]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/vmalloc.c
lib/rbtree: get successor's color directly
[mirror_ubuntu-jammy-kernel.git] / mm / vmalloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/vmalloc.c
4 *
5 * Copyright (C) 1993 Linus Torvalds
6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
8 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 9 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
10 */
11
db64fe02 12#include <linux/vmalloc.h>
1da177e4
LT
13#include <linux/mm.h>
14#include <linux/module.h>
15#include <linux/highmem.h>
c3edc401 16#include <linux/sched/signal.h>
1da177e4
LT
17#include <linux/slab.h>
18#include <linux/spinlock.h>
19#include <linux/interrupt.h>
5f6a6a9c 20#include <linux/proc_fs.h>
a10aa579 21#include <linux/seq_file.h>
868b104d 22#include <linux/set_memory.h>
3ac7fe5a 23#include <linux/debugobjects.h>
23016969 24#include <linux/kallsyms.h>
db64fe02 25#include <linux/list.h>
4da56b99 26#include <linux/notifier.h>
db64fe02
NP
27#include <linux/rbtree.h>
28#include <linux/radix-tree.h>
29#include <linux/rcupdate.h>
f0aa6617 30#include <linux/pfn.h>
89219d37 31#include <linux/kmemleak.h>
60063497 32#include <linux/atomic.h>
3b32123d 33#include <linux/compiler.h>
32fcfd40 34#include <linux/llist.h>
0f616be1 35#include <linux/bitops.h>
68ad4a33 36#include <linux/rbtree_augmented.h>
3b32123d 37
7c0f6ba6 38#include <linux/uaccess.h>
1da177e4 39#include <asm/tlbflush.h>
2dca6999 40#include <asm/shmparam.h>
1da177e4 41
dd56b046
MG
42#include "internal.h"
43
32fcfd40
AV
44struct vfree_deferred {
45 struct llist_head list;
46 struct work_struct wq;
47};
48static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
49
50static void __vunmap(const void *, int);
51
52static void free_work(struct work_struct *w)
53{
54 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
894e58c1
BP
55 struct llist_node *t, *llnode;
56
57 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
58 __vunmap((void *)llnode, 1);
32fcfd40
AV
59}
60
db64fe02 61/*** Page table manipulation functions ***/
b221385b 62
1da177e4
LT
63static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
64{
65 pte_t *pte;
66
67 pte = pte_offset_kernel(pmd, addr);
68 do {
69 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
70 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
71 } while (pte++, addr += PAGE_SIZE, addr != end);
72}
73
db64fe02 74static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
75{
76 pmd_t *pmd;
77 unsigned long next;
78
79 pmd = pmd_offset(pud, addr);
80 do {
81 next = pmd_addr_end(addr, end);
b9820d8f
TK
82 if (pmd_clear_huge(pmd))
83 continue;
1da177e4
LT
84 if (pmd_none_or_clear_bad(pmd))
85 continue;
86 vunmap_pte_range(pmd, addr, next);
87 } while (pmd++, addr = next, addr != end);
88}
89
c2febafc 90static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
1da177e4
LT
91{
92 pud_t *pud;
93 unsigned long next;
94
c2febafc 95 pud = pud_offset(p4d, addr);
1da177e4
LT
96 do {
97 next = pud_addr_end(addr, end);
b9820d8f
TK
98 if (pud_clear_huge(pud))
99 continue;
1da177e4
LT
100 if (pud_none_or_clear_bad(pud))
101 continue;
102 vunmap_pmd_range(pud, addr, next);
103 } while (pud++, addr = next, addr != end);
104}
105
c2febafc
KS
106static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
107{
108 p4d_t *p4d;
109 unsigned long next;
110
111 p4d = p4d_offset(pgd, addr);
112 do {
113 next = p4d_addr_end(addr, end);
114 if (p4d_clear_huge(p4d))
115 continue;
116 if (p4d_none_or_clear_bad(p4d))
117 continue;
118 vunmap_pud_range(p4d, addr, next);
119 } while (p4d++, addr = next, addr != end);
120}
121
db64fe02 122static void vunmap_page_range(unsigned long addr, unsigned long end)
1da177e4
LT
123{
124 pgd_t *pgd;
125 unsigned long next;
1da177e4
LT
126
127 BUG_ON(addr >= end);
128 pgd = pgd_offset_k(addr);
1da177e4
LT
129 do {
130 next = pgd_addr_end(addr, end);
131 if (pgd_none_or_clear_bad(pgd))
132 continue;
c2febafc 133 vunmap_p4d_range(pgd, addr, next);
1da177e4 134 } while (pgd++, addr = next, addr != end);
1da177e4
LT
135}
136
137static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 138 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
139{
140 pte_t *pte;
141
db64fe02
NP
142 /*
143 * nr is a running index into the array which helps higher level
144 * callers keep track of where we're up to.
145 */
146
872fec16 147 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
148 if (!pte)
149 return -ENOMEM;
150 do {
db64fe02
NP
151 struct page *page = pages[*nr];
152
153 if (WARN_ON(!pte_none(*pte)))
154 return -EBUSY;
155 if (WARN_ON(!page))
1da177e4
LT
156 return -ENOMEM;
157 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 158 (*nr)++;
1da177e4
LT
159 } while (pte++, addr += PAGE_SIZE, addr != end);
160 return 0;
161}
162
db64fe02
NP
163static int vmap_pmd_range(pud_t *pud, unsigned long addr,
164 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
165{
166 pmd_t *pmd;
167 unsigned long next;
168
169 pmd = pmd_alloc(&init_mm, pud, addr);
170 if (!pmd)
171 return -ENOMEM;
172 do {
173 next = pmd_addr_end(addr, end);
db64fe02 174 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
175 return -ENOMEM;
176 } while (pmd++, addr = next, addr != end);
177 return 0;
178}
179
c2febafc 180static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
db64fe02 181 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
182{
183 pud_t *pud;
184 unsigned long next;
185
c2febafc 186 pud = pud_alloc(&init_mm, p4d, addr);
1da177e4
LT
187 if (!pud)
188 return -ENOMEM;
189 do {
190 next = pud_addr_end(addr, end);
db64fe02 191 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
192 return -ENOMEM;
193 } while (pud++, addr = next, addr != end);
194 return 0;
195}
196
c2febafc
KS
197static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
198 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
199{
200 p4d_t *p4d;
201 unsigned long next;
202
203 p4d = p4d_alloc(&init_mm, pgd, addr);
204 if (!p4d)
205 return -ENOMEM;
206 do {
207 next = p4d_addr_end(addr, end);
208 if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
209 return -ENOMEM;
210 } while (p4d++, addr = next, addr != end);
211 return 0;
212}
213
db64fe02
NP
214/*
215 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
216 * will have pfns corresponding to the "pages" array.
217 *
218 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
219 */
8fc48985
TH
220static int vmap_page_range_noflush(unsigned long start, unsigned long end,
221 pgprot_t prot, struct page **pages)
1da177e4
LT
222{
223 pgd_t *pgd;
224 unsigned long next;
2e4e27c7 225 unsigned long addr = start;
db64fe02
NP
226 int err = 0;
227 int nr = 0;
1da177e4
LT
228
229 BUG_ON(addr >= end);
230 pgd = pgd_offset_k(addr);
1da177e4
LT
231 do {
232 next = pgd_addr_end(addr, end);
c2febafc 233 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
1da177e4 234 if (err)
bf88c8c8 235 return err;
1da177e4 236 } while (pgd++, addr = next, addr != end);
db64fe02 237
db64fe02 238 return nr;
1da177e4
LT
239}
240
8fc48985
TH
241static int vmap_page_range(unsigned long start, unsigned long end,
242 pgprot_t prot, struct page **pages)
243{
244 int ret;
245
246 ret = vmap_page_range_noflush(start, end, prot, pages);
247 flush_cache_vmap(start, end);
248 return ret;
249}
250
81ac3ad9 251int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
252{
253 /*
ab4f2ee1 254 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
255 * and fall back on vmalloc() if that fails. Others
256 * just put it in the vmalloc space.
257 */
258#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
259 unsigned long addr = (unsigned long)x;
260 if (addr >= MODULES_VADDR && addr < MODULES_END)
261 return 1;
262#endif
263 return is_vmalloc_addr(x);
264}
265
48667e7a 266/*
add688fb 267 * Walk a vmap address to the struct page it maps.
48667e7a 268 */
add688fb 269struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
270{
271 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 272 struct page *page = NULL;
48667e7a 273 pgd_t *pgd = pgd_offset_k(addr);
c2febafc
KS
274 p4d_t *p4d;
275 pud_t *pud;
276 pmd_t *pmd;
277 pte_t *ptep, pte;
48667e7a 278
7aa413de
IM
279 /*
280 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
281 * architectures that do not vmalloc module space
282 */
73bdf0a6 283 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 284
c2febafc
KS
285 if (pgd_none(*pgd))
286 return NULL;
287 p4d = p4d_offset(pgd, addr);
288 if (p4d_none(*p4d))
289 return NULL;
290 pud = pud_offset(p4d, addr);
029c54b0
AB
291
292 /*
293 * Don't dereference bad PUD or PMD (below) entries. This will also
294 * identify huge mappings, which we may encounter on architectures
295 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
296 * identified as vmalloc addresses by is_vmalloc_addr(), but are
297 * not [unambiguously] associated with a struct page, so there is
298 * no correct value to return for them.
299 */
300 WARN_ON_ONCE(pud_bad(*pud));
301 if (pud_none(*pud) || pud_bad(*pud))
c2febafc
KS
302 return NULL;
303 pmd = pmd_offset(pud, addr);
029c54b0
AB
304 WARN_ON_ONCE(pmd_bad(*pmd));
305 if (pmd_none(*pmd) || pmd_bad(*pmd))
c2febafc
KS
306 return NULL;
307
308 ptep = pte_offset_map(pmd, addr);
309 pte = *ptep;
310 if (pte_present(pte))
311 page = pte_page(pte);
312 pte_unmap(ptep);
add688fb 313 return page;
48667e7a 314}
add688fb 315EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
316
317/*
add688fb 318 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 319 */
add688fb 320unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 321{
add688fb 322 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 323}
add688fb 324EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 325
db64fe02
NP
326
327/*** Global kva allocator ***/
328
bb850f4d 329#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
a6cf4e0f 330#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
bb850f4d 331
db64fe02 332
db64fe02 333static DEFINE_SPINLOCK(vmap_area_lock);
e36176be 334static DEFINE_SPINLOCK(free_vmap_area_lock);
f1c4069e
JK
335/* Export for kexec only */
336LIST_HEAD(vmap_area_list);
80c4bd7a 337static LLIST_HEAD(vmap_purge_list);
89699605 338static struct rb_root vmap_area_root = RB_ROOT;
68ad4a33 339static bool vmap_initialized __read_mostly;
89699605 340
68ad4a33
URS
341/*
342 * This kmem_cache is used for vmap_area objects. Instead of
343 * allocating from slab we reuse an object from this cache to
344 * make things faster. Especially in "no edge" splitting of
345 * free block.
346 */
347static struct kmem_cache *vmap_area_cachep;
348
349/*
350 * This linked list is used in pair with free_vmap_area_root.
351 * It gives O(1) access to prev/next to perform fast coalescing.
352 */
353static LIST_HEAD(free_vmap_area_list);
354
355/*
356 * This augment red-black tree represents the free vmap space.
357 * All vmap_area objects in this tree are sorted by va->va_start
358 * address. It is used for allocation and merging when a vmap
359 * object is released.
360 *
361 * Each vmap_area node contains a maximum available free block
362 * of its sub-tree, right or left. Therefore it is possible to
363 * find a lowest match of free area.
364 */
365static struct rb_root free_vmap_area_root = RB_ROOT;
366
82dd23e8
URS
367/*
368 * Preload a CPU with one object for "no edge" split case. The
369 * aim is to get rid of allocations from the atomic context, thus
370 * to use more permissive allocation masks.
371 */
372static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
373
68ad4a33
URS
374static __always_inline unsigned long
375va_size(struct vmap_area *va)
376{
377 return (va->va_end - va->va_start);
378}
379
380static __always_inline unsigned long
381get_subtree_max_size(struct rb_node *node)
382{
383 struct vmap_area *va;
384
385 va = rb_entry_safe(node, struct vmap_area, rb_node);
386 return va ? va->subtree_max_size : 0;
387}
89699605 388
68ad4a33
URS
389/*
390 * Gets called when remove the node and rotate.
391 */
392static __always_inline unsigned long
393compute_subtree_max_size(struct vmap_area *va)
394{
395 return max3(va_size(va),
396 get_subtree_max_size(va->rb_node.rb_left),
397 get_subtree_max_size(va->rb_node.rb_right));
398}
399
315cc066
ML
400RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
401 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
68ad4a33
URS
402
403static void purge_vmap_area_lazy(void);
404static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
405static unsigned long lazy_max_pages(void);
db64fe02 406
97105f0a
RG
407static atomic_long_t nr_vmalloc_pages;
408
409unsigned long vmalloc_nr_pages(void)
410{
411 return atomic_long_read(&nr_vmalloc_pages);
412}
413
db64fe02 414static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 415{
db64fe02
NP
416 struct rb_node *n = vmap_area_root.rb_node;
417
418 while (n) {
419 struct vmap_area *va;
420
421 va = rb_entry(n, struct vmap_area, rb_node);
422 if (addr < va->va_start)
423 n = n->rb_left;
cef2ac3f 424 else if (addr >= va->va_end)
db64fe02
NP
425 n = n->rb_right;
426 else
427 return va;
428 }
429
430 return NULL;
431}
432
68ad4a33
URS
433/*
434 * This function returns back addresses of parent node
435 * and its left or right link for further processing.
436 */
437static __always_inline struct rb_node **
438find_va_links(struct vmap_area *va,
439 struct rb_root *root, struct rb_node *from,
440 struct rb_node **parent)
441{
442 struct vmap_area *tmp_va;
443 struct rb_node **link;
444
445 if (root) {
446 link = &root->rb_node;
447 if (unlikely(!*link)) {
448 *parent = NULL;
449 return link;
450 }
451 } else {
452 link = &from;
453 }
db64fe02 454
68ad4a33
URS
455 /*
456 * Go to the bottom of the tree. When we hit the last point
457 * we end up with parent rb_node and correct direction, i name
458 * it link, where the new va->rb_node will be attached to.
459 */
460 do {
461 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
db64fe02 462
68ad4a33
URS
463 /*
464 * During the traversal we also do some sanity check.
465 * Trigger the BUG() if there are sides(left/right)
466 * or full overlaps.
467 */
468 if (va->va_start < tmp_va->va_end &&
469 va->va_end <= tmp_va->va_start)
470 link = &(*link)->rb_left;
471 else if (va->va_end > tmp_va->va_start &&
472 va->va_start >= tmp_va->va_end)
473 link = &(*link)->rb_right;
db64fe02
NP
474 else
475 BUG();
68ad4a33
URS
476 } while (*link);
477
478 *parent = &tmp_va->rb_node;
479 return link;
480}
481
482static __always_inline struct list_head *
483get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
484{
485 struct list_head *list;
486
487 if (unlikely(!parent))
488 /*
489 * The red-black tree where we try to find VA neighbors
490 * before merging or inserting is empty, i.e. it means
491 * there is no free vmap space. Normally it does not
492 * happen but we handle this case anyway.
493 */
494 return NULL;
495
496 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
497 return (&parent->rb_right == link ? list->next : list);
498}
499
500static __always_inline void
501link_va(struct vmap_area *va, struct rb_root *root,
502 struct rb_node *parent, struct rb_node **link, struct list_head *head)
503{
504 /*
505 * VA is still not in the list, but we can
506 * identify its future previous list_head node.
507 */
508 if (likely(parent)) {
509 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
510 if (&parent->rb_right != link)
511 head = head->prev;
db64fe02
NP
512 }
513
68ad4a33
URS
514 /* Insert to the rb-tree */
515 rb_link_node(&va->rb_node, parent, link);
516 if (root == &free_vmap_area_root) {
517 /*
518 * Some explanation here. Just perform simple insertion
519 * to the tree. We do not set va->subtree_max_size to
520 * its current size before calling rb_insert_augmented().
521 * It is because of we populate the tree from the bottom
522 * to parent levels when the node _is_ in the tree.
523 *
524 * Therefore we set subtree_max_size to zero after insertion,
525 * to let __augment_tree_propagate_from() puts everything to
526 * the correct order later on.
527 */
528 rb_insert_augmented(&va->rb_node,
529 root, &free_vmap_area_rb_augment_cb);
530 va->subtree_max_size = 0;
531 } else {
532 rb_insert_color(&va->rb_node, root);
533 }
db64fe02 534
68ad4a33
URS
535 /* Address-sort this list */
536 list_add(&va->list, head);
db64fe02
NP
537}
538
68ad4a33
URS
539static __always_inline void
540unlink_va(struct vmap_area *va, struct rb_root *root)
541{
460e42d1
URS
542 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
543 return;
db64fe02 544
460e42d1
URS
545 if (root == &free_vmap_area_root)
546 rb_erase_augmented(&va->rb_node,
547 root, &free_vmap_area_rb_augment_cb);
548 else
549 rb_erase(&va->rb_node, root);
550
551 list_del(&va->list);
552 RB_CLEAR_NODE(&va->rb_node);
68ad4a33
URS
553}
554
bb850f4d
URS
555#if DEBUG_AUGMENT_PROPAGATE_CHECK
556static void
557augment_tree_propagate_check(struct rb_node *n)
558{
559 struct vmap_area *va;
560 struct rb_node *node;
561 unsigned long size;
562 bool found = false;
563
564 if (n == NULL)
565 return;
566
567 va = rb_entry(n, struct vmap_area, rb_node);
568 size = va->subtree_max_size;
569 node = n;
570
571 while (node) {
572 va = rb_entry(node, struct vmap_area, rb_node);
573
574 if (get_subtree_max_size(node->rb_left) == size) {
575 node = node->rb_left;
576 } else {
577 if (va_size(va) == size) {
578 found = true;
579 break;
580 }
581
582 node = node->rb_right;
583 }
584 }
585
586 if (!found) {
587 va = rb_entry(n, struct vmap_area, rb_node);
588 pr_emerg("tree is corrupted: %lu, %lu\n",
589 va_size(va), va->subtree_max_size);
590 }
591
592 augment_tree_propagate_check(n->rb_left);
593 augment_tree_propagate_check(n->rb_right);
594}
595#endif
596
68ad4a33
URS
597/*
598 * This function populates subtree_max_size from bottom to upper
599 * levels starting from VA point. The propagation must be done
600 * when VA size is modified by changing its va_start/va_end. Or
601 * in case of newly inserting of VA to the tree.
602 *
603 * It means that __augment_tree_propagate_from() must be called:
604 * - After VA has been inserted to the tree(free path);
605 * - After VA has been shrunk(allocation path);
606 * - After VA has been increased(merging path).
607 *
608 * Please note that, it does not mean that upper parent nodes
609 * and their subtree_max_size are recalculated all the time up
610 * to the root node.
611 *
612 * 4--8
613 * /\
614 * / \
615 * / \
616 * 2--2 8--8
617 *
618 * For example if we modify the node 4, shrinking it to 2, then
619 * no any modification is required. If we shrink the node 2 to 1
620 * its subtree_max_size is updated only, and set to 1. If we shrink
621 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
622 * node becomes 4--6.
623 */
624static __always_inline void
625augment_tree_propagate_from(struct vmap_area *va)
626{
627 struct rb_node *node = &va->rb_node;
628 unsigned long new_va_sub_max_size;
629
630 while (node) {
631 va = rb_entry(node, struct vmap_area, rb_node);
632 new_va_sub_max_size = compute_subtree_max_size(va);
633
634 /*
635 * If the newly calculated maximum available size of the
636 * subtree is equal to the current one, then it means that
637 * the tree is propagated correctly. So we have to stop at
638 * this point to save cycles.
639 */
640 if (va->subtree_max_size == new_va_sub_max_size)
641 break;
642
643 va->subtree_max_size = new_va_sub_max_size;
644 node = rb_parent(&va->rb_node);
645 }
bb850f4d
URS
646
647#if DEBUG_AUGMENT_PROPAGATE_CHECK
648 augment_tree_propagate_check(free_vmap_area_root.rb_node);
649#endif
68ad4a33
URS
650}
651
652static void
653insert_vmap_area(struct vmap_area *va,
654 struct rb_root *root, struct list_head *head)
655{
656 struct rb_node **link;
657 struct rb_node *parent;
658
659 link = find_va_links(va, root, NULL, &parent);
660 link_va(va, root, parent, link, head);
661}
662
663static void
664insert_vmap_area_augment(struct vmap_area *va,
665 struct rb_node *from, struct rb_root *root,
666 struct list_head *head)
667{
668 struct rb_node **link;
669 struct rb_node *parent;
670
671 if (from)
672 link = find_va_links(va, NULL, from, &parent);
673 else
674 link = find_va_links(va, root, NULL, &parent);
675
676 link_va(va, root, parent, link, head);
677 augment_tree_propagate_from(va);
678}
679
680/*
681 * Merge de-allocated chunk of VA memory with previous
682 * and next free blocks. If coalesce is not done a new
683 * free area is inserted. If VA has been merged, it is
684 * freed.
685 */
3c5c3cfb 686static __always_inline struct vmap_area *
68ad4a33
URS
687merge_or_add_vmap_area(struct vmap_area *va,
688 struct rb_root *root, struct list_head *head)
689{
690 struct vmap_area *sibling;
691 struct list_head *next;
692 struct rb_node **link;
693 struct rb_node *parent;
694 bool merged = false;
695
696 /*
697 * Find a place in the tree where VA potentially will be
698 * inserted, unless it is merged with its sibling/siblings.
699 */
700 link = find_va_links(va, root, NULL, &parent);
701
702 /*
703 * Get next node of VA to check if merging can be done.
704 */
705 next = get_va_next_sibling(parent, link);
706 if (unlikely(next == NULL))
707 goto insert;
708
709 /*
710 * start end
711 * | |
712 * |<------VA------>|<-----Next----->|
713 * | |
714 * start end
715 */
716 if (next != head) {
717 sibling = list_entry(next, struct vmap_area, list);
718 if (sibling->va_start == va->va_end) {
719 sibling->va_start = va->va_start;
720
721 /* Check and update the tree if needed. */
722 augment_tree_propagate_from(sibling);
723
68ad4a33
URS
724 /* Free vmap_area object. */
725 kmem_cache_free(vmap_area_cachep, va);
726
727 /* Point to the new merged area. */
728 va = sibling;
729 merged = true;
730 }
731 }
732
733 /*
734 * start end
735 * | |
736 * |<-----Prev----->|<------VA------>|
737 * | |
738 * start end
739 */
740 if (next->prev != head) {
741 sibling = list_entry(next->prev, struct vmap_area, list);
742 if (sibling->va_end == va->va_start) {
743 sibling->va_end = va->va_end;
744
745 /* Check and update the tree if needed. */
746 augment_tree_propagate_from(sibling);
747
54f63d9d
URS
748 if (merged)
749 unlink_va(va, root);
68ad4a33
URS
750
751 /* Free vmap_area object. */
752 kmem_cache_free(vmap_area_cachep, va);
3c5c3cfb
DA
753
754 /* Point to the new merged area. */
755 va = sibling;
756 merged = true;
68ad4a33
URS
757 }
758 }
759
760insert:
761 if (!merged) {
762 link_va(va, root, parent, link, head);
763 augment_tree_propagate_from(va);
764 }
3c5c3cfb
DA
765
766 return va;
68ad4a33
URS
767}
768
769static __always_inline bool
770is_within_this_va(struct vmap_area *va, unsigned long size,
771 unsigned long align, unsigned long vstart)
772{
773 unsigned long nva_start_addr;
774
775 if (va->va_start > vstart)
776 nva_start_addr = ALIGN(va->va_start, align);
777 else
778 nva_start_addr = ALIGN(vstart, align);
779
780 /* Can be overflowed due to big size or alignment. */
781 if (nva_start_addr + size < nva_start_addr ||
782 nva_start_addr < vstart)
783 return false;
784
785 return (nva_start_addr + size <= va->va_end);
786}
787
788/*
789 * Find the first free block(lowest start address) in the tree,
790 * that will accomplish the request corresponding to passing
791 * parameters.
792 */
793static __always_inline struct vmap_area *
794find_vmap_lowest_match(unsigned long size,
795 unsigned long align, unsigned long vstart)
796{
797 struct vmap_area *va;
798 struct rb_node *node;
799 unsigned long length;
800
801 /* Start from the root. */
802 node = free_vmap_area_root.rb_node;
803
804 /* Adjust the search size for alignment overhead. */
805 length = size + align - 1;
806
807 while (node) {
808 va = rb_entry(node, struct vmap_area, rb_node);
809
810 if (get_subtree_max_size(node->rb_left) >= length &&
811 vstart < va->va_start) {
812 node = node->rb_left;
813 } else {
814 if (is_within_this_va(va, size, align, vstart))
815 return va;
816
817 /*
818 * Does not make sense to go deeper towards the right
819 * sub-tree if it does not have a free block that is
820 * equal or bigger to the requested search length.
821 */
822 if (get_subtree_max_size(node->rb_right) >= length) {
823 node = node->rb_right;
824 continue;
825 }
826
827 /*
3806b041 828 * OK. We roll back and find the first right sub-tree,
68ad4a33
URS
829 * that will satisfy the search criteria. It can happen
830 * only once due to "vstart" restriction.
831 */
832 while ((node = rb_parent(node))) {
833 va = rb_entry(node, struct vmap_area, rb_node);
834 if (is_within_this_va(va, size, align, vstart))
835 return va;
836
837 if (get_subtree_max_size(node->rb_right) >= length &&
838 vstart <= va->va_start) {
839 node = node->rb_right;
840 break;
841 }
842 }
843 }
844 }
845
846 return NULL;
847}
848
a6cf4e0f
URS
849#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
850#include <linux/random.h>
851
852static struct vmap_area *
853find_vmap_lowest_linear_match(unsigned long size,
854 unsigned long align, unsigned long vstart)
855{
856 struct vmap_area *va;
857
858 list_for_each_entry(va, &free_vmap_area_list, list) {
859 if (!is_within_this_va(va, size, align, vstart))
860 continue;
861
862 return va;
863 }
864
865 return NULL;
866}
867
868static void
869find_vmap_lowest_match_check(unsigned long size)
870{
871 struct vmap_area *va_1, *va_2;
872 unsigned long vstart;
873 unsigned int rnd;
874
875 get_random_bytes(&rnd, sizeof(rnd));
876 vstart = VMALLOC_START + rnd;
877
878 va_1 = find_vmap_lowest_match(size, 1, vstart);
879 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
880
881 if (va_1 != va_2)
882 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
883 va_1, va_2, vstart);
884}
885#endif
886
68ad4a33
URS
887enum fit_type {
888 NOTHING_FIT = 0,
889 FL_FIT_TYPE = 1, /* full fit */
890 LE_FIT_TYPE = 2, /* left edge fit */
891 RE_FIT_TYPE = 3, /* right edge fit */
892 NE_FIT_TYPE = 4 /* no edge fit */
893};
894
895static __always_inline enum fit_type
896classify_va_fit_type(struct vmap_area *va,
897 unsigned long nva_start_addr, unsigned long size)
898{
899 enum fit_type type;
900
901 /* Check if it is within VA. */
902 if (nva_start_addr < va->va_start ||
903 nva_start_addr + size > va->va_end)
904 return NOTHING_FIT;
905
906 /* Now classify. */
907 if (va->va_start == nva_start_addr) {
908 if (va->va_end == nva_start_addr + size)
909 type = FL_FIT_TYPE;
910 else
911 type = LE_FIT_TYPE;
912 } else if (va->va_end == nva_start_addr + size) {
913 type = RE_FIT_TYPE;
914 } else {
915 type = NE_FIT_TYPE;
916 }
917
918 return type;
919}
920
921static __always_inline int
922adjust_va_to_fit_type(struct vmap_area *va,
923 unsigned long nva_start_addr, unsigned long size,
924 enum fit_type type)
925{
2c929233 926 struct vmap_area *lva = NULL;
68ad4a33
URS
927
928 if (type == FL_FIT_TYPE) {
929 /*
930 * No need to split VA, it fully fits.
931 *
932 * | |
933 * V NVA V
934 * |---------------|
935 */
936 unlink_va(va, &free_vmap_area_root);
937 kmem_cache_free(vmap_area_cachep, va);
938 } else if (type == LE_FIT_TYPE) {
939 /*
940 * Split left edge of fit VA.
941 *
942 * | |
943 * V NVA V R
944 * |-------|-------|
945 */
946 va->va_start += size;
947 } else if (type == RE_FIT_TYPE) {
948 /*
949 * Split right edge of fit VA.
950 *
951 * | |
952 * L V NVA V
953 * |-------|-------|
954 */
955 va->va_end = nva_start_addr;
956 } else if (type == NE_FIT_TYPE) {
957 /*
958 * Split no edge of fit VA.
959 *
960 * | |
961 * L V NVA V R
962 * |---|-------|---|
963 */
82dd23e8
URS
964 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
965 if (unlikely(!lva)) {
966 /*
967 * For percpu allocator we do not do any pre-allocation
968 * and leave it as it is. The reason is it most likely
969 * never ends up with NE_FIT_TYPE splitting. In case of
970 * percpu allocations offsets and sizes are aligned to
971 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
972 * are its main fitting cases.
973 *
974 * There are a few exceptions though, as an example it is
975 * a first allocation (early boot up) when we have "one"
976 * big free space that has to be split.
060650a2
URS
977 *
978 * Also we can hit this path in case of regular "vmap"
979 * allocations, if "this" current CPU was not preloaded.
980 * See the comment in alloc_vmap_area() why. If so, then
981 * GFP_NOWAIT is used instead to get an extra object for
982 * split purpose. That is rare and most time does not
983 * occur.
984 *
985 * What happens if an allocation gets failed. Basically,
986 * an "overflow" path is triggered to purge lazily freed
987 * areas to free some memory, then, the "retry" path is
988 * triggered to repeat one more time. See more details
989 * in alloc_vmap_area() function.
82dd23e8
URS
990 */
991 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
992 if (!lva)
993 return -1;
994 }
68ad4a33
URS
995
996 /*
997 * Build the remainder.
998 */
999 lva->va_start = va->va_start;
1000 lva->va_end = nva_start_addr;
1001
1002 /*
1003 * Shrink this VA to remaining size.
1004 */
1005 va->va_start = nva_start_addr + size;
1006 } else {
1007 return -1;
1008 }
1009
1010 if (type != FL_FIT_TYPE) {
1011 augment_tree_propagate_from(va);
1012
2c929233 1013 if (lva) /* type == NE_FIT_TYPE */
68ad4a33
URS
1014 insert_vmap_area_augment(lva, &va->rb_node,
1015 &free_vmap_area_root, &free_vmap_area_list);
1016 }
1017
1018 return 0;
1019}
1020
1021/*
1022 * Returns a start address of the newly allocated area, if success.
1023 * Otherwise a vend is returned that indicates failure.
1024 */
1025static __always_inline unsigned long
1026__alloc_vmap_area(unsigned long size, unsigned long align,
cacca6ba 1027 unsigned long vstart, unsigned long vend)
68ad4a33
URS
1028{
1029 unsigned long nva_start_addr;
1030 struct vmap_area *va;
1031 enum fit_type type;
1032 int ret;
1033
1034 va = find_vmap_lowest_match(size, align, vstart);
1035 if (unlikely(!va))
1036 return vend;
1037
1038 if (va->va_start > vstart)
1039 nva_start_addr = ALIGN(va->va_start, align);
1040 else
1041 nva_start_addr = ALIGN(vstart, align);
1042
1043 /* Check the "vend" restriction. */
1044 if (nva_start_addr + size > vend)
1045 return vend;
1046
1047 /* Classify what we have found. */
1048 type = classify_va_fit_type(va, nva_start_addr, size);
1049 if (WARN_ON_ONCE(type == NOTHING_FIT))
1050 return vend;
1051
1052 /* Update the free vmap_area. */
1053 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1054 if (ret)
1055 return vend;
1056
a6cf4e0f
URS
1057#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1058 find_vmap_lowest_match_check(size);
1059#endif
1060
68ad4a33
URS
1061 return nva_start_addr;
1062}
4da56b99 1063
db64fe02
NP
1064/*
1065 * Allocate a region of KVA of the specified size and alignment, within the
1066 * vstart and vend.
1067 */
1068static struct vmap_area *alloc_vmap_area(unsigned long size,
1069 unsigned long align,
1070 unsigned long vstart, unsigned long vend,
1071 int node, gfp_t gfp_mask)
1072{
82dd23e8 1073 struct vmap_area *va, *pva;
1da177e4 1074 unsigned long addr;
db64fe02
NP
1075 int purged = 0;
1076
7766970c 1077 BUG_ON(!size);
891c49ab 1078 BUG_ON(offset_in_page(size));
89699605 1079 BUG_ON(!is_power_of_2(align));
db64fe02 1080
68ad4a33
URS
1081 if (unlikely(!vmap_initialized))
1082 return ERR_PTR(-EBUSY);
1083
5803ed29 1084 might_sleep();
f07116d7 1085 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
4da56b99 1086
f07116d7 1087 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
db64fe02
NP
1088 if (unlikely(!va))
1089 return ERR_PTR(-ENOMEM);
1090
7f88f88f
CM
1091 /*
1092 * Only scan the relevant parts containing pointers to other objects
1093 * to avoid false negatives.
1094 */
f07116d7 1095 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
7f88f88f 1096
db64fe02 1097retry:
82dd23e8 1098 /*
81f1ba58
URS
1099 * Preload this CPU with one extra vmap_area object. It is used
1100 * when fit type of free area is NE_FIT_TYPE. Please note, it
1101 * does not guarantee that an allocation occurs on a CPU that
1102 * is preloaded, instead we minimize the case when it is not.
1103 * It can happen because of cpu migration, because there is a
1104 * race until the below spinlock is taken.
82dd23e8
URS
1105 *
1106 * The preload is done in non-atomic context, thus it allows us
1107 * to use more permissive allocation masks to be more stable under
81f1ba58
URS
1108 * low memory condition and high memory pressure. In rare case,
1109 * if not preloaded, GFP_NOWAIT is used.
82dd23e8 1110 *
81f1ba58 1111 * Set "pva" to NULL here, because of "retry" path.
82dd23e8 1112 */
81f1ba58 1113 pva = NULL;
82dd23e8 1114
81f1ba58
URS
1115 if (!this_cpu_read(ne_fit_preload_node))
1116 /*
1117 * Even if it fails we do not really care about that.
1118 * Just proceed as it is. If needed "overflow" path
1119 * will refill the cache we allocate from.
1120 */
f07116d7 1121 pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
82dd23e8 1122
e36176be 1123 spin_lock(&free_vmap_area_lock);
81f1ba58
URS
1124
1125 if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
1126 kmem_cache_free(vmap_area_cachep, pva);
89699605 1127
afd07389 1128 /*
68ad4a33
URS
1129 * If an allocation fails, the "vend" address is
1130 * returned. Therefore trigger the overflow path.
afd07389 1131 */
cacca6ba 1132 addr = __alloc_vmap_area(size, align, vstart, vend);
e36176be
URS
1133 spin_unlock(&free_vmap_area_lock);
1134
68ad4a33 1135 if (unlikely(addr == vend))
89699605 1136 goto overflow;
db64fe02
NP
1137
1138 va->va_start = addr;
1139 va->va_end = addr + size;
688fcbfc 1140 va->vm = NULL;
68ad4a33 1141
e36176be
URS
1142 spin_lock(&vmap_area_lock);
1143 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
db64fe02
NP
1144 spin_unlock(&vmap_area_lock);
1145
61e16557 1146 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
1147 BUG_ON(va->va_start < vstart);
1148 BUG_ON(va->va_end > vend);
1149
db64fe02 1150 return va;
89699605
NP
1151
1152overflow:
89699605
NP
1153 if (!purged) {
1154 purge_vmap_area_lazy();
1155 purged = 1;
1156 goto retry;
1157 }
4da56b99
CW
1158
1159 if (gfpflags_allow_blocking(gfp_mask)) {
1160 unsigned long freed = 0;
1161 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1162 if (freed > 0) {
1163 purged = 0;
1164 goto retry;
1165 }
1166 }
1167
03497d76 1168 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
756a025f
JP
1169 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1170 size);
68ad4a33
URS
1171
1172 kmem_cache_free(vmap_area_cachep, va);
89699605 1173 return ERR_PTR(-EBUSY);
db64fe02
NP
1174}
1175
4da56b99
CW
1176int register_vmap_purge_notifier(struct notifier_block *nb)
1177{
1178 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1179}
1180EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1181
1182int unregister_vmap_purge_notifier(struct notifier_block *nb)
1183{
1184 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1185}
1186EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1187
e36176be
URS
1188/*
1189 * Free a region of KVA allocated by alloc_vmap_area
1190 */
1191static void free_vmap_area(struct vmap_area *va)
db64fe02 1192{
ca23e405 1193 /*
68ad4a33 1194 * Remove from the busy tree/list.
ca23e405 1195 */
e36176be 1196 spin_lock(&vmap_area_lock);
68ad4a33 1197 unlink_va(va, &vmap_area_root);
e36176be 1198 spin_unlock(&vmap_area_lock);
ca23e405 1199
68ad4a33 1200 /*
e36176be 1201 * Insert/Merge it back to the free tree/list.
68ad4a33 1202 */
e36176be 1203 spin_lock(&free_vmap_area_lock);
3c5c3cfb 1204 merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
e36176be 1205 spin_unlock(&free_vmap_area_lock);
db64fe02
NP
1206}
1207
1208/*
1209 * Clear the pagetable entries of a given vmap_area
1210 */
1211static void unmap_vmap_area(struct vmap_area *va)
1212{
1213 vunmap_page_range(va->va_start, va->va_end);
1214}
1215
1216/*
1217 * lazy_max_pages is the maximum amount of virtual address space we gather up
1218 * before attempting to purge with a TLB flush.
1219 *
1220 * There is a tradeoff here: a larger number will cover more kernel page tables
1221 * and take slightly longer to purge, but it will linearly reduce the number of
1222 * global TLB flushes that must be performed. It would seem natural to scale
1223 * this number up linearly with the number of CPUs (because vmapping activity
1224 * could also scale linearly with the number of CPUs), however it is likely
1225 * that in practice, workloads might be constrained in other ways that mean
1226 * vmap activity will not scale linearly with CPUs. Also, I want to be
1227 * conservative and not introduce a big latency on huge systems, so go with
1228 * a less aggressive log scale. It will still be an improvement over the old
1229 * code, and it will be simple to change the scale factor if we find that it
1230 * becomes a problem on bigger systems.
1231 */
1232static unsigned long lazy_max_pages(void)
1233{
1234 unsigned int log;
1235
1236 log = fls(num_online_cpus());
1237
1238 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1239}
1240
4d36e6f8 1241static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
db64fe02 1242
0574ecd1
CH
1243/*
1244 * Serialize vmap purging. There is no actual criticial section protected
1245 * by this look, but we want to avoid concurrent calls for performance
1246 * reasons and to make the pcpu_get_vm_areas more deterministic.
1247 */
f9e09977 1248static DEFINE_MUTEX(vmap_purge_lock);
0574ecd1 1249
02b709df
NP
1250/* for per-CPU blocks */
1251static void purge_fragmented_blocks_allcpus(void);
1252
3ee48b6a
CW
1253/*
1254 * called before a call to iounmap() if the caller wants vm_area_struct's
1255 * immediately freed.
1256 */
1257void set_iounmap_nonlazy(void)
1258{
4d36e6f8 1259 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
3ee48b6a
CW
1260}
1261
db64fe02
NP
1262/*
1263 * Purges all lazily-freed vmap areas.
db64fe02 1264 */
0574ecd1 1265static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
db64fe02 1266{
4d36e6f8 1267 unsigned long resched_threshold;
80c4bd7a 1268 struct llist_node *valist;
db64fe02 1269 struct vmap_area *va;
cbb76676 1270 struct vmap_area *n_va;
db64fe02 1271
0574ecd1 1272 lockdep_assert_held(&vmap_purge_lock);
02b709df 1273
80c4bd7a 1274 valist = llist_del_all(&vmap_purge_list);
68571be9
URS
1275 if (unlikely(valist == NULL))
1276 return false;
1277
3f8fd02b
JR
1278 /*
1279 * First make sure the mappings are removed from all page-tables
1280 * before they are freed.
1281 */
1282 vmalloc_sync_all();
1283
68571be9
URS
1284 /*
1285 * TODO: to calculate a flush range without looping.
1286 * The list can be up to lazy_max_pages() elements.
1287 */
80c4bd7a 1288 llist_for_each_entry(va, valist, purge_list) {
0574ecd1
CH
1289 if (va->va_start < start)
1290 start = va->va_start;
1291 if (va->va_end > end)
1292 end = va->va_end;
db64fe02 1293 }
db64fe02 1294
0574ecd1 1295 flush_tlb_kernel_range(start, end);
4d36e6f8 1296 resched_threshold = lazy_max_pages() << 1;
db64fe02 1297
e36176be 1298 spin_lock(&free_vmap_area_lock);
763b218d 1299 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
4d36e6f8 1300 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
3c5c3cfb
DA
1301 unsigned long orig_start = va->va_start;
1302 unsigned long orig_end = va->va_end;
763b218d 1303
dd3b8353
URS
1304 /*
1305 * Finally insert or merge lazily-freed area. It is
1306 * detached and there is no need to "unlink" it from
1307 * anything.
1308 */
3c5c3cfb
DA
1309 va = merge_or_add_vmap_area(va, &free_vmap_area_root,
1310 &free_vmap_area_list);
1311
1312 if (is_vmalloc_or_module_addr((void *)orig_start))
1313 kasan_release_vmalloc(orig_start, orig_end,
1314 va->va_start, va->va_end);
dd3b8353 1315
4d36e6f8 1316 atomic_long_sub(nr, &vmap_lazy_nr);
68571be9 1317
4d36e6f8 1318 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
e36176be 1319 cond_resched_lock(&free_vmap_area_lock);
763b218d 1320 }
e36176be 1321 spin_unlock(&free_vmap_area_lock);
0574ecd1 1322 return true;
db64fe02
NP
1323}
1324
496850e5
NP
1325/*
1326 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1327 * is already purging.
1328 */
1329static void try_purge_vmap_area_lazy(void)
1330{
f9e09977 1331 if (mutex_trylock(&vmap_purge_lock)) {
0574ecd1 1332 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1333 mutex_unlock(&vmap_purge_lock);
0574ecd1 1334 }
496850e5
NP
1335}
1336
db64fe02
NP
1337/*
1338 * Kick off a purge of the outstanding lazy areas.
1339 */
1340static void purge_vmap_area_lazy(void)
1341{
f9e09977 1342 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1343 purge_fragmented_blocks_allcpus();
1344 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1345 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
1346}
1347
1348/*
64141da5
JF
1349 * Free a vmap area, caller ensuring that the area has been unmapped
1350 * and flush_cache_vunmap had been called for the correct range
1351 * previously.
db64fe02 1352 */
64141da5 1353static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02 1354{
4d36e6f8 1355 unsigned long nr_lazy;
80c4bd7a 1356
dd3b8353
URS
1357 spin_lock(&vmap_area_lock);
1358 unlink_va(va, &vmap_area_root);
1359 spin_unlock(&vmap_area_lock);
1360
4d36e6f8
URS
1361 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1362 PAGE_SHIFT, &vmap_lazy_nr);
80c4bd7a
CW
1363
1364 /* After this point, we may free va at any time */
1365 llist_add(&va->purge_list, &vmap_purge_list);
1366
1367 if (unlikely(nr_lazy > lazy_max_pages()))
496850e5 1368 try_purge_vmap_area_lazy();
db64fe02
NP
1369}
1370
b29acbdc
NP
1371/*
1372 * Free and unmap a vmap area
1373 */
1374static void free_unmap_vmap_area(struct vmap_area *va)
1375{
1376 flush_cache_vunmap(va->va_start, va->va_end);
c8eef01e 1377 unmap_vmap_area(va);
82a2e924
CP
1378 if (debug_pagealloc_enabled())
1379 flush_tlb_kernel_range(va->va_start, va->va_end);
1380
c8eef01e 1381 free_vmap_area_noflush(va);
b29acbdc
NP
1382}
1383
db64fe02
NP
1384static struct vmap_area *find_vmap_area(unsigned long addr)
1385{
1386 struct vmap_area *va;
1387
1388 spin_lock(&vmap_area_lock);
1389 va = __find_vmap_area(addr);
1390 spin_unlock(&vmap_area_lock);
1391
1392 return va;
1393}
1394
db64fe02
NP
1395/*** Per cpu kva allocator ***/
1396
1397/*
1398 * vmap space is limited especially on 32 bit architectures. Ensure there is
1399 * room for at least 16 percpu vmap blocks per CPU.
1400 */
1401/*
1402 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1403 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1404 * instead (we just need a rough idea)
1405 */
1406#if BITS_PER_LONG == 32
1407#define VMALLOC_SPACE (128UL*1024*1024)
1408#else
1409#define VMALLOC_SPACE (128UL*1024*1024*1024)
1410#endif
1411
1412#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1413#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1414#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1415#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1416#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1417#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
1418#define VMAP_BBMAP_BITS \
1419 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1420 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1421 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
1422
1423#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1424
1425struct vmap_block_queue {
1426 spinlock_t lock;
1427 struct list_head free;
db64fe02
NP
1428};
1429
1430struct vmap_block {
1431 spinlock_t lock;
1432 struct vmap_area *va;
db64fe02 1433 unsigned long free, dirty;
7d61bfe8 1434 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
1435 struct list_head free_list;
1436 struct rcu_head rcu_head;
02b709df 1437 struct list_head purge;
db64fe02
NP
1438};
1439
1440/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1441static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1442
1443/*
1444 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1445 * in the free path. Could get rid of this if we change the API to return a
1446 * "cookie" from alloc, to be passed to free. But no big deal yet.
1447 */
1448static DEFINE_SPINLOCK(vmap_block_tree_lock);
1449static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1450
1451/*
1452 * We should probably have a fallback mechanism to allocate virtual memory
1453 * out of partially filled vmap blocks. However vmap block sizing should be
1454 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1455 * big problem.
1456 */
1457
1458static unsigned long addr_to_vb_idx(unsigned long addr)
1459{
1460 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1461 addr /= VMAP_BLOCK_SIZE;
1462 return addr;
1463}
1464
cf725ce2
RP
1465static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1466{
1467 unsigned long addr;
1468
1469 addr = va_start + (pages_off << PAGE_SHIFT);
1470 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1471 return (void *)addr;
1472}
1473
1474/**
1475 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1476 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1477 * @order: how many 2^order pages should be occupied in newly allocated block
1478 * @gfp_mask: flags for the page level allocator
1479 *
a862f68a 1480 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
cf725ce2
RP
1481 */
1482static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
1483{
1484 struct vmap_block_queue *vbq;
1485 struct vmap_block *vb;
1486 struct vmap_area *va;
1487 unsigned long vb_idx;
1488 int node, err;
cf725ce2 1489 void *vaddr;
db64fe02
NP
1490
1491 node = numa_node_id();
1492
1493 vb = kmalloc_node(sizeof(struct vmap_block),
1494 gfp_mask & GFP_RECLAIM_MASK, node);
1495 if (unlikely(!vb))
1496 return ERR_PTR(-ENOMEM);
1497
1498 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1499 VMALLOC_START, VMALLOC_END,
1500 node, gfp_mask);
ddf9c6d4 1501 if (IS_ERR(va)) {
db64fe02 1502 kfree(vb);
e7d86340 1503 return ERR_CAST(va);
db64fe02
NP
1504 }
1505
1506 err = radix_tree_preload(gfp_mask);
1507 if (unlikely(err)) {
1508 kfree(vb);
1509 free_vmap_area(va);
1510 return ERR_PTR(err);
1511 }
1512
cf725ce2 1513 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
1514 spin_lock_init(&vb->lock);
1515 vb->va = va;
cf725ce2
RP
1516 /* At least something should be left free */
1517 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1518 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 1519 vb->dirty = 0;
7d61bfe8
RP
1520 vb->dirty_min = VMAP_BBMAP_BITS;
1521 vb->dirty_max = 0;
db64fe02 1522 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
1523
1524 vb_idx = addr_to_vb_idx(va->va_start);
1525 spin_lock(&vmap_block_tree_lock);
1526 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1527 spin_unlock(&vmap_block_tree_lock);
1528 BUG_ON(err);
1529 radix_tree_preload_end();
1530
1531 vbq = &get_cpu_var(vmap_block_queue);
db64fe02 1532 spin_lock(&vbq->lock);
68ac546f 1533 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 1534 spin_unlock(&vbq->lock);
3f04ba85 1535 put_cpu_var(vmap_block_queue);
db64fe02 1536
cf725ce2 1537 return vaddr;
db64fe02
NP
1538}
1539
db64fe02
NP
1540static void free_vmap_block(struct vmap_block *vb)
1541{
1542 struct vmap_block *tmp;
1543 unsigned long vb_idx;
1544
db64fe02
NP
1545 vb_idx = addr_to_vb_idx(vb->va->va_start);
1546 spin_lock(&vmap_block_tree_lock);
1547 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1548 spin_unlock(&vmap_block_tree_lock);
1549 BUG_ON(tmp != vb);
1550
64141da5 1551 free_vmap_area_noflush(vb->va);
22a3c7d1 1552 kfree_rcu(vb, rcu_head);
db64fe02
NP
1553}
1554
02b709df
NP
1555static void purge_fragmented_blocks(int cpu)
1556{
1557 LIST_HEAD(purge);
1558 struct vmap_block *vb;
1559 struct vmap_block *n_vb;
1560 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1561
1562 rcu_read_lock();
1563 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1564
1565 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1566 continue;
1567
1568 spin_lock(&vb->lock);
1569 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1570 vb->free = 0; /* prevent further allocs after releasing lock */
1571 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
1572 vb->dirty_min = 0;
1573 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
1574 spin_lock(&vbq->lock);
1575 list_del_rcu(&vb->free_list);
1576 spin_unlock(&vbq->lock);
1577 spin_unlock(&vb->lock);
1578 list_add_tail(&vb->purge, &purge);
1579 } else
1580 spin_unlock(&vb->lock);
1581 }
1582 rcu_read_unlock();
1583
1584 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1585 list_del(&vb->purge);
1586 free_vmap_block(vb);
1587 }
1588}
1589
02b709df
NP
1590static void purge_fragmented_blocks_allcpus(void)
1591{
1592 int cpu;
1593
1594 for_each_possible_cpu(cpu)
1595 purge_fragmented_blocks(cpu);
1596}
1597
db64fe02
NP
1598static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1599{
1600 struct vmap_block_queue *vbq;
1601 struct vmap_block *vb;
cf725ce2 1602 void *vaddr = NULL;
db64fe02
NP
1603 unsigned int order;
1604
891c49ab 1605 BUG_ON(offset_in_page(size));
db64fe02 1606 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
1607 if (WARN_ON(size == 0)) {
1608 /*
1609 * Allocating 0 bytes isn't what caller wants since
1610 * get_order(0) returns funny result. Just warn and terminate
1611 * early.
1612 */
1613 return NULL;
1614 }
db64fe02
NP
1615 order = get_order(size);
1616
db64fe02
NP
1617 rcu_read_lock();
1618 vbq = &get_cpu_var(vmap_block_queue);
1619 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 1620 unsigned long pages_off;
db64fe02
NP
1621
1622 spin_lock(&vb->lock);
cf725ce2
RP
1623 if (vb->free < (1UL << order)) {
1624 spin_unlock(&vb->lock);
1625 continue;
1626 }
02b709df 1627
cf725ce2
RP
1628 pages_off = VMAP_BBMAP_BITS - vb->free;
1629 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df
NP
1630 vb->free -= 1UL << order;
1631 if (vb->free == 0) {
1632 spin_lock(&vbq->lock);
1633 list_del_rcu(&vb->free_list);
1634 spin_unlock(&vbq->lock);
1635 }
cf725ce2 1636
02b709df
NP
1637 spin_unlock(&vb->lock);
1638 break;
db64fe02 1639 }
02b709df 1640
3f04ba85 1641 put_cpu_var(vmap_block_queue);
db64fe02
NP
1642 rcu_read_unlock();
1643
cf725ce2
RP
1644 /* Allocate new block if nothing was found */
1645 if (!vaddr)
1646 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 1647
cf725ce2 1648 return vaddr;
db64fe02
NP
1649}
1650
1651static void vb_free(const void *addr, unsigned long size)
1652{
1653 unsigned long offset;
1654 unsigned long vb_idx;
1655 unsigned int order;
1656 struct vmap_block *vb;
1657
891c49ab 1658 BUG_ON(offset_in_page(size));
db64fe02 1659 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc
NP
1660
1661 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1662
db64fe02
NP
1663 order = get_order(size);
1664
1665 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
7d61bfe8 1666 offset >>= PAGE_SHIFT;
db64fe02
NP
1667
1668 vb_idx = addr_to_vb_idx((unsigned long)addr);
1669 rcu_read_lock();
1670 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1671 rcu_read_unlock();
1672 BUG_ON(!vb);
1673
64141da5
JF
1674 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1675
82a2e924
CP
1676 if (debug_pagealloc_enabled())
1677 flush_tlb_kernel_range((unsigned long)addr,
1678 (unsigned long)addr + size);
1679
db64fe02 1680 spin_lock(&vb->lock);
7d61bfe8
RP
1681
1682 /* Expand dirty range */
1683 vb->dirty_min = min(vb->dirty_min, offset);
1684 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 1685
db64fe02
NP
1686 vb->dirty += 1UL << order;
1687 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 1688 BUG_ON(vb->free);
db64fe02
NP
1689 spin_unlock(&vb->lock);
1690 free_vmap_block(vb);
1691 } else
1692 spin_unlock(&vb->lock);
1693}
1694
868b104d 1695static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
db64fe02 1696{
db64fe02 1697 int cpu;
db64fe02 1698
9b463334
JF
1699 if (unlikely(!vmap_initialized))
1700 return;
1701
5803ed29
CH
1702 might_sleep();
1703
db64fe02
NP
1704 for_each_possible_cpu(cpu) {
1705 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1706 struct vmap_block *vb;
1707
1708 rcu_read_lock();
1709 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
db64fe02 1710 spin_lock(&vb->lock);
7d61bfe8
RP
1711 if (vb->dirty) {
1712 unsigned long va_start = vb->va->va_start;
db64fe02 1713 unsigned long s, e;
b136be5e 1714
7d61bfe8
RP
1715 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1716 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 1717
7d61bfe8
RP
1718 start = min(s, start);
1719 end = max(e, end);
db64fe02 1720
7d61bfe8 1721 flush = 1;
db64fe02
NP
1722 }
1723 spin_unlock(&vb->lock);
1724 }
1725 rcu_read_unlock();
1726 }
1727
f9e09977 1728 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1729 purge_fragmented_blocks_allcpus();
1730 if (!__purge_vmap_area_lazy(start, end) && flush)
1731 flush_tlb_kernel_range(start, end);
f9e09977 1732 mutex_unlock(&vmap_purge_lock);
db64fe02 1733}
868b104d
RE
1734
1735/**
1736 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1737 *
1738 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1739 * to amortize TLB flushing overheads. What this means is that any page you
1740 * have now, may, in a former life, have been mapped into kernel virtual
1741 * address by the vmap layer and so there might be some CPUs with TLB entries
1742 * still referencing that page (additional to the regular 1:1 kernel mapping).
1743 *
1744 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1745 * be sure that none of the pages we have control over will have any aliases
1746 * from the vmap layer.
1747 */
1748void vm_unmap_aliases(void)
1749{
1750 unsigned long start = ULONG_MAX, end = 0;
1751 int flush = 0;
1752
1753 _vm_unmap_aliases(start, end, flush);
1754}
db64fe02
NP
1755EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1756
1757/**
1758 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1759 * @mem: the pointer returned by vm_map_ram
1760 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1761 */
1762void vm_unmap_ram(const void *mem, unsigned int count)
1763{
65ee03c4 1764 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02 1765 unsigned long addr = (unsigned long)mem;
9c3acf60 1766 struct vmap_area *va;
db64fe02 1767
5803ed29 1768 might_sleep();
db64fe02
NP
1769 BUG_ON(!addr);
1770 BUG_ON(addr < VMALLOC_START);
1771 BUG_ON(addr > VMALLOC_END);
a1c0b1a0 1772 BUG_ON(!PAGE_ALIGNED(addr));
db64fe02 1773
9c3acf60 1774 if (likely(count <= VMAP_MAX_ALLOC)) {
05e3ff95 1775 debug_check_no_locks_freed(mem, size);
db64fe02 1776 vb_free(mem, size);
9c3acf60
CH
1777 return;
1778 }
1779
1780 va = find_vmap_area(addr);
1781 BUG_ON(!va);
05e3ff95
CP
1782 debug_check_no_locks_freed((void *)va->va_start,
1783 (va->va_end - va->va_start));
9c3acf60 1784 free_unmap_vmap_area(va);
db64fe02
NP
1785}
1786EXPORT_SYMBOL(vm_unmap_ram);
1787
1788/**
1789 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1790 * @pages: an array of pointers to the pages to be mapped
1791 * @count: number of pages
1792 * @node: prefer to allocate data structures on this node
1793 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad 1794 *
36437638
GK
1795 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1796 * faster than vmap so it's good. But if you mix long-life and short-life
1797 * objects with vm_map_ram(), it could consume lots of address space through
1798 * fragmentation (especially on a 32bit machine). You could see failures in
1799 * the end. Please use this function for short-lived objects.
1800 *
e99c97ad 1801 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
1802 */
1803void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1804{
65ee03c4 1805 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
1806 unsigned long addr;
1807 void *mem;
1808
1809 if (likely(count <= VMAP_MAX_ALLOC)) {
1810 mem = vb_alloc(size, GFP_KERNEL);
1811 if (IS_ERR(mem))
1812 return NULL;
1813 addr = (unsigned long)mem;
1814 } else {
1815 struct vmap_area *va;
1816 va = alloc_vmap_area(size, PAGE_SIZE,
1817 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1818 if (IS_ERR(va))
1819 return NULL;
1820
1821 addr = va->va_start;
1822 mem = (void *)addr;
1823 }
1824 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1825 vm_unmap_ram(mem, count);
1826 return NULL;
1827 }
1828 return mem;
1829}
1830EXPORT_SYMBOL(vm_map_ram);
1831
4341fa45 1832static struct vm_struct *vmlist __initdata;
92eac168 1833
be9b7335
NP
1834/**
1835 * vm_area_add_early - add vmap area early during boot
1836 * @vm: vm_struct to add
1837 *
1838 * This function is used to add fixed kernel vm area to vmlist before
1839 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1840 * should contain proper values and the other fields should be zero.
1841 *
1842 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1843 */
1844void __init vm_area_add_early(struct vm_struct *vm)
1845{
1846 struct vm_struct *tmp, **p;
1847
1848 BUG_ON(vmap_initialized);
1849 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1850 if (tmp->addr >= vm->addr) {
1851 BUG_ON(tmp->addr < vm->addr + vm->size);
1852 break;
1853 } else
1854 BUG_ON(tmp->addr + tmp->size > vm->addr);
1855 }
1856 vm->next = *p;
1857 *p = vm;
1858}
1859
f0aa6617
TH
1860/**
1861 * vm_area_register_early - register vmap area early during boot
1862 * @vm: vm_struct to register
c0c0a293 1863 * @align: requested alignment
f0aa6617
TH
1864 *
1865 * This function is used to register kernel vm area before
1866 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1867 * proper values on entry and other fields should be zero. On return,
1868 * vm->addr contains the allocated address.
1869 *
1870 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1871 */
c0c0a293 1872void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1873{
1874 static size_t vm_init_off __initdata;
c0c0a293
TH
1875 unsigned long addr;
1876
1877 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1878 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1879
c0c0a293 1880 vm->addr = (void *)addr;
f0aa6617 1881
be9b7335 1882 vm_area_add_early(vm);
f0aa6617
TH
1883}
1884
68ad4a33
URS
1885static void vmap_init_free_space(void)
1886{
1887 unsigned long vmap_start = 1;
1888 const unsigned long vmap_end = ULONG_MAX;
1889 struct vmap_area *busy, *free;
1890
1891 /*
1892 * B F B B B F
1893 * -|-----|.....|-----|-----|-----|.....|-
1894 * | The KVA space |
1895 * |<--------------------------------->|
1896 */
1897 list_for_each_entry(busy, &vmap_area_list, list) {
1898 if (busy->va_start - vmap_start > 0) {
1899 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1900 if (!WARN_ON_ONCE(!free)) {
1901 free->va_start = vmap_start;
1902 free->va_end = busy->va_start;
1903
1904 insert_vmap_area_augment(free, NULL,
1905 &free_vmap_area_root,
1906 &free_vmap_area_list);
1907 }
1908 }
1909
1910 vmap_start = busy->va_end;
1911 }
1912
1913 if (vmap_end - vmap_start > 0) {
1914 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1915 if (!WARN_ON_ONCE(!free)) {
1916 free->va_start = vmap_start;
1917 free->va_end = vmap_end;
1918
1919 insert_vmap_area_augment(free, NULL,
1920 &free_vmap_area_root,
1921 &free_vmap_area_list);
1922 }
1923 }
1924}
1925
db64fe02
NP
1926void __init vmalloc_init(void)
1927{
822c18f2
IK
1928 struct vmap_area *va;
1929 struct vm_struct *tmp;
db64fe02
NP
1930 int i;
1931
68ad4a33
URS
1932 /*
1933 * Create the cache for vmap_area objects.
1934 */
1935 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1936
db64fe02
NP
1937 for_each_possible_cpu(i) {
1938 struct vmap_block_queue *vbq;
32fcfd40 1939 struct vfree_deferred *p;
db64fe02
NP
1940
1941 vbq = &per_cpu(vmap_block_queue, i);
1942 spin_lock_init(&vbq->lock);
1943 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
1944 p = &per_cpu(vfree_deferred, i);
1945 init_llist_head(&p->list);
1946 INIT_WORK(&p->wq, free_work);
db64fe02 1947 }
9b463334 1948
822c18f2
IK
1949 /* Import existing vmlist entries. */
1950 for (tmp = vmlist; tmp; tmp = tmp->next) {
68ad4a33
URS
1951 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1952 if (WARN_ON_ONCE(!va))
1953 continue;
1954
822c18f2
IK
1955 va->va_start = (unsigned long)tmp->addr;
1956 va->va_end = va->va_start + tmp->size;
dbda591d 1957 va->vm = tmp;
68ad4a33 1958 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
822c18f2 1959 }
ca23e405 1960
68ad4a33
URS
1961 /*
1962 * Now we can initialize a free vmap space.
1963 */
1964 vmap_init_free_space();
9b463334 1965 vmap_initialized = true;
db64fe02
NP
1966}
1967
8fc48985
TH
1968/**
1969 * map_kernel_range_noflush - map kernel VM area with the specified pages
1970 * @addr: start of the VM area to map
1971 * @size: size of the VM area to map
1972 * @prot: page protection flags to use
1973 * @pages: pages to map
1974 *
1975 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1976 * specify should have been allocated using get_vm_area() and its
1977 * friends.
1978 *
1979 * NOTE:
1980 * This function does NOT do any cache flushing. The caller is
1981 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1982 * before calling this function.
1983 *
1984 * RETURNS:
1985 * The number of pages mapped on success, -errno on failure.
1986 */
1987int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1988 pgprot_t prot, struct page **pages)
1989{
1990 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1991}
1992
1993/**
1994 * unmap_kernel_range_noflush - unmap kernel VM area
1995 * @addr: start of the VM area to unmap
1996 * @size: size of the VM area to unmap
1997 *
1998 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1999 * specify should have been allocated using get_vm_area() and its
2000 * friends.
2001 *
2002 * NOTE:
2003 * This function does NOT do any cache flushing. The caller is
2004 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
2005 * before calling this function and flush_tlb_kernel_range() after.
2006 */
2007void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
2008{
2009 vunmap_page_range(addr, addr + size);
2010}
81e88fdc 2011EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
8fc48985
TH
2012
2013/**
2014 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
2015 * @addr: start of the VM area to unmap
2016 * @size: size of the VM area to unmap
2017 *
2018 * Similar to unmap_kernel_range_noflush() but flushes vcache before
2019 * the unmapping and tlb after.
2020 */
db64fe02
NP
2021void unmap_kernel_range(unsigned long addr, unsigned long size)
2022{
2023 unsigned long end = addr + size;
f6fcba70
TH
2024
2025 flush_cache_vunmap(addr, end);
db64fe02
NP
2026 vunmap_page_range(addr, end);
2027 flush_tlb_kernel_range(addr, end);
2028}
93ef6d6c 2029EXPORT_SYMBOL_GPL(unmap_kernel_range);
db64fe02 2030
f6f8ed47 2031int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
db64fe02
NP
2032{
2033 unsigned long addr = (unsigned long)area->addr;
762216ab 2034 unsigned long end = addr + get_vm_area_size(area);
db64fe02
NP
2035 int err;
2036
f6f8ed47 2037 err = vmap_page_range(addr, end, prot, pages);
db64fe02 2038
f6f8ed47 2039 return err > 0 ? 0 : err;
db64fe02
NP
2040}
2041EXPORT_SYMBOL_GPL(map_vm_area);
2042
e36176be
URS
2043static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2044 struct vmap_area *va, unsigned long flags, const void *caller)
cf88c790 2045{
cf88c790
TH
2046 vm->flags = flags;
2047 vm->addr = (void *)va->va_start;
2048 vm->size = va->va_end - va->va_start;
2049 vm->caller = caller;
db1aecaf 2050 va->vm = vm;
e36176be
URS
2051}
2052
2053static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2054 unsigned long flags, const void *caller)
2055{
2056 spin_lock(&vmap_area_lock);
2057 setup_vmalloc_vm_locked(vm, va, flags, caller);
c69480ad 2058 spin_unlock(&vmap_area_lock);
f5252e00 2059}
cf88c790 2060
20fc02b4 2061static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 2062{
d4033afd 2063 /*
20fc02b4 2064 * Before removing VM_UNINITIALIZED,
d4033afd
JK
2065 * we should make sure that vm has proper values.
2066 * Pair with smp_rmb() in show_numa_info().
2067 */
2068 smp_wmb();
20fc02b4 2069 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
2070}
2071
db64fe02 2072static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999 2073 unsigned long align, unsigned long flags, unsigned long start,
5e6cafc8 2074 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
db64fe02 2075{
0006526d 2076 struct vmap_area *va;
db64fe02 2077 struct vm_struct *area;
1da177e4 2078
52fd24ca 2079 BUG_ON(in_interrupt());
1da177e4 2080 size = PAGE_ALIGN(size);
31be8309
OH
2081 if (unlikely(!size))
2082 return NULL;
1da177e4 2083
252e5c6e 2084 if (flags & VM_IOREMAP)
2085 align = 1ul << clamp_t(int, get_count_order_long(size),
2086 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2087
cf88c790 2088 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
2089 if (unlikely(!area))
2090 return NULL;
2091
71394fe5
AR
2092 if (!(flags & VM_NO_GUARD))
2093 size += PAGE_SIZE;
1da177e4 2094
db64fe02
NP
2095 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2096 if (IS_ERR(va)) {
2097 kfree(area);
2098 return NULL;
1da177e4 2099 }
1da177e4 2100
d82b1d85 2101 setup_vmalloc_vm(area, va, flags, caller);
f5252e00 2102
3c5c3cfb
DA
2103 /*
2104 * For KASAN, if we are in vmalloc space, we need to cover the shadow
2105 * area with real memory. If we come here through VM_ALLOC, this is
2106 * done by a higher level function that has access to the true size,
2107 * which might not be a full page.
2108 *
2109 * We assume module space comes via VM_ALLOC path.
2110 */
2111 if (is_vmalloc_addr(area->addr) && !(area->flags & VM_ALLOC)) {
2112 if (kasan_populate_vmalloc(area->size, area)) {
2113 unmap_vmap_area(va);
2114 kfree(area);
2115 return NULL;
2116 }
2117 }
2118
1da177e4 2119 return area;
1da177e4
LT
2120}
2121
930fc45a
CL
2122struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
2123 unsigned long start, unsigned long end)
2124{
00ef2d2f
DR
2125 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2126 GFP_KERNEL, __builtin_return_address(0));
930fc45a 2127}
5992b6da 2128EXPORT_SYMBOL_GPL(__get_vm_area);
930fc45a 2129
c2968612
BH
2130struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2131 unsigned long start, unsigned long end,
5e6cafc8 2132 const void *caller)
c2968612 2133{
00ef2d2f
DR
2134 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2135 GFP_KERNEL, caller);
c2968612
BH
2136}
2137
1da177e4 2138/**
92eac168
MR
2139 * get_vm_area - reserve a contiguous kernel virtual area
2140 * @size: size of the area
2141 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1da177e4 2142 *
92eac168
MR
2143 * Search an area of @size in the kernel virtual mapping area,
2144 * and reserved it for out purposes. Returns the area descriptor
2145 * on success or %NULL on failure.
a862f68a
MR
2146 *
2147 * Return: the area descriptor on success or %NULL on failure.
1da177e4
LT
2148 */
2149struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2150{
2dca6999 2151 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
2152 NUMA_NO_NODE, GFP_KERNEL,
2153 __builtin_return_address(0));
23016969
CL
2154}
2155
2156struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 2157 const void *caller)
23016969 2158{
2dca6999 2159 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f 2160 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
2161}
2162
e9da6e99 2163/**
92eac168
MR
2164 * find_vm_area - find a continuous kernel virtual area
2165 * @addr: base address
e9da6e99 2166 *
92eac168
MR
2167 * Search for the kernel VM area starting at @addr, and return it.
2168 * It is up to the caller to do all required locking to keep the returned
2169 * pointer valid.
a862f68a
MR
2170 *
2171 * Return: pointer to the found area or %NULL on faulure
e9da6e99
MS
2172 */
2173struct vm_struct *find_vm_area(const void *addr)
83342314 2174{
db64fe02 2175 struct vmap_area *va;
83342314 2176
db64fe02 2177 va = find_vmap_area((unsigned long)addr);
688fcbfc
PL
2178 if (!va)
2179 return NULL;
1da177e4 2180
688fcbfc 2181 return va->vm;
1da177e4
LT
2182}
2183
7856dfeb 2184/**
92eac168
MR
2185 * remove_vm_area - find and remove a continuous kernel virtual area
2186 * @addr: base address
7856dfeb 2187 *
92eac168
MR
2188 * Search for the kernel VM area starting at @addr, and remove it.
2189 * This function returns the found VM area, but using it is NOT safe
2190 * on SMP machines, except for its size or flags.
a862f68a
MR
2191 *
2192 * Return: pointer to the found area or %NULL on faulure
7856dfeb 2193 */
b3bdda02 2194struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 2195{
db64fe02
NP
2196 struct vmap_area *va;
2197
5803ed29
CH
2198 might_sleep();
2199
dd3b8353
URS
2200 spin_lock(&vmap_area_lock);
2201 va = __find_vmap_area((unsigned long)addr);
688fcbfc 2202 if (va && va->vm) {
db1aecaf 2203 struct vm_struct *vm = va->vm;
f5252e00 2204
c69480ad 2205 va->vm = NULL;
c69480ad
JK
2206 spin_unlock(&vmap_area_lock);
2207
a5af5aa8 2208 kasan_free_shadow(vm);
dd32c279 2209 free_unmap_vmap_area(va);
dd32c279 2210
db64fe02
NP
2211 return vm;
2212 }
dd3b8353
URS
2213
2214 spin_unlock(&vmap_area_lock);
db64fe02 2215 return NULL;
7856dfeb
AK
2216}
2217
868b104d
RE
2218static inline void set_area_direct_map(const struct vm_struct *area,
2219 int (*set_direct_map)(struct page *page))
2220{
2221 int i;
2222
2223 for (i = 0; i < area->nr_pages; i++)
2224 if (page_address(area->pages[i]))
2225 set_direct_map(area->pages[i]);
2226}
2227
2228/* Handle removing and resetting vm mappings related to the vm_struct. */
2229static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2230{
868b104d
RE
2231 unsigned long start = ULONG_MAX, end = 0;
2232 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
31e67340 2233 int flush_dmap = 0;
868b104d
RE
2234 int i;
2235
868b104d
RE
2236 remove_vm_area(area->addr);
2237
2238 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2239 if (!flush_reset)
2240 return;
2241
2242 /*
2243 * If not deallocating pages, just do the flush of the VM area and
2244 * return.
2245 */
2246 if (!deallocate_pages) {
2247 vm_unmap_aliases();
2248 return;
2249 }
2250
2251 /*
2252 * If execution gets here, flush the vm mapping and reset the direct
2253 * map. Find the start and end range of the direct mappings to make sure
2254 * the vm_unmap_aliases() flush includes the direct map.
2255 */
2256 for (i = 0; i < area->nr_pages; i++) {
8e41f872
RE
2257 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2258 if (addr) {
868b104d 2259 start = min(addr, start);
8e41f872 2260 end = max(addr + PAGE_SIZE, end);
31e67340 2261 flush_dmap = 1;
868b104d
RE
2262 }
2263 }
2264
2265 /*
2266 * Set direct map to something invalid so that it won't be cached if
2267 * there are any accesses after the TLB flush, then flush the TLB and
2268 * reset the direct map permissions to the default.
2269 */
2270 set_area_direct_map(area, set_direct_map_invalid_noflush);
31e67340 2271 _vm_unmap_aliases(start, end, flush_dmap);
868b104d
RE
2272 set_area_direct_map(area, set_direct_map_default_noflush);
2273}
2274
b3bdda02 2275static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
2276{
2277 struct vm_struct *area;
2278
2279 if (!addr)
2280 return;
2281
e69e9d4a 2282 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 2283 addr))
1da177e4 2284 return;
1da177e4 2285
6ade2032 2286 area = find_vm_area(addr);
1da177e4 2287 if (unlikely(!area)) {
4c8573e2 2288 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 2289 addr);
1da177e4
LT
2290 return;
2291 }
2292
05e3ff95
CP
2293 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2294 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
9a11b49a 2295
3c5c3cfb
DA
2296 if (area->flags & VM_KASAN)
2297 kasan_poison_vmalloc(area->addr, area->size);
2298
868b104d
RE
2299 vm_remove_mappings(area, deallocate_pages);
2300
1da177e4
LT
2301 if (deallocate_pages) {
2302 int i;
2303
2304 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
2305 struct page *page = area->pages[i];
2306
2307 BUG_ON(!page);
4949148a 2308 __free_pages(page, 0);
1da177e4 2309 }
97105f0a 2310 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2311
244d63ee 2312 kvfree(area->pages);
1da177e4
LT
2313 }
2314
2315 kfree(area);
2316 return;
2317}
bf22e37a
AR
2318
2319static inline void __vfree_deferred(const void *addr)
2320{
2321 /*
2322 * Use raw_cpu_ptr() because this can be called from preemptible
2323 * context. Preemption is absolutely fine here, because the llist_add()
2324 * implementation is lockless, so it works even if we are adding to
2325 * nother cpu's list. schedule_work() should be fine with this too.
2326 */
2327 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2328
2329 if (llist_add((struct llist_node *)addr, &p->list))
2330 schedule_work(&p->wq);
2331}
2332
2333/**
92eac168
MR
2334 * vfree_atomic - release memory allocated by vmalloc()
2335 * @addr: memory base address
bf22e37a 2336 *
92eac168
MR
2337 * This one is just like vfree() but can be called in any atomic context
2338 * except NMIs.
bf22e37a
AR
2339 */
2340void vfree_atomic(const void *addr)
2341{
2342 BUG_ON(in_nmi());
2343
2344 kmemleak_free(addr);
2345
2346 if (!addr)
2347 return;
2348 __vfree_deferred(addr);
2349}
2350
c67dc624
RP
2351static void __vfree(const void *addr)
2352{
2353 if (unlikely(in_interrupt()))
2354 __vfree_deferred(addr);
2355 else
2356 __vunmap(addr, 1);
2357}
2358
1da177e4 2359/**
92eac168
MR
2360 * vfree - release memory allocated by vmalloc()
2361 * @addr: memory base address
1da177e4 2362 *
92eac168
MR
2363 * Free the virtually continuous memory area starting at @addr, as
2364 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2365 * NULL, no operation is performed.
1da177e4 2366 *
92eac168
MR
2367 * Must not be called in NMI context (strictly speaking, only if we don't
2368 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2369 * conventions for vfree() arch-depenedent would be a really bad idea)
c9fcee51 2370 *
92eac168 2371 * May sleep if called *not* from interrupt context.
3ca4ea3a 2372 *
92eac168 2373 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1da177e4 2374 */
b3bdda02 2375void vfree(const void *addr)
1da177e4 2376{
32fcfd40 2377 BUG_ON(in_nmi());
89219d37
CM
2378
2379 kmemleak_free(addr);
2380
a8dda165
AR
2381 might_sleep_if(!in_interrupt());
2382
32fcfd40
AV
2383 if (!addr)
2384 return;
c67dc624
RP
2385
2386 __vfree(addr);
1da177e4 2387}
1da177e4
LT
2388EXPORT_SYMBOL(vfree);
2389
2390/**
92eac168
MR
2391 * vunmap - release virtual mapping obtained by vmap()
2392 * @addr: memory base address
1da177e4 2393 *
92eac168
MR
2394 * Free the virtually contiguous memory area starting at @addr,
2395 * which was created from the page array passed to vmap().
1da177e4 2396 *
92eac168 2397 * Must not be called in interrupt context.
1da177e4 2398 */
b3bdda02 2399void vunmap(const void *addr)
1da177e4
LT
2400{
2401 BUG_ON(in_interrupt());
34754b69 2402 might_sleep();
32fcfd40
AV
2403 if (addr)
2404 __vunmap(addr, 0);
1da177e4 2405}
1da177e4
LT
2406EXPORT_SYMBOL(vunmap);
2407
2408/**
92eac168
MR
2409 * vmap - map an array of pages into virtually contiguous space
2410 * @pages: array of page pointers
2411 * @count: number of pages to map
2412 * @flags: vm_area->flags
2413 * @prot: page protection for the mapping
2414 *
2415 * Maps @count pages from @pages into contiguous kernel virtual
2416 * space.
a862f68a
MR
2417 *
2418 * Return: the address of the area or %NULL on failure
1da177e4
LT
2419 */
2420void *vmap(struct page **pages, unsigned int count,
92eac168 2421 unsigned long flags, pgprot_t prot)
1da177e4
LT
2422{
2423 struct vm_struct *area;
65ee03c4 2424 unsigned long size; /* In bytes */
1da177e4 2425
34754b69
PZ
2426 might_sleep();
2427
ca79b0c2 2428 if (count > totalram_pages())
1da177e4
LT
2429 return NULL;
2430
65ee03c4
GJM
2431 size = (unsigned long)count << PAGE_SHIFT;
2432 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1da177e4
LT
2433 if (!area)
2434 return NULL;
23016969 2435
f6f8ed47 2436 if (map_vm_area(area, prot, pages)) {
1da177e4
LT
2437 vunmap(area->addr);
2438 return NULL;
2439 }
2440
2441 return area->addr;
2442}
1da177e4
LT
2443EXPORT_SYMBOL(vmap);
2444
8594a21c
MH
2445static void *__vmalloc_node(unsigned long size, unsigned long align,
2446 gfp_t gfp_mask, pgprot_t prot,
2447 int node, const void *caller);
e31d9eb5 2448static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3722e13c 2449 pgprot_t prot, int node)
1da177e4
LT
2450{
2451 struct page **pages;
2452 unsigned int nr_pages, array_size, i;
930f036b 2453 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
704b862f
LA
2454 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2455 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2456 0 :
2457 __GFP_HIGHMEM;
1da177e4 2458
762216ab 2459 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1da177e4
LT
2460 array_size = (nr_pages * sizeof(struct page *));
2461
1da177e4 2462 /* Please note that the recursion is strictly bounded. */
8757d5fa 2463 if (array_size > PAGE_SIZE) {
704b862f 2464 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
3722e13c 2465 PAGE_KERNEL, node, area->caller);
286e1ea3 2466 } else {
976d6dfb 2467 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 2468 }
7ea36242
AK
2469
2470 if (!pages) {
1da177e4
LT
2471 remove_vm_area(area->addr);
2472 kfree(area);
2473 return NULL;
2474 }
1da177e4 2475
7ea36242
AK
2476 area->pages = pages;
2477 area->nr_pages = nr_pages;
2478
1da177e4 2479 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
2480 struct page *page;
2481
4b90951c 2482 if (node == NUMA_NO_NODE)
704b862f 2483 page = alloc_page(alloc_mask|highmem_mask);
930fc45a 2484 else
704b862f 2485 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
bf53d6f8
CL
2486
2487 if (unlikely(!page)) {
1da177e4
LT
2488 /* Successfully allocated i pages, free them in __vunmap() */
2489 area->nr_pages = i;
97105f0a 2490 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
1da177e4
LT
2491 goto fail;
2492 }
bf53d6f8 2493 area->pages[i] = page;
dcf61ff0 2494 if (gfpflags_allow_blocking(gfp_mask))
660654f9 2495 cond_resched();
1da177e4 2496 }
97105f0a 2497 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2498
f6f8ed47 2499 if (map_vm_area(area, prot, pages))
1da177e4
LT
2500 goto fail;
2501 return area->addr;
2502
2503fail:
a8e99259 2504 warn_alloc(gfp_mask, NULL,
7877cdcc 2505 "vmalloc: allocation failure, allocated %ld of %ld bytes",
22943ab1 2506 (area->nr_pages*PAGE_SIZE), area->size);
c67dc624 2507 __vfree(area->addr);
1da177e4
LT
2508 return NULL;
2509}
2510
2511/**
92eac168
MR
2512 * __vmalloc_node_range - allocate virtually contiguous memory
2513 * @size: allocation size
2514 * @align: desired alignment
2515 * @start: vm area range start
2516 * @end: vm area range end
2517 * @gfp_mask: flags for the page level allocator
2518 * @prot: protection mask for the allocated pages
2519 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2520 * @node: node to use for allocation or NUMA_NO_NODE
2521 * @caller: caller's return address
2522 *
2523 * Allocate enough pages to cover @size from the page level
2524 * allocator with @gfp_mask flags. Map them into contiguous
2525 * kernel virtual space, using a pagetable protection of @prot.
a862f68a
MR
2526 *
2527 * Return: the address of the area or %NULL on failure
1da177e4 2528 */
d0a21265
DR
2529void *__vmalloc_node_range(unsigned long size, unsigned long align,
2530 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
2531 pgprot_t prot, unsigned long vm_flags, int node,
2532 const void *caller)
1da177e4
LT
2533{
2534 struct vm_struct *area;
89219d37
CM
2535 void *addr;
2536 unsigned long real_size = size;
1da177e4
LT
2537
2538 size = PAGE_ALIGN(size);
ca79b0c2 2539 if (!size || (size >> PAGE_SHIFT) > totalram_pages())
de7d2b56 2540 goto fail;
1da177e4 2541
cb9e3c29
AR
2542 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
2543 vm_flags, start, end, node, gfp_mask, caller);
1da177e4 2544 if (!area)
de7d2b56 2545 goto fail;
1da177e4 2546
3722e13c 2547 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1368edf0 2548 if (!addr)
b82225f3 2549 return NULL;
89219d37 2550
3c5c3cfb
DA
2551 if (is_vmalloc_or_module_addr(area->addr)) {
2552 if (kasan_populate_vmalloc(real_size, area))
2553 return NULL;
2554 }
2555
f5252e00 2556 /*
20fc02b4
ZY
2557 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2558 * flag. It means that vm_struct is not fully initialized.
4341fa45 2559 * Now, it is fully initialized, so remove this flag here.
f5252e00 2560 */
20fc02b4 2561 clear_vm_uninitialized_flag(area);
f5252e00 2562
94f4a161 2563 kmemleak_vmalloc(area, size, gfp_mask);
89219d37
CM
2564
2565 return addr;
de7d2b56
JP
2566
2567fail:
a8e99259 2568 warn_alloc(gfp_mask, NULL,
7877cdcc 2569 "vmalloc: allocation failure: %lu bytes", real_size);
de7d2b56 2570 return NULL;
1da177e4
LT
2571}
2572
153178ed
URS
2573/*
2574 * This is only for performance analysis of vmalloc and stress purpose.
2575 * It is required by vmalloc test module, therefore do not use it other
2576 * than that.
2577 */
2578#ifdef CONFIG_TEST_VMALLOC_MODULE
2579EXPORT_SYMBOL_GPL(__vmalloc_node_range);
2580#endif
2581
d0a21265 2582/**
92eac168
MR
2583 * __vmalloc_node - allocate virtually contiguous memory
2584 * @size: allocation size
2585 * @align: desired alignment
2586 * @gfp_mask: flags for the page level allocator
2587 * @prot: protection mask for the allocated pages
2588 * @node: node to use for allocation or NUMA_NO_NODE
2589 * @caller: caller's return address
a7c3e901 2590 *
92eac168
MR
2591 * Allocate enough pages to cover @size from the page level
2592 * allocator with @gfp_mask flags. Map them into contiguous
2593 * kernel virtual space, using a pagetable protection of @prot.
a7c3e901 2594 *
92eac168
MR
2595 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2596 * and __GFP_NOFAIL are not supported
a7c3e901 2597 *
92eac168
MR
2598 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2599 * with mm people.
a862f68a
MR
2600 *
2601 * Return: pointer to the allocated memory or %NULL on error
d0a21265 2602 */
8594a21c 2603static void *__vmalloc_node(unsigned long size, unsigned long align,
d0a21265 2604 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 2605 int node, const void *caller)
d0a21265
DR
2606{
2607 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
cb9e3c29 2608 gfp_mask, prot, 0, node, caller);
d0a21265
DR
2609}
2610
930fc45a
CL
2611void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
2612{
00ef2d2f 2613 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
23016969 2614 __builtin_return_address(0));
930fc45a 2615}
1da177e4
LT
2616EXPORT_SYMBOL(__vmalloc);
2617
8594a21c
MH
2618static inline void *__vmalloc_node_flags(unsigned long size,
2619 int node, gfp_t flags)
2620{
2621 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
2622 node, __builtin_return_address(0));
2623}
2624
2625
2626void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
2627 void *caller)
2628{
2629 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
2630}
2631
1da177e4 2632/**
92eac168
MR
2633 * vmalloc - allocate virtually contiguous memory
2634 * @size: allocation size
2635 *
2636 * Allocate enough pages to cover @size from the page level
2637 * allocator and map them into contiguous kernel virtual space.
1da177e4 2638 *
92eac168
MR
2639 * For tight control over page level allocator and protection flags
2640 * use __vmalloc() instead.
a862f68a
MR
2641 *
2642 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
2643 */
2644void *vmalloc(unsigned long size)
2645{
00ef2d2f 2646 return __vmalloc_node_flags(size, NUMA_NO_NODE,
19809c2d 2647 GFP_KERNEL);
1da177e4 2648}
1da177e4
LT
2649EXPORT_SYMBOL(vmalloc);
2650
e1ca7788 2651/**
92eac168
MR
2652 * vzalloc - allocate virtually contiguous memory with zero fill
2653 * @size: allocation size
2654 *
2655 * Allocate enough pages to cover @size from the page level
2656 * allocator and map them into contiguous kernel virtual space.
2657 * The memory allocated is set to zero.
2658 *
2659 * For tight control over page level allocator and protection flags
2660 * use __vmalloc() instead.
a862f68a
MR
2661 *
2662 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
2663 */
2664void *vzalloc(unsigned long size)
2665{
00ef2d2f 2666 return __vmalloc_node_flags(size, NUMA_NO_NODE,
19809c2d 2667 GFP_KERNEL | __GFP_ZERO);
e1ca7788
DY
2668}
2669EXPORT_SYMBOL(vzalloc);
2670
83342314 2671/**
ead04089
REB
2672 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2673 * @size: allocation size
83342314 2674 *
ead04089
REB
2675 * The resulting memory area is zeroed so it can be mapped to userspace
2676 * without leaking data.
a862f68a
MR
2677 *
2678 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
2679 */
2680void *vmalloc_user(unsigned long size)
2681{
bc84c535
RP
2682 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2683 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2684 VM_USERMAP, NUMA_NO_NODE,
2685 __builtin_return_address(0));
83342314
NP
2686}
2687EXPORT_SYMBOL(vmalloc_user);
2688
930fc45a 2689/**
92eac168
MR
2690 * vmalloc_node - allocate memory on a specific node
2691 * @size: allocation size
2692 * @node: numa node
930fc45a 2693 *
92eac168
MR
2694 * Allocate enough pages to cover @size from the page level
2695 * allocator and map them into contiguous kernel virtual space.
930fc45a 2696 *
92eac168
MR
2697 * For tight control over page level allocator and protection flags
2698 * use __vmalloc() instead.
a862f68a
MR
2699 *
2700 * Return: pointer to the allocated memory or %NULL on error
930fc45a
CL
2701 */
2702void *vmalloc_node(unsigned long size, int node)
2703{
19809c2d 2704 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
23016969 2705 node, __builtin_return_address(0));
930fc45a
CL
2706}
2707EXPORT_SYMBOL(vmalloc_node);
2708
e1ca7788
DY
2709/**
2710 * vzalloc_node - allocate memory on a specific node with zero fill
2711 * @size: allocation size
2712 * @node: numa node
2713 *
2714 * Allocate enough pages to cover @size from the page level
2715 * allocator and map them into contiguous kernel virtual space.
2716 * The memory allocated is set to zero.
2717 *
2718 * For tight control over page level allocator and protection flags
2719 * use __vmalloc_node() instead.
a862f68a
MR
2720 *
2721 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
2722 */
2723void *vzalloc_node(unsigned long size, int node)
2724{
2725 return __vmalloc_node_flags(size, node,
19809c2d 2726 GFP_KERNEL | __GFP_ZERO);
e1ca7788
DY
2727}
2728EXPORT_SYMBOL(vzalloc_node);
2729
fc970227
AN
2730/**
2731 * vmalloc_user_node_flags - allocate memory for userspace on a specific node
2732 * @size: allocation size
2733 * @node: numa node
2734 * @flags: flags for the page level allocator
2735 *
2736 * The resulting memory area is zeroed so it can be mapped to userspace
2737 * without leaking data.
2738 *
2739 * Return: pointer to the allocated memory or %NULL on error
2740 */
2741void *vmalloc_user_node_flags(unsigned long size, int node, gfp_t flags)
2742{
2743 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2744 flags | __GFP_ZERO, PAGE_KERNEL,
2745 VM_USERMAP, node,
2746 __builtin_return_address(0));
2747}
2748EXPORT_SYMBOL(vmalloc_user_node_flags);
2749
1da177e4 2750/**
92eac168
MR
2751 * vmalloc_exec - allocate virtually contiguous, executable memory
2752 * @size: allocation size
1da177e4 2753 *
92eac168
MR
2754 * Kernel-internal function to allocate enough pages to cover @size
2755 * the page level allocator and map them into contiguous and
2756 * executable kernel virtual space.
1da177e4 2757 *
92eac168
MR
2758 * For tight control over page level allocator and protection flags
2759 * use __vmalloc() instead.
a862f68a
MR
2760 *
2761 * Return: pointer to the allocated memory or %NULL on error
1da177e4 2762 */
1da177e4
LT
2763void *vmalloc_exec(unsigned long size)
2764{
868b104d
RE
2765 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2766 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2767 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4
LT
2768}
2769
0d08e0d3 2770#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
698d0831 2771#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3 2772#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
698d0831 2773#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
0d08e0d3 2774#else
698d0831
MH
2775/*
2776 * 64b systems should always have either DMA or DMA32 zones. For others
2777 * GFP_DMA32 should do the right thing and use the normal zone.
2778 */
2779#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3
AK
2780#endif
2781
1da177e4 2782/**
92eac168
MR
2783 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2784 * @size: allocation size
1da177e4 2785 *
92eac168
MR
2786 * Allocate enough 32bit PA addressable pages to cover @size from the
2787 * page level allocator and map them into contiguous kernel virtual space.
a862f68a
MR
2788 *
2789 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
2790 */
2791void *vmalloc_32(unsigned long size)
2792{
2dca6999 2793 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
00ef2d2f 2794 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4 2795}
1da177e4
LT
2796EXPORT_SYMBOL(vmalloc_32);
2797
83342314 2798/**
ead04089 2799 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
92eac168 2800 * @size: allocation size
ead04089
REB
2801 *
2802 * The resulting memory area is 32bit addressable and zeroed so it can be
2803 * mapped to userspace without leaking data.
a862f68a
MR
2804 *
2805 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
2806 */
2807void *vmalloc_32_user(unsigned long size)
2808{
bc84c535
RP
2809 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2810 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2811 VM_USERMAP, NUMA_NO_NODE,
2812 __builtin_return_address(0));
83342314
NP
2813}
2814EXPORT_SYMBOL(vmalloc_32_user);
2815
d0107eb0
KH
2816/*
2817 * small helper routine , copy contents to buf from addr.
2818 * If the page is not present, fill zero.
2819 */
2820
2821static int aligned_vread(char *buf, char *addr, unsigned long count)
2822{
2823 struct page *p;
2824 int copied = 0;
2825
2826 while (count) {
2827 unsigned long offset, length;
2828
891c49ab 2829 offset = offset_in_page(addr);
d0107eb0
KH
2830 length = PAGE_SIZE - offset;
2831 if (length > count)
2832 length = count;
2833 p = vmalloc_to_page(addr);
2834 /*
2835 * To do safe access to this _mapped_ area, we need
2836 * lock. But adding lock here means that we need to add
2837 * overhead of vmalloc()/vfree() calles for this _debug_
2838 * interface, rarely used. Instead of that, we'll use
2839 * kmap() and get small overhead in this access function.
2840 */
2841 if (p) {
2842 /*
2843 * we can expect USER0 is not used (see vread/vwrite's
2844 * function description)
2845 */
9b04c5fe 2846 void *map = kmap_atomic(p);
d0107eb0 2847 memcpy(buf, map + offset, length);
9b04c5fe 2848 kunmap_atomic(map);
d0107eb0
KH
2849 } else
2850 memset(buf, 0, length);
2851
2852 addr += length;
2853 buf += length;
2854 copied += length;
2855 count -= length;
2856 }
2857 return copied;
2858}
2859
2860static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2861{
2862 struct page *p;
2863 int copied = 0;
2864
2865 while (count) {
2866 unsigned long offset, length;
2867
891c49ab 2868 offset = offset_in_page(addr);
d0107eb0
KH
2869 length = PAGE_SIZE - offset;
2870 if (length > count)
2871 length = count;
2872 p = vmalloc_to_page(addr);
2873 /*
2874 * To do safe access to this _mapped_ area, we need
2875 * lock. But adding lock here means that we need to add
2876 * overhead of vmalloc()/vfree() calles for this _debug_
2877 * interface, rarely used. Instead of that, we'll use
2878 * kmap() and get small overhead in this access function.
2879 */
2880 if (p) {
2881 /*
2882 * we can expect USER0 is not used (see vread/vwrite's
2883 * function description)
2884 */
9b04c5fe 2885 void *map = kmap_atomic(p);
d0107eb0 2886 memcpy(map + offset, buf, length);
9b04c5fe 2887 kunmap_atomic(map);
d0107eb0
KH
2888 }
2889 addr += length;
2890 buf += length;
2891 copied += length;
2892 count -= length;
2893 }
2894 return copied;
2895}
2896
2897/**
92eac168
MR
2898 * vread() - read vmalloc area in a safe way.
2899 * @buf: buffer for reading data
2900 * @addr: vm address.
2901 * @count: number of bytes to be read.
2902 *
92eac168
MR
2903 * This function checks that addr is a valid vmalloc'ed area, and
2904 * copy data from that area to a given buffer. If the given memory range
2905 * of [addr...addr+count) includes some valid address, data is copied to
2906 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2907 * IOREMAP area is treated as memory hole and no copy is done.
2908 *
2909 * If [addr...addr+count) doesn't includes any intersects with alive
2910 * vm_struct area, returns 0. @buf should be kernel's buffer.
2911 *
2912 * Note: In usual ops, vread() is never necessary because the caller
2913 * should know vmalloc() area is valid and can use memcpy().
2914 * This is for routines which have to access vmalloc area without
d9009d67 2915 * any information, as /dev/kmem.
a862f68a
MR
2916 *
2917 * Return: number of bytes for which addr and buf should be increased
2918 * (same number as @count) or %0 if [addr...addr+count) doesn't
2919 * include any intersection with valid vmalloc area
d0107eb0 2920 */
1da177e4
LT
2921long vread(char *buf, char *addr, unsigned long count)
2922{
e81ce85f
JK
2923 struct vmap_area *va;
2924 struct vm_struct *vm;
1da177e4 2925 char *vaddr, *buf_start = buf;
d0107eb0 2926 unsigned long buflen = count;
1da177e4
LT
2927 unsigned long n;
2928
2929 /* Don't allow overflow */
2930 if ((unsigned long) addr + count < count)
2931 count = -(unsigned long) addr;
2932
e81ce85f
JK
2933 spin_lock(&vmap_area_lock);
2934 list_for_each_entry(va, &vmap_area_list, list) {
2935 if (!count)
2936 break;
2937
688fcbfc 2938 if (!va->vm)
e81ce85f
JK
2939 continue;
2940
2941 vm = va->vm;
2942 vaddr = (char *) vm->addr;
762216ab 2943 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2944 continue;
2945 while (addr < vaddr) {
2946 if (count == 0)
2947 goto finished;
2948 *buf = '\0';
2949 buf++;
2950 addr++;
2951 count--;
2952 }
762216ab 2953 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2954 if (n > count)
2955 n = count;
e81ce85f 2956 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
2957 aligned_vread(buf, addr, n);
2958 else /* IOREMAP area is treated as memory hole */
2959 memset(buf, 0, n);
2960 buf += n;
2961 addr += n;
2962 count -= n;
1da177e4
LT
2963 }
2964finished:
e81ce85f 2965 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2966
2967 if (buf == buf_start)
2968 return 0;
2969 /* zero-fill memory holes */
2970 if (buf != buf_start + buflen)
2971 memset(buf, 0, buflen - (buf - buf_start));
2972
2973 return buflen;
1da177e4
LT
2974}
2975
d0107eb0 2976/**
92eac168
MR
2977 * vwrite() - write vmalloc area in a safe way.
2978 * @buf: buffer for source data
2979 * @addr: vm address.
2980 * @count: number of bytes to be read.
2981 *
92eac168
MR
2982 * This function checks that addr is a valid vmalloc'ed area, and
2983 * copy data from a buffer to the given addr. If specified range of
2984 * [addr...addr+count) includes some valid address, data is copied from
2985 * proper area of @buf. If there are memory holes, no copy to hole.
2986 * IOREMAP area is treated as memory hole and no copy is done.
2987 *
2988 * If [addr...addr+count) doesn't includes any intersects with alive
2989 * vm_struct area, returns 0. @buf should be kernel's buffer.
2990 *
2991 * Note: In usual ops, vwrite() is never necessary because the caller
2992 * should know vmalloc() area is valid and can use memcpy().
2993 * This is for routines which have to access vmalloc area without
d9009d67 2994 * any information, as /dev/kmem.
a862f68a
MR
2995 *
2996 * Return: number of bytes for which addr and buf should be
2997 * increased (same number as @count) or %0 if [addr...addr+count)
2998 * doesn't include any intersection with valid vmalloc area
d0107eb0 2999 */
1da177e4
LT
3000long vwrite(char *buf, char *addr, unsigned long count)
3001{
e81ce85f
JK
3002 struct vmap_area *va;
3003 struct vm_struct *vm;
d0107eb0
KH
3004 char *vaddr;
3005 unsigned long n, buflen;
3006 int copied = 0;
1da177e4
LT
3007
3008 /* Don't allow overflow */
3009 if ((unsigned long) addr + count < count)
3010 count = -(unsigned long) addr;
d0107eb0 3011 buflen = count;
1da177e4 3012
e81ce85f
JK
3013 spin_lock(&vmap_area_lock);
3014 list_for_each_entry(va, &vmap_area_list, list) {
3015 if (!count)
3016 break;
3017
688fcbfc 3018 if (!va->vm)
e81ce85f
JK
3019 continue;
3020
3021 vm = va->vm;
3022 vaddr = (char *) vm->addr;
762216ab 3023 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
3024 continue;
3025 while (addr < vaddr) {
3026 if (count == 0)
3027 goto finished;
3028 buf++;
3029 addr++;
3030 count--;
3031 }
762216ab 3032 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
3033 if (n > count)
3034 n = count;
e81ce85f 3035 if (!(vm->flags & VM_IOREMAP)) {
d0107eb0
KH
3036 aligned_vwrite(buf, addr, n);
3037 copied++;
3038 }
3039 buf += n;
3040 addr += n;
3041 count -= n;
1da177e4
LT
3042 }
3043finished:
e81ce85f 3044 spin_unlock(&vmap_area_lock);
d0107eb0
KH
3045 if (!copied)
3046 return 0;
3047 return buflen;
1da177e4 3048}
83342314
NP
3049
3050/**
92eac168
MR
3051 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3052 * @vma: vma to cover
3053 * @uaddr: target user address to start at
3054 * @kaddr: virtual address of vmalloc kernel memory
3055 * @size: size of map area
7682486b 3056 *
92eac168 3057 * Returns: 0 for success, -Exxx on failure
83342314 3058 *
92eac168
MR
3059 * This function checks that @kaddr is a valid vmalloc'ed area,
3060 * and that it is big enough to cover the range starting at
3061 * @uaddr in @vma. Will return failure if that criteria isn't
3062 * met.
83342314 3063 *
92eac168 3064 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 3065 */
e69e9d4a
HD
3066int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3067 void *kaddr, unsigned long size)
83342314
NP
3068{
3069 struct vm_struct *area;
83342314 3070
e69e9d4a
HD
3071 size = PAGE_ALIGN(size);
3072
3073 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
3074 return -EINVAL;
3075
e69e9d4a 3076 area = find_vm_area(kaddr);
83342314 3077 if (!area)
db64fe02 3078 return -EINVAL;
83342314 3079
fe9041c2 3080 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
db64fe02 3081 return -EINVAL;
83342314 3082
401592d2 3083 if (kaddr + size > area->addr + get_vm_area_size(area))
db64fe02 3084 return -EINVAL;
83342314 3085
83342314 3086 do {
e69e9d4a 3087 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
3088 int ret;
3089
83342314
NP
3090 ret = vm_insert_page(vma, uaddr, page);
3091 if (ret)
3092 return ret;
3093
3094 uaddr += PAGE_SIZE;
e69e9d4a
HD
3095 kaddr += PAGE_SIZE;
3096 size -= PAGE_SIZE;
3097 } while (size > 0);
83342314 3098
314e51b9 3099 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 3100
db64fe02 3101 return 0;
83342314 3102}
e69e9d4a
HD
3103EXPORT_SYMBOL(remap_vmalloc_range_partial);
3104
3105/**
92eac168
MR
3106 * remap_vmalloc_range - map vmalloc pages to userspace
3107 * @vma: vma to cover (map full range of vma)
3108 * @addr: vmalloc memory
3109 * @pgoff: number of pages into addr before first page to map
e69e9d4a 3110 *
92eac168 3111 * Returns: 0 for success, -Exxx on failure
e69e9d4a 3112 *
92eac168
MR
3113 * This function checks that addr is a valid vmalloc'ed area, and
3114 * that it is big enough to cover the vma. Will return failure if
3115 * that criteria isn't met.
e69e9d4a 3116 *
92eac168 3117 * Similar to remap_pfn_range() (see mm/memory.c)
e69e9d4a
HD
3118 */
3119int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3120 unsigned long pgoff)
3121{
3122 return remap_vmalloc_range_partial(vma, vma->vm_start,
3123 addr + (pgoff << PAGE_SHIFT),
3124 vma->vm_end - vma->vm_start);
3125}
83342314
NP
3126EXPORT_SYMBOL(remap_vmalloc_range);
3127
1eeb66a1
CH
3128/*
3129 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
3130 * have one.
3f8fd02b
JR
3131 *
3132 * The purpose of this function is to make sure the vmalloc area
3133 * mappings are identical in all page-tables in the system.
1eeb66a1 3134 */
3b32123d 3135void __weak vmalloc_sync_all(void)
1eeb66a1
CH
3136{
3137}
5f4352fb
JF
3138
3139
8b1e0f81 3140static int f(pte_t *pte, unsigned long addr, void *data)
5f4352fb 3141{
cd12909c
DV
3142 pte_t ***p = data;
3143
3144 if (p) {
3145 *(*p) = pte;
3146 (*p)++;
3147 }
5f4352fb
JF
3148 return 0;
3149}
3150
3151/**
92eac168
MR
3152 * alloc_vm_area - allocate a range of kernel address space
3153 * @size: size of the area
3154 * @ptes: returns the PTEs for the address space
7682486b 3155 *
92eac168 3156 * Returns: NULL on failure, vm_struct on success
5f4352fb 3157 *
92eac168
MR
3158 * This function reserves a range of kernel address space, and
3159 * allocates pagetables to map that range. No actual mappings
3160 * are created.
cd12909c 3161 *
92eac168
MR
3162 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3163 * allocated for the VM area are returned.
5f4352fb 3164 */
cd12909c 3165struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
5f4352fb
JF
3166{
3167 struct vm_struct *area;
3168
23016969
CL
3169 area = get_vm_area_caller(size, VM_IOREMAP,
3170 __builtin_return_address(0));
5f4352fb
JF
3171 if (area == NULL)
3172 return NULL;
3173
3174 /*
3175 * This ensures that page tables are constructed for this region
3176 * of kernel virtual address space and mapped into init_mm.
3177 */
3178 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
cd12909c 3179 size, f, ptes ? &ptes : NULL)) {
5f4352fb
JF
3180 free_vm_area(area);
3181 return NULL;
3182 }
3183
5f4352fb
JF
3184 return area;
3185}
3186EXPORT_SYMBOL_GPL(alloc_vm_area);
3187
3188void free_vm_area(struct vm_struct *area)
3189{
3190 struct vm_struct *ret;
3191 ret = remove_vm_area(area->addr);
3192 BUG_ON(ret != area);
3193 kfree(area);
3194}
3195EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 3196
4f8b02b4 3197#ifdef CONFIG_SMP
ca23e405
TH
3198static struct vmap_area *node_to_va(struct rb_node *n)
3199{
4583e773 3200 return rb_entry_safe(n, struct vmap_area, rb_node);
ca23e405
TH
3201}
3202
3203/**
68ad4a33
URS
3204 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3205 * @addr: target address
ca23e405 3206 *
68ad4a33
URS
3207 * Returns: vmap_area if it is found. If there is no such area
3208 * the first highest(reverse order) vmap_area is returned
3209 * i.e. va->va_start < addr && va->va_end < addr or NULL
3210 * if there are no any areas before @addr.
ca23e405 3211 */
68ad4a33
URS
3212static struct vmap_area *
3213pvm_find_va_enclose_addr(unsigned long addr)
ca23e405 3214{
68ad4a33
URS
3215 struct vmap_area *va, *tmp;
3216 struct rb_node *n;
3217
3218 n = free_vmap_area_root.rb_node;
3219 va = NULL;
ca23e405
TH
3220
3221 while (n) {
68ad4a33
URS
3222 tmp = rb_entry(n, struct vmap_area, rb_node);
3223 if (tmp->va_start <= addr) {
3224 va = tmp;
3225 if (tmp->va_end >= addr)
3226 break;
3227
ca23e405 3228 n = n->rb_right;
68ad4a33
URS
3229 } else {
3230 n = n->rb_left;
3231 }
ca23e405
TH
3232 }
3233
68ad4a33 3234 return va;
ca23e405
TH
3235}
3236
3237/**
68ad4a33
URS
3238 * pvm_determine_end_from_reverse - find the highest aligned address
3239 * of free block below VMALLOC_END
3240 * @va:
3241 * in - the VA we start the search(reverse order);
3242 * out - the VA with the highest aligned end address.
ca23e405 3243 *
68ad4a33 3244 * Returns: determined end address within vmap_area
ca23e405 3245 */
68ad4a33
URS
3246static unsigned long
3247pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
ca23e405 3248{
68ad4a33 3249 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
ca23e405
TH
3250 unsigned long addr;
3251
68ad4a33
URS
3252 if (likely(*va)) {
3253 list_for_each_entry_from_reverse((*va),
3254 &free_vmap_area_list, list) {
3255 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3256 if ((*va)->va_start < addr)
3257 return addr;
3258 }
ca23e405
TH
3259 }
3260
68ad4a33 3261 return 0;
ca23e405
TH
3262}
3263
3264/**
3265 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3266 * @offsets: array containing offset of each area
3267 * @sizes: array containing size of each area
3268 * @nr_vms: the number of areas to allocate
3269 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
3270 *
3271 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3272 * vm_structs on success, %NULL on failure
3273 *
3274 * Percpu allocator wants to use congruent vm areas so that it can
3275 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
3276 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3277 * be scattered pretty far, distance between two areas easily going up
3278 * to gigabytes. To avoid interacting with regular vmallocs, these
3279 * areas are allocated from top.
ca23e405 3280 *
68ad4a33
URS
3281 * Despite its complicated look, this allocator is rather simple. It
3282 * does everything top-down and scans free blocks from the end looking
3283 * for matching base. While scanning, if any of the areas do not fit the
3284 * base address is pulled down to fit the area. Scanning is repeated till
3285 * all the areas fit and then all necessary data structures are inserted
3286 * and the result is returned.
ca23e405
TH
3287 */
3288struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3289 const size_t *sizes, int nr_vms,
ec3f64fc 3290 size_t align)
ca23e405
TH
3291{
3292 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3293 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
68ad4a33 3294 struct vmap_area **vas, *va;
ca23e405
TH
3295 struct vm_struct **vms;
3296 int area, area2, last_area, term_area;
68ad4a33 3297 unsigned long base, start, size, end, last_end;
ca23e405 3298 bool purged = false;
68ad4a33 3299 enum fit_type type;
ca23e405 3300
ca23e405 3301 /* verify parameters and allocate data structures */
891c49ab 3302 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
3303 for (last_area = 0, area = 0; area < nr_vms; area++) {
3304 start = offsets[area];
3305 end = start + sizes[area];
3306
3307 /* is everything aligned properly? */
3308 BUG_ON(!IS_ALIGNED(offsets[area], align));
3309 BUG_ON(!IS_ALIGNED(sizes[area], align));
3310
3311 /* detect the area with the highest address */
3312 if (start > offsets[last_area])
3313 last_area = area;
3314
c568da28 3315 for (area2 = area + 1; area2 < nr_vms; area2++) {
ca23e405
TH
3316 unsigned long start2 = offsets[area2];
3317 unsigned long end2 = start2 + sizes[area2];
3318
c568da28 3319 BUG_ON(start2 < end && start < end2);
ca23e405
TH
3320 }
3321 }
3322 last_end = offsets[last_area] + sizes[last_area];
3323
3324 if (vmalloc_end - vmalloc_start < last_end) {
3325 WARN_ON(true);
3326 return NULL;
3327 }
3328
4d67d860
TM
3329 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3330 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 3331 if (!vas || !vms)
f1db7afd 3332 goto err_free2;
ca23e405
TH
3333
3334 for (area = 0; area < nr_vms; area++) {
68ad4a33 3335 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
ec3f64fc 3336 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
3337 if (!vas[area] || !vms[area])
3338 goto err_free;
3339 }
3340retry:
e36176be 3341 spin_lock(&free_vmap_area_lock);
ca23e405
TH
3342
3343 /* start scanning - we scan from the top, begin with the last area */
3344 area = term_area = last_area;
3345 start = offsets[area];
3346 end = start + sizes[area];
3347
68ad4a33
URS
3348 va = pvm_find_va_enclose_addr(vmalloc_end);
3349 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3350
3351 while (true) {
ca23e405
TH
3352 /*
3353 * base might have underflowed, add last_end before
3354 * comparing.
3355 */
68ad4a33
URS
3356 if (base + last_end < vmalloc_start + last_end)
3357 goto overflow;
ca23e405
TH
3358
3359 /*
68ad4a33 3360 * Fitting base has not been found.
ca23e405 3361 */
68ad4a33
URS
3362 if (va == NULL)
3363 goto overflow;
ca23e405 3364
5336e52c
KS
3365 /*
3366 * If required width exeeds current VA block, move
3367 * base downwards and then recheck.
3368 */
3369 if (base + end > va->va_end) {
3370 base = pvm_determine_end_from_reverse(&va, align) - end;
3371 term_area = area;
3372 continue;
3373 }
3374
ca23e405 3375 /*
68ad4a33 3376 * If this VA does not fit, move base downwards and recheck.
ca23e405 3377 */
5336e52c 3378 if (base + start < va->va_start) {
68ad4a33
URS
3379 va = node_to_va(rb_prev(&va->rb_node));
3380 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3381 term_area = area;
3382 continue;
3383 }
3384
3385 /*
3386 * This area fits, move on to the previous one. If
3387 * the previous one is the terminal one, we're done.
3388 */
3389 area = (area + nr_vms - 1) % nr_vms;
3390 if (area == term_area)
3391 break;
68ad4a33 3392
ca23e405
TH
3393 start = offsets[area];
3394 end = start + sizes[area];
68ad4a33 3395 va = pvm_find_va_enclose_addr(base + end);
ca23e405 3396 }
68ad4a33 3397
ca23e405
TH
3398 /* we've found a fitting base, insert all va's */
3399 for (area = 0; area < nr_vms; area++) {
68ad4a33 3400 int ret;
ca23e405 3401
68ad4a33
URS
3402 start = base + offsets[area];
3403 size = sizes[area];
ca23e405 3404
68ad4a33
URS
3405 va = pvm_find_va_enclose_addr(start);
3406 if (WARN_ON_ONCE(va == NULL))
3407 /* It is a BUG(), but trigger recovery instead. */
3408 goto recovery;
3409
3410 type = classify_va_fit_type(va, start, size);
3411 if (WARN_ON_ONCE(type == NOTHING_FIT))
3412 /* It is a BUG(), but trigger recovery instead. */
3413 goto recovery;
3414
3415 ret = adjust_va_to_fit_type(va, start, size, type);
3416 if (unlikely(ret))
3417 goto recovery;
3418
3419 /* Allocated area. */
3420 va = vas[area];
3421 va->va_start = start;
3422 va->va_end = start + size;
68ad4a33 3423 }
ca23e405 3424
e36176be 3425 spin_unlock(&free_vmap_area_lock);
ca23e405
TH
3426
3427 /* insert all vm's */
e36176be
URS
3428 spin_lock(&vmap_area_lock);
3429 for (area = 0; area < nr_vms; area++) {
3430 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3431
3432 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3645cb4a 3433 pcpu_get_vm_areas);
e36176be
URS
3434 }
3435 spin_unlock(&vmap_area_lock);
ca23e405 3436
3c5c3cfb
DA
3437 /* populate the shadow space outside of the lock */
3438 for (area = 0; area < nr_vms; area++) {
3439 /* assume success here */
3440 kasan_populate_vmalloc(sizes[area], vms[area]);
3441 }
3442
ca23e405
TH
3443 kfree(vas);
3444 return vms;
3445
68ad4a33 3446recovery:
e36176be
URS
3447 /*
3448 * Remove previously allocated areas. There is no
3449 * need in removing these areas from the busy tree,
3450 * because they are inserted only on the final step
3451 * and when pcpu_get_vm_areas() is success.
3452 */
68ad4a33 3453 while (area--) {
3c5c3cfb
DA
3454 merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3455 &free_vmap_area_list);
68ad4a33
URS
3456 vas[area] = NULL;
3457 }
3458
3459overflow:
e36176be 3460 spin_unlock(&free_vmap_area_lock);
68ad4a33
URS
3461 if (!purged) {
3462 purge_vmap_area_lazy();
3463 purged = true;
3464
3465 /* Before "retry", check if we recover. */
3466 for (area = 0; area < nr_vms; area++) {
3467 if (vas[area])
3468 continue;
3469
3470 vas[area] = kmem_cache_zalloc(
3471 vmap_area_cachep, GFP_KERNEL);
3472 if (!vas[area])
3473 goto err_free;
3474 }
3475
3476 goto retry;
3477 }
3478
ca23e405
TH
3479err_free:
3480 for (area = 0; area < nr_vms; area++) {
68ad4a33
URS
3481 if (vas[area])
3482 kmem_cache_free(vmap_area_cachep, vas[area]);
3483
f1db7afd 3484 kfree(vms[area]);
ca23e405 3485 }
f1db7afd 3486err_free2:
ca23e405
TH
3487 kfree(vas);
3488 kfree(vms);
3489 return NULL;
3490}
3491
3492/**
3493 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3494 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3495 * @nr_vms: the number of allocated areas
3496 *
3497 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3498 */
3499void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3500{
3501 int i;
3502
3503 for (i = 0; i < nr_vms; i++)
3504 free_vm_area(vms[i]);
3505 kfree(vms);
3506}
4f8b02b4 3507#endif /* CONFIG_SMP */
a10aa579
CL
3508
3509#ifdef CONFIG_PROC_FS
3510static void *s_start(struct seq_file *m, loff_t *pos)
e36176be 3511 __acquires(&vmap_purge_lock)
d4033afd 3512 __acquires(&vmap_area_lock)
a10aa579 3513{
e36176be 3514 mutex_lock(&vmap_purge_lock);
d4033afd 3515 spin_lock(&vmap_area_lock);
e36176be 3516
3f500069 3517 return seq_list_start(&vmap_area_list, *pos);
a10aa579
CL
3518}
3519
3520static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3521{
3f500069 3522 return seq_list_next(p, &vmap_area_list, pos);
a10aa579
CL
3523}
3524
3525static void s_stop(struct seq_file *m, void *p)
e36176be 3526 __releases(&vmap_purge_lock)
d4033afd 3527 __releases(&vmap_area_lock)
a10aa579 3528{
e36176be 3529 mutex_unlock(&vmap_purge_lock);
d4033afd 3530 spin_unlock(&vmap_area_lock);
a10aa579
CL
3531}
3532
a47a126a
ED
3533static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3534{
e5adfffc 3535 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a
ED
3536 unsigned int nr, *counters = m->private;
3537
3538 if (!counters)
3539 return;
3540
af12346c
WL
3541 if (v->flags & VM_UNINITIALIZED)
3542 return;
7e5b528b
DV
3543 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3544 smp_rmb();
af12346c 3545
a47a126a
ED
3546 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3547
3548 for (nr = 0; nr < v->nr_pages; nr++)
3549 counters[page_to_nid(v->pages[nr])]++;
3550
3551 for_each_node_state(nr, N_HIGH_MEMORY)
3552 if (counters[nr])
3553 seq_printf(m, " N%u=%u", nr, counters[nr]);
3554 }
3555}
3556
dd3b8353
URS
3557static void show_purge_info(struct seq_file *m)
3558{
3559 struct llist_node *head;
3560 struct vmap_area *va;
3561
3562 head = READ_ONCE(vmap_purge_list.first);
3563 if (head == NULL)
3564 return;
3565
3566 llist_for_each_entry(va, head, purge_list) {
3567 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3568 (void *)va->va_start, (void *)va->va_end,
3569 va->va_end - va->va_start);
3570 }
3571}
3572
a10aa579
CL
3573static int s_show(struct seq_file *m, void *p)
3574{
3f500069 3575 struct vmap_area *va;
d4033afd
JK
3576 struct vm_struct *v;
3577
3f500069 3578 va = list_entry(p, struct vmap_area, list);
3579
c2ce8c14 3580 /*
688fcbfc
PL
3581 * s_show can encounter race with remove_vm_area, !vm on behalf
3582 * of vmap area is being tear down or vm_map_ram allocation.
c2ce8c14 3583 */
688fcbfc 3584 if (!va->vm) {
dd3b8353 3585 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
78c72746 3586 (void *)va->va_start, (void *)va->va_end,
dd3b8353 3587 va->va_end - va->va_start);
78c72746 3588
d4033afd 3589 return 0;
78c72746 3590 }
d4033afd
JK
3591
3592 v = va->vm;
a10aa579 3593
45ec1690 3594 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
3595 v->addr, v->addr + v->size, v->size);
3596
62c70bce
JP
3597 if (v->caller)
3598 seq_printf(m, " %pS", v->caller);
23016969 3599
a10aa579
CL
3600 if (v->nr_pages)
3601 seq_printf(m, " pages=%d", v->nr_pages);
3602
3603 if (v->phys_addr)
199eaa05 3604 seq_printf(m, " phys=%pa", &v->phys_addr);
a10aa579
CL
3605
3606 if (v->flags & VM_IOREMAP)
f4527c90 3607 seq_puts(m, " ioremap");
a10aa579
CL
3608
3609 if (v->flags & VM_ALLOC)
f4527c90 3610 seq_puts(m, " vmalloc");
a10aa579
CL
3611
3612 if (v->flags & VM_MAP)
f4527c90 3613 seq_puts(m, " vmap");
a10aa579
CL
3614
3615 if (v->flags & VM_USERMAP)
f4527c90 3616 seq_puts(m, " user");
a10aa579 3617
fe9041c2
CH
3618 if (v->flags & VM_DMA_COHERENT)
3619 seq_puts(m, " dma-coherent");
3620
244d63ee 3621 if (is_vmalloc_addr(v->pages))
f4527c90 3622 seq_puts(m, " vpages");
a10aa579 3623
a47a126a 3624 show_numa_info(m, v);
a10aa579 3625 seq_putc(m, '\n');
dd3b8353
URS
3626
3627 /*
3628 * As a final step, dump "unpurged" areas. Note,
3629 * that entire "/proc/vmallocinfo" output will not
3630 * be address sorted, because the purge list is not
3631 * sorted.
3632 */
3633 if (list_is_last(&va->list, &vmap_area_list))
3634 show_purge_info(m);
3635
a10aa579
CL
3636 return 0;
3637}
3638
5f6a6a9c 3639static const struct seq_operations vmalloc_op = {
a10aa579
CL
3640 .start = s_start,
3641 .next = s_next,
3642 .stop = s_stop,
3643 .show = s_show,
3644};
5f6a6a9c 3645
5f6a6a9c
AD
3646static int __init proc_vmalloc_init(void)
3647{
fddda2b7 3648 if (IS_ENABLED(CONFIG_NUMA))
0825a6f9 3649 proc_create_seq_private("vmallocinfo", 0400, NULL,
44414d82
CH
3650 &vmalloc_op,
3651 nr_node_ids * sizeof(unsigned int), NULL);
fddda2b7 3652 else
0825a6f9 3653 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
5f6a6a9c
AD
3654 return 0;
3655}
3656module_init(proc_vmalloc_init);
db3808c1 3657
a10aa579 3658#endif