027b 2989 size = PAGE_ALIGN(size);
94f4a161 2990 kmemleak_vmalloc(area, size, gfp_mask);
89219d37
CM
2991
2992 return addr;
de7d2b56
JP
2993
2994fail:
121e6f32
NP
2995 if (shift > PAGE_SHIFT) {
2996 shift = PAGE_SHIFT;
2997 align = real_align;
2998 size = real_size;
2999 goto again;
3000 }
3001
de7d2b56 3002 return NULL;
1da177e4
LT
3003}
3004
d0a21265 3005/**
92eac168
MR
3006 * __vmalloc_node - allocate virtually contiguous memory
3007 * @size: allocation size
3008 * @align: desired alignment
3009 * @gfp_mask: flags for the page level allocator
92eac168
MR
3010 * @node: node to use for allocation or NUMA_NO_NODE
3011 * @caller: caller's return address
a7c3e901 3012 *
f38fcb9c
CH
3013 * Allocate enough pages to cover @size from the page level allocator with
3014 * @gfp_mask flags. Map them into contiguous kernel virtual space.
a7c3e901 3015 *
92eac168
MR
3016 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3017 * and __GFP_NOFAIL are not supported
a7c3e901 3018 *
92eac168
MR
3019 * Any use of gfp flags outside of GFP_KERNEL should be consulted
3020 * with mm people.
a862f68a
MR
3021 *
3022 * Return: pointer to the allocated memory or %NULL on error
d0a21265 3023 */
2b905948 3024void *__vmalloc_node(unsigned long size, unsigned long align,
f38fcb9c 3025 gfp_t gfp_mask, int node, const void *caller)
d0a21265
DR
3026{
3027 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
f38fcb9c 3028 gfp_mask, PAGE_KERNEL, 0, node, caller);
d0a21265 3029}
c3f896dc
CH
3030/*
3031 * This is only for performance analysis of vmalloc and stress purpose.
3032 * It is required by vmalloc test module, therefore do not use it other
3033 * than that.
3034 */
3035#ifdef CONFIG_TEST_VMALLOC_MODULE
3036EXPORT_SYMBOL_GPL(__vmalloc_node);
3037#endif
d0a21265 3038
88dca4ca 3039void *__vmalloc(unsigned long size, gfp_t gfp_mask)
930fc45a 3040{
f38fcb9c 3041 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
23016969 3042 __builtin_return_address(0));
930fc45a 3043}
1da177e4
LT
3044EXPORT_SYMBOL(__vmalloc);
3045
3046/**
92eac168
MR
3047 * vmalloc - allocate virtually contiguous memory
3048 * @size: allocation size
3049 *
3050 * Allocate enough pages to cover @size from the page level
3051 * allocator and map them into contiguous kernel virtual space.
1da177e4 3052 *
92eac168
MR
3053 * For tight control over page level allocator and protection flags
3054 * use __vmalloc() instead.
a862f68a
MR
3055 *
3056 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
3057 */
3058void *vmalloc(unsigned long size)
3059{
4d39d728
CH
3060 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3061 __builtin_return_address(0));
1da177e4 3062}
1da177e4
LT
3063EXPORT_SYMBOL(vmalloc);
3064
15a64f5a
CI
3065/**
3066 * vmalloc_no_huge - allocate virtually contiguous memory using small pages
3067 * @size: allocation size
3068 *
3069 * Allocate enough non-huge pages to cover @size from the page level
3070 * allocator and map them into contiguous kernel virtual space.
3071 *
3072 * Return: pointer to the allocated memory or %NULL on error
3073 */
3074void *vmalloc_no_huge(unsigned long size)
3075{
3076 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3077 GFP_KERNEL, PAGE_KERNEL, VM_NO_HUGE_VMAP,
3078 NUMA_NO_NODE, __builtin_return_address(0));
3079}
3080EXPORT_SYMBOL(vmalloc_no_huge);
3081
e1ca7788 3082/**
92eac168
MR
3083 * vzalloc - allocate virtually contiguous memory with zero fill
3084 * @size: allocation size
3085 *
3086 * Allocate enough pages to cover @size from the page level
3087 * allocator and map them into contiguous kernel virtual space.
3088 * The memory allocated is set to zero.
3089 *
3090 * For tight control over page level allocator and protection flags
3091 * use __vmalloc() instead.
a862f68a
MR
3092 *
3093 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
3094 */
3095void *vzalloc(unsigned long size)
3096{
4d39d728
CH
3097 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3098 __builtin_return_address(0));
e1ca7788
DY
3099}
3100EXPORT_SYMBOL(vzalloc);
3101
83342314 3102/**
ead04089
REB
3103 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3104 * @size: allocation size
83342314 3105 *
ead04089
REB
3106 * The resulting memory area is zeroed so it can be mapped to userspace
3107 * without leaking data.
a862f68a
MR
3108 *
3109 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
3110 */
3111void *vmalloc_user(unsigned long size)
3112{
bc84c535
RP
3113 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3114 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3115 VM_USERMAP, NUMA_NO_NODE,
3116 __builtin_return_address(0));
83342314
NP
3117}
3118EXPORT_SYMBOL(vmalloc_user);
3119
930fc45a 3120/**
92eac168
MR
3121 * vmalloc_node - allocate memory on a specific node
3122 * @size: allocation size
3123 * @node: numa node
930fc45a 3124 *
92eac168
MR
3125 * Allocate enough pages to cover @size from the page level
3126 * allocator and map them into contiguous kernel virtual space.
930fc45a 3127 *
92eac168
MR
3128 * For tight control over page level allocator and protection flags
3129 * use __vmalloc() instead.
a862f68a
MR
3130 *
3131 * Return: pointer to the allocated memory or %NULL on error
930fc45a
CL
3132 */
3133void *vmalloc_node(unsigned long size, int node)
3134{
f38fcb9c
CH
3135 return __vmalloc_node(size, 1, GFP_KERNEL, node,
3136 __builtin_return_address(0));
930fc45a
CL
3137}
3138EXPORT_SYMBOL(vmalloc_node);
3139
e1ca7788
DY
3140/**
3141 * vzalloc_node - allocate memory on a specific node with zero fill
3142 * @size: allocation size
3143 * @node: numa node
3144 *
3145 * Allocate enough pages to cover @size from the page level
3146 * allocator and map them into contiguous kernel virtual space.
3147 * The memory allocated is set to zero.
3148 *
a862f68a 3149 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
3150 */
3151void *vzalloc_node(unsigned long size, int node)
3152{
4d39d728
CH
3153 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3154 __builtin_return_address(0));
e1ca7788
DY
3155}
3156EXPORT_SYMBOL(vzalloc_node);
3157
0d08e0d3 3158#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
698d0831 3159#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3 3160#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
698d0831 3161#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
0d08e0d3 3162#else
698d0831
MH
3163/*
3164 * 64b systems should always have either DMA or DMA32 zones. For others
3165 * GFP_DMA32 should do the right thing and use the normal zone.
3166 */
68d68ff6 3167#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3
AK
3168#endif
3169
1da177e4 3170/**
92eac168
MR
3171 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3172 * @size: allocation size
1da177e4 3173 *
92eac168
MR
3174 * Allocate enough 32bit PA addressable pages to cover @size from the
3175 * page level allocator and map them into contiguous kernel virtual space.
a862f68a
MR
3176 *
3177 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
3178 */
3179void *vmalloc_32(unsigned long size)
3180{
f38fcb9c
CH
3181 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3182 __builtin_return_address(0));
1da177e4 3183}
1da177e4
LT
3184EXPORT_SYMBOL(vmalloc_32);
3185
83342314 3186/**
ead04089 3187 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
92eac168 3188 * @size: allocation size
ead04089
REB
3189 *
3190 * The resulting memory area is 32bit addressable and zeroed so it can be
3191 * mapped to userspace without leaking data.
a862f68a
MR
3192 *
3193 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
3194 */
3195void *vmalloc_32_user(unsigned long size)
3196{
bc84c535
RP
3197 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3198 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3199 VM_USERMAP, NUMA_NO_NODE,
3200 __builtin_return_address(0));
83342314
NP
3201}
3202EXPORT_SYMBOL(vmalloc_32_user);
3203
d0107eb0
KH
3204/*
3205 * small helper routine , copy contents to buf from addr.
3206 * If the page is not present, fill zero.
3207 */
3208
3209static int aligned_vread(char *buf, char *addr, unsigned long count)
3210{
3211 struct page *p;
3212 int copied = 0;
3213
3214 while (count) {
3215 unsigned long offset, length;
3216
891c49ab 3217 offset = offset_in_page(addr);
d0107eb0
KH
3218 length = PAGE_SIZE - offset;
3219 if (length > count)
3220 length = count;
3221 p = vmalloc_to_page(addr);
3222 /*
3223 * To do safe access to this _mapped_ area, we need
3224 * lock. But adding lock here means that we need to add
f0953a1b 3225 * overhead of vmalloc()/vfree() calls for this _debug_
d0107eb0
KH
3226 * interface, rarely used. Instead of that, we'll use
3227 * kmap() and get small overhead in this access function.
3228 */
3229 if (p) {
f7c8ce44 3230 /* We can expect USER0 is not used -- see vread() */
9b04c5fe 3231 void *map = kmap_atomic(p);
d0107eb0 3232 memcpy(buf, map + offset, length);
9b04c5fe 3233 kunmap_atomic(map);
d0107eb0
KH
3234 } else
3235 memset(buf, 0, length);
3236
3237 addr += length;
3238 buf += length;
3239 copied += length;
3240 count -= length;
3241 }
3242 return copied;
3243}
3244
d0107eb0 3245/**
92eac168
MR
3246 * vread() - read vmalloc area in a safe way.
3247 * @buf: buffer for reading data
3248 * @addr: vm address.
3249 * @count: number of bytes to be read.
3250 *
92eac168
MR
3251 * This function checks that addr is a valid vmalloc'ed area, and
3252 * copy data from that area to a given buffer. If the given memory range
3253 * of [addr...addr+count) includes some valid address, data is copied to
3254 * proper area of @buf. If there are memory holes, they'll be zero-filled.
3255 * IOREMAP area is treated as memory hole and no copy is done.
3256 *
3257 * If [addr...addr+count) doesn't includes any intersects with alive
3258 * vm_struct area, returns 0. @buf should be kernel's buffer.
3259 *
3260 * Note: In usual ops, vread() is never necessary because the caller
3261 * should know vmalloc() area is valid and can use memcpy().
3262 * This is for routines which have to access vmalloc area without
bbcd53c9 3263 * any information, as /proc/kcore.
a862f68a
MR
3264 *
3265 * Return: number of bytes for which addr and buf should be increased
3266 * (same number as @count) or %0 if [addr...addr+count) doesn't
3267 * include any intersection with valid vmalloc area
d0107eb0 3268 */
1da177e4
LT
3269long vread(char *buf, char *addr, unsigned long count)
3270{
e81ce85f
JK
3271 struct vmap_area *va;
3272 struct vm_struct *vm;
1da177e4 3273 char *vaddr, *buf_start = buf;
d0107eb0 3274 unsigned long buflen = count;
1da177e4
LT
3275 unsigned long n;
3276
3277 /* Don't allow overflow */
3278 if ((unsigned long) addr + count < count)
3279 count = -(unsigned long) addr;
3280
e81ce85f 3281 spin_lock(&vmap_area_lock);
f608788c
SD
3282 va = __find_vmap_area((unsigned long)addr);
3283 if (!va)
3284 goto finished;
3285 list_for_each_entry_from(va, &vmap_area_list, list) {
e81ce85f
JK
3286 if (!count)
3287 break;
3288
688fcbfc 3289 if (!va->vm)
e81ce85f
JK
3290 continue;
3291
3292 vm = va->vm;
3293 vaddr = (char *) vm->addr;
762216ab 3294 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
3295 continue;
3296 while (addr < vaddr) {
3297 if (count == 0)
3298 goto finished;
3299 *buf = '\0';
3300 buf++;
3301 addr++;
3302 count--;
3303 }
762216ab 3304 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
3305 if (n > count)
3306 n = count;
e81ce85f 3307 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
3308 aligned_vread(buf, addr, n);
3309 else /* IOREMAP area is treated as memory hole */
3310 memset(buf, 0, n);
3311 buf += n;
3312 addr += n;
3313 count -= n;
1da177e4
LT
3314 }
3315finished:
e81ce85f 3316 spin_unlock(&vmap_area_lock);
d0107eb0
KH
3317
3318 if (buf == buf_start)
3319 return 0;
3320 /* zero-fill memory holes */
3321 if (buf != buf_start + buflen)
3322 memset(buf, 0, buflen - (buf - buf_start));
3323
3324 return buflen;
1da177e4
LT
3325}
3326
83342314 3327/**
92eac168
MR
3328 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3329 * @vma: vma to cover
3330 * @uaddr: target user address to start at
3331 * @kaddr: virtual address of vmalloc kernel memory
bdebd6a2 3332 * @pgoff: offset from @kaddr to start at
92eac168 3333 * @size: size of map area
7682486b 3334 *
92eac168 3335 * Returns: 0 for success, -Exxx on failure
83342314 3336 *
92eac168
MR
3337 * This function checks that @kaddr is a valid vmalloc'ed area,
3338 * and that it is big enough to cover the range starting at
3339 * @uaddr in @vma. Will return failure if that criteria isn't
3340 * met.
83342314 3341 *
92eac168 3342 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 3343 */
e69e9d4a 3344int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
bdebd6a2
JH
3345 void *kaddr, unsigned long pgoff,
3346 unsigned long size)
83342314
NP
3347{
3348 struct vm_struct *area;
bdebd6a2
JH
3349 unsigned long off;
3350 unsigned long end_index;
3351
3352 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3353 return -EINVAL;
83342314 3354
e69e9d4a
HD
3355 size = PAGE_ALIGN(size);
3356
3357 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
3358 return -EINVAL;
3359
e69e9d4a 3360 area = find_vm_area(kaddr);
83342314 3361 if (!area)
db64fe02 3362 return -EINVAL;
83342314 3363
fe9041c2 3364 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
db64fe02 3365 return -EINVAL;
83342314 3366
bdebd6a2
JH
3367 if (check_add_overflow(size, off, &end_index) ||
3368 end_index > get_vm_area_size(area))
db64fe02 3369 return -EINVAL;
bdebd6a2 3370 kaddr += off;
83342314 3371
83342314 3372 do {
e69e9d4a 3373 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
3374 int ret;
3375
83342314
NP
3376 ret = vm_insert_page(vma, uaddr, page);
3377 if (ret)
3378 return ret;
3379
3380 uaddr += PAGE_SIZE;
e69e9d4a
HD
3381 kaddr += PAGE_SIZE;
3382 size -= PAGE_SIZE;
3383 } while (size > 0);
83342314 3384
314e51b9 3385 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 3386
db64fe02 3387 return 0;
83342314 3388}
e69e9d4a
HD
3389
3390/**
92eac168
MR
3391 * remap_vmalloc_range - map vmalloc pages to userspace
3392 * @vma: vma to cover (map full range of vma)
3393 * @addr: vmalloc memory
3394 * @pgoff: number of pages into addr before first page to map
e69e9d4a 3395 *
92eac168 3396 * Returns: 0 for success, -Exxx on failure
e69e9d4a 3397 *
92eac168
MR
3398 * This function checks that addr is a valid vmalloc'ed area, and
3399 * that it is big enough to cover the vma. Will return failure if
3400 * that criteria isn't met.
e69e9d4a 3401 *
92eac168 3402 * Similar to remap_pfn_range() (see mm/memory.c)
e69e9d4a
HD
3403 */
3404int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3405 unsigned long pgoff)
3406{
3407 return remap_vmalloc_range_partial(vma, vma->vm_start,
bdebd6a2 3408 addr, pgoff,
e69e9d4a
HD
3409 vma->vm_end - vma->vm_start);
3410}
83342314
NP
3411EXPORT_SYMBOL(remap_vmalloc_range);
3412
5f4352fb
JF
3413void free_vm_area(struct vm_struct *area)
3414{
3415 struct vm_struct *ret;
3416 ret = remove_vm_area(area->addr);
3417 BUG_ON(ret != area);
3418 kfree(area);
3419}
3420EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 3421
4f8b02b4 3422#ifdef CONFIG_SMP
ca23e405
TH
3423static struct vmap_area *node_to_va(struct rb_node *n)
3424{
4583e773 3425 return rb_entry_safe(n, struct vmap_area, rb_node);
ca23e405
TH
3426}
3427
3428/**
68ad4a33
URS
3429 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3430 * @addr: target address
ca23e405 3431 *
68ad4a33
URS
3432 * Returns: vmap_area if it is found. If there is no such area
3433 * the first highest(reverse order) vmap_area is returned
3434 * i.e. va->va_start < addr && va->va_end < addr or NULL
3435 * if there are no any areas before @addr.
ca23e405 3436 */
68ad4a33
URS
3437static struct vmap_area *
3438pvm_find_va_enclose_addr(unsigned long addr)
ca23e405 3439{
68ad4a33
URS
3440 struct vmap_area *va, *tmp;
3441 struct rb_node *n;
3442
3443 n = free_vmap_area_root.rb_node;
3444 va = NULL;
ca23e405
TH
3445
3446 while (n) {
68ad4a33
URS
3447 tmp = rb_entry(n, struct vmap_area, rb_node);
3448 if (tmp->va_start <= addr) {
3449 va = tmp;
3450 if (tmp->va_end >= addr)
3451 break;
3452
ca23e405 3453 n = n->rb_right;
68ad4a33
URS
3454 } else {
3455 n = n->rb_left;
3456 }
ca23e405
TH
3457 }
3458
68ad4a33 3459 return va;
ca23e405
TH
3460}
3461
3462/**
68ad4a33
URS
3463 * pvm_determine_end_from_reverse - find the highest aligned address
3464 * of free block below VMALLOC_END
3465 * @va:
3466 * in - the VA we start the search(reverse order);
3467 * out - the VA with the highest aligned end address.
799fa85d 3468 * @align: alignment for required highest address
ca23e405 3469 *
68ad4a33 3470 * Returns: determined end address within vmap_area
ca23e405 3471 */
68ad4a33
URS
3472static unsigned long
3473pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
ca23e405 3474{
68ad4a33 3475 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
ca23e405
TH
3476 unsigned long addr;
3477
68ad4a33
URS
3478 if (likely(*va)) {
3479 list_for_each_entry_from_reverse((*va),
3480 &free_vmap_area_list, list) {
3481 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3482 if ((*va)->va_start < addr)
3483 return addr;
3484 }
ca23e405
TH
3485 }
3486
68ad4a33 3487 return 0;
ca23e405
TH
3488}
3489
3490/**
3491 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3492 * @offsets: array containing offset of each area
3493 * @sizes: array containing size of each area
3494 * @nr_vms: the number of areas to allocate
3495 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
3496 *
3497 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3498 * vm_structs on success, %NULL on failure
3499 *
3500 * Percpu allocator wants to use congruent vm areas so that it can
3501 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
3502 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3503 * be scattered pretty far, distance between two areas easily going up
3504 * to gigabytes. To avoid interacting with regular vmallocs, these
3505 * areas are allocated from top.
ca23e405 3506 *
68ad4a33
URS
3507 * Despite its complicated look, this allocator is rather simple. It
3508 * does everything top-down and scans free blocks from the end looking
3509 * for matching base. While scanning, if any of the areas do not fit the
3510 * base address is pulled down to fit the area. Scanning is repeated till
3511 * all the areas fit and then all necessary data structures are inserted
3512 * and the result is returned.
ca23e405
TH
3513 */
3514struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3515 const size_t *sizes, int nr_vms,
ec3f64fc 3516 size_t align)
ca23e405
TH
3517{
3518 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3519 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
68ad4a33 3520 struct vmap_area **vas, *va;
ca23e405
TH
3521 struct vm_struct **vms;
3522 int area, area2, last_area, term_area;
253a496d 3523 unsigned long base, start, size, end, last_end, orig_start, orig_end;
ca23e405 3524 bool purged = false;
68ad4a33 3525 enum fit_type type;
ca23e405 3526
ca23e405 3527 /* verify parameters and allocate data structures */
891c49ab 3528 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
3529 for (last_area = 0, area = 0; area < nr_vms; area++) {
3530 start = offsets[area];
3531 end = start + sizes[area];
3532
3533 /* is everything aligned properly? */
3534 BUG_ON(!IS_ALIGNED(offsets[area], align));
3535 BUG_ON(!IS_ALIGNED(sizes[area], align));
3536
3537 /* detect the area with the highest address */
3538 if (start > offsets[last_area])
3539 last_area = area;
3540
c568da28 3541 for (area2 = area + 1; area2 < nr_vms; area2++) {
ca23e405
TH
3542 unsigned long start2 = offsets[area2];
3543 unsigned long end2 = start2 + sizes[area2];
3544
c568da28 3545 BUG_ON(start2 < end && start < end2);
ca23e405
TH
3546 }
3547 }
3548 last_end = offsets[last_area] + sizes[last_area];
3549
3550 if (vmalloc_end - vmalloc_start < last_end) {
3551 WARN_ON(true);
3552 return NULL;
3553 }
3554
4d67d860
TM
3555 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3556 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 3557 if (!vas || !vms)
f1db7afd 3558 goto err_free2;
ca23e405
TH
3559
3560 for (area = 0; area < nr_vms; area++) {
68ad4a33 3561 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
ec3f64fc 3562 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
3563 if (!vas[area] || !vms[area])
3564 goto err_free;
3565 }
3566retry:
e36176be 3567 spin_lock(&free_vmap_area_lock);
ca23e405
TH
3568
3569 /* start scanning - we scan from the top, begin with the last area */
3570 area = term_area = last_area;
3571 start = offsets[area];
3572 end = start + sizes[area];
3573
68ad4a33
URS
3574 va = pvm_find_va_enclose_addr(vmalloc_end);
3575 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3576
3577 while (true) {
ca23e405
TH
3578 /*
3579 * base might have underflowed, add last_end before
3580 * comparing.
3581 */
68ad4a33
URS
3582 if (base + last_end < vmalloc_start + last_end)
3583 goto overflow;
ca23e405
TH
3584
3585 /*
68ad4a33 3586 * Fitting base has not been found.
ca23e405 3587 */
68ad4a33
URS
3588 if (va == NULL)
3589 goto overflow;
ca23e405 3590
5336e52c 3591 /*
d8cc323d 3592 * If required width exceeds current VA block, move
5336e52c
KS
3593 * base downwards and then recheck.
3594 */
3595 if (base + end > va->va_end) {
3596 base = pvm_determine_end_from_reverse(&va, align) - end;
3597 term_area = area;
3598 continue;
3599 }
3600
ca23e405 3601 /*
68ad4a33 3602 * If this VA does not fit, move base downwards and recheck.
ca23e405 3603 */
5336e52c 3604 if (base + start < va->va_start) {
68ad4a33
URS
3605 va = node_to_va(rb_prev(&va->rb_node));
3606 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3607 term_area = area;
3608 continue;
3609 }
3610
3611 /*
3612 * This area fits, move on to the previous one. If
3613 * the previous one is the terminal one, we're done.
3614 */
3615 area = (area + nr_vms - 1) % nr_vms;
3616 if (area == term_area)
3617 break;
68ad4a33 3618
ca23e405
TH
3619 start = offsets[area];
3620 end = start + sizes[area];
68ad4a33 3621 va = pvm_find_va_enclose_addr(base + end);
ca23e405 3622 }
68ad4a33 3623
ca23e405
TH
3624 /* we've found a fitting base, insert all va's */
3625 for (area = 0; area < nr_vms; area++) {
68ad4a33 3626 int ret;
ca23e405 3627
68ad4a33
URS
3628 start = base + offsets[area];
3629 size = sizes[area];
ca23e405 3630
68ad4a33
URS
3631 va = pvm_find_va_enclose_addr(start);
3632 if (WARN_ON_ONCE(va == NULL))
3633 /* It is a BUG(), but trigger recovery instead. */
3634 goto recovery;
3635
3636 type = classify_va_fit_type(va, start, size);
3637 if (WARN_ON_ONCE(type == NOTHING_FIT))
3638 /* It is a BUG(), but trigger recovery instead. */
3639 goto recovery;
3640
3641 ret = adjust_va_to_fit_type(va, start, size, type);
3642 if (unlikely(ret))
3643 goto recovery;
3644
3645 /* Allocated area. */
3646 va = vas[area];
3647 va->va_start = start;
3648 va->va_end = start + size;
68ad4a33 3649 }
ca23e405 3650
e36176be 3651 spin_unlock(&free_vmap_area_lock);
ca23e405 3652
253a496d
DA
3653 /* populate the kasan shadow space */
3654 for (area = 0; area < nr_vms; area++) {
3655 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3656 goto err_free_shadow;
3657
3658 kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3659 sizes[area]);
3660 }
3661
ca23e405 3662 /* insert all vm's */
e36176be
URS
3663 spin_lock(&vmap_area_lock);
3664 for (area = 0; area < nr_vms; area++) {
3665 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3666
3667 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3645cb4a 3668 pcpu_get_vm_areas);
e36176be
URS
3669 }
3670 spin_unlock(&vmap_area_lock);
ca23e405
TH
3671
3672 kfree(vas);
3673 return vms;
3674
68ad4a33 3675recovery:
e36176be
URS
3676 /*
3677 * Remove previously allocated areas. There is no
3678 * need in removing these areas from the busy tree,
3679 * because they are inserted only on the final step
3680 * and when pcpu_get_vm_areas() is success.
3681 */
68ad4a33 3682 while (area--) {
253a496d
DA
3683 orig_start = vas[area]->va_start;
3684 orig_end = vas[area]->va_end;
96e2db45
URS
3685 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3686 &free_vmap_area_list);
9c801f61
URS
3687 if (va)
3688 kasan_release_vmalloc(orig_start, orig_end,
3689 va->va_start, va->va_end);
68ad4a33
URS
3690 vas[area] = NULL;
3691 }
3692
3693overflow:
e36176be 3694 spin_unlock(&free_vmap_area_lock);
68ad4a33
URS
3695 if (!purged) {
3696 purge_vmap_area_lazy();
3697 purged = true;
3698
3699 /* Before "retry", check if we recover. */
3700 for (area = 0; area < nr_vms; area++) {
3701 if (vas[area])
3702 continue;
3703
3704 vas[area] = kmem_cache_zalloc(
3705 vmap_area_cachep, GFP_KERNEL);
3706 if (!vas[area])
3707 goto err_free;
3708 }
3709
3710 goto retry;
3711 }
3712
ca23e405
TH
3713err_free:
3714 for (area = 0; area < nr_vms; area++) {
68ad4a33
URS
3715 if (vas[area])
3716 kmem_cache_free(vmap_area_cachep, vas[area]);
3717
f1db7afd 3718 kfree(vms[area]);
ca23e405 3719 }
f1db7afd 3720err_free2:
ca23e405
TH
3721 kfree(vas);
3722 kfree(vms);
3723 return NULL;
253a496d
DA
3724
3725err_free_shadow:
3726 spin_lock(&free_vmap_area_lock);
3727 /*
3728 * We release all the vmalloc shadows, even the ones for regions that
3729 * hadn't been successfully added. This relies on kasan_release_vmalloc
3730 * being able to tolerate this case.
3731 */
3732 for (area = 0; area < nr_vms; area++) {
3733 orig_start = vas[area]->va_start;
3734 orig_end = vas[area]->va_end;
96e2db45
URS
3735 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3736 &free_vmap_area_list);
9c801f61
URS
3737 if (va)
3738 kasan_release_vmalloc(orig_start, orig_end,
3739 va->va_start, va->va_end);
253a496d
DA
3740 vas[area] = NULL;
3741 kfree(vms[area]);
3742 }
3743 spin_unlock(&free_vmap_area_lock);
3744 kfree(vas);
3745 kfree(vms);
3746 return NULL;
ca23e405
TH
3747}
3748
3749/**
3750 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3751 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3752 * @nr_vms: the number of allocated areas
3753 *
3754 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3755 */
3756void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3757{
3758 int i;
3759
3760 for (i = 0; i < nr_vms; i++)
3761 free_vm_area(vms[i]);
3762 kfree(vms);
3763}
4f8b02b4 3764#endif /* CONFIG_SMP */
a10aa579 3765
5bb1bb35 3766#ifdef CONFIG_PRINTK
98f18083
PM
3767bool vmalloc_dump_obj(void *object)
3768{
3769 struct vm_struct *vm;
3770 void *objp = (void *)PAGE_ALIGN((unsigned long)object);
3771
3772 vm = find_vm_area(objp);
3773 if (!vm)
3774 return false;
bd34dcd4
PM
3775 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
3776 vm->nr_pages, (unsigned long)vm->addr, vm->caller);
98f18083
PM
3777 return true;
3778}
5bb1bb35 3779#endif
98f18083 3780
a10aa579
CL
3781#ifdef CONFIG_PROC_FS
3782static void *s_start(struct seq_file *m, loff_t *pos)
e36176be 3783 __acquires(&vmap_purge_lock)
d4033afd 3784 __acquires(&vmap_area_lock)
a10aa579 3785{
e36176be 3786 mutex_lock(&vmap_purge_lock);
d4033afd 3787 spin_lock(&vmap_area_lock);
e36176be 3788
3f500069 3789 return seq_list_start(&vmap_area_list, *pos);
a10aa579
CL
3790}
3791
3792static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3793{
3f500069 3794 return seq_list_next(p, &vmap_area_list, pos);
a10aa579
CL
3795}
3796
3797static void s_stop(struct seq_file *m, void *p)
d4033afd 3798 __releases(&vmap_area_lock)
0a7dd4e9 3799 __releases(&vmap_purge_lock)
a10aa579 3800{
d4033afd 3801 spin_unlock(&vmap_area_lock);
0a7dd4e9 3802 mutex_unlock(&vmap_purge_lock);
a10aa579
CL
3803}
3804
a47a126a
ED
3805static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3806{
e5adfffc 3807 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a
ED
3808 unsigned int nr, *counters = m->private;
3809
3810 if (!counters)
3811 return;
3812
af12346c
WL
3813 if (v->flags & VM_UNINITIALIZED)
3814 return;
7e5b528b
DV
3815 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3816 smp_rmb();
af12346c 3817
a47a126a
ED
3818 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3819
3820 for (nr = 0; nr < v->nr_pages; nr++)
3821 counters[page_to_nid(v->pages[nr])]++;
3822
3823 for_each_node_state(nr, N_HIGH_MEMORY)
3824 if (counters[nr])
3825 seq_printf(m, " N%u=%u", nr, counters[nr]);
3826 }
3827}
3828
dd3b8353
URS
3829static void show_purge_info(struct seq_file *m)
3830{
dd3b8353
URS
3831 struct vmap_area *va;
3832
96e2db45
URS
3833 spin_lock(&purge_vmap_area_lock);
3834 list_for_each_entry(va, &purge_vmap_area_list, list) {
dd3b8353
URS
3835 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3836 (void *)va->va_start, (void *)va->va_end,
3837 va->va_end - va->va_start);
3838 }
96e2db45 3839 spin_unlock(&purge_vmap_area_lock);
dd3b8353
URS
3840}
3841
a10aa579
CL
3842static int s_show(struct seq_file *m, void *p)
3843{
3f500069 3844 struct vmap_area *va;
d4033afd
JK
3845 struct vm_struct *v;
3846
3f500069 3847 va = list_entry(p, struct vmap_area, list);
3848
c2ce8c14 3849 /*
688fcbfc
PL
3850 * s_show can encounter race with remove_vm_area, !vm on behalf
3851 * of vmap area is being tear down or vm_map_ram allocation.
c2ce8c14 3852 */
688fcbfc 3853 if (!va->vm) {
dd3b8353 3854 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
78c72746 3855 (void *)va->va_start, (void *)va->va_end,
dd3b8353 3856 va->va_end - va->va_start);
78c72746 3857
d4033afd 3858 return 0;
78c72746 3859 }
d4033afd
JK
3860
3861 v = va->vm;
a10aa579 3862
45ec1690 3863 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
3864 v->addr, v->addr + v->size, v->size);
3865
62c70bce
JP
3866 if (v->caller)
3867 seq_printf(m, " %pS", v->caller);
23016969 3868
a10aa579
CL
3869 if (v->nr_pages)
3870 seq_printf(m, " pages=%d", v->nr_pages);
3871
3872 if (v->phys_addr)
199eaa05 3873 seq_printf(m, " phys=%pa", &v->phys_addr);
a10aa579
CL
3874
3875 if (v->flags & VM_IOREMAP)
f4527c90 3876 seq_puts(m, " ioremap");
a10aa579
CL
3877
3878 if (v->flags & VM_ALLOC)
f4527c90 3879 seq_puts(m, " vmalloc");
a10aa579
CL
3880
3881 if (v->flags & VM_MAP)
f4527c90 3882 seq_puts(m, " vmap");
a10aa579
CL
3883
3884 if (v->flags & VM_USERMAP)
f4527c90 3885 seq_puts(m, " user");
a10aa579 3886
fe9041c2
CH
3887 if (v->flags & VM_DMA_COHERENT)
3888 seq_puts(m, " dma-coherent");
3889
244d63ee 3890 if (is_vmalloc_addr(v->pages))
f4527c90 3891 seq_puts(m, " vpages");
a10aa579 3892
a47a126a 3893 show_numa_info(m, v);
a10aa579 3894 seq_putc(m, '\n');
dd3b8353
URS
3895
3896 /*
96e2db45 3897 * As a final step, dump "unpurged" areas.
dd3b8353
URS
3898 */
3899 if (list_is_last(&va->list, &vmap_area_list))
3900 show_purge_info(m);
3901
a10aa579
CL
3902 return 0;
3903}
3904
5f6a6a9c 3905static const struct seq_operations vmalloc_op = {
a10aa579
CL
3906 .start = s_start,
3907 .next = s_next,
3908 .stop = s_stop,
3909 .show = s_show,
3910};
5f6a6a9c 3911
5f6a6a9c
AD
3912static int __init proc_vmalloc_init(void)
3913{
fddda2b7 3914 if (IS_ENABLED(CONFIG_NUMA))
0825a6f9 3915 proc_create_seq_private("vmallocinfo", 0400, NULL,
44414d82
CH
3916 &vmalloc_op,
3917 nr_node_ids * sizeof(unsigned int), NULL);
fddda2b7 3918 else
0825a6f9 3919 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
5f6a6a9c
AD
3920 return 0;
3921}
3922module_init(proc_vmalloc_init);
db3808c1 3923
a10aa579 3924#endif