]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/vmalloc.c | |
3 | * | |
4 | * Copyright (C) 1993 Linus Torvalds | |
5 | * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | |
6 | * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 | |
7 | * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 | |
930fc45a | 8 | * Numa awareness, Christoph Lameter, SGI, June 2005 |
1da177e4 LT |
9 | */ |
10 | ||
db64fe02 | 11 | #include <linux/vmalloc.h> |
1da177e4 LT |
12 | #include <linux/mm.h> |
13 | #include <linux/module.h> | |
14 | #include <linux/highmem.h> | |
d43c36dc | 15 | #include <linux/sched.h> |
1da177e4 LT |
16 | #include <linux/slab.h> |
17 | #include <linux/spinlock.h> | |
18 | #include <linux/interrupt.h> | |
5f6a6a9c | 19 | #include <linux/proc_fs.h> |
a10aa579 | 20 | #include <linux/seq_file.h> |
3ac7fe5a | 21 | #include <linux/debugobjects.h> |
23016969 | 22 | #include <linux/kallsyms.h> |
db64fe02 | 23 | #include <linux/list.h> |
4da56b99 | 24 | #include <linux/notifier.h> |
db64fe02 NP |
25 | #include <linux/rbtree.h> |
26 | #include <linux/radix-tree.h> | |
27 | #include <linux/rcupdate.h> | |
f0aa6617 | 28 | #include <linux/pfn.h> |
89219d37 | 29 | #include <linux/kmemleak.h> |
60063497 | 30 | #include <linux/atomic.h> |
3b32123d | 31 | #include <linux/compiler.h> |
32fcfd40 | 32 | #include <linux/llist.h> |
0f616be1 | 33 | #include <linux/bitops.h> |
3b32123d | 34 | |
7c0f6ba6 | 35 | #include <linux/uaccess.h> |
1da177e4 | 36 | #include <asm/tlbflush.h> |
2dca6999 | 37 | #include <asm/shmparam.h> |
1da177e4 | 38 | |
dd56b046 MG |
39 | #include "internal.h" |
40 | ||
32fcfd40 AV |
41 | struct vfree_deferred { |
42 | struct llist_head list; | |
43 | struct work_struct wq; | |
44 | }; | |
45 | static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); | |
46 | ||
47 | static void __vunmap(const void *, int); | |
48 | ||
49 | static void free_work(struct work_struct *w) | |
50 | { | |
51 | struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); | |
52 | struct llist_node *llnode = llist_del_all(&p->list); | |
53 | while (llnode) { | |
54 | void *p = llnode; | |
55 | llnode = llist_next(llnode); | |
56 | __vunmap(p, 1); | |
57 | } | |
58 | } | |
59 | ||
db64fe02 | 60 | /*** Page table manipulation functions ***/ |
b221385b | 61 | |
1da177e4 LT |
62 | static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) |
63 | { | |
64 | pte_t *pte; | |
65 | ||
66 | pte = pte_offset_kernel(pmd, addr); | |
67 | do { | |
68 | pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); | |
69 | WARN_ON(!pte_none(ptent) && !pte_present(ptent)); | |
70 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
71 | } | |
72 | ||
db64fe02 | 73 | static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) |
1da177e4 LT |
74 | { |
75 | pmd_t *pmd; | |
76 | unsigned long next; | |
77 | ||
78 | pmd = pmd_offset(pud, addr); | |
79 | do { | |
80 | next = pmd_addr_end(addr, end); | |
b9820d8f TK |
81 | if (pmd_clear_huge(pmd)) |
82 | continue; | |
1da177e4 LT |
83 | if (pmd_none_or_clear_bad(pmd)) |
84 | continue; | |
85 | vunmap_pte_range(pmd, addr, next); | |
86 | } while (pmd++, addr = next, addr != end); | |
87 | } | |
88 | ||
db64fe02 | 89 | static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) |
1da177e4 LT |
90 | { |
91 | pud_t *pud; | |
92 | unsigned long next; | |
93 | ||
94 | pud = pud_offset(pgd, addr); | |
95 | do { | |
96 | next = pud_addr_end(addr, end); | |
b9820d8f TK |
97 | if (pud_clear_huge(pud)) |
98 | continue; | |
1da177e4 LT |
99 | if (pud_none_or_clear_bad(pud)) |
100 | continue; | |
101 | vunmap_pmd_range(pud, addr, next); | |
102 | } while (pud++, addr = next, addr != end); | |
103 | } | |
104 | ||
db64fe02 | 105 | static void vunmap_page_range(unsigned long addr, unsigned long end) |
1da177e4 LT |
106 | { |
107 | pgd_t *pgd; | |
108 | unsigned long next; | |
1da177e4 LT |
109 | |
110 | BUG_ON(addr >= end); | |
111 | pgd = pgd_offset_k(addr); | |
1da177e4 LT |
112 | do { |
113 | next = pgd_addr_end(addr, end); | |
114 | if (pgd_none_or_clear_bad(pgd)) | |
115 | continue; | |
116 | vunmap_pud_range(pgd, addr, next); | |
117 | } while (pgd++, addr = next, addr != end); | |
1da177e4 LT |
118 | } |
119 | ||
120 | static int vmap_pte_range(pmd_t *pmd, unsigned long addr, | |
db64fe02 | 121 | unsigned long end, pgprot_t prot, struct page **pages, int *nr) |
1da177e4 LT |
122 | { |
123 | pte_t *pte; | |
124 | ||
db64fe02 NP |
125 | /* |
126 | * nr is a running index into the array which helps higher level | |
127 | * callers keep track of where we're up to. | |
128 | */ | |
129 | ||
872fec16 | 130 | pte = pte_alloc_kernel(pmd, addr); |
1da177e4 LT |
131 | if (!pte) |
132 | return -ENOMEM; | |
133 | do { | |
db64fe02 NP |
134 | struct page *page = pages[*nr]; |
135 | ||
136 | if (WARN_ON(!pte_none(*pte))) | |
137 | return -EBUSY; | |
138 | if (WARN_ON(!page)) | |
1da177e4 LT |
139 | return -ENOMEM; |
140 | set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); | |
db64fe02 | 141 | (*nr)++; |
1da177e4 LT |
142 | } while (pte++, addr += PAGE_SIZE, addr != end); |
143 | return 0; | |
144 | } | |
145 | ||
db64fe02 NP |
146 | static int vmap_pmd_range(pud_t *pud, unsigned long addr, |
147 | unsigned long end, pgprot_t prot, struct page **pages, int *nr) | |
1da177e4 LT |
148 | { |
149 | pmd_t *pmd; | |
150 | unsigned long next; | |
151 | ||
152 | pmd = pmd_alloc(&init_mm, pud, addr); | |
153 | if (!pmd) | |
154 | return -ENOMEM; | |
155 | do { | |
156 | next = pmd_addr_end(addr, end); | |
db64fe02 | 157 | if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) |
1da177e4 LT |
158 | return -ENOMEM; |
159 | } while (pmd++, addr = next, addr != end); | |
160 | return 0; | |
161 | } | |
162 | ||
db64fe02 NP |
163 | static int vmap_pud_range(pgd_t *pgd, unsigned long addr, |
164 | unsigned long end, pgprot_t prot, struct page **pages, int *nr) | |
1da177e4 LT |
165 | { |
166 | pud_t *pud; | |
167 | unsigned long next; | |
168 | ||
169 | pud = pud_alloc(&init_mm, pgd, addr); | |
170 | if (!pud) | |
171 | return -ENOMEM; | |
172 | do { | |
173 | next = pud_addr_end(addr, end); | |
db64fe02 | 174 | if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) |
1da177e4 LT |
175 | return -ENOMEM; |
176 | } while (pud++, addr = next, addr != end); | |
177 | return 0; | |
178 | } | |
179 | ||
db64fe02 NP |
180 | /* |
181 | * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and | |
182 | * will have pfns corresponding to the "pages" array. | |
183 | * | |
184 | * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] | |
185 | */ | |
8fc48985 TH |
186 | static int vmap_page_range_noflush(unsigned long start, unsigned long end, |
187 | pgprot_t prot, struct page **pages) | |
1da177e4 LT |
188 | { |
189 | pgd_t *pgd; | |
190 | unsigned long next; | |
2e4e27c7 | 191 | unsigned long addr = start; |
db64fe02 NP |
192 | int err = 0; |
193 | int nr = 0; | |
1da177e4 LT |
194 | |
195 | BUG_ON(addr >= end); | |
196 | pgd = pgd_offset_k(addr); | |
1da177e4 LT |
197 | do { |
198 | next = pgd_addr_end(addr, end); | |
db64fe02 | 199 | err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); |
1da177e4 | 200 | if (err) |
bf88c8c8 | 201 | return err; |
1da177e4 | 202 | } while (pgd++, addr = next, addr != end); |
db64fe02 | 203 | |
db64fe02 | 204 | return nr; |
1da177e4 LT |
205 | } |
206 | ||
8fc48985 TH |
207 | static int vmap_page_range(unsigned long start, unsigned long end, |
208 | pgprot_t prot, struct page **pages) | |
209 | { | |
210 | int ret; | |
211 | ||
212 | ret = vmap_page_range_noflush(start, end, prot, pages); | |
213 | flush_cache_vmap(start, end); | |
214 | return ret; | |
215 | } | |
216 | ||
81ac3ad9 | 217 | int is_vmalloc_or_module_addr(const void *x) |
73bdf0a6 LT |
218 | { |
219 | /* | |
ab4f2ee1 | 220 | * ARM, x86-64 and sparc64 put modules in a special place, |
73bdf0a6 LT |
221 | * and fall back on vmalloc() if that fails. Others |
222 | * just put it in the vmalloc space. | |
223 | */ | |
224 | #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) | |
225 | unsigned long addr = (unsigned long)x; | |
226 | if (addr >= MODULES_VADDR && addr < MODULES_END) | |
227 | return 1; | |
228 | #endif | |
229 | return is_vmalloc_addr(x); | |
230 | } | |
231 | ||
48667e7a | 232 | /* |
add688fb | 233 | * Walk a vmap address to the struct page it maps. |
48667e7a | 234 | */ |
add688fb | 235 | struct page *vmalloc_to_page(const void *vmalloc_addr) |
48667e7a CL |
236 | { |
237 | unsigned long addr = (unsigned long) vmalloc_addr; | |
add688fb | 238 | struct page *page = NULL; |
48667e7a | 239 | pgd_t *pgd = pgd_offset_k(addr); |
48667e7a | 240 | |
7aa413de IM |
241 | /* |
242 | * XXX we might need to change this if we add VIRTUAL_BUG_ON for | |
243 | * architectures that do not vmalloc module space | |
244 | */ | |
73bdf0a6 | 245 | VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); |
59ea7463 | 246 | |
48667e7a | 247 | if (!pgd_none(*pgd)) { |
db64fe02 | 248 | pud_t *pud = pud_offset(pgd, addr); |
48667e7a | 249 | if (!pud_none(*pud)) { |
db64fe02 | 250 | pmd_t *pmd = pmd_offset(pud, addr); |
48667e7a | 251 | if (!pmd_none(*pmd)) { |
db64fe02 NP |
252 | pte_t *ptep, pte; |
253 | ||
48667e7a CL |
254 | ptep = pte_offset_map(pmd, addr); |
255 | pte = *ptep; | |
256 | if (pte_present(pte)) | |
add688fb | 257 | page = pte_page(pte); |
48667e7a CL |
258 | pte_unmap(ptep); |
259 | } | |
260 | } | |
261 | } | |
add688fb | 262 | return page; |
48667e7a | 263 | } |
add688fb | 264 | EXPORT_SYMBOL(vmalloc_to_page); |
48667e7a CL |
265 | |
266 | /* | |
add688fb | 267 | * Map a vmalloc()-space virtual address to the physical page frame number. |
48667e7a | 268 | */ |
add688fb | 269 | unsigned long vmalloc_to_pfn(const void *vmalloc_addr) |
48667e7a | 270 | { |
add688fb | 271 | return page_to_pfn(vmalloc_to_page(vmalloc_addr)); |
48667e7a | 272 | } |
add688fb | 273 | EXPORT_SYMBOL(vmalloc_to_pfn); |
48667e7a | 274 | |
db64fe02 NP |
275 | |
276 | /*** Global kva allocator ***/ | |
277 | ||
db64fe02 NP |
278 | #define VM_VM_AREA 0x04 |
279 | ||
db64fe02 | 280 | static DEFINE_SPINLOCK(vmap_area_lock); |
f1c4069e JK |
281 | /* Export for kexec only */ |
282 | LIST_HEAD(vmap_area_list); | |
80c4bd7a | 283 | static LLIST_HEAD(vmap_purge_list); |
89699605 NP |
284 | static struct rb_root vmap_area_root = RB_ROOT; |
285 | ||
286 | /* The vmap cache globals are protected by vmap_area_lock */ | |
287 | static struct rb_node *free_vmap_cache; | |
288 | static unsigned long cached_hole_size; | |
289 | static unsigned long cached_vstart; | |
290 | static unsigned long cached_align; | |
291 | ||
ca23e405 | 292 | static unsigned long vmap_area_pcpu_hole; |
db64fe02 NP |
293 | |
294 | static struct vmap_area *__find_vmap_area(unsigned long addr) | |
1da177e4 | 295 | { |
db64fe02 NP |
296 | struct rb_node *n = vmap_area_root.rb_node; |
297 | ||
298 | while (n) { | |
299 | struct vmap_area *va; | |
300 | ||
301 | va = rb_entry(n, struct vmap_area, rb_node); | |
302 | if (addr < va->va_start) | |
303 | n = n->rb_left; | |
cef2ac3f | 304 | else if (addr >= va->va_end) |
db64fe02 NP |
305 | n = n->rb_right; |
306 | else | |
307 | return va; | |
308 | } | |
309 | ||
310 | return NULL; | |
311 | } | |
312 | ||
313 | static void __insert_vmap_area(struct vmap_area *va) | |
314 | { | |
315 | struct rb_node **p = &vmap_area_root.rb_node; | |
316 | struct rb_node *parent = NULL; | |
317 | struct rb_node *tmp; | |
318 | ||
319 | while (*p) { | |
170168d0 | 320 | struct vmap_area *tmp_va; |
db64fe02 NP |
321 | |
322 | parent = *p; | |
170168d0 NK |
323 | tmp_va = rb_entry(parent, struct vmap_area, rb_node); |
324 | if (va->va_start < tmp_va->va_end) | |
db64fe02 | 325 | p = &(*p)->rb_left; |
170168d0 | 326 | else if (va->va_end > tmp_va->va_start) |
db64fe02 NP |
327 | p = &(*p)->rb_right; |
328 | else | |
329 | BUG(); | |
330 | } | |
331 | ||
332 | rb_link_node(&va->rb_node, parent, p); | |
333 | rb_insert_color(&va->rb_node, &vmap_area_root); | |
334 | ||
4341fa45 | 335 | /* address-sort this list */ |
db64fe02 NP |
336 | tmp = rb_prev(&va->rb_node); |
337 | if (tmp) { | |
338 | struct vmap_area *prev; | |
339 | prev = rb_entry(tmp, struct vmap_area, rb_node); | |
340 | list_add_rcu(&va->list, &prev->list); | |
341 | } else | |
342 | list_add_rcu(&va->list, &vmap_area_list); | |
343 | } | |
344 | ||
345 | static void purge_vmap_area_lazy(void); | |
346 | ||
4da56b99 CW |
347 | static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); |
348 | ||
db64fe02 NP |
349 | /* |
350 | * Allocate a region of KVA of the specified size and alignment, within the | |
351 | * vstart and vend. | |
352 | */ | |
353 | static struct vmap_area *alloc_vmap_area(unsigned long size, | |
354 | unsigned long align, | |
355 | unsigned long vstart, unsigned long vend, | |
356 | int node, gfp_t gfp_mask) | |
357 | { | |
358 | struct vmap_area *va; | |
359 | struct rb_node *n; | |
1da177e4 | 360 | unsigned long addr; |
db64fe02 | 361 | int purged = 0; |
89699605 | 362 | struct vmap_area *first; |
db64fe02 | 363 | |
7766970c | 364 | BUG_ON(!size); |
891c49ab | 365 | BUG_ON(offset_in_page(size)); |
89699605 | 366 | BUG_ON(!is_power_of_2(align)); |
db64fe02 | 367 | |
5803ed29 | 368 | might_sleep(); |
4da56b99 | 369 | |
db64fe02 NP |
370 | va = kmalloc_node(sizeof(struct vmap_area), |
371 | gfp_mask & GFP_RECLAIM_MASK, node); | |
372 | if (unlikely(!va)) | |
373 | return ERR_PTR(-ENOMEM); | |
374 | ||
7f88f88f CM |
375 | /* |
376 | * Only scan the relevant parts containing pointers to other objects | |
377 | * to avoid false negatives. | |
378 | */ | |
379 | kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK); | |
380 | ||
db64fe02 NP |
381 | retry: |
382 | spin_lock(&vmap_area_lock); | |
89699605 NP |
383 | /* |
384 | * Invalidate cache if we have more permissive parameters. | |
385 | * cached_hole_size notes the largest hole noticed _below_ | |
386 | * the vmap_area cached in free_vmap_cache: if size fits | |
387 | * into that hole, we want to scan from vstart to reuse | |
388 | * the hole instead of allocating above free_vmap_cache. | |
389 | * Note that __free_vmap_area may update free_vmap_cache | |
390 | * without updating cached_hole_size or cached_align. | |
391 | */ | |
392 | if (!free_vmap_cache || | |
393 | size < cached_hole_size || | |
394 | vstart < cached_vstart || | |
395 | align < cached_align) { | |
396 | nocache: | |
397 | cached_hole_size = 0; | |
398 | free_vmap_cache = NULL; | |
399 | } | |
400 | /* record if we encounter less permissive parameters */ | |
401 | cached_vstart = vstart; | |
402 | cached_align = align; | |
403 | ||
404 | /* find starting point for our search */ | |
405 | if (free_vmap_cache) { | |
406 | first = rb_entry(free_vmap_cache, struct vmap_area, rb_node); | |
248ac0e1 | 407 | addr = ALIGN(first->va_end, align); |
89699605 NP |
408 | if (addr < vstart) |
409 | goto nocache; | |
bcb615a8 | 410 | if (addr + size < addr) |
89699605 NP |
411 | goto overflow; |
412 | ||
413 | } else { | |
414 | addr = ALIGN(vstart, align); | |
bcb615a8 | 415 | if (addr + size < addr) |
89699605 NP |
416 | goto overflow; |
417 | ||
418 | n = vmap_area_root.rb_node; | |
419 | first = NULL; | |
420 | ||
421 | while (n) { | |
db64fe02 NP |
422 | struct vmap_area *tmp; |
423 | tmp = rb_entry(n, struct vmap_area, rb_node); | |
424 | if (tmp->va_end >= addr) { | |
db64fe02 | 425 | first = tmp; |
89699605 NP |
426 | if (tmp->va_start <= addr) |
427 | break; | |
428 | n = n->rb_left; | |
429 | } else | |
db64fe02 | 430 | n = n->rb_right; |
89699605 | 431 | } |
db64fe02 NP |
432 | |
433 | if (!first) | |
434 | goto found; | |
db64fe02 | 435 | } |
89699605 NP |
436 | |
437 | /* from the starting point, walk areas until a suitable hole is found */ | |
248ac0e1 | 438 | while (addr + size > first->va_start && addr + size <= vend) { |
89699605 NP |
439 | if (addr + cached_hole_size < first->va_start) |
440 | cached_hole_size = first->va_start - addr; | |
248ac0e1 | 441 | addr = ALIGN(first->va_end, align); |
bcb615a8 | 442 | if (addr + size < addr) |
89699605 NP |
443 | goto overflow; |
444 | ||
92ca922f | 445 | if (list_is_last(&first->list, &vmap_area_list)) |
89699605 | 446 | goto found; |
92ca922f | 447 | |
6219c2a2 | 448 | first = list_next_entry(first, list); |
db64fe02 NP |
449 | } |
450 | ||
89699605 NP |
451 | found: |
452 | if (addr + size > vend) | |
453 | goto overflow; | |
db64fe02 NP |
454 | |
455 | va->va_start = addr; | |
456 | va->va_end = addr + size; | |
457 | va->flags = 0; | |
458 | __insert_vmap_area(va); | |
89699605 | 459 | free_vmap_cache = &va->rb_node; |
db64fe02 NP |
460 | spin_unlock(&vmap_area_lock); |
461 | ||
61e16557 | 462 | BUG_ON(!IS_ALIGNED(va->va_start, align)); |
89699605 NP |
463 | BUG_ON(va->va_start < vstart); |
464 | BUG_ON(va->va_end > vend); | |
465 | ||
db64fe02 | 466 | return va; |
89699605 NP |
467 | |
468 | overflow: | |
469 | spin_unlock(&vmap_area_lock); | |
470 | if (!purged) { | |
471 | purge_vmap_area_lazy(); | |
472 | purged = 1; | |
473 | goto retry; | |
474 | } | |
4da56b99 CW |
475 | |
476 | if (gfpflags_allow_blocking(gfp_mask)) { | |
477 | unsigned long freed = 0; | |
478 | blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); | |
479 | if (freed > 0) { | |
480 | purged = 0; | |
481 | goto retry; | |
482 | } | |
483 | } | |
484 | ||
89699605 | 485 | if (printk_ratelimit()) |
756a025f JP |
486 | pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", |
487 | size); | |
89699605 NP |
488 | kfree(va); |
489 | return ERR_PTR(-EBUSY); | |
db64fe02 NP |
490 | } |
491 | ||
4da56b99 CW |
492 | int register_vmap_purge_notifier(struct notifier_block *nb) |
493 | { | |
494 | return blocking_notifier_chain_register(&vmap_notify_list, nb); | |
495 | } | |
496 | EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); | |
497 | ||
498 | int unregister_vmap_purge_notifier(struct notifier_block *nb) | |
499 | { | |
500 | return blocking_notifier_chain_unregister(&vmap_notify_list, nb); | |
501 | } | |
502 | EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); | |
503 | ||
db64fe02 NP |
504 | static void __free_vmap_area(struct vmap_area *va) |
505 | { | |
506 | BUG_ON(RB_EMPTY_NODE(&va->rb_node)); | |
89699605 NP |
507 | |
508 | if (free_vmap_cache) { | |
509 | if (va->va_end < cached_vstart) { | |
510 | free_vmap_cache = NULL; | |
511 | } else { | |
512 | struct vmap_area *cache; | |
513 | cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node); | |
514 | if (va->va_start <= cache->va_start) { | |
515 | free_vmap_cache = rb_prev(&va->rb_node); | |
516 | /* | |
517 | * We don't try to update cached_hole_size or | |
518 | * cached_align, but it won't go very wrong. | |
519 | */ | |
520 | } | |
521 | } | |
522 | } | |
db64fe02 NP |
523 | rb_erase(&va->rb_node, &vmap_area_root); |
524 | RB_CLEAR_NODE(&va->rb_node); | |
525 | list_del_rcu(&va->list); | |
526 | ||
ca23e405 TH |
527 | /* |
528 | * Track the highest possible candidate for pcpu area | |
529 | * allocation. Areas outside of vmalloc area can be returned | |
530 | * here too, consider only end addresses which fall inside | |
531 | * vmalloc area proper. | |
532 | */ | |
533 | if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) | |
534 | vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); | |
535 | ||
14769de9 | 536 | kfree_rcu(va, rcu_head); |
db64fe02 NP |
537 | } |
538 | ||
539 | /* | |
540 | * Free a region of KVA allocated by alloc_vmap_area | |
541 | */ | |
542 | static void free_vmap_area(struct vmap_area *va) | |
543 | { | |
544 | spin_lock(&vmap_area_lock); | |
545 | __free_vmap_area(va); | |
546 | spin_unlock(&vmap_area_lock); | |
547 | } | |
548 | ||
549 | /* | |
550 | * Clear the pagetable entries of a given vmap_area | |
551 | */ | |
552 | static void unmap_vmap_area(struct vmap_area *va) | |
553 | { | |
554 | vunmap_page_range(va->va_start, va->va_end); | |
555 | } | |
556 | ||
cd52858c NP |
557 | static void vmap_debug_free_range(unsigned long start, unsigned long end) |
558 | { | |
559 | /* | |
f48d97f3 JK |
560 | * Unmap page tables and force a TLB flush immediately if pagealloc |
561 | * debugging is enabled. This catches use after free bugs similarly to | |
562 | * those in linear kernel virtual address space after a page has been | |
563 | * freed. | |
cd52858c | 564 | * |
f48d97f3 JK |
565 | * All the lazy freeing logic is still retained, in order to minimise |
566 | * intrusiveness of this debugging feature. | |
cd52858c | 567 | * |
f48d97f3 JK |
568 | * This is going to be *slow* (linear kernel virtual address debugging |
569 | * doesn't do a broadcast TLB flush so it is a lot faster). | |
cd52858c | 570 | */ |
f48d97f3 JK |
571 | if (debug_pagealloc_enabled()) { |
572 | vunmap_page_range(start, end); | |
573 | flush_tlb_kernel_range(start, end); | |
574 | } | |
cd52858c NP |
575 | } |
576 | ||
db64fe02 NP |
577 | /* |
578 | * lazy_max_pages is the maximum amount of virtual address space we gather up | |
579 | * before attempting to purge with a TLB flush. | |
580 | * | |
581 | * There is a tradeoff here: a larger number will cover more kernel page tables | |
582 | * and take slightly longer to purge, but it will linearly reduce the number of | |
583 | * global TLB flushes that must be performed. It would seem natural to scale | |
584 | * this number up linearly with the number of CPUs (because vmapping activity | |
585 | * could also scale linearly with the number of CPUs), however it is likely | |
586 | * that in practice, workloads might be constrained in other ways that mean | |
587 | * vmap activity will not scale linearly with CPUs. Also, I want to be | |
588 | * conservative and not introduce a big latency on huge systems, so go with | |
589 | * a less aggressive log scale. It will still be an improvement over the old | |
590 | * code, and it will be simple to change the scale factor if we find that it | |
591 | * becomes a problem on bigger systems. | |
592 | */ | |
593 | static unsigned long lazy_max_pages(void) | |
594 | { | |
595 | unsigned int log; | |
596 | ||
597 | log = fls(num_online_cpus()); | |
598 | ||
599 | return log * (32UL * 1024 * 1024 / PAGE_SIZE); | |
600 | } | |
601 | ||
602 | static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); | |
603 | ||
0574ecd1 CH |
604 | /* |
605 | * Serialize vmap purging. There is no actual criticial section protected | |
606 | * by this look, but we want to avoid concurrent calls for performance | |
607 | * reasons and to make the pcpu_get_vm_areas more deterministic. | |
608 | */ | |
f9e09977 | 609 | static DEFINE_MUTEX(vmap_purge_lock); |
0574ecd1 | 610 | |
02b709df NP |
611 | /* for per-CPU blocks */ |
612 | static void purge_fragmented_blocks_allcpus(void); | |
613 | ||
3ee48b6a CW |
614 | /* |
615 | * called before a call to iounmap() if the caller wants vm_area_struct's | |
616 | * immediately freed. | |
617 | */ | |
618 | void set_iounmap_nonlazy(void) | |
619 | { | |
620 | atomic_set(&vmap_lazy_nr, lazy_max_pages()+1); | |
621 | } | |
622 | ||
db64fe02 NP |
623 | /* |
624 | * Purges all lazily-freed vmap areas. | |
db64fe02 | 625 | */ |
0574ecd1 | 626 | static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) |
db64fe02 | 627 | { |
80c4bd7a | 628 | struct llist_node *valist; |
db64fe02 | 629 | struct vmap_area *va; |
cbb76676 | 630 | struct vmap_area *n_va; |
763b218d | 631 | bool do_free = false; |
db64fe02 | 632 | |
0574ecd1 | 633 | lockdep_assert_held(&vmap_purge_lock); |
02b709df | 634 | |
80c4bd7a CW |
635 | valist = llist_del_all(&vmap_purge_list); |
636 | llist_for_each_entry(va, valist, purge_list) { | |
0574ecd1 CH |
637 | if (va->va_start < start) |
638 | start = va->va_start; | |
639 | if (va->va_end > end) | |
640 | end = va->va_end; | |
763b218d | 641 | do_free = true; |
db64fe02 | 642 | } |
db64fe02 | 643 | |
763b218d | 644 | if (!do_free) |
0574ecd1 | 645 | return false; |
db64fe02 | 646 | |
0574ecd1 | 647 | flush_tlb_kernel_range(start, end); |
db64fe02 | 648 | |
0574ecd1 | 649 | spin_lock(&vmap_area_lock); |
763b218d JF |
650 | llist_for_each_entry_safe(va, n_va, valist, purge_list) { |
651 | int nr = (va->va_end - va->va_start) >> PAGE_SHIFT; | |
652 | ||
0574ecd1 | 653 | __free_vmap_area(va); |
763b218d JF |
654 | atomic_sub(nr, &vmap_lazy_nr); |
655 | cond_resched_lock(&vmap_area_lock); | |
656 | } | |
0574ecd1 CH |
657 | spin_unlock(&vmap_area_lock); |
658 | return true; | |
db64fe02 NP |
659 | } |
660 | ||
496850e5 NP |
661 | /* |
662 | * Kick off a purge of the outstanding lazy areas. Don't bother if somebody | |
663 | * is already purging. | |
664 | */ | |
665 | static void try_purge_vmap_area_lazy(void) | |
666 | { | |
f9e09977 | 667 | if (mutex_trylock(&vmap_purge_lock)) { |
0574ecd1 | 668 | __purge_vmap_area_lazy(ULONG_MAX, 0); |
f9e09977 | 669 | mutex_unlock(&vmap_purge_lock); |
0574ecd1 | 670 | } |
496850e5 NP |
671 | } |
672 | ||
db64fe02 NP |
673 | /* |
674 | * Kick off a purge of the outstanding lazy areas. | |
675 | */ | |
676 | static void purge_vmap_area_lazy(void) | |
677 | { | |
f9e09977 | 678 | mutex_lock(&vmap_purge_lock); |
0574ecd1 CH |
679 | purge_fragmented_blocks_allcpus(); |
680 | __purge_vmap_area_lazy(ULONG_MAX, 0); | |
f9e09977 | 681 | mutex_unlock(&vmap_purge_lock); |
db64fe02 NP |
682 | } |
683 | ||
684 | /* | |
64141da5 JF |
685 | * Free a vmap area, caller ensuring that the area has been unmapped |
686 | * and flush_cache_vunmap had been called for the correct range | |
687 | * previously. | |
db64fe02 | 688 | */ |
64141da5 | 689 | static void free_vmap_area_noflush(struct vmap_area *va) |
db64fe02 | 690 | { |
80c4bd7a CW |
691 | int nr_lazy; |
692 | ||
693 | nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT, | |
694 | &vmap_lazy_nr); | |
695 | ||
696 | /* After this point, we may free va at any time */ | |
697 | llist_add(&va->purge_list, &vmap_purge_list); | |
698 | ||
699 | if (unlikely(nr_lazy > lazy_max_pages())) | |
496850e5 | 700 | try_purge_vmap_area_lazy(); |
db64fe02 NP |
701 | } |
702 | ||
b29acbdc NP |
703 | /* |
704 | * Free and unmap a vmap area | |
705 | */ | |
706 | static void free_unmap_vmap_area(struct vmap_area *va) | |
707 | { | |
708 | flush_cache_vunmap(va->va_start, va->va_end); | |
c8eef01e CH |
709 | unmap_vmap_area(va); |
710 | free_vmap_area_noflush(va); | |
b29acbdc NP |
711 | } |
712 | ||
db64fe02 NP |
713 | static struct vmap_area *find_vmap_area(unsigned long addr) |
714 | { | |
715 | struct vmap_area *va; | |
716 | ||
717 | spin_lock(&vmap_area_lock); | |
718 | va = __find_vmap_area(addr); | |
719 | spin_unlock(&vmap_area_lock); | |
720 | ||
721 | return va; | |
722 | } | |
723 | ||
db64fe02 NP |
724 | /*** Per cpu kva allocator ***/ |
725 | ||
726 | /* | |
727 | * vmap space is limited especially on 32 bit architectures. Ensure there is | |
728 | * room for at least 16 percpu vmap blocks per CPU. | |
729 | */ | |
730 | /* | |
731 | * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able | |
732 | * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess | |
733 | * instead (we just need a rough idea) | |
734 | */ | |
735 | #if BITS_PER_LONG == 32 | |
736 | #define VMALLOC_SPACE (128UL*1024*1024) | |
737 | #else | |
738 | #define VMALLOC_SPACE (128UL*1024*1024*1024) | |
739 | #endif | |
740 | ||
741 | #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) | |
742 | #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ | |
743 | #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ | |
744 | #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) | |
745 | #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ | |
746 | #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ | |
f982f915 CL |
747 | #define VMAP_BBMAP_BITS \ |
748 | VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ | |
749 | VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ | |
750 | VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) | |
db64fe02 NP |
751 | |
752 | #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) | |
753 | ||
9b463334 JF |
754 | static bool vmap_initialized __read_mostly = false; |
755 | ||
db64fe02 NP |
756 | struct vmap_block_queue { |
757 | spinlock_t lock; | |
758 | struct list_head free; | |
db64fe02 NP |
759 | }; |
760 | ||
761 | struct vmap_block { | |
762 | spinlock_t lock; | |
763 | struct vmap_area *va; | |
db64fe02 | 764 | unsigned long free, dirty; |
7d61bfe8 | 765 | unsigned long dirty_min, dirty_max; /*< dirty range */ |
de560423 NP |
766 | struct list_head free_list; |
767 | struct rcu_head rcu_head; | |
02b709df | 768 | struct list_head purge; |
db64fe02 NP |
769 | }; |
770 | ||
771 | /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ | |
772 | static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); | |
773 | ||
774 | /* | |
775 | * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block | |
776 | * in the free path. Could get rid of this if we change the API to return a | |
777 | * "cookie" from alloc, to be passed to free. But no big deal yet. | |
778 | */ | |
779 | static DEFINE_SPINLOCK(vmap_block_tree_lock); | |
780 | static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); | |
781 | ||
782 | /* | |
783 | * We should probably have a fallback mechanism to allocate virtual memory | |
784 | * out of partially filled vmap blocks. However vmap block sizing should be | |
785 | * fairly reasonable according to the vmalloc size, so it shouldn't be a | |
786 | * big problem. | |
787 | */ | |
788 | ||
789 | static unsigned long addr_to_vb_idx(unsigned long addr) | |
790 | { | |
791 | addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); | |
792 | addr /= VMAP_BLOCK_SIZE; | |
793 | return addr; | |
794 | } | |
795 | ||
cf725ce2 RP |
796 | static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) |
797 | { | |
798 | unsigned long addr; | |
799 | ||
800 | addr = va_start + (pages_off << PAGE_SHIFT); | |
801 | BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); | |
802 | return (void *)addr; | |
803 | } | |
804 | ||
805 | /** | |
806 | * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this | |
807 | * block. Of course pages number can't exceed VMAP_BBMAP_BITS | |
808 | * @order: how many 2^order pages should be occupied in newly allocated block | |
809 | * @gfp_mask: flags for the page level allocator | |
810 | * | |
811 | * Returns: virtual address in a newly allocated block or ERR_PTR(-errno) | |
812 | */ | |
813 | static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) | |
db64fe02 NP |
814 | { |
815 | struct vmap_block_queue *vbq; | |
816 | struct vmap_block *vb; | |
817 | struct vmap_area *va; | |
818 | unsigned long vb_idx; | |
819 | int node, err; | |
cf725ce2 | 820 | void *vaddr; |
db64fe02 NP |
821 | |
822 | node = numa_node_id(); | |
823 | ||
824 | vb = kmalloc_node(sizeof(struct vmap_block), | |
825 | gfp_mask & GFP_RECLAIM_MASK, node); | |
826 | if (unlikely(!vb)) | |
827 | return ERR_PTR(-ENOMEM); | |
828 | ||
829 | va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, | |
830 | VMALLOC_START, VMALLOC_END, | |
831 | node, gfp_mask); | |
ddf9c6d4 | 832 | if (IS_ERR(va)) { |
db64fe02 | 833 | kfree(vb); |
e7d86340 | 834 | return ERR_CAST(va); |
db64fe02 NP |
835 | } |
836 | ||
837 | err = radix_tree_preload(gfp_mask); | |
838 | if (unlikely(err)) { | |
839 | kfree(vb); | |
840 | free_vmap_area(va); | |
841 | return ERR_PTR(err); | |
842 | } | |
843 | ||
cf725ce2 | 844 | vaddr = vmap_block_vaddr(va->va_start, 0); |
db64fe02 NP |
845 | spin_lock_init(&vb->lock); |
846 | vb->va = va; | |
cf725ce2 RP |
847 | /* At least something should be left free */ |
848 | BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); | |
849 | vb->free = VMAP_BBMAP_BITS - (1UL << order); | |
db64fe02 | 850 | vb->dirty = 0; |
7d61bfe8 RP |
851 | vb->dirty_min = VMAP_BBMAP_BITS; |
852 | vb->dirty_max = 0; | |
db64fe02 | 853 | INIT_LIST_HEAD(&vb->free_list); |
db64fe02 NP |
854 | |
855 | vb_idx = addr_to_vb_idx(va->va_start); | |
856 | spin_lock(&vmap_block_tree_lock); | |
857 | err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); | |
858 | spin_unlock(&vmap_block_tree_lock); | |
859 | BUG_ON(err); | |
860 | radix_tree_preload_end(); | |
861 | ||
862 | vbq = &get_cpu_var(vmap_block_queue); | |
db64fe02 | 863 | spin_lock(&vbq->lock); |
68ac546f | 864 | list_add_tail_rcu(&vb->free_list, &vbq->free); |
db64fe02 | 865 | spin_unlock(&vbq->lock); |
3f04ba85 | 866 | put_cpu_var(vmap_block_queue); |
db64fe02 | 867 | |
cf725ce2 | 868 | return vaddr; |
db64fe02 NP |
869 | } |
870 | ||
db64fe02 NP |
871 | static void free_vmap_block(struct vmap_block *vb) |
872 | { | |
873 | struct vmap_block *tmp; | |
874 | unsigned long vb_idx; | |
875 | ||
db64fe02 NP |
876 | vb_idx = addr_to_vb_idx(vb->va->va_start); |
877 | spin_lock(&vmap_block_tree_lock); | |
878 | tmp = radix_tree_delete(&vmap_block_tree, vb_idx); | |
879 | spin_unlock(&vmap_block_tree_lock); | |
880 | BUG_ON(tmp != vb); | |
881 | ||
64141da5 | 882 | free_vmap_area_noflush(vb->va); |
22a3c7d1 | 883 | kfree_rcu(vb, rcu_head); |
db64fe02 NP |
884 | } |
885 | ||
02b709df NP |
886 | static void purge_fragmented_blocks(int cpu) |
887 | { | |
888 | LIST_HEAD(purge); | |
889 | struct vmap_block *vb; | |
890 | struct vmap_block *n_vb; | |
891 | struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); | |
892 | ||
893 | rcu_read_lock(); | |
894 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | |
895 | ||
896 | if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) | |
897 | continue; | |
898 | ||
899 | spin_lock(&vb->lock); | |
900 | if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { | |
901 | vb->free = 0; /* prevent further allocs after releasing lock */ | |
902 | vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ | |
7d61bfe8 RP |
903 | vb->dirty_min = 0; |
904 | vb->dirty_max = VMAP_BBMAP_BITS; | |
02b709df NP |
905 | spin_lock(&vbq->lock); |
906 | list_del_rcu(&vb->free_list); | |
907 | spin_unlock(&vbq->lock); | |
908 | spin_unlock(&vb->lock); | |
909 | list_add_tail(&vb->purge, &purge); | |
910 | } else | |
911 | spin_unlock(&vb->lock); | |
912 | } | |
913 | rcu_read_unlock(); | |
914 | ||
915 | list_for_each_entry_safe(vb, n_vb, &purge, purge) { | |
916 | list_del(&vb->purge); | |
917 | free_vmap_block(vb); | |
918 | } | |
919 | } | |
920 | ||
02b709df NP |
921 | static void purge_fragmented_blocks_allcpus(void) |
922 | { | |
923 | int cpu; | |
924 | ||
925 | for_each_possible_cpu(cpu) | |
926 | purge_fragmented_blocks(cpu); | |
927 | } | |
928 | ||
db64fe02 NP |
929 | static void *vb_alloc(unsigned long size, gfp_t gfp_mask) |
930 | { | |
931 | struct vmap_block_queue *vbq; | |
932 | struct vmap_block *vb; | |
cf725ce2 | 933 | void *vaddr = NULL; |
db64fe02 NP |
934 | unsigned int order; |
935 | ||
891c49ab | 936 | BUG_ON(offset_in_page(size)); |
db64fe02 | 937 | BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); |
aa91c4d8 JK |
938 | if (WARN_ON(size == 0)) { |
939 | /* | |
940 | * Allocating 0 bytes isn't what caller wants since | |
941 | * get_order(0) returns funny result. Just warn and terminate | |
942 | * early. | |
943 | */ | |
944 | return NULL; | |
945 | } | |
db64fe02 NP |
946 | order = get_order(size); |
947 | ||
db64fe02 NP |
948 | rcu_read_lock(); |
949 | vbq = &get_cpu_var(vmap_block_queue); | |
950 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | |
cf725ce2 | 951 | unsigned long pages_off; |
db64fe02 NP |
952 | |
953 | spin_lock(&vb->lock); | |
cf725ce2 RP |
954 | if (vb->free < (1UL << order)) { |
955 | spin_unlock(&vb->lock); | |
956 | continue; | |
957 | } | |
02b709df | 958 | |
cf725ce2 RP |
959 | pages_off = VMAP_BBMAP_BITS - vb->free; |
960 | vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); | |
02b709df NP |
961 | vb->free -= 1UL << order; |
962 | if (vb->free == 0) { | |
963 | spin_lock(&vbq->lock); | |
964 | list_del_rcu(&vb->free_list); | |
965 | spin_unlock(&vbq->lock); | |
966 | } | |
cf725ce2 | 967 | |
02b709df NP |
968 | spin_unlock(&vb->lock); |
969 | break; | |
db64fe02 | 970 | } |
02b709df | 971 | |
3f04ba85 | 972 | put_cpu_var(vmap_block_queue); |
db64fe02 NP |
973 | rcu_read_unlock(); |
974 | ||
cf725ce2 RP |
975 | /* Allocate new block if nothing was found */ |
976 | if (!vaddr) | |
977 | vaddr = new_vmap_block(order, gfp_mask); | |
db64fe02 | 978 | |
cf725ce2 | 979 | return vaddr; |
db64fe02 NP |
980 | } |
981 | ||
982 | static void vb_free(const void *addr, unsigned long size) | |
983 | { | |
984 | unsigned long offset; | |
985 | unsigned long vb_idx; | |
986 | unsigned int order; | |
987 | struct vmap_block *vb; | |
988 | ||
891c49ab | 989 | BUG_ON(offset_in_page(size)); |
db64fe02 | 990 | BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); |
b29acbdc NP |
991 | |
992 | flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); | |
993 | ||
db64fe02 NP |
994 | order = get_order(size); |
995 | ||
996 | offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); | |
7d61bfe8 | 997 | offset >>= PAGE_SHIFT; |
db64fe02 NP |
998 | |
999 | vb_idx = addr_to_vb_idx((unsigned long)addr); | |
1000 | rcu_read_lock(); | |
1001 | vb = radix_tree_lookup(&vmap_block_tree, vb_idx); | |
1002 | rcu_read_unlock(); | |
1003 | BUG_ON(!vb); | |
1004 | ||
64141da5 JF |
1005 | vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); |
1006 | ||
db64fe02 | 1007 | spin_lock(&vb->lock); |
7d61bfe8 RP |
1008 | |
1009 | /* Expand dirty range */ | |
1010 | vb->dirty_min = min(vb->dirty_min, offset); | |
1011 | vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); | |
d086817d | 1012 | |
db64fe02 NP |
1013 | vb->dirty += 1UL << order; |
1014 | if (vb->dirty == VMAP_BBMAP_BITS) { | |
de560423 | 1015 | BUG_ON(vb->free); |
db64fe02 NP |
1016 | spin_unlock(&vb->lock); |
1017 | free_vmap_block(vb); | |
1018 | } else | |
1019 | spin_unlock(&vb->lock); | |
1020 | } | |
1021 | ||
1022 | /** | |
1023 | * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer | |
1024 | * | |
1025 | * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily | |
1026 | * to amortize TLB flushing overheads. What this means is that any page you | |
1027 | * have now, may, in a former life, have been mapped into kernel virtual | |
1028 | * address by the vmap layer and so there might be some CPUs with TLB entries | |
1029 | * still referencing that page (additional to the regular 1:1 kernel mapping). | |
1030 | * | |
1031 | * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can | |
1032 | * be sure that none of the pages we have control over will have any aliases | |
1033 | * from the vmap layer. | |
1034 | */ | |
1035 | void vm_unmap_aliases(void) | |
1036 | { | |
1037 | unsigned long start = ULONG_MAX, end = 0; | |
1038 | int cpu; | |
1039 | int flush = 0; | |
1040 | ||
9b463334 JF |
1041 | if (unlikely(!vmap_initialized)) |
1042 | return; | |
1043 | ||
5803ed29 CH |
1044 | might_sleep(); |
1045 | ||
db64fe02 NP |
1046 | for_each_possible_cpu(cpu) { |
1047 | struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); | |
1048 | struct vmap_block *vb; | |
1049 | ||
1050 | rcu_read_lock(); | |
1051 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | |
db64fe02 | 1052 | spin_lock(&vb->lock); |
7d61bfe8 RP |
1053 | if (vb->dirty) { |
1054 | unsigned long va_start = vb->va->va_start; | |
db64fe02 | 1055 | unsigned long s, e; |
b136be5e | 1056 | |
7d61bfe8 RP |
1057 | s = va_start + (vb->dirty_min << PAGE_SHIFT); |
1058 | e = va_start + (vb->dirty_max << PAGE_SHIFT); | |
db64fe02 | 1059 | |
7d61bfe8 RP |
1060 | start = min(s, start); |
1061 | end = max(e, end); | |
db64fe02 | 1062 | |
7d61bfe8 | 1063 | flush = 1; |
db64fe02 NP |
1064 | } |
1065 | spin_unlock(&vb->lock); | |
1066 | } | |
1067 | rcu_read_unlock(); | |
1068 | } | |
1069 | ||
f9e09977 | 1070 | mutex_lock(&vmap_purge_lock); |
0574ecd1 CH |
1071 | purge_fragmented_blocks_allcpus(); |
1072 | if (!__purge_vmap_area_lazy(start, end) && flush) | |
1073 | flush_tlb_kernel_range(start, end); | |
f9e09977 | 1074 | mutex_unlock(&vmap_purge_lock); |
db64fe02 NP |
1075 | } |
1076 | EXPORT_SYMBOL_GPL(vm_unmap_aliases); | |
1077 | ||
1078 | /** | |
1079 | * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram | |
1080 | * @mem: the pointer returned by vm_map_ram | |
1081 | * @count: the count passed to that vm_map_ram call (cannot unmap partial) | |
1082 | */ | |
1083 | void vm_unmap_ram(const void *mem, unsigned int count) | |
1084 | { | |
65ee03c4 | 1085 | unsigned long size = (unsigned long)count << PAGE_SHIFT; |
db64fe02 | 1086 | unsigned long addr = (unsigned long)mem; |
9c3acf60 | 1087 | struct vmap_area *va; |
db64fe02 | 1088 | |
5803ed29 | 1089 | might_sleep(); |
db64fe02 NP |
1090 | BUG_ON(!addr); |
1091 | BUG_ON(addr < VMALLOC_START); | |
1092 | BUG_ON(addr > VMALLOC_END); | |
a1c0b1a0 | 1093 | BUG_ON(!PAGE_ALIGNED(addr)); |
db64fe02 NP |
1094 | |
1095 | debug_check_no_locks_freed(mem, size); | |
cd52858c | 1096 | vmap_debug_free_range(addr, addr+size); |
db64fe02 | 1097 | |
9c3acf60 | 1098 | if (likely(count <= VMAP_MAX_ALLOC)) { |
db64fe02 | 1099 | vb_free(mem, size); |
9c3acf60 CH |
1100 | return; |
1101 | } | |
1102 | ||
1103 | va = find_vmap_area(addr); | |
1104 | BUG_ON(!va); | |
1105 | free_unmap_vmap_area(va); | |
db64fe02 NP |
1106 | } |
1107 | EXPORT_SYMBOL(vm_unmap_ram); | |
1108 | ||
1109 | /** | |
1110 | * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) | |
1111 | * @pages: an array of pointers to the pages to be mapped | |
1112 | * @count: number of pages | |
1113 | * @node: prefer to allocate data structures on this node | |
1114 | * @prot: memory protection to use. PAGE_KERNEL for regular RAM | |
e99c97ad | 1115 | * |
36437638 GK |
1116 | * If you use this function for less than VMAP_MAX_ALLOC pages, it could be |
1117 | * faster than vmap so it's good. But if you mix long-life and short-life | |
1118 | * objects with vm_map_ram(), it could consume lots of address space through | |
1119 | * fragmentation (especially on a 32bit machine). You could see failures in | |
1120 | * the end. Please use this function for short-lived objects. | |
1121 | * | |
e99c97ad | 1122 | * Returns: a pointer to the address that has been mapped, or %NULL on failure |
db64fe02 NP |
1123 | */ |
1124 | void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) | |
1125 | { | |
65ee03c4 | 1126 | unsigned long size = (unsigned long)count << PAGE_SHIFT; |
db64fe02 NP |
1127 | unsigned long addr; |
1128 | void *mem; | |
1129 | ||
1130 | if (likely(count <= VMAP_MAX_ALLOC)) { | |
1131 | mem = vb_alloc(size, GFP_KERNEL); | |
1132 | if (IS_ERR(mem)) | |
1133 | return NULL; | |
1134 | addr = (unsigned long)mem; | |
1135 | } else { | |
1136 | struct vmap_area *va; | |
1137 | va = alloc_vmap_area(size, PAGE_SIZE, | |
1138 | VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); | |
1139 | if (IS_ERR(va)) | |
1140 | return NULL; | |
1141 | ||
1142 | addr = va->va_start; | |
1143 | mem = (void *)addr; | |
1144 | } | |
1145 | if (vmap_page_range(addr, addr + size, prot, pages) < 0) { | |
1146 | vm_unmap_ram(mem, count); | |
1147 | return NULL; | |
1148 | } | |
1149 | return mem; | |
1150 | } | |
1151 | EXPORT_SYMBOL(vm_map_ram); | |
1152 | ||
4341fa45 | 1153 | static struct vm_struct *vmlist __initdata; |
be9b7335 NP |
1154 | /** |
1155 | * vm_area_add_early - add vmap area early during boot | |
1156 | * @vm: vm_struct to add | |
1157 | * | |
1158 | * This function is used to add fixed kernel vm area to vmlist before | |
1159 | * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags | |
1160 | * should contain proper values and the other fields should be zero. | |
1161 | * | |
1162 | * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. | |
1163 | */ | |
1164 | void __init vm_area_add_early(struct vm_struct *vm) | |
1165 | { | |
1166 | struct vm_struct *tmp, **p; | |
1167 | ||
1168 | BUG_ON(vmap_initialized); | |
1169 | for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { | |
1170 | if (tmp->addr >= vm->addr) { | |
1171 | BUG_ON(tmp->addr < vm->addr + vm->size); | |
1172 | break; | |
1173 | } else | |
1174 | BUG_ON(tmp->addr + tmp->size > vm->addr); | |
1175 | } | |
1176 | vm->next = *p; | |
1177 | *p = vm; | |
1178 | } | |
1179 | ||
f0aa6617 TH |
1180 | /** |
1181 | * vm_area_register_early - register vmap area early during boot | |
1182 | * @vm: vm_struct to register | |
c0c0a293 | 1183 | * @align: requested alignment |
f0aa6617 TH |
1184 | * |
1185 | * This function is used to register kernel vm area before | |
1186 | * vmalloc_init() is called. @vm->size and @vm->flags should contain | |
1187 | * proper values on entry and other fields should be zero. On return, | |
1188 | * vm->addr contains the allocated address. | |
1189 | * | |
1190 | * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. | |
1191 | */ | |
c0c0a293 | 1192 | void __init vm_area_register_early(struct vm_struct *vm, size_t align) |
f0aa6617 TH |
1193 | { |
1194 | static size_t vm_init_off __initdata; | |
c0c0a293 TH |
1195 | unsigned long addr; |
1196 | ||
1197 | addr = ALIGN(VMALLOC_START + vm_init_off, align); | |
1198 | vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; | |
f0aa6617 | 1199 | |
c0c0a293 | 1200 | vm->addr = (void *)addr; |
f0aa6617 | 1201 | |
be9b7335 | 1202 | vm_area_add_early(vm); |
f0aa6617 TH |
1203 | } |
1204 | ||
db64fe02 NP |
1205 | void __init vmalloc_init(void) |
1206 | { | |
822c18f2 IK |
1207 | struct vmap_area *va; |
1208 | struct vm_struct *tmp; | |
db64fe02 NP |
1209 | int i; |
1210 | ||
1211 | for_each_possible_cpu(i) { | |
1212 | struct vmap_block_queue *vbq; | |
32fcfd40 | 1213 | struct vfree_deferred *p; |
db64fe02 NP |
1214 | |
1215 | vbq = &per_cpu(vmap_block_queue, i); | |
1216 | spin_lock_init(&vbq->lock); | |
1217 | INIT_LIST_HEAD(&vbq->free); | |
32fcfd40 AV |
1218 | p = &per_cpu(vfree_deferred, i); |
1219 | init_llist_head(&p->list); | |
1220 | INIT_WORK(&p->wq, free_work); | |
db64fe02 | 1221 | } |
9b463334 | 1222 | |
822c18f2 IK |
1223 | /* Import existing vmlist entries. */ |
1224 | for (tmp = vmlist; tmp; tmp = tmp->next) { | |
43ebdac4 | 1225 | va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); |
dbda591d | 1226 | va->flags = VM_VM_AREA; |
822c18f2 IK |
1227 | va->va_start = (unsigned long)tmp->addr; |
1228 | va->va_end = va->va_start + tmp->size; | |
dbda591d | 1229 | va->vm = tmp; |
822c18f2 IK |
1230 | __insert_vmap_area(va); |
1231 | } | |
ca23e405 TH |
1232 | |
1233 | vmap_area_pcpu_hole = VMALLOC_END; | |
1234 | ||
9b463334 | 1235 | vmap_initialized = true; |
db64fe02 NP |
1236 | } |
1237 | ||
8fc48985 TH |
1238 | /** |
1239 | * map_kernel_range_noflush - map kernel VM area with the specified pages | |
1240 | * @addr: start of the VM area to map | |
1241 | * @size: size of the VM area to map | |
1242 | * @prot: page protection flags to use | |
1243 | * @pages: pages to map | |
1244 | * | |
1245 | * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size | |
1246 | * specify should have been allocated using get_vm_area() and its | |
1247 | * friends. | |
1248 | * | |
1249 | * NOTE: | |
1250 | * This function does NOT do any cache flushing. The caller is | |
1251 | * responsible for calling flush_cache_vmap() on to-be-mapped areas | |
1252 | * before calling this function. | |
1253 | * | |
1254 | * RETURNS: | |
1255 | * The number of pages mapped on success, -errno on failure. | |
1256 | */ | |
1257 | int map_kernel_range_noflush(unsigned long addr, unsigned long size, | |
1258 | pgprot_t prot, struct page **pages) | |
1259 | { | |
1260 | return vmap_page_range_noflush(addr, addr + size, prot, pages); | |
1261 | } | |
1262 | ||
1263 | /** | |
1264 | * unmap_kernel_range_noflush - unmap kernel VM area | |
1265 | * @addr: start of the VM area to unmap | |
1266 | * @size: size of the VM area to unmap | |
1267 | * | |
1268 | * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size | |
1269 | * specify should have been allocated using get_vm_area() and its | |
1270 | * friends. | |
1271 | * | |
1272 | * NOTE: | |
1273 | * This function does NOT do any cache flushing. The caller is | |
1274 | * responsible for calling flush_cache_vunmap() on to-be-mapped areas | |
1275 | * before calling this function and flush_tlb_kernel_range() after. | |
1276 | */ | |
1277 | void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) | |
1278 | { | |
1279 | vunmap_page_range(addr, addr + size); | |
1280 | } | |
81e88fdc | 1281 | EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); |
8fc48985 TH |
1282 | |
1283 | /** | |
1284 | * unmap_kernel_range - unmap kernel VM area and flush cache and TLB | |
1285 | * @addr: start of the VM area to unmap | |
1286 | * @size: size of the VM area to unmap | |
1287 | * | |
1288 | * Similar to unmap_kernel_range_noflush() but flushes vcache before | |
1289 | * the unmapping and tlb after. | |
1290 | */ | |
db64fe02 NP |
1291 | void unmap_kernel_range(unsigned long addr, unsigned long size) |
1292 | { | |
1293 | unsigned long end = addr + size; | |
f6fcba70 TH |
1294 | |
1295 | flush_cache_vunmap(addr, end); | |
db64fe02 NP |
1296 | vunmap_page_range(addr, end); |
1297 | flush_tlb_kernel_range(addr, end); | |
1298 | } | |
93ef6d6c | 1299 | EXPORT_SYMBOL_GPL(unmap_kernel_range); |
db64fe02 | 1300 | |
f6f8ed47 | 1301 | int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages) |
db64fe02 NP |
1302 | { |
1303 | unsigned long addr = (unsigned long)area->addr; | |
762216ab | 1304 | unsigned long end = addr + get_vm_area_size(area); |
db64fe02 NP |
1305 | int err; |
1306 | ||
f6f8ed47 | 1307 | err = vmap_page_range(addr, end, prot, pages); |
db64fe02 | 1308 | |
f6f8ed47 | 1309 | return err > 0 ? 0 : err; |
db64fe02 NP |
1310 | } |
1311 | EXPORT_SYMBOL_GPL(map_vm_area); | |
1312 | ||
f5252e00 | 1313 | static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, |
5e6cafc8 | 1314 | unsigned long flags, const void *caller) |
cf88c790 | 1315 | { |
c69480ad | 1316 | spin_lock(&vmap_area_lock); |
cf88c790 TH |
1317 | vm->flags = flags; |
1318 | vm->addr = (void *)va->va_start; | |
1319 | vm->size = va->va_end - va->va_start; | |
1320 | vm->caller = caller; | |
db1aecaf | 1321 | va->vm = vm; |
cf88c790 | 1322 | va->flags |= VM_VM_AREA; |
c69480ad | 1323 | spin_unlock(&vmap_area_lock); |
f5252e00 | 1324 | } |
cf88c790 | 1325 | |
20fc02b4 | 1326 | static void clear_vm_uninitialized_flag(struct vm_struct *vm) |
f5252e00 | 1327 | { |
d4033afd | 1328 | /* |
20fc02b4 | 1329 | * Before removing VM_UNINITIALIZED, |
d4033afd JK |
1330 | * we should make sure that vm has proper values. |
1331 | * Pair with smp_rmb() in show_numa_info(). | |
1332 | */ | |
1333 | smp_wmb(); | |
20fc02b4 | 1334 | vm->flags &= ~VM_UNINITIALIZED; |
cf88c790 TH |
1335 | } |
1336 | ||
db64fe02 | 1337 | static struct vm_struct *__get_vm_area_node(unsigned long size, |
2dca6999 | 1338 | unsigned long align, unsigned long flags, unsigned long start, |
5e6cafc8 | 1339 | unsigned long end, int node, gfp_t gfp_mask, const void *caller) |
db64fe02 | 1340 | { |
0006526d | 1341 | struct vmap_area *va; |
db64fe02 | 1342 | struct vm_struct *area; |
1da177e4 | 1343 | |
52fd24ca | 1344 | BUG_ON(in_interrupt()); |
1da177e4 | 1345 | size = PAGE_ALIGN(size); |
31be8309 OH |
1346 | if (unlikely(!size)) |
1347 | return NULL; | |
1da177e4 | 1348 | |
252e5c6e | 1349 | if (flags & VM_IOREMAP) |
1350 | align = 1ul << clamp_t(int, get_count_order_long(size), | |
1351 | PAGE_SHIFT, IOREMAP_MAX_ORDER); | |
1352 | ||
cf88c790 | 1353 | area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); |
1da177e4 LT |
1354 | if (unlikely(!area)) |
1355 | return NULL; | |
1356 | ||
71394fe5 AR |
1357 | if (!(flags & VM_NO_GUARD)) |
1358 | size += PAGE_SIZE; | |
1da177e4 | 1359 | |
db64fe02 NP |
1360 | va = alloc_vmap_area(size, align, start, end, node, gfp_mask); |
1361 | if (IS_ERR(va)) { | |
1362 | kfree(area); | |
1363 | return NULL; | |
1da177e4 | 1364 | } |
1da177e4 | 1365 | |
d82b1d85 | 1366 | setup_vmalloc_vm(area, va, flags, caller); |
f5252e00 | 1367 | |
1da177e4 | 1368 | return area; |
1da177e4 LT |
1369 | } |
1370 | ||
930fc45a CL |
1371 | struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, |
1372 | unsigned long start, unsigned long end) | |
1373 | { | |
00ef2d2f DR |
1374 | return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, |
1375 | GFP_KERNEL, __builtin_return_address(0)); | |
930fc45a | 1376 | } |
5992b6da | 1377 | EXPORT_SYMBOL_GPL(__get_vm_area); |
930fc45a | 1378 | |
c2968612 BH |
1379 | struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, |
1380 | unsigned long start, unsigned long end, | |
5e6cafc8 | 1381 | const void *caller) |
c2968612 | 1382 | { |
00ef2d2f DR |
1383 | return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, |
1384 | GFP_KERNEL, caller); | |
c2968612 BH |
1385 | } |
1386 | ||
1da177e4 | 1387 | /** |
183ff22b | 1388 | * get_vm_area - reserve a contiguous kernel virtual area |
1da177e4 LT |
1389 | * @size: size of the area |
1390 | * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC | |
1391 | * | |
1392 | * Search an area of @size in the kernel virtual mapping area, | |
1393 | * and reserved it for out purposes. Returns the area descriptor | |
1394 | * on success or %NULL on failure. | |
1395 | */ | |
1396 | struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) | |
1397 | { | |
2dca6999 | 1398 | return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, |
00ef2d2f DR |
1399 | NUMA_NO_NODE, GFP_KERNEL, |
1400 | __builtin_return_address(0)); | |
23016969 CL |
1401 | } |
1402 | ||
1403 | struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, | |
5e6cafc8 | 1404 | const void *caller) |
23016969 | 1405 | { |
2dca6999 | 1406 | return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, |
00ef2d2f | 1407 | NUMA_NO_NODE, GFP_KERNEL, caller); |
1da177e4 LT |
1408 | } |
1409 | ||
e9da6e99 MS |
1410 | /** |
1411 | * find_vm_area - find a continuous kernel virtual area | |
1412 | * @addr: base address | |
1413 | * | |
1414 | * Search for the kernel VM area starting at @addr, and return it. | |
1415 | * It is up to the caller to do all required locking to keep the returned | |
1416 | * pointer valid. | |
1417 | */ | |
1418 | struct vm_struct *find_vm_area(const void *addr) | |
83342314 | 1419 | { |
db64fe02 | 1420 | struct vmap_area *va; |
83342314 | 1421 | |
db64fe02 NP |
1422 | va = find_vmap_area((unsigned long)addr); |
1423 | if (va && va->flags & VM_VM_AREA) | |
db1aecaf | 1424 | return va->vm; |
1da177e4 | 1425 | |
1da177e4 | 1426 | return NULL; |
1da177e4 LT |
1427 | } |
1428 | ||
7856dfeb | 1429 | /** |
183ff22b | 1430 | * remove_vm_area - find and remove a continuous kernel virtual area |
7856dfeb AK |
1431 | * @addr: base address |
1432 | * | |
1433 | * Search for the kernel VM area starting at @addr, and remove it. | |
1434 | * This function returns the found VM area, but using it is NOT safe | |
1435 | * on SMP machines, except for its size or flags. | |
1436 | */ | |
b3bdda02 | 1437 | struct vm_struct *remove_vm_area(const void *addr) |
7856dfeb | 1438 | { |
db64fe02 NP |
1439 | struct vmap_area *va; |
1440 | ||
5803ed29 CH |
1441 | might_sleep(); |
1442 | ||
db64fe02 NP |
1443 | va = find_vmap_area((unsigned long)addr); |
1444 | if (va && va->flags & VM_VM_AREA) { | |
db1aecaf | 1445 | struct vm_struct *vm = va->vm; |
f5252e00 | 1446 | |
c69480ad JK |
1447 | spin_lock(&vmap_area_lock); |
1448 | va->vm = NULL; | |
1449 | va->flags &= ~VM_VM_AREA; | |
1450 | spin_unlock(&vmap_area_lock); | |
1451 | ||
dd32c279 | 1452 | vmap_debug_free_range(va->va_start, va->va_end); |
a5af5aa8 | 1453 | kasan_free_shadow(vm); |
dd32c279 | 1454 | free_unmap_vmap_area(va); |
dd32c279 | 1455 | |
db64fe02 NP |
1456 | return vm; |
1457 | } | |
1458 | return NULL; | |
7856dfeb AK |
1459 | } |
1460 | ||
b3bdda02 | 1461 | static void __vunmap(const void *addr, int deallocate_pages) |
1da177e4 LT |
1462 | { |
1463 | struct vm_struct *area; | |
1464 | ||
1465 | if (!addr) | |
1466 | return; | |
1467 | ||
e69e9d4a | 1468 | if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", |
ab15d9b4 | 1469 | addr)) |
1da177e4 | 1470 | return; |
1da177e4 LT |
1471 | |
1472 | area = remove_vm_area(addr); | |
1473 | if (unlikely(!area)) { | |
4c8573e2 | 1474 | WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", |
1da177e4 | 1475 | addr); |
1da177e4 LT |
1476 | return; |
1477 | } | |
1478 | ||
7511c3ed JM |
1479 | debug_check_no_locks_freed(addr, get_vm_area_size(area)); |
1480 | debug_check_no_obj_freed(addr, get_vm_area_size(area)); | |
9a11b49a | 1481 | |
1da177e4 LT |
1482 | if (deallocate_pages) { |
1483 | int i; | |
1484 | ||
1485 | for (i = 0; i < area->nr_pages; i++) { | |
bf53d6f8 CL |
1486 | struct page *page = area->pages[i]; |
1487 | ||
1488 | BUG_ON(!page); | |
4949148a | 1489 | __free_pages(page, 0); |
1da177e4 LT |
1490 | } |
1491 | ||
244d63ee | 1492 | kvfree(area->pages); |
1da177e4 LT |
1493 | } |
1494 | ||
1495 | kfree(area); | |
1496 | return; | |
1497 | } | |
bf22e37a AR |
1498 | |
1499 | static inline void __vfree_deferred(const void *addr) | |
1500 | { | |
1501 | /* | |
1502 | * Use raw_cpu_ptr() because this can be called from preemptible | |
1503 | * context. Preemption is absolutely fine here, because the llist_add() | |
1504 | * implementation is lockless, so it works even if we are adding to | |
1505 | * nother cpu's list. schedule_work() should be fine with this too. | |
1506 | */ | |
1507 | struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); | |
1508 | ||
1509 | if (llist_add((struct llist_node *)addr, &p->list)) | |
1510 | schedule_work(&p->wq); | |
1511 | } | |
1512 | ||
1513 | /** | |
1514 | * vfree_atomic - release memory allocated by vmalloc() | |
1515 | * @addr: memory base address | |
1516 | * | |
1517 | * This one is just like vfree() but can be called in any atomic context | |
1518 | * except NMIs. | |
1519 | */ | |
1520 | void vfree_atomic(const void *addr) | |
1521 | { | |
1522 | BUG_ON(in_nmi()); | |
1523 | ||
1524 | kmemleak_free(addr); | |
1525 | ||
1526 | if (!addr) | |
1527 | return; | |
1528 | __vfree_deferred(addr); | |
1529 | } | |
1530 | ||
1da177e4 LT |
1531 | /** |
1532 | * vfree - release memory allocated by vmalloc() | |
1da177e4 LT |
1533 | * @addr: memory base address |
1534 | * | |
183ff22b | 1535 | * Free the virtually continuous memory area starting at @addr, as |
80e93eff PE |
1536 | * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is |
1537 | * NULL, no operation is performed. | |
1da177e4 | 1538 | * |
32fcfd40 AV |
1539 | * Must not be called in NMI context (strictly speaking, only if we don't |
1540 | * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling | |
1541 | * conventions for vfree() arch-depenedent would be a really bad idea) | |
c9fcee51 AM |
1542 | * |
1543 | * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node) | |
1da177e4 | 1544 | */ |
b3bdda02 | 1545 | void vfree(const void *addr) |
1da177e4 | 1546 | { |
32fcfd40 | 1547 | BUG_ON(in_nmi()); |
89219d37 CM |
1548 | |
1549 | kmemleak_free(addr); | |
1550 | ||
32fcfd40 AV |
1551 | if (!addr) |
1552 | return; | |
bf22e37a AR |
1553 | if (unlikely(in_interrupt())) |
1554 | __vfree_deferred(addr); | |
1555 | else | |
32fcfd40 | 1556 | __vunmap(addr, 1); |
1da177e4 | 1557 | } |
1da177e4 LT |
1558 | EXPORT_SYMBOL(vfree); |
1559 | ||
1560 | /** | |
1561 | * vunmap - release virtual mapping obtained by vmap() | |
1da177e4 LT |
1562 | * @addr: memory base address |
1563 | * | |
1564 | * Free the virtually contiguous memory area starting at @addr, | |
1565 | * which was created from the page array passed to vmap(). | |
1566 | * | |
80e93eff | 1567 | * Must not be called in interrupt context. |
1da177e4 | 1568 | */ |
b3bdda02 | 1569 | void vunmap(const void *addr) |
1da177e4 LT |
1570 | { |
1571 | BUG_ON(in_interrupt()); | |
34754b69 | 1572 | might_sleep(); |
32fcfd40 AV |
1573 | if (addr) |
1574 | __vunmap(addr, 0); | |
1da177e4 | 1575 | } |
1da177e4 LT |
1576 | EXPORT_SYMBOL(vunmap); |
1577 | ||
1578 | /** | |
1579 | * vmap - map an array of pages into virtually contiguous space | |
1da177e4 LT |
1580 | * @pages: array of page pointers |
1581 | * @count: number of pages to map | |
1582 | * @flags: vm_area->flags | |
1583 | * @prot: page protection for the mapping | |
1584 | * | |
1585 | * Maps @count pages from @pages into contiguous kernel virtual | |
1586 | * space. | |
1587 | */ | |
1588 | void *vmap(struct page **pages, unsigned int count, | |
1589 | unsigned long flags, pgprot_t prot) | |
1590 | { | |
1591 | struct vm_struct *area; | |
65ee03c4 | 1592 | unsigned long size; /* In bytes */ |
1da177e4 | 1593 | |
34754b69 PZ |
1594 | might_sleep(); |
1595 | ||
4481374c | 1596 | if (count > totalram_pages) |
1da177e4 LT |
1597 | return NULL; |
1598 | ||
65ee03c4 GJM |
1599 | size = (unsigned long)count << PAGE_SHIFT; |
1600 | area = get_vm_area_caller(size, flags, __builtin_return_address(0)); | |
1da177e4 LT |
1601 | if (!area) |
1602 | return NULL; | |
23016969 | 1603 | |
f6f8ed47 | 1604 | if (map_vm_area(area, prot, pages)) { |
1da177e4 LT |
1605 | vunmap(area->addr); |
1606 | return NULL; | |
1607 | } | |
1608 | ||
1609 | return area->addr; | |
1610 | } | |
1da177e4 LT |
1611 | EXPORT_SYMBOL(vmap); |
1612 | ||
2dca6999 DM |
1613 | static void *__vmalloc_node(unsigned long size, unsigned long align, |
1614 | gfp_t gfp_mask, pgprot_t prot, | |
5e6cafc8 | 1615 | int node, const void *caller); |
e31d9eb5 | 1616 | static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, |
3722e13c | 1617 | pgprot_t prot, int node) |
1da177e4 LT |
1618 | { |
1619 | struct page **pages; | |
1620 | unsigned int nr_pages, array_size, i; | |
930f036b DR |
1621 | const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; |
1622 | const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN; | |
1da177e4 | 1623 | |
762216ab | 1624 | nr_pages = get_vm_area_size(area) >> PAGE_SHIFT; |
1da177e4 LT |
1625 | array_size = (nr_pages * sizeof(struct page *)); |
1626 | ||
1627 | area->nr_pages = nr_pages; | |
1628 | /* Please note that the recursion is strictly bounded. */ | |
8757d5fa | 1629 | if (array_size > PAGE_SIZE) { |
976d6dfb | 1630 | pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM, |
3722e13c | 1631 | PAGE_KERNEL, node, area->caller); |
286e1ea3 | 1632 | } else { |
976d6dfb | 1633 | pages = kmalloc_node(array_size, nested_gfp, node); |
286e1ea3 | 1634 | } |
1da177e4 LT |
1635 | area->pages = pages; |
1636 | if (!area->pages) { | |
1637 | remove_vm_area(area->addr); | |
1638 | kfree(area); | |
1639 | return NULL; | |
1640 | } | |
1da177e4 LT |
1641 | |
1642 | for (i = 0; i < area->nr_pages; i++) { | |
bf53d6f8 CL |
1643 | struct page *page; |
1644 | ||
4b90951c | 1645 | if (node == NUMA_NO_NODE) |
7877cdcc | 1646 | page = alloc_page(alloc_mask); |
930fc45a | 1647 | else |
7877cdcc | 1648 | page = alloc_pages_node(node, alloc_mask, 0); |
bf53d6f8 CL |
1649 | |
1650 | if (unlikely(!page)) { | |
1da177e4 LT |
1651 | /* Successfully allocated i pages, free them in __vunmap() */ |
1652 | area->nr_pages = i; | |
1653 | goto fail; | |
1654 | } | |
bf53d6f8 | 1655 | area->pages[i] = page; |
d0164adc | 1656 | if (gfpflags_allow_blocking(gfp_mask)) |
660654f9 | 1657 | cond_resched(); |
1da177e4 LT |
1658 | } |
1659 | ||
f6f8ed47 | 1660 | if (map_vm_area(area, prot, pages)) |
1da177e4 LT |
1661 | goto fail; |
1662 | return area->addr; | |
1663 | ||
1664 | fail: | |
7877cdcc MH |
1665 | warn_alloc(gfp_mask, |
1666 | "vmalloc: allocation failure, allocated %ld of %ld bytes", | |
22943ab1 | 1667 | (area->nr_pages*PAGE_SIZE), area->size); |
1da177e4 LT |
1668 | vfree(area->addr); |
1669 | return NULL; | |
1670 | } | |
1671 | ||
1672 | /** | |
d0a21265 | 1673 | * __vmalloc_node_range - allocate virtually contiguous memory |
1da177e4 | 1674 | * @size: allocation size |
2dca6999 | 1675 | * @align: desired alignment |
d0a21265 DR |
1676 | * @start: vm area range start |
1677 | * @end: vm area range end | |
1da177e4 LT |
1678 | * @gfp_mask: flags for the page level allocator |
1679 | * @prot: protection mask for the allocated pages | |
cb9e3c29 | 1680 | * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) |
00ef2d2f | 1681 | * @node: node to use for allocation or NUMA_NO_NODE |
c85d194b | 1682 | * @caller: caller's return address |
1da177e4 LT |
1683 | * |
1684 | * Allocate enough pages to cover @size from the page level | |
1685 | * allocator with @gfp_mask flags. Map them into contiguous | |
1686 | * kernel virtual space, using a pagetable protection of @prot. | |
1687 | */ | |
d0a21265 DR |
1688 | void *__vmalloc_node_range(unsigned long size, unsigned long align, |
1689 | unsigned long start, unsigned long end, gfp_t gfp_mask, | |
cb9e3c29 AR |
1690 | pgprot_t prot, unsigned long vm_flags, int node, |
1691 | const void *caller) | |
1da177e4 LT |
1692 | { |
1693 | struct vm_struct *area; | |
89219d37 CM |
1694 | void *addr; |
1695 | unsigned long real_size = size; | |
1da177e4 LT |
1696 | |
1697 | size = PAGE_ALIGN(size); | |
4481374c | 1698 | if (!size || (size >> PAGE_SHIFT) > totalram_pages) |
de7d2b56 | 1699 | goto fail; |
1da177e4 | 1700 | |
cb9e3c29 AR |
1701 | area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED | |
1702 | vm_flags, start, end, node, gfp_mask, caller); | |
1da177e4 | 1703 | if (!area) |
de7d2b56 | 1704 | goto fail; |
1da177e4 | 1705 | |
3722e13c | 1706 | addr = __vmalloc_area_node(area, gfp_mask, prot, node); |
1368edf0 | 1707 | if (!addr) |
b82225f3 | 1708 | return NULL; |
89219d37 | 1709 | |
f5252e00 | 1710 | /* |
20fc02b4 ZY |
1711 | * In this function, newly allocated vm_struct has VM_UNINITIALIZED |
1712 | * flag. It means that vm_struct is not fully initialized. | |
4341fa45 | 1713 | * Now, it is fully initialized, so remove this flag here. |
f5252e00 | 1714 | */ |
20fc02b4 | 1715 | clear_vm_uninitialized_flag(area); |
f5252e00 | 1716 | |
89219d37 | 1717 | /* |
7f88f88f CM |
1718 | * A ref_count = 2 is needed because vm_struct allocated in |
1719 | * __get_vm_area_node() contains a reference to the virtual address of | |
1720 | * the vmalloc'ed block. | |
89219d37 | 1721 | */ |
7f88f88f | 1722 | kmemleak_alloc(addr, real_size, 2, gfp_mask); |
89219d37 CM |
1723 | |
1724 | return addr; | |
de7d2b56 JP |
1725 | |
1726 | fail: | |
7877cdcc MH |
1727 | warn_alloc(gfp_mask, |
1728 | "vmalloc: allocation failure: %lu bytes", real_size); | |
de7d2b56 | 1729 | return NULL; |
1da177e4 LT |
1730 | } |
1731 | ||
d0a21265 DR |
1732 | /** |
1733 | * __vmalloc_node - allocate virtually contiguous memory | |
1734 | * @size: allocation size | |
1735 | * @align: desired alignment | |
1736 | * @gfp_mask: flags for the page level allocator | |
1737 | * @prot: protection mask for the allocated pages | |
00ef2d2f | 1738 | * @node: node to use for allocation or NUMA_NO_NODE |
d0a21265 DR |
1739 | * @caller: caller's return address |
1740 | * | |
1741 | * Allocate enough pages to cover @size from the page level | |
1742 | * allocator with @gfp_mask flags. Map them into contiguous | |
1743 | * kernel virtual space, using a pagetable protection of @prot. | |
1744 | */ | |
1745 | static void *__vmalloc_node(unsigned long size, unsigned long align, | |
1746 | gfp_t gfp_mask, pgprot_t prot, | |
5e6cafc8 | 1747 | int node, const void *caller) |
d0a21265 DR |
1748 | { |
1749 | return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, | |
cb9e3c29 | 1750 | gfp_mask, prot, 0, node, caller); |
d0a21265 DR |
1751 | } |
1752 | ||
930fc45a CL |
1753 | void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) |
1754 | { | |
00ef2d2f | 1755 | return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE, |
23016969 | 1756 | __builtin_return_address(0)); |
930fc45a | 1757 | } |
1da177e4 LT |
1758 | EXPORT_SYMBOL(__vmalloc); |
1759 | ||
e1ca7788 DY |
1760 | static inline void *__vmalloc_node_flags(unsigned long size, |
1761 | int node, gfp_t flags) | |
1762 | { | |
1763 | return __vmalloc_node(size, 1, flags, PAGE_KERNEL, | |
1764 | node, __builtin_return_address(0)); | |
1765 | } | |
1766 | ||
1da177e4 LT |
1767 | /** |
1768 | * vmalloc - allocate virtually contiguous memory | |
1da177e4 | 1769 | * @size: allocation size |
1da177e4 LT |
1770 | * Allocate enough pages to cover @size from the page level |
1771 | * allocator and map them into contiguous kernel virtual space. | |
1772 | * | |
c1c8897f | 1773 | * For tight control over page level allocator and protection flags |
1da177e4 LT |
1774 | * use __vmalloc() instead. |
1775 | */ | |
1776 | void *vmalloc(unsigned long size) | |
1777 | { | |
00ef2d2f DR |
1778 | return __vmalloc_node_flags(size, NUMA_NO_NODE, |
1779 | GFP_KERNEL | __GFP_HIGHMEM); | |
1da177e4 | 1780 | } |
1da177e4 LT |
1781 | EXPORT_SYMBOL(vmalloc); |
1782 | ||
e1ca7788 DY |
1783 | /** |
1784 | * vzalloc - allocate virtually contiguous memory with zero fill | |
1785 | * @size: allocation size | |
1786 | * Allocate enough pages to cover @size from the page level | |
1787 | * allocator and map them into contiguous kernel virtual space. | |
1788 | * The memory allocated is set to zero. | |
1789 | * | |
1790 | * For tight control over page level allocator and protection flags | |
1791 | * use __vmalloc() instead. | |
1792 | */ | |
1793 | void *vzalloc(unsigned long size) | |
1794 | { | |
00ef2d2f | 1795 | return __vmalloc_node_flags(size, NUMA_NO_NODE, |
e1ca7788 DY |
1796 | GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); |
1797 | } | |
1798 | EXPORT_SYMBOL(vzalloc); | |
1799 | ||
83342314 | 1800 | /** |
ead04089 REB |
1801 | * vmalloc_user - allocate zeroed virtually contiguous memory for userspace |
1802 | * @size: allocation size | |
83342314 | 1803 | * |
ead04089 REB |
1804 | * The resulting memory area is zeroed so it can be mapped to userspace |
1805 | * without leaking data. | |
83342314 NP |
1806 | */ |
1807 | void *vmalloc_user(unsigned long size) | |
1808 | { | |
1809 | struct vm_struct *area; | |
1810 | void *ret; | |
1811 | ||
2dca6999 DM |
1812 | ret = __vmalloc_node(size, SHMLBA, |
1813 | GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, | |
00ef2d2f DR |
1814 | PAGE_KERNEL, NUMA_NO_NODE, |
1815 | __builtin_return_address(0)); | |
2b4ac44e | 1816 | if (ret) { |
db64fe02 | 1817 | area = find_vm_area(ret); |
2b4ac44e | 1818 | area->flags |= VM_USERMAP; |
2b4ac44e | 1819 | } |
83342314 NP |
1820 | return ret; |
1821 | } | |
1822 | EXPORT_SYMBOL(vmalloc_user); | |
1823 | ||
930fc45a CL |
1824 | /** |
1825 | * vmalloc_node - allocate memory on a specific node | |
930fc45a | 1826 | * @size: allocation size |
d44e0780 | 1827 | * @node: numa node |
930fc45a CL |
1828 | * |
1829 | * Allocate enough pages to cover @size from the page level | |
1830 | * allocator and map them into contiguous kernel virtual space. | |
1831 | * | |
c1c8897f | 1832 | * For tight control over page level allocator and protection flags |
930fc45a CL |
1833 | * use __vmalloc() instead. |
1834 | */ | |
1835 | void *vmalloc_node(unsigned long size, int node) | |
1836 | { | |
2dca6999 | 1837 | return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, |
23016969 | 1838 | node, __builtin_return_address(0)); |
930fc45a CL |
1839 | } |
1840 | EXPORT_SYMBOL(vmalloc_node); | |
1841 | ||
e1ca7788 DY |
1842 | /** |
1843 | * vzalloc_node - allocate memory on a specific node with zero fill | |
1844 | * @size: allocation size | |
1845 | * @node: numa node | |
1846 | * | |
1847 | * Allocate enough pages to cover @size from the page level | |
1848 | * allocator and map them into contiguous kernel virtual space. | |
1849 | * The memory allocated is set to zero. | |
1850 | * | |
1851 | * For tight control over page level allocator and protection flags | |
1852 | * use __vmalloc_node() instead. | |
1853 | */ | |
1854 | void *vzalloc_node(unsigned long size, int node) | |
1855 | { | |
1856 | return __vmalloc_node_flags(size, node, | |
1857 | GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); | |
1858 | } | |
1859 | EXPORT_SYMBOL(vzalloc_node); | |
1860 | ||
4dc3b16b PP |
1861 | #ifndef PAGE_KERNEL_EXEC |
1862 | # define PAGE_KERNEL_EXEC PAGE_KERNEL | |
1863 | #endif | |
1864 | ||
1da177e4 LT |
1865 | /** |
1866 | * vmalloc_exec - allocate virtually contiguous, executable memory | |
1da177e4 LT |
1867 | * @size: allocation size |
1868 | * | |
1869 | * Kernel-internal function to allocate enough pages to cover @size | |
1870 | * the page level allocator and map them into contiguous and | |
1871 | * executable kernel virtual space. | |
1872 | * | |
c1c8897f | 1873 | * For tight control over page level allocator and protection flags |
1da177e4 LT |
1874 | * use __vmalloc() instead. |
1875 | */ | |
1876 | ||
1da177e4 LT |
1877 | void *vmalloc_exec(unsigned long size) |
1878 | { | |
2dca6999 | 1879 | return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, |
00ef2d2f | 1880 | NUMA_NO_NODE, __builtin_return_address(0)); |
1da177e4 LT |
1881 | } |
1882 | ||
0d08e0d3 | 1883 | #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) |
7ac674f5 | 1884 | #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL |
0d08e0d3 | 1885 | #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) |
7ac674f5 | 1886 | #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL |
0d08e0d3 AK |
1887 | #else |
1888 | #define GFP_VMALLOC32 GFP_KERNEL | |
1889 | #endif | |
1890 | ||
1da177e4 LT |
1891 | /** |
1892 | * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) | |
1da177e4 LT |
1893 | * @size: allocation size |
1894 | * | |
1895 | * Allocate enough 32bit PA addressable pages to cover @size from the | |
1896 | * page level allocator and map them into contiguous kernel virtual space. | |
1897 | */ | |
1898 | void *vmalloc_32(unsigned long size) | |
1899 | { | |
2dca6999 | 1900 | return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, |
00ef2d2f | 1901 | NUMA_NO_NODE, __builtin_return_address(0)); |
1da177e4 | 1902 | } |
1da177e4 LT |
1903 | EXPORT_SYMBOL(vmalloc_32); |
1904 | ||
83342314 | 1905 | /** |
ead04089 | 1906 | * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory |
83342314 | 1907 | * @size: allocation size |
ead04089 REB |
1908 | * |
1909 | * The resulting memory area is 32bit addressable and zeroed so it can be | |
1910 | * mapped to userspace without leaking data. | |
83342314 NP |
1911 | */ |
1912 | void *vmalloc_32_user(unsigned long size) | |
1913 | { | |
1914 | struct vm_struct *area; | |
1915 | void *ret; | |
1916 | ||
2dca6999 | 1917 | ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, |
00ef2d2f | 1918 | NUMA_NO_NODE, __builtin_return_address(0)); |
2b4ac44e | 1919 | if (ret) { |
db64fe02 | 1920 | area = find_vm_area(ret); |
2b4ac44e | 1921 | area->flags |= VM_USERMAP; |
2b4ac44e | 1922 | } |
83342314 NP |
1923 | return ret; |
1924 | } | |
1925 | EXPORT_SYMBOL(vmalloc_32_user); | |
1926 | ||
d0107eb0 KH |
1927 | /* |
1928 | * small helper routine , copy contents to buf from addr. | |
1929 | * If the page is not present, fill zero. | |
1930 | */ | |
1931 | ||
1932 | static int aligned_vread(char *buf, char *addr, unsigned long count) | |
1933 | { | |
1934 | struct page *p; | |
1935 | int copied = 0; | |
1936 | ||
1937 | while (count) { | |
1938 | unsigned long offset, length; | |
1939 | ||
891c49ab | 1940 | offset = offset_in_page(addr); |
d0107eb0 KH |
1941 | length = PAGE_SIZE - offset; |
1942 | if (length > count) | |
1943 | length = count; | |
1944 | p = vmalloc_to_page(addr); | |
1945 | /* | |
1946 | * To do safe access to this _mapped_ area, we need | |
1947 | * lock. But adding lock here means that we need to add | |
1948 | * overhead of vmalloc()/vfree() calles for this _debug_ | |
1949 | * interface, rarely used. Instead of that, we'll use | |
1950 | * kmap() and get small overhead in this access function. | |
1951 | */ | |
1952 | if (p) { | |
1953 | /* | |
1954 | * we can expect USER0 is not used (see vread/vwrite's | |
1955 | * function description) | |
1956 | */ | |
9b04c5fe | 1957 | void *map = kmap_atomic(p); |
d0107eb0 | 1958 | memcpy(buf, map + offset, length); |
9b04c5fe | 1959 | kunmap_atomic(map); |
d0107eb0 KH |
1960 | } else |
1961 | memset(buf, 0, length); | |
1962 | ||
1963 | addr += length; | |
1964 | buf += length; | |
1965 | copied += length; | |
1966 | count -= length; | |
1967 | } | |
1968 | return copied; | |
1969 | } | |
1970 | ||
1971 | static int aligned_vwrite(char *buf, char *addr, unsigned long count) | |
1972 | { | |
1973 | struct page *p; | |
1974 | int copied = 0; | |
1975 | ||
1976 | while (count) { | |
1977 | unsigned long offset, length; | |
1978 | ||
891c49ab | 1979 | offset = offset_in_page(addr); |
d0107eb0 KH |
1980 | length = PAGE_SIZE - offset; |
1981 | if (length > count) | |
1982 | length = count; | |
1983 | p = vmalloc_to_page(addr); | |
1984 | /* | |
1985 | * To do safe access to this _mapped_ area, we need | |
1986 | * lock. But adding lock here means that we need to add | |
1987 | * overhead of vmalloc()/vfree() calles for this _debug_ | |
1988 | * interface, rarely used. Instead of that, we'll use | |
1989 | * kmap() and get small overhead in this access function. | |
1990 | */ | |
1991 | if (p) { | |
1992 | /* | |
1993 | * we can expect USER0 is not used (see vread/vwrite's | |
1994 | * function description) | |
1995 | */ | |
9b04c5fe | 1996 | void *map = kmap_atomic(p); |
d0107eb0 | 1997 | memcpy(map + offset, buf, length); |
9b04c5fe | 1998 | kunmap_atomic(map); |
d0107eb0 KH |
1999 | } |
2000 | addr += length; | |
2001 | buf += length; | |
2002 | copied += length; | |
2003 | count -= length; | |
2004 | } | |
2005 | return copied; | |
2006 | } | |
2007 | ||
2008 | /** | |
2009 | * vread() - read vmalloc area in a safe way. | |
2010 | * @buf: buffer for reading data | |
2011 | * @addr: vm address. | |
2012 | * @count: number of bytes to be read. | |
2013 | * | |
2014 | * Returns # of bytes which addr and buf should be increased. | |
2015 | * (same number to @count). Returns 0 if [addr...addr+count) doesn't | |
2016 | * includes any intersect with alive vmalloc area. | |
2017 | * | |
2018 | * This function checks that addr is a valid vmalloc'ed area, and | |
2019 | * copy data from that area to a given buffer. If the given memory range | |
2020 | * of [addr...addr+count) includes some valid address, data is copied to | |
2021 | * proper area of @buf. If there are memory holes, they'll be zero-filled. | |
2022 | * IOREMAP area is treated as memory hole and no copy is done. | |
2023 | * | |
2024 | * If [addr...addr+count) doesn't includes any intersects with alive | |
a8e5202d | 2025 | * vm_struct area, returns 0. @buf should be kernel's buffer. |
d0107eb0 KH |
2026 | * |
2027 | * Note: In usual ops, vread() is never necessary because the caller | |
2028 | * should know vmalloc() area is valid and can use memcpy(). | |
2029 | * This is for routines which have to access vmalloc area without | |
2030 | * any informaion, as /dev/kmem. | |
2031 | * | |
2032 | */ | |
2033 | ||
1da177e4 LT |
2034 | long vread(char *buf, char *addr, unsigned long count) |
2035 | { | |
e81ce85f JK |
2036 | struct vmap_area *va; |
2037 | struct vm_struct *vm; | |
1da177e4 | 2038 | char *vaddr, *buf_start = buf; |
d0107eb0 | 2039 | unsigned long buflen = count; |
1da177e4 LT |
2040 | unsigned long n; |
2041 | ||
2042 | /* Don't allow overflow */ | |
2043 | if ((unsigned long) addr + count < count) | |
2044 | count = -(unsigned long) addr; | |
2045 | ||
e81ce85f JK |
2046 | spin_lock(&vmap_area_lock); |
2047 | list_for_each_entry(va, &vmap_area_list, list) { | |
2048 | if (!count) | |
2049 | break; | |
2050 | ||
2051 | if (!(va->flags & VM_VM_AREA)) | |
2052 | continue; | |
2053 | ||
2054 | vm = va->vm; | |
2055 | vaddr = (char *) vm->addr; | |
762216ab | 2056 | if (addr >= vaddr + get_vm_area_size(vm)) |
1da177e4 LT |
2057 | continue; |
2058 | while (addr < vaddr) { | |
2059 | if (count == 0) | |
2060 | goto finished; | |
2061 | *buf = '\0'; | |
2062 | buf++; | |
2063 | addr++; | |
2064 | count--; | |
2065 | } | |
762216ab | 2066 | n = vaddr + get_vm_area_size(vm) - addr; |
d0107eb0 KH |
2067 | if (n > count) |
2068 | n = count; | |
e81ce85f | 2069 | if (!(vm->flags & VM_IOREMAP)) |
d0107eb0 KH |
2070 | aligned_vread(buf, addr, n); |
2071 | else /* IOREMAP area is treated as memory hole */ | |
2072 | memset(buf, 0, n); | |
2073 | buf += n; | |
2074 | addr += n; | |
2075 | count -= n; | |
1da177e4 LT |
2076 | } |
2077 | finished: | |
e81ce85f | 2078 | spin_unlock(&vmap_area_lock); |
d0107eb0 KH |
2079 | |
2080 | if (buf == buf_start) | |
2081 | return 0; | |
2082 | /* zero-fill memory holes */ | |
2083 | if (buf != buf_start + buflen) | |
2084 | memset(buf, 0, buflen - (buf - buf_start)); | |
2085 | ||
2086 | return buflen; | |
1da177e4 LT |
2087 | } |
2088 | ||
d0107eb0 KH |
2089 | /** |
2090 | * vwrite() - write vmalloc area in a safe way. | |
2091 | * @buf: buffer for source data | |
2092 | * @addr: vm address. | |
2093 | * @count: number of bytes to be read. | |
2094 | * | |
2095 | * Returns # of bytes which addr and buf should be incresed. | |
2096 | * (same number to @count). | |
2097 | * If [addr...addr+count) doesn't includes any intersect with valid | |
2098 | * vmalloc area, returns 0. | |
2099 | * | |
2100 | * This function checks that addr is a valid vmalloc'ed area, and | |
2101 | * copy data from a buffer to the given addr. If specified range of | |
2102 | * [addr...addr+count) includes some valid address, data is copied from | |
2103 | * proper area of @buf. If there are memory holes, no copy to hole. | |
2104 | * IOREMAP area is treated as memory hole and no copy is done. | |
2105 | * | |
2106 | * If [addr...addr+count) doesn't includes any intersects with alive | |
a8e5202d | 2107 | * vm_struct area, returns 0. @buf should be kernel's buffer. |
d0107eb0 KH |
2108 | * |
2109 | * Note: In usual ops, vwrite() is never necessary because the caller | |
2110 | * should know vmalloc() area is valid and can use memcpy(). | |
2111 | * This is for routines which have to access vmalloc area without | |
2112 | * any informaion, as /dev/kmem. | |
d0107eb0 KH |
2113 | */ |
2114 | ||
1da177e4 LT |
2115 | long vwrite(char *buf, char *addr, unsigned long count) |
2116 | { | |
e81ce85f JK |
2117 | struct vmap_area *va; |
2118 | struct vm_struct *vm; | |
d0107eb0 KH |
2119 | char *vaddr; |
2120 | unsigned long n, buflen; | |
2121 | int copied = 0; | |
1da177e4 LT |
2122 | |
2123 | /* Don't allow overflow */ | |
2124 | if ((unsigned long) addr + count < count) | |
2125 | count = -(unsigned long) addr; | |
d0107eb0 | 2126 | buflen = count; |
1da177e4 | 2127 | |
e81ce85f JK |
2128 | spin_lock(&vmap_area_lock); |
2129 | list_for_each_entry(va, &vmap_area_list, list) { | |
2130 | if (!count) | |
2131 | break; | |
2132 | ||
2133 | if (!(va->flags & VM_VM_AREA)) | |
2134 | continue; | |
2135 | ||
2136 | vm = va->vm; | |
2137 | vaddr = (char *) vm->addr; | |
762216ab | 2138 | if (addr >= vaddr + get_vm_area_size(vm)) |
1da177e4 LT |
2139 | continue; |
2140 | while (addr < vaddr) { | |
2141 | if (count == 0) | |
2142 | goto finished; | |
2143 | buf++; | |
2144 | addr++; | |
2145 | count--; | |
2146 | } | |
762216ab | 2147 | n = vaddr + get_vm_area_size(vm) - addr; |
d0107eb0 KH |
2148 | if (n > count) |
2149 | n = count; | |
e81ce85f | 2150 | if (!(vm->flags & VM_IOREMAP)) { |
d0107eb0 KH |
2151 | aligned_vwrite(buf, addr, n); |
2152 | copied++; | |
2153 | } | |
2154 | buf += n; | |
2155 | addr += n; | |
2156 | count -= n; | |
1da177e4 LT |
2157 | } |
2158 | finished: | |
e81ce85f | 2159 | spin_unlock(&vmap_area_lock); |
d0107eb0 KH |
2160 | if (!copied) |
2161 | return 0; | |
2162 | return buflen; | |
1da177e4 | 2163 | } |
83342314 NP |
2164 | |
2165 | /** | |
e69e9d4a HD |
2166 | * remap_vmalloc_range_partial - map vmalloc pages to userspace |
2167 | * @vma: vma to cover | |
2168 | * @uaddr: target user address to start at | |
2169 | * @kaddr: virtual address of vmalloc kernel memory | |
2170 | * @size: size of map area | |
7682486b RD |
2171 | * |
2172 | * Returns: 0 for success, -Exxx on failure | |
83342314 | 2173 | * |
e69e9d4a HD |
2174 | * This function checks that @kaddr is a valid vmalloc'ed area, |
2175 | * and that it is big enough to cover the range starting at | |
2176 | * @uaddr in @vma. Will return failure if that criteria isn't | |
2177 | * met. | |
83342314 | 2178 | * |
72fd4a35 | 2179 | * Similar to remap_pfn_range() (see mm/memory.c) |
83342314 | 2180 | */ |
e69e9d4a HD |
2181 | int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, |
2182 | void *kaddr, unsigned long size) | |
83342314 NP |
2183 | { |
2184 | struct vm_struct *area; | |
83342314 | 2185 | |
e69e9d4a HD |
2186 | size = PAGE_ALIGN(size); |
2187 | ||
2188 | if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) | |
83342314 NP |
2189 | return -EINVAL; |
2190 | ||
e69e9d4a | 2191 | area = find_vm_area(kaddr); |
83342314 | 2192 | if (!area) |
db64fe02 | 2193 | return -EINVAL; |
83342314 NP |
2194 | |
2195 | if (!(area->flags & VM_USERMAP)) | |
db64fe02 | 2196 | return -EINVAL; |
83342314 | 2197 | |
e69e9d4a | 2198 | if (kaddr + size > area->addr + area->size) |
db64fe02 | 2199 | return -EINVAL; |
83342314 | 2200 | |
83342314 | 2201 | do { |
e69e9d4a | 2202 | struct page *page = vmalloc_to_page(kaddr); |
db64fe02 NP |
2203 | int ret; |
2204 | ||
83342314 NP |
2205 | ret = vm_insert_page(vma, uaddr, page); |
2206 | if (ret) | |
2207 | return ret; | |
2208 | ||
2209 | uaddr += PAGE_SIZE; | |
e69e9d4a HD |
2210 | kaddr += PAGE_SIZE; |
2211 | size -= PAGE_SIZE; | |
2212 | } while (size > 0); | |
83342314 | 2213 | |
314e51b9 | 2214 | vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; |
83342314 | 2215 | |
db64fe02 | 2216 | return 0; |
83342314 | 2217 | } |
e69e9d4a HD |
2218 | EXPORT_SYMBOL(remap_vmalloc_range_partial); |
2219 | ||
2220 | /** | |
2221 | * remap_vmalloc_range - map vmalloc pages to userspace | |
2222 | * @vma: vma to cover (map full range of vma) | |
2223 | * @addr: vmalloc memory | |
2224 | * @pgoff: number of pages into addr before first page to map | |
2225 | * | |
2226 | * Returns: 0 for success, -Exxx on failure | |
2227 | * | |
2228 | * This function checks that addr is a valid vmalloc'ed area, and | |
2229 | * that it is big enough to cover the vma. Will return failure if | |
2230 | * that criteria isn't met. | |
2231 | * | |
2232 | * Similar to remap_pfn_range() (see mm/memory.c) | |
2233 | */ | |
2234 | int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, | |
2235 | unsigned long pgoff) | |
2236 | { | |
2237 | return remap_vmalloc_range_partial(vma, vma->vm_start, | |
2238 | addr + (pgoff << PAGE_SHIFT), | |
2239 | vma->vm_end - vma->vm_start); | |
2240 | } | |
83342314 NP |
2241 | EXPORT_SYMBOL(remap_vmalloc_range); |
2242 | ||
1eeb66a1 CH |
2243 | /* |
2244 | * Implement a stub for vmalloc_sync_all() if the architecture chose not to | |
2245 | * have one. | |
2246 | */ | |
3b32123d | 2247 | void __weak vmalloc_sync_all(void) |
1eeb66a1 CH |
2248 | { |
2249 | } | |
5f4352fb JF |
2250 | |
2251 | ||
2f569afd | 2252 | static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) |
5f4352fb | 2253 | { |
cd12909c DV |
2254 | pte_t ***p = data; |
2255 | ||
2256 | if (p) { | |
2257 | *(*p) = pte; | |
2258 | (*p)++; | |
2259 | } | |
5f4352fb JF |
2260 | return 0; |
2261 | } | |
2262 | ||
2263 | /** | |
2264 | * alloc_vm_area - allocate a range of kernel address space | |
2265 | * @size: size of the area | |
cd12909c | 2266 | * @ptes: returns the PTEs for the address space |
7682486b RD |
2267 | * |
2268 | * Returns: NULL on failure, vm_struct on success | |
5f4352fb JF |
2269 | * |
2270 | * This function reserves a range of kernel address space, and | |
2271 | * allocates pagetables to map that range. No actual mappings | |
cd12909c DV |
2272 | * are created. |
2273 | * | |
2274 | * If @ptes is non-NULL, pointers to the PTEs (in init_mm) | |
2275 | * allocated for the VM area are returned. | |
5f4352fb | 2276 | */ |
cd12909c | 2277 | struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) |
5f4352fb JF |
2278 | { |
2279 | struct vm_struct *area; | |
2280 | ||
23016969 CL |
2281 | area = get_vm_area_caller(size, VM_IOREMAP, |
2282 | __builtin_return_address(0)); | |
5f4352fb JF |
2283 | if (area == NULL) |
2284 | return NULL; | |
2285 | ||
2286 | /* | |
2287 | * This ensures that page tables are constructed for this region | |
2288 | * of kernel virtual address space and mapped into init_mm. | |
2289 | */ | |
2290 | if (apply_to_page_range(&init_mm, (unsigned long)area->addr, | |
cd12909c | 2291 | size, f, ptes ? &ptes : NULL)) { |
5f4352fb JF |
2292 | free_vm_area(area); |
2293 | return NULL; | |
2294 | } | |
2295 | ||
5f4352fb JF |
2296 | return area; |
2297 | } | |
2298 | EXPORT_SYMBOL_GPL(alloc_vm_area); | |
2299 | ||
2300 | void free_vm_area(struct vm_struct *area) | |
2301 | { | |
2302 | struct vm_struct *ret; | |
2303 | ret = remove_vm_area(area->addr); | |
2304 | BUG_ON(ret != area); | |
2305 | kfree(area); | |
2306 | } | |
2307 | EXPORT_SYMBOL_GPL(free_vm_area); | |
a10aa579 | 2308 | |
4f8b02b4 | 2309 | #ifdef CONFIG_SMP |
ca23e405 TH |
2310 | static struct vmap_area *node_to_va(struct rb_node *n) |
2311 | { | |
2312 | return n ? rb_entry(n, struct vmap_area, rb_node) : NULL; | |
2313 | } | |
2314 | ||
2315 | /** | |
2316 | * pvm_find_next_prev - find the next and prev vmap_area surrounding @end | |
2317 | * @end: target address | |
2318 | * @pnext: out arg for the next vmap_area | |
2319 | * @pprev: out arg for the previous vmap_area | |
2320 | * | |
2321 | * Returns: %true if either or both of next and prev are found, | |
2322 | * %false if no vmap_area exists | |
2323 | * | |
2324 | * Find vmap_areas end addresses of which enclose @end. ie. if not | |
2325 | * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. | |
2326 | */ | |
2327 | static bool pvm_find_next_prev(unsigned long end, | |
2328 | struct vmap_area **pnext, | |
2329 | struct vmap_area **pprev) | |
2330 | { | |
2331 | struct rb_node *n = vmap_area_root.rb_node; | |
2332 | struct vmap_area *va = NULL; | |
2333 | ||
2334 | while (n) { | |
2335 | va = rb_entry(n, struct vmap_area, rb_node); | |
2336 | if (end < va->va_end) | |
2337 | n = n->rb_left; | |
2338 | else if (end > va->va_end) | |
2339 | n = n->rb_right; | |
2340 | else | |
2341 | break; | |
2342 | } | |
2343 | ||
2344 | if (!va) | |
2345 | return false; | |
2346 | ||
2347 | if (va->va_end > end) { | |
2348 | *pnext = va; | |
2349 | *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); | |
2350 | } else { | |
2351 | *pprev = va; | |
2352 | *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); | |
2353 | } | |
2354 | return true; | |
2355 | } | |
2356 | ||
2357 | /** | |
2358 | * pvm_determine_end - find the highest aligned address between two vmap_areas | |
2359 | * @pnext: in/out arg for the next vmap_area | |
2360 | * @pprev: in/out arg for the previous vmap_area | |
2361 | * @align: alignment | |
2362 | * | |
2363 | * Returns: determined end address | |
2364 | * | |
2365 | * Find the highest aligned address between *@pnext and *@pprev below | |
2366 | * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned | |
2367 | * down address is between the end addresses of the two vmap_areas. | |
2368 | * | |
2369 | * Please note that the address returned by this function may fall | |
2370 | * inside *@pnext vmap_area. The caller is responsible for checking | |
2371 | * that. | |
2372 | */ | |
2373 | static unsigned long pvm_determine_end(struct vmap_area **pnext, | |
2374 | struct vmap_area **pprev, | |
2375 | unsigned long align) | |
2376 | { | |
2377 | const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); | |
2378 | unsigned long addr; | |
2379 | ||
2380 | if (*pnext) | |
2381 | addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); | |
2382 | else | |
2383 | addr = vmalloc_end; | |
2384 | ||
2385 | while (*pprev && (*pprev)->va_end > addr) { | |
2386 | *pnext = *pprev; | |
2387 | *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); | |
2388 | } | |
2389 | ||
2390 | return addr; | |
2391 | } | |
2392 | ||
2393 | /** | |
2394 | * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator | |
2395 | * @offsets: array containing offset of each area | |
2396 | * @sizes: array containing size of each area | |
2397 | * @nr_vms: the number of areas to allocate | |
2398 | * @align: alignment, all entries in @offsets and @sizes must be aligned to this | |
ca23e405 TH |
2399 | * |
2400 | * Returns: kmalloc'd vm_struct pointer array pointing to allocated | |
2401 | * vm_structs on success, %NULL on failure | |
2402 | * | |
2403 | * Percpu allocator wants to use congruent vm areas so that it can | |
2404 | * maintain the offsets among percpu areas. This function allocates | |
ec3f64fc DR |
2405 | * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to |
2406 | * be scattered pretty far, distance between two areas easily going up | |
2407 | * to gigabytes. To avoid interacting with regular vmallocs, these | |
2408 | * areas are allocated from top. | |
ca23e405 TH |
2409 | * |
2410 | * Despite its complicated look, this allocator is rather simple. It | |
2411 | * does everything top-down and scans areas from the end looking for | |
2412 | * matching slot. While scanning, if any of the areas overlaps with | |
2413 | * existing vmap_area, the base address is pulled down to fit the | |
2414 | * area. Scanning is repeated till all the areas fit and then all | |
2415 | * necessary data structres are inserted and the result is returned. | |
2416 | */ | |
2417 | struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, | |
2418 | const size_t *sizes, int nr_vms, | |
ec3f64fc | 2419 | size_t align) |
ca23e405 TH |
2420 | { |
2421 | const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); | |
2422 | const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); | |
2423 | struct vmap_area **vas, *prev, *next; | |
2424 | struct vm_struct **vms; | |
2425 | int area, area2, last_area, term_area; | |
2426 | unsigned long base, start, end, last_end; | |
2427 | bool purged = false; | |
2428 | ||
ca23e405 | 2429 | /* verify parameters and allocate data structures */ |
891c49ab | 2430 | BUG_ON(offset_in_page(align) || !is_power_of_2(align)); |
ca23e405 TH |
2431 | for (last_area = 0, area = 0; area < nr_vms; area++) { |
2432 | start = offsets[area]; | |
2433 | end = start + sizes[area]; | |
2434 | ||
2435 | /* is everything aligned properly? */ | |
2436 | BUG_ON(!IS_ALIGNED(offsets[area], align)); | |
2437 | BUG_ON(!IS_ALIGNED(sizes[area], align)); | |
2438 | ||
2439 | /* detect the area with the highest address */ | |
2440 | if (start > offsets[last_area]) | |
2441 | last_area = area; | |
2442 | ||
2443 | for (area2 = 0; area2 < nr_vms; area2++) { | |
2444 | unsigned long start2 = offsets[area2]; | |
2445 | unsigned long end2 = start2 + sizes[area2]; | |
2446 | ||
2447 | if (area2 == area) | |
2448 | continue; | |
2449 | ||
2450 | BUG_ON(start2 >= start && start2 < end); | |
2451 | BUG_ON(end2 <= end && end2 > start); | |
2452 | } | |
2453 | } | |
2454 | last_end = offsets[last_area] + sizes[last_area]; | |
2455 | ||
2456 | if (vmalloc_end - vmalloc_start < last_end) { | |
2457 | WARN_ON(true); | |
2458 | return NULL; | |
2459 | } | |
2460 | ||
4d67d860 TM |
2461 | vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); |
2462 | vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); | |
ca23e405 | 2463 | if (!vas || !vms) |
f1db7afd | 2464 | goto err_free2; |
ca23e405 TH |
2465 | |
2466 | for (area = 0; area < nr_vms; area++) { | |
ec3f64fc DR |
2467 | vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL); |
2468 | vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); | |
ca23e405 TH |
2469 | if (!vas[area] || !vms[area]) |
2470 | goto err_free; | |
2471 | } | |
2472 | retry: | |
2473 | spin_lock(&vmap_area_lock); | |
2474 | ||
2475 | /* start scanning - we scan from the top, begin with the last area */ | |
2476 | area = term_area = last_area; | |
2477 | start = offsets[area]; | |
2478 | end = start + sizes[area]; | |
2479 | ||
2480 | if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { | |
2481 | base = vmalloc_end - last_end; | |
2482 | goto found; | |
2483 | } | |
2484 | base = pvm_determine_end(&next, &prev, align) - end; | |
2485 | ||
2486 | while (true) { | |
2487 | BUG_ON(next && next->va_end <= base + end); | |
2488 | BUG_ON(prev && prev->va_end > base + end); | |
2489 | ||
2490 | /* | |
2491 | * base might have underflowed, add last_end before | |
2492 | * comparing. | |
2493 | */ | |
2494 | if (base + last_end < vmalloc_start + last_end) { | |
2495 | spin_unlock(&vmap_area_lock); | |
2496 | if (!purged) { | |
2497 | purge_vmap_area_lazy(); | |
2498 | purged = true; | |
2499 | goto retry; | |
2500 | } | |
2501 | goto err_free; | |
2502 | } | |
2503 | ||
2504 | /* | |
2505 | * If next overlaps, move base downwards so that it's | |
2506 | * right below next and then recheck. | |
2507 | */ | |
2508 | if (next && next->va_start < base + end) { | |
2509 | base = pvm_determine_end(&next, &prev, align) - end; | |
2510 | term_area = area; | |
2511 | continue; | |
2512 | } | |
2513 | ||
2514 | /* | |
2515 | * If prev overlaps, shift down next and prev and move | |
2516 | * base so that it's right below new next and then | |
2517 | * recheck. | |
2518 | */ | |
2519 | if (prev && prev->va_end > base + start) { | |
2520 | next = prev; | |
2521 | prev = node_to_va(rb_prev(&next->rb_node)); | |
2522 | base = pvm_determine_end(&next, &prev, align) - end; | |
2523 | term_area = area; | |
2524 | continue; | |
2525 | } | |
2526 | ||
2527 | /* | |
2528 | * This area fits, move on to the previous one. If | |
2529 | * the previous one is the terminal one, we're done. | |
2530 | */ | |
2531 | area = (area + nr_vms - 1) % nr_vms; | |
2532 | if (area == term_area) | |
2533 | break; | |
2534 | start = offsets[area]; | |
2535 | end = start + sizes[area]; | |
2536 | pvm_find_next_prev(base + end, &next, &prev); | |
2537 | } | |
2538 | found: | |
2539 | /* we've found a fitting base, insert all va's */ | |
2540 | for (area = 0; area < nr_vms; area++) { | |
2541 | struct vmap_area *va = vas[area]; | |
2542 | ||
2543 | va->va_start = base + offsets[area]; | |
2544 | va->va_end = va->va_start + sizes[area]; | |
2545 | __insert_vmap_area(va); | |
2546 | } | |
2547 | ||
2548 | vmap_area_pcpu_hole = base + offsets[last_area]; | |
2549 | ||
2550 | spin_unlock(&vmap_area_lock); | |
2551 | ||
2552 | /* insert all vm's */ | |
2553 | for (area = 0; area < nr_vms; area++) | |
3645cb4a ZY |
2554 | setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, |
2555 | pcpu_get_vm_areas); | |
ca23e405 TH |
2556 | |
2557 | kfree(vas); | |
2558 | return vms; | |
2559 | ||
2560 | err_free: | |
2561 | for (area = 0; area < nr_vms; area++) { | |
f1db7afd KC |
2562 | kfree(vas[area]); |
2563 | kfree(vms[area]); | |
ca23e405 | 2564 | } |
f1db7afd | 2565 | err_free2: |
ca23e405 TH |
2566 | kfree(vas); |
2567 | kfree(vms); | |
2568 | return NULL; | |
2569 | } | |
2570 | ||
2571 | /** | |
2572 | * pcpu_free_vm_areas - free vmalloc areas for percpu allocator | |
2573 | * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() | |
2574 | * @nr_vms: the number of allocated areas | |
2575 | * | |
2576 | * Free vm_structs and the array allocated by pcpu_get_vm_areas(). | |
2577 | */ | |
2578 | void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) | |
2579 | { | |
2580 | int i; | |
2581 | ||
2582 | for (i = 0; i < nr_vms; i++) | |
2583 | free_vm_area(vms[i]); | |
2584 | kfree(vms); | |
2585 | } | |
4f8b02b4 | 2586 | #endif /* CONFIG_SMP */ |
a10aa579 CL |
2587 | |
2588 | #ifdef CONFIG_PROC_FS | |
2589 | static void *s_start(struct seq_file *m, loff_t *pos) | |
d4033afd | 2590 | __acquires(&vmap_area_lock) |
a10aa579 | 2591 | { |
d4033afd | 2592 | spin_lock(&vmap_area_lock); |
3f500069 | 2593 | return seq_list_start(&vmap_area_list, *pos); |
a10aa579 CL |
2594 | } |
2595 | ||
2596 | static void *s_next(struct seq_file *m, void *p, loff_t *pos) | |
2597 | { | |
3f500069 | 2598 | return seq_list_next(p, &vmap_area_list, pos); |
a10aa579 CL |
2599 | } |
2600 | ||
2601 | static void s_stop(struct seq_file *m, void *p) | |
d4033afd | 2602 | __releases(&vmap_area_lock) |
a10aa579 | 2603 | { |
d4033afd | 2604 | spin_unlock(&vmap_area_lock); |
a10aa579 CL |
2605 | } |
2606 | ||
a47a126a ED |
2607 | static void show_numa_info(struct seq_file *m, struct vm_struct *v) |
2608 | { | |
e5adfffc | 2609 | if (IS_ENABLED(CONFIG_NUMA)) { |
a47a126a ED |
2610 | unsigned int nr, *counters = m->private; |
2611 | ||
2612 | if (!counters) | |
2613 | return; | |
2614 | ||
af12346c WL |
2615 | if (v->flags & VM_UNINITIALIZED) |
2616 | return; | |
7e5b528b DV |
2617 | /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ |
2618 | smp_rmb(); | |
af12346c | 2619 | |
a47a126a ED |
2620 | memset(counters, 0, nr_node_ids * sizeof(unsigned int)); |
2621 | ||
2622 | for (nr = 0; nr < v->nr_pages; nr++) | |
2623 | counters[page_to_nid(v->pages[nr])]++; | |
2624 | ||
2625 | for_each_node_state(nr, N_HIGH_MEMORY) | |
2626 | if (counters[nr]) | |
2627 | seq_printf(m, " N%u=%u", nr, counters[nr]); | |
2628 | } | |
2629 | } | |
2630 | ||
a10aa579 CL |
2631 | static int s_show(struct seq_file *m, void *p) |
2632 | { | |
3f500069 | 2633 | struct vmap_area *va; |
d4033afd JK |
2634 | struct vm_struct *v; |
2635 | ||
3f500069 | 2636 | va = list_entry(p, struct vmap_area, list); |
2637 | ||
c2ce8c14 WL |
2638 | /* |
2639 | * s_show can encounter race with remove_vm_area, !VM_VM_AREA on | |
2640 | * behalf of vmap area is being tear down or vm_map_ram allocation. | |
2641 | */ | |
2642 | if (!(va->flags & VM_VM_AREA)) | |
d4033afd | 2643 | return 0; |
d4033afd JK |
2644 | |
2645 | v = va->vm; | |
a10aa579 | 2646 | |
45ec1690 | 2647 | seq_printf(m, "0x%pK-0x%pK %7ld", |
a10aa579 CL |
2648 | v->addr, v->addr + v->size, v->size); |
2649 | ||
62c70bce JP |
2650 | if (v->caller) |
2651 | seq_printf(m, " %pS", v->caller); | |
23016969 | 2652 | |
a10aa579 CL |
2653 | if (v->nr_pages) |
2654 | seq_printf(m, " pages=%d", v->nr_pages); | |
2655 | ||
2656 | if (v->phys_addr) | |
ffa71f33 | 2657 | seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr); |
a10aa579 CL |
2658 | |
2659 | if (v->flags & VM_IOREMAP) | |
f4527c90 | 2660 | seq_puts(m, " ioremap"); |
a10aa579 CL |
2661 | |
2662 | if (v->flags & VM_ALLOC) | |
f4527c90 | 2663 | seq_puts(m, " vmalloc"); |
a10aa579 CL |
2664 | |
2665 | if (v->flags & VM_MAP) | |
f4527c90 | 2666 | seq_puts(m, " vmap"); |
a10aa579 CL |
2667 | |
2668 | if (v->flags & VM_USERMAP) | |
f4527c90 | 2669 | seq_puts(m, " user"); |
a10aa579 | 2670 | |
244d63ee | 2671 | if (is_vmalloc_addr(v->pages)) |
f4527c90 | 2672 | seq_puts(m, " vpages"); |
a10aa579 | 2673 | |
a47a126a | 2674 | show_numa_info(m, v); |
a10aa579 CL |
2675 | seq_putc(m, '\n'); |
2676 | return 0; | |
2677 | } | |
2678 | ||
5f6a6a9c | 2679 | static const struct seq_operations vmalloc_op = { |
a10aa579 CL |
2680 | .start = s_start, |
2681 | .next = s_next, | |
2682 | .stop = s_stop, | |
2683 | .show = s_show, | |
2684 | }; | |
5f6a6a9c AD |
2685 | |
2686 | static int vmalloc_open(struct inode *inode, struct file *file) | |
2687 | { | |
703394c1 RJ |
2688 | if (IS_ENABLED(CONFIG_NUMA)) |
2689 | return seq_open_private(file, &vmalloc_op, | |
2690 | nr_node_ids * sizeof(unsigned int)); | |
2691 | else | |
2692 | return seq_open(file, &vmalloc_op); | |
5f6a6a9c AD |
2693 | } |
2694 | ||
2695 | static const struct file_operations proc_vmalloc_operations = { | |
2696 | .open = vmalloc_open, | |
2697 | .read = seq_read, | |
2698 | .llseek = seq_lseek, | |
2699 | .release = seq_release_private, | |
2700 | }; | |
2701 | ||
2702 | static int __init proc_vmalloc_init(void) | |
2703 | { | |
2704 | proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); | |
2705 | return 0; | |
2706 | } | |
2707 | module_init(proc_vmalloc_init); | |
db3808c1 | 2708 | |
a10aa579 CL |
2709 | #endif |
2710 |